TW200835784A - A process for heating a hydrocarbon stream entering a reaction zone with a heater convection section - Google Patents

A process for heating a hydrocarbon stream entering a reaction zone with a heater convection section Download PDF

Info

Publication number
TW200835784A
TW200835784A TW096142135A TW96142135A TW200835784A TW 200835784 A TW200835784 A TW 200835784A TW 096142135 A TW096142135 A TW 096142135A TW 96142135 A TW96142135 A TW 96142135A TW 200835784 A TW200835784 A TW 200835784A
Authority
TW
Taiwan
Prior art keywords
zone
recombination
heater
hydrocarbon stream
reactor
Prior art date
Application number
TW096142135A
Other languages
Chinese (zh)
Inventor
Leon Yuan
David J Fecteau
William M Hartman
William D Schlueter
Original Assignee
Uop Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uop Llc filed Critical Uop Llc
Publication of TW200835784A publication Critical patent/TW200835784A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/02Thermal reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G59/00Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
    • C10G59/02Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

An exemplary process can include passing a hydrocarbon stream through a reforming unit (100). The reforming unit (100) may include a heater (210), which in turn generally includes a convection section (230) and a radiant section (250), and a plurality of reforming reaction zones. Generally, the hydrocarbon stream is heated in the convection section (230) for reacting in one of the reforming reaction zones (412) to which the hydrocarbon stream is sent and the hydrocarbon stream is heated in the radiant section (250) of the heater for reacting in the other reforming reaction zone (418) to which the hydrocarbon stream is sent.

Description

200835784 九、發明說明: 【發明所屬之技術領域】 本發明之領域為加熱進入反應區之烴流。 【先前技術】 放熱或吸熱之烴轉化法可用於石油煉製或石化製造工 業。用於改良煙原料之辛烧品質之例示性煙轉化法為催化 重組,其中重組之主要產物為車用汽油或石化用芳族物來 源。催化重組技術為吾人所熟知且以下提供簡要實施方 式。 ' 一般而言,在催化重組中,將原料與包含氫之再循環流 此合以形成通常稱為組合進料流之進料流,且使該組合進 料流與催化劑在反應區中接觸。用於催化重組之常見原料 為稱為石腦油且具有82。〇 (180〇F)之初沸點及2〇;rc (4〇〇τ) 之終沸點的石油餾分。催化重組法可尤其適用於處理由相 對較高濃度之環烷烴及大體上直鏈之烷烴組成的直餾石腦 油’其易於經由脫氫及/或環化反應而芳化。 可將重組定義為由環己烷之脫氫及烷基環戊烷之脫氫異 構化而獲得芳族物、烷烴之脫氫而獲得烯烴、烷烴及稀烴 之脫氫環化而獲得芳族物、正烷烴之異構化、烷基環烷烴 之異構化而獲得環己烷、經取代之芳族物之異構化及烷烴 之加氯裂解所產生的總效應。有關重組方法之其他資訊可 見於(例如)美國專利第4,119,526號(Peters等人);第 4,409,〇95號(peters);及第 4,44〇,626號(winter等人)。 通常在催化劑粒子存在下實現催化重組反應,該等催化 I26304.doc 200835784 劑粒子包括-或多種第彻族(腿c 8·iG)責金屬(例如 翻、銥、錄、把)及齒素與多孔載體(諸如耐炼無機氧化物) 之組合。200835784 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The field of the invention is the heating of a hydrocarbon stream entering a reaction zone. [Prior Art] The exothermic or endothermic hydrocarbon conversion process can be used in the petroleum refining or petrochemical manufacturing industry. An exemplary smoke conversion process for improving the burnt quality of tobacco raw materials is catalytic recombination, wherein the main product of the recombination is automotive gasoline or petrochemical aromatics. Catalytic recombination techniques are well known to us and a brief implementation is provided below. In general, in catalytic recombination, the feedstock is combined with a recycle stream comprising hydrogen to form a feed stream, commonly referred to as a combined feed stream, and the combined feed stream is contacted with the catalyst in the reaction zone. A common raw material for catalytic recombination is called naphtha and has 82.石油 (180〇F) initial boiling point and 2〇; rc (4〇〇τ) final boiling petroleum fraction. Catalytic recombination processes are particularly useful for treating straight run naphtha consisting of relatively high concentrations of naphthenes and substantially linear alkanes' which are readily aromatized via dehydrogenation and/or cyclization reactions. Recombination can be defined as dehydrogenation of cyclohexane and dehydrogenation isomerization of alkylcyclopentane to obtain dehydrogenation of aromatics and alkanes to obtain dehydrocyclization of olefins, alkanes and dilute hydrocarbons. Isomerization of a group, a normal alkane, or isomerization of an alkylcycloalkane to obtain a total effect of cyclohexane, isomerization of a substituted aromatic, and chlorination of an alkane. Further information on methods of recombination can be found in, for example, U.S. Patent No. 4,119,526 (Peters et al.); 4,409, 〇95 (peters); and 4,44,626 (winter et al.). The catalytic recombination reaction is usually carried out in the presence of catalyst particles, which include - or a plurality of Dichu (leg c 8 · iG) metal (eg, turn, 铱, record, put) and dentate and A combination of porous supports such as refractory inorganic oxides.

在常見形式中’重組方法可在以串流配置互連之若干反 應區中使用催化劑粒子。可能存在許多反應區,但通常反 應區之數目為3、4或5個。因為重組反應通常發生在高溫 下且通常為吸熱的,所以各反應區通常與一或多個將反應 物加熱至所需反應溫度之加熱區相關聯。由於該等考慮因 素’故在3反應器催化重組法中流經—列加熱及反應區之 常見方法如下。 可將含有石腦油之原料與含氫再循環氣體混合以形成可 牙過組合進料熱交換器之組合進料流。在該組合進料熱交 換為中,可藉由與第三反應器之排出物交換熱量來加熱該 組合進料。然而,發生在組合進料熱交換器中之組合進料 流之加熱通常不足以將該組合進料流加熱至第一反應器之 所需入口溫度。因此,在退出組合進料熱交換器之後且在 進入第一反應器之前,該組合進料流通常需要補償加熱。 該補償加熱發生在通常稱為進料加熱器之加熱器中,該加 熱器可將組合進料流加熱至第一反應器之所需入口溫度。 可隨後將該組合進料流通至第一反應器且穿過第一反應 器。由於發生在第一反應器中之吸熱重組反應,故第一反 應器之排出物之溫度通常下降至不僅低於第一反應器中組 合進料之溫度,而且更重要地為低於第二反應器之所需入 口溫度。因此,第一反應器之排出物可穿過另一加熱器, 126304.doc 200835784 該加熱器通常被稱為第一中間加熱器且其可將第一反應器 排出物加熱至第二反應器之所需入口溫度。 在退出第一中間加熱器後,第一反應器排出物通常進入 第二反應器。如在第一反應器中一樣,吸熱反應導致溫度 在弟一反應器上之又一次下降。通常,然而,因為發生在 第二反應器中之反應通常比發生在第一反應器中之反應產 * 生較少吸熱,所以在第二反應器上之溫度下降通常低於在 ⑩ 第一反應器上之溫度下降。儘管在第二反應器上溫度下降 幅度略微較小,然而第二反應器之排出物仍處於低於第三 反應器之所需入口溫度之溫度下。 因此,第二反應器之排出物可穿過另一通常稱為第二中 間加熱器之加熱器且隨後可通至第三反應器。 在第二反應器中,吸熱反應導致溫度又一次下降,由於 與在第二反應器上之溫度下降通常低於在第一反應器上之 溫度下降同樣的原因,該溫度下降通常低於在第二反應器 • 上之溫度下降。可將第三反應器之排出物通至先前提及之 、、且石進料父換益,其中第三反應器之排出物可藉由與組合 進料流交換熱量而得以冷卻。 • 一般而言,亦已知重組單元可以反應器中之各者之不同 ^ 進料入口溫度操作。一般而言,該單元具有一列3對、4對 或5對加熱器及含有催化劑床(較佳為固定或移動床)之反應 器,但-起形成之不同入口溫度之許多各種可能組合(此 ,常被稱為單元之溫度分布)或許最佳以3反應器單元來說 若所有3個反應器之入口溫度為相同,則溫度分布通 126304.doc 200835784 常被稱為平坦。否則,該等反應器可以非平坦或偏斜反應 器入口溫度分布操作。舉例而言,若第一反應器之入口溫 度低於第二反應器之入口溫度,該第二反應器之入口溫度 又低於第三反應器之入口溫度.,則通常將該反應器入口溫 度分布稱為遞升分布。若第一入口溫度大於第二入口溫 度’该第二入口溫度又大於第三入口溫度,則通常將該分 布稱為遞降分布。若第二入口溫度大於第一與第三入口溫 度’則該分布可被稱為類似於山丘形。若第二入口溫度低 於第與第二入口溫度,則該分布可被稱為類似於山谷 形。 以非平坦(亦即偏斜)反應器入口溫度分布操作之最常見 原因為分配加熱器_反應器列中加熱器之中的所需熱負 何。理想地,所有加熱器個別地以約相同百分數之其個別 設計負荷傳遞熱量。t各加熱器以其與該列中之任何其他 加熱器操作時該其他加熱器之設計負荷百分數相同的=分 數之設計負荷操作時,則將加熱器負荷稱為”均衡”。當 加熱為般不應在超過其設計負荷之情況下操作,亦 即百分數通常應小於或等於⑽%。若某些操作變數(諸如 原料品質或處理量)與其設計值有顯著差別或若流量 不均或機械問;IP莫& q ^ n ^ „ 鳩V致反應态效此明顯降至其預期效能以 下’則平坦分布可能導致該列中加熱器之操作負荷不 衡。 3 在商用連’重組法中嘗試藉由偏斜反應器人口温度 衡加熱器負荷之$明>、+、 二 〈况明描述於Rlchard Lee之文章中,其摔題 126304.doc -11 - 200835784 為”Reforming Processes,Maximizing Profitability”,在由 John J. McKetta所編且由 Marcel Dekker,Inc·,New York在 199Λ 年电版之 Encyclopedia of Chemical Processing and Da/gn第47卷中第15 1頁開始。在Lee等人之文章中的實例 中,推薦反應器入口溫度之山谷形分布,其中並列反應器 1及2之入口溫度為相同且大於反應器3之入口溫度,該反 應器3之入口溫度低於反應器4之入口溫度。反應器4之入 口溫度可與反應器1及2之入口溫度相同或低於反應器1及2 之入口溫度。反應器1、2及4之入口溫度與反應器3之入口 溫度之間的最大差異為14°C (26°F)。Lee等人之文章亦教 示,預期當將執行相等(亦即平坦)反應器入口溫度分布與 執行交錯(亦即偏斜)反應器入口溫度分布比較時,汽油類 產物(C5 +產量)之間的差異程度不超過進料之0.5%。 重組加工爐可包括多個單元,其中反應器之進料可在單 元之輻射區中加熱,而蒸汽通常產生於加熱器之對流區 中。一般而言,加熱器投資成本通常超過單位成本之 20%。因為可在加熱器之輻射區中加熱進料,所以相當大 數量之燃燒燃料(例如30%之燃料)可能實際上用來產生蒸 汽而非加熱加工進料。期望,引導更多熱量進入製程中可 降低加熱器及燃料之成本。In a common form, the recombination process can use catalyst particles in several reaction zones interconnected in a stream configuration. There may be many reaction zones, but usually the number of reaction zones is 3, 4 or 5. Because recombination reactions typically occur at elevated temperatures and are generally endothermic, each reaction zone is typically associated with one or more heating zones that heat the reactants to the desired reaction temperature. A common method for flowing through the column heating and reaction zones in the 3 reactor catalytic reforming process due to these considerations is as follows. The naphtha-containing feedstock can be combined with a hydrogen-containing recycle gas to form a combined feed stream of a tangible over-combined feed heat exchanger. In the combined feed heat exchange, the combined feed can be heated by exchanging heat with the effluent of the third reactor. However, the heating of the combined feed stream occurring in the combined feed heat exchanger is generally insufficient to heat the combined feed stream to the desired inlet temperature of the first reactor. Thus, the combined feed stream typically requires compensating heating after exiting the combined feed heat exchanger and before entering the first reactor. This compensating heating occurs in a heater, commonly referred to as a feed heater, which heats the combined feed stream to the desired inlet temperature of the first reactor. The combined feed can then be passed to the first reactor and through the first reactor. Due to the endothermic recombination reaction occurring in the first reactor, the temperature of the effluent of the first reactor typically drops to not only lower than the temperature of the combined feed in the first reactor, but more importantly lower than the second reaction. The required inlet temperature for the unit. Thus, the effluent of the first reactor can pass through another heater, 126304.doc 200835784. The heater is commonly referred to as a first intermediate heater and it can heat the first reactor effluent to the second reactor Required inlet temperature. After exiting the first intermediate heater, the first reactor effluent typically enters the second reactor. As in the first reactor, the endothermic reaction causes the temperature to drop again on the reactor. Typically, however, because the reaction occurring in the second reactor typically produces less endotherm than the reaction occurring in the first reactor, the temperature drop on the second reactor is typically lower than the first reaction at 10 The temperature on the device drops. Although the temperature drop is slightly less in the second reactor, the effluent from the second reactor is still at a lower temperature than the desired inlet temperature of the third reactor. Thus, the effluent from the second reactor can pass through another heater, commonly referred to as a second intermediate heater, and can then pass to the third reactor. In the second reactor, the endothermic reaction causes the temperature to drop again, since the temperature drop on the second reactor is generally lower than the temperature drop on the first reactor, the temperature drop is usually lower than in the first reactor. The temperature of the second reactor is lowered. The effluent of the third reactor can be passed to the previously mentioned, and the stone feed father can be exchanged, wherein the effluent of the third reactor can be cooled by exchanging heat with the combined feed stream. • In general, it is also known that recombination units can operate at different feed inlet temperatures for each of the reactors. In general, the unit has a column of 3 pairs, 4 pairs or 5 pairs of heaters and a reactor containing a catalyst bed (preferably a fixed or moving bed), but many different possible combinations of different inlet temperatures are formed (this , often referred to as the temperature distribution of the unit. Perhaps the best choice for the 3 reactor unit is that if the inlet temperatures of all three reactors are the same, then the temperature distribution is 126304.doc 200835784 is often referred to as flat. Otherwise, the reactors can be operated with a non-flat or skewed reactor inlet temperature profile. For example, if the inlet temperature of the first reactor is lower than the inlet temperature of the second reactor, and the inlet temperature of the second reactor is lower than the inlet temperature of the third reactor, the reactor inlet temperature is usually The distribution is called a step-up distribution. If the first inlet temperature is greater than the second inlet temperature & the second inlet temperature is greater than the third inlet temperature, then the distribution is generally referred to as a descending distribution. If the second inlet temperature is greater than the first and third inlet temperatures' then the distribution may be referred to as a hill shape. If the second inlet temperature is lower than the second and second inlet temperatures, the distribution may be referred to as a valley shape. The most common reason for operating the inlet temperature profile of a non-flat (i.e., skewed) reactor is to distribute the desired heat load among the heaters in the heater_reactor column. Ideally, all heaters individually transfer heat at approximately the same percentage of their individual design load. The heater load is referred to as "equalization" when each heater is operated with a design load of the same fraction of the design load of the other heaters in operation of any other heater in the column. When heated, it should not be operated above its design load, ie the percentage should normally be less than or equal to (10)%. If some operational variables (such as raw material quality or throughput) are significantly different from their design values or if the flow rate is uneven or mechanically asked; IP Mo & q ^ n ^ „ 鸠V-induced reaction state effect is significantly reduced to its expected performance The following 'then flat distribution may cause the operating load of the heater in this column to be unbalanced. 3 In the commercial company's reorganization method, try to use the skew reactor population temperature to balance the heater load's $ming>, +, and two conditions. Ming is described in the article by Rlchard Lee, whose title 126304.doc -11 - 200835784 is "Reforming Processes, Maximizing Profitability", edited by John J. McKetta and by Marcel Dekker, Inc., New York at 199 Λ Beginning on page 15 of Encyclopedia of Chemical Processing and Da/gn, Volume 47. In the example of Lee et al., a valley-like distribution of reactor inlet temperatures is recommended, with inlets of reactors 1 and 2 in parallel. The temperature is the same and greater than the inlet temperature of the reactor 3, the inlet temperature of the reactor 3 is lower than the inlet temperature of the reactor 4. The inlet temperature of the reactor 4 can be the same as the inlet temperature of the reactors 1 and 2 or The inlet temperature of reactors 1 and 2. The maximum difference between the inlet temperature of reactors 1, 2 and 4 and the inlet temperature of reactor 3 is 14 ° C (26 ° F). The article by Lee et al. It is expected that when performing an equal (ie, flat) reactor inlet temperature profile versus performing a staggered (ie, skewed) reactor inlet temperature profile, the difference between the gasoline-based products (C5 + yield) does not exceed the feed. 0.5%. The reprocessing furnace may comprise a plurality of units, wherein the feed to the reactor may be heated in the radiant zone of the unit, and the steam is typically produced in the convection zone of the heater. In general, the investment cost of the heater typically exceeds the unit. 20% of the cost. Because the feed can be heated in the radiant zone of the heater, a significant amount of combustion fuel (eg, 30% fuel) may actually be used to generate steam rather than heat processing the feed. Multiple heat entering the process reduces the cost of the heater and fuel.

David Fecteau及 Kenneth Peters之美國專利第 6,1〇6,696 號揭示可能除去重組單元中之加熱器。使進料在組合進料 交換器中加熱且汽化且以相對低溫直接饋入第一反應器 中。組合進料交換器出口溫度可低於482°C (900T:)。若總 126304.doc -12· 200835784 > ^負載為怪疋且第—加熱器負荷與其他加熱器相比較 :且不:衡,則在組合進料交換器出口處之相對低溫可能 ¥致後續反應器之較高反應溫度需求。 ,而’通常其將需要將進料溫度增加至高於組合進料交 換器出口之溫度,以在不增加催化劑負载之情況下使後續 反應器人口溫度保持較低。亦可能需要偏斜反應器入口溫 度以均衡各加熱器單元之熱負荷需求。U.S. Patent No. 6,1,6,696 to David Fecteau and Kenneth Peters discloses the possibility of removing the heater in the recombination unit. The feed is heated and vaporized in a combined feed exchanger and fed directly into the first reactor at a relatively low temperature. The combined feed exchanger outlet temperature can be below 482 ° C (900 T:). If the total load is 126304.doc -12· 200835784 > ^ load is quirky and the first - heater load is compared with other heaters: and no: balance, the relative low temperature at the exit of the combined feed exchanger may be followed by Higher reaction temperature requirements for the reactor. And typically, it would be necessary to increase the feed temperature above the temperature of the combined feed exchanger outlet to keep the subsequent reactor population temperature low without increasing catalyst loading. It may also be desirable to skew the inlet temperature of the reactor to equalize the thermal load requirements of each heater unit.

資訊揭示内容 少兩個移動床反應區之重組方法,其較佳不在組合進料交 換器與㈣反應區之間制加熱。美國專利第6,H)M96號 據此以引入的方式全部併入本文中。 【發明内容】 如以上所討論’美國專利第6,1〇6,696號揭示一種使用至 。一例示性方法可包括使一烴流穿過一重組單元。該重組 單元可包括一加熱器及複數個重組反應區, 括一對流區及-輻射區。-般而言,將該烴流在該對流= 中加熱以便在該烴流所傳送到之該等重組反應區之一者中 反應且將該烴流在該加熱器之該輻射區中加熱以便在該烴 流所傳送之另一重組反應區中反應。 另一例示性重組方法可包括經由一重組單元傳送包括烴 之物流。該重組單元可包括至少一個加熱器及複數個重組 反應區。一般而言,該至少一個加熱器包括一對流區及一 輻射區,其中自該至少一個加熱器轉移至進入該等重組反 應區之一者的該烴流之至少9〇%的熱量係來自該至少—個 126304.doc -13- 200835784 加熱器之一或多個對流區。 一例示性精煉設備或石化製造設備可包括一重組單元。 般而曰,該重組單元包括至少一個包括一對流區及一輻 射區之加熱器。該對流區可包括至少一個具有一入口及一 出口之對流管,且該輻射區包括一燃燒器及至少一個具有 一入口及一出口之輻射管。該重組單元可進一步包括複數 個呈串聯形式之重組反應區,其中各反應區具有一入口及 一出口。一般而言,第一反應區入口係用於接收來自該對 流管之該出口的烴流且第二反應區入口係用於接收來自該 輻射管之該出口的烴流。 又一例示性方法可包括使一烴流穿過一重組單元。該重 組單元可包括一加熱器及複數個重組反應器,該加熱器又 可包括一對流區及一輻射區。一般而言,使該烴流在進入 忒等重組反應器之一者之前僅在該加熱器之該對流區中加 熱而不在該輻射區中加熱。 另一例示性方法可包括操作一包括一對流區及一輻射區 之加熱器;操作複數個串聯之反應區;使一烴流穿過至少 一個對流管直接進入該等區之一者之入口中;及使該烴流 穿過至少一個輻射管直接進入另一區之入口中。該對流區 可包括至少一個具有一入口及一出口之對流管且該輻射區 可包括至少一個具有一入口及一出口之輻射管。此外,各 反應區可具有一入口。 期望使用一或多個加熱器之對流區來加熱一反應器之進 料且設定反應器之入口溫度,有可能以對流區代替加熱器 I26304.doc • 14· 200835784 或加熱爐之輻射區。此可降低投資成本及催化劑成本且同 時減少燃料及廢氣流,因此亦可降低來自單元之排放(例 如C〇2、SOx、NOx)。又,利用對流區及偏斜溫度分布可 使熱量負荷自前端轉移至末端。因此,加熱爐之尺寸可經 標準化以降低資金成本。此外,該配置可獲得產率之增 加,諸如增加0.1%。此外,本文中之實施例可使加熱器輻 射區與反應區之比率低於1:1,諸如34或2:3。 【實施方式】 如本文中所用,術語”烴流”可為包括各種烴分子(諸如直 鏈、支鏈或環狀烷烴、烯烴、二烯烴及炔烴)及(視情況)其 他物質(諸如氣體(例如氫氣)或雜質(諸如重金屬))之物流。 ’但只要在反應之後至Information Disclosure The recombination method of two moving bed reaction zones is preferably not heated between the combined feed exchanger and the (iv) reaction zone. U.S. Patent No. 6,H)M96 is hereby incorporated by reference in its entirety. SUMMARY OF THE INVENTION As used above, U.S. Patent No. 6,1,6,696 discloses a use. An exemplary method can include passing a hydrocarbon stream through a recombination unit. The recombination unit can include a heater and a plurality of recombination reaction zones, including a pair of flow zones and a radiation zone. Generally, the hydrocarbon stream is heated in the convection = to react in one of the recombination reaction zones to which the hydrocarbon stream is passed and to heat the hydrocarbon stream in the radiant zone of the heater so that The reaction is carried out in another recombination reaction zone where the hydrocarbon stream is passed. Another exemplary recombination method can include delivering a stream comprising hydrocarbons via a recombination unit. The recombination unit can include at least one heater and a plurality of recombination reaction zones. In general, the at least one heater includes a pair of flow zones and a radiation zone, wherein at least 9% of the heat transferred from the at least one heater to the hydrocarbon stream entering one of the recombination reaction zones is from At least one 126304.doc -13- 200835784 one or more convection zones of the heater. An exemplary refinery or petrochemical manufacturing facility can include a recombination unit. Typically, the recombination unit includes at least one heater including a pair of flow zones and a radiation zone. The convection section may include at least one convection tube having an inlet and an outlet, and the radiant section includes a burner and at least one radiant tube having an inlet and an outlet. The recombination unit may further comprise a plurality of recombination reaction zones in tandem form, wherein each reaction zone has an inlet and an outlet. In general, the first reaction zone inlet is for receiving a hydrocarbon stream from the outlet of the convection tube and the second reaction zone inlet is for receiving a hydrocarbon stream from the outlet of the radiant tube. Yet another exemplary method can include passing a hydrocarbon stream through a recombination unit. The recombining unit can include a heater and a plurality of recombination reactors, which in turn can include a pair of flow zones and a radiation zone. In general, the hydrocarbon stream is heated only in the convection zone of the heater prior to entering one of the recombination reactors such as helium without heating in the radiant zone. Another exemplary method can include operating a heater including a pair of flow zones and a radiant zone; operating a plurality of reaction zones in series; passing a hydrocarbon stream through at least one convection tube directly into the inlet of one of the zones And passing the hydrocarbon stream through at least one radiant tube directly into the inlet of another zone. The convection zone can include at least one convection tube having an inlet and an outlet and the radiant zone can include at least one radiant tube having an inlet and an outlet. In addition, each reaction zone may have an inlet. It is desirable to use one or more convection zones of the heater to heat the feed to one of the reactors and set the inlet temperature of the reactor, possibly replacing the heater zone with a convection zone or a radiant zone of the furnace. This reduces investment costs and catalyst costs while reducing fuel and exhaust streams, thereby reducing emissions from the unit (e.g., C〇2, SOx, NOx). Moreover, the convective zone and the skewed temperature distribution allow the heat load to be transferred from the front end to the end. Therefore, the size of the furnace can be standardized to reduce capital costs. In addition, this configuration can achieve an increase in yield, such as an increase of 0.1%. Moreover, embodiments herein can provide a ratio of heater radiation zone to reaction zone of less than 1:1, such as 34 or 2:3. [Embodiment] As used herein, the term "hydrocarbon stream" may include various hydrocarbon molecules (such as linear, branched or cyclic alkanes, alkenes, diolefins, and alkynes) and (as appropriate) other materials (such as gases). A stream of (e.g., hydrogen) or impurities (such as heavy metals). ‘but as long as after the reaction

不碳原子在烴分子中之數目。 該煙流可經受反應(例如重組反應),但 少某些煙存在於該流中則仍可稱為烴流The number of non-carbon atoms in the hydrocarbon molecule. The plume can be subjected to a reaction (eg, a recombination reaction), but a small amount of smoke present in the stream can still be referred to as a hydrocarbon stream.

W乳T自加熱器退出達至反應區。W milk T exits from the heater to reach the reaction zone.

對流熱得遞接收由(例如)由加熱器 通常係指主要藉由輻射及 舞燃燒之燃氣所釋放之35- 126304.doc -15- 200835784 65%(對於堵塞管而言)或45_65%(對於相對潔淨的管 之熱量的加熱器區域。 3 ) 如本文中所用,術語"對流區"通常係指主要藉由(例 乳)對流及輕射熱傳遞接收由加熱器燃燒之燃氣所釋放: 10-45%之熱量的加熱器區域。通常,經由排出口損失^ ⑽之熱量,因此通常不超過93%之由燃料所釋放之 用於輻射及對流區。 …、里Convective heat is received by, for example, 35-126304.doc -15- 200835784 65% (for blocked tubes) or 45_65% (for the blocked tube), which is usually released by the heater and is mainly burned by the fire and dance. The area of the heater for the relatively clean heat of the tube. 3) As used herein, the term "convection area" generally refers to the gas that is burned by the heater primarily by convection and light heat transfer. Released: 10-45% of the heater area. Typically, the heat of ^(10) is lost via the discharge port, so typically no more than 93% of the radiation and convection zones released by the fuel are released. …,in

如本文中所用,關於流體而言之術語,,傳送"可意謂將产As used herein, the term "transportation with respect to fluids" may mean that it will be produced.

體藉由諸如果送或壓縮之方法或藉由使用重力自隸 移至另一位置。 W 。。如本文中所用,術語"加熱器"可包括加熱爐 '進料加熱 或中門加熱器。加熱器可包括至少—個燃燒器且可包括 至少-個輻射區、至少一個對流區或至少一個輻射區與至 少一個對流區之組合。 本發明之詳細說明 般而《,本文中所揭示之實施例適用於多種具有多個 加…器之反應系統,諸如各種烴轉化製程,包括彼等放熱 二吸熱之製程。舉例而言,本發明之實施例可適用於使用 多個反應區之放熱製程,其中將需要遞升溫度分布。本文 中所揭示之錢施例較佳適用於吸熱重組方法。 一 般而w ’對於重組方法所饋入之烴原料包括沸點處於 汽油類範圍内之環烷烴及烷烴。镡管在多數情況下亦可存 在芳知物’但較佳進料為主要由環烷烴及烷烴組成之石腦 ’由忒軼佳類型包括直餾汽油、天然汽油、合成汽油及其 126304.doc •16- 200835784The body is moved to another location by means of sending or compressing or by using gravity. W. . As used herein, the term "heater" may include a furnace 'feed heating or a mid-door heater. The heater may include at least one burner and may include at least one radiant zone, at least one convection zone, or a combination of at least one radiant zone and at least one convection zone. DETAILED DESCRIPTION OF THE INVENTION As generally described, the embodiments disclosed herein are applicable to a variety of reaction systems having a plurality of reactors, such as various hydrocarbon conversion processes, including their exothermic and endothermic processes. For example, embodiments of the present invention are applicable to a heat release process using multiple reaction zones where a temperature rise profile would be required. The money embodiment disclosed herein is preferably applicable to an endothermic recombination method. The hydrocarbon feedstock typically fed to the recombination process includes naphthenes and alkanes having boiling points in the gasoline range. In most cases, the sputum can also be found in the 'known but the better feed is the naphtha composed mainly of naphthenes and alkanes. The best types include straight-run gasoline, natural gasoline, synthetic gasoline and 126304.doc •16- 200835784

類似物。作為一替代性實施例,饋入熱裂解汽油或催化裂 解汽油或部分重組石腦油常常為有利的1可使用直德及 裂解汽油類石腦油之混合物來獲得優勢。汽油類石腦油進 料可為具有4G·饥(购崎)之初_點及於16〇_滅 (320-428T)範圍内之㈣點的全㈣汽油或可為其所選鶴 份’該館份通常可為常稱為重石腦油之高彿點顧份__例如 濟點處於100-200°C (212-392^1^圍内之石腦油。在某些 情況下’饋人待轉化成芳族物的自萃取單元中回收之純二 或烴混合物(例如來自芳族物萃取之萃餘液或直鏈烷烴)= =有利的。在某些其他情況中,原料亦可含有具有丨_5個 碳原子之輕烴,但因為該等輕烴不能易於重組成芳族烴, 所以通$使該等與原料一起進入之輕烴減至最少。 一種可藉由本文中所揭示之該等方法產生轉化的例示性 原料通常包括可為石腦油之物流,其包括以該物流中蛵之 總重量計以重量百分數表示且揭示於表1中之組份: 表1 組份 量 一般 Q或更低碳數組份: 不超過0.5% 不超過4% ^6 不超過30% C7 10-50% Cg 20-50% c9 不超過25% Ci〇 不超過15% Cu或更高碳數組份 不超過2% 126304.doc 200835784 一般而言,使組合進料流或烴原料(若氫氣不與烴原料 一起供給)在通常為65-177°C (150-3 50°F)且更通常為93-121°C (200-250°F)之溫度下進入熱交換器。因為氫氣通常 係與烴原料一起供給,所以在本文中可將該熱交換器稱為 組合進料熱交換器,即使氫氣不與烴原料一起提供亦如 此。一般而言,組合進料熱交換器藉由將熱量自最後重組 反應器之排出流傳遞至組合進料流來加熱該組合進料流。 較佳地,組合進料熱交換器為間接(而非直接)熱交換器, 以防止最後反應器排出物中之有價值的重組產物與組合進 料混合且由此再循環至重組反應器中,此時重組物品質可 能降級。 儘管組合進料流及最後反應器排出流於組合進料熱交換 器内之流型可為完全同向流、逆向流、混合流或交叉流, 但流型較佳為逆流。逆流流型意謂,組合進料流在其最冷 溫度下接觸組合進料熱交換器之熱交換面之一端(亦即冷 端),而最後反應器排出流亦在其最冷溫度下接觸熱交換 面之冷端。因此,最後反應器排出流在處於其於熱交換器 内之最冷溫度時與亦處於在熱交換器内之最冷温度的組合 進料流交換熱量。在組合進料熱交換器表面之另一端(亦 即熱端),最後反應器排出流與組合進料流皆在其於熱交 換器内之最熱溫度下接觸熱交換面之熱端且藉此交換熱 量。在熱交換面之冷端與熱端之間,最後反應器排出流與 組合進料流以大致相反之方向流動,以致大體在沿熱傳遞 表面之任一點處,最後反應器排出流之溫度越高,與最後 126304.doc -18 - 200835784 反應器排出流交換熱量之組合進料流的溫度就越高。關於 熱交換器中之流型的進一步資訊,參見例如由Robert H. Perry 等人所編由 McGraw-Hill Book Company,New York於 1984年出版之Perry’s Chemical Engineers’ Handbook,第六 版中第10-24至10-31頁,且將該等參考文獻引入本文中。 一般而言,組合進料熱交換器以通常低於56°C(l〇〇°F)、 較佳低於33°C (60°F)且更佳低於28°C (50°F)之熱端接近值 操作。如本文中所用,術語”熱端接近值"係如下定義:基 於交換較熱最後反應器排出流與較冷組合進料流之間的熱 量的熱交換器,其中T1為最後反應器排出流之入口溫度, T2為最後反應器排出流之出口溫度,tl為組合進料流之入 口溫度且t2為組合進料流之出口溫度。如本文中所用,對 於逆流熱交換器,將"熱端接近值”定義為T1與t2之間的 差。一般而言,熱端接近值越小,最後反應器排出物與組 合進料流之熱量交換程度越高。 儘管可使用殼管式熱交換器,但另一可能性為板式熱交 換器。板式交換器為吾人所熟知且以若干不同及獨特形式 市售,諸如螺旋式、板框式、釺焊板翅式及板翅管式。板 式交換器通常描述於由R· H· Perry等人所編且由McGraw Hill Book Company, New York 於 1984 年出版之 Perry’s Chemical Engineers’ Handbook,第六版中第 11-21 至 11-23 頁上。 在一實施例中,組合進料流可在399-516°C (750-960°F) 溫度下離開組合進料熱交換器以進入至少一個加熱器(或 126304.doc -19- 200835784analog. As an alternative embodiment, feeding pyrolysis gasoline or catalytically cracked gasoline or partially recombined naphtha is often advantageous. 1 A mixture of straight and pyrolysis gasoline naphtha can be used to gain an advantage. The gasoline-based naphtha feed may be a full (four) gasoline with a 4G·hunting (sakisaki) and a (four) point in the range of 16〇_(320-428T) or a selected crane. The museum can usually be a high-fossil point that is often called heavy naphtha. For example, the point is 100-200 ° C (212-392 ^ 1 ^ naphtha. In some cases, 'feeding A pure di- or hydrocarbon mixture recovered from a self-extracting unit of a person to be converted into an aromatics (for example, from a raffinate of aromatic extraction or a linear alkane) = = advantageous. In some other cases, the raw material may also contain Light hydrocarbons having 丨5 carbon atoms, but because these light hydrocarbons are not easily reconstituted into aromatic hydrocarbons, the light hydrocarbons that enter with the feedstock are minimized. One can be disclosed herein. Exemplary feedstocks which produce such conversions generally comprise a stream which may be a naphtha comprising components expressed in weight percent based on the total weight of rhodium in the stream and disclosed in Table 1: Table 1 Q or lower carbon array parts: no more than 0.5% no more than 4% ^6 no more than 30% C7 10-50% Cg 20-50% c9 not exceeding 25% Ci〇 no more than 15% Cu or higher carbon array no more than 2% 126304.doc 200835784 In general, the combined feed stream or hydrocarbon feedstock (if hydrogen is not supplied with the hydrocarbon feedstock) is typically 65- Enter the heat exchanger at a temperature of 177 ° C (150-3 50 ° F) and more typically 93-121 ° C (200-250 ° F). Since hydrogen is usually supplied with hydrocarbon feedstock, it can be used in this paper. This heat exchanger is referred to as a combined feed heat exchanger, even if hydrogen is not supplied with the hydrocarbon feedstock. In general, the combined feed heat exchanger transfers heat from the final recycle reactor discharge stream to the combination. A feed stream to heat the combined feed stream. Preferably, the combined feed heat exchanger is an indirect (rather than a direct) heat exchanger to prevent valuable recombination products and combined feeds in the final reactor effluent Mixing and thus recycling to the recombination reactor, at which point the quality of the recombination may be degraded. Although the combined feed stream and the final reactor effluent stream in the combined feed heat exchanger may be in the same direction, reverse Flow, mixed flow or cross flow, but flow pattern Preferably, the countercurrent flow means that the combined feed stream contacts one end of the heat exchange surface of the combined feed heat exchanger (ie, the cold end) at its coldest temperature, and the final reactor discharge stream is also at its maximum Contacting the cold end of the heat exchange surface at cold temperatures. Thus, the final reactor effluent stream exchanges heat with the combined feed stream which is also at the coldest temperature in the heat exchanger at its coldest temperature in the heat exchanger. At the other end of the combined feed heat exchanger surface (ie, the hot end), the final reactor effluent stream and the combined feed stream contact the hot end of the heat exchange surface at its hottest temperature in the heat exchanger and Thereby exchange heat. Between the cold end and the hot end of the heat exchange surface, the final reactor effluent stream and the combined feed stream flow in substantially opposite directions such that generally at any point along the heat transfer surface, the temperature of the final reactor effluent stream High, combined with the final 126304.doc -18 - 200835784 Reactor vent stream exchange heat The higher the temperature of the feed stream. For further information on flow patterns in heat exchangers, see, for example, Perry's Chemical Engineers' Handbook, edited by Robert H. Perry et al., McGraw-Hill Book Company, New York, 1984, No. 10, sixth edition Pp. 24-10-31, and the references are incorporated herein. In general, the combined feed heat exchanger is typically below 56 ° C (10 ° F), preferably below 33 ° C (60 ° F) and more preferably below 28 ° C (50 ° F) The hot end is close to the value operation. As used herein, the term "hot end approach value" is defined as a heat exchanger based on the exchange of heat between the last reactor effluent stream and the cooler combined feed stream, where T1 is the last reactor effluent stream. The inlet temperature, T2 is the outlet temperature of the final reactor effluent stream, t1 is the inlet temperature of the combined feed stream and t2 is the outlet temperature of the combined feed stream. As used herein, for the countercurrent heat exchanger, "heat The end proximity value is defined as the difference between T1 and t2. In general, the smaller the hot end approach value, the higher the degree of heat exchange between the final reactor effluent and the combined feed stream. Although a shell and tube heat exchanger can be used, another possibility is a plate type heat exchanger. Panel exchangers are well known and commercially available in a number of different and unique forms, such as spiral, plate and frame, welded plate fin and plate fin tube. Plate exchangers are generally described in Perry's Chemical Engineers' Handbook, edited by R. H. Perry et al., and published by McGraw Hill Book Company, New York, 1984, pages 11-21 to 11-23, sixth edition. . In one embodiment, the combined feed stream can exit the combined feed heat exchanger at 399-516 ° C (750-960 ° F) to enter at least one heater (or 126304.doc -19- 200835784

弟一加熱器)之—或多個對流區。—般而t,進料流在廢 氣處於其最冷溫度之對流區頂部部分處進人對流區且在廢 氣處於其最熱溫度之對流區之較低部分處心。或者,進 料流可在廢氣處於其最熱溫度之對流區之較低部分處進入 對流區且在廢氣處於其最冷溫度之對流區之較高部分處退 出。或者’進料流可在對流區之頂部或底部進人且退出。 離開對流區之組合進料流之溫度(亦為第一反應區之入口 溫度)通常為 482-54n: (_.1()2『f)、較佳 518_538。〇 (965· 1000°F) 〇 本發明之實施例之-益處為無需控制對流區出口處之溫 ^的靈活性。相反地,可藉由調節其餘反應區人口溫度獲 得產物品質之控制。在需要對第一反應區進行獨立溫度控 制之U况下,可藉由以熱侧面或冷側面旁通設計組合進料 交換器來實現對流區加工出口溫度之控制。最後反應器排 出流或組合進料流之一部分可旁通組合進料交換器。或 者 了藉由與精岔控制相組合經由在組合進料熱交換器上 使用小型熱側旁通將過量空氣略微調節至加熱器中而實現 控制。 本發明可尤其適用於烴在具有至少兩個催化反應區之重 組反應系統中的催化重組,其中反應物流之至少一部分及 催化劑粒子之至少一部分連續流經反應區。具有多個區之 反應系統通常呈現以下兩種形式之一者:並列式或堆疊 式。在並列式中,多個且獨立之反應容器(各包括一反應 區)可沿彼此側面置放。在堆疊式中,一共同反應容器可 126304.doc -20- 200835784 含有多個且獨立之置於彼此頂部上的反應區 儘管反應區可包括烴流之許多種配置(諸如 向上流動及交叉流動),但本發明適用之最常 下向流動、Brother-heater) - or multiple convection zones. Typically, the feed stream enters the convection zone at the top portion of the convection zone where the exhaust gas is at its coldest temperature and is centered at the lower portion of the convection zone where the exhaust gas is at its hottest temperature. Alternatively, the feed stream may exit the convection zone at a lower portion of the convection zone where the exhaust gas is at its hottest temperature and exit at a higher portion of the convection zone where the exhaust gas is at its coldest temperature. Or the 'feed stream' can enter and exit at the top or bottom of the convection zone. The temperature of the combined feed stream leaving the convection zone (also the inlet temperature of the first reaction zone) is typically 482-54n: (_.1()2"f, preferably 518_538. 〇 (965·1000 °F) 益处 The benefit of the embodiment of the invention is the flexibility to control the temperature at the outlet of the convection zone. Conversely, control of product quality can be achieved by adjusting the temperature of the remaining reaction zone population. In the U case where independent temperature control of the first reaction zone is required, the control of the convection zone processing outlet temperature can be achieved by combining the feed exchanger with a hot side or a cold side bypass design. The final reactor effluent stream or a portion of the combined feed stream can bypass the combined feed exchanger. Alternatively, control can be achieved by using a small hot side bypass on the combined feed heat exchanger to slightly regulate excess air into the heater by combining with the fine control. The invention is particularly applicable to catalytic recombination of hydrocarbons in a reforming reaction system having at least two catalytic reaction zones, wherein at least a portion of the reactant stream and at least a portion of the catalyst particles are continuously passed through the reaction zone. Reaction systems with multiple zones typically take one of two forms: side-by-side or stacked. In the side-by-side configuration, a plurality of independent reaction vessels (each including a reaction zone) may be placed along the sides of each other. In a stacked configuration, a common reaction vessel may have 126304.doc -20-200835784 containing multiple reaction zones that are placed on top of each other independently, although the reaction zone may include many configurations of hydrocarbon streams (such as upward flow and cross flow) , but the most frequent downward flow,

筛可具有低於外部篩之截面#的標稱内㈣面冑,該外部The screen may have a nominal inner (four) facet that is lower than the cross section of the outer screen, the outer

器、外部篩及内部篩可為圓柱形,但其亦可視許多設計、 製造及技術方面之考慮因素而定呈現任何適當形狀,諸如 三角形、正方形、長方形或菱形。舉例而言,常見外部篩 不為連續圓柱形篩,而代之以為獨立橢圓形管狀篩之配置 (稱為海扇狀構造(scallop)),其可布置在反應容器之内壁 四周。内部篩通常為在外圓周長周圍以篩覆蓋之帶孔中心 管。 具有堆疊式反應區且可用以實施本發明之例示性反應容 器展示於美國專利第3,706,536號(Greenwood等人)及第 5,130,1〇6號(Koves等人)中,其中之教示以引入的方式全 126304.doc -21· 200835784 部併入本文中。可經由催化劑轉移管道實現使重力流動性 催化劑粒子自一反應區轉移至另一反應區,引入新鮮或再 生催化劑粒子且收回含有焦炭之廢催化劑粒子。 一般而言,該等重組反應通常在由一或多種第vm族 (IUPAC 8_1〇)貴金屬(例如鉑、銥、铑及鈀)及鹵素與多孔 載體(諸如耐熔無機氧化物)之組合構成之催化劑粒子存在 下實現。舉例而言,美國專利第2,479,11〇號(Haensel)教示 一種氧化鋁-鉑-鹵素重組催化劑。儘管該催化劑可含有 〇·〇5-2·0 wt·%之第VI„族金屬,但可使用價格比較低廉之 催化劑,諸如含有〇·〇5-〇·5 wt-%第VIII族金屬之催化劑。 較佳貴金屬為鉑。此外,該催化劑可含有銦及/或鑭系金 屬’諸如飾。催化劑粒子亦可含有〇 〇5-〇·5 之一或多 種第IVA族(IUPAC 14)金屬(例如錫、鍺及鉛),諸如美國專 利第4,929,333號(Moser等人)、美國專利第5,128,3〇〇號 (Chao等人)及其所引用之參考文獻中所描述。一般而言, 鹵素通常為氯且氧化鋁通常為載體。較佳氧化鋁物質為 Υ、η及Θ氧化鋁,其中γ及η氧化鋁通常為最佳。一種與催 化劑之效能有關之特性為載體之表面積。較佳,載體具有 100 500 m/g之表面積。具有低於no m2/g之表面積的催 化劑之活性趨向於比具有較高表面積之催化劑更易受到催 化劑焦炭之不利影響。一般而言,儘管該等粒子可大至 6·35 mm (1/4吋)或小至ι·〇6 mm (1/24吋),但其通常為球 形且具有1.6至3.1 mm (1/16_1/8吋)之直徑。然而在一特定 重組反應器中,需要使用屬於相對狹窄之尺寸範圍之催化 126304.doc -22- 200835784 劑粒子。較佳催化劑粒子直徑為1 · 6 mm (1 /16叶)。 重組方法可使用固定催化劑床或移動床反應容器及移動 床再生容H。一般而言,將再生催化劑粒子饋入通常包括 若干反應區之反應容器中且該等粒子藉由重力流經該反應 容器。可將催化劑自反應容器之底部收回且輸送至再生容 器中。在再生容器中,通常使用多步再生方法來再生催化 劑以恢復其促進重組反應之充分能力。美國專利第 3,652,231 號(Gr代nwood 等人)、第 3,647,680 號(Greenwood 等人)及第3,692,496號(Greenwood等人)描述適用於重組方 法之催化劑再生容器。催化劑可藉由重力流經各再生步驟 且隨後自再生容器中將其收回且輸送至反應容器。一般而 s ’ &供用以將新鮮催化劑作為補充添加至製程中且用以 自製程中收回廢催化劑的配置。通常將催化劑經由反應及 再生容器之移動稱為連續的,然而實際上其為半連續的。 半連續移動意謂在間隔接近之時間點上反覆轉移相對較小 里之催化劑。舉例而言,可每二十分鐘自反應容器之底部 收回一批次且收回可花費5分鐘,亦即催化劑可流動5分 鐘。若容器中之催化劑流量(inventory)與該批量大小相比 相對較大,則容器中之催化劑床可視為連續移動的。移動 床系統可具有持續製造同時移除或替換催化劑之優勢。 通常,催化劑經由催化劑床移動之速率可介於少至每小 時45.5 kg (1〇〇磅)至每小時2727 kg (6〇〇〇磅)範圍内或更 而〇 本發明之反應區可在重組條件下操作,該等條件包括通 126304.doc •23- 200835784 常為大氣壓 0-6895 kPa(g) (〇 psi(g)-l〇00 psi(g))之壓力範 圍,且尤其在276-1379 kPa(g) (40-200 psi(g))之相對低壓 範圍獲得良好結果。以所有反應區中之總催化劑體積計, 總液體每小時空間速度(LHSV)通常為〇1_1〇小時d,較佳 為1-5小時·〗且更佳為m〇小時-1。 身又而σ,^供氣氣以供給進入重组區之每莫耳煙原料 uo莫耳氫氣之量。較佳提供氫氣以供給進入重組區之每 莫耳烴原料低於3.5莫耳氫氣之量。若提供氫氣,則其可 在組合進料交換器之上游、組合進料交換器之下游或組合 進料交換器之上游與下游處提供。或者,可不提供與烴原 料一起進入重組區之氫氣。即使不將氫氣與烴原料一起提 供給第一反應區,發生於第一反應區内之環烷烴重組反應 亦可產生作為副產物之氫氣。該副產物或原位產生之氫氣 與第一反應區排出物摻混在一起離開第一反應區且隨後可 變成第二反應區及其他下游反應區可利用之氫氣。第一反 應區排出物中之該原位所產生之氫氣通常達到每莫耳烴原 料0.5-2莫耳氫氣。 如先前所提及,吸熱之環烷烴重組反應可發生在第一反 應區中,並因此第一反應區之出口溫度通常低於第一反應 區之入口溫度且通常為316-454°C (600-850T)。第一反應 區通常占所有反應區中之總催化劑體積之5%_50〇/〇且更通 常占10%-3 0%。因此,第一反應區中之液體每小時空間速 度(LHSV)以第一反應區中之催化劑體積計通常為0.2-200 小時1,較佳為2-100小時-1且更佳為5-40小時-1。將催化劑 126304.doc -24- 200835784 粒子自第-反應區中收回且通至第二反應區。該等粒子通 常具有低於以催化劑之重量計2 wt_%之焦炭含量。 可在一般熟習重組技術者所熟知之類型之加熱器(諸如 燃氣、燃油或燃氣與燃油混合式加熱器)中加熱第一反應 區排出流。該加熱器可藉由輻射及/或對流熱傳遞加熱第 一反應區排出流。較佳地,在輻射區中(最佳僅在輻射區 而不在對流區中)加熱第一反應區排出物。烴流可經由口形 或倒置U形管進入及退出輻射區之頂部或較低部位。或 者,烴流可進入輻射區中温度為最低之頂部且在輻射區中 溫度為最熱之底部退出,或相反地,在底部進入且在頂部 退出。較佳地,對於該加熱器及任何後續加熱器而言,烴 流進入輻射區之頂部且退出其底部。適於重組方法之商用 燃燒式加熱器通常具有個別輻射熱傳遞區域(對於個別加 熱器而言)及可藉由來自輻射區之廢氣加熱的共同對流熱 傳遞區域。因此’該加熱器可被視為第二加熱器,其中該 或該專對流區作為第一加熱器。 第一反應區排出流在通常為482-560°C (90(M040T)之溫 度下離開第二加熱器。考慮到熱量損失,該加熱器出口溫 度通常大於第二反應區之入口溫度不超過5它(1〇下)且較 佳不超過1 °C (2°F)。因此,第二反應區之入口溫度通常為 482-560°C (900-1040T),較佳為 527-549°C (980_1020°F)且The outer screen and the inner screen may be cylindrical, but they may take on any suitable shape, such as a triangle, square, rectangle or diamond, depending on a number of design, manufacturing, and technical considerations. For example, a common outer screen is not a continuous cylindrical screen, but instead a configuration of a separate elliptical tubular screen (referred to as a scallop) that can be placed around the inner wall of the reaction vessel. The inner screen is typically a perforated center tube that is covered by a screen around the outer circumference. An exemplary reaction vessel having a stacked reaction zone and which can be used to practice the invention is shown in U.S. Patent Nos. 3,706,536 (Greenwood et al.) and 5,130,1,6 (Koves et al.), the teaching of which is incorporated by reference. The way of the whole 126304.doc -21· 200835784 is incorporated herein. Transfer of gravity flow catalyst particles from one reaction zone to another via a catalyst transfer conduit can be accomplished, introducing fresh or regenerated catalyst particles and recovering spent catalyst particles containing coke. In general, such recombination reactions are typically made up of one or more vm (IUPAC 8_1®) noble metals (eg, platinum, rhodium, ruthenium, and palladium) and a combination of a halogen and a porous support such as a refractory inorganic oxide. It is achieved in the presence of catalyst particles. For example, U.S. Patent No. 2,479,11 (Haensel) teaches an alumina-platinum-halogen recombination catalyst. Although the catalyst may contain a Group VI metal of -2·〇5-2·0 wt·%, a relatively inexpensive catalyst such as a metal containing ruthenium 〇5-〇·5 wt-% of Group VIII may be used. Catalyst. Preferably, the noble metal is platinum. In addition, the catalyst may contain indium and/or a lanthanide metal such as a decoration. The catalyst particles may also contain one or more Group IVA (IUPAC 14) metals of 〇〇5-〇·5 ( For example, tin, antimony, and lead, as described in U.S. Patent No. 4,929,333 (Moser et al.), U.S. Patent No. 5,128, the entire disclosure of The halogen is usually chlorine and the alumina is usually a carrier. Preferred alumina materials are ruthenium, eta and iridium alumina, of which gamma and eta alumina are generally preferred. A property related to the performance of the catalyst is the surface area of the support. Preferably, the support has a surface area of 100 500 m/g. The activity of the catalyst having a surface area below no m2/g tends to be more susceptible to adverse effects of the catalyst coke than catalysts having a higher surface area. In general, despite these Particles can be as large as 6.35 mm (1/4吋) or as small as ι·〇6 mm (1/24吋), but it is usually spherical and has a diameter of 1.6 to 3.1 mm (1/16_1/8吋). However, in a specific recombination reactor In this case, it is necessary to use catalyzed particles of 126304.doc -22-200835784 which are in a relatively narrow size range. The preferred catalyst particle diameter is 1 · 6 mm (1 / 16 leaves). The recombinant method can be carried out using a fixed catalyst bed or a moving bed reaction. The vessel and the moving bed regenerate H. In general, the regenerated catalyst particles are fed into a reaction vessel that typically includes a plurality of reaction zones and the particles are flowed through the reaction vessel by gravity. The catalyst can be withdrawn from the bottom of the reaction vessel and Delivery to a regeneration vessel. In a regeneration vessel, a multi-step regeneration process is typically used to regenerate the catalyst to restore its ability to promote recombination reactions. U.S. Patent No. 3,652,231 (Gr generation nwood et al.), No. 3,647,680 (Greenwood et al.) And 3,692,496 (Greenwood et al.) describe a catalyst regeneration vessel suitable for use in a recombinant process. The catalyst can be passed through gravity through each regeneration step and subsequently from a regeneration vessel. Retrieved and delivered to the reaction vessel. Typically, s ' & is used to supplement the fresh catalyst to the process and is used to reclaim the spent catalyst in the process. The movement of the catalyst via the reaction and regeneration vessel is generally referred to as continuous However, in practice it is semi-continuous. Semi-continuous movement means to transfer a relatively small amount of catalyst at a time close to the interval. For example, one batch can be withdrawn from the bottom of the reaction vessel every twenty minutes and The recovery can take up to 5 minutes, ie the catalyst can flow for 5 minutes. If the catalyst inventory in the vessel is relatively large compared to the batch size, the catalyst bed in the vessel can be considered to be continuously moving. A moving bed system can have the advantage of continuous manufacturing while removing or replacing the catalyst. Typically, the rate at which the catalyst moves through the catalyst bed can range from as little as 45.5 kg per hour to 2,727 kg per hour or more, or the reaction zone of the present invention can be recombined Operating under conditions, including 126304.doc •23- 200835784, often at atmospheric pressure 0-6895 kPa(g) (〇psi(g)-l〇00 psi(g)), especially at 276- Good results were obtained for the relatively low pressure range of 1379 kPa(g) (40-200 psi(g)). The total liquid hourly space velocity (LHSV) is usually 〇1_1 〇hd, preferably 1-5 hours·and more preferably m〇hr-1, based on the total catalyst volume in all reaction zones. The body is σ, ^ gas supply to supply the amount of hydrogen per uomo of the raw material into the recombination zone. Hydrogen is preferably supplied to supply less than 3.5 moles of hydrogen per mole of hydrocarbon feed to the reforming zone. If hydrogen is provided, it can be provided upstream of the combined feed exchanger, downstream of the combined feed exchanger, or upstream and downstream of the combined feed exchanger. Alternatively, hydrogen may be supplied to the recombination zone along with the hydrocarbon feedstock. Even if hydrogen is not supplied to the first reaction zone together with the hydrocarbon feedstock, the cycloalkane recombination reaction occurring in the first reaction zone can also produce hydrogen as a by-product. The by-product or hydrogen produced in situ is admixed with the first reaction zone effluent leaving the first reaction zone and subsequently becomes available to the second reaction zone and other downstream reaction zones. The hydrogen produced in this situ in the first reaction zone effluent typically reaches from 0.5 to 2 moles of hydrogen per mole of hydrocarbon feed. As mentioned previously, the endothermic cycloalkane recombination reaction can occur in the first reaction zone, and thus the outlet temperature of the first reaction zone is typically lower than the inlet temperature of the first reaction zone and is typically 316-454 ° C (600 -850T). The first reaction zone typically accounts for 5% _50 〇 / 〇 and more typically 10% - 30% of the total catalyst volume in all reaction zones. Therefore, the liquid hourly space velocity (LHSV) in the first reaction zone is usually from 0.2 to 200 hours 1, preferably from 2 to 100 hours - 1 and more preferably from 5 to 40, based on the volume of the catalyst in the first reaction zone. Hour -1. Catalyst 126304.doc -24- 200835784 particles are withdrawn from the first reaction zone and passed to the second reaction zone. The particles typically have a coke content of less than 2 wt% based on the weight of the catalyst. The first reaction zone effluent stream can be heated in a heater of the type well known to those skilled in the art of reorganization, such as gas, fuel or gas and fuel hybrid heaters. The heater heats the first reaction zone effluent stream by radiation and/or convective heat transfer. Preferably, the first reaction zone effluent is heated in the radiant zone (preferably only in the radiant zone and not in the convective zone). The hydrocarbon stream can enter and exit the top or lower portion of the radiant zone via a mouth or inverted U-shaped tube. Alternatively, the hydrocarbon stream may enter the lowest temperature of the radiant zone and exit at the bottom of the radiant zone where the temperature is the hottest, or conversely, enter at the bottom and exit at the top. Preferably, for the heater and any subsequent heaters, the hydrocarbon stream enters the top of the radiant zone and exits the bottom. Commercially available combustion heaters suitable for recombination processes typically have individual radiant heat transfer zones (for individual heaters) and a common convective heat transfer zone that can be heated by exhaust gases from the radiant zone. Thus the heater can be considered a second heater, wherein the or the convection zone acts as the first heater. The first reaction zone effluent stream exits the second heater at a temperature typically between 482 and 560 ° C (90 (M040 T). The heater outlet temperature is typically greater than the inlet temperature of the second reaction zone by no more than 5 in consideration of heat loss. It is preferably not more than 1 ° C (2 ° F). Therefore, the inlet temperature of the second reaction zone is usually 482-560 ° C (900-1040 T), preferably 527-549 ° C. (980_1020°F) and

最佳為532至543°C (99(M〇HTF)。第二反應區之入口溫度 通常比第一反應區之入口溫度大至少33。〇 (60°F)且可比第 一反應區入口溫度高至少56°C (l〇〇°F)或甚至至少83°C 126304.doc -25- 200835784 (15 0 F)。弟一反應區之入口溫度通常比第一反應區之入口 溫度大 33-83°C (60-150°F)且較佳 56-67°C (10(M20°F)。 重組物之C5+餾份之所需重組物辛烷通常為85_107淨研 究法辛烷值(C5+RONC)且較佳為98-107 C5+RONC。第二反 應區通常占所有反應區中之總催化劑體積之10〇/0_6〇〇/0且更 通常占15%-40%。因此,第二反應區中之液體每小時空間 速度(LHSV)以第二反應區中之催化劑體積計通常為〇17_ 100小時-1,較佳為1.7-50小時“且更佳為3.8-26.7小時-1。 弟二反應排出物可穿過第三加熱器之輕射區且在加熱後 可通至第三反應區。然而,可省去第二反應區後之一或多 個其他加熱器及/或反應器;亦即第二反應區可為該列中 之最後反應區。第三反應區通常占所有反應區中之總催化 劑體積之25%·75%且更通常占25%-50%。同樣,第三反應 區排出物可通至第四加熱器之輻射區且由此處通至第四反 應器。第四反應區通常占所有反應區中之總催化劑體積之 30%-80%且更通常占30%-50%。第三、第四及後續反應區 之入口溫度通常處於第二反應區之入口溫度之Π (2〇卞) 内0 因為發生在第二及後續(亦即第三及第四)反應區中之重 組反應常常比彼等發生在第一反應區中之重組反應產生較 少吸熱’所以發生在後來反應區中之溫降通常低於發生在 第一反應區中之溫降。因此,最後反應區之出口溫度可比 最後反應區之入口溫度低11°C (20T)或11°C以下,但當然 可能想得到會高於最後反應區之入口溫度。 126304.doc -26· 200835784 如先前所提及,在組合進料熱交換器中藉由傳遞熱量至 組合進料流來冷卻最後反應區排出流。在離開組合進料熱 交換器之後,經冷卻之最後反應器排出物通至產物回收 區。適當產物回收區為一般熟習重組技術者所已知。舉例 而言’該等產物回收設備通常包括用於自最後反應器排出 流中分離氫氣及(:1-〇3烴氣之氣-液分離器及用於自重組物 之剩餘部分中分離CU-C5輕煙之至少一部分的分顧柱。此 外’可藉由蒸餾分離出輕重組物餾份及重重組物顧份來分 離重組物。 在一替代實施例中,如下文中所論述,在第一加熱器之 轄射區中加熱第一反應器之組合進料流且第三或倒數第二 反應區排出物可在進入第四或最後反應區之前穿過至少一 個加熱器之一或多個對流區。操作條件將與上述所討論之 實施例類似。亦應瞭解,任何呈串聯形式之反應區在未由 加熱器之輻射區加熱之情況下可具有其由一或多個對流區 加熱之進料。 圖之詳細說明 該等圖說明本發明之實施例。為達成說明之目的呈現該 等圖,且該等圖並不意欲限制如申請專利範圍中所闡明之 本發明之範疇。該等圖僅展示對於理解本發明所必需之設 備及管、線,而未展示對於理解本發明所不必、需且為_般熟 習烴加工技術者所熟知之設備(諸如泵、壓縮機、熱交換 器及閥門)。 芩看圖1,以示意圖圖示一精煉設備10之實施例。該精 126304.doc -27- 200835784 煉設備10可包括一重組單元1〇〇,該重組單元又可包括一 組合進料熱交換器或熱交換器200、至少一個加熱器 210(理想地為複數個加熱器215)及一重組反應器400,該重 組反應器在本例示性實施例中為堆疊式。一般而言,重組 反應器400包括複數個呈串聯形式之重組反應區41〇,諸如 第一反應區412、第二反應區418、第三反應區424及第四 反應區430。第一反應區412可具有一入口 414及一出口 416,第二反應區418可具有一入口 420及一出口 422,第三 反應區424可具有一入口 426及一出口 428且第四反應區430 可具有一入口 432及一出口 434。儘管反應區412、418、 424及430可包括於一單個重組反應器4〇〇中,但應瞭解重 組反應器400可包括任何數目的反應區或各區可包括於一 獨立反應器中。此外,在本例示性實施例中,重組反應器 400可為一移動床反應器,其中新鮮或再生催化劑粒子可 經由管線402經一入口喷嘴404引入且廢催化劑可經由一管 線408經一出口噴嘴406退出。 複數個加熱器215可包括一第一加熱器22〇、一第二加熱 器270及一第三加熱器320。一般而言,第一加熱器22〇包 括一對流區230及一輕射區250,第二加熱器270包括一對 流區280及一輻射區300且第三加熱器32〇包括一對流區33〇 及一輻射區350。各對流區230、280及330通常分別包括至 少一個對流管234、284及334,且各輻射區250、3〇〇及35〇 通常分別包括至少一個燃燒器252及至少一個輻射管254、 至少一個燃燒器302及至少一個輻射管3〇4以及至少一個燃 126304.doc -28· 200835784 燒器352及至少一個輻射管354。各對流管234、284及334 可为別包括一入口 240及一出口 244、一入口 290及一出口 294以及一入口 340及一出口 344,且各輻射管254、3〇4及 354可分別包括一入口 260及一出口 264、一入口 31〇及一出 口 3 14以及一入口 360及一出口 364。此外,儘管僅論述重 組單元100中各區域230、250、280、300、330及350之一 管及各加熱器250、300及350之一燃燒器,但應瞭解各區 域通常可包括若干管且各加熱器可包括若干燃燒器。 在操作期間,烴流1 50可進入熱交換器2〇〇,該熱交換器 使用來自反應區4 3 0之烴流排出物16 〇加熱烴流1 5 〇。一般 而言’煙流15 0在經受重組反應之前可稱為石腦油進料 1 54。然後,石腦油進料1 54可進入一或多個對流區330、 280及230以加熱第一反應區412之進料154。理想地,石腦 油進料154連續穿過對流區330、280、230且退出對流區 230直接經由入口 414進入第一反應區412。在進入第一反 應區412之前,對流區230、280及330通常自至少一個加熱 器210轉移至少90%之熱量至石腦油進料154。理想地,自 至少一個加熱器210轉移至石腦油進料154之至少95%、 99%或甚至100%之熱量係來自對流區230、280及330。 在烴流150經受轉化反應之後,烴流15〇可經由出口 416 退出第一反應區412而經由入口 260進入輕射區250。可在 加熱器220之韓射區250中加熱烴流150。然後,烴流15〇可 經由出口 264退出以進入第二反應區418。 因此,可將烴流150在進入第一反應區412之前經由加熱 126304.doc -29- 200835784 器220之對流區230傳送且烴流15〇隨後流經之加熱器22〇之 輻射區250在該例示性實施例中對應於第二反應區418。 然後,烴流150通常經由入口 42〇進入第二反應區418且 經由出口 422退出而進入第二加熱器27〇。理想地,烴流 150進入輻射區300之入口 31〇以進行加熱用於下一反應區 424。然後,烴流150可經由出口 314退出且經由入口 426進 入第三反應區424。 在其完成之後,150可經由出口 428退出且經由入口 36〇 進入第二加熱器320之輻射區35〇以進行加熱用於第四反應 區430。烴流150可經由出口 364退出加熱器32〇以經由入口 432進入第四反應區430。然後,烴流15〇可經由出口 434作 為烴流排出物160退出以加熱熱交換器2〇〇中之石腦油進料 154 ° 本發明之其他實施例圖示於圖2_3。如圖2中所示,一重 組單元110可如上所述包括一熱交換器2〇〇及至少一個加熱 器210、(理想地)複數個加熱器215。重組單元11〇亦可包括 袓數個重組反應為440。複數個重組反應器440可較佳包括 一具有一入口 454及一出口 458之第一重組反應器45〇、一 具有一入口 464及一出口 468之第二重組反應器46〇、一具 有一入口 474及一出口 478之第三重組反應器47〇及一具有 一入口 484及一出口 488之第四重組反應器48〇。儘管各反 應器可含有一個以上反應區,但複數個反應器44〇之各重 組反應器450、460、470及4 80通常具有一單個反應區。 烴流150(較佳為石腦油進料154)可於以烴流排出物ι6〇 126304.doc -30 - 200835784 加熱之父換器200中預熱。然後,可於複數個加熱器2丨5之 對流區230、280及330中加熱石腦油進料154,其與以上相 對於流動顛倒次序使用對流區230、280及330類似。理想 地,在石腦油進料154退出加熱器320之對流區330之後, 石腦油進料154經由入口 454進入重組反應器450以進行轉 化。 然後,烴流150可經由出口 458退出重組反應器450且經 由入口 260進入加熱器220之輻射區250。接著在加熱之 後,烴流150可經由出口 264退出加熱器220且經由入口 464 進入第二重組反應器460。在其完成之後,烴流150可在經 由出口 468退出重組反應器460之前經受進一步轉化。 接著,烴流1 50可經由入口 3 10進入加熱器270進行加 熱,然後經由出口 314退出以經受進一步反應。在退出加 熱器270之後,烴流150可經由入口 474進入第三重組反應 器470以在經由出口 478退出之前進一步重組。隨後,烴流 150可經由入口 360進入加熱器320之輻射區350以便傳遞熱 量至烴流150。其完成之後,烴流1 50可經由出口 364退出 以經由入口 484進入第四重組反應器480以便在烴流150可 退出出口 488之前使烴流150反應。然後,烴流150可為用 於於熱交換器200中加熱石腦油進料154之烴流排出物 160 〇 在另一實施例中,參看圖3,一重組單元120可包括一熱 交換器200、至少一個加熱器210及複數個重組反應器 440,其如對於重組單元110所描述。除進入最後反應器 126304.doc -31- 200835784 480之烴流150係由對流區230、280及330加熱而非由第三 加熱器320之輻射區350加熱以外,烴流150之流動亦類 似。特定言之,在熱交換器2〇〇中加熱之後,進入第一反 應器45 0之烴流150可由第一加熱器22〇之輻射區25〇加熱。 其完成之後,烴流150可在分別於第二加熱器27〇之輻射區 3 00及第二加熱器320之輕射區350中加熱之後進入第二重 - 組反應器460及第三重組反應器470。接著,烴流15〇可退 攀 出第二反應器470以在進入第四或最後重組反應器480之前 分別進入加熱器220、270及320之對流區230、280及330。 然後,來自第四反應器480之烴流排出物160可於熱交換器 200中加熱石腦油進料154。 在如上所述之實施例中,希望具有低於1:1之加熱器輻 射區與反應區或反應器之比率。該比率較佳可視反應區之 數目而定為1:2、2:3、3:4或4:5。儘管在圖ι·3中將流動圖 不成連續穿過對流區,但應瞭解流動可穿過並聯之對流區 _ 且在進入(例如)串聯之第一或最後反應區之前組合。 此外,儘管對於上述實施例可使用任何溫度分布,但較 ‘使用遞升反應器入口溫度分布。一般而言,儘管不希望 又任何理4約束,但遞升溫度分布可減小複數個韓射區之 、 #負荷的差異。該經減小之差異可改良-或多個加熱器中 輻射區之標準化,藉此降低製造、安裝或整修成本。 儘管上述實施例圖示具有自身對流區之加熱器,但應瞭 解上述重組單元可包括一或多個具有i數個㈣區(共有 一共同對流區)之加熱器或加熱爐。特定言之,參看圖4, 126304.doc •32- 200835784Most preferably 532 to 543 ° C (99 (M 〇 HTF). The inlet temperature of the second reaction zone is usually at least 33 greater than the inlet temperature of the first reaction zone. 〇 (60 ° F) and comparable to the inlet temperature of the first reaction zone The height is at least 56 ° C (l ° ° F) or even at least 83 ° C 126304.doc -25- 200835784 (15 0 F). The inlet temperature of the reaction zone is usually greater than the inlet temperature of the first reaction zone 33- 83 ° C (60-150 ° F) and preferably 56-67 ° C (10 (M 20 ° F). Recombinant C5 + fraction of the desired recombinant octane is usually 85_107 net research octane number (C5 +RONC) and preferably 98-107 C5+RONC. The second reaction zone typically accounts for 10〇/0_6〇〇/0 and more typically 15%-40% of the total catalyst volume in all reaction zones. The liquid hourly space velocity (LHSV) in the second reaction zone is usually 〇17_100 hr-1, preferably 1.7-50 hrs, and more preferably 3.8-26.7 hr-1, based on the catalyst volume in the second reaction zone. The second reaction effluent may pass through the light-emitting zone of the third heater and may pass to the third reaction zone after heating. However, one or more other heaters and/or other heaters may be omitted after the second reaction zone. Reactor The second reaction zone can be the last reaction zone in the column. The third reaction zone typically comprises 25% - 75% and more typically 25% - 50% of the total catalyst volume in all reaction zones. Similarly, the third reaction zone The effluent can pass to the radiant zone of the fourth heater and pass there to the fourth reactor. The fourth reaction zone typically accounts for 30%-80% and more typically 30% of the total catalyst volume in all reaction zones. 50%. The inlet temperature of the third, fourth and subsequent reaction zones is usually within Π (2〇卞) of the inlet temperature of the second reaction zone because it occurs in the second and subsequent (ie third and fourth) reactions. The recombination reactions in the zone often produce less endotherm than the recombination reactions that occur in the first reaction zone, so the temperature drop that occurs in the subsequent reaction zone is generally lower than the temperature drop that occurs in the first reaction zone. The exit temperature of the final reaction zone may be 11 ° C (20 T) or less below the inlet temperature of the final reaction zone, but of course it may be desirable to have an inlet temperature that is higher than the final reaction zone. 126304.doc -26· 200835784 Mentioned by transferring heat in a combined feed heat exchanger The combined feed stream is cooled to cool the final reaction zone effluent stream. After exiting the combined feed heat exchanger, the cooled final reactor effluent is passed to the product recovery zone. The appropriate product recovery zone is known to those skilled in the art of recombination. For example, 'these product recovery equipment typically includes a gas-liquid separator for separating hydrogen from the final reactor effluent stream and (: 1-〇3 hydrocarbon gas and for separating the CU from the remainder of the recombination) - A column of at least a portion of the C5 light smoke. Further, the recombinant can be separated by separating the light recombinant fraction and the heavy recombinant by distillation. In an alternate embodiment, as discussed below, the combined feed stream of the first reactor is heated in the jurisdiction of the first heater and the third or penultimate reaction zone effluent can be entered in the fourth or last The reaction zone is preceded by one or more convection zones of at least one heater. The operating conditions will be similar to the embodiments discussed above. It will also be appreciated that any reaction zone in series may have its feed heated by one or more convection zones without being heated by the radiant zone of the heater. DETAILED DESCRIPTION OF THE DRAWINGS The figures illustrate embodiments of the invention. The figures are presented for purposes of illustration and are not intended to limit the scope of the invention as set forth in the appended claims. The drawings show only the equipment and tubes, lines necessary to understand the present invention, and do not show equipment (such as pumps, compressors, heat) that are not necessary, necessary, and well known to those skilled in the art of hydrocarbon processing. Exchanger and valve). Referring to Figure 1, an embodiment of a refining apparatus 10 is schematically illustrated. The refinery apparatus 10 can include a recombination unit 1 that can in turn include a combined feed heat exchanger or heat exchanger 200, at least one heater 210 (ideally plural A heater 215) and a recombination reactor 400, which in the exemplary embodiment are stacked. In general, recombination reactor 400 includes a plurality of recombination reaction zones 41 in series, such as first reaction zone 412, second reaction zone 418, third reaction zone 424, and fourth reaction zone 430. The first reaction zone 412 can have an inlet 414 and an outlet 416. The second reaction zone 418 can have an inlet 420 and an outlet 422. The third reaction zone 424 can have an inlet 426 and an outlet 428 and a fourth reaction zone 430. There may be an inlet 432 and an outlet 434. While reaction zones 412, 418, 424, and 430 can be included in a single recombination reactor, it should be understood that recombination reactor 400 can include any number of reaction zones or zones can be included in a separate reactor. Moreover, in the present exemplary embodiment, the recombination reactor 400 can be a moving bed reactor in which fresh or regenerated catalyst particles can be introduced via line 402 via an inlet nozzle 404 and spent catalyst can be passed through a line 408 through an outlet nozzle. 406 exit. The plurality of heaters 215 may include a first heater 22A, a second heater 270, and a third heater 320. In general, the first heater 22 includes a pair of flow regions 230 and a light shot region 250, the second heater 270 includes a pair of flow regions 280 and a radiation region 300, and the third heater 32 includes a pair of flow regions 33. And a radiation zone 350. Each of the convection zones 230, 280, and 330 typically includes at least one convection tube 234, 284, and 334, respectively, and each of the radiant zones 250, 3, and 35, respectively, typically includes at least one burner 252 and at least one radiant tube 254, at least one The burner 302 and the at least one radiant tube 3〇4 and at least one 126304.doc -28·200835784 burner 352 and at least one radiant tube 354. Each of the convection tubes 234, 284, and 334 may include an inlet 240 and an outlet 244, an inlet 290 and an outlet 294, and an inlet 340 and an outlet 344, and each of the radiant tubes 254, 3〇4, and 354 may include An inlet 260 and an outlet 264, an inlet 31 and an outlet 3 14 and an inlet 360 and an outlet 364. Moreover, although only one of the zones 230, 250, 280, 300, 330, and 350 and one of the heaters 250, 300, and 350 in the recombination unit 100 are discussed, it should be understood that each zone may typically include a plurality of tubes and Each heater can include several burners. During operation, hydrocarbon stream 150 can enter heat exchanger 2, which uses a hydrocarbon stream effluent 16 from reaction zone 430 to heat the hydrocarbon stream 15 〇. In general, the plume 150 may be referred to as a naphtha feed 1 54 prior to undergoing a recombination reaction. The naphtha feed 1 54 can then enter one or more convection zones 330, 280, and 230 to heat the feed 154 of the first reaction zone 412. Desirably, the naphtha feed 154 continuously passes through the convection zones 330, 280, 230 and exits the convection zone 230 directly into the first reaction zone 412 via the inlet 414. Prior to entering the first reaction zone 412, the convection zones 230, 280, and 330 typically transfer at least 90% of the heat from the at least one heater 210 to the naphtha feed 154. Desirably, at least 95%, 99%, or even 100% of the heat transferred from the at least one heater 210 to the naphtha feed 154 is from the convection zones 230, 280, and 330. After the hydrocarbon stream 150 is subjected to a conversion reaction, the hydrocarbon stream 15 exits the first reaction zone 412 via the outlet 416 and enters the light shot zone 250 via the inlet 260. The hydrocarbon stream 150 can be heated in the Korean zone 250 of the heater 220. Hydrocarbon stream 15〇 can then exit via outlet 264 to enter second reaction zone 418. Thus, the hydrocarbon stream 150 can be passed through the convection zone 230 of the heating 126304.doc -29-200835784 220 before entering the first reaction zone 412 and the hydrocarbon stream 15 〇 subsequently flows through the heater zone 22 of the heater 22 The exemplary embodiment corresponds to the second reaction zone 418. Hydrocarbon stream 150 then enters second reaction zone 418 via inlet 42 and exits via outlet 422 to enter second heater 27A. Ideally, hydrocarbon stream 150 enters inlet 31 of radiant zone 300 for heating for the next reaction zone 424. Hydrocarbon stream 150 can then exit via outlet 314 and enter third reaction zone 424 via inlet 426. After it is completed, 150 can exit via outlet 428 and enter the radiant zone 35 of second heater 320 via inlet 36 〇 for heating for fourth reaction zone 430. Hydrocarbon stream 150 can exit heater 32 via outlet 364 to enter fourth reaction zone 430 via inlet 432. The hydrocarbon stream 15 can then exit as a hydrocarbon stream effluent 160 via outlet 434 to heat the naphtha feed in heat exchanger 2 154 °. Other embodiments of the invention are illustrated in Figures 2-3. As shown in Fig. 2, a reassembly unit 110 can include a heat exchanger 2A and at least one heater 210, and (ideally) a plurality of heaters 215, as described above. The recombination unit 11 can also include a plurality of recombination reactions of 440. The plurality of recombination reactors 440 may preferably include a first recombination reactor 45 having an inlet 454 and an outlet 458, a second recombination reactor 46 having an inlet 464 and an outlet 468, and an inlet. 474 and a third recombination reactor 47 of an outlet 478 and a fourth recombination reactor 48 having an inlet 484 and an outlet 488. Although each reactor may contain more than one reaction zone, each of the plurality of reactors 44, 460, 470, and 480 typically have a single reaction zone. Hydrocarbon stream 150 (preferably naphtha feed 154) may be preheated in a parent exchanger 200 heated with a hydrocarbon stream discharge ι6 〇 126304.doc -30 - 200835784. The naphtha feed 154 can then be heated in the convection zones 230, 280 and 330 of the plurality of heaters 2, 5, similar to the use of the convection zones 230, 280 and 330 with respect to the flow reversal sequence. Desirably, after the naphtha feed 154 exits the convection zone 330 of the heater 320, the naphtha feed 154 enters the recombination reactor 450 via inlet 454 for conversion. Hydrocarbon stream 150 can then exit reforming reactor 450 via outlet 458 and enter radiant zone 250 of heater 220 via inlet 260. Following heating, hydrocarbon stream 150 can exit heater 220 via outlet 264 and enter second reformer reactor 460 via inlet 464. After it is completed, hydrocarbon stream 150 can undergo further conversion before exiting recombination reactor 460 via outlet 468. Next, hydrocarbon stream 150 can be heated via inlet 3 10 into heater 270 and then exited via outlet 314 to undergo further reaction. After exiting heater 270, hydrocarbon stream 150 can enter third recombination reactor 470 via inlet 474 to be further recombined prior to exit via outlet 478. Hydrocarbon stream 150 can then enter inlet radiant zone 350 of heater 320 via inlet 360 to transfer heat to hydrocarbon stream 150. After it is completed, hydrocarbon stream 150 can exit via outlet 364 to enter fourth recombination reactor 480 via inlet 484 to react hydrocarbon stream 150 before hydrocarbon stream 150 can exit outlet 488. The hydrocarbon stream 150 can then be a hydrocarbon stream effluent 160 for heating the naphtha feed 154 in the heat exchanger 200. In another embodiment, referring to FIG. 3, a recombination unit 120 can include a heat exchanger. 200. At least one heater 210 and a plurality of recombination reactors 440, as described for recombination unit 110. The flow of hydrocarbon stream 150 is similar except that hydrocarbon stream 150 entering the final reactor 126304.doc-31-200835784 480 is heated by convection zones 230, 280 and 330 rather than by radiant zone 350 of third heater 320. Specifically, after heating in the heat exchanger 2, the hydrocarbon stream 150 entering the first reactor 45 0 can be heated by the radiation zone 25 of the first heater 22. After completion, the hydrocarbon stream 150 can be passed to the second heavy-group reactor 460 and the third recombination after being heated in the radiation zone 300 of the second heater 27 and the light-emitting zone 350 of the second heater 320, respectively. Reactor 470. Next, the hydrocarbon stream 15 can be withdrawn from the second reactor 470 to enter the convection zones 230, 280 and 330 of the heaters 220, 270 and 320, respectively, before entering the fourth or final recombination reactor 480. The hydrocarbon stream effluent 160 from the fourth reactor 480 can then heat the naphtha feed 154 in the heat exchanger 200. In the embodiments described above, it is desirable to have a ratio of the heater radiation zone to the reaction zone or reactor below 1:1. Preferably, the ratio is determined to be 1:2, 2:3, 3:4 or 4:5 depending on the number of reaction zones. Although the flow pattern is not continuously passed through the convection zone in Figure ι.3, it should be understood that the flow can pass through the parallel convection zone _ and combine before entering, for example, the first or last reaction zone in series. Moreover, although any temperature profile can be used for the above embodiments, it is " using a step-up reactor inlet temperature profile. In general, although it is not desirable to have any constraints, the step-up temperature distribution can reduce the difference in the load of the plurality of Han shots. This reduced difference can improve - or standardize the radiation zones in multiple heaters, thereby reducing manufacturing, installation or refurbishment costs. Although the above embodiment illustrates a heater having its own convection zone, it should be understood that the above-described recombination unit may include one or more heaters or furnaces having i (four) zones (having a common convection zone). Specifically, see Figure 4, 126304.doc •32- 200835784

加熱器500可包括一共同對流區51〇及複數個輻射區 53〇,諸如一第一輻射區540、一第二輻射區55〇及一第三 輻射區560。共同對流區51〇通常包括若干呈平行構型 之對流官512。一般而言,各對流管512略呈u形且以其側 面加以定向。若干個管512可以一堆疊形式前後對準。亦 可對管512使用其他構型,諸如彼等上述所討論之構型。 由輻射區54G、55G及56G升起之廢氣可進人對流區51〇且退 出排出口(Stack)520。儘管僅在第一輻射區540中指示,但 通常各輻射區540、550及56〇可包括若干個呈平行構型μ 之輻射官544。一般而言,各輻射管544略呈u形且若干個 吕544以堆豐形式豎直定向且前後對準。亦可對管544使 用其他構型,諸如彼等上述所討論之構型。輻射區“Ο、 550及56G可由防火壁57〇及572所分隔且分別包括複數個燃 燒器542、552及562。使用加熱器別,烴流…可在例如 重組單元⑽中在進入第一反應區412之前進入共同對流區 51〇然後,可將該烴流在分別進入反應區418、及43〇 之刖在輻射區540、5 50及560中加熱。 無需進—步詳細描述,咸信熟習此項技術者可使用前面 之描述最大程度地制本發明。因此,前述較佳特定實施 例應僅視為例示性的’而非以任何方式限定本揭示案之其 餘部分。 ' 下列預示性實例意欲進—步說明本發明方法。本發明之 實施例之該等說明並非咅嘈由士 非^明使本發明之申請專利範圍受限 126304.doc -33· 200835784 T該:實例之特定細情。該等實例基於關於類似方法之工 程計算及實際操作經驗。 比較實例1及實例1分別描述4反應器Μ加熱器方法及4反 應器/3加熱器方法之加熱器負荷。The heater 500 can include a common convection zone 51 and a plurality of radiant zones 53A, such as a first radiant zone 540, a second radiant zone 55A, and a third radiant zone 560. The common convection zone 51〇 typically includes a number of convective officers 512 in a parallel configuration. In general, each convection tube 512 is slightly u-shaped and oriented with its sides. A number of tubes 512 can be aligned back and forth in a stacked form. Other configurations of tube 512 can also be used, such as those discussed above. The exhaust gas raised by the radiation zones 54G, 55G, and 56G can enter the convection zone 51 and exit the stack 520. Although indicated only in the first radiant zone 540, typically each radiant zone 540, 550, and 56A can include a plurality of radiant 544 in a parallel configuration. In general, each radiant tube 544 is slightly u-shaped and a plurality of 544 are vertically oriented in a stack form and aligned back and forth. Other configurations may also be used for tube 544, such as those discussed above. The radiant zones "Ο, 550 and 56G may be separated by fire walls 57 and 572 and respectively include a plurality of burners 542, 552 and 562. Using a heater, the hydrocarbon stream ... may enter the first reaction, for example, in the recombination unit (10) The zone 412 enters the common convection zone 51. The hydrocarbon stream can then be heated in the radiant zones 540, 550 and 560 after entering the reaction zone 418 and 43 分别, respectively, without further detailed description. The present invention may be made to the extent possible by the above description. The foregoing preferred embodiments are to be considered as merely illustrative and not limiting in any way. The method of the present invention is intended to be described in detail. The description of the embodiments of the present invention is not limited to the scope of the patent application of the present invention. 126304.doc -33·200835784 T: The specific details of the example These examples are based on engineering calculations and practical experience with respect to similar methods. Comparative Example 1 and Example 1 describe the heater load of the 4 reactor helium heater method and the 4 reactor/3 heater method, respectively.

在比較實例!中,各反應器之入口溫度相等且使用且有 多個輻射加熱器單元之燃燒加熱器加熱進料及反應器排出 物。i先基於對流區與輻射區之間的負荷分配及可在對流 區中用於製程加熱之貞荷估算可詩進料加熱之燃燒加熱 盗對流區中的最大製程負荷。下文給出當反應器入口溫度 相等且為548〇c (1019T)時各加熱器單元之下列製程負荷 或熱量吸收需求。 只例1使用-對流區替代__輻射加熱器單元。其藉由降 低加熱器出口溫度(在此情況下為反應器Κ 口溫度)來實 現。在該實例中,僅使用由輻射加熱器單元所共用之對流 區之-部分來加熱第一反應器之進料(如表2中所示),而使 用其餘部分來產生蒸汽。㈣持第二輻射加熱器單元出口 溫度較低以便降低第二加熱器單元中之負荷需求。 該等方法為利用連續再生之移動床方法,其各自以相同 進料速率重级原料。在所有方法中lhsv、氫氣與煙之莫 耳比、反應器壓力、催化劑、c5+R〇nc、催化劑分布及催 化劑循環速度各自皆相同。 在以下表2中,將比較實例1之數據與來自實例1之數據 進行對比。 表2 126304.doc -34· 200835784 (Q,以每秒千焦耳及每小時百萬btu為單位) 比較實例1 實例1 Δ 燃燒Q,千焦/秒(mm btu/小時) __ 77,199 (263.63) 64,185(219.19) -17% 輻射區Q,千焦/秒(mm btu/小時) __ 45,588(155.68) 37,213 (127.08) -18% 加工對流Q,千焦/秒(mm btu/小時)____ 0 7,581 (25.89) 1號加熱器入口溫度,。C (°F) ____ 478 (893) 477(891) 1號加熱器Q,千焦/秒(mm btu/小時) 10?29〇 (35.15) 加熱器1入口溫度,°C (°F) ___ 548(1,019) 529 (985) 2號加熱器Q,千焦/秒(mm btu/小時) 15,890(54.27) 15,560 (53.12) 反應器2入口溫度,。c (°F) 548 (!?019) 542 (1,008) 3號加熱器Q,千焦/秒(mm btu/小時) 10,560 (36.06) 12,370 (42.23) 反應器3入口溫度,。C (°F) 548 (1,019) 554(1,030) 4號加熱器Q,千焦/秒(mm btu/小時) 7,816 (26.69) 9?289 (31.72) 反應器4入口溫度,°C (°F) 548 (1,019) 554(1,030) 反應器4出口溫度,。c (°F) ^ 510 (950) 509 (948) 加工總Q,千焦/秒(mm btu/小時) 44,557 (152.16) 44,803 (153.0) HP蒸汽對流Q,千焦/秒(mm btu/小時) 24,840 (84.82) 12,690 (43.33) T煙道出口,。C (°F) 162 (324) 194 (381) 總燃料效率,% 91.2 89.7 所有溫度為設計溫度,其通常比實際預測操作溫度大 16°C (28°F)。對於預測之催化劑活性降低,該偏差可允許 少許誤差限。 根據本發明之實例具有12,400千焦/秒(42.36 mm btu/小 時)之輻射區平均熱負荷同時無偏標準差為3,133千焦/秒 (10.70 mm btu/小時),而以4個輻射單元加熱進料之比較實 例1具有11,14〇千焦/秒(38.04 mm btu/小時)之平均熱負荷 且無偏標準差為3,400千焦/秒(ιι·61 mm btu/小時)。此 外,實例1中之負荷範圍為6,267千焦/秒(21.40 mm btu/小 時)且比較實例1中之負荷範圍為8,〇76千焦/秒(27.58 mm btu/小時)。 比較實例1之總燃料燃燒需求在58%輻射效率下為77,199 126304.doc -35· 200835784 千焦/秒(263.63 mm btu/小時)且可藉由對流區中之製程回 收28%之熱f。可針對製程加熱估算對流區之可用負荷。 若除去第一輻射加熱器單元,則可用對流區負荷為: (54·27+36·06+26·69)/0·58*(1·0_58)*〇·28=23·7 腿 btu/小時或6,940千焦 /秒。 若除去第四輻射加熱器單元,則可用對流區負荷為: (35.15+54.27+36.06)/0.5811-0.58)18^4 麵 btu/小時或 7,· 一般而言,該比較實例中之相等反應器入口溫度設計不 足以給出可在反應器中以相同量之催化劑負載替換加熱器 單元之一者的足夠對流區負荷。然而,在不增加反應器中 之催化劑負載的情況下,有可能藉由降低輻射區效率且增 加橋牆溫度或使反應器入口溫度偏斜而除去加熱器單元。 一般而言,降低輻射區效率及橋牆溫度並不有效,為此使 反應器入口溫度偏斜以改變各加熱器單元之熱量吸收需求 通常較為具燃料及成本效益。 如以上所討論,實例1以一對流區替代第一輻射加熱器 單元。使反應器入口溫度偏斜至529/542/554/554°C (985/1008/1030/1030°F)。此有助於平衡不同加熱器單元之 其餘輻射區負荷。 在實例1中,對於進料加熱而言估算對流區中之可用負 荷。 (53·12+42·23+31·72)/0·58*(1-0·58)*0_28=25·8 mmbtu/小時或7,560千焦/秒。 因此,有可能使輻射區效率略微降低至58%以下或另外 使反應器入口溫度略微降低以除去第一輻射加熱器單元。 因此,藉由除去第一輻射加熱器單元使預期燃料燃燒由 126304.doc -36- 200835784 77,199千焦/秒(263·63匪Mu/小時)降低至64,⑻千焦,秒 (21^9_btu/小時),其可導致設備投資及燃料之明顯節 約。 在加熱器負荷範圍内此降低使加熱器尺寸之標準化成為 可能,藉此降低購買及/或安裝重組單元中之該設備的成 • 以上貝例說明,對流區可用於加熱反應器(較佳為呈串 聯形式之第一或最後反應器)之進料。此在以上實例中可 藉由適當調節第一反應器之入口溫度來實現。另一可能為 支曰加用於製程加熱之對流區可用負荷以降低輻射區效率且 使用較鬲橋牆溫度,不過在一些情況下此可能性通常被視 為較不理想。另一可能為添加足夠催化劑至反應區中以便 降低負荷需求從而使以至少一個對流區替代一或多個輻射 區成為可能。 無需進一步詳細描述,咸信熟習此項技術者可使用前面 • 之描述最大程度地利用本發明。除非另有所述,否則所有 伤數及百分數皆以重量計。所有引用之申請案、專利及公 開案之全部揭示内容據此以引入的方式併入本文中。 - 根據上文描述,熟習此項技術者可易於確定本發明之基 本特徵且在不背離本發明之精神及範疇之情況下可對本發 明作出各種變化及修改以使其適合於各種用途及條件。 【圖式簡單說明】 圖1為本發明之包括一重組單元之例示性精煉設備的示 意性圖示。 126304.doc -37- 200835784 圖2為本發明之另一例示性重組單元之示意性圖示。 圖3為本發明之又一例示性重組單元之示意性圖示。 圖4為本發明之具有一共同對流區及複數個輻射區之例 示性加熱器的示意性雙重橫截面圖。 【主要元件符號說明】In the comparative example!, the inlet temperatures of the reactors were equal and the combustion heaters used and having multiple radiant heater units heat the feed and reactor effluent. i is based on the load distribution between the convection zone and the radiant zone and the charge that can be used for process heating in the convection zone to estimate the maximum process load in the turbulent zone. The following process load or heat absorption requirements for each heater unit are given when the reactor inlet temperatures are equal and 548 〇 c (1019 T). Only Example 1 uses a convection zone instead of the _ radiant heater unit. This is achieved by lowering the heater outlet temperature (in this case the reactor port temperature). In this example, only the portion of the convection zone shared by the radiant heater unit is used to heat the feed to the first reactor (as shown in Table 2), while the remainder is used to generate steam. (4) Holding the second radiant heater unit outlet temperature is lower in order to reduce the load demand in the second heater unit. These methods are moving bed processes utilizing continuous regeneration, each of which regrades the feedstock at the same feed rate. In all methods, lhsv, hydrogen to smoke molar ratio, reactor pressure, catalyst, c5+R〇nc, catalyst distribution, and catalyst circulation rate were all the same. In Table 2 below, the data of Comparative Example 1 was compared with the data from Example 1. Table 2 126304.doc -34· 200835784 (Q, in kilojoules per second and millions of btu per hour) Comparative Example 1 Example 1 Δ Burning Q, kilojoules per second (mm btu/hour) __ 77,199 (263.63) 64,185 (219.19) -17% Radiation zone Q, kJ/s (mm btu/hour) __ 45,588 (155.68) 37,213 (127.08) -18% Processing convection Q, kJ/s (mm btu/hour) ____ 0 7,581 (25.89) Heater inlet temperature No. 1. C (°F) ____ 478 (893) 477 (891) Heater No. 1 Q, kJ/s (mm btu/hour) 10?29〇 (35.15) Heater 1 inlet temperature, °C (°F) ___ 548 (1,019) 529 (985) Heater No. 2 Q, kilojoules per second (mm btu/hour) 15,890 (54.27) 15,560 (53.12) Reactor 2 inlet temperature. c (°F) 548 (!?019) 542 (1,008) Heater No. 3 Q, kJ/s (mm btu/hour) 10,560 (36.06) 12,370 (42.23) Reactor 3 inlet temperature. C (°F) 548 (1,019) 554 (1,030) Heater No. 4 Q, kJ/s (mm btu/hour) 7,816 (26.69) 9?289 (31.72) Reactor 4 inlet temperature, ° C (°F) 548 (1,019) 554 (1,030) Reactor 4 outlet temperature,. c (°F) ^ 510 (950) 509 (948) Total processing Q, kJ/s (mm btu/hour) 44,557 (152.16) 44,803 (153.0) HP steam convection Q, kJ/s (mm btu/hour) 24,840 (84.82) 12,690 (43.33) T flue exit,. C (°F) 162 (324) 194 (381) Total Fuel Efficiency, % 91.2 89.7 All temperatures are design temperatures, which are typically 16°C (28°F) greater than the actual predicted operating temperature. This deviation allows for a small margin of error for the predicted decrease in catalyst activity. An example according to the invention has an average thermal load of 12,400 kJ/s (42.36 mm btu/hr) in the radiation zone with an unbiased standard deviation of 3,133 kJ/s (10.70 mm btu/hour) and 4 radiations. Comparative Example 1 of unit heating feed had an average heat load of 11,14 〇 kJ/sec (38.04 mm btu/hr) and an unbiased standard deviation of 3,400 kJ/sec (ιι·61 mm btu/hr). Further, the load range in Example 1 was 6,267 kJ/s (21.40 mm btu/hour) and the load range in Comparative Example 1 was 8, 〇76 kJ/sec (27.58 mm btu/hour). The total fuel combustion requirement of Comparative Example 1 was 77,199 126304.doc -35·200835784 kJ/sec (263.63 mm btu/hr) at 58% radiation efficiency and 28% heat was recovered by the process in the convection zone. f. The available load in the convection zone can be estimated for process heating. If the first radiant heater unit is removed, the available convection zone load is: (54·27+36·06+26·69)/0·58*(1·0_58)*〇·28=23·7 leg btu/ Hours or 6,940 kJ/s. If the fourth radiant heater unit is removed, the available convection zone load is: (35.15 + 54.27 + 36.06) / 0.5811 - 0.58) 18 ^ 4 faces btu / hour or 7, in general, the equivalent reaction in this comparative example The inlet temperature of the inlet is not designed to give sufficient convection load to replace one of the heater units with the same amount of catalyst load in the reactor. However, without increasing the catalyst loading in the reactor, it is possible to remove the heater unit by reducing the efficiency of the radiant zone and increasing the bridge wall temperature or skewing the reactor inlet temperature. In general, reducing the efficiency of the radiant zone and the temperature of the bridge wall are not effective. For this reason, it is generally more fuel efficient and cost effective to skew the reactor inlet temperature to change the heat absorption requirements of each heater unit. As discussed above, Example 1 replaced the first radiant heater unit with a pair of flow zones. The reactor inlet temperature was deflected to 529/542/554/554 °C (985/1008/1030/1030 °F). This helps to balance the remaining radiant area loads of the different heater units. In Example 1, the available load in the convection zone was estimated for feed heating. (53·12+42·23+31·72)/0·58*(1-0·58)*0_28=25·8 mmbtu/hour or 7,560 kJ/sec. Therefore, it is possible to slightly reduce the radiation zone efficiency to below 58% or otherwise slightly lower the reactor inlet temperature to remove the first radiant heater unit. Therefore, by removing the first radiant heater unit, the expected fuel combustion is reduced from 126304.doc -36 - 200835784 77, 199 kJ / sec (263 · 63 匪 Mu / hr) to 64, (8) kJ, seconds (21 ^9_btu/hour), which can result in significant savings in equipment investment and fuel. This reduction in heater load range enables standardization of the heater size, thereby reducing the cost of purchasing and/or installing the apparatus in the recombination unit. The convection zone can be used to heat the reactor (preferably The feed of the first or last reactor in series. This can be achieved in the above examples by appropriately adjusting the inlet temperature of the first reactor. Another possibility is that the convection zone used for process heating can be used to reduce the efficiency of the radiant zone and use a lower bridge wall temperature, although in some cases this possibility is generally considered to be less than ideal. Another possibility is to add sufficient catalyst to the reaction zone in order to reduce the load demand so that it is possible to replace one or more radiation zones with at least one convection zone. Without further elaboration, it will be apparent to those skilled in the art that the invention can All injuries and percentages are by weight unless otherwise stated. The entire disclosures of all of the cited applications, patents and publications are hereby incorporated herein by reference. The various features and modifications of the present invention are susceptible to various modifications and alternatives to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an exemplary refining apparatus including a recombination unit of the present invention. 126304.doc -37- 200835784 Figure 2 is a schematic illustration of another exemplary recombination unit of the present invention. Figure 3 is a schematic illustration of yet another exemplary recombination unit of the present invention. Figure 4 is a schematic double cross-sectional view of an exemplary heater having a common convection zone and a plurality of radiant zones of the present invention. [Main component symbol description]

10 精煉設備 100 重組單元 110 重組單元 120 重組單元 150 烴流 154 石腦油進料 160 烴流排出物 200 熱交換器 210 加熱器 215 加熱器 220 加熱器 230 對流區 234 對流管 240 入口 244 出口 250 幸S射區 252 燃燒器 254 輻射管 260 入口 126304.doc -38 - 20083578410 Refining equipment 100 Recombining unit 110 Recombining unit 120 Recombining unit 150 Hydrocarbon stream 154 Naphtha feed 160 Hydrocarbon stream effluent 200 Heat exchanger 210 Heater 215 Heater 220 Heater 230 Convection zone 234 Convection tube 240 Inlet 244 Outlet 250 Fortunately, S-field 252 burner 254 radiant tube 260 inlet 126304.doc -38 - 200835784

264 出σ 270 第二加熱器 280 對流區 284 對流管 290 入口 294 出σ 300 幸昌射區 302 燃燒器 304 輻射管 310 入口 314 出口 320 第三加熱器 330 對流區 334 對流管 340 入口 344 出π 350 幸畜射區 352 燃燒器 354 輻射管 360 入口 364 出σ 400 重組反應器 402 管線 404 入口噴嘴 126304.doc -39- 200835784264 out σ 270 second heater 280 convection zone 284 convection tube 290 inlet 294 out σ 300 幸昌射区 302 burner 304 radiant tube 310 inlet 314 outlet 320 third heater 330 convection zone 334 convection pipe 340 inlet 344 out π 350 Fortunately, the blasting area 352 burner 354 radiant tube 360 inlet 364 out σ 400 recombination reactor 402 line 404 inlet nozzle 126304.doc -39- 200835784

406 出口噴嘴 408 管線 410 重組反應區 412 第一反應區 414 入口 416 出α 418 第二反應區 420 入口 422 出口 424 第三反應區 426 入口 428 出口 430 第四反應區 432 入口 434 出口 440 重組反應器 450 第一反應器 454 入口 458 出α 460 第二重組反應器 464 入口 468 出口 470 第三重組反應器 474 入口 126304.doc -40 200835784406 outlet nozzle 408 line 410 recombination reaction zone 412 first reaction zone 414 inlet 416 out a 418 second reaction zone 420 inlet 422 outlet 424 third reaction zone 426 inlet 428 outlet 430 fourth reaction zone 432 inlet 434 outlet 440 recombination reactor 450 First reactor 454 inlet 458 out α 460 second recombination reactor 464 inlet 468 outlet 470 third recombination reactor 474 inlet 126304.doc -40 200835784

478 出π 480 第四重組反應器 484 入口 488 出口 500 加熱器 510 共同對流區 512 對流管 514 平行構型 520 排出口 530 輻射區 540 第一輻射區 542 燃燒器 544 輻射管 546 平行構型 550 第二輻射區 552 燃燒器 560 第三輻射區 562 燃燒器 570 防火壁 572 防火壁 126304.doc -41 -478 out π 480 fourth recombination reactor 484 inlet 488 outlet 500 heater 510 common convection zone 512 convection tube 514 parallel configuration 520 discharge port 530 radiation zone 540 first radiation zone 542 burner 544 radiant tube 546 parallel configuration 550 Second radiation zone 552 burner 560 third radiation zone 562 burner 570 fire wall 572 fire wall 126304.doc -41 -

Claims (1)

200835784 十、申請專利範圍: 1 · 一種方法,其包含: ⑷將-烴流傳送通過-重組單元,其中該重組單元包 含: ⑴一加熱器,其包含一對流區及一輻射區,及 (η)複數個重組反應區,其中將該烴流在該對流區中 加熱以便在該烴流所傳送到之該等重組反應區之一者 中反應,且將該烴流在該加熱器之該輻射區中加熱以 便在該烴流所傳送到之另一重組反應區中反應。 2.如請求項丨之方法,其中該重組單元之該加熱器進一步 包含一燃燒器。 3·如印求項1之方法,其中將該烴流傳送通過該重組單元 進一步包含: 3個加熱器;及 4個重組反應器,其中各重組反應器包含該複數個重 組反應區之一者;且進一步包含: 在進入該等重組反應器之一者之前將該烴流傳送通 過該等加熱器之至少一個對流區;及 將該烴流傳送通過其他重組反應器中之各者,其中 將該烴流在對應於該等其他重組反應器之一者的該等 加熱器之一者之輻射區中加熱。 4·如1求項3之方法,其中傳送該烴流進一步包含串聯之 該等重組反應器,且第一或最後重組反應器接收經傳送 通過邊等加熱器之至少一個對流區的該烴流。 126304.doc 200835784 5.如請求項4之方法’其令傳送該烴流進一步包含各加孰 =有-輻射區及—對流區或共有—共同對流區,且在 、:第4該取後重組反應||接收該烴流之前將該煙流傳 送通過各加熱器之該對流區或該共同對流區。 6’如 '求項4之方法’其中傳送該烴流進一步包含將該烴 抓傳:通過一熱交換器,以在傳送通過該至少一個對流 區之前接收來自該串聯之該最後重組反應器之烴流排: 物的熱量。200835784 X. Patent application scope: 1 · A method comprising: (4) transferring a hydrocarbon stream through a recombination unit, wherein the recombination unit comprises: (1) a heater comprising a pair of flow regions and a radiation region, and (η a plurality of recombination reaction zones, wherein the hydrocarbon stream is heated in the convection zone for reaction in one of the recombination reaction zones to which the hydrocarbon stream is passed, and the radiation of the hydrocarbon stream in the heater The zone is heated to react in another recombination reaction zone to which the hydrocarbon stream is passed. 2. The method of claim 1, wherein the heater of the recombination unit further comprises a burner. 3. The method of claim 1, wherein the transporting the hydrocarbon stream through the recombination unit further comprises: 3 heaters; and 4 recombination reactors, wherein each recombination reactor comprises one of the plurality of recombination reaction zones And further comprising: passing the hydrocarbon stream through at least one convection zone of the heater prior to entering one of the recombination reactors; and passing the hydrocarbon stream through each of the other recombination reactors, wherein The hydrocarbon stream is heated in a radiant zone of one of the heaters corresponding to one of the other recombination reactors. 4. The method of claim 3, wherein the transferring the hydrocarbon stream further comprises the recombination reactors connected in series, and the first or last recombination reactor receives the hydrocarbon stream passing through at least one convection zone of a heater such as a side . 126304.doc 200835784 5. The method of claim 4, wherein the transporting the hydrocarbon stream further comprises a respective enthalpy = a-radiation zone and a convection zone or a common-common convection zone, and wherein: The reaction stream is passed through the convection zone or the common convection zone of each heater prior to receiving the hydrocarbon stream. 6' The method of claim 4, wherein the transferring the hydrocarbon stream further comprises: capturing the hydrocarbon: passing through a heat exchanger to receive the final recombination reactor from the series prior to passing through the at least one convection zone Hydrocarbon flow: The heat of the material. 7. 如請求们之方法,其中傳送該烴流進一步包含該對流 區包含若干個呈平行構型之對流管且該輻射區包含若干 個呈平行構型之輻射管。 8. 如請,項i之方法,其中至少9〇%之自該加熱器轉移至進 =該等重組反應區之—者之該烴流的熱量係來自該加熱 器之對流區。7. The method of claimant wherein transferring the hydrocarbon stream further comprises the convection zone comprising a plurality of convection tubes in a parallel configuration and the radiant zone comprising a plurality of radiant tubes in a parallel configuration. 8. The method of item i, wherein at least 9% of the heat from the heater is transferred to the recombination reaction zone is from the convection zone of the heater. 9·種由一精煉設備及一石化製造設備中之至少一 的設備,其包含: 者組成 (勾一重組單元,該重組單元包含: (1)至少一個加熱器,該加熱器包含一對流區及一輻 射區,該對流區包含至少—個具有_人口及—出口之 對机官且該輻射區包含一燃燒器及至少一個具有一入 口及一出口之輻射管;及 (…複數個串聯重組反應區,其中各反應區具有一入 及出口,其中一第一反應區入口係用於接收來自 該對流管之該出口的烴流,且一第二反應區入口係用 126304.doc 200835784 於接收來自該輻射管之該出口的該烴流。 10·如請求項9之設備,其中該重組單元進一步包含: 3個加熱器;及 4個串聯重組反應器,其中各重組反應器包含該複數 個反應區中之一重組反應區。9. A device comprising at least one of a refining device and a petrochemical manufacturing device, comprising: a component (a recombination unit comprising: (1) at least one heater, the heater comprising a pair of flow zones And a radiant zone, the convection zone comprising at least one pair having a population and an outlet, the radiant zone comprising a burner and at least one radiant tube having an inlet and an outlet; and (...the plurality of series recombination a reaction zone, wherein each reaction zone has an inlet and an outlet, wherein a first reaction zone inlet is used to receive the hydrocarbon stream from the outlet of the convection tube, and a second reaction zone inlet is received by 126304.doc 200835784 The hydrocarbon stream from the outlet of the radiant tube. The apparatus of claim 9, wherein the recombining unit further comprises: 3 heaters; and 4 series recombination reactors, wherein each recombination reactor comprises the plurality of recombination reactors One of the reaction zones is a recombination reaction zone. 126304.doc126304.doc
TW096142135A 2006-11-09 2007-11-07 A process for heating a hydrocarbon stream entering a reaction zone with a heater convection section TW200835784A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/558,262 US20080110801A1 (en) 2006-11-09 2006-11-09 Process For Heating A Hydrocarbon Stream Entering A Reaction Zone With A Heater Convection Section

Publications (1)

Publication Number Publication Date
TW200835784A true TW200835784A (en) 2008-09-01

Family

ID=39368174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096142135A TW200835784A (en) 2006-11-09 2007-11-07 A process for heating a hydrocarbon stream entering a reaction zone with a heater convection section

Country Status (4)

Country Link
US (1) US20080110801A1 (en)
AR (1) AR063617A1 (en)
TW (1) TW200835784A (en)
WO (1) WO2008060848A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0619835D0 (en) * 2006-10-06 2006-11-15 Univ Bath Apparatus and process for use in three-phase catalytic reactions
US8858783B2 (en) * 2009-09-22 2014-10-14 Neo-Petro, Llc Hydrocarbon synthesizer
US9206358B2 (en) * 2013-03-29 2015-12-08 Uop Llc Methods and apparatuses for heating hydrocarbon streams for processing
US9327259B2 (en) * 2013-04-26 2016-05-03 Uop Llc Apparatuses and methods for reforming of hydrocarbons
US9914881B2 (en) * 2014-12-04 2018-03-13 Uop Llc Process for improved vacuum separations with high vaporization
ES2964743T3 (en) 2015-11-30 2024-04-09 Uop Llc Stacked combustion heating device
WO2017196621A1 (en) 2016-05-13 2017-11-16 Uop Llc Reforming process with improved heater integration
US10920624B2 (en) * 2018-06-27 2021-02-16 Uop Llc Energy-recovery turbines for gas streams

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940355A (en) * 1930-10-10 1933-12-19 Bailey Meter Co Furnace control
US2270863A (en) * 1938-10-24 1942-01-27 Universal Oil Prod Co Heating of fluids
US2625917A (en) * 1950-11-16 1953-01-20 Universal Oil Prod Co Fluid heating apparatus
US2809922A (en) * 1952-03-21 1957-10-15 Union Oil Co Catalytic conversion process and apparatus with improved temperature control of the reaction
US2946736A (en) * 1957-03-29 1960-07-26 Standard Oil Co Combination process for high-octane naphtha production
US3018244A (en) * 1958-12-18 1962-01-23 Kellogg M W Co Combined isomerization and reforming process
US3011965A (en) * 1959-03-02 1961-12-05 Sinclair Refining Co Temperature stabilization in a multiple bed catalytic reforming system
US3392107A (en) * 1966-01-05 1968-07-09 Sinclair Research Inc Process for reforming naphthene and paraffin containing hydrocarbons in the naphtha boiling point range in several stages to obtain a high octane gasoline
NL7016985A (en) * 1970-11-19 1972-05-24
US3998188A (en) * 1971-04-13 1976-12-21 Beverley Chemical Engineering Company, Ltd. Heater for heating a fluid
US3760168A (en) * 1971-05-24 1973-09-18 Universal Oil Prod Co Reaction zone control
US3785955A (en) * 1971-12-01 1974-01-15 Universal Oil Prod Co Gasoline production process
BE792747A (en) * 1971-12-14 1973-03-30 Metallgesellschaft Ag HYDROGENATION PROCESS AND CATALYST, APPLICABLE IN PARTICULAR TO OBTAINING VERY PURE AROMATIC PRODUCTS
US3761392A (en) * 1972-05-08 1973-09-25 Sun Oil Co Pennsylvania Upgrading wide range gasoline stocks
US3925503A (en) * 1975-02-06 1975-12-09 Grace W R & Co Isomerization of normal paraffins with hydrogen mordenite containing platinum and palladium
US4072601A (en) * 1976-06-14 1978-02-07 Antar Petroles De L'atlantique Process and apparatus for performing endothermic catalytic reactions
US4119526A (en) * 1977-05-09 1978-10-10 Uop Inc. Multiple-stage hydrocarbon conversion with gravity-flowing catalyst particles
US4343958A (en) * 1978-01-03 1982-08-10 Uop Inc. Hydrocarbon isomerization process
US4162212A (en) * 1978-08-30 1979-07-24 Chevron Research Company Combination process for octane upgrading the low-octane C5 -C6 component of a gasoline pool
US4181599A (en) * 1978-10-23 1980-01-01 Chevron Research Company Naphtha processing including reforming, isomerization and cracking over a ZSM-5-type catalyst
US4441988A (en) * 1979-05-30 1984-04-10 Irvine Robert L Catalytic reformer process
US4324649A (en) * 1980-07-08 1982-04-13 Pullman Incorporated Fired process heater
US4315893A (en) * 1980-12-17 1982-02-16 Foster Wheeler Energy Corporation Reformer employing finned heat pipes
US4325806A (en) * 1981-01-05 1982-04-20 Uop Inc. Multiple stage hydrocarbon conversion with gravity flowing catalyst particles
US4409095A (en) * 1981-01-05 1983-10-11 Uop Inc. Catalytic reforming process
US4325807A (en) * 1981-01-05 1982-04-20 Uop Inc. Multiple stage hydrocarbon conversion with gravity flowing catalyst particles
US4454839A (en) * 1982-08-02 1984-06-19 Exxon Research & Engineering Co. Furnace
US4457832A (en) * 1983-01-19 1984-07-03 Chevron Research Company Combination catalytic reforming-isomerization process for upgrading naphtha
US4431522A (en) * 1983-03-09 1984-02-14 Uop Inc. Catalytic reforming process
US4494485A (en) * 1983-11-22 1985-01-22 Gas Research Institute Fired heater
US4665273A (en) * 1986-02-14 1987-05-12 Uop Inc. Isomerization of high sulfur content naphthas
US4665272A (en) * 1985-09-03 1987-05-12 Uop Inc. Catalytic composition for the isomerization of paraffinic hydrocarbons
FR2602784B1 (en) * 1986-04-16 1988-11-04 Inst Francais Du Petrole COMBINED HYDROREFORMING AND HYDROISOMERIZATION PROCESS
JP2835851B2 (en) * 1989-06-23 1998-12-14 ヤマハ発動機株式会社 Reformer for fuel cell
US4996387A (en) * 1989-07-20 1991-02-26 Phillips Petroleum Company Dehydrogenation process
US4986222A (en) * 1989-08-28 1991-01-22 Amoco Corporation Furnace for oil refineries and petrochemical plants
FR2657273B1 (en) * 1990-01-19 1992-05-15 Inst Francais Du Petrole REACTIONAL ENCLOSURE COMPRISING A CALANDERED REACTOR AND MEANS FOR STRATIFYING THE CURRENT OF A HEAT FLUID.
US5110478A (en) * 1990-06-05 1992-05-05 Mobil Oil Corp. Catalytic conversion over membrane composed of a pure molecular sieve
US5091075A (en) * 1990-07-06 1992-02-25 Uop Reforming process with improved vertical heat exchangers
US5256277A (en) * 1991-07-24 1993-10-26 Mobil Oil Corporation Paraffin isomerization process utilizing a catalyst comprising a mesoporous crystalline material
US5243122A (en) * 1991-12-30 1993-09-07 Phillips Petroleum Company Dehydrogenation process control
US5792338A (en) * 1994-02-14 1998-08-11 Uop BTX from naphtha without extraction
DE19600684A1 (en) * 1995-02-17 1996-08-22 Linde Ag Hydrocarbon splitting method and device
US5658453A (en) * 1995-05-30 1997-08-19 Uop Integrated aromatization/trace-olefin-reduction scheme
US6348512B1 (en) * 1995-12-29 2002-02-19 Pmd Holdings Corp. Medium density chlorinated polyvinyl chloride foam and process for preparing
US5879537A (en) * 1996-08-23 1999-03-09 Uop Llc Hydrocarbon conversion process using staggered bypassing of reaction zones
US5976354A (en) * 1997-08-19 1999-11-02 Shell Oil Company Integrated lube oil hydrorefining process
US6106696A (en) * 1997-12-16 2000-08-22 Uop Llc Moving bed reforming process without heating between the combined feed exchanger and the lead reactor
US6284128B1 (en) * 1999-09-02 2001-09-04 Uop Llc Reforming with selective reformate olefin saturation
KR20020077458A (en) * 2000-02-22 2002-10-11 엑손모빌 케미칼 패턴츠 인코포레이티드 Process for producing para-xylene
FR2806073B1 (en) * 2000-03-07 2002-06-07 Air Liquide PROCESS FOR PRODUCING CARBON MONOXIDE BY REVERSE RETROCONVERSION WITH AN ADAPTED CATALYST
US6732795B2 (en) * 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6441263B1 (en) * 2000-07-07 2002-08-27 Chevrontexaco Corporation Ethylene manufacture by use of molecular redistribution on feedstock C3-5 components
US6423279B1 (en) * 2000-10-16 2002-07-23 Harvest Energy Technology, Inc. Compact endothermic catalytic reaction apparatus
FR2815955B1 (en) * 2000-10-31 2002-12-13 Inst Francais Du Petrole PROCESS FOR ENDOTHERMIC CONVERSION OF HYDROCARBONS, USES THEREOF AND INSTALLATION FOR CARRYING OUT SAID METHOD
ES2405587T3 (en) * 2002-09-26 2013-05-31 Haldor Topsoe A/S Procedure and apparatus for the preparation of synthesis gas
US7204966B2 (en) * 2002-11-08 2007-04-17 Ashutosh Garg Method and apparatus for improved fired heaters
US6910878B2 (en) * 2003-06-19 2005-06-28 Praxair Technology, Inc. Oxy-fuel fired process heaters

Also Published As

Publication number Publication date
WO2008060848A3 (en) 2008-07-31
WO2008060848A2 (en) 2008-05-22
AR063617A1 (en) 2009-02-04
US20080110801A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
TWI410486B (en) A process for heating a stream for a hydrocarbon conversion process
RU2489474C2 (en) Flame heater for implementation of hydrocarbon conversion process
TW200835784A (en) A process for heating a hydrocarbon stream entering a reaction zone with a heater convection section
US10384186B2 (en) Fired heater apparatus and method of selecting an apparatus arrangement
US4409095A (en) Catalytic reforming process
US9327259B2 (en) Apparatuses and methods for reforming of hydrocarbons
US6106696A (en) Moving bed reforming process without heating between the combined feed exchanger and the lead reactor
US5186909A (en) Reaction chamber comprising a calender reactor and means for bedding the flow of a heat-carrying fluid
TW200848501A (en) Hydrocarbon conversion process including a staggered-bypass reaction system
US11084994B2 (en) Reforming process with improved heater integration
CN105073955B (en) Method and apparatus for heating hydrocarbon flow to process
US4431522A (en) Catalytic reforming process
CN108473878B (en) Catalyst staging in catalytic reaction processes
US10041012B2 (en) Staggered fired heater manifolds
EP0134335B1 (en) A catalytic reforming process
JPS6049087A (en) Catalytic reformation
FI77886B (en) CATALYTIC REFORMERINGSFOERFARANDE.