TW200835946A - Optical apparatus, image display, and liquid crystal display - Google Patents

Optical apparatus, image display, and liquid crystal display Download PDF

Info

Publication number
TW200835946A
TW200835946A TW096145619A TW96145619A TW200835946A TW 200835946 A TW200835946 A TW 200835946A TW 096145619 A TW096145619 A TW 096145619A TW 96145619 A TW96145619 A TW 96145619A TW 200835946 A TW200835946 A TW 200835946A
Authority
TW
Taiwan
Prior art keywords
optical device
light
liquid crystal
color purity
plate
Prior art date
Application number
TW096145619A
Other languages
Chinese (zh)
Inventor
Michie Sakamoto
Megumu Nagasawa
Akira Ootani
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW200835946A publication Critical patent/TW200835946A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Abstract

An optical apparatus that prevents unevenness in color and brightness from occurring in an image display, and can improve the color purity of transmitted light and color reproducibility of the image display and is excellent in practical use. An optical apparatus that includes a light source device; a reflective layer; a color purity improving sheet; and a reflective polarizer. The color purity improving sheet includes a light-emitting layer which improves purity of a color in a target wavelength range by absorbing light in a specific wavelength range other than the target wavelength range and converts the absorbed light to emitted light in the target wavelength range. Light emitted from the light source device exits through the reflective polarizer to the outside. The color purity improving sheet is disposed between the reflective polarizer and the reflective layer. The light source device is disposed in a location between the color purity improving sheet and the reflective layer.

Description

200835946 九、發明說明: 【發明所屬技術領域】 本發明係有關於光學裝置、圖像顯示裝置及液晶顯示 裝置。 近年來’藉由液晶面板控制諸如冷陰極管或發光二極 體(LED)等光源衣置發出之光、形成圖像的液晶顯示裝置已 開發出來,並已實用化。在前述液晶顯示裝置中配置有導 光板,該導光板使得從光源裝置發出之光均句地分佈在整 Π)個顯示面上。前述導光板與前述液晶面板平行且相互重 疊’並配置於通往光源袭置的光路上。前述光源裝置配置 在導光板一側,或在導光板與液晶面板相反之側。 此外,近來爲提高液晶顯示裝置營幕的亮度,可以在 前述導光板和前述液晶面板之間配置反射型偏光元件。前 15述反射型偏光元件可供預定偏光狀態之光透過,且反射其 他的光。 第18圖的剖面圖中顯示習知液晶顯示裝置的一例。如 圖所不,該液晶顯示裝置包括液晶面板94、反射型偏光元 件90、導光板91、冷陰極管92及反射層93,以作爲其主要 20構件。液晶面板94具有在液晶單元95兩侧分別配置第一偏 光板931及弟一偏光板932的構造,且液晶單元95在其中間 具有液晶層940。第一配向膜951和第二配向膜952分別配置 在液晶層940的兩側。前述第一透明電極961和前述第二透 明電極962分別配置在第一配向膜951和第二配向膜952的 5 200835946 外側。以預定方式排列的R(紅)、G(綠)、B(藍)等濾色片97〇 與黑矩陣990隔者保護溥膜980配置在第一透明電極% 1的 外側。第一基板901及第二基板902分別配置在前述濾色片 970和黑矩陣990及第二透明電極962的外側。在液晶面板% 5中,前述第一偏光板931的側爲顯示侧,前述第二偏光板妁2 的側爲月面侧。反射型偏光tl件90配置在液晶面板94的背 面側。前述導光板91配置在前述反射型偏光元件9〇之一與 前述液晶面板94側相反的側且平行,並使其和前述液晶面 板94彼此相互重疊。前述冷陰極管92配置在前述導光板91 10 之一與液晶面板94侧相反的側。前述反射層93則配置在前 述冷陰極管92之一與前述液晶面板94側相反的側。 在該液晶顯示裝置中,通過導光板91調節從前述冷陰 極管92發出之光,這樣就可以得到均勻的面内亮度分佈, 然後將其發射到前述第二偏光板932—側。此外,當發射光 15 在液晶層940中一像素一像素地被控制後,只有預定波長帶 (例如,各個r、G和B之波長帶)的光才能經濾色片970透射, 然後獲得彩色顯示。又,在前述導光板91發出之光中,以 預定方式偏光的光,透射穿過前述反射型偏光元件90,然 後通過前述液晶面板94而穿出至顯示側。另一方面,沒有 20 以預定方式偏光的光被前述反射型偏光元件90反射、經前 述反射層93反轉方向’然後再次進入如述反射型偏光元件 90。經過前述反射層93反轉方向的光此時透射過前述反射 型偏光元件90,並通過液晶面板94而穿出至顯示側。 然而,在習知液晶顯示裝置中,R、G和B以外之中間 6 200835946 顏色(波長帶在R波長帶和G波長帶之間的黃光、波長帶在g 波長帶和B波長帶之間的光等)在冷陰極管發射的光譜中是 混雜的’通過濾色片不能對其進行充分的過濾。因此,結 果會有顯示晝質之顏色再現性降低的問題。 5 有人提出了一種用於液晶顯示裝置的光學裝置作爲解 決該問題的方法,該光學裝置含有一種螢光物質,此螢光 物質可吸收波長575〜605nm的黃光(波長帶在R波長帶和G 波長帶之間的光),並發射波長至少爲610ηπι的R光,並且利 用該螢光物質將光源發光光譜中的黃光轉變成反光(參見專 10利文獻丨)。在該光學裝置中,已提出了一種使導光板或反 射層含有前述螢光物質的方法。此外,在該光學裝置中還 提出了將前述螢光物質塗布到導光板之上面或端面、或光 源之表面的方法。 然而’在使導光板或反射層含有前述螢光物質的所述 15方法中,一個存在的問題是根據導光板或反射層中其部位 的不同’有些區域有螢光物質而其他區域沒有螢光物質, 因此發射之光的波長分佈光譜不一定,這會引起顏色不均 勻。此外,在將螢光物質塗布到導光板上面等的方法中, 存在有發生面内亮度不均勻的問題。又,該光學裝置構造 20 複雜,缺少實用性。 【專利文獻1】特開2005-276586號公報 【發明内容3 因此,本發明的目的是提供一種光學裝置,該光學裝 置能防止圖像顯示裝置發生顏色不均勻和亮度不均勻,同 7 200835946 時可以提高透射光的色純度,且可提高圖像顯示裝置的顏 色再現性,並且實用性優異。 爲了實現前述目的,本發明的光學裝置的特徵在於其 包含: 5 光源裝置; ^ 反射層; ^ 色純度提高板;及 反射型偏光元件, ^ 其中前述色純度提高板包括發光層,該發光層具有藉 10 由吸收目標波長帶以外之特定波長帶的光、轉變其波長後 發射目標波長帶的光來提高目標波長帶之顏色純度的發光 機構, 從前述光源裝置發出之光通過前述反射型偏光元件射 出至外部, 15 前述色純度提高板被配置在前述反射型偏光元件和前 述反射層之間,且 ^ 前述光源裝置被配置在至少一個以下位置,即: 前述色純度提高板和前述反射層之間的位置; 前述反射型偏光元件和前述色純度提高板之間的位 20 置;及 前述反射層之一與前述色純度提高板側相反之側的位 置。 本發明的圖像顯示裝置包含光學裝置及顯示面板, 前述顯示面板包括顯示層和濾色片, 8 200835946 丽述顯不面板和w述光學裝置係配置成使得前述顯示 層位於前述濾色片和前述光學裝置之間,並且 從前述光學裝置發出之光穿過前述顯示層,然後進入 前述濾色片, 5 其中前述光學農置爲前述本發明的光學裝置。 本發明的液晶顯示裝置包含光學裝置及液晶面板, 如述液晶面板包括液晶層和濾色片, 前述液晶面板和前述光學裝置係配置成使得前述液晶 層位於前述濾色片和前述光學裝置之間,並且 10 從前述光學裝置發出之光穿過前述液晶層,然後進入 前述濾色片 其中’前述光學裝置爲前述本發明的光學裝置。 在本發明的光學裝置中,前述發光元件包含在單一的 片材中(發光層)。因此,在本發明的光學裝置中,前述發光 I5元件可以均勻地分佈在片材(發光層)中。結果是,依據本發 明的光學裝置,可以提高透射光的色純度,同時防止發生 顏色和亮度不均勻。又,在本發明的光學裝置中,具有前 述發光層之色純度提高板配置於反射型偏光元件和反射層 之間。在此情況下,至少一部分透射穿過前述色純度提高 20板的光被前述反射型偏光元件或反前述射層反射,然後再 次進入前述色純度提高板。因此,在本發明的光學裝置中, 由於存在有反覆進入前述色純度提高板的光,光之波長轉 變效率提高,色純度也進一少提南。結果,在本發明的光 學裝置中,亦可以提高圖像顯示裝置的顏色再現性。此外, 9 200835946 使用本發明的光學裝置,例如,僅藉由將前述光學裝置配 置在液晶顯示襄置中就可以提高色純度。因此,其實用性 極佳。 【實施方式】 5 在本發明中,“色純度的提高”包括,例如,將r和〇之 中間色的黃光轉變成R或G光;將G和B之中間色的光轉變成 G光;及將R、G和B中任一種顏色轉變成R、G和B以外之顏 色等。 在本發明的光學裝置中,前述光源裝置宜被配置在前 10 述色純度提高板和前述反射層之間。 在本發明的光學裝置中,前述發光層宜由基質聚合物 和榮光物質形成。 在本發明的光學裝置中,前述螢光物質可舉例如··螢 光素類、若丹明類、香豆素類、丹磺醯類(二曱胺基萘磺酸)、 15 7_硝基苯基氧雜4,3-二唑(NBD)型染料、芘、茈系、藻 膽蛋白系、花青染料、蒽醌系、硫靛系、和苯並吨喃系等 螢光物質。前述花青染料中含有羰花青染料。前述螢光物 質可以單獨使用一種,也可以併用兩種以上。 在本發明的光學裝置中,螢光物質宜爲茈系螢光物質。 20 在本發明的光學裝置中,前述茈系螢光物質宜以下述 結構式(1)表示: 200835946200835946 IX. DESCRIPTION OF THE INVENTION: 1. Field of the Invention The present invention relates to an optical device, an image display device, and a liquid crystal display device. In recent years, liquid crystal display devices which form light by means of a liquid crystal panel to control light emitted from a light source such as a cold cathode tube or a light emitting diode (LED) have been developed and put into practical use. In the liquid crystal display device described above, a light guide plate is disposed which distributes light emitted from the light source device uniformly over the entire display surface. The light guide plate is parallel to the liquid crystal panel and overlaps with each other and is disposed on an optical path leading to the light source. The light source device is disposed on the side of the light guide plate or on the side opposite to the liquid crystal panel of the light guide plate. Further, recently, in order to increase the brightness of the liquid crystal display device, a reflective polarizing element may be disposed between the light guide plate and the liquid crystal panel. The reflective polarizing element of the preceding paragraph is capable of transmitting light of a predetermined polarization state and reflecting other light. An example of a conventional liquid crystal display device is shown in the cross-sectional view of Fig. 18. As shown in the figure, the liquid crystal display device includes a liquid crystal panel 94, a reflective polarizing element 90, a light guide plate 91, a cold cathode tube 92, and a reflective layer 93 as its main components. The liquid crystal panel 94 has a configuration in which a first polarizing plate 931 and a polarizing plate 932 are disposed on both sides of the liquid crystal cell 95, and the liquid crystal cell 95 has a liquid crystal layer 940 in between. The first alignment film 951 and the second alignment film 952 are disposed on both sides of the liquid crystal layer 940, respectively. The first transparent electrode 961 and the second transparent electrode 962 are disposed outside the 5 200835946 of the first alignment film 951 and the second alignment film 952, respectively. The color filter 97 R such as R (red), G (green), and B (blue) arranged in a predetermined manner and the black matrix 990 spacer protective film 980 are disposed outside the first transparent electrode % 1 . The first substrate 901 and the second substrate 902 are disposed outside the color filter 970, the black matrix 990, and the second transparent electrode 962, respectively. In the liquid crystal panel %5, the side of the first polarizing plate 931 is the display side, and the side of the second polarizing plate 妁2 is the moon surface side. The reflective polarized light element 90 is disposed on the back side of the liquid crystal panel 94. The light guide plate 91 is disposed on a side opposite to the side of the liquid crystal panel 94 on one side of the reflective polarizing element 91, and is overlapped with the liquid crystal panel 94. The cold cathode tube 92 is disposed on a side of the light guide plate 91 10 opposite to the liquid crystal panel 94 side. The reflective layer 93 is disposed on the side opposite to the liquid crystal panel 94 side of one of the cold cathode tubes 92. In the liquid crystal display device, the light emitted from the cold cathode tube 92 is adjusted by the light guide plate 91, so that a uniform in-plane luminance distribution can be obtained, and then emitted to the side of the second polarizing plate 932. Further, when the emitted light 15 is controlled pixel by pixel in the liquid crystal layer 940, only light of a predetermined wavelength band (for example, wavelength bands of respective r, G, and B) can be transmitted through the color filter 970, and then color is obtained. display. Further, among the light emitted from the light guide plate 91, light polarized in a predetermined manner is transmitted through the reflective polarizing element 90, and then passes through the liquid crystal panel 94 to the display side. On the other hand, light that is not polarized in a predetermined manner is reflected by the reflective polarizing element 90, reversed in the direction of the reflective layer 93, and then enters the reflective polarizing element 90 again. Light that has passed through the direction in which the reflective layer 93 is reversed passes through the reflective polarizing element 90 at this time, and passes through the liquid crystal panel 94 to the display side. However, in the conventional liquid crystal display device, the intermediate 6 200835946 color other than R, G, and B (the yellow band of the wavelength band between the R wavelength band and the G wavelength band, and the wavelength band between the g wavelength band and the B wavelength band) The light, etc.) is intermingled in the spectrum emitted by the cold cathode tube' and cannot be sufficiently filtered by the color filter. Therefore, as a result, there is a problem that the color reproducibility of the enamel is lowered. 5 An optical device for a liquid crystal display device has been proposed as a method for solving the problem, the optical device comprising a fluorescent substance capable of absorbing yellow light having a wavelength of 575 to 605 nm (the wavelength band is in the R wavelength band and G light between the wavelength bands, and emits R light having a wavelength of at least 610 η, and uses the fluorescent substance to convert yellow light in the light-emitting spectrum of the light source into reflection (see Japanese Patent Literature). In the optical device, a method of causing the light guide plate or the reflection layer to contain the aforementioned fluorescent substance has been proposed. Further, a method of applying the above-mentioned fluorescent substance to the upper surface or the end surface of the light guide plate or the surface of the light source has been proposed in the optical device. However, in the above-mentioned 15 method of causing the light guide plate or the reflective layer to contain the aforementioned fluorescent substance, there is a problem that depending on the position of the light guide plate or the reflective layer, some areas have fluorescent substances and other areas have no fluorescent light. The substance, therefore, does not necessarily have a wavelength distribution spectrum of the emitted light, which causes color unevenness. Further, in the method of applying a fluorescent substance to the upper surface of a light guide plate or the like, there is a problem that unevenness in in-plane brightness occurs. Moreover, the optical device structure 20 is complicated and lacks practicality. [Patent Document 1] JP-A-2005-276586 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical device capable of preventing color unevenness and uneven brightness of an image display device, as in 7200835946 The color purity of the transmitted light can be improved, and the color reproducibility of the image display device can be improved, and the utility is excellent. In order to achieve the aforementioned object, an optical device of the present invention is characterized in that it comprises: 5 a light source device; a reflective layer; a color purity improving plate; and a reflective polarizing element, wherein the color purity improving plate comprises a light emitting layer, the light emitting layer An illuminating mechanism for increasing the color purity of a target wavelength band by light having a specific wavelength band other than the target wavelength band, and light having a wavelength converted to a target wavelength band, and the light emitted from the light source device passes through the reflective polarized light. The element is emitted to the outside, 15 the color purity improving plate is disposed between the reflective polarizing element and the reflective layer, and the light source device is disposed at at least one of the positions, that is, the color purity improving plate and the reflective layer. a position between the reflective polarizing element and the color purity improving plate; and a position on the side opposite to the color purity improving plate side of the reflective layer. The image display device of the present invention comprises an optical device and a display panel, wherein the display panel comprises a display layer and a color filter, and the display panel and the optical device are configured such that the display layer is located in the color filter and Light between the optical devices and from the optical device passes through the display layer and then enters the color filter, wherein the optical device is the optical device of the present invention. The liquid crystal display device of the present invention comprises an optical device including a liquid crystal layer and a color filter, wherein the liquid crystal panel and the optical device are disposed such that the liquid crystal layer is located between the color filter and the optical device. And 10 light emitted from the aforementioned optical device passes through the aforementioned liquid crystal layer and then enters the aforementioned color filter, wherein 'the aforementioned optical device is the optical device of the present invention described above. In the optical device of the present invention, the light-emitting element is contained in a single sheet (light-emitting layer). Therefore, in the optical device of the present invention, the aforementioned light-emitting I5 element can be uniformly distributed in the sheet (light-emitting layer). As a result, according to the optical device of the present invention, the color purity of the transmitted light can be improved while preventing color and brightness unevenness from occurring. Further, in the optical device of the present invention, the color purity improving plate having the above-described light-emitting layer is disposed between the reflective polarizing element and the reflective layer. In this case, at least a portion of the light transmitted through the color-increasing color plate is reflected by the reflective polarizing element or the counter-reflecting layer, and then enters the color purity improving plate again. Therefore, in the optical device of the present invention, since light which repeatedly enters the color purity improving plate is present, the wavelength conversion efficiency of light is improved, and the color purity is further reduced. As a result, in the optical device of the present invention, the color reproducibility of the image display device can also be improved. Further, 9 200835946, using the optical device of the present invention, for example, the color purity can be improved only by arranging the aforementioned optical device in a liquid crystal display device. Therefore, its practicality is excellent. [Embodiment] 5 In the present invention, "improvement in color purity" includes, for example, converting yellow light of an intermediate color of r and 〇 into light of R or G; converting light of an intermediate color of G and B into G light; The color of any one of R, G, and B is converted into a color other than R, G, and B, and the like. In the optical device of the present invention, the light source device is preferably disposed between the first color purity improving plate and the reflective layer. In the optical device of the present invention, the aforementioned light-emitting layer is preferably formed of a matrix polymer and a luminescent material. In the optical device of the present invention, the fluorescent material may, for example, be a luciferin, a rhodamine, a coumarin, a dansin (diamine-naphthalenesulfonic acid), or a nitrocellulose. Fluorescent materials such as phenylphenyloxa 4,3-diazole (NBD) type dyes, anthraquinones, anthraquinones, phycobiliproteins, cyanine dyes, anthraquinones, thioindoles, and benzoxanthene. The aforementioned cyanine dye contains a carbocyanine dye. The above-mentioned fluorescent substances may be used alone or in combination of two or more. In the optical device of the present invention, the fluorescent substance is preferably a lanthanide fluorescent substance. In the optical device of the present invention, the lanthanide fluorescent substance is preferably represented by the following structural formula (1): 200835946

XXXX

1 /IV 前述式(1)中,四個X分別爲鹵素基或烷氧基,而各個X 可以彼此相同或不同,並且兩個R分別爲芳基或烷基,而各 個R可以彼此相同或不同。 5 在本發明的光學裝置中,螢光物質宜爲硫靛系螢光物 質。 在本發明的光學裝置中,前述硫靛系螢光物質宜以下 述結構式(2)表示:1 /IV In the above formula (1), four X are each a halogen group or an alkoxy group, and each X may be the same or different from each other, and two R's are each an aryl group or an alkyl group, and each R may be the same as each other or different. In the optical device of the present invention, the fluorescent substance is preferably a sulphur-based fluorescent substance. In the optical device of the present invention, the sulfonium-based fluorescent material is preferably represented by the following structural formula (2):

10 在本發明的光學裝置中,螢光物質宜爲蒽醌系螢光物 質。 在本發明的光學裝置中,前述蒽醌系螢光物質宜以下 述結構式(3)表示:In the optical device of the present invention, the fluorescent substance is preferably a lanthanide fluorescent substance. In the optical device of the present invention, the lanthanide fluorescent material is preferably represented by the following structural formula (3):

II 200835946 ΟII 200835946 Ο

在本發明的光學裝置中,前述基質聚合物可舉例如: 聚甲基丙烯酸曱酯、聚丙烯酸酯系樹脂、聚碳酸酯系樹脂、 聚降冰片烯系樹脂、聚乙烯醇系樹脂、及纖維素系樹脂等。 5 前述基質聚合物可以單獨使用一種,也可以併用兩種以上。 在本發明的光學裝置中,前述基質聚合物宜爲聚甲基 丙稀酸甲醋。 在本發明的光學裝置中,發光層所吸收之光的特定波 長帶沒有特別限制,其範圍可以是例如560〜610nm。發光 10 層所發出之光的目標波長帶沒有特別限制,其範圍可以是 例如610〜700nm。 較佳地,本發明的光學裝置更包括導光板,且從前述 光源裝置發出之光通過前述導光板射出至前述反射型偏光 元件側。 15 接下來,用實例說明本發明的光學裝置。 如上所述,本發明的光學裝置包括光源裝置、反射層、 色純度提高板、及反射型偏光元件。又,在本發明的光學 裝置中,舉例來說,如第1圖所示,前述色純度提高板11配 置在前述反射型偏光元件10和前述反射層13之間。在本發 20 明的光學裝置中,舉例來說,如第1圖所示,前述光源裝置 12 200835946 被配置在以下至少-個位置,即:前述色純度提高板叫 前述反射層13之間的位置(第1圖所示的X位置)、前述反射 变偏光元件10和前述色純度提高板η之間的位置(第1圖所 示的y位置)、以及前述反射層13之一與前述色純度提高板 5 11側相反之侧的位置(第1圖所示的Z位置)。 纽使㈣反射型偏光元件可以是任何能將,舉例來 a ’自然光㈣域錢偏岐開的合適_。分離直線 偏光的薄膜可舉透射在軸線方向正交的線偏振光,並且反 • 祕他光的薄膜為例。這類反射型偏光元件的具體例可舉 10例如:格柵型偏光元件;由具有折射率差之兩種材料製成 之兩層以上的多層薄膜積層體;於分束器中使用之折射率 不同的蒸鍍多層薄膜;使用拉伸具有折射率差之兩種以上 樹脂兩層以上樹脂積層體所得到者等。更具體地,前述反 射里偏光70件可以使用,例如,單軸拉伸多層積層體所得 15到的者,且該多層積層體係由經過拉伸表現出相位差的材 料[例如’聚2,6萘二甲酸乙二酯、聚對苯二甲酸乙二醋(pET) • 絲碳酸醋]或丙烯酸系樹脂(例如,聚甲基丙烯酸曱醋)和 相位差表現量小之樹月旨(例如,如取公司製造之商品名 「ARTQN」㈣之降冰片樹峨替層㈣縣者。例如, 2〇 4述反射里偏光元件已在市場上以说公司製造之「dbef」 為商tm名販K &述反射型偏光元件的厚度沒有特別限 制,舉例來說,其範圍是5〇〜2〇〇μιη。 色純度提回板具有包含發光元件之發光層,該發光元 件吸收目標波外之特定波長帶的光(不需要之顏色 13 200835946 的光),並將其波長改變,然後發出目標波長帶的光(需要之 顏色的光),藉此提高目標波長帶顏色純度。 前述發光元件宜含有螢光物質,且前述螢光物質係如 上所述者。 5 螢光物質的具體例可舉例如·· BASF AG製造的商品名 「Lumogen F Red 305(茈系)」;Arimoto Chemical Co·,Ltd· 製造的商品名「Plast Red 8355(蒽醌系)和8365(蒽醌系)、 Plast Red D-54(硫敌系)、piast Red DR-426(苯並吡喃)和 DR-427(苯並吼喃)」;及Hayashibara Biochemical Labs.,Inc· 10製造的商品名「NK-1533(羰花青染料)」等。這些螢光物質 吸收R和G之中間色的黃光(波長560〜610nm),並且發出R光 (波長610〜650nm)。 如上所述,茈系螢光物質宜以結構式(1)表示,且結構 式(1)所表示的螢光物質的吸收光譜顯示在第8圖的圖中。如 15圖中所示,該螢光物質的最大吸收波長約為585nm。 如上所述,硫靛螢光物質宜以結構式(2)表示,且結構 式(2)所表示的螢光物質的吸收光譜顯示在第9圖的圖中。如 圖中所示,該螢光物質的最大吸收波長約為550nm。 如上所述,蒽醌系螢光物質宜以結構式(3)表示,且結 20構式(3)所表示的螢光物質的吸收光譜顯示在第10圖的圖 中。如圖中所示,該螢光物質的最大吸收波長約為550nm。 如上所述,發光層宜由基質聚合物和螢光物質所形 成。發光層可以,舉例來說,透過將螢光物質與可成型爲 薄膜的基質聚合物混合,然後藉製膜製作而形成薄膜。前 14 200835946 述基質聚合物最好具有高透明度,且可舉例如:聚甲基丙 烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丁酯等之聚丙烯酸酯 系樹脂;聚己撐基氧基羰氧酯、聚1,4-異亞丙基-1,4-苯撐基 -氧基羰氧酯等之聚碳酸酯系樹脂;聚降冰片烯系樹脂;聚 5 乙烯醇縮甲醛、聚乙烯醇縮乙醛、聚乙烯醇縮丁醛等之聚 乙烯醇類樹脂;曱基纖維素、乙基纖維素及其衍生物等之 纖維素類樹脂等。其中,以聚曱基丙烯酸甲酯較佳。前述 基質聚合物可以單獨使用,也可以併用兩種以上。 前述「聚降冰片烯系樹」是指於部分或全部之初始原 10 料(單體)中使用具有降冰片烯環之降冰片烯系單體所得到 的(共)聚合物。前述「(共)聚合物」表示均聚物或共聚物。 接下來,舉例說明形成前述發光層的方法,但形成前 述發光層的方法不限於此例。 首先,將基質聚合物溶解在溶劑中,製備聚合物溶液。 15 前述溶劑可使用例如:甲苯、曱基乙基酮、環己酮、乙酸 乙酯、乙醇、四氫呋喃、環戊酮、水等。 接著,將螢光物質加入前述聚合物溶液中並使其溶 解。前述螢光物質的加入量可以根據前述螢光物質的種類 適當地決定,例如,相對100重量份的前述基質聚合物,其 20 範圍是0.01〜80重量份,且以0.1〜50重量份為佳,0.1〜30重 量份更佳。 隨後,將已經加入了前述螢光物質的聚合物溶液塗布 在基板上形成塗膜,然後藉由將其加熱乾燥,形成薄膜。 接著,將前述薄膜剝離前述基板,藉此可以得到前述 15 200835946 發光層。前述發光層的厚度沒有特別限制,例如,前述尸 度範圍爲0·1〜ΙΟΟΟμπι,且以^⑻师為佳,2〜5〇阳更^子 色純度提高板可以具有任何結構,只要具有前述發光 層即可。例如,色純度提高板可以只由前述發光層構^。 5此外,色純度提高板還可以包含發光層以外者。 ' 别述光源裝置沒有特別限制,例如,可舉冷,極技 _ 發光二極體(LED)為例。 前述反射層的種類和材質沒有特別限制。較佳地,前 ® 述反射層係由光反射率高的材料構成。前述材料,例如j 10可舉具有銀濺鍍層、銀沈積層、光反射率高之墨水層的塑 膠薄膜或板等為例。前述反射層的厚度沒有特別限制,例 如,其範圍是100〜500μιη。 本發明光學裝置的構造實例顯示於第2圖的剖面圖 中。在第2圖中,與第1圖相同的部分用相同的符號標註。 15在该實例的光學裝置中’光源裝置12配置在前述色純度提 ^ 高板11和前述反射層13之間的位置(第1圖所示的X位置)。 以第2圖之光學裝置爲例,說明本發明光學裝置的色純 度的提高。舉例來說,如下所述地提高色純度。例如,於 前述光源裝置12中,使用具有約435nm的Β、約545nm的G、 20 和約610nm的R的高發光峰。在本例的光學裝置中,假設只 使用G和R之發射光,則不需要G和R之中間色的黃光(約 585nm)發射光。在此情況下,前述色純度提高板11的發光 層含有具有例如約585nm之最大吸收導波長,且具有61〇nm 以上之發光的螢光物質。前述光源裝置12發出之光,如箭 16 200835946 頭A和B所示,進入前述色純度提高板11。進入前述色純度 提高板11之光中的一部分黃光被前述螢光物質吸收,而發 出610nm以上的R光。又,在透射穿過前述色純度提鬲板11 之光中之預定偏光狀態的光,如箭頭A所示,穿過前述反射 5型偏光元件10,射出至外部。另一方面,前述預定偏光狀 態以外之光,如箭頭B所示,被前述反射型偏光元件10反 射,並再次射入前述色純度提高板11。再次射入前述色純 度提高板11之光中的一部份透射到前述反射層13侧。透射 到反射層13側的光被前述反射層13部分地反射,並重新射 1〇 入前述色純度提南板11。如此,透射穿過前述色純度提高 板11的光被前述反射型偏光元件10或前述反射層13部分地 反射,並反覆射入前述色純度提高板11,因此可進一步提 高光的色純度。此時被前述反射層13部分地反射的光穿過 前述反射型偏光元件10,射出至外部。此外,上述箭頭A 15和B示意性地說明了該光學裝置例中的光路。然而,該光學 裝置例中的光路並不限於上述箭頭A和B。例如,由前述光 源裝置12射出到前述反射層13側的光、和藉由包含在色純 度提高板11中的螢光物質發光而由前述色純度提高板11射 出至前述反射層13側的光等,被前述反射層丨3部分地反 20 射,然後射入前述色純度提高板11。 第3圖顯示本發明光學裝置構造的另一例。在第3圖 中,與第1和2圖相同之部分用相同的符號標註。在該光學 裝置例中,光源裝置12配置在前述反射層13之一與前述色 純度提局板11側相反之側的位置(第1圖中所示的Z位置)·。 17 200835946 5 採用這樣的構造,如箭頭A和箭頭B所示,也可獲得與第2 圖所示光學裝置相同之色純度提高效果。又,在該光學裝 置中,反射層13最好僅位於前述色純度提高板11側的面具 有光反射性。 第4圖顯示本發明光學裝置構造的又一例。在第4圖 中,與第1〜3圖相同之部分用相同的符號標註。在該光學裝 置例中,光源裝置12配置在前述反射型偏光元件10和前述 色純度提高板11之間的位置(第1圖中所示的Y位置)。在該 光學裝置中,箭頭A所示的光沒有進入色純度提高板11,穿 10 過反射型偏光元件10,並射出至外部。然而,箭頭B所示的 光兩次射入色純度提高板11。因此,使用這樣的構造,與 沒有色純度提高板的習知光學裝置相比,也可提高光的色 純度。 如前所述,本發明的光學裝置亦可更包括導光板,且 15 由光源裝置發出之光透過前述導光板而射出至前述反射型 • 偏光元件側。 本發明的光學裝置亦可更包括另外的構件,前述另外 構件可舉擴散板、稜鏡片等為例。前述另外構件配置在例 如,相鄰接前述各構件的任一者之間(例如,在前述反射型 20 偏光元件和前述色純度提高板之間、在前述色純度提高板 和前述導光板之間等)。 本發明的光學裝置可適用於各種圖像顯示裝置中,如 液晶顯示裝置(LCD)和EL顯示器(ELD)。本發明的光學裝置 可以和圖像顯示裝置一體形成,也可以獨立的裝置構成。 18 200835946 第5圖的剖面圖顯示出本發明液晶顯示裝置的一構造例,且 在第5圖中,與第1〜4圖相同之部分用相同的符號標註。又, 在第5圖中,爲了便於更清楚地理解,各構件的大小和比例 與實際者不同。如圖所示,該液晶顯示裝置具有液晶面板 5 24、擴散板23、稜鏡片22及本發明的光學裝置1〇〇,作爲主 要構件。前述液晶面板24具有在液晶單元25兩側分別配置 有第一偏光板231及第二偏光板232的構造,且在前述液晶 單元25的中間設有液晶層240。第一配向膜251和第二配向 膜252分別配置在前述液晶層240的兩側,且第一透明電極 10 261和第二透明電極262分別配置在前述第一配向膜251及 前述第二配向膜252的外側。以預定方式排列之R、G和B等 濾色片270和黑矩陣290中間隔著保護薄膜280而配置在前 述第一透明電極261的外側,且第一基板201和第二基板202 分別配置在前述濾色片270和前述黑矩陣290及前述第二透 15 明電極262的外側。在前述液晶面板24中,前述第一偏光板 231側爲顯示側,前述第二偏光板232側爲背面。前述擴散 板23配置在前述液晶面板24的背面,且前述稜鏡片22配置 在前述擴散板23之一與前述液晶面板24側相反的侧上。本 發明的光學裝置1〇〇配置在稜鏡片22之一與液晶面板24側 2〇 相反的側上,使反射型偏光元件10位於前述液晶面板24 側。在本發明的光學裝置100中,前述導光板21及前述光源 裝置12配置在前述色純度提高板11和前述反射層13之間的 位置。前述光源裝置12配置在前述導光板21的旁邊(第5圖 中的右側)。又,在該液晶顯示裝置(光學裝置)例中,顯示 19 200835946 採用前述光源裝置12配置在前述導光板21旁邊之側光方式 的情形。然而,本發明不限於此。本發明的液晶顯示裝置(光 學裝置)亦可以採用例如,前述光源裝置12透過導光板21直 接配置在前述液晶面板24下方之直下方式。 5 在第6圖的剖面圖中顯示本發明液晶顯示裝置構造的 另一例。在第6圖中,與第5圖相同之部分用相同的符號標 註。在第6圖中,爲了便於更清楚地理解,例如,各構件的 大小和比例與實際者不同。如圖所示,該液晶顯示裝置除 了構件所配置的位置一部分不同以外,與第5圖所示的液晶 10顯示裝置相同。在該液晶顯示裝置中,本發明的光學裝置 101亦包括前述稜鏡片22及前述擴散板23。前述本發明的光 學裝置101中,前述稜鏡片22配置在前述色純度提高板11之 一與前述反射型偏光元件10側相反的側。此外’在本發明 的光學裝置中,前述擴散板23配置在前述稜鏡片22之一 15 與前述色純度提高板11側相反的侧。除這些構件以外的構 造與第5圖所示的液晶顯示裝置相同。 在第6圖所示的液晶顯示裝置(光學裝置1〇1)中,色純度 提高板11的安裝位置可以是任何地方,只要在前述反射型 偏光元件10和前述反射層13之間即可。前述色純度提高板 20 11的安裝位置可以在,例如,前述稜鏡片22和前述擴散板 23之間。此外,安裝色純度提高板11的位置亦可在,例如, 前述擴散板23和前述導光板21之間。 弟7圖的剖面圖中顯示本發明液晶顯示裝置構造的又 一例。在第7圖中,與第5和6圖相同之部分用相同的符號標 20 200835946 註。又,在第7圖中,爲了便於更清楚地理解,例如,各構 件的大小和比例與實際者不同。如圖所示,該液晶顯示裝 置除了本發明光學裝置的構件部分地不同以外,與第6圖所 示的液晶顯示裝置相同。在該液晶顯示裝置中,本發明的 5光學裝置102包括第一擴散板23a、第二擴散板23b及第三擴 散板23c,以代替第6圖所示的本發明光學裝置1〇1的前述稜 鏡片22及前述擴散板23。在本發明的光學裝置1〇2中,前述 弟一擴政板23a配置在前述色純度提高板11之一與前述反 射型偏光元件10側相反的側。又,在本發明光學裝置102 10 中’如述弟一擴散板23b配置在前述第一擴散板23 a之一與 別述色純度提高板11側相反的側。此外,在本發明的光學 裝置102中’前述第三擴散板23c配置在前述第二擴散板23b 之一與前述第一擴散板23a侧相反的侧。 在第7圖所示的液晶顯示裝置(光學裝置102)中,色純度 15提高板11的安装位置可以是任何地方,只要在前述反射型 偏光元件10和前述反射層13之間即可。色純度提高板11的 安裝位置可以在,例如,前述第二擴散板23b和前述第三擴 散板23c之間。此外,安裝色純度提高板n的位置亦可以 在’例如,前述第三擴散板23c和前述導光板21之間。 20 實施例 接下來說明本發明的實施例。又,本發明不因以下實 施例欠到任何限制或限定。在各實施例中,僅需要R光,其 他光都不需要。 [實施例1] 21 200835946 <色純度提高板的製作> 在30重量%聚甲基丙烯酸甲酯的甲苯溶液中加入前述 結構式⑴所示的螢光物質(BASF Corporation製造,商品名 「Lumogen F Red 305」)’使其相對於聚甲基丙烯酸甲_爲 5 0.19重量%,並使其溶解。用塗料器將該溶液塗布在已進行 剝離處理的PET薄膜基材上,形成塗膜,接著在8〇〇c下將 其乾燥30分鐘後,得到薄膜。乾燥後,將前述薄膜由PET 薄膜基材剝離,由此得到僅由30-μπι厚之發光層構成的色純 度提高板。 10 <安裝到液晶顯示裝置上> 以如第5圖所示的方式將色純度提高板11安裝到包含 光學裝置100的液晶顯示裝置上,然後用分光光度計(〇tsukaIn the optical device of the present invention, the matrix polymer may, for example, be polymethyl methacrylate, polyacrylate resin, polycarbonate resin, polynorbornene resin, polyvinyl alcohol resin, or fiber. Prime resin and so on. 5 The above-mentioned matrix polymer may be used alone or in combination of two or more. In the optical device of the present invention, the aforementioned matrix polymer is preferably polymethyl methacrylate. In the optical device of the present invention, the specific wavelength band of the light absorbed by the light-emitting layer is not particularly limited and may be, for example, 560 to 610 nm. The target wavelength band of the light emitted from the luminescent layer 10 is not particularly limited and may be, for example, 610 to 700 nm. Preferably, the optical device of the present invention further includes a light guide plate, and light emitted from the light source device is emitted to the side of the reflective polarizing element through the light guide plate. 15 Next, an optical device of the present invention will be described by way of example. As described above, the optical device of the present invention includes a light source device, a reflective layer, a color purity improving plate, and a reflective polarizing element. Further, in the optical device of the present invention, as shown in Fig. 1, for example, the color purity improving plate 11 is disposed between the reflective polarizing element 10 and the reflective layer 13. In the optical device of the present invention, for example, as shown in Fig. 1, the light source device 12 200835946 is disposed at at least one of positions, that is, the color purity improving plate is called between the reflective layers 13 Position (X position shown in FIG. 1), a position between the reflective variable polarization element 10 and the color purity improving plate η (y position shown in FIG. 1), and one of the reflection layer 13 and the color The position on the side opposite to the side of the purity improving plate 5 11 (Z position shown in Fig. 1). The neon (four) reflective polarizing element can be any suitable one that can, for example, a 'natural light (four)). The film which separates the linearly polarized light can be exemplified by a film which transmits linearly polarized light orthogonal to the axial direction and which is opposite to the light. Specific examples of such a reflective polarizing element include, for example, a grid-type polarizing element; a multilayer film laminate of two or more layers made of two materials having a refractive index difference; and a refractive index used in a beam splitter. Different vapor-deposited multilayer films; those obtained by stretching two or more resin laminates having two or more kinds of resin having a refractive index difference. More specifically, the aforementioned in-reflecting polarized light 70 member may be used, for example, a uniaxially stretched multilayered laminated body of 15 to 15 and the multi-layered laminated system is formed by stretching to exhibit a phase difference [for example, 'poly 2, 6 Ethylene naphthalate, polyethylene terephthalate (pET) • silk carbonate, or acrylic resin (for example, polymethyl methacrylate) and a small amount of phase difference (for example, For example, the company's brand name "ARTQN" (4) is the norm tree (4) county. For example, the polarizing element in the reflection of 2 〇 4 has been on the market to say that the company's "dbef" is a trader. The thickness of the reflective polarizing element is not particularly limited, and is, for example, in the range of 5 〇 to 2 〇〇 μιη. The color purity retroreflective sheet has a light-emitting layer including a light-emitting element, and the light-emitting element absorbs a specific target wave. The light in the wavelength band (the light of the color 13 200835946 is not required), and the wavelength of the light is changed, and then the light of the target wavelength band (light of the desired color) is emitted, thereby increasing the color purity of the target wavelength band. Fluorescent The fluorescent material is as described above. Specific examples of the fluorescent material include, for example, the product name "Lumogen F Red 305 (manufactured by BASF AG)" manufactured by BASF AG; manufactured by Arimoto Chemical Co., Ltd. Trade names "Plast Red 8355 (蒽醌) and 8365 (蒽醌), Plast Red D-54 (sulfur enemy), piast Red DR-426 (benzopyran) and DR-427 (benzopyran) And "Hayshibara Biochemical Labs.," manufactured by Inc. 10, trade name "NK-1533 (carbocyanine dye)", etc. These fluorescent substances absorb yellow light (wavelength 560 to 610 nm) of intermediate colors of R and G, and R light (wavelength: 610 to 650 nm) is emitted. As described above, the fluorene-based fluorescent material is preferably represented by the structural formula (1), and the absorption spectrum of the fluorescent substance represented by the structural formula (1) is shown in FIG. As shown in Fig. 15, the maximum absorption wavelength of the fluorescent substance is about 585 nm. As described above, the sulfonium fluorescent substance is preferably represented by the structural formula (2), and the fluorescent light represented by the structural formula (2) The absorption spectrum of the substance is shown in the graph of Fig. 9. As shown in the figure, the maximum absorption wavelength of the fluorescent substance is about 550 nm. The fluorene-based fluorescent substance is preferably represented by the structural formula (3), and the absorption spectrum of the fluorescent substance represented by the structure (3) of the structure 20 is shown in the diagram of Fig. 10. As shown in the figure, The maximum absorption wavelength of the fluorescent substance is about 550 nm. As described above, the light-emitting layer is preferably formed of a matrix polymer and a fluorescent substance. The light-emitting layer can be, for example, polymerized by a fluorescent substance and a matrix which can be formed into a film. The materials are mixed and then formed into a film by film production. The first 14 200835946 preferably has a high transparency, and may, for example, be a polyacrylate resin such as polymethyl methacrylate, polyethyl acrylate or polybutyl acrylate; polyhexyloxycarbonyl oxide; Polycarbonate-based resin such as ester, poly-1,4-isopropylidene-1,4-phenylene-oxycarbonyloxyester; polynorbornene-based resin; poly-5 vinyl formal, polyvinyl alcohol A polyvinyl alcohol-based resin such as acetal or polyvinyl butyral; a cellulose-based resin such as fluorenyl cellulose, ethyl cellulose or a derivative thereof. Among them, polymethyl methacrylate is preferred. These matrix polymers may be used singly or in combination of two or more. The above "polynorbornene-based tree" means a (co)polymer obtained by using a norbornene-based monomer having a norbornene ring in part or all of the original raw material (monomer). The above "(co)polymer" means a homopolymer or a copolymer. Next, a method of forming the above-described light-emitting layer will be exemplified, but a method of forming the above-described light-emitting layer is not limited to this example. First, a matrix solution is dissolved in a solvent to prepare a polymer solution. As the solvent, for example, toluene, mercaptoethyl ketone, cyclohexanone, ethyl acetate, ethanol, tetrahydrofuran, cyclopentanone, water or the like can be used. Next, a fluorescent substance is added to the above polymer solution and dissolved. The amount of the above-mentioned fluorescent substance to be added may be appropriately determined depending on the kind of the above-mentioned fluorescent substance. For example, the range of 20 is 0.01 to 80 parts by weight, and preferably 0.1 to 50 parts by weight, based on 100 parts by weight of the above-mentioned matrix polymer. 0.1 to 30 parts by weight is more preferable. Subsequently, a polymer solution to which the aforementioned fluorescent substance has been added is coated on a substrate to form a coating film, which is then dried by heating to form a film. Next, the film is peeled off from the substrate, whereby the above-mentioned 15 200835946 light-emitting layer can be obtained. The thickness of the light-emitting layer is not particularly limited. For example, the cadaver degree range is from 0. 1 to ΙΟΟΟμπι, and it is preferable to use the (2) teacher. The 2 to 5 〇 更 ^ 子 color purity improving plate may have any structure as long as it has the foregoing The light-emitting layer can be used. For example, the color purity improving plate may be constructed only by the aforementioned light emitting layer. In addition, the color purity improving plate may further include a light emitting layer. The light source device is not particularly limited, and for example, it can be exemplified by a cold cathode, a light-emitting diode (LED). The kind and material of the aforementioned reflective layer are not particularly limited. Preferably, the front reflective layer is composed of a material having a high light reflectance. The above material, for example, j 10 may be exemplified by a plastic film or a plate having a silver sputter layer, a silver deposit layer, and an ink layer having a high light reflectance. The thickness of the aforementioned reflective layer is not particularly limited, and for example, it is in the range of 100 to 500 μm. An example of the construction of the optical device of the present invention is shown in the cross-sectional view of Fig. 2. In the second drawing, the same portions as those in Fig. 1 are denoted by the same reference numerals. In the optical device of this example, the light source device 12 is disposed at a position (the X position shown in Fig. 1) between the color purity improving plate 11 and the reflective layer 13. The improvement of the color purity of the optical device of the present invention will be described by taking the optical device of Fig. 2 as an example. For example, the color purity is improved as described below. For example, in the foregoing light source device 12, a high luminescence peak having Β of about 435 nm, G of about 545 nm, 20, and R of about 610 nm is used. In the optical device of this example, assuming that only the emitted light of G and R is used, yellow light (about 585 nm) of the intermediate color of G and R is not required to emit light. In this case, the light-emitting layer of the color purity improving plate 11 contains a fluorescent material having a maximum absorption wavelength of, for example, about 585 nm and having a light emission of 61 Å or more. The light emitted from the light source unit 12 enters the color purity improving plate 11 as indicated by arrows A and B of 200835946. A part of the yellow light entering the color purity improving plate 11 is absorbed by the fluorescent material to emit R light of 610 nm or more. Further, light of a predetermined polarization state among the light transmitted through the color purity improving plate 11 passes through the reflective 5-type polarizing element 10 as indicated by an arrow A, and is emitted to the outside. On the other hand, light other than the predetermined polarization state is reflected by the reflective polarizing element 10 as indicated by an arrow B, and is incident on the color purity improving plate 11 again. A portion of the light incident on the color purity improving plate 11 again is transmitted to the side of the reflecting layer 13 as described above. The light transmitted to the side of the reflective layer 13 is partially reflected by the aforementioned reflective layer 13, and is re-emitted into the aforementioned color purity plate 11. In this manner, the light transmitted through the color purity improving plate 11 is partially reflected by the reflective polarizing element 10 or the reflective layer 13, and is incident on the color purity improving plate 11 in reverse, so that the color purity of light can be further improved. At this time, the light partially reflected by the reflective layer 13 passes through the reflective polarizing element 10 and is emitted to the outside. Further, the above arrows A 15 and B schematically illustrate the optical path in the optical device example. However, the optical path in the optical device example is not limited to the above arrows A and B. For example, the light emitted from the light source device 12 to the side of the reflective layer 13 and the light emitted from the fluorescent substance contained in the color purity improving plate 11 are emitted from the color purity improving plate 11 to the side of the reflective layer 13 Then, the reflection layer 丨3 is partially inverted, and then incident on the color purity improving plate 11. Fig. 3 shows another example of the construction of the optical device of the present invention. In Fig. 3, the same portions as those in Figs. 1 and 2 are denoted by the same reference numerals. In the optical device example, the light source device 12 is disposed at a position (Z position shown in Fig. 1) on the side opposite to the side of the color purity extraction plate 11 of the reflection layer 13. 17 200835946 5 With such a configuration, as shown by the arrow A and the arrow B, the same color purity improving effect as that of the optical device shown in Fig. 2 can be obtained. Further, in the optical device, it is preferable that the reflective layer 13 is only light-reflective on the mask on the side of the color purity improving plate 11. Fig. 4 shows still another example of the construction of the optical device of the present invention. In Fig. 4, the same portions as those in Figs. 1 to 3 are denoted by the same reference numerals. In the optical device example, the light source device 12 is disposed at a position (the Y position shown in Fig. 1) between the reflective polarizing element 10 and the color purity improving plate 11. In the optical device, the light indicated by the arrow A does not enter the color purity improving plate 11, passes through the reflective polarizing element 10, and is emitted to the outside. However, the light indicated by the arrow B is incident on the color purity improving plate 11 twice. Therefore, with such a configuration, the color purity of light can be improved as compared with the conventional optical device without the color purity improving plate. As described above, the optical device of the present invention may further include a light guide plate, and the light emitted from the light source device is transmitted through the light guide plate to the side of the reflective type polarizing element. The optical device of the present invention may further include another member, and the other member may be exemplified by a diffusion plate, a cymbal sheet or the like. The other member is disposed, for example, between any of the foregoing members (for example, between the reflective 20-polarizing element and the color purity improving plate, between the color purity improving plate and the light guide plate) Wait). The optical device of the present invention can be applied to various image display devices such as a liquid crystal display device (LCD) and an EL display (ELD). The optical device of the present invention may be formed integrally with the image display device or may be constructed as a separate device. 18 200835946 A cross-sectional view of Fig. 5 shows a configuration example of a liquid crystal display device of the present invention, and in Fig. 5, the same portions as those of Figs. 1 to 4 are denoted by the same reference numerals. Further, in Fig. 5, in order to facilitate a clearer understanding, the size and proportion of each member are different from those of the actual one. As shown in the figure, the liquid crystal display device has a liquid crystal panel 524, a diffusion plate 23, a cymbal 22, and an optical device 1 of the present invention as main components. The liquid crystal panel 24 has a structure in which a first polarizing plate 231 and a second polarizing plate 232 are disposed on both sides of the liquid crystal cell 25, and a liquid crystal layer 240 is provided between the liquid crystal cells 25. The first alignment film 251 and the second alignment film 252 are respectively disposed on both sides of the liquid crystal layer 240, and the first transparent electrode 10 261 and the second transparent electrode 262 are respectively disposed on the first alignment film 251 and the second alignment film. Outside of 252. The color filter 270 such as R, G, and B and the black matrix 290 arranged in a predetermined manner are disposed outside the first transparent electrode 261 with the protective film 280 interposed therebetween, and the first substrate 201 and the second substrate 202 are respectively disposed at The color filter 270 and the black matrix 290 and the second transparent electrode 262 are outside. In the liquid crystal panel 24, the side of the first polarizing plate 231 is the display side, and the side of the second polarizing plate 232 is the back surface. The diffusion plate 23 is disposed on the back surface of the liquid crystal panel 24, and the crotch panel 22 is disposed on a side of the diffusion plate 23 opposite to the liquid crystal panel 24 side. The optical device 1 of the present invention is disposed on the side opposite to the liquid crystal panel 24 side 2〇 of one of the cymbals 22, and the reflective polarizing element 10 is positioned on the liquid crystal panel 24 side. In the optical device 100 of the present invention, the light guide plate 21 and the light source device 12 are disposed at a position between the color purity improving plate 11 and the reflective layer 13. The light source device 12 is disposed beside the light guide plate 21 (the right side in Fig. 5). Further, in the example of the liquid crystal display device (optical device), the display 19 200835946 is a case where the light source device 12 is disposed on the side light mode beside the light guide plate 21. However, the invention is not limited thereto. In the liquid crystal display device (optical device) of the present invention, for example, the light source device 12 may be directly disposed below the liquid crystal panel 24 through the light guide plate 21. 5 Another example of the construction of the liquid crystal display device of the present invention is shown in the cross-sectional view of Fig. 6. In Fig. 6, the same portions as those in Fig. 5 are denoted by the same symbols. In Fig. 6, in order to facilitate a clearer understanding, for example, the size and proportion of each member are different from those of the actual one. As shown in the figure, the liquid crystal display device is the same as the liquid crystal display device shown in Fig. 5 except that a part of the position where the member is disposed is different. In the liquid crystal display device, the optical device 101 of the present invention also includes the above-described cymbal 22 and the diffusion plate 23. In the optical device 101 of the present invention, the cymbal sheet 22 is disposed on the side opposite to the side of the reflective polarizing element 10 of the color purity improving plate 11. Further, in the optical device of the present invention, the diffusion plate 23 is disposed on the side opposite to the color purity improving plate 11 side of the one of the cymbals 22. The configuration other than these members is the same as that of the liquid crystal display device shown in Fig. 5. In the liquid crystal display device (optical device 101) shown in Fig. 6, the mounting position of the color purity improving plate 11 may be any position as long as it is between the reflective polarizing element 10 and the reflective layer 13. The mounting position of the aforementioned color purity improving plate 20 11 may be, for example, between the aforementioned cymbal sheet 22 and the aforementioned diffusing plate 23. Further, the position at which the color purity improving plate 11 is mounted may be, for example, between the diffusion plate 23 and the light guide plate 21. Further, a cross-sectional view of Fig. 7 shows another example of the structure of the liquid crystal display device of the present invention. In Fig. 7, the same parts as in Figs. 5 and 6 are marked with the same reference numeral 20 200835946. Further, in Fig. 7, in order to facilitate a clearer understanding, for example, the size and proportion of each member are different from those of the actual one. As shown in the figure, the liquid crystal display device is the same as the liquid crystal display device shown in Fig. 6 except that the members of the optical device of the present invention are partially different. In the liquid crystal display device, the optical device 102 of the present invention includes the first diffusion plate 23a, the second diffusion plate 23b, and the third diffusion plate 23c instead of the aforementioned optical device 1〇1 of the present invention shown in FIG. The cymbal sheet 22 and the aforementioned diffusion plate 23. In the optical device 1A2 of the present invention, the above-described first expansion plate 23a is disposed on the side opposite to the side of the reflection-type polarizing element 10 of one of the color purity improving plates 11. Further, in the optical device 102 10 of the present invention, the diffusion plate 23b is disposed on the side opposite to the side of the color purity improving plate 11 on the side of the first diffusion plate 23a. Further, in the optical device 102 of the present invention, the third diffusion plate 23c is disposed on a side of the second diffusion plate 23b opposite to the first diffusion plate 23a side. In the liquid crystal display device (optical device 102) shown in Fig. 7, the mounting position of the color purity improving plate 11 may be any position as long as it is between the reflective polarizing element 10 and the reflective layer 13. The mounting position of the color purity improving plate 11 may be, for example, between the second diffusion plate 23b and the third diffusion plate 23c. Further, the position at which the color purity improving plate n is mounted may be, for example, between the third diffusion plate 23c and the aforementioned light guiding plate 21. 20 EXAMPLE Next, an embodiment of the present invention will be described. Further, the present invention is not intended to be limited or limited by the following embodiments. In various embodiments, only R light is required and no other light is needed. [Example 1] 21 200835946 <Production of color purity improving plate> The fluorescent substance represented by the above structural formula (1) was added to a toluene solution of 30% by weight of polymethyl methacrylate (manufactured by BASF Corporation, trade name " Lumogen F Red 305") was made to be 0.19 wt% relative to polymethyl methacrylate and dissolved. This solution was coated on a PET film substrate which had been subjected to release treatment with a coater to form a coating film, which was then dried at 8 ° C for 30 minutes to obtain a film. After drying, the film was peeled off from the PET film substrate, whereby a color purity improving plate composed of only a 30-μm thick light-emitting layer was obtained. 10 <Installation on liquid crystal display device> The color purity improving plate 11 is mounted on the liquid crystal display device including the optical device 100 in the manner as shown in Fig. 5, and then a spectrophotometer (〇tsuka)

Electronics Co” Ltd.製造,商品名「Multi Channel Photo Detector MCPD〜300」)測量其發光光譜。此時,使前述分 15光光度計的受光部與液晶顯示裝置之顯示側(第5圖中的上 側)緊密接觸。 [實施例2] 除了以如第6圖所示的方式,將色純度提高板11安裝在 包含光學裝置101的液晶顯示裝置上以外,與實施例1相同 20 地測量發光光譜。 [實施例3] 除了使色純度提高板11之安裝位置在稜鏡片22和擴散 板23之間以外,與實施例2相同地測量發光光譜。 [實施例4] 22 200835946 除了使色純度提高板11之安裝位置在擴散板23和導光 板21之間以外,與實施例2相同地測量發光光譜。 [實施例5] &lt;色純度提高板的製作&gt; 5 在3 0重量%聚甲基丙烯酸曱酯的甲苯溶液中加入前述 結構式(2)所示的螢光物質(Arim〇t〇 chemical Co.,Ltd.製 造,商品名「PlastRedD-54」),使其相對於聚甲基丙烯酸 曱酯爲0.21重量%,並使其溶解。用塗料器將該溶液塗布在 已進行剝離處理的PET薄膜基材上,形成塗膜,接著在80。〇 10下將其乾燥30分鐘,得到薄膜。乾燥後,將前述薄膜由pet 薄膜基材剝離,由此得到僅由63,m厚之發光層構成的色純 度提南板。 〈安裝到液晶顯不裝置上&gt; 除了以第7圖中所示的方式將色純度提高板11安裝在 15 包含光學裝置102的液晶顯示裝置上以外,與實施例1相同 地測量發光光譜。 [實施例6] 除了使色純度提高板11之安裝位置在第二擴散板23b 和第三擴散板23c之間以外,與實施例5相同地測量發光光 20 譜。 [實施例7] 除了使色純度提高板11之安裝位置在第三擴散板23c 和導光板21之間以外,與實施例5相同地測量發光光譜。 [實施例8] 23 200835946 &lt;色純度提高板的製作〉 在30重量%聚甲基丙烯酸曱酯的甲苯溶液中加入前述 結構式(3)所示的螢光物質(Arimoto Chemical Co,Ltd·製 造,商品名「Plast Red 8355」),使其相對於聚甲基丙烯酸 5曱酯爲〇.19重量%,並使其溶解。將該溶液塗布在已進行了 分離處理的PET薄膜基材上’用塗料器將該溶液塗布在已進 行剝離處理的PET薄膜基材上,乾燥後,將前述薄膜由PET 薄膜基材剝離,由此得到僅由31_μιη厚之發光層構成的色純 度知南板。 10 &lt;安裝到液晶顯示裝置上&gt; 除了以第7圖中所示的方式將色純度提高板11安装在 包含光學裝置102的液晶顯示裝置上以外,與實施例1相同 地測量發光光譜。 [實施例9] 15 除了使色純度提高板11之安裝位置在第二擴散板23b 和第三擴散板23c之間以外,與實施例8相同地測量發光光 譜。 [實施例10] 除了使色純度提高板11之安裝位置在第三擴散板23c 20 和導光板21之間以外,與實施例8相同地測量發光光譜。 [對照例1] 除了使色純度提高板11之安裝位置在第一偏光板231 上以外,與實施例1相同地測量發光光譜。 [對照例2] 24 200835946 除了使色純度提高板11之安裝位置在第二偏光板2 3 2 和擴散板23之間以外,與實施例1相同地測量發光光譜。 [對照例3] 除了使色純度提高板11之安裝位置在第二偏光板232 5 和反射型偏光元件10之間以外,與實施例2相同地測量發光 光譜。 [對照例4] 除了使色純度提高板11之安裝位置在第二偏光板232 和反射型偏光元件10之間以外,與實施例5相同地測量發光 10 光譜。 [對照例5] 除了使色純度提高板11之安裝位置在第二偏光板232 和反射型偏光元件10之間以外,與實施例8相同地測量發光 光譜。 15 實施例1〜4和對照例1〜3中的發光光譜測量結果,以及 在液晶顯示裝置上未安裝色純度提高板之空白試樣的發光 光譜測量結果一起顯示在第11〜17圖中。以下表1顯示以空 白試樣爲1時,所有實施例和對照例在580nm(黃光)處和 650nm(R)處的光譜強度比。 20 25 200835946 [表1] 螢光物質 580 nm 發光強度 650 nm 發光強度 實施例1 結構式(1) 0.29 4.4 實施例2 Γ結構式(1) 0.45 3.7 實施例3 結構式(1) 0.32 3.3 實施例4 結構式(1) 0.30 5.0 實施例5 結構式(2) 0.60 1.5 實施例6 結構式(2) 0.54 1.5 實施例7 結構式(2) 0.54 1.4 ΐ施例8 結構式(3) 0.81 1.4 _實施例9 結構式(3) 0.69 1.4 F施例 10~ ~結構式(3) 0.67 1.3 對照例1 結構式(1) 0.61 1.1 _對照例2 結構式(1) 0.59 1.3 _對照例3 結構式(1) 0.67 1.8 __對照例4 結構式(2) 0.79 1.2 _:對照例5 結構式(3) 0.88 1.1 從前述表1和第11〜17圖可知,與使用同樣螢光物質的 對妝例1〜3相比,在實施例丨〜4中,不需要之58〇nm黃光的 I光減少了大約50〜6〇%,需要265〇nmR光的發光增大為約 丁 # λ。又’從前述表丨可理解,與使用同樣螢光物質的對照 例4相比’在實施例5〜7中,不需要之58〇nm黃光的發光減 夕了大約10〜20〇/〇,而需要之65〇nmR光的發光增加了大約 1〇 G 2〇%。同樣地,從前述表1可知,與使用同樣螢光物質 又對恥例5相比,在實施例8〜1〇中,不需要之58〇nm黃光的 光減少了大約1〇〜2〇〇/。,而需要之65〇nmR光的發光增加了 大約10〜20%。 發生如上所述’本發明的光學裝置能防止圖像顯示裝置中 x顧色不均勻和亮度不均句,目時提高透射光的色純 ° 度,還、 一 x&quot;以提南圖像顯示裝置的顏色再現性。本發明的光 26 200835946 2裝置及使用該光學裝置的圖像顯示寒置的用途可舉例 —2上型個人電腦、筆記型電腦和影印機等辦公設備; 行動電話、鐘錶、數位相機、個人數位助理(PDA)和可攜式 遊戲機等可攜式裝置;攝影機、電視機和微波爐等家用電 5器;後監視器、汽車導航系統用監視器和汽車音響等車載 設備;商店資訊用監視器等顯示設備;監視用監視器的保 全設備;以及健康監視器和醫療用監視器等健康醫療設 備。然而,對其應用沒有限制,可應用於廣泛的領域中。 【圖式簡單説明】 10 第1圖是說明在本發明光學裝置中之光源裝置配置位 置的圖。 第2圖是本發明光學裝置構造之一例的剖面圖。 第3圖是本發明光學裝置構造之另一例的剖面圖。 第4圖是本發明光學裝置構造之又一例的剖面圖。 15 第5圖是本發明液晶顯示裝置構造之一例的剖面圖。 第6圖是本發明液晶顯示裝置構造之另一例的剖面圖。 第7圖是本發明液晶顯示裝置構造之又一例的剖面圖。 第8圖是本發明中使用之螢光物質一例的吸收光譜圖。 弟9圖疋本發明中使用之螢光物質另_例的吸收光譜 20 圖。 弟10圖是本發明中使用之螢光物質又一例的吸收光譜 圖。 第π圖是本發明一實施例中的發光光譜測量結果圖。 第12圖是本發明另一實施例中的發光光譜測量結果 27 200835946 圖。 第13圖是本發明又一實施例中的發光光譜測量結果 圖。 第14圖是本發明再一實施例中的發光光譜測量結果 5 圖。 第15圖是本發明之一對照例中的發光光譜測量結果 圖。 第16圖是'本發明之另一對照例中的發光光譜測量結果 鲁 圖。 10 第17圖是本發明之又一對照例中的發光光譜測量結果 圖。 第18圖是顯示習知液晶顯示裝置構造之一例的剖面 圖。 【主要元件符號說明】 10…反射型偏光元件 24…液晶面板 ll···色純度提高板 25…液晶單元 12…光源裝置 90…反射型偏光元件 13…反射層 9l·.·導光板 22…稜鏡片 92…冷陰極管 23…擴散板 93…反射層 23a…第一擴散板 94…液晶面板 23b…第二擴散板 95…液晶單元 23c…第三擴散板 100…光學裝置 28 200835946 10l···光學裝置 102…光學裝置 201…第一基板 202…第二基板 231…第一偏光板 232…第二偏光板 240…液晶層 251···第一配向膜 252···第二配向膜 261···第一透明電極 262…第二透明電極 270…濾色片 280…保護薄膜 901…第一勒反 902…第二基板 931…第一偏光板 932…第二偏光板 940…液晶層 951…第一配向膜 952···第二配向膜 961···第一透明電極 962…第二透明電極 970…濾色片 990…黑矩陣 980···保護薄膜 X,Y,Z…位置 R…波長帶 G…波長帶 G,R…發射光 A,B…箭頭 29The luminescence spectrum of the product was manufactured by Electronics Co" Ltd., trade name "Multi Channel Photo Detector MCPD~300". At this time, the light receiving portion of the minute photometer is brought into close contact with the display side (upper side in Fig. 5) of the liquid crystal display device. [Example 2] An emission spectrum was measured 20 in the same manner as in Example 1 except that the color purity improving plate 11 was mounted on the liquid crystal display device including the optical device 101 as shown in Fig. 6. [Example 3] The luminescence spectrum was measured in the same manner as in Example 2 except that the mounting position of the color purity improving plate 11 was between the cymbal 22 and the diffusion plate 23. [Example 4] 22 200835946 The luminescence spectrum was measured in the same manner as in Example 2 except that the mounting position of the color purity improving plate 11 was between the diffusion plate 23 and the light guide plate 21. [Example 5] &lt;Preparation of color purity improving plate&gt; 5 The fluorescent substance represented by the above structural formula (2) was added to a toluene solution of 30% by weight of polymethyl methacrylate (Arim〇t〇chemical) Manufactured by Co., Ltd. under the trade name "PlastRed D-54", it was dissolved in 0.21% by weight based on polymethyl methacrylate. This solution was coated on a PET film substrate which had been subjected to release treatment with a coater to form a coating film, followed by 80. It was dried under 〇10 for 30 minutes to obtain a film. After drying, the film was peeled off from the pet film substrate, whereby a color purity south plate composed of only 63, m thick light-emitting layer was obtained. <Installation to liquid crystal display device> The light emission spectrum was measured in the same manner as in Example 1 except that the color purity improving plate 11 was mounted on the liquid crystal display device including the optical device 102 in the manner shown in Fig. 7. [Example 6] The luminescent light spectrum was measured in the same manner as in Example 5 except that the mounting position of the color purity improving plate 11 was between the second diffusion plate 23b and the third diffusion plate 23c. [Example 7] An emission spectrum was measured in the same manner as in Example 5 except that the mounting position of the color purity improving plate 11 was between the third diffusion plate 23c and the light guiding plate 21. [Example 8] 23 200835946 &lt;Production of color purity improving plate> The fluorescent substance represented by the above structural formula (3) was added to a toluene solution of 30% by weight of polymethyl methacrylate (Arimoto Chemical Co, Ltd. Manufactured under the trade name "Plast Red 8355", it was dissolved in 19% by weight of poly(methyl methacrylate). Applying the solution to the PET film substrate which has been subjected to the separation treatment, the solution is applied onto the PET film substrate which has been subjected to the release treatment by a coater, and after drying, the film is peeled off from the PET film substrate. This gave a color purity sensible plate composed only of a 31 Å thick luminescent layer. 10 &lt;Installation on liquid crystal display device&gt; The luminescence spectrum was measured in the same manner as in Example 1 except that the color purity improving plate 11 was mounted on the liquid crystal display device including the optical device 102 in the manner shown in Fig. 7 . [Example 9] The luminescence spectrum was measured in the same manner as in Example 8 except that the mounting position of the color purity improving plate 11 was between the second diffusion plate 23b and the third diffusion plate 23c. [Example 10] An emission spectrum was measured in the same manner as in Example 8 except that the mounting position of the color purity improving plate 11 was between the third diffusion plate 23c 20 and the light guiding plate 21. [Comparative Example 1] The luminescence spectrum was measured in the same manner as in Example 1 except that the mounting position of the color purity improving plate 11 was on the first polarizing plate 231. [Comparative Example 2] 24 200835946 The luminescence spectrum was measured in the same manner as in Example 1 except that the mounting position of the color purity improving plate 11 was between the second polarizing plate 2 3 2 and the diffusion plate 23. [Comparative Example 3] The luminescence spectrum was measured in the same manner as in Example 2 except that the mounting position of the color purity improving plate 11 was between the second polarizing plate 232 5 and the reflective polarizing element 10. [Comparative Example 4] The luminescence 10 spectrum was measured in the same manner as in Example 5 except that the mounting position of the color purity improving plate 11 was between the second polarizing plate 232 and the reflective polarizing element 10. [Comparative Example 5] The luminescence spectrum was measured in the same manner as in Example 8 except that the mounting position of the color purity improving plate 11 was between the second polarizing plate 232 and the reflective polarizing element 10. The results of the luminescence spectrum measurement in Examples 1 to 4 and Comparative Examples 1 to 3, and the luminescence spectrum measurement results of the blank sample in which the color purity improving plate was not mounted on the liquid crystal display device were shown together in Figs. 11 to 17. Table 1 below shows the spectral intensity ratios of all the examples and the comparative examples at 580 nm (yellow light) and 650 nm (R) when the blank sample was 1. 20 25 200835946 [Table 1] Fluorescent substance 580 nm Luminous intensity 650 nm Luminous intensity Example 1 Structural formula (1) 0.29 4.4 Example 2 Γ Structural formula (1) 0.45 3.7 Example 3 Structural formula (1) 0.32 3.3 Implementation Example 4 Structural Formula (1) 0.30 5.0 Example 5 Structural Formula (2) 0.60 1.5 Example 6 Structural Formula (2) 0.54 1.5 Example 7 Structural Formula (2) 0.54 1.4 ΐ Example 8 Structural Formula (3) 0.81 1.4 Example 9 Structural Formula (3) 0.69 1.4 F Example 10~ ~Structure Formula (3) 0.67 1.3 Comparative Example 1 Structural Formula (1) 0.61 1.1 _Comparative Example 2 Structural Formula (1) 0.59 1.3 _ Comparative Example 3 Structure Formula (1) 0.67 1.8 __Comparative Example 4 Structural Formula (2) 0.79 1.2 _: Comparative Example 5 Structural Formula (3) 0.88 1.1 From the above Table 1 and Figures 11 to 17, it is known that the same fluorescent substance is used. Compared with the makeup examples 1 to 3, in the examples 丨 to 4, the I light of the 58 〇 nm yellow light which is not required is reduced by about 50 to 6 〇%, and the luminescence of the 265 〇 nmR light is required to be increased to about 384. . Further, as can be understood from the foregoing table, in comparison with Comparative Example 4 using the same fluorescent substance, in Examples 5 to 7, the luminescence of 58 〇 nm yellow light which is not required was reduced by about 10 to 20 Å/〇. The luminescence of the 65 〇 nmR light required is increased by about 1 〇 G 2 〇 %. Similarly, as can be seen from Table 1 above, in the case of Example 8 to 1〇, the light of 58 〇 nm yellow light which is not required is reduced by about 1 〇 2 相比 compared with the use of the same fluorescent substance. 〇/. The luminescence of the 65 〇 nmR light required is increased by about 10 to 20%. As described above, the optical device of the present invention can prevent x color unevenness and uneven brightness in the image display device, thereby improving the color purity of the transmitted light, and also, an x&quot; The color reproducibility of the device. The light 26 200835946 2 device of the present invention and the use of the image of the optical device for displaying the cold can be exemplified by - 2 office equipment such as a personal computer, a notebook computer and a photocopying machine; a mobile phone, a clock, a digital camera, and a personal digital device; Portable devices such as assistants (PDAs) and portable game consoles; household electric 5 devices such as cameras, televisions and microwave ovens; rear monitors, car navigation system monitors and car audio equipment, etc.; And other display devices; maintenance devices for monitoring monitors; and health medical devices such as health monitors and medical monitors. However, there are no restrictions on its application and it can be applied to a wide range of fields. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining the arrangement position of a light source device in the optical device of the present invention. Fig. 2 is a cross-sectional view showing an example of the structure of the optical device of the present invention. Fig. 3 is a cross-sectional view showing another example of the structure of the optical device of the present invention. Fig. 4 is a cross-sectional view showing still another example of the structure of the optical device of the present invention. 15 Fig. 5 is a cross-sectional view showing an example of the structure of a liquid crystal display device of the present invention. Fig. 6 is a cross-sectional view showing another example of the structure of the liquid crystal display device of the present invention. Fig. 7 is a cross-sectional view showing still another example of the structure of the liquid crystal display device of the present invention. Fig. 8 is an absorption spectrum chart of an example of a fluorescent material used in the present invention. Figure 9 is a graph showing the absorption spectrum of another example of the fluorescent substance used in the present invention. Figure 10 is an absorption spectrum of still another example of the fluorescent material used in the present invention. The πth diagram is a graph showing the results of luminescence spectrum measurement in an embodiment of the present invention. Figure 12 is a graph showing the results of luminescence spectroscopy in another embodiment of the invention 27 200835946. Figure 13 is a graph showing the results of luminescence spectrum measurement in still another embodiment of the present invention. Figure 14 is a graph 5 showing the results of luminescence spectrum measurement in still another embodiment of the present invention. Fig. 15 is a graph showing the results of measurement of luminescence spectra in a comparative example of the present invention. Fig. 16 is a graph showing the results of luminescence spectrum measurement in another comparative example of the present invention. Fig. 17 is a graph showing the results of luminescence spectrum measurement in still another comparative example of the present invention. Fig. 18 is a cross-sectional view showing an example of the structure of a conventional liquid crystal display device. [Description of Main Element Symbols] 10: Reflective Polarizing Element 24: Liquid Crystal Panel 11···Color Purity Enhancing Plate 25: Liquid Crystal Cell 12... Light Source Device 90: Reflective Polarizing Element 13... Reflecting Layer 9l·.· Light Guide Plate 22... Bump 92...Cold cathode tube 23...Diffuser plate 93...Reflecting layer 23a...First diffusing plate 94...Liquid crystal panel 23b...Second diffusing plate 95...Liquid cell unit 23c...Third diffusing plate 100...Optical device 28 200835946 10l·· Optical device 102...optical device 201...first substrate 202...second substrate 231...first polarizing plate 232...second polarizing plate 240...liquid crystal layer 251···first alignment film 252···second alignment film 261 First transparent electrode 262 ... second transparent electrode 270 ... color filter 280 ... protective film 901 ... first reverse 902 ... second substrate 931 ... first polarizing plate 932 ... second polarizing plate 940 ... liquid crystal layer 951 ...first alignment film 952···second alignment film 961···first transparent electrode 962...second transparent electrode 970...color filter 990...black matrix 980···protective film X,Y,Z...position R ...wavelength band G...wavelength band G,R...emission light A B ... Arrow 29

Claims (1)

200835946 十、申請專利範圍: 1. 一種光學裝置,其特徵在於,包含: 光源裝置; 反射層; 5 色純度提高板;及 反射型偏光元件, 其中前述色純度提高板包括發光層,該發光層具有 籍由吸收目標波長帶以外之特定波長帶的光、轉變其波 長後發射目標波長帶的光來提高目標波長帶之顏色純 10 度的發光機構, 從前述光源裝置發出之光通過前述反射型偏光元 件射出至外部, 前述色純度提高板被配置在前述反射型偏光元件 和前述反射層之間,且 15 前述光源裝置被配置在至少一個以下位置,即: 前述色純度提高板和前述反射層之間的位置; 前述反射型偏光元件和前述色純度提高板之間的 位置;及 前述反射層之一與前述色純度提高板側相反之側 20 的位置。 2. 如申請專利範圍第1項的光學裝置,其中前述光源裝置 被配置在前述色純度提高板和前述反射層之間的位置。 3·如申請專利範圍第1項的光學裝置,其中前述發光層由 基質聚合物和螢光物質形成。 30 200835946 4. 如申請專利範圍第3項的光學裝置,其中前述螢光物質 係選自於由螢光素類、若丹明類、香豆素類、丹磺醯類、 7-硝基苯基-2-氧雜-1,3-二唑型染料、芘、茈系、藻膽蛋 白系、花青染料、蒽醌系、硫靛系、及苯並吡喃系所構 5 成之群的至少一種螢光物質。 5. 如申請專利範圍第4項的光學裝置,其中前述螢光物質 係茈系螢光物質。 6. 如申請專利範圍第5項的光學裝置,其中前述茈系螢光 物質以下述結構式(1)表示:200835946 X. Patent application scope: 1. An optical device, comprising: a light source device; a reflective layer; a 5-color purity improving plate; and a reflective polarizing element, wherein the color purity improving plate comprises a light emitting layer, the light emitting layer An illuminating mechanism that absorbs light of a specific wavelength band other than the target wavelength band and converts the wavelength of the target wavelength band to increase the color of the target wavelength band by 10 degrees, and the light emitted from the light source device passes through the reflection type The polarizing element is emitted to the outside, the color purity improving plate is disposed between the reflective polarizing element and the reflective layer, and 15 the light source device is disposed at at least one of positions, that is, the color purity improving plate and the reflective layer. a position between the reflective polarizing element and the color purity improving plate; and a position of the side 20 of the reflective layer opposite to the color purity improving plate side. 2. The optical device according to claim 1, wherein the light source device is disposed at a position between the color purity improving plate and the reflective layer. 3. The optical device of claim 1, wherein the luminescent layer is formed of a matrix polymer and a fluorescent material. 30. The optical device of claim 3, wherein the fluorescent substance is selected from the group consisting of luciferins, rhodamines, coumarins, sulfoniums, and 7-nitrobenzenes. a group of 5-hydroxy-1,3-diazole dyes, anthraquinones, anthraquinones, phycobiliproteins, cyanine dyes, lanthanides, thioindigos, and benzopyrans At least one fluorescent substance. 5. The optical device of claim 4, wherein the fluorescent substance is a fluorescent substance. 6. The optical device of claim 5, wherein the lanthanide fluorescent substance is represented by the following structural formula (1): 前述式(1)中,四個X分別爲鹵素基或烷氧基,而各 個X可以彼此相同或不同,並且兩個R分別爲芳基或烷 基,而各個R可以彼此相同或不同。 7.如申請專利範圍第4項的光學裝置,其中前述螢光物質 15 係硫靛系螢光物質。 8·如申請專利範圍第7項的光學裝置,其中前述硫靛系螢 光物質以下述結構式(2)表示: 31 (2) 200835946 ΟIn the above formula (1), four X's are each a halogen group or an alkoxy group, and each X may be the same or different from each other, and two R's are each an aryl group or an alkyl group, and each R may be the same or different from each other. 7. The optical device of claim 4, wherein the fluorescent substance 15 is a sulphur-based fluorescent substance. 8. The optical device of claim 7, wherein the thioindigo fluorescent substance is represented by the following structural formula (2): 31 (2) 200835946 Ο 9. 如申請專利範圍第4項的光學裝置,其中前述螢光物質 係蒽醌系螢光物質。 10. 如申請專利範圍第9項的光學裝置,其中前述蒽醌系螢 光物質以下述結構式(3)表示:9. The optical device of claim 4, wherein the fluorescent substance is a fluorescent substance. 10. The optical device of claim 9, wherein the lanthanide fluorescent substance is represented by the following structural formula (3): 11.如申請專利範圍第3項的光學裝置,其中前述基質聚合 物係選自於由:聚甲基丙烯酸甲酯、聚丙烯酸酯系樹 脂、聚碳酸酯系樹脂、聚降冰片烯系樹脂、聚乙烯醇系 10 樹脂、及纖維素系樹脂所構成之群的至少一種。 12_如申請專利範圍第11項的光學裝置,其中前述基質聚合 物係聚甲基丙烯酸甲酯。 13. 如申請專利範圍第1項的光學裝置,其中前述發光層所 吸收之光的特定波長帶範圍是560〜610nm,而由前述發 15 光層發出之光的目標波長帶範圍是610〜700nm。 14. 如申請專利範圍第1項的光學裝置,其更包括導光板, 32 200835946 且從前述光源裝置發出之光通過前述導光板射出至前 述反射型偏光元件側。 15. —種圖像顯示裝置,包含光學裝置及顯示面板, 前述顯示面板包括顯示層和濾色片, 5 前述顯示面板和前述光學裝置係配置成使得前述 顯示層位於前述濾色片和前述光學裝置之間,並且 從前述光學裝置發出之光穿過前述顯示層,然後進 入前述濾色片, 其中前述光學裝置爲申請專利範圍第1項之光學裝 10 置。 16. —種液晶顯示裝置,包含光學裝置及液晶面板, 前述液晶面板包括液晶層和濾色片, 前述液晶面板和前述光學裝置係配置成使得前述 液晶層位於前述渡色片和前述光學裝置之間,並且 15 從前述光學裝置發出之光穿過前述液晶層,然後進 入前述濾色片, 其中前述光學裝置爲申請專利範圍第1項之光學裝 置。 3311. The optical device according to claim 3, wherein the matrix polymer is selected from the group consisting of polymethyl methacrylate, polyacrylate resin, polycarbonate resin, polynorbornene resin, At least one of a group consisting of a polyvinyl alcohol-based resin and a cellulose-based resin. The optical device of claim 11, wherein the matrix polymer is polymethyl methacrylate. 13. The optical device of claim 1, wherein the specific wavelength band of the light absorbed by the light-emitting layer is 560 to 610 nm, and the target wavelength band of the light emitted by the light-emitting layer is 610 to 700 nm. . 14. The optical device of claim 1, further comprising a light guide plate, 32 200835946 and the light emitted from the light source device is emitted through the light guide plate to the side of the reflective polarizing element. 15. An image display device comprising an optical device and a display panel, the display panel comprising a display layer and a color filter, wherein the display panel and the optical device are configured such that the display layer is located in the color filter and the optical Light between the devices and from the aforementioned optical device passes through the aforementioned display layer and then enters the aforementioned color filter, wherein the optical device is the optical device 10 of the first application of the patent application. 16. A liquid crystal display device comprising an optical device and a liquid crystal panel, wherein the liquid crystal panel comprises a liquid crystal layer and a color filter, wherein the liquid crystal panel and the optical device are disposed such that the liquid crystal layer is located in the color filter and the optical device And the light emitted from the optical device passes through the liquid crystal layer and then enters the color filter, wherein the optical device is the optical device of claim 1 of the patent application. 33
TW096145619A 2007-02-06 2007-11-30 Optical apparatus, image display, and liquid crystal display TW200835946A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007027302 2007-02-06
JP2007185427A JP2008216963A (en) 2007-02-06 2007-07-17 Optical apparatus, image display device, and liquid crystal display device

Publications (1)

Publication Number Publication Date
TW200835946A true TW200835946A (en) 2008-09-01

Family

ID=39837015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145619A TW200835946A (en) 2007-02-06 2007-11-30 Optical apparatus, image display, and liquid crystal display

Country Status (4)

Country Link
JP (1) JP2008216963A (en)
KR (1) KR100950887B1 (en)
CN (1) CN101241265A (en)
TW (1) TW200835946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420163B (en) * 2010-10-20 2013-12-21 Lg Innotek Co Ltd Wire grid polarizer and liquid crystal display including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003471B1 (en) * 2008-12-29 2010-12-29 국민대학교산학협력단 Fluorescent Backlight Plate for Liquid crystal display device comprising multilayered film
KR101663280B1 (en) * 2014-10-06 2016-10-06 에스케이씨하스디스플레이필름(유) Color gamut enhancing film for liquid crystal display and liquid crystal display comprising same
WO2017010659A1 (en) * 2015-07-14 2017-01-19 Samsung Electronics Co., Ltd. Display device and backlight unit included therein
WO2017057395A1 (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and polarizing plate set and liquid crystal display device that use said optical member
JP6829969B2 (en) * 2015-09-28 2021-02-17 日東電工株式会社 An optical member, a set of polarizing plates using the optical member, and a liquid crystal display device.
KR101740639B1 (en) * 2016-04-01 2017-05-26 에스케이씨하스디스플레이필름(유) Liquid crystal display comprising absorption dyes
KR101937456B1 (en) * 2016-04-01 2019-01-11 에스케이씨하이테크앤마케팅(주) LIQUID CRYSTAL DISPLAY COMPRISING K-Si-F-BASED PHOSPHORS AND COLOR GAMUT ENHANCING FILM
KR20180034847A (en) * 2016-09-28 2018-04-05 삼성전자주식회사 Display apparatus
WO2018131558A1 (en) * 2017-01-16 2018-07-19 シャープ株式会社 Display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174172A (en) 1997-07-30 1999-07-02 Citizen Watch Co Ltd Time piece
KR100362276B1 (en) * 2000-04-10 2002-11-23 삼성에스디아이 주식회사 Liquid Crystal Display
JP2002182214A (en) 2000-12-13 2002-06-26 Auto Network Gijutsu Kenkyusho:Kk Liquid crystal display
JP4327473B2 (en) 2003-02-19 2009-09-09 セイコーインスツル株式会社 Liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420163B (en) * 2010-10-20 2013-12-21 Lg Innotek Co Ltd Wire grid polarizer and liquid crystal display including the same

Also Published As

Publication number Publication date
JP2008216963A (en) 2008-09-18
CN101241265A (en) 2008-08-13
KR100950887B1 (en) 2010-04-06
KR20080073646A (en) 2008-08-11

Similar Documents

Publication Publication Date Title
TW200835946A (en) Optical apparatus, image display, and liquid crystal display
CN105452945B (en) Liquid crystal display device
TW200835939A (en) Color purity improving sheet, optical apparatus, image display, and liquid crystal display
TWI289690B (en) Broadband-cholesteric liquid crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
TWI582472B (en) Polarizer and polarizing plate
JP4420429B2 (en) Laminated optical film, elliptically polarizing plate, and image display device
WO2014176818A1 (en) Liquid crystal display device
JP2001203074A (en) Organic electroluminescent device, polarized light surface emitting device and liquid crystal display device
WO2017221993A1 (en) Light guide member and liquid crystal display device
TW200302943A (en) Display apparatus
US20080135098A1 (en) Color purity improving sheet, optical apparatus, image display, liquid crystal display and solar cell
JP2014026219A (en) Display device
WO2005012788A1 (en) Anisotropic fluorescent thin crystal film and backlight system and liquid crystal display incorporating the same
JP2001174809A (en) Flat polarized light emitter
JP5243826B2 (en) Optical film absorption band control method, optical film manufacturing method, optical film, color purity improving sheet, and image display device
US20080186428A1 (en) Optical apparatus, image display, and liquid crystal display
JP5323190B2 (en) Transmission type liquid crystal display device and light diffusion plate
CN100345047C (en) Back light and liquid crystal display unit using this
KR20180007870A (en) Color conversion film integrated with polarizing plate and display apparatus comprising the same
JP2005189393A (en) Elliptical polarizing plate and image display device
TW200842408A (en) Light emitting optical film and manufacture method thereof and liquid crystal display device
JP2006251589A (en) Optical element, polarized plane light source using element, and display apparatus using light source
JP4404623B2 (en) High brightness polarizing plate and image display device
JP5170539B2 (en) Optical film absorption band control method, optical film manufacturing method, optical film, color purity improving sheet, and image display device
JP2003307625A (en) Polarizer, polarizing plate, liquid crystal display device, image display device and method for manufacturing polarizer