TW200835169A - Decoder for performing error correction decoding by repetition decoding method - Google Patents

Decoder for performing error correction decoding by repetition decoding method Download PDF

Info

Publication number
TW200835169A
TW200835169A TW96147799A TW96147799A TW200835169A TW 200835169 A TW200835169 A TW 200835169A TW 96147799 A TW96147799 A TW 96147799A TW 96147799 A TW96147799 A TW 96147799A TW 200835169 A TW200835169 A TW 200835169A
Authority
TW
Taiwan
Prior art keywords
bit
decoding
decoder
data
error correction
Prior art date
Application number
TW96147799A
Other languages
Chinese (zh)
Inventor
Masahiko Onishi
Takashi Maehata
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006338844A external-priority patent/JP2008153874A/en
Priority claimed from JP2007194361A external-priority patent/JP2009033393A/en
Priority claimed from JP2007202750A external-priority patent/JP5056247B2/en
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW200835169A publication Critical patent/TW200835169A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • H04L1/0051Stopping criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Abstract

A decoder (5) performs an error correction decoding to encoding data X(n) transmitted to a communication path in order to obtain decoded data. This decoder (5) is provided with a decoding processor (7) for performing the error correction decoding of the encoding data X(n) by a repetition decoding method which repeats decoding computation, and a frequency determining portion (12) for determining a repeated frequency based on a transmission characteristic of the communication path.

Description

200835169 九、發明說明: 【發明所屬之技術領域】 本發明係關於藉重複解碼法執行錯誤訂正解碼之解碼 器等。 【先前技術】 在構築資料之通信系統的情況,要求高速通信、低耗 電力、高通信品質(低位元錯誤率)等。檢測接收碼之錯誤 並進行訂正的錯誤訂正技術,作爲滿足這些要求之一種技 φ 術,廣爲利用在無線、有線以及記錄系統等。 近年來’作爲此錯誤g了正技術之一,低密度同位檢查[Technical Field] The present invention relates to a decoder or the like which performs error correction decoding by a repeated decoding method. [Prior Art] In the case of a communication system in which data is constructed, high-speed communication, low power consumption, high communication quality (low bit error rate), and the like are required. An error correction technique for detecting an error in a received code and performing correction is widely used as a technique for satisfying these requirements in wireless, cable, and recording systems. In recent years, as one of the mistakes, one of the positive technologies, low-density parity check

(LDPC: Low-Density Parity-Check)碼和 SUm-pr〇duct 解碼法 受到注目。在 S.Y.Chiing et al·,“ 〇n the Design of Low-Density Parity-Check Codes within 0.0045dB of the Shannon Limit ’’ ,IEEE COMMUNICATIONSThe (LDPC: Low-Density Parity-Check) code and the SUm-pr〇duct decoding method have attracted attention. At S.Y.Chiing et al., "〇n the Design of Low-Density Parity-Check Codes within 0.0045dB of the Shannon Limit ’, IEEE COMMUNICATIONS

LETTERS,VOL.5,No2.Feb.2001,ρρ·58-60(非專利文獻 1)討論 利用此LDPC碼之解碼操作。在此非專利文獻1,表示利用 編碼率1/2之非規則LDPC碼至白色高斯通信路線的 Shannon界限爲止可得到0.004 dB解碼特性。非規則LD PC 碼表示同位檢查陣列之列加權(在列,1成立的數)及行加權 (在行,1成立的數)不是固定的碼。列加權及行加權在各列 及各行固定的LDPC碼稱爲規則LDPC碼。 又,sum-product解碼法因爲藉並列處理執行解碼處 理,所以可使碼長度變長,而且可提高處理性能。 在此非專利文獻1,雖然表不根據sum-product解碼法 200835169 將LDPC碼進行解碼之數學演算法,但是關於具體地進行 此龐大之計算的電路構造卻無任何表示。 E. Y e 〇 e t al., VLSI Architectures for Iterative Decoders in Magnetic Recording Channels” ,IEEE Trans. OnLETTERS, VOL. 5, No. 2. Feb. 2001, ρρ·58-60 (Non-Patent Document 1) discusses the decoding operation using this LDPC code. Non-Patent Document 1 shows that a 0.004 dB decoding characteristic can be obtained by using an irregular LDPC code of a coding rate of 1/2 to a Shannon limit of a white Gaussian communication path. The irregular LD PC code represents the column weighting of the parity check array (the number in the column, 1 holds) and the row weight (the number in the row, 1 holds) is not a fixed code. Column weighting and row weighting LDPC codes fixed in columns and rows are called regular LDPC codes. Further, since the sum-product decoding method performs the decoding process by the parallel processing, the code length can be lengthened and the processing performance can be improved. In this non-patent document 1, although the mathematical algorithm for decoding the LDPC code according to the sum-product decoding method 200835169 is not shown, the circuit configuration for specifically performing such a large calculation is not shown. E. Y e 〇 e t al., VLSI Architectures for Iterative Decoders in Magnetic Recording Channels” , IEEE Trans. On

Magnetics,V〇L·37,No2·March·2001,pp·748-7 5 5 (非專利文獻 2)檢討LDPC碼之解碼裝置的電路構造。在此非專利文獻Magnetics, V〇L.37, No. 2, March, 2001, pp. 748-7 5 5 (Non-Patent Document 2) The circuit configuration of the decoding device for reviewing the LDPC code. Non-patent literature

2,根據接收系列並根據基於格子(trellis)之MAP(最大事後 機率)演算法,即BCIR演算法,計算資訊記號之事後機率。 在此trellis對各狀態計算前方向及後方向之重複,再根據 這些前方向及後方向的重複値,求得事後機率。在此計算 式,使用加法/比較/選擇/加法裝置計算。在LDPC碼之計 算,以根據s u m - p r 〇 d u c t解碼法,產生檢查陣列,並利用來 自相異之檢查節點的値,算出推測値之方式構成電路。 又,在和田山正,「關於低密度同位檢查碼和其解碼法」, 信學技報,MR200 1 -83,200 1年12月(非專利文獻3),解說在 對數區域之min_sum解碼法。在此非專利文獻3,表示若依 據m i η - s u m解碼法,僅加法、最小、正負之判定以及正負 符號的乘法之4種基本運算可組裝根據Gallager的f函數 之處理,並可簡化組裝時的電路構造。 在非專利文獻 3 及 Haotian Zhang et al. “The Design2. Calculate the probability of the information token based on the received series and based on the trellis-based MAP (Maximum After Incident) algorithm, the BCIR algorithm. In this trellis, the front and rear directions of each state are calculated, and then the repetition rate of these front and rear directions is used to obtain the probability of the event. In this calculation, the calculation is performed using the addition/comparison/selection/addition means. In the calculation of the LDPC code, an inspection array is generated according to the s u m - p r 〇 d u c t decoding method, and the circuit of the inspection node is calculated by using the 値 of the check node from the difference. In addition, in the field of the low-density parity check code and its decoding method, the letter technology bulletin, MR200 1-83, December, 2001 (Non-Patent Document 3), explains the min_sum decoding method in the logarithmic region. Non-Patent Document 3 shows that, according to the mi η - sum decoding method, only four basic operations of addition, minimum, positive and negative, and multiplication of positive and negative signs can be assembled according to Gallager's f function, and assembly can be simplified. Circuit construction. In Non-Patent Document 3 and Haotian Zhang et al. “The Design

Structured Regular LDPC Codes With Large Girth” , IEEE Globecom 2003,pp.4022-4027(非專利文獻 4)所記載之 s u m - p r o d u c t解碼法及m i η - s u m解碼法,根據從接收信號所 200835169 計算之對數可能性比,重複地執行列處理及行處理的解碼 運算,藉此進行錯誤訂正。在列處理,使用同位檢查陣列 更新外部値對數比α,而在行處理,根據此外部値對數比 α算出記號之事前値對數比/3。 進行這種LDPC碼之錯誤訂正解碼的解碼裝置,揭示Structured Regular LDPC Codes With Large Girth", IEEE Globecom 2003, pp. 4022-4027 (Non-Patent Document 4), sum-product decoding method and mi η-sum decoding method, based on the logarithm of the received signal from 200835169 Sex ratio, repeatedly performing the decoding operation of the column processing and the row processing, thereby performing error correction. In the column processing, the external parity log ratio α is updated using the parity check array, and in the row processing, the token is calculated based on the external logarithm ratio α The logarithmic ratio /3 before the transaction. The decoding device for performing the error correction decoding of the LDPC code reveals

於特開2005 — 269535號公報(專利文獻1)。在專利文獻1 所記載之解碼裝置,反複地重複進行列處理及行處理之運 算處理。而,當列處理及行處理之重複次數達到既定値時, 列處理及行處理的反複結束。 可是’在sum-product解碼法及min- sum解碼法等,如 上述所示,在解碼運算使用從接收信號(編碼資料)所計算 的對數可能性比。在將接收信號進行多値調變的情況,在 計算對數可能性比之方法,有如下者。 首先,如定義般,有正確地計算對數可能性比的方法 (習知方式1)。在此方式1,對全部的星座點計算接收信號 和各星座點的距離。 又,在秋江優介等,「關於LDPC編碼ΜΙΜΟ空間多重 通信方式之構造的檢討」,信學技報,MW2004-239,2005年3 月(非專利文獻5),記載一種方法(習知方式2),其僅對於 位於以接收信號爲中心之超球內的附近之星座點,計算和 接收信號的距離,藉此計算對數可能性比之近似値。 又,在和田山正,「低密度同位檢查碼和其解碼 法」,(株)TRICAPS,ISBN4 -8 865 7-222-7C305 5,2002 年 6 月 5 200835169 日(非專利文獻6),記載一種方法(習知方式3),其藉由計 算接收信號和成爲候選之一個星座點的距離,而計算對數 可能性比之近似値,並根據後段之錯誤訂正解碼的結果, 重新選擇候選點,再重複地計算對數可能性比之近似値。 專利文獻1 :特開2005 — 2695 35號公報 非專利文獻 1 : S.Y.Chung et al.,“On the Design of Low-Density Parity-Check Codes within 0.0045dB of theJapanese Patent Publication No. 2005-269535 (Patent Document 1). In the decoding device described in Patent Document 1, the arithmetic processing of the column processing and the line processing is repeatedly repeated. On the other hand, when the number of repetitions of the column processing and the row processing reaches a predetermined level, the column processing and the line processing are repeatedly ended. However, as described above, in the sum-product decoding method and the min-sum decoding method, the logarithmic probability ratio calculated from the received signal (encoded data) is used in the decoding operation. In the case of multi-turn modulation of the received signal, there are the following methods for calculating the logarithmic probability ratio. First, as defined, there is a method of correctly calculating the log likelihood ratio (conventional method 1). In this mode 1, the distance between the received signal and each constellation point is calculated for all constellation points. In addition, in the review of the structure of the LDPC coded space multi-communication method, the scholastic technique, MW2004-239, March 2005 (Non-Patent Document 5), describes a method (known method 2) ), which calculates and receives the distance of the signal only for the constellation points located in the vicinity of the hypersphere centered on the received signal, thereby calculating the log likelihood ratio 値. In addition, in the case of the "Low-density parity check code and its decoding method", TRICAPS, ISBN 4 -8 865 7-222-7C305 5, June 5, 2008, 200835169 (Non-Patent Document 6), A method (known method 3), which calculates a log likelihood ratio by calculating a distance between a received signal and a constellation point that is a candidate, and reselects the candidate point according to the result of the error correction decoding in the subsequent stage. The log likelihood ratio is also calculated repeatedly. Patent Document 1: JP-A-2005-2695 35 Non-Patent Document 1: S.Y. Chung et al., "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the

Shannon Limit ” ,IEEE COMMUNICATIONSShannon Limit ” , IEEE COMMUNICATIONS

LETTERS,V〇L. 5,No2. Feb. 200 1,pp. 5 8-60 非專利文獻 2: E.Yeo et al·,“VLSI Architectures for Iterative Decoders in Magnetic Recording Channels” ,ΙΕΕΕ Trans.On Magnetics,VOL.37,No2.March.2001,pp.748-755 非專利文獻3 :和田山正,「關於低密度同位檢查碼和 其解碼法」,信學技報,MR2001 -83,2001年12月 非專利文獻 4: Haotian Zhang et al. “The DesignLETTERS, V〇L. 5, No2. Feb. 200 1, pp. 5 8-60 Non-Patent Document 2: E.Yeo et al., "VLSI Architectures for Iterative Decoders in Magnetic Recording Channels", ΙΕΕΕ Trans.On Magnetics , VOL.37, No2.March.2001, pp.748-755 Non-Patent Document 3: Wadayama Masahiro, "About Low Density Parity Check Codes and Their Decoding Methods", Xin Xue Technical Journal, MR2001-83, 2001 12 Non-Patent Document 4: Haotian Zhang et al. “The Design

Structured Regular LDPC Codes With Large Girth" ,ΙΕΕΕ Globecom 2003 ,pp.4022-4027 非專利文獻5 :秋江優介等,「關於LDPC編碼ΜΙΜΟ 空間多重通信方式之構造的檢討」,信學技 報,MW2004-239,2005 年 3 月 非專利文獻6 :和田山正,「低密度同位檢查碼和其解 碼法」,(株)TRICAPS,ISBN4-88657-222-7C3055,2002 年 6 月 200835169 【發明內容】 〔發明要解決之課題〕 可是’在該專利文獻1及非專利文獻丨〜6,未考慮適 當地設定作爲反複結束條件的反複次數。 在此,解碼器之反複次數係應設定成可確實地進行解 碼。一般’在重複解碼法的情況,重複次數愈多解碼特性 變成愈佳。從該觀點,將成爲反複結束條件之反複次數設 成大値較佳。Structured Regular LDPC Codes With Large Girth" ,ΙΕΕΕ Globecom 2003, pp.4022-4027 Non-Patent Document 5: Qiujiang Yousuke et al., “Review on the Structure of LDPC Coding ΜΙΜΟ Space Multiple Communication Method”, Xin Xue Technical Journal, MW2004-239 , March 2005 Non-Patent Document 6: Hetian Shanzheng, "Low Density Parity Check Code and Its Decoding Method", TRICAPS, ISBN 4-88657-222-7C3055, June 2002 200835169 [Invention] [Invention [Problems to be Solved] However, in Patent Document 1 and Non-Patent Documents 丨 to 6, it is not considered to appropriately set the number of repetitions as the repeated termination condition. Here, the number of repetitions of the decoder should be set to be reliably decoded. In general, in the case of repeated decoding, the more the number of repetitions, the better the decoding characteristics become. From this point of view, it is preferable to set the number of iterations of the repeated end condition to be larger.

另一方面,將成爲反複結束條件之反複次數設成過大 値時,進行不必要的解碼處理之無益的重複,而發生等待 時間(延遲)或不必要的耗電力。 不過’將成爲反複結束條件之反複次數設成過小値 時,無法得到必要的解碼特性。 因此,若將某反複次數固定裝入解碼器,就發生反複 次數變成過大或過小的情況。結果,無法確實地進行解碼, 或者發生等待時間(延遲)或不必要的耗電力。 因而,本發明之第1目的在於提供一種新的技術,其 使得可用以任意地調整解碼運算之反複次數等的反複結束 條件。 又,在上述之用以計算對數可能性比的習知方式1〜3, 具有如下所示之問題。 首先,在習知方式1,需要對全部的星座點計算指數 及對數,計算量變得龐大。尤其,隨著星座點的個數增加, 200835169 而計算量爆炸性地增加。 在習知方式2,和習知方式1 一樣,需要計算指數及 對數。在習知方式2,和習知方式1相異,雖然僅對於附 近之星座點計算即可,但是爲了找到附近的星座點,必須 調查各星座點是否被超球所包含,計算量還是變得龐大。 又’在習知方式3,雖然僅對候選之一個星座點計算 即可’但是因爲近似係粗糙,後段之錯誤訂正處理的精度 差。因而,需要對數可能性比的反複計算,計算量還是變 得龐大。 因而,本發明之第2目的在於提供一種新的技術,其 使得以少的計算量可得到解碼運算所使用之對數可能性 比。 〔解決課題之方式〕 本發明之某形態係一種解碼器,其對通信路線所傳送 之編碼資料進行錯誤訂正解碼,而得到解碼資料,該解碼 器具備有:解碼處理部,係藉反複地進行解碼運算之重複 解碼法而進行編碼資料的錯誤訂正解碼;及次數決定部, 係根據通信路線之傳送特性而決定解碼運算的反複次數。 若依據該解碼器,因爲次數決定部可根據通信路線之 傳送特性而決定解碼處理部解碼運算的反複次數,所以可 因應於通信路線的狀況而調整解碼運算之反複次數。因 而,可預防因反複次數太少而無法進行既定品質的解碼, 或因反複次數太多而發生等待時間或不必要的耗電力,而 -10- 200835169 可高效率地藉重複解碼法進行錯誤訂正解碼。 最好,通信路線之傳送特性係編碼資料的雜訊特性, 次數決定部係根據使用編碼資料所包含之指引信號而算出 之編碼資料的雜訊特性,決定解碼運算之反複次數。 此外,編碼資料的雜訊特性只要係以數量評估在通信 路線所混入的雜訊之指標即可,例如,當然包含有信號雜On the other hand, when the number of repetitions of the repeated end condition is set to be too large, unnecessary decoding processing is performed unnecessarily, and waiting time (delay) or unnecessary power consumption occurs. However, when the number of repetitions of the repeated termination condition is set to be too small, the necessary decoding characteristics cannot be obtained. Therefore, if a certain number of repetitions is fixedly loaded into the decoder, the number of repetitions becomes too large or too small. As a result, decoding cannot be performed surely, or waiting time (delay) or unnecessary power consumption occurs. Accordingly, a first object of the present invention is to provide a new technique which makes it possible to arbitrarily adjust a repetition end condition such as the number of repetitions of a decoding operation. Moreover, the conventional methods 1 to 3 for calculating the log likelihood ratio described above have the following problems. First, in the conventional method 1, it is necessary to calculate an index and a logarithm for all constellation points, and the amount of calculation becomes enormous. In particular, as the number of constellation points increases, 200835169 and the amount of calculation increases explosively. In the conventional mode 2, as in the conventional mode 1, the index and the logarithm need to be calculated. In the conventional method 2, it is different from the conventional method 1, although it is only necessary to calculate the nearby constellation points, but in order to find the nearby constellation points, it is necessary to investigate whether the constellation points are included by the hypersphere, and the calculation amount becomes huge. Further, in the conventional method 3, although only one candidate constellation point is calculated, 'because the approximation is rough, the accuracy of the error correction processing in the latter stage is poor. Therefore, it is necessary to repeatedly calculate the logarithmic probability ratio, and the amount of calculation is still large. Accordingly, a second object of the present invention is to provide a new technique which makes it possible to obtain a logarithmic probability ratio used for decoding operations with a small amount of calculation. [Means for Solving the Problem] A certain aspect of the present invention is a decoder that performs error correction decoding on encoded data transmitted by a communication path to obtain decoded data, and the decoder includes a decoding processing unit that repeatedly performs The error decoding method of the decoding operation performs error correction decoding of the coded data; and the number determining unit determines the number of repetitions of the decoding operation based on the transmission characteristics of the communication path. According to the decoder, the number determining unit can determine the number of iterations of the decoding operation by the decoding processing unit based on the transmission characteristics of the communication path. Therefore, the number of repetitions of the decoding operation can be adjusted in accordance with the state of the communication route. Therefore, it is possible to prevent the decoding of a predetermined quality from being too small due to the number of repetitions, or the waiting time or unnecessary power consumption due to too many repetitions, and -10- 200835169 can efficiently perform error correction by repeated decoding. decoding. Preferably, the transmission characteristic of the communication route is a noise characteristic of the coded data, and the number determination unit determines the number of repetitions of the decoding operation based on the noise characteristic of the coded data calculated using the guidance signal included in the coded data. In addition, the noise characteristics of the encoded data can be evaluated by the number of noises mixed in the communication route, for example, of course, including signal miscellaneous

訊比(SNR),亦包含有雜訊功率或雜訊量。若依據該解碼 益’因爲使用該編碼資料所包含之指引fg號而算出係用以 決定解碼運算之反複次數的參數之編碼資料的雜訊特性, 所以在解碼器內可獨立地求得用以決定反複次數的雜訊特 性,組裝係簡單。 最好,又具備有輸入埠,其用以從外部輸入解碼資料 之錯誤特性;通信路線的傳送特性係輸入埠所輸入之解碼 資料的錯誤特性;次數決定部係根據解碼資料之錯誤特 性,而決定解碼運算的反複次數。 若依據此構造,編碼資料的雜訊特性係從進行解碼前 之編碼資料所得到的,即使僅根據此雜訊特性決定解碼運 算之反複次數,亦可解決無法將解碼結果進行回授的問題。 此外,解碼資料的錯誤特性只要係以數量評估解碼資 料所包含之錯誤的指標即可,例如,當然包含有錯誤率, 亦包含有解碼資料所包含的錯誤量。 - 最好,又具備有輸入埠,其用以從外部輸入解碼資料 之錯誤特性;通信路線的傳送特性係編碼資料的雜訊特性 -11- 200835169 和輸入埠所輸入之解碼資料的錯誤特性;次數決定部係選 擇根據編碼資料的雜訊特性而特定之解碼運算的反複次 數,和根據解碼資料之錯誤特性而特定之解碼運算的反複 次數之中比較多的反複次數。 若依據此構造,因爲次數決定部選擇該比較多的反複 次數,所以不會僅根據一方之參數的變動而釘住解碼運算. 之反複次數,而可保持解碼品質。The signal ratio (SNR) also includes noise power or noise. According to the decoding benefit, since the noise characteristic of the coded data of the parameter used to determine the number of repetitions of the decoding operation is calculated using the index fg number included in the coded data, it can be independently determined in the decoder. The noise characteristics of the number of repetitions are determined, and the assembly system is simple. Preferably, there is an input port for inputting an error characteristic of the decoded data from the outside; a transmission characteristic of the communication route is an error characteristic of the decoded data input by the input; and the number determining unit is based on the error characteristic of the decoded data. Determine the number of iterations of the decoding operation. According to this configuration, the noise characteristic of the encoded data is obtained from the encoded data before decoding, and even if the number of iterations of the decoding operation is determined only based on the noise characteristics, the problem that the decoding result cannot be fed back can be solved. In addition, the error characteristics of the decoded data may be evaluated by the number of errors included in the decoded data. For example, the error rate is included, and the error amount included in the decoded data is also included. - Preferably, there is an input port for inputting the error characteristics of the decoded data from the outside; the transmission characteristic of the communication route is the noise characteristic of the encoded data of the encoded data -11-200835169 and the error characteristics of the decoded data input by the input port; The number determining unit selects the number of repetitions of the decoding operation specified by the noise characteristic of the encoded data, and the number of repetitions of the number of repetitions of the decoding operation specified by the error characteristic of the decoded data. According to this configuration, since the number determining unit selects the relatively many iterations, the number of iterations of the decoding operation is not pinned only by the change of one parameter, and the decoding quality can be maintained.

又,本發明係一種接收裝置,其接收通信路線所傳送 之編碼資料並進行解碼,該接收裝置具備有:解調器,係 將所接收之編碼資料進行數位解調;及該解碼器,係將已 解調之編碼資料的數位信號進行解碼。 又,本發明係一種編碼資料之解碼方法,其對通信路 線所傳送之編碼資料,藉重複解碼法進行錯誤訂正解碼, 而得到解碼資料,該解碼方法包含有:決定步驟,係根據 通信路線之傳送特性而決定解碼運算的反複次數;及進行 步驟,係根據所決定之反複次數,而藉重複解碼法進行錯 誤訂正解碼。 又,本發明係一種通信系統,其具備有向通信路線傳 送編碼資料的傳送裝置、和接收所傳送之編碼資料並進行 解碼的接收裝置,而接收裝置具有解碼器,其對所接收之 編碼資料執行重複解碼法,而得到解碼資料;接收裝置係 根據通信路線之傳送特性而決定解碼運算的反複次數後, 藉重複解碼法進行錯誤訂正解碼。 -12- 200835169 若依據該接收裝置、解碼方法以及通信系統’因爲根 據通信路線之傳送特性而決定解碼運算的反複次數後’藉 重複解碼法進行錯誤訂正解碼,所以可因應於通信路線的 狀況而調整解碼運算之反複次數。因而’可預防因反複次 數太少而無法進行既定品質的解碼’或因反複次數太多而 發生等待時間或不必要的耗電力,而可高效率地藉重複解 碼法進行錯誤訂正解碼。Furthermore, the present invention is a receiving apparatus that receives and decodes encoded data transmitted by a communication path, the receiving apparatus including: a demodulator for digitally demodulating the received encoded data; and the decoder The digital signal of the demodulated encoded data is decoded. Furthermore, the present invention is a decoding method for encoding data, which performs error correction decoding on the encoded data transmitted by the communication route by using a repeated decoding method to obtain decoded data, and the decoding method includes: a determining step, which is based on a communication route. The number of repetitions of the decoding operation is determined by the transmission characteristic; and the step of performing the error correction decoding by the repeated decoding method is performed based on the determined number of repetitions. Furthermore, the present invention is a communication system including a transmitting device that transmits encoded data to a communication path, and a receiving device that receives and transmits the transmitted encoded data, and the receiving device has a decoder that receives the encoded data. The decoding method is performed to obtain the decoded data, and the receiving device determines the number of iterations of the decoding operation based on the transmission characteristics of the communication path, and then performs error correction decoding by the repeated decoding method. -12- 200835169 According to the receiving device, the decoding method, and the communication system, since the number of iterations of the decoding operation is determined according to the transmission characteristics of the communication route, the error correction decoding is performed by the repeated decoding method, so that it can be adapted to the situation of the communication route. Adjust the number of iterations of the decoding operation. Therefore, it is possible to prevent the decoding of a predetermined quality from being performed due to too few repetitions, or to wait for a waiting time or unnecessary power consumption due to too many repetitions, and to efficiently perform error correction decoding by the repeated decoding method.

又,本發明係一種解碼器,其對通信路線所傳送之編 碼資料進行錯誤訂正解碼,而得到解碼資料,具備有:解 碼處理部,係藉反複地進行解碼運算之重複解碼法而進行 編碼資料的錯誤訂正解碼;判定部,係判定藉解碼處理部 之解碼運算的反複之結束;以及結束條件輸入埠’係用以 從解碼器之外部受理反複結束條件,判定部係根據從結束 條件輸入埠所輸入之反複結束條件,而判定藉解碼處理部 之解碼運算的反複之結束。 若依據該解碼器,因爲可從結束條件輸入埠由解碼器 的外部受理反複結束條件,所以可任意地調整反複結束條 件。 又,本發明之解碼系統,具備有:解碼器,係對通信 路線所傳送之編碼·資料進行錯誤訂正解碼,而得到解碼資 料;及反複結束條件設定部,係和解碼器進行外部連接; 而解碼器包含有:解碼處理部,係藉反複地進行解碼運算 之重複解碼法而進行編碼資料的錯誤訂正解碼;判定部, -13- 200835169 係判定藉解碼處理部之解碼運算的反複之結束;以及結束 條件輸入璋,係用以從解碼器之外部受理反複結束條件’ 反複結束條件設定部係以將已調整之反複結束條件供給解 碼器的結束條件輸入璋之方式構成,判定部係根據從結束 條件輸入埠所輸入之反複結束條件,而判定藉解碼處理部 之解碼運算的反複之結束。 若依據此構造,可根據反複結束條件設定部所設定之 反複結束條件,使解碼器反複地進行解碼運算。Furthermore, the present invention is a decoder that performs error correction decoding on encoded data transmitted by a communication path to obtain decoded data, and includes a decoding processing unit that performs encoded data by repeatedly performing decoding processing by repeated decoding. The error correction decoding is performed; the determination unit determines that the repetition of the decoding operation by the decoding processing unit is completed; and the termination condition input is used to receive the repeated termination condition from the outside of the decoder, and the determination unit is input based on the termination condition. The repeated end condition is input, and the end of the repetition of the decoding operation by the decoding processing unit is determined. According to this decoder, since the repetition end condition can be accepted from the outside of the decoder from the end condition input, the repeated end condition can be arbitrarily adjusted. Further, the decoding system of the present invention includes: a decoder that performs error correction decoding on the code and data transmitted by the communication path to obtain decoded data; and a repetition end condition setting unit that externally connects to the decoder; The decoder includes: a decoding processing unit that performs error correction decoding of the encoded data by repeating the decoding method of the decoding operation; and a determination unit, -13-200835169 determines the end of the repetition of the decoding operation by the decoding processing unit; And the end condition input 璋 is configured to receive the iterative end condition from the outside of the decoder. The repeating end condition setting unit is configured to input the adjusted end condition to the end condition of the decoder, and the determining unit is based on the The end condition is input to the repeated end condition input, and the end of the repetition of the decoding operation by the decoding processing unit is determined. According to this configuration, the decoder can repeatedly perform the decoding operation based on the iterative end condition set by the iteration completion condition setting unit.

又,本發明係一種接收裝置,其可經由通信路線接收 編碼資料,具備有解碼器,其對編碼資料進行錯誤訂正解 碼,而得到解碼資料,解碼器具備有:解碼處理部,係藉 反複地進行解碼運算之重複解碼法而進行編碼資料的錯誤 訂正解碼;判定部,係判定藉解碼處理部之解碼運算的反 複之結束;以及結束條件輸入埠,係用以從解碼器之外部 受理反複結束條件;判定部係根據從結束條件輸入埠所輸 入之反複結束條件,而判定藉解碼處理部之解碼運算的反 複之結束,接收裝置又具備有反複結束條件抽出部,其接 收經由通信路線所傳送的反複結束條件,並將反複結束條 件供給解碼器的結束條件輸入埠。 若依據此構造,可根據從其他的通信裝置所指定的反 複結束條件,使解碼器反複地進行解碼運算。 又’本發明之傳送裝置,具備有:反複結束條件設定 部’係設定錯誤訂正解碼器將編碼資料進行解碼時之解碼 -14- 200835169 運算的反複結束條件;及傳送部,係向錯誤訂正解碼器傳 送藉反複結束條件設定部所設定之反複結束條件.。 若依據此構造,傳送裝置可指定在錯誤訂正解碼器之 反複結束條件。 最好,傳送裝置又具備有資料庫,其儲存用以決定傳 送編碼資料時之通信品質的資訊;反複結束條件設定部參 照資料庫,決定傳送編碼資料時之通信品質,並因應於該 通信品質而設定反複結束條件。Furthermore, the present invention is a receiving apparatus that can receive encoded data via a communication path, and includes a decoder that performs error correction decoding on the encoded data to obtain decoded data, and the decoder includes a decoding processing unit that repeatedly Performing a decoding decoding method to perform error correction decoding of the encoded data; the determining unit determines the end of the repetition of the decoding operation by the decoding processing unit; and the end condition input 埠 is for receiving the repeated end from the outside of the decoder. The determination unit determines that the repetition of the decoding calculation by the decoding processing unit is completed based on the repeated termination condition input from the end condition input, and the receiving device further includes a repetition end condition extraction unit that receives the transmission via the communication route. The end condition is repeated, and the end condition is supplied to the end condition of the decoder. According to this configuration, the decoder can repeatedly perform the decoding operation based on the repetition termination condition specified by the other communication device. Further, the transmission device of the present invention includes: a repeat completion condition setting unit that sets a decoding completion error when the error correction decoder decodes the encoded data - and a transmission unit that decodes the error correction The device repeats the repeated termination condition set by the repeated termination condition setting unit. According to this configuration, the transmitting device can specify an iterative end condition at the error correction decoder. Preferably, the transmitting device further has a database for storing information for determining the communication quality when transmitting the encoded data; and the repeated termination condition setting unit refers to the database to determine the communication quality when transmitting the encoded data, and responds to the communication quality. And set the repeated end condition.

若依據此構造,可參照資料庫,適當地設定反複結束 條件。 最好,傳送部係傳送包含有標題部和實際資料部的資 訊段;在標題部記述反複結束條件,在實際資料部記述根 據反複結束條件進行解碼運算之編碼資料,或用以特定根 據反複結束條件進行解碼運算之編碼資料的資訊。 又,本發明係一種通信品質調整方法,其對具有反複 地進行解碼運算之錯誤訂正解碼器的使用者側通信裝置傳 送已被編碼之資料時的通信品質,該方法具備有:設定步 驟,係設定錯誤訂正解碼器將編碼資料進行解碼時之解碼 運算的反複結束條件;及傳送步驟,係向錯誤訂正解碼器 傳送所設定之反複結束條件;設定步驟包含有因應於使·用 者所得之通信品質而設定反複結束條件的步驟。 若依據此構造,藉由使反複結束條件變成相異,而可 調整使用者可得之通信品質。 -15- 200835169 本發明之其他的形態係一種解碼器,其對通信路線所 傳送之編碼資料進行錯誤訂正解碼,而得到解碼資料,該 解碼器具備有:對數可能性比算出部,係根據將表示編碼 資料和對數可能性比之關係的理論式近似的近似式,算出 所輸入之編碼資料X的對數可能性比之近似値;及解碼處 理部’係根據對數可能性比之近似値λ i,而進行編碼資料 X之錯誤訂正解碼。According to this configuration, the repeating condition can be appropriately set by referring to the database. Preferably, the transmission unit transmits the information segment including the header portion and the actual data portion, describes the repeated termination condition in the header portion, and describes the encoded data that is decoded and decoded according to the repeated termination condition in the actual data portion, or is used to specify the repeated basis. Conditional information on the encoded data of the decoding operation. Furthermore, the present invention is a communication quality adjustment method for transmitting communication quality of a data to be encoded to a user-side communication device having an error correction decoder that repeatedly performs decoding calculation, and the method includes: a setting step Setting a repetition end condition of a decoding operation when the error correction decoder decodes the encoded data; and transmitting a step of transmitting the set repetition end condition to the error correction decoder; the setting step includes communication corresponding to the user The procedure of setting the repeated end condition for quality. According to this configuration, the communication quality available to the user can be adjusted by making the repeated end conditions different. -15- 200835169 Another aspect of the present invention is a decoder that performs error correction decoding on encoded data transmitted by a communication path to obtain decoded data, and the decoder includes a logarithmic probability ratio calculating unit according to An approximation formula representing a theoretical approximation of the relationship between the coded data and the logarithmic probability ratio, and calculating a logarithmic probability ratio of the input coded data X; and a decoding process section 'approximate 对λ i based on a log likelihood ratio , and the error correction decoding of the encoded data X is performed.

最好,近似式係編碼資料X之値愈接近判定値,愈高 精度地將理論式近似;判定値係在理論式,編碼資料X之 値係0的機率,和編碼資料X之値係1的機率變成相等之 値。 最好,近似式係將理論式在判定値進行泰勒展開的式 子。 又,本發明係一種解碼器,其對通信路線所傳送之編 碼資料進行錯誤訂正解碼,而得到解碼資料,該解碼器具 φ 備有:可能性算出部,係對於編碼資料X,根據第(A 1)式算 出對數可能性比的近似値λ i (i = 1〜L);及 λ i= - gxKiX(x - Ci) (A 1) (i = l~L) 解碼處理部,係根據對數可能性比的近似値λ i(i = l〜L),而進行編碼資料X之錯誤訂正解碼, 其中,L係編碼資料X之調變位元數,g係常數,Ki、 -16- 200835169Preferably, the approximation of the coded data X is closer to the decision 値, the more accurately the theoretical formula is approximated; the 値 is in the theoretical form, the probability of the coded data X is 0, and the coded data X is the system 1 The chances of becoming equal. Preferably, the approximation is a formula in which the theoretical formula is determined to perform Taylor expansion. Furthermore, the present invention is a decoder that performs error correction decoding on encoded data transmitted by a communication path to obtain decoded data, and the decoding device φ is provided with a likelihood calculation unit for encoding data X according to (A) 1) Calculate the approximate 値λ i (i = 1 to L) of the logarithmic probability ratio; and λ i = - gxKiX(x - Ci) (A 1) (i = l~L) The decoding processing unit is based on the logarithm The probability ratio is approximated by 値λ i(i = l~L), and the error correction decoding of the encoded data X is performed, wherein the number of modulation bits of the L-coded data X, g-system constant, Ki, -16-200835169

Ci係和編碼資料x的値、其星座點之座標以及L相依的數。 取好’編碼資料X係以灰編碼所g周變的信號。 最好’在第(A 1)式,g係常數2/ σ 2 ;解碼處理部係根 據sum-product解碼法進行錯誤訂正解碼,其中,σ 2係編 碼資料X所包含之雜訊成分的發散。 最好,在第(A 1)式,2係不和編碼資料\相依的正數; 解碼處理部係根據簡化之解碼法進行錯誤訂正解碼。Ci is the number of the data x, the coordinates of its constellation points, and the number of L-dependent. Take the coded data X to gray code the g-cycle signal. Preferably, in the (A 1)th formula, g is a constant 2/ σ 2 ; the decoding processing unit performs error correction decoding according to the sum-product decoding method, wherein σ 2 is a divergence of the noise component included in the encoded data X. . Preferably, in the (A 1)th formula, 2 is a positive number that does not depend on the encoded material, and the decoding processing unit performs error correction decoding according to the simplified decoding method.

最好’編碼資料X之星座點的座標係axp,其中,a係 〇以外的數,p係—(2"-1)以上,而且(2"—1)以下之奇數, 在第(A1)式,Ki以第(A2)式表示,Preferably, the coordinate of the constellation point of the coded data X is axp, where the number other than the a system is p, the p system is (2"-1) or more, and the odd number is below (2"-1), in the (A1) Formula, Ki is represented by the formula (A2),

,x^CM B# K.= (2gi^L) +*j—X <C丨時 K丨=一 …(Α2) |a丨 |a|,x^CM B# K.= (2gi^L) +*j—X <C丨时 K丨=一 ...(Α2) |a丨 |a|

在第(A1)式,Ci以第(A3)式表示。In the formula (A1), Ci is represented by the formula (A3).

Cj =0 ^ c; =CM +.axKi χ2α'ι+ι> .-(A3) (2^i^L) 最好,編碼資料x係以2之補數所表達的s個(S g 2) -17- 200835169 位元表示’在a爲負數的情況,可能性算出部將編碼資料 X之從最上階的第1個位元之値作爲第1個對數可能性比之 近似値λ 1的符號輸出;可能性算出部包含有第1個絕對 値計算電路,其計算編碼資料X之絕對値,並輸出第1個 對數可能性比近似値λ 1的絕對値。Cj =0 ^ c; =CM +.axKi χ2α'ι+ι> .-(A3) (2^i^L) Preferably, the coded data x is s expressed by 2's complement (S g 2 -17- 200835169 The bit indicates 'when a is a negative number, the probability calculation unit compares the coded data X from the topmost first bit to the first log likelihood ratio 値λ 1 The symbol output unit includes a first absolute 値 calculation circuit that calculates the absolute 値 of the coded data X and outputs an absolute 値 of the first log likelihood ratio 値λ 1 .

最好,編碼資料X係以2之補數所表達的s個(S 2 2) 位元表示,在a爲正數的情況,可能性算出部包含有:第 1個邏輯或電路,係將編碼資料\之從最上階的第1個位元 變成反相,並輸出第1個對數可能性比之近似値λ 1的符 號;及第1個絕對値計算電路,係計算編碼資料χ之絕對 値,並輸出第1個對數可能性比近似値λ 1的絕對値。 最好,在S ^ 3的情況,可能性算出部又包含有:第2 個邏輯或電路,係計算編碼資料χ之從最上階的第1個位 元値或其反相値和從最上階之第2個位元値的互斥邏輯 或,並輸出第2個對數可能性比之近似値λ 2的符號;及 φ 第2個絕對値計算電路,係計算將從最上階之第丨個位元 値及從最上階的第2個位元値作爲編碼資料χ之從最上階 的第2個位元之反相値,並將從最上階的第I個位元値作 爲編碼資料χ之從最上階的第I個位元値之S位元的値之 絕對値,再輸出第2個對數可能性比近似値λ 2的絕對値。 其中,I係滿足(3^1‘S)之全部的自然數。 最好,在S 2 4的情況,可能性算出部又包含有:第κ 個邏輯或電路,係計算編碼資料χ之從最上階的第(Κ - 1) -18- 200835169 個位元値和從最上階之第K個位元値的互斥邏輯或,並輸 出第Κ個對數可能性比之近似値λ k的符號;及第Κ個絕 對値計算電路,係計算將從最上階之第1個位元値及從最 上階的第2個位元値作爲編碼資料X之從最上階的第κ個 位元之反相値,並將從最上階的第J個位元値作爲編碼資Preferably, the coded data X is expressed by s (S 2 2) bits expressed by 2's complement. When a is a positive number, the possibility calculation unit includes: a first logical OR circuit, which encodes The data \ changes from the first bit of the uppermost level to the inversion, and outputs the symbol of the first logarithmic probability ratio 値λ 1; and the first absolute 値 calculation circuit calculates the absolute value of the encoded data 値And output the absolute probability of the first logarithm likelihood ratio 値λ 1 . Preferably, in the case of S^3, the likelihood calculation unit further includes: a second logical OR circuit that calculates the first bit from the topmost order of the encoded data, or its inverse 値 and from the top The second bit 値 is mutually exclusive logical OR, and outputs the second logarithmic probability ratio 値λ 2 symbol; and φ the second absolute 値 calculation circuit, which is calculated from the top of the top The bit 値 and the second bit from the top are used as the encoded data, and the second bit from the top is inverted, and the first bit from the top is used as the encoded data. From the absolute 値 of the S-bit of the first-order first-order 値, the second logarithm likelihood ratio is approximately the absolute 値 of 値λ 2 . Among them, I is the natural number that satisfies all of (3^1'S). Preferably, in the case of S 2 4, the possibility calculation unit further includes: a κth logical OR circuit for calculating the coded data from the top (第 - 1) -18 - 200835169 bits and From the mutually exclusive logical OR of the Kth bit of the uppermost order, and output the symbol of the third log likelihood ratio 値λ k; and the third absolute 値 calculation circuit, the calculation will be from the top 1 bit 値 and the 2nd bit 最 from the top order are used as the inverse 値 of the gamma bit of the highest order from the uppermost order, and the Jth bit 最 from the top order is used as the encoding resource.

料X之從最上階的第U + K — 2)個位元値之(S — K + 2)位元的 値之絕對値,再輸出第K個對數可能性比近似値λ k的絕 對値。其中,K係滿足(3 S (S — 1))之全部的自然數,j 係滿足(3 ‘ (S — K + 2))之全部的自然數。 又,本發明係一種解碼方法,其係對通信路線所傳送 之編碼資料進行錯誤訂正解碼,而得到解碼資料的方法, 編碼資料X之星座點的座標係axp,其中,a係〇以外的數, P係—(2"—1)以上,而且(2L — 1)以下之奇數,其中,L係編 碼資料X的調變位元數,解碼方法包含有:可能性計算步 驟’係對於編碼資料X,按照從i = 1至L爲止依序計算對數 可能性比之近似値λ i(i= l〜L);及解碼步驟,係根據對數可 能性比之近似値’而進行編碼資料X的錯誤訂正解碼,可 能性計算步驟包含有:設定步驟,係將常數Kl設爲一 a/丨a 丨,並將常數Ci設爲〇 ;計算步驟,係根據常數C i _ ,及第 (A4)式,計算 Ki (U2〜L); -19- 200835169 …(A4) χ ^ €μι 時 =:~^、x<Cn 時 Kj= 一"·— Ia| .丨·1 ! |a| 、(2^i^L) 計算步驟’係根據常數Ki及第(A5)式,計算Ci (i = 2〜L);以及From the uppermost U + K - 2) the absolute 値 of the (S - K + 2) bit of the bit 値, and then output the Kth log likelihood ratio is approximately 値 λ k absolute 値. Among them, the K system satisfies all the natural numbers of (3 S (S-1)), and the j system satisfies all the natural numbers of (3 ‘(S — K + 2)). Furthermore, the present invention is a decoding method for performing error correction decoding on encoded data transmitted by a communication path to obtain decoded data, and a coordinate system axp of a constellation point of the encoded data X, wherein a number other than the a system , P system - (2 " -1) or more, and (2L - 1) below the odd number, wherein the number of modulation bits of the L-coded data X, the decoding method includes: the possibility calculation step 'for the coded data X, in order to calculate the log likelihood ratio 値λ i (i = l~L) in order from i = 1 to L; and the decoding step, based on the log likelihood ratio 値' to encode the data X The error correction decoding includes a setting step of setting the constant K1 to an a/丨a 丨 and setting the constant Ci to 〇; the calculating step is based on the constant C i _ , and the (A4) Formula, calculate Ki (U2~L); -19- 200835169 ... (A4) χ ^ €μι ==~^, x<Cn when Kj=一"·- Ia| .丨·1 ! |a| (2^i^L) The calculation step 'calculates Ci (i = 2 to L) according to the constant Ki and the formula (A5);

C^C^+axKjXl^1^ (2^i^L) …(A5) 計算步驟’係根據常數K i及Ci,並根據第(A6)式,計 算對數可能性比之近似値λ i(i=l〜L),C^C^+axKjXl^1^ (2^i^L) (A5) The calculation step is based on the constants K i and Ci, and according to the formula (A6), the log likelihood ratio is approximated 値λ i ( i=l~L),

Ai = -gxKi x(x-Cj) (i = 1〜L) …(A6) 其中,g係常數。 又’本發明係一種電腦可讀取之記錄媒體,其記錄解 碼程式’而該程式係用以對通信路線所傳送之編碼資料進 行錯誤訂正解碼,而得到解碼資料,該解碼程式用以使電 腦作爲如下之構件發揮功能,可能性算出部,係對於編碼 資料X,根據第(A7)式算出對數可能性比的近似値入 i(i = l 〜L);及 -20 - 200835169 …(A7)Ai = -gxKi x(x-Cj) (i = 1 to L) (A6) where g is a constant. Further, the present invention is a computer readable recording medium for recording a decoding program, and the program is used for error correction decoding of encoded data transmitted by a communication route to obtain decoded data, and the decoding program is used to make a computer The function calculation unit is configured to calculate the logarithmic probability ratio approximation i(i = l to L) based on the equation (A7) for the coded data X; and -20 - 200835169 ... (A7 )

Ai = -gxK丨 χ(χ-CJ (i = l〜L)Ai = -gxK丨 χ(χ-CJ (i = l~L)

解碼處理部,係根據對數可能性比的近似値λ i(i=l〜L) ’而進行編碼資料χ之錯誤訂正解碼,其中,;1係 編碼資料X之調變位元數,g係常數,Ki、Ci係和編碼資料 X的値、其星座點之座標以及L相依的數。 〔發明之效果〕 若依據本發明,可任意地調整解碼運算之反復次數等 的反複結束條件,並可藉重複解碼法高效率地進行錯誤訂 正解碼。又,若依據本發明,能以少的計算量進行錯誤訂 正解碼。 【實施方式】 以下,一面參照圖式,——面說明本發明之實施形態。 [第1實施形態] 第1圖係表示本發明的第1實施形態之具有解碼器的 通信系統之構造例的圖。 參照第1圖’此通信系統具備有:傳送裝置S 1,係傳 送編碼資料;及接收裝置R1,係接收編碼資料並進行解碼。 傳送裝置S1包含有:編碼器丨,係對κ位元之傳送資 訊附加Μ {ιι兀的錯誤訂正用之多餘位元,而產生傳送碼(編 碼資料);及調變器2,係根據既定之方式將來自編碼器i -21- 200835169 之(Κ + Μ)( = Ν)位元的符號進行調變並向通信路線3輸出。 編碼器1對Κ位元之資訊附加同位計算用的多餘位元 Μ位元,而產生(Κ + Μ)( = Ν)位元的LDPC(低密度同位檢查) 編碼資料。在低密度同位檢查陣列Η(Μ列、Ν行)’列對應 於多餘位元,而行對應於碼位元。又,將Κ個資訊位元及 Μ個多餘位元配置於(Κ + Μ)位元之LD PC編碼資料的哪些位 元,只要由傳送側和接收側決定,如何配置都可。The decoding processing unit performs error correction decoding of the encoded data based on the approximate 値λ i(i=l~L)' of the log likelihood ratio, where 1 is the number of modulated bits of the encoded data X, g system The constant, Ki, Ci, and the coded data X, the coordinates of the constellation points, and the L-dependent number. [Effect of the Invention] According to the present invention, it is possible to arbitrarily adjust the repetition end condition such as the number of repetitions of the decoding operation, and to perform error correction decoding efficiently by the repeated decoding method. Further, according to the present invention, it is possible to perform error correction decoding with a small amount of calculation. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. [First Embodiment] Fig. 1 is a view showing a configuration example of a communication system having a decoder according to a first embodiment of the present invention. Referring to Fig. 1, the communication system is provided with a transmitting device S1 for transmitting encoded data, and a receiving device R1 for receiving and decoding encoded data. The transmitting device S1 includes: an encoder 丨, which adds 多余 bits to the transmission information of the κ bit, and generates a transmission code (encoded data) for the error correction of the ι bit, and the modulator 2 is determined according to the predetermined The modulation of the (Κ + Μ) (= Ν) bit from the encoder i-21-200835169 is modulated and output to communication 3. The encoder 1 adds the extra bit Μ bit for the parity calculation to the information of the Κ bit, and generates LDPC (low density parity check) coded data of the (Κ + Μ) (= Ν) bit. In the low-density parity check array, the column corresponds to the extra bit, and the row corresponds to the code bit. Further, which bits of the LD PC-encoded data of the (Κ + Μ) bits are arranged with one information bit and one extra bit can be configured as long as it is determined by the transmitting side and the receiving side.

調變器2係因應於通信路線3之構造,而進行調幅、 相位調變、碼解變、調頻或正交頻率分割多重調變等的調 變。例如,在通信路線3係光纖的情況,在調變器2,藉 由因應於傳送資訊位元値改變雷射二極體的亮度,而進行 光的強度調變(一種調幅)。即,在傳送資料位元是“ 0”的 情況,被轉換成“ + 1 ” ,使雷射二極體的發光強度變強再 傳送,又在傳送資料位元是“ Γ的情況,被轉換成“-Γ ,使雷射二極體的發光強度變弱再傳送。 接收裝置R1具備有:解調器4,對經由通信路線3所 傳送之調變信號施加解調處理,而將(K + M)位元之數位碼進 行解調;及解碼器5,係對來自解調器4之(K + M)位元的符 號施加基於同位檢查陣列的解碼處理,而產生原來之K位 元的資訊。 解調器4係因應於通信路線3之傳送形態,而進行解 調處理。例如在調幅、相位調變、碼調變、調頻以及正交 頻率分割多重調變等的情況,在解調器4,進行振幅解調、 -22- 200835169 相位解調、碼解調以及頻率解調等的處理。 第2圖係以一覽表表示通信路線3係光纖的情況之調 變器2及解調器4的輸出資料之對應關係的圖。 在第2圖,如上述所示,在通信路線3係光纖的情況, 在調變器2,在傳送資料是“ 〇”時,被轉換成“ Γ ,而傳 送用之雷射二極體(發光二極體)的發光強度變強,又在傳 送資料位元是“ 1 ”時,被轉換成“一 1 ” ,而使雷射二極 體的發光強度變弱再傳送。The modulator 2 performs modulation such as amplitude modulation, phase modulation, code demodulation, frequency modulation, or orthogonal frequency division multiple modulation in response to the configuration of the communication path 3. For example, in the case of the communication route 3 series optical fiber, in the modulator 2, the intensity of the light is modulated (a type of amplitude modulation) by changing the brightness of the laser diode in response to the transmission of the information bit. That is, in the case where the transmission data bit is "0", it is converted into "+1", so that the luminous intensity of the laser diode is made strong and then transmitted, and in the case where the data bit is transmitted, "the case is converted. Into "-Γ, the luminous intensity of the laser diode is weakened and transmitted. The receiving device R1 includes a demodulator 4 that applies demodulation processing to the modulated signal transmitted via the communication path 3, and demodulates the digital code of the (K + M) bit; and the decoder 5 is paired The symbol from the (K + M) bit of the demodulator 4 is applied based on the decoding process of the parity check array to generate the original K bit information. The demodulator 4 performs demodulation processing in response to the transmission mode of the communication route 3. For example, in the case of amplitude modulation, phase modulation, code modulation, frequency modulation, and orthogonal frequency division multiplexing, amplitude demodulation, -22-200835169 phase demodulation, code demodulation, and frequency solution are performed in the demodulator 4. The processing of the adjustment. Fig. 2 is a view showing a correspondence relationship between the output data of the modulator 2 and the demodulator 4 in the case where the communication route 3 series optical fiber is shown in a list. In Fig. 2, as shown above, in the case of the communication line 3 type optical fiber, in the modulator 2, when the transmission data is "〇", it is converted into "Γ", and the laser diode for transmission ( The luminous intensity of the light-emitting diode is increased, and when the data bit is "1", it is converted into "one-one", and the luminous intensity of the laser diode is weakened and transmitted.

由於在通信路線3之傳送損失等,解調器4所傳輸的 光強度,具有從最強之強度至最弱的強度爲止之間的類比 之強度分布。在解調器4,對輸入之光信號進行量子化處 理(類比/數位轉換),並檢測其感光位準。 在第2圖’表示感光位準被量子化成8階段的情況之 接收信號強度。即,在感光位準是資料“ 7 ”時,發光強度 係很強,而在感光位準是“ 0”時,發光強度係很弱之狀態。 各感光位準被賦與和具有符號的資料對應,並從解調 器4輸出。此解調器4的輸出,係在感光位準是“7”時輸 出資料“ 3” ,而在感光位準是“ 時輸出資料“一 4” 。 因此,從解調器4,對1位元之接收信號,輸出已多値量 子化的信號。 解碼器5接受從解調器4所供給之(K + M)位元的接收編 碼資料(各位元包含有多値資訊)之輸入,再根據 sum-product解碼法或min-surn解碼法並應用LDPC同位檢 -23- 200835169 查陣列,使原來之K位元的資訊復原。 此外,在第2圖,在解調器4,產生已量子化成8位準 的位元。可是,一般,在解調器4,可使用量子化成L値(L 2 2)的位元進行解碼處理。 又,在第2圖,亦可使用比較器,並使用某臨限値判 定接收信號的位準,再產生二値信號。 第3圖係槪略表示第1實施形態之接收裝置R 1的構造 圖。在此第3圖,亦一倂表示通信路線3。Due to the transmission loss or the like in the communication path 3, the light intensity transmitted by the demodulator 4 has an analogous intensity distribution from the strongest intensity to the weakest intensity. At the demodulator 4, the input optical signal is quantized (analog/digital conversion), and its photosensitive level is detected. Fig. 2' shows the received signal strength in the case where the photosensitive level is quantized into eight stages. That is, when the photosensitive level is the data "7", the luminous intensity is strong, and when the photosensitive level is "0", the luminous intensity is weak. Each of the photosensitive levels is assigned to the material having the symbol and is output from the demodulator 4. The output of the demodulator 4 outputs the data "3" when the photosensitive level is "7" and the output data "4" when the photosensitive level is ". Therefore, from the demodulator 4, to the 1 bit. The received signal of the element outputs a signal that has been multi-quantized. The decoder 5 accepts input of the received encoded data (the bits containing the information) from the (K + M) bits supplied from the demodulator 4, and then According to the sum-product decoding method or the min-surn decoding method and applying the LDPC parity test -23-200835169 to check the array, the original K-bit information is restored. In addition, in the second figure, in the demodulator 4, the quantum has been generated. In the demodulator 4, a bit that is quantized into L値 (L 2 2) can be used for decoding processing. Further, in FIG. 2, a comparator can also be used, and A certain threshold is used to determine the level of the received signal, and a second signal is generated. Fig. 3 is a schematic diagram showing the structure of the receiving device R 1 of the first embodiment. Here, Fig. 3 also shows the communication route. 3.

參照第3圖,解調器4包含有:解調電路4a,係將從 通信路線3所供給之信號進行解調;及類比/數位轉換電路 4b ’係將利用此解調電路4a所產生之類比解調信號轉換成 數位信號,將此類比/數位轉換電路4b的輸出資料(編碼資 料)Xn供給解碼器5。 解碼器5由利用半導體晶元或配置於基板上的多個電 子電路所構成之解碼電路構成。此解碼器5具有編碼資料 ^ X n之資料輸入埠(資料輸入端子)5 a,此資料輸入埠5 a係和 類比/數位轉換電路4b之輸出連接。 供給解碼器5之編碼資料X η係L値(L — 2)的資料。因 爲此編碼資料Xn係多値量子化資料,在以下,亦將該資料 Xn稱爲符號。 解碼器5係軟判定解碼器,對該輸入符號Χη系列,根 據所s目s u m - p r 〇 d u c t解碼法或m i η - s u m解碼法等之解碼法進 行解碼處理,並產生碼位元CDn,作爲解碼資料。從解碼 -24- 200835169 子 端 出 輸 料 資 ( 0 璋Dn 出 C 輸料 料資 資碼 之解 路此 電出 輸 部 外 的 5 器 碼 解 向 第4圖係表示第1實施形態之解碼器5的構造圖。 參照第4圖,解碼器5包含有:對數可能性比算出部 6,係產生來自解調器4之解調符號Xn的對數可能性比λ η ;及解碼處理部7,係進行該解碼處理。 對數可能性比算出部6係和接收信號之雜訊資訊獨立 地產生對數可能性比λ η。一般,在考慮雜訊資訊的情況, 此對數可能性比λ η係以Χη/(2χ σ 2)求得。在此,σ 2表示 雜訊之發散。可是,在本實施形態,對數可能性比算出部 6係以緩衝電路或常數乘法電路形成,而對數可能性比λ η 係以Xnxf求得。在此,f係非零的正數。又,在min-sum 解碼法,在根據檢查陣列之解碼處理(列處理),因爲利用 最小値進行計算,所以在信號處理保持線性。因而,不需 要根據雜訊資訊將輸出資料進行正常化等的處理。在此情 況,不利用雜訊資訊,藉由算出對數可能性比,而簡化電 路構造,且亦簡化計算處理。 解碼處理部7係根據對數可能性比λ η,按照碼長度N 之單位進行解調符號Xn的錯誤訂正解碼。解碼處理部Ί 具備有:列處理部9,進行同位檢查陣列的列處理;及行 處理部1 0,進行同位檢查陣列的行處理,以反複地進行列 處理和行處理之計算,並將行處理部1 〇的輸出供給列處理 部9。卩,環狀地連接列處理部9和行處理部1 〇。 -25- 200835169 在解碼法係sum-product解碼法的情況,列處理部9及 行處理部10根據如下之第(1)式及第(2)式進行計算處理, 並重複地執行對同位檢查陣列之列的各元素之處理(列處 理)和對行的各元素之處理(行處理)。 具體而言,列處理部9進行根據第(1)式之算出外部値 對數比(第1變數)a rnn的計算,行處理部10進行根據第(2) 式之算出事前値對數比/3 mn的計算。Referring to Fig. 3, the demodulator 4 includes a demodulation circuit 4a for demodulating a signal supplied from the communication path 3, and an analog/digital conversion circuit 4b' which is generated by the demodulation circuit 4a. The analog demodulation signal is converted into a digital signal, and the output data (encoded data) Xn of such a ratio/digital conversion circuit 4b is supplied to the decoder 5. The decoder 5 is constituted by a decoding circuit composed of a semiconductor wafer or a plurality of electronic circuits arranged on a substrate. The decoder 5 has a data input port (data input terminal) 5 a for encoding data X n , which is connected to the output of the analog/digital conversion circuit 4b. The data of the coded data X η supplied to the decoder 5 is L値(L - 2). For this reason, the encoded data Xn is more than the quantized data, and in the following, the data Xn is also referred to as a symbol. The decoder 5 is a soft decision decoder, and performs decoding processing on the input symbol Χn series according to the decoding method such as the sum-pr 〇duct decoding method or the mi η -sum decoding method, and generates a code bit CDn as Decode the data. From the decoding -24- 200835169 sub-end delivery material (0 璋Dn out of the C transmission material resource code, the 5 code code solution outside the power transmission and output section to the fourth picture shows the decoding of the first embodiment Referring to Fig. 4, the decoder 5 includes a logarithmic probability ratio calculating unit 6 that generates a logarithmic probability ratio λ η of the demodulated symbol Xn from the demodulator 4; and a decoding processing unit 7 The decoding process is performed by the logarithmic probability ratio calculating unit 6 and the noise information of the received signal. Generally, in the case of considering the noise information, the log likelihood ratio is λ η. Here, σ 2 represents the divergence of the noise. However, in the present embodiment, the log likelihood ratio calculation unit 6 is formed by a snubber circuit or a constant multiplication circuit, and the logarithmic possibility The ratio λ η is obtained by Xnxf. Here, f is a non-zero positive number. Also, in the min-sum decoding method, in the decoding process according to the inspection array (column processing), since the calculation is performed using the minimum 値, the signal is Processing remains linear. Therefore, there is no need to The information is normalized and processed, etc. In this case, the circuit configuration is simplified and the calculation process is simplified by calculating the log likelihood ratio without using the noise information. The decoding processing unit 7 is based on the logarithm possibility. The error correction decoding of the demodulation symbol Xn is performed in units of the code length N by the ratio λ η. The decoding processing unit 具备 includes a column processing unit 9 for performing column processing of the parity check array, and a line processing unit 10 for performing the parity check. The row processing of the array repeats the calculation of the column processing and the row processing, and supplies the output of the row processing unit 1 to the column processing unit 9. The column processing unit 9 and the line processing unit 1 are connected in a loop. 25-200835169 In the case of the decoding method-sum-product decoding method, the column processing unit 9 and the line processing unit 10 perform calculation processing based on the following equations (1) and (2), and repeatedly perform the parity check array. The processing of each element in the column (column processing) and the processing of each element of the row (row processing) Specifically, the column processing unit 9 performs the calculation of the external 値 log ratio (first variable) according to the formula (1). a rnn Calculation, line processing unit 10 based on the calculated beforehand Zhi (2) The formula for calculating / 3 mn number ratio.

Π sign(^+^) xf Σ f(l々, + u) yn'eACm^n …(1)Π sign(^+^) xf Σ f(l々, + u) yn'eACm^n ...(1)

Ann ·起始値爲、〇 Ann = Σ mreB(n)\m …⑵Ann ·Starting as 〇, 〇 Ann = Σ mreB(n)\m ...(2)

在此,在該第(1)式及第(2)式,n’ e A(m)\n及m’ e B(n)\m意指本身以外的元素。關於外部値對數比a mn, 係η’尹η,關於事前値對數比θιηη,係m’ #m。又,表 示α及々之陣列內的位置之添標“ m η ” ,雖然一般以下標 文字表不,但是在本專利說明書’爲了易於讀,而以「橫 向排列的文字」表示。 在此,函數f(x)係以如下之第(3)式定義。 eA+l f(x) = ln~3r-7 …⑶Here, in the above formulas (1) and (2), n' e A(m)\n and m' e B(n)\m mean elements other than itself. The external 値 logarithm ratio a mn is η' Yin η, and the logarithm of the logarithm θιηη is m' #m. Further, the addition of the position "m η " in the position of the array of α and 々 is generally indicated by the following standard text, but is described in the "horizontal arrangement of characters" for ease of reading. Here, the function f(x) is defined by the following formula (3). eA+l f(x) = ln~3r-7 ...(3)

C —I 又,函數s i g n (X)係以如下之第(4)式定義。 -26- 200835169 …⑷ 又,在將2元Μ·Ν陣列H = [Hmn]作爲解碼對象之LDPC 碼的檢查陣列之情況,集合 A(m)及 B(n)係集合 [1,N] = { 1,2,…,N}的部分集合。 A(m) = {n: Hmη = 1 } Β(η) ={m : Hmn=l}C - I Further, the function s i g n (X) is defined by the following formula (4). -26- 200835169 (4) In the case of the inspection array of the LDPC code in which the binary Ν·Ν array H = [Hmn] is used, the set A(m) and the B(n) system set [1, N] = a partial collection of { 1,2,...,N}. A(m) = {n: Hmη = 1 } Β(η) ={m : Hmn=l}

即,該部分集合A(m)意指對檢查陣列Η的第m列1(非 零元素)成立之行指標的集合,部分集合B(n)意指對檢查陣 列Η的第η列1 (非零元素)成立之列指標的集合。 更具體說明之,例如考慮第5圖所示的檢查陣列Η。 在此第5圖之檢查陣列Η,從第1列之第1行到第3 行” 1 ”成立,又第2列之第3行及第4行” 1 ”成立,又 第3列之第4行到第6行” Γ成立。因此,在此情況,部 分集合A(m)變成如以下所示。That is, the partial set A(m) means a set of row indicators for which the mth column 1 (non-zero element) of the inspection array 成立 is established, and the partial set B(n) means the nth column 1 of the inspection array ( ( A collection of non-zero elements that are established. More specifically, for example, the inspection array 所示 shown in Fig. 5 is considered. In the inspection array of Figure 5, the first row to the third row of the first column "1" is established, and the third row and the fourth row "1" of the second column are established, and the third column is Lines 4 to 6 are established. Therefore, in this case, the partial set A(m) becomes as shown below.

sign(x)=Sign(x)=

x^〇 x<〇 A(l) = { 1,2,3} A(2)={3,4} A(3)={4,5,6} 一樣地’關於部分集合B(n),變成如以下所示。 B(1)=B(2)= {1} B(3)={1,2} B(4)={2,3} B(5)= B(6)={3} 在此檢查陣列Η,使用Tanner圖形的情況,利用此 -27- 200835169 “ 1 ”表示對應於行之變數節點和對應於列的檢查節點之 連接關係。在本專利說明書將其稱爲「” r成立」。 即,如第6圖所示,變數節點1、2、3係和檢查節點 X(第1列)連接,變數節點3、4係和檢查節點Y(第2列) 連接。變數節點4、5、6係和檢查節點Z(第3列)連接,x^〇x<〇A(l) = { 1,2,3} A(2)={3,4} A(3)={4,5,6} Same as 'About part set B(n) It becomes as shown below. B(1)=B(2)= {1} B(3)={1,2} B(4)={2,3} B(5)= B(6)={3} Check the array here Η In the case of using a Tanner graph, the use of this -27-200835169 "1" indicates the connection relationship of the variable node corresponding to the row and the check node corresponding to the column. This patent specification refers to it as "" r established". That is, as shown in Fig. 6, the variable nodes 1, 2, and 3 are connected to the inspection node X (the first column), and the variable nodes 3 and 4 are connected to the inspection node Y (the second column). The variable nodes 4, 5, 6 are connected to the check node Z (column 3),

此變數節點對應於檢查陣列Η之行,而檢查節點X、γ 以及Ζ對應於檢查陣列Η的各列。因此,第5圖所示的檢 查陣列適用於資訊位元爲3位元、多餘位元爲3位元之共 6位元碼長的符號。 在LDPC之檢查陣列Η, “ 1 ”之個數少,係低密度的 檢查陣列,因而,可減少計算量。使在此變數節點和檢查 節點之間傳輸各條件機率P(Xi I Yi),根據MAP演算法, 對各變數節點決定可能性最高的符號。在此,具條件機率 P(Xi | Yi)表示在Yi之條件下變成Xi的機率。 如第4圖所示,解碼器5具備有判定部1 1,其判定由 列處理及行處理所構成之解碼運算的反複結束。 此判定部11判定列處理及行處理之反複次數是否已 達到結束次數,若列處理及行處理之反複次數已達到結束 次數,就使藉解碼處理部7之解碼運算的反複結束。 又,判定部1 1在解碼運算的反複結束後,使用外部値 對數比a mn(或事前値對數比/3 mn)和對數可能性比λ η,產 生由多個碼所構成之推測碼字。碼的個數對應於檢查陣列 的行數。 -28- 200835169 具體而言,判定部11根據如下的第(5)式算出Qn。This variable node corresponds to checking the row of the array, while the check nodes X, γ and Ζ correspond to the columns of the inspection array Η. Therefore, the inspection array shown in Fig. 5 is applicable to symbols in which the information bit is 3 bits and the extra bit is 3 bits in total. In the inspection array of LDPC, the number of "1" is small, which is a low-density inspection array, thereby reducing the amount of calculation. The conditional probability P(Xi I Yi) is transmitted between the variable node and the inspection node, and the symbol with the highest probability is determined for each variable node according to the MAP algorithm. Here, the conditional probability P(Xi | Yi) indicates the probability of becoming Xi under the condition of Yi. As shown in Fig. 4, the decoder 5 is provided with a determination unit 1 for determining the end of the decoding operation including the column processing and the line processing. The determination unit 11 determines whether or not the number of repetitions of the column processing and the line processing has reached the number of completions, and if the number of repetitions of the column processing and the line processing has reached the number of completions, the repetition of the decoding operation by the borrowing decoding processing unit 7 is ended. Further, after the repetition of the decoding operation, the determination unit 1 1 generates an estimated code word composed of a plurality of codes using the external 値 log ratio a mn (or the preceding logarithm ratio / 3 mn) and the log likelihood ratio λ η. . The number of codes corresponds to the number of rows in the inspection array. -28- 200835169 Specifically, the determination unit 11 calculates Qn based on the following formula (5).

Qn:、十Ζ α_ …⑸ meB(n) 此外,判定部1 1根據如下之第(6)式,算出係解碼資料 的推測碼CDn。將推測碼字(CD1,…,CDN)作爲解碼資料輸 出。Qn:, Ζα_ (5) meB(n) Further, the determination unit 1 1 calculates the estimated code CDn of the decoded data based on the following formula (6). The speculative code words (CD1, ..., CDN) are output as decoded data.

CD., [0, signQn= l [l, signQn = …⑹ 又’解碼器5具備有:次數決定部12,係根據表不通 信路線3之傳送特性的參數之一的編碼資料χη之信號雜訊 比(SNR),決定解碼運算的反複次數;及查表1 3,係次數決 定部1 2參照的表。判定部1 1取得次數決定部丨2所決定的 反複次數資訊In。CD., [0, signQn = l [l, signQn = ... (6)] The decoder 5 is provided with the number determining unit 12, which is a signal miscellaneous data according to one of the parameters of the transmission characteristic of the communication line 3 The signal ratio (SNR) determines the number of iterations of the decoding operation; and the table 13 is the table to be referred to by the number-of-times determining unit 12. The determination unit 1 1 acquires the iteration number information In determined by the number determining unit 丨2.

次數決定部12具備有:抽出電路,係抽出編碼資料 Χη之標題部等所包含的指引信號;及運算電路,係計數此 抽出電路所抽出之指引信號的正否並計算編碼資料Χη之 信號雜訊比(SNR),以可從解調器4所輸入之編碼資料Χη 獨立地算出信號雜訊比(SNR)。 第7圖表示查表13的一例。 在第7圖所示之例子’若信號雜訊比(SNR)係2dB以 下,因爲通信路線3之傳送特性差,所以將反複次數設成 比較多的20次。又,若信號雜訊比(SNR)係2〜6dB之範圍 -29- 200835169 內,因爲通信路線3之傳送特性普通,所以將反複次數設 成一般的8次。此外,若信號雜訊比(SNR)係6dB以上,因 爲通信路線3之傳送特性佳,所以將反複次數設成比較少 的4次。The number determining unit 12 includes: an extracting circuit that extracts a guidance signal included in a header portion of the encoded data Χn; and an arithmetic circuit that counts the positive or negative of the guidance signal extracted by the extraction circuit and calculates a signal noise of the encoded data Χη The signal (noise ratio) (SNR) is independently calculated from the coded data η η input from the demodulator 4 by the ratio (SNR). Fig. 7 shows an example of the lookup table 13. In the example shown in Fig. 7, if the signal-to-noise ratio (SNR) is 2 dB or less, since the transmission characteristic of the communication path 3 is poor, the number of repetitions is set to 20 times. Further, if the signal to noise ratio (SNR) is in the range of 2 to 6 dB -29 to 200835169, since the transmission characteristic of the communication route 3 is normal, the number of repetitions is set to 8 times in general. Further, if the signal noise ratio (SNR) is 6 dB or more, since the transmission characteristic of the communication route 3 is good, the number of repetitions is set to be relatively small four times.

如以上所示,若依據本實施形態之解碼器5,因爲次 數決定部1 2根據表示通信路線之傳送特性的編碼資料χη 之信號雜訊比(SNR),決定藉解碼處理部7之解碼運算的反 複次數,所以可因應於通信路線之情況而調變解碼運算的 反複次數。因而,可預防反複次數太少而無法進行既定品 質的解碼,或反複次數太多而發生等待時間或不必要的耗 電力,而可高效率地藉重複解碼法進行錯誤訂正解碼。 又’若依據本實施形態之解碼器5,用以決定解碼運 算的反複次數之參數係編碼資料χη的信號雜訊比(SNR), 因爲使用此編碼資料Χη所包含之指引信號算出信號雜訊 比(SNR) ’可在解碼器5內獨自地求得用以決定反複次數之 φ 信號雜訊比(SNR),亦具有組裝係簡單的優點。 此外’在本實施形態,作爲編碼資料Xll之雜訊特性, 亦可作成替代信號雜訊比(SNR),而算出雜訊功率或雜訊 量,並根據此指標決定反複次數。 [第2實施形態] 第8圖係表示第2實施形態之接收側的裝置之構造的 示意圖。第9圖係表示第2實施形態之解碼器95的構造圖。 此第2實施形態之解碼器9 5和第1實施形態的解碼器 -30- 200835169 5之相異點係’解碼器95還具備有錯誤率輸入埠5c,其用 以從外部輸入解碼資料CDn的錯誤率,次數決定部1 5不僅 使用係編碼資料Xn之雜訊特性的信號雜訊比nr),而且 亦使用錯誤率輸入埠5c所輸入之解碼資料CDn的錯誤率, 決定解碼運算的反複次數。 又’在本實施形態,在接收裝置R2之解碼器95的資 料輸出埠5b連接通信控制部30,在此通信控制部30連接 終端裝置40,其由可算出解碼資料CDn之錯誤率的個人電As described above, according to the decoder 5 of the present embodiment, the number determining unit 12 determines the decoding operation by the decoding processing unit 7 based on the signal noise ratio (SNR) of the encoded data χη indicating the transmission characteristic of the communication path. Since the number of repetitions is repeated, the number of iterations of the decoding operation can be modulated in response to the communication route. Therefore, it is possible to prevent the number of repetitions from being too small to perform decoding of a predetermined quality, or to wait for a long time or excessive power consumption, and to efficiently perform error correction decoding by the repeated decoding method. Further, according to the decoder 5 of the present embodiment, the parameter for determining the number of repetitions of the decoding operation is the signal-to-noise ratio (SNR) of the encoded data χη, because the signal is detected using the guidance signal included in the encoded data Χη. The ratio (SNR)' can be obtained in the decoder 5 by itself to determine the φ signal noise ratio (SNR) of the number of repetitions, and has the advantage that the assembly system is simple. Further, in the present embodiment, as the noise characteristic of the encoded data X11, the noise power or noise amount can be calculated instead of the signal noise ratio (SNR), and the number of repetitions can be determined based on the index. [Second Embodiment] Fig. 8 is a schematic view showing the structure of a device on the receiving side according to the second embodiment. Fig. 9 is a view showing the structure of the decoder 95 of the second embodiment. The decoder 9.5 of the second embodiment and the decoder -30-200835169 5 of the first embodiment have a error rate input 埠5c for inputting the decoded data CDn from the outside. The error rate, the number determining unit 15 not only uses the signal-to-noise ratio nr) of the noise characteristic of the encoded data Xn, but also determines the repetition of the decoding operation using the error rate of the decoded data CDn input by the error rate input 埠5c. frequency. Further, in the present embodiment, the data output port 5b of the decoder 95 of the receiving device R2 is connected to the communication control unit 30, and the communication control unit 30 is connected to the terminal device 40, which is capable of calculating the error rate of the decoded data CDn.

此終端裝置40向通信控制部30傳送從解碼資料CDn 所算出之錯誤率的資訊Tx,此資訊Tx從錯誤率輸入埠5c 輸入解碼器95的次數決定部1 5。 第10圖係表示第2實施形態之解碼器95的查表14, 第1 1圖係表示信號雜訊比(S N R)和錯誤率之關係例的圖形。 例如,如第11圖所示,編碼資料Xn之信號雜訊比(SNR) 和解碼資料CDn的錯誤率,一般有若前者增加則後者減少 之一對一對應的關係。因此,在第1 0圖所示之查表1 4,分 別規,定和編碼資料Xn之信號雜訊比(SNR)的範圍對應之解 碼資料CDn的錯誤率之範圍,及那些參數位於該範圍的情 況之解碼運算的反複次數。 次數決定部1 5選擇根據編碼資料Xn之信號雜訊比 (SNR)所特定之解碼運算的反複次數和根據解碼資料CDn 之錯誤率所特定之解碼運算的反複次數之中比較多的一方 -31- 200835169 之反複次數。 如以上所示,若依據本實施形態的解碼器9 5,因爲從 解碼資料CDn之錯誤率亦可決定解碼運算的反複次數,所 以在解碼運算之反複次數的決定時可將解碼處理部7之解 碼結果進行回授。The terminal device 40 transmits the information Tx of the error rate calculated from the decoded data CDn to the communication control unit 30, and this information Tx is input from the error rate input 埠5c to the number determining unit 15 of the decoder 95. Fig. 10 is a table 14 showing the decoder 95 of the second embodiment, and Fig. 1 is a view showing an example of the relationship between the signal noise ratio (S N R) and the error rate. For example, as shown in Fig. 11, the signal-to-noise ratio (SNR) of the encoded data Xn and the error rate of the decoded data CDn are generally reduced by one-to-one correspondence if the former is increased. Therefore, in the look-up table 14 shown in FIG. 10, the range of the error rate of the decoded data CDn corresponding to the range of the signal-to-noise ratio (SNR) of the encoded data Xn is determined separately, and those parameters are located in the range. The number of iterations of the decoding operation. The number determining unit 15 selects one of the number of repetitions of the decoding operation specified by the signal noise ratio (SNR) of the encoded data Xn and the number of repetitions of the decoding operation specified by the error rate of the decoded data CDn-31 - 200835169 The number of iterations. As described above, according to the decoder 95 of the present embodiment, since the number of repetitions of the decoding operation can be determined from the error rate of the decoded data CDn, the decoding processing unit 7 can be determined at the time of determining the number of repetitions of the decoding operation. The decoding result is fed back.

又,在本實施形態,因爲次數決定部1 5選擇根據編碼 資料Xn之信號雜訊比(SNR)所特定之解碼運算的反複次數 和根據解碼資料CDn之錯誤率所特定之解碼運算的反複次 數之中比較多的一方之反複次數,所以不會如僅根據單方 之參數的變動釘住解碼運算之反複次數,而可適當地保持 解碼品質。 此外,在本實施形態,亦可作成僅根據解碼資料CDn 之錯誤率決定解碼運算的反複次數。又,在本實施形態, 作爲解碼資料CDn之錯誤特性,亦可作成替代錯誤率,而 算出該解碼資料CDn所包含之錯誤量,再根據此指標決定 反複次數。 [第1及第2實施形態之變形例] 在第1及第2實施形態之通信系統,雖然使解碼運算 的反複次數變多時通信品質提高,但是有使反複次數變成 太多亦因延遲而傳送速度無法變成高速的情況,因此,傳 送速度和反複次數處於權衡關係。因此,亦可作成可根據 通信環境及所重視之特性,而如以下所示從複數種模式選 擇一種模式。 -32- 200835169 (1)權衡模式 將傳送速度χ(1 -錯誤率)作爲評估函數,並使次數決 定部進行以使此評估函數變成最大之方式決定傳送速度和 解碼運算的反複次數之控制邏輯。在此情況,因爲以正常 地抵達之資料的位元數變成最大之方式決定反複次數,所 以亦考慮和傳送速度的關係,而可更適當地決定反複次 數。不過,在此情況,在接收裝置側,因爲不僅解碼運算Further, in the present embodiment, the number determining unit 15 selects the number of iterations of the decoding operation specified by the signal noise ratio (SNR) of the encoded data Xn and the number of iterations of the decoding operation specified by the error rate of the decoded data CDn. Since the number of repetitions of the more ones is larger, the number of repetitions of the decoding operation is not pinned only by the variation of the parameters of the single side, and the decoding quality can be appropriately maintained. Further, in the present embodiment, it is also possible to determine the number of iterations of the decoding operation based only on the error rate of the decoded data CDn. Further, in the present embodiment, as an error characteristic of the decoded material CDn, an error rate may be calculated instead of the error rate, and the number of errors included in the decoded data CDn may be calculated, and the number of iterations may be determined based on the index. [Variation of the first and second embodiments] In the communication system according to the first and second embodiments, the communication quality is improved when the number of repetitions of the decoding operation is increased, but the number of repetitions is too large and the delay is caused. The transfer speed cannot be changed to a high speed, and therefore, the transfer speed and the number of iterations are in a trade-off relationship. Therefore, it is also possible to select a mode from a plurality of modes as shown below depending on the communication environment and the characteristics to be emphasized. -32- 200835169 (1) The trade-off mode uses the transfer speed χ (1 - error rate) as an evaluation function, and causes the number determining unit to perform control logic for determining the transfer speed and the number of iterations of the decoding operation in such a manner that the evaluation function becomes maximum. . In this case, since the number of repetitions is determined in such a manner that the number of bits of the normally arrived data becomes maximum, the relationship with the transmission speed is also considered, and the number of repetitions can be more appropriately determined. However, in this case, on the receiving device side, because not only the decoding operation

的反複次數,而且連傳送速度亦獨立地變更,所以需要對 接收裝置附加將關於在接收裝置側所決定之傳送速度之資 訊通知傳送裝置側的功能。 (2)速度優先模式 若設想如廣播通信般之單向的通信環境,在此情況, 與其考慮接收裝置側之通信品質,其如更重視傳送裝置側 播放一樣的資料。因此,在這種情況,使傳送速度比各接 收裝置的品質更優先,推薦進行如下之控制的通信系統。 φ 即’首先,在傳送裝置決定既定的傳送速度,並將以此傳 送裝置所決定之傳送速度可實施的反複次數,作爲在接收 裝置進行解碼運算之反複次數的上限値。此上限値可記載 於編碼資料Xn之標題部,並通知接收裝置側。而且,在接 收裝置’以在傳送裝置所決定之上限値的範圍內可得到所 要之通信品質的方式決定反複次數。此外,在重視耗電力 之減少的情況’亦可作成在上述所決定之上限値的範圍 內’將反複次數設定成最小。 -33- 200835169 (3)品質優先模式 若設想一對一之雙方向通信的情況,在此情況重視通 信品質。因此,在這種情況,首先,只要以可得到所要之 通信品質的方式決定反複次數後,根據此決定之反複次數 而決定傳送速度即可。 [第3實施形態]Since the number of repetitions and the transmission speed are also independently changed, it is necessary to attach a function to the receiving apparatus to notify the transmission apparatus side of the information on the transmission speed determined on the receiving apparatus side. (2) Speed priority mode If a one-way communication environment such as broadcast communication is envisaged, in this case, it is more important to play the same information on the transmission device side as it considers the communication quality on the receiving device side. Therefore, in this case, the transmission speed is prioritized over the quality of each receiving device, and a communication system in which the following control is recommended is recommended. φ is the first upper limit of the number of iterations in which the transmission device determines the predetermined transmission rate and the transmission rate determined by the transmission device can be implemented as the number of repetitions of the decoding operation by the receiving device. This upper limit can be described in the header portion of the encoded data Xn and notified to the receiving device side. Further, the number of repetitions is determined in such a manner that the receiving apparatus ' obtains the desired communication quality within the range of the upper limit determined by the transmitting apparatus. Further, in the case where the reduction in power consumption is emphasized, it is also possible to set the number of repetitions to the minimum within the range of the above-mentioned upper limit 値. -33- 200835169 (3) Quality priority mode If one-to-one bidirectional communication is assumed, the communication quality is emphasized in this case. Therefore, in this case, first, the number of repetitions is determined so that the desired communication quality can be obtained, and the transmission speed can be determined based on the number of repetitions of the determination. [Third embodiment]

第12圖係表示第3實施形態之解碼器85的構造圖。 參照第12圖,本第3實施形態之解碼器85和第2實 施形態的解碼器95之相異點,係解碼器85未具備LUT14 及次數決定部1 5,而具備有暫存器(反複結束條件記憶 部)82,其保持係使解碼運算的反複結束之結束條件的反複 次數資訊In,而且判定部1 1從暫存器82取得反複次數資 訊In。 在本實施形態,反複結束條件未限定爲反複次數本 身,而只要係解碼器85可用以決定反複次數的資訊,任何 都可。 又,解碼器85之構成,係具備有替代錯誤率輸入璋5c 之結束條件輸入璋(結束條件輸入端子)35c,其用以從解碼 器85之外部受理反複次數資訊In,以可取得反複次數資訊 (反複結束條件)In並作爲外部輸入。 暫存器82保持從結束條件輸入璋35c所供給之反複次 數資訊In,並可因應於需要而供給判定部1 1。 結束條件輸入埠3 5 c所供給之反複次數資訊In係如以 -34 - 200835169 下所示’利用和解碼器85外部連接之反複結束條件設定部 設定。 第13圖〜第15圖表示具有反複結束條件設定部20、 120、220之接收裝置R3、R4、R5的例子。此外,解碼器 85和反複結束條件設定部20、120構成本發明之解碼系統 DEC1、DEC2。又,第13圖〜第15圖所示之接收裝置R3、 R4、R5係和PC等之終端裝置91、92、93連接,並經由通 信控制部30,可將所解碼之資料供給終端裝置91、92、93。Fig. 12 is a view showing the structure of a decoder 85 of the third embodiment. Referring to Fig. 12, the difference between the decoder 85 of the third embodiment and the decoder 95 of the second embodiment is that the decoder 85 does not include the LUT 14 and the number determining unit 15 but has a register (repeated). The termination condition storage unit 82 holds the iteration number information In of the end condition of the end of the repetition of the decoding calculation, and the determination unit 1 1 acquires the iteration number information In from the register 82. In the present embodiment, the repetition end condition is not limited to the number of repetitions itself, and any information may be used as long as the decoder 85 is available to determine the number of iterations. Further, the decoder 85 is provided with an end condition input 璋 (end condition input terminal) 35c instead of the error rate input 璋 5c for accepting the iteration number information In from the outside of the decoder 85 so that the number of repetitions can be obtained. Information (repeated end condition) In and as an external input. The register 82 holds the iteration number information In supplied from the end condition input 璋 35c, and can supply the determination unit 1 1 as needed. The number-of-repetitions information In supplied by the end condition input 埠3 5 c is set by the repetition end condition setting unit connected to the external connection of the decoder 85 as shown in -34 - 200835169. FIGS. 13 to 15 show examples of the receiving devices R3, R4, and R5 having the repeated termination condition setting units 20, 120, and 220. Further, the decoder 85 and the iterative termination condition setting sections 20 and 120 constitute the decoding systems DEC1 and DEC2 of the present invention. Further, the receiving devices R3, R4, and R5 shown in Figs. 13 to 15 are connected to the terminal devices 91, 92, and 93 such as a PC, and the decoded data can be supplied to the terminal device 91 via the communication control unit 30. , 92, 93.

在第1 3圖之例子,反複結束條件設定部20利用開關 構成。此開關例如設置於接收裝置R3的筐體。從該開關至 解碼器85的結束條件輸入璋35c之間利用電氣配線21a連 接。 作爲開關,可採用撥盤式開關、滑動式開關等之各種 形態的開關。藉由使用者操作開關,而可調整反複次數資 訊In。例如,可選擇反複次數多(低品質、高速模式)U、反 複次數中(中品質、中速模式)Ib以及反複次數少(高品質、 低速模式)I c之3種値。 在此,解碼運算的反複次數影響通信品質(解碼品 質),若反複次數多,通信品質變佳,而若反複次數少,通 信品質變差。另一方面,若反複次數多’等待時間(延遲) 變長,而若反複次數少,等待時間(延遲)變短。又,若反 複次數多,解碼器85之耗電力變多,而若反複次數少’解 碼器85之耗電力變少。 -35 - 200835169 因此,在重視通信品質,而不重視等待時間或耗電力 的情況,使甩者只要操作開關,以選擇反複次數多的Ia即 可。又,即使稍微犠牲通信品質,亦重視等待時間短的情 況,或重視耗電力少的情況,使用者只要操作開關,以選 擇反複次數少的Ic即可。 如此,藉由調整反複次數,而可因應於需要,調整通 信品質、等待時間、或耗電力。In the example of Fig. 3, the iterative completion condition setting unit 20 is configured by a switch. This switch is provided, for example, in the housing of the receiving device R3. From the switch to the end condition input 璋 35c of the decoder 85, the electric wiring 21a is connected. As the switch, various types of switches such as a dial switch and a slide switch can be used. The number of times of repeated information In can be adjusted by the user operating the switch. For example, it is possible to select three types of 反复 which are many times of repetition (low quality, high speed mode) U, number of repetitions (medium quality, medium speed mode) Ib, and number of repetitions (high quality, low speed mode) I c . Here, the number of repetitions of the decoding operation affects the communication quality (decoding quality), and if the number of repetitions is large, the communication quality is improved, and if the number of repetitions is small, the communication quality is deteriorated. On the other hand, if the number of repetitions is large, the waiting time (delay) becomes long, and if the number of repetitions is small, the waiting time (delay) becomes short. Further, if the number of repetitions is large, the power consumption of the decoder 85 is increased, and if the number of repetitions is small, the power consumption of the decoder 85 is small. -35 - 200835169 Therefore, when attention is paid to the quality of communication without paying attention to waiting time or power consumption, it is only necessary to operate the switch to select Ia with a large number of repetitions. Further, even if the communication quality is slightly increased, attention is paid to the case where the waiting time is short, or when the power consumption is small, the user can operate the switch to select Ic with a small number of repetitions. In this way, by adjusting the number of repetitions, the communication quality, waiting time, or power consumption can be adjusted as needed.

在第1 4圖之例子,反複結束條件設定部1 2 〇包含於和 接收裝置R 4連接的終端裝置9 2。此終端裝置9 2例如利用 已安裝用以g周整反複次數之電腦程式的電腦所構成。 終端裝置92可向接收裝置R4傳送反複次數資訊in。 接收裝置R4可利用通信控制部30接收反複次數資訊in。 接收裝置R4之通信控制部30和解碼器85的結束條件_入 埠3 5 c利用電氣配線2 2連接,通信控制部3 0可向解碼器 85之結束條件輸入埠35c供給從終端裝置92所接收的反複 次數資訊In。 此外,終端裝置92之反複結束條件設定部1 20亦可係 利用既定的演算法自動產生反複次數資訊In者,亦可係作 爲從使用者受理反複次數資訊In之輸入的輸入介面而發揮 功能者。 不論係任一種情況,都可調整反複次數,而可因應於 需要,調整通信品質、等待時間、或耗電力。 此外,利用既定的演算法自動產生反複次數資訊In的 -36- 200835169 反複結束條件設定部120,亦可不是存在於和接收裝置R4 之外部連接的終端裝置,而是位於接收裝置R4之內部。例 如,亦可利用被裝入接收裝置R4之內部的微電腦和用以調 整反複次數之電腦程式構成反複結束條件設定部1 20。In the example of Fig. 14, the repeated termination condition setting unit 1 2 is included in the terminal device 92 connected to the receiving device R 4 . The terminal device 92 is constituted by, for example, a computer on which a computer program for the number of repetitions is installed. The terminal device 92 can transmit the iteration number information in to the receiving device R4. The receiving device R4 can receive the iteration number information in by the communication control unit 30. The communication control unit 30 of the receiving device R4 and the end condition_input 3 5 c of the decoder 85 are connected by the electric wiring 22, and the communication control unit 30 can supply the end condition input 埠35c of the decoder 85 to the slave terminal device 92. The number of iterations received is In. In addition, the repeat completion condition setting unit 120 of the terminal device 92 may automatically generate the iteration number information In by using a predetermined algorithm, or may function as an input interface for inputting the number of times of repetition information In from the user. . The number of iterations can be adjusted regardless of the situation, and the communication quality, waiting time, or power consumption can be adjusted according to needs. Further, the -36-200835169 repeated termination condition setting unit 120 that automatically generates the iteration number information In using a predetermined algorithm may be located inside the receiving device R4 instead of the terminal device connected to the outside of the receiving device R4. For example, the repeating end condition setting unit 120 may be configured by a microcomputer incorporated in the receiving device R4 and a computer program for adjusting the number of iterations.

在第1 5圖之例子,反複結束條件設定部220包含於傳 送編碼資料的傳送裝置S5。雖然在第13圖及第14圖之例 子,編碼資料之接收側(使用者側)設定反複次數資訊In, 但是在第1 5圖之例子,編碼資料之傳送側(資訊配送側)可 設定反複次數資訊In。 傳送裝置S5,如第16圖般向接收裝置R5(解碼器85) 傳送在標題部中已儲存反複次數資訊In的資訊段。第1 6 圖之資訊段具備有標題部、和儲存使用者資料的實際資料 部’在實際資料部儲存編碼資料。標題部所包含的反複次 數資訊I η表示將該資訊段之實際資料部的編碼資料進行解 碼時的反複次數。 此外,在採用第1 6圖之資訊段的情況,雖然和編碼資 料一體地傳送從傳送裝置S5所傳送的反複結束條件,但是 亦可分開地傳送反複結束條件和編碼資料。又,反複結束 條件亦可不是由傳送編碼資料的傳送裝置傳送,而是由和 傳送編碼資料之傳送裝置S 5不同的傳送裝置(例如專門設 定反複結束條件的裝置)傳送。 又,在不是如第1 6圖所甲之資訊段般將編碼資料和反 複結束條件作爲一體的資料傳送,而分開地傳送兩者之資 37- 200835169 料的情況,包含有反複結束條件之傳送資料(資訊段),替 代編碼資料,而包含有用以特定適用該反複結束條件之編 碼資料的資訊較佳。藉由將用以特定適用反複結束條件之 編碼資料的資訊和反複結束條件一起向解碼器85傳送,而 可對各編碼資料任意地調整反複結束條件。In the example of Fig. 15, the iterative completion condition setting unit 220 is included in the transmission device S5 that transmits the encoded material. In the example of Fig. 13 and Fig. 14, the receiving side (user side) of the encoded data sets the iteration number information In, but in the example of Fig. 5, the transmitting side (information distributing side) of the encoded data can be set repeatedly. The number of times information In. The transmitting device S5 transmits the information segment in which the iteration number information In has been stored in the header portion to the receiving device R5 (decoder 85) as shown in Fig. 16. The information section of Figure 16 is provided with a header section and an actual data section for storing user data 'stored in the actual data section. The iteration number information I η included in the header section indicates the number of iterations when the coded data of the actual data section of the information section is decoded. Further, in the case of using the information segment of Fig. 16, the repeated termination condition transmitted from the transmitting device S5 is transmitted integrally with the encoded material, but the repeated termination condition and the encoded material can be separately transmitted. Further, the repeating end condition may be transmitted not by the transmitting means for transmitting the encoded material but by a transmitting means (e.g., a means for specifically setting the repeating end condition) different from the transmitting means S 5 for transmitting the encoded data. In addition, in the case of not transmitting the encoded data and the repeated termination condition as a piece of information as in the information section of FIG. 16, the case of separately transmitting the funds 37-200835169 includes the transmission of the repeated termination condition. The information (information segment), in place of the encoded material, and the information containing the encoded material that is specifically applicable to the repeated end condition are preferred. By transmitting the information of the coded material for specifying the application of the repeated end condition to the decoder 85 together, the iterative end condition can be arbitrarily adjusted for each coded material.

又,在該實施形態,雖然將反複結束條件儲存於第i 6 圖之資訊段的標題部,但是亦可係實際資料部。例如,在 從應用軟體側指定反複結束條件的情況,就將反複結束條 件插入IP(Internet Protocol)層以上之使用者資料部。 第15圖所示之接收裝置R5具備有反複結束條件抽出 部50,其收到第1 6圖所示之資訊段時,從該資訊段抽出反 複次數資訊In。此反複結束條件抽出部5 0從藉類比/數位 轉換電路4b轉換成數位信號的’資訊段抽出標題部,而且取 得標題部中之反複次數資訊In。反複結束條件抽出部50 向解碼器85輸出反複次數資訊In。 反複結束條件抽出部50和解碼器85之結束條件輸入 埠3 5c利用電氣配線23連接,並將從反複結束條件抽出部 50所輸出之反複次數資訊In供給結束條件輸入埠35〇。 在第1 5圖的例子,因爲從係資訊之傳送者的傳送裝置 S5側可調整反複次數,所以因應於需要可調整使用者可得 到的通信品質,而且可調整在接收裝置(使用者側之通信裝 置)R5側之等待時間或耗電力。而且,係資訊之傳送者的傳 送裝置S 5側藉由調整反複次數,而可控制要傳送之內容資 -38- 200835169 訊(影像、聲音等)的品質。 例如’在對從傳送裝置所傳送之影像的品質賦與差別 之情況’ 一般預先準備高品質(高畫質)的影像和低品質(低 畫質)之影像,傳送裝置傳送任一種的影像。而,在本實施 形態’傳送裝置S5可藉由調整反複次數,而以高品質傳送 相同的影像(編碼資料),或以低品質傳送。而且,因爲反 複次數的値係易於各式各樣地變更,所以可對各使用者調 整通信品質。此外’通信品質係可因應於其他的狀況彈性Further, in this embodiment, the repeated termination condition is stored in the header portion of the information segment of the i-th diagram, but may be the actual data portion. For example, when the repeated termination condition is specified from the application software side, the repeated termination condition is inserted into the user data section of the IP (Internet Protocol) layer or higher. The receiving apparatus R5 shown in Fig. 15 is provided with a repeating end condition extracting unit 50 which extracts the number-of-reverse times information In from the information section when receiving the information section shown in Fig. 16. The iterative end condition extracting unit 50 extracts the header portion from the information segment of the digital signal converted from the analog/digital conversion circuit 4b, and obtains the iteration number information In in the header portion. The iterative end condition extracting unit 50 outputs the iteration number information In to the decoder 85. The end condition input 埠3 5c of the iterative completion condition extracting unit 50 and the decoder 85 is connected by the electric wiring 23, and the repetitive number information In, which is output from the iteration end condition extracting unit 50, is supplied to the end condition input 埠35〇. In the example of Fig. 5, since the number of repetitions can be adjusted from the side of the transmission device S5 of the transmitter of the information, the communication quality that can be obtained by the user can be adjusted as needed, and the reception device can be adjusted (the user side) Waiting time or power consumption on the R5 side of the communication device. Further, the transmission device S 5 side of the information transmitter can control the quality of the content (image, sound, etc.) to be transmitted by adjusting the number of repetitions. For example, 'the case where the quality of the image transmitted from the transfer device is different' is generally prepared in advance for high-quality (high-quality) images and low-quality (low-quality) images, and the transfer device transmits any of the images. On the other hand, in the present embodiment, the transmitting apparatus S5 can transmit the same video (encoded material) with high quality or by low quality by adjusting the number of repetitions. Further, since the number of repetitions is easily changed in various ways, the communication quality can be adjusted for each user. In addition, 'communication quality can be adapted to other conditions.

以下,說明如上述所示之傳送裝置S 5的細節。 第17圖表示內容之配送模型。此配送模型由以下之構 件構成,使用者 A、B,係接受影像、聲音等之內容資料 (:1、02、01、02的配送;內容事業者(:、0,係提供內容; 以及通信公司(carrier),係向使用者提供用以傳送內容之通 信服務。Hereinafter, details of the transport device S 5 as described above will be described. Figure 17 shows the distribution model of the content. This distribution model consists of the following components: Users A and B receive content materials such as images and sounds (: 1, 02, 01, 02; content providers (:, 0, provide content; and communication) A carrier provides a communication service for transmitting content to a user.

在第17圖之配送模型,通信公司具有傳送裝置S5, 可將傳送的內容資料編碼,並向使用者之接收裝置(攜帶式 終端機等)R5傳送。 又,使用者側之通信裝置R5可向通信公司的傳送裝置 S5要求傳送所要之內容’並接收該內容的編碼資料。 在此之傳送裝置S5係以通信伺服器構成,該伺服器具 有如下之功能,傳送功能’將內容編碼並傳送;傳送功能, 調整在解碼器85之解碼運算的反複次數,並向使用者之接 -39- 200835169 收裝置R5(解碼器85)傳送。 傳送裝置S5具有電腦,其已安裝用以決定在解碼器 85之解碼運算的反複次數之電腦程式。 第1 8表示利用電腦程式等所實現之傳送裝置S5的功 ’此傳送裝置S 5具備有反複結束條件設定部2 2 0。此外, 在本實施形態,至少反複結束條件設定部220及後述之傳 送資訊產生部250係利用電腦程式所實現之功能。In the delivery model of Fig. 17, the communication company has a transmitting device S5, which can encode the transmitted content data and transmit it to the user's receiving device (portable terminal, etc.) R5. Further, the communication device R5 on the user side can request the transmission of the desired content from the transmission device S5 of the communication company and receive the encoded material of the content. Here, the transmission device S5 is constituted by a communication server having the following functions, a transmission function 'encoding and transmitting the content; a transmission function, adjusting the number of repetitions of the decoding operation at the decoder 85, and to the user Connected to -39- 200835169 Receiver R5 (Decoder 85) transmits. The transmitting device S5 has a computer on which a computer program for determining the number of iterations of the decoding operation at the decoder 85 is installed. The eighth embodiment shows the work of the transfer device S5 realized by a computer program or the like. The transfer device S5 is provided with a repeat completion condition setting unit 2200. Further, in the present embodiment, at least the repeating condition setting unit 220 and the transmission information generating unit 250 which will be described later are functions realized by a computer program.

反複結束條件設定部220參照通信品質相關資料庫 DB 1,並決定作爲用以使向使用者傳送之編碼資料的解碼運 算之反複結束的條件之反複次數。 通信品質相關資料庫DB 1例如如第1 9圖所示構成。此 資料庫DB 1具有在通信公司-內容事業者間所設定之關於 通信品質的資訊(最多反複次數)DB1 - 1、在使用者-內容 事業者間所設定之關於通信品質的資訊DB 1 — 2、以及在使 用者-通信公司間所設定之關於通信品質的資訊DB 1 - 3 等。 在通信公司一內容事業者間的資訊DB 1 — 1,對於內容 事業者C、D之各內容資料Cl、C2、Dl、D2各自登錄最多 反複次數。例如,對於內容資料c 1將最多反複次數設定爲 5次,一樣地,對於內容資料C2、Dl、D2各自將最多反複 次數設定爲3次、10次、2次。 最多反複次數表示各使用者可設定之反複次數的上 限,在各使用者,可設定最多反複次數以下的反複次數。 -40- 200835169 最多反複次數愈多,意指能以高品質傳送的內容,若最多 反複次數少,意指只能以低品質傳送的內容。The iterative end condition setting unit 220 refers to the communication quality related database DB 1, and determines the number of times of repetition as a condition for repeating the decoding operation of the encoded data transmitted to the user. The communication quality related database DB 1 is constructed, for example, as shown in Fig. 19. This database DB 1 has information about the communication quality (maximum number of repetitions) DB1 - 1 set between the communication company and the content provider, and information DB 1 about the communication quality set between the user and the content provider. 2. Information about the communication quality set by the user-communication company DB 1 - 3, etc. The information DB 1 - 1 between the content companies of the communication company registers the maximum number of repetitions for each content material C1, C2, D1, and D2 of the content companies C and D. For example, the maximum number of repetitions is set to five times for the content material c1, and the maximum number of repetitions for each of the content data C2, D1, and D2 is set to three, ten, and two times. The maximum number of repetitions indicates the upper limit of the number of repetitions that can be set by each user, and each user can set the number of repetitions up to the maximum number of repetitions. -40- 200835169 The more repetitions, the more content that can be delivered with high quality. If the number of repetitions is at most, it means that the content can only be transmitted with low quality.

又’亦可替代最多反複次數,或和最多反複次數一起 設定最少反複次數。最少反複次數表示各使用者可設定之 反複次數的下限,在各使用者,可設定最少反複次數以上 的反複次數而作爲反複次數。最少反複次數愈多意指以高 品質傳送的內容,若最少反複次數愈少,意指即使低品質 亦可傳送的內容。 如此,通信公司-內容事業者間的資訊DB1- 1主要表 示關於各內容可取得之品質的範圍之資訊。 使用者一內容事業者間的資訊DB 1—2登錄關於使用 者接受配送之內容的品質之資訊。 例如,使用者A從內容事業者C接受配送之內容的品 質被設定成「低」,使用者B從內容事業者C接受配送之內 容的品質被設定成「高」。在此情況,即使係使用者A、B φ 接受相同之內容資料C 1、C2的配送之情況,對使用者A, 反複次數被設定成少,而內容的品質(通信品質)變低,另 一方面,對使用者B,反複次數被設定成多’而內容的品 質(通信品質)變高。 在使用者一通信公司間的資訊D B 1 — 3,登錄關於使用 者從通信公司接受之通信服務的品質之資訊。 例如,使用者A之通信服務被設定成中’使用者B之 通信服務的品質被設定成「高」。在此情況,即使係使用者 -41- 200835169 A、B接受相问之內谷的配送之情況,對使用者a,反複次 數被設定成少,而通信品質變成比較低,另一方面,對使 用者B,反複次數被設定成多,而通信品質變高。 反複結束條件設定部220參照通信品質相關資料庫 DB1之一或複數個資訊DB1— 1〜DB〗 —3,並根據該資訊, 決定向各使用者傳送內容時之通信品質,而且適當地決定 因應於該通信品質的反複次數。Also, the maximum number of iterations can be set instead of the maximum number of iterations, or together with the maximum number of iterations. The minimum number of repetitions indicates the lower limit of the number of repetitions that can be set by each user, and each user can set the number of repetitions of the minimum number of repetitions or more as the number of repetitions. The more the minimum number of repetitions means the content delivered with high quality, and the least the number of repetitions, the content that can be transmitted even with low quality. In this way, the information DB1-1 between the communication company and the content business mainly indicates the information on the range of quality that can be obtained for each content. The information DB 1-2 between the user and the content business user registers information on the quality of the content that the user accepts the delivery. For example, the quality of the content that the user A receives from the content provider C is set to "low", and the quality of the content that the user B receives from the content provider C is set to "high". In this case, even if the users A and B φ receive the distribution of the same content data C 1 and C 2 , the number of repetitions is set to be small for the user A, and the quality (communication quality) of the content is lowered. On the other hand, for the user B, the number of repetitions is set to be 'and the quality of the content (communication quality) is high. In the information D B 1 - 3 between the user and the communication company, information about the quality of the communication service accepted by the user from the communication company is registered. For example, the communication service of the user A is set to "the quality of the communication service of the user B is set to "high". In this case, even if the user-41-200835169 A, B accepts the distribution of the inner valley of the question, the number of repetitions is set to be small for the user a, and the communication quality becomes relatively low, on the other hand, User B, the number of repetitions is set to be large, and the communication quality is high. The iteration completion condition setting unit 220 refers to one of the communication quality related database DB1 or a plurality of information DBs 1-1 to DB _3, and based on the information, determines the communication quality when the content is transmitted to each user, and appropriately determines the response. The number of repetitions of this communication quality.

根據資料庫DB 1之資訊,實際上設定反複次數的多 少,因爲和內容事業者及通信公司之收費體系或和使用者 的契約條件相依,可考慮這些條件並適當地決定。 具體而言,在使用者A下載內容事業者C之內容C1 的情況,雖然內容C 1之最多反複次數係5次,但是因爲使 用者A和內容事業者0僅簽訂低品質契約,而且和通信公 司所簽約之通信品質亦是「中」,所以通信品質變低。因此, 反複結束條件設定部220可在最多反複次數=5次之範圍內 將反複次數設定爲「2」,以變成稍低的通信品質。 又,在使用者· B下載內容事業者C之內容C1的情況, 因爲使用者B和內容事業者C簽訂高品質契約,而且和通 信公司所簽約之通信品質亦是「高」,所以反複結束條件設 定部220可在內容C1最多反複次數=5次之範圍內將反複 次數設定爲「5」,以變成最佳的通信品質。 傳送裝置S5又具備有傳送資訊產生部250。 傳送資訊產生部250產生第16圖所示之傳送資訊段。 -42- 200835169 即’傳送資訊產生部2 5 0產生包含有利用反複結束條件設 定部220所設定之反複次數資訊in的標題部,並將此標題 部和具有作爲編碼資料之所傳送的內容之實際資料部結 合,而產生傳送資訊段。傳送裝置S5的傳送部61向使用 者側之通信裝置R5傳送所產生的資訊段。 第20圖係說明內容配送的步驟之流程圖。According to the information of the database DB 1, the number of repetitions is actually set, and these conditions can be considered and appropriately determined depending on the charging system of the content company and the communication company or the contractual conditions of the user. Specifically, when the user A downloads the content C1 of the content provider C, the maximum number of repetitions of the content C 1 is five times, but the user A and the content business 0 only sign a low-quality contract, and the communication is The communication quality of the company's contract is also "medium", so the communication quality is low. Therefore, the iteration completion condition setting unit 220 can set the number of repetitions to "2" within the range of the maximum number of repetitions = 5 times, so as to become a slightly lower communication quality. In addition, when the user B downloads the content C1 of the content company C, the user B and the content company C sign a high-quality contract, and the communication quality contracted with the communication company is "high", so the user B is repeatedly ended. The condition setting unit 220 can set the number of repetitions to "5" within the range of the maximum number of repetitions of the content C1 = 5 times, so as to become the optimum communication quality. The transmission device S5 is further provided with a transmission information generating unit 250. The transmission information generating unit 250 generates the transmission information segment shown in FIG. -42-200835169, that is, the 'transmission information generating unit 250 generates a header portion including the number-of-repetitions information in which is set by the iterative completion condition setting unit 220, and has the header portion and the content transmitted as the encoded material. The actual data department is combined to generate a transmission information segment. The transmission unit 61 of the transmission device S5 transmits the generated information segment to the communication device R5 on the user side. Figure 20 is a flow chart showing the steps of content distribution.

參照第20圖,通信公司的傳送裝置S 5從使用者A之 通信裝置R5收到下載要求時(步驟S 20 1 ),參照通信品質相 關資料庫DB1 (步驟S202),再決定通信品質(步驟32〇3)。 接著,傳送裝置S 5因應於此通信品質,決定反複次數 資訊In(步驟S204),再產生已儲存反複次數資訊In的資訊 段標題部(步驟S205)。 然後,傳送裝置S5將此標題部和包含有編碼資料的實 際資料部結合,並產生資訊段(步驟S 206),再向使用者A 之通信裝置R5傳送(步驟S207)。 在使用者A的通信裝置115,抽出資訊段之標題部所包 含的反複次數資訊In,並因應於此次數In,重複地進行解 碼運算,而得到既定之品質的內容。 第2 1圖表示通信品質相關資料庫D B 1之其他的例子。 參照第2 1圖,作爲通信公司-內容事業者間之資訊 DB1- 1,不論內容,由各內容事業者設定最多反複次數。 在此情況,可由提供使用者想得到之內容的各內容事業者 決定使用者可得到的通信品質。 -43- 200835169 [第3實施形態之變形例] 亦可不必使用第1 9圖或第2 1圖所示之資訊的全部’ 決定通信品質或最多反複次數,而使用一部分之資訊,決 定通信品質或最多反複次數。即,在決定使用者可得之通 信品質時,亦可由提供使用者想得到之內容的各內容事業 者決定通信品質,亦可由使用者想得到之各內容決定通信 品質,亦可由各使用者決定通信品質。Referring to Fig. 20, when the transmission device S 5 of the communication company receives the download request from the communication device R5 of the user A (step S20 1 ), the communication quality related database DB1 is referred to (step S202), and the communication quality is determined (step). 32〇3). Next, the transmission device S 5 determines the number-of-repetition times information In in accordance with the communication quality (step S204), and generates the information segment header portion in which the iteration number information In has been stored (step S205). Then, the transmitting device S5 combines the header portion with the actual data portion including the encoded material, generates an information segment (step S206), and transmits it to the communication device R5 of the user A (step S207). The communication device 115 of the user A extracts the iteration number information In included in the header portion of the information segment, and repeats the decoding operation in response to the number of times In to obtain the content of the predetermined quality. Fig. 21 shows another example of the communication quality related database D B 1 . Referring to Fig. 21, information about the communication company-content business DB1-1, regardless of the content, is set by the content provider to the maximum number of iterations. In this case, the content quality that can be obtained by the user can be determined by each content provider who provides the content desired by the user. -43- 200835169 [Modification of the third embodiment] It is also possible to use a part of the information to determine the communication quality without using all of the information shown in Fig. 19 or Fig. 2 to determine the communication quality or the maximum number of repetitions. Or up to the number of iterations. In other words, when determining the communication quality that the user can obtain, the content quality can be determined by each content provider who provides the content desired by the user, and the communication quality can be determined by each content desired by the user, and the communication quality can be determined by each user. .

此外,在上述之說明,雖然在編碼資料舉例表示內容 資料,但是對資料之內容無特別地限定,例如亦可係電視 電話等所需之聲音資料、影像資料等其他的通信資料。 又,通信品質相關資料庫D B 1所儲存之資訊的種類未 限定爲在上述之貫施形態所不者,只要係有助於決定反複 次數的資訊,任何資訊都可。又,傳送裝置S 5之反複結束 條件設定部2 2 0除了第1 9圖所示之資料庫d B 1的資訊以 外’例如亦可對使用者間賦與優先順位,並將此優先順位 和資料庫DB 1的資訊加以綜合,再決定反複次數。 [第4實施形態] 第4實施形態係有關於〜種解碼器,其藉sum-pr〇duci 解碼法進彳了錯誤訂正解碼。 第22圖係表示使用根據本實施形態之解碼裝置的通 ί§系統之構造例。第2 2圖的通信系統和第丨圖之第丨實施 形態的通信系統相異點如以下所示。 傳送裝置S6之調變器72根據多値QAM(Quadrature 200835169Further, in the above description, although the content data is exemplified as the encoded material, the content of the data is not particularly limited, and for example, other communication materials such as video data and video data required for a videophone may be used. Further, the type of information stored in the communication quality related database D B 1 is not limited to the above-described form, and any information is useful as long as it is useful for determining the number of repetitions. Further, the repeating completion condition setting unit 2 2 0 of the transmitting device S 5 may assign a priority order to the user in addition to the information of the database d B 1 shown in Fig. 9 and give priority to this. The information of the database DB 1 is integrated, and then the number of iterations is determined. [Fourth Embodiment] The fourth embodiment relates to a decoder that performs error correction decoding by the sum-pr〇duci decoding method. Fig. 22 is a view showing an example of the configuration of a system using the decoding apparatus according to the present embodiment. The difference between the communication system of Fig. 2 and the communication system of the second embodiment of the second embodiment is as follows. The modulator 72 of the transmitting device S6 is based on a multi-turn QAM (Quadrature 200835169

Amplitude Modulation)方式,將來自編碼器 1 之(Κ + Μ)( = Ν) 位元的符號進行調變並向通信路線3輸出。 調變器72將串列地輸入之傳送資料轉換成(2xL)位元 的並列資料,並映射至多値QAM的信號線圖之星座點,再 輸出以正交之載波所調變的調變信號。因此,調變信號係 對I頻道成分及Q頻道成分各自調變成L位元。The Amplitude Modulation method modulates the symbol from the (Κ + Μ) ( = Ν) bit of the encoder 1 and outputs it to the communication line 3. The modulator 72 converts the serially input transmission data into parallel data of (2xL) bits, and maps to the constellation points of the signal line graph of the multi-turn QAM, and then outputs the modulated signal modulated by the orthogonal carrier. . Therefore, the modulation signal is modulated into L bits for each of the I channel component and the Q channel component.

接收裝置R6的解調器74將所接收之調變信號(以下亦 稱爲接收信號)進行正交檢波,並將接收信號之I頻道成分 (同相成分)xl和接收信號之〇頻道成分(正交成分)1(^作爲 編碼資料(解調符號),並向解碼器75輸出。 接收裝置R6的解碼器75輸入從解調器74所供給之I 頻道成分xl和Q頻道成分xQ,並根據sum-product解碼法 應用LDPC同位檢查陣列,使原來之K位元的資訊復原。 第23圖係槪略地表示本發明之實施形態的解碼器75 之構造圖。第23圖之解碼器75和第4圖之第1實施形態 的解碼器5之異相點如以下所示。 對數可能性比算出部76算出編碼資料xl、xQ之近似 對數可能性比λ η,並供給解碼處理部7及判定部8 1。此處 理之細節將後述。 解碼處理部7根據近似對數可能性比λ η,按照碼長度 Ν之單位進行編碼資料χΐ、XQ的錯誤訂正解碼。 判定部8 1使用列處理部9所產生之外部値對數比a mn 和來自對數可能性比算出部7 6的近似對數可能性比λ η, -45- 200835169 產生推測字,並檢查推測字是否構成碼字。在此同位檢查 時,在故障(Syndrome)未變成“〇”的情況,再重複地執行 處理。若此處理之重複次數達到既定値,就將那時之推測 字作爲解碼資料並輸出。 第2 4圖係表不此判定部8 1之處理動作的流程圖。以 下’篸照第2 4圖,說明判定部81之處理動作。The demodulator 74 of the receiving device R6 performs quadrature detection on the received modulated signal (hereinafter also referred to as a received signal), and combines the I channel component (in-phase component) x1 of the received signal with the channel component of the received signal (positive channel component) The component 1) is used as the coded data (demodulation symbol) and output to the decoder 75. The decoder 75 of the receiving device R6 inputs the I channel component x1 and the Q channel component xQ supplied from the demodulator 74, and The sum-product decoding method applies the LDPC parity check array to restore the original K bit information. Fig. 23 is a schematic diagram showing the structure of the decoder 75 of the embodiment of the present invention. The different phase points of the decoder 5 according to the first embodiment of the fourth embodiment are as follows. The log likelihood ratio calculation unit 76 calculates the approximate logarithmic probability ratio λ η of the coded data x1 and xQ, and supplies it to the decoding processing unit 7 and the determination. The details of this processing will be described later. The decoding processing unit 7 performs error correction decoding of the encoded data χΐ and XQ in units of the code length 根据 based on the approximate log likelihood ratio λ η. The determining unit 8 1 uses the column processing unit 9 Outside of production The partial logarithm ratio a mn and the approximate logarithmic probability ratio λ η, -45- 200835169 from the log likelihood ratio calculating unit 7 generate a speculative word, and check whether the speculative word constitutes a code word. (Syndrome) does not become "〇", and the processing is repeated. If the number of repetitions of this processing reaches a predetermined level, the speculative word at that time is used as the decoded data and output. The 24th figure is not the determination unit. Flowchart of the processing operation of 8.1. The processing operation of the determination unit 81 will be described below with reference to Fig. 24 .

首先,作爲起始動作,進行迴路次數及事前値對數比 /3 m η的起始設定。此迴路次數表示使用在行處理部1 〇所 產生之事前値對數比Θ mn再在列處理部9產生外部値對數 比a mn的迴路之計算次數。在此迴路次數,預定最大値。 將事前値對數比Θ mn起始設定成“ 0” (步驟SP1)。 接者’根據所接收之解調付號(編碼資料XI、X Q )的系 列,分別利用對數可能性比算出部76及列處理部9產生近 似對數可能性比λ η及外部値對數比a mn,並供給判定部 81(步驟 SP2)。 判定部8 1根據這些供給之近似對數可能性比λ η及外 部値對數比a m η,進行計算λ η + Σ a m ’ η,而算出推測接 收字Qn(步驟SP3)。在此,總和Σ係對部分集合B(n)的元 素m ’ 執行。 判定在此步驟SP3所算出之値Qn的正負符號(步驟 SP4),再產生推測碼CDn(步驟SP5)。在此符號之正/負判 定,例如在推測接收字Qn係以2之補數表達時,藉由看最 上階位元的位元値,而可進行正及負之判定。 -46- 200835169 產生全部之推測碼CDn,而產生推測碼字(CD1,…,CDN) 時’接著執行同位檢查(步驟SP6)。在此同位檢查,使用前 面之檢查陣列 Η的轉置陣列H1,計算(CD1,…,CDN) · ΗΆ。利用此計算,若所產生之故障係〇,將推測碼字 (CD1,···,CDN)作爲解碼資料並輸出(步驟SP9)。First, as the initial action, the initial setting of the number of loops and the logarithmic 事 log ratio /3 m η is performed. This loop number indicates the number of calculations of the loop using the logarithmic logarithm ratio Θ mn generated in the row processing unit 1 and then generating the external logarithm ratio a mn in the column processing unit 9. In this loop number, the maximum 値 is predetermined. The preceding logarithm Θ mn initial is set to "0" (step SP1). The receiver's logarithm likelihood ratio calculation unit 76 and column processing unit 9 generate an approximate log likelihood ratio λ η and an external 値 log ratio a mn based on the series of received demodulation payouts (coded data XI, XQ). And supplied to the determination unit 81 (step SP2). The determining unit 8 1 calculates λ η + Σ a m ' η based on the approximate logarithmic probability ratio λ η and the external 値 log ratio a m η of these supplies, and calculates the estimated received word Qn (step SP3). Here, the sum is performed on the element m ′ of the partial set B(n). The sign of the 値Qn calculated in the step SP3 is determined (step SP4), and the speculative code CDn is generated again (step SP5). In the positive/negative determination of the symbol, for example, when the estimated received word Qn is expressed by 2's complement, the positive and negative decisions can be made by looking at the bit 値 of the uppermost bit. -46- 200835169 When all the speculative codes CDn are generated and the speculative code words (CD1, ..., CDN) are generated, 'the parity check is performed next (step SP6). In this parity check, use the front of the inspection array Η's transposed array H1 to calculate (CD1,...,CDN) · ΗΆ. With this calculation, if the generated failure system is generated, the speculative code words (CD1, ..., CDN) are used as decoded data and output (step SP9).

另一方面,在所產生之故障係和0相異的情況,判定 迴路次數是否是最大値(步驟SP7)。即,計數此推測碼字之 產生次數,而當產生次數達到既定的最大次數時,停止對 此碼之更大的計算,再將現在所產生之推測碼字作爲碼字 並輸出(步驟SP9)。因而,防止對收歛性差之雜訊性的符號 需要之不必要的計算處理時間。 在步驟SP7,判定迴路次數未達到最大値時,將此迴 路次數加1(步驟SP8),再使在列處理部9及行處理部10 之處理開始,再執行從步驟SP2開始的處理。 其次,說明對數可能性比算出部76之處理的細節。 (習知方式1之對數可能性比) 首先,說明習知方式1之對數可能性比。假設傳送線 路係加法性白色雜訊線路。 舉例說明以1 6QAM將接收信號進行調變的情況。 第25圖係表示16QAM之星座圖。 在這種情況,使用接收信號之I頻道成分χΐ,以如下 所示之理論式表示第1個對數可能性比λ Γ。 -47- …(7) 200835169On the other hand, in the case where the generated failure system differs from 0, it is determined whether or not the number of loops is the maximum 値 (step SP7). That is, the number of occurrences of the speculative codeword is counted, and when the number of generations reaches a predetermined maximum number, the calculation of the larger code is stopped, and the speculative codeword generated now is used as the codeword and output (step SP9). . Therefore, it is necessary to prevent unnecessary calculation processing time for the symbol of the noise which is poor in convergence. When it is determined in step SP7 that the number of loops has not reached the maximum value, the number of loops is incremented by one (step SP8), and the processing by the column processing unit 9 and the line processing unit 10 is started, and the processing from step SP2 is executed again. Next, the details of the processing by the logarithmic probability ratio calculation unit 76 will be described. (Logarithmic Possibility Ratio of Conventional Mode 1) First, the logarithmic probability ratio of the conventional mode 1 will be described. Assume that the transmission line is an additive white noise line. An example of the case where the received signal is modulated by 16 6AM. Figure 25 shows the constellation diagram of 16QAM. In this case, using the I channel component 接收 of the received signal, the first log likelihood ratio λ Γ is expressed by the following theoretical formula. -47- ...(7) 200835169

Xt =Iog^!^AV) exp 一 (x 卜 u0)2 2σ2 V) exp 一(xl - ul) 2σ2Xt =Iog^!^AV) exp a (x bu u0)2 2σ2 V) exp a (xl - ul) 2σ2

k2N ’以(〇、氺、*、* )表示I頰道成分xI之第i 位兀係「0」的星座點之集合。又,βΐε(ι、*、*、*)k2N ' represents a set of constellation points of the ith position of the I buccal component xI, which is "0", by (〇, 氺, *, *). Also, βΐε(ι, *, *, *)

^不1頻道成分xl之第1位元係「1」的星座點之集合。 第(7)式袠示接收信號的I頻道成分xl之第1位元係「0」 的機率和係「1」之機率的比之對數。σ 2係接收信號的I 頻道成分XI所包含之雜訊成分的發散。 又,使用接收信號的I頻道成分xl ’以如下所示之理 論式表示第2個對數可能性比λ 2°。^ A set of constellation points of the first bit "1" of the channel component xl. The equation (7) shows the logarithm of the probability of the first bit system "0" of the I channel component x1 of the received signal and the probability of the system "1". σ 2 is the divergence of the noise component contained in the I channel component XI of the received signal. Further, the I channel component x1' using the received signal indicates the second log likelihood ratio λ 2° in the following theoretical formula.

Λ20 = log Σ exP u〇g(*,〇,V)Σ exP ld€(*,l,”) 二(xl - uO)2 ~2σ2~ 二(xl - ul)~2? 2\ …⑻ 在此,#〇E(0、〇、*、*)表示I頻道成分χΐ之第1 位元係「0」,而且I頻道成分xl之第2位元係「〇」的星座 點之集合。又,#le(0、1、*、*)表示I頰道成分以之 第1位元係「〇」,而且I頻道成分xl之第2位元係「1」的 -48- 200835169 星座點之集合。又,μ〇Ε(1、〇、*、*)表示I頻道成分 Μ之第1位元係「1」,而且I頻道成分XI之第2位元係「〇」 的星座點之集合。又,"1已(1、1、*、*)表示I頻道成 分XI之第1位元係「1」,而且I頻道成分XI之第2位元係 「1」的星座點之集合。 第(8)式表示接收信號的I頻道成分xI之第2位元係「〇」 的機率和係「1」之機率的比之對數。Λ20 = log Σ exP u〇g(*,〇,V)Σ exP ld€(*,l,") two (xl - uO)2 ~2σ2~ two (xl - ul)~2? 2\ ...(8) Here, #〇E(0, 〇, *, *) indicates that the first bit of the I channel component 系 is “0”, and the second bit of the I channel component x1 is a set of constellation points of “〇”. Further, #le(0, 1, *, *) indicates that the first bit of the I buccal component is "〇", and the second bit of the I channel component xl is "-" -48-200835169 constellation point The collection. Further, μ〇Ε(1, 〇, *, *) indicates the first bit system "1" of the I channel component ,, and the second bit of the I channel component XI is a set of constellation points of the "〇". Further, "1 has (1, 1, *, *) indicates the first bit of the I channel component XI is "1", and the second bit of the I channel component XI is a set of constellation points of "1". The equation (8) indicates the logarithm of the probability of the second bit system "〇" of the I channel component xI of the received signal and the probability of the "1".

一樣地,使用接收信號之Q頻道成分XQ,以如下所示 之理論式表示第3個對數可能性比λ 3。。Similarly, using the Q channel component XQ of the received signal, the third log likelihood ratio λ 3 is expressed by the following theoretical formula. .

Σ exPA30=l〇g^^!L_ Σ exP - (xQ-uO)2 一 (xQ - ul) 2σ2 2\ …(9)Σ exPA30=l〇g^^!L_ Σ exP - (xQ-uO)2 one (xQ - ul) 2σ2 2\ ...(9)

在此,//〇E(*、*、〇、*)表示Q頻道成分⑽之第 1位元係「〇」的星座點之集合。又,、*、1、*) 表示Q頻道成分XQ之第1位元係「1」的星座點之集合。 第(9)式表示接收信號的Q頻道成分xQ之第1位元係 「〇」的機率和係「1」之機率的比之對數。σ 2係接收信號 的Q頻道成分XQ所包含之雜訊成分的發散。 又’使用接收信號的Q頻道成分XQ,以如下所示之理 論式表示第4個對數可能性比λ 4。。 -49- 200835169 A4°Here, //〇E(*,*,〇,*) indicates a set of constellation points of the first bit system "〇" of the Q channel component (10). Further, *, 1, and *) indicate a set of constellation points of the first bit system "1" of the Q channel component XQ. The equation (9) indicates the logarithm of the probability of the first bit system "〇" of the Q channel component xQ of the received signal and the probability of the "1". σ 2 is the divergence of the noise component included in the Q channel component XQ of the received signal. Further, using the Q channel component XQ of the received signal, the fourth log likelihood ratio λ 4 is expressed by the following equation. . -49- 200835169 A4°

a〇g-4〇):XP ~(xQ 一 u0)2 2σ2A〇g-4〇): XP ~(xQ a u0)2 2σ2

uJ^(l)eXP - (xQ - 111)2 2σ2 …⑽uJ^(l)eXP - (xQ - 111)2 2σ2 ...(10)

在此,// Oe (*、*、〇、0)袠示Q頻道成分xQ之第} k 7Π係「0」,而且q頻道成分之第2位元係「〇」的星 座點之集合HiE (*、*、〇、υ表示Q頻道成分川 之第1位元係「0」,而且Q頻道成分xQ之第2位元係「工」 的星座點之集合。又,μ〇[(*、*、"〇)表$ q頻道成 为xQ之弟If乂兀係「1」,而且q頻道成分之第2位元 係「0」的星座點之集合。又,(*、*、i、丨)表示q 頻道成分xQ之第1位元係「丨」,而且q頻道成分xq之第 2位元係「1」的星座點之集合。 第(10)式表示接收信號的Q頻道成分xQ之第2位元係 「0」的機率和係「1」之機率的比之對數。 (近似對數可能性比) 其次,說明本發明之實施形態的近似對數可能性比。 在本發明之實施形態,使用如以下所示的近似對數可 能性比。使用接收信號之I頻道成分XI,以將如下所示之 理論式近似的近似式表示I頻道成分之近似對數可能性比 λ I(i)。 -50- …(11) 200835169 λ I(i) = X Kj (xl) X {Xl - Ci (xl)} σ (i = 1〜L) 在此,l係接收信號的i頻道成分xl及Q頻道成分xQ 之各自的調變位元數L。在將接收信號以16QAM調變的情Here, //Oe (*, *, 〇, 0) indicates that the k-th order of the Q channel component xQ is "0", and the second bit of the q-channel component is the set HiE of the constellation points of "〇" (*, *, 〇, υ indicates that the first channel of the Q channel component is "0", and the second bit of the Q channel component xQ is the set of constellation points of "work". Also, μ〇[(* , *, "〇) The table $ q channel becomes the collection of the constellation points of the xQ brother If乂兀 is "1", and the second bit of the q channel component is "0". Also, (*, *, i And 丨) indicates that the first bit of the q channel component xQ is "丨", and the second bit of the q channel component xq is a set of constellation points of "1". The equation (10) indicates the Q channel component of the received signal. The logarithm of the probability of the second "0" of xQ and the probability of "1". (Approximate logarithmic probability ratio) Next, the approximate logarithmic probability ratio of the embodiment of the present invention will be described. In the embodiment, an approximate logarithmic probability ratio as shown below is used. The I channel component XI of the received signal is used to approximate the I channel component by an approximate expression approximating the theoretical expression shown below. The probability ratio λ I(i). -50- ...(11) 200835169 λ I(i) = X Kj (xl) X {Xl - Ci (xl)} σ (i = 1~L) Here, the l system The number of modulation bits L of each of the i channel component x1 and the Q channel component xQ of the received signal. In the case where the received signal is modulated by 16QAM

況L係2,以64QAM調變的情況L係3,以256QAM調變 的情況L係4,以1024QAM調變的情況L係5,以4096QAM 調變的情況L係6。一般,在以22χ4AM調變的情況,I頻 道成分的調變位元數係L。 又,Ki(xl)及CiUI)係和I頻道成分xl的値及其星座點 之座標、調變位元數L的値相依之常數。 更具體而言,近似式(1 1)係將對於接收信號的I頻道成 分xl之第i位元的對數可能性比之理論式在判定値Ci(xl) Φ 附近進行泰勒展開至1次爲止的式子。判定値Ci(xl)係該 理論式的値變成「0」之xl的値。換言之,在此XI的値, 接收信號之I頻道成分xl的第i位元是「1」之機率和是「〇」 的機率變成相等。因此,近似式(1 1)愈接近判定値Ci(xl), 將理論式愈高精度地近似。 一樣地’使用接收信號之Q頻道成分XQ,以將如下所 示之理論式近似的近似式表示Q頻道成分之近似對數可能 性比λ Q(i)。 -51- …(12) 200835169 AQ(i) = ll X KiCxQ) X {xQ Ci (xQ)} (i = 1 〜L) 在此’ KUxQ)及Ci(xQ)係和Q頻道成分xQ的値及其星 座點之座標、調變位元數L的値相依之常數。In the case of L system 2, the case of modulation by 64QAM is L system 3, the case of modulation by 256QAM is L system 4, the case of modulation by 1024QAM is L system 5, and the case of modulation by 4096QAM is L system 6. Generally, in the case of modulation at 22χ4AM, the number of modulation bits of the I channel component is L. Further, Ki(xl) and CiUI) are constants of the 値 of the I channel component x1 and the coordinates of the constellation point and the number of modulation bits L. More specifically, the approximate expression (1 1) is such that the logarithmic probability of the i-th bit of the I channel component x1 of the received signal is expanded to one time in the vicinity of the decision 値Ci(xl) Φ by the theoretical expression. Formula. It is determined that 値Ci(xl) is the 値 of the theoretical 値 becomes x1 of "0". In other words, in this XI, the probability that the i-th bit of the I channel component x1 of the received signal is "1" and the probability of being "〇" become equal. Therefore, the closer the approximate expression (1 1) is to the decision 値Ci(xl), the more accurately the theoretical formula is approximated. Similarly, the Q channel component XQ of the received signal is used to represent an approximate logarithm likelihood ratio λ Q(i) of the Q channel component to an approximate expression approximating the theoretical expression as shown below. -51- ... (12) 200835169 AQ(i) = ll X KiCxQ) X {xQ Ci (xQ)} (i = 1 ~ L) In this ' KUxQ ) and Ci (xQ) and Q channel component xQ The coordinates of the constellation points and the constants of the number of modulation bits L are dependent on each other.

更具體而言,近似式(12)係將對於接收信號的q頻道 成分xQ之第i位元的對數可能性比之理論式在判定値 Ci(xQ)附近進行泰勒展開至1次爲止的式子。判定値Ci(xQ) 係該理論式的値變成「〇」之x q的値。換言之,在此x Q 的値,接收信號之Q頻道成分xQ的第i位元是「1」之機 率和是「0」的機率變成相等。因此,近似式(1 2)愈接近判 定値Ci(xQ),將理論式愈高精度地近似。 利用I頻道成分之近似對數可能性比λ I (i)和Q頻道成 分的近似對數可能性比λ Q (i ),以下式表示近似對數可能 性比λ i。 : AI(i) (i = 1〜L)More specifically, the approximate expression (12) is a formula in which the logarithmic probability of the i-th bit of the q-channel component xQ of the received signal is expanded to one time in the vicinity of the determination 値Ci(xQ). child. It is determined that 値Ci(xQ) is the x of the theoretical formula 値 becomes "〇". In other words, in this case of x Q , the probability that the i-th bit of the Q channel component xQ of the received signal is "1" and the probability of being "0" become equal. Therefore, the closer the approximate expression (1 2) is to the decision 値Ci(xQ), the more the theoretical formula is approximated with high precision. Using the approximate log likelihood ratio of the I channel component to the approximate logarithmic probability ratio λ Q (i ) of the λ I (i) and Q channel components, the following equation represents the approximate log likelihood ratio λ i . : AI(i) (i = 1~L)

Ai: AQ(i - L) (i = L +1〜2 x L) 此外,在星座點係特定之配置的情況,Ki(xl)、Ci(xl)、 Ki(xQ)以及Ci(xQ)能以簡單的式子表示。 - 52- 200835169 第26圖係表示在25 6Q AM之特定的星座點之i頻道成 分及Q頻道成分的座標圖。 參照第26圖,星座點之I頻道成分及Q頻道成分各自 的座標是一7、— 5、一 3、— 1、+1、+3、+5、+7。Ai: AQ(i - L) (i = L +1~2 x L) In addition, in the case of a constellation point-specific configuration, Ki(xl), Ci(xl), Ki(xQ), and Ci(xQ) Can be expressed in a simple formula. - 52- 200835169 Figure 26 is a graph showing the i channel components and Q channel components at a particular constellation point at 25 6Q AM. Referring to Fig. 26, the coordinates of the I channel component and the Q channel component of the constellation point are a 7, 5, a 3, - 1, +1, +3, +5, +7.

又,雖省略圖示,在4QAM的情況,將星座點之I頻 道成分及Q頻道成分各自的座標設爲一 1、+1,在16Q AM 的情況,將星座點之I頻道成分及Q頻道成分各自的座標 設爲—3、——1、+1、+3,在1024QAM的情況,將星座點之 I頻道成分及Q頻道成分各自的座標設爲—3卜—29、…— 3、— 1、+1、+3、…、+29、+31,在 4096QAM 的情況,將 星座點之I頻道成分及Q頻道成分各自的座標設爲一 63、 —61、…—3、— 1、+1、+3、…、+61、+63。一般,在工 頻道成分及Q頻道成分各自的調變位元數是L之情況,各 頻道成分之星座點的座標係一(2"- 1)以上,而且(2"— 1)以 下之奇數。 在這種特定之配置的情況,Ki(xl)及CiUI)以下式表示。 時 &(迟)=+1、XI<CM·時 K/xI): -1 -(14) ,(2USL) -53- …(15)200835169Further, although not shown, in the case of 4QAM, the coordinates of the I channel component and the Q channel component of the constellation point are set to 1, 1 and +1, and in the case of 16Q AM, the I channel component and the Q channel of the constellation point are used. The coordinates of the components are set to -3, -1, +1, +3. In the case of 1024QAM, the coordinates of the I channel component and the Q channel component of the constellation point are set to -3, -29, ... - 3, — 1, +1, +3, ..., +29, +31. In the case of 4096QAM, the coordinates of the I channel component and the Q channel component of the constellation point are set to one 63, —61,...—3, —1 , +1, +3, ..., +61, +63. Generally, when the number of modulation bits of each of the channel component and the Q channel component is L, the coordinate of the constellation point of each channel component is one (2 " - 1) or more, and the odd number below (2 " - 1) . In the case of this particular configuration, Ki(xl) and CiUI) are expressed by the following equations. Time & (late) = +1, XI < CM · hour K / x I): -1 - (14) , (2USL) -53- ... (15) 200835169

Cr(xI) = 〇4 (Xl 卜 c w 〇d)+A (xl) X 2α, (2^i^L) 一樣地,Ki(xQ)及Ci(xQ)以下式表示。Cr(xI) = 〇4 (Xl 卜 c w 〇d) + A (xl) X 2α, (2^i^L) Similarly, Ki(xQ) and Ci(xQ) are expressed by the following formula.

KJxQ): -1 時 Ki(xQ) = +l、xQ<Cmi 時 K/xQh-l (2^i^L) …(16) C1(xQ) = 〇 ^ C^xQ) = Cm(xQ) + K^xQ) x 2(W+1) (2 ^ i ^ L) …(17) 第27(a)圖係表示在16QAM的情況之第i 性比λ Γ和第1個近似對數可能性比λ 1的圖。 篸照弟27(a)圖,曲線al表示以習知方式 對數可能性比λ 1。曲線a2表示以上述之方法 似對數可能性比λ 1。直線a2的斜率係和曲線Σ 面(XI = 0)的微分係數相同。即,近似對數可能性 近判定値(xl = 0),將對數可能性比λ丨。愈高精度 •第27(b)圖係表示在16QAM的情況之第2 個對數可能 1所算出之 所算出的近 11之在判定 比λ 1愈接 地近似。 個對數可能 -54- 200835169 性比λ 2°和第2個近似對數可能性比λ 2的圖。 參照第27(b)圖,曲線bl及cl表示以習知方式1所算 出之對數可能性比λ 2°。直線b2及c2表示以上述之方法所 算出的近似對數可能性比λ 2。直線b2的斜率係和曲線b 1 之在判定面(XI = — 2)的微分係數相同。直線c 2的斜率係和 曲線cl之在判定面UI = 2)的微分係數相同。即,近似對數 可能性比λ 2愈接近判定値(xl = 2或—2),將對數可能性比 λ 2°愈高精度地近似。KJxQ): -1, Ki(xQ) = +l, xQ<Cmi, K/xQh-l (2^i^L) (16) C1(xQ) = 〇^ C^xQ) = Cm(xQ) + K^xQ) x 2(W+1) (2 ^ i ^ L) (17) Figure 27(a) shows the i-th ratio λ Γ and the first approximate log probability in the case of 16QAM A graph than λ 1.篸照弟27(a), the curve al shows the logarithmic probability ratio λ 1 in a conventional manner. The curve a2 indicates a log-like probability ratio λ 1 in the above manner. The slope of the line a2 is the same as the differential coefficient of the curve plane (XI = 0). That is, the approximate logarithm likelihood is judged 値(xl = 0), and the log likelihood ratio is λ丨. The higher the accuracy, the 27th (b) diagram shows that the second logarithm in the case of 16QAM may be calculated by the calculation of the nearest 11 which is closer to the determination than λ 1 . The logarithm may be -54- 200835169 Sex ratio λ 2° and the second approximate log likelihood ratio λ 2 plot. Referring to Fig. 27(b), the curves bl and cl indicate the logarithmic probability ratio λ 2° calculated in the conventional manner 1. The straight lines b2 and c2 indicate the approximate logarithmic probability ratio λ 2 calculated by the above method. The slope of the line b2 is the same as the differential coefficient of the curve b 1 at the decision surface (XI = - 2). The slope of the line c 2 is the same as the differential coefficient of the curve c1 at the decision surface UI = 2). That is, the closer to the logarithm likelihood ratio λ 2 is closer to the decision 値 (xl = 2 or -2), and the log likelihood is more accurately approximated than λ 2°.

其次,說明算出這種近似對數可能性比之對數可能性 比算出部76的構造。 第2 8圖係表示第4實施形態之對數可能性比算出部76 的構造圖。 此對數可能性比算出部76,係在所接收的調變信號具 有上述之特定的星座點之配置的情況,即在I頻道成分及Q 頻道成分各自之調變位元數係L的情況,在各頻道成分之 星座點的座標係一(2" — 1)以上,而且(。一1)以下之奇數的 情況,算出近似對數可能性比之裝置。 對數可能性比算出部76首先,根據接收信號之I頻道 成分χΐ導出近似對數可能性比λ I,然後,根據接收信號 之Q頻道成分xQ導出近似對數可能性比λ Q。 參照第28圖,此對數可能性比算出部76具備有近似 式常數決定部43、加減法部4 1、常數記憶部44以及乘法 部42。 -55- 200835169 近似式常數決定部43根據第(14)〜(17)式,算出常數 KiUI)、Ci(xl)、Ki(xQ)以及 Ci(xQ)的値。 加減法部41從接收信號之I頻道成分xl減去常數 Ci(xl)。又,加減法部41從接收信號之Q頻道成分xQ減 去常數Ci(xQ)。 常數記憶部44記憶常數(一 2/σ 2)的値。在此,σ 2係 假設傳送線路是加法性白色雜訊線路時接收信號之I頻道 成分xl及Q頻道成分xQ各自所包含的雜訊成分之發散。Next, the structure of the logarithmic probability ratio calculating unit 76 for calculating the approximate logarithmic probability ratio will be described. Fig. 28 is a structural diagram showing the logarithmic probability ratio calculating unit 76 of the fourth embodiment. The logarithm likelihood ratio calculation unit 76 is configured to have the arrangement of the specific constellation points described above, that is, the case where the number of modulation bits of the I channel component and the Q channel component is L. A device that calculates an approximate logarithmic probability ratio is obtained by using a coordinate system of one of the channel components (2 " The log likelihood ratio calculation unit 76 first derives an approximate log likelihood ratio λ I based on the I channel component 接收 of the received signal, and then derives an approximate log likelihood ratio λ Q based on the Q channel component xQ of the received signal. Referring to Fig. 28, the logarithmic probability ratio calculating unit 76 includes an approximated constant determining unit 43, an addition and subtraction unit 41, a constant memory unit 44, and a multiplication unit 42. -55-200835169 The approximation constant determination unit 43 calculates the 常数 of the constants KiUI), Ci(xl), Ki(xQ), and Ci(xQ) based on the equations (14) to (17). The addition and subtraction unit 41 subtracts the constant Ci(x1) from the I channel component x1 of the received signal. Further, the addition and subtraction unit 41 subtracts the constant Ci(xQ) from the Q channel component xQ of the received signal. The constant memory unit 44 memorizes the 常数 of a constant (a 2/σ 2). Here, σ 2 assumes that the transmission line is the divergence of the noise component contained in each of the I channel component x1 and the Q channel component xQ of the received signal when the transmission line is an additive white noise line.

乘法部42計算加減法部41之計算結果、常數Ki(xl) 或Ki(xQ)以及常數記憶部44內的常數(一 2/σ 2)之積,並輸 出近似對數可能性比λ I、λ Q。 第29圖係表示在第4實施形態之關於接收信號之I頻 道成分的對數可能性比之計算處理的步驟之流程圖。 參照第29圖,首先,近似式常數決定部43將控制變 數i設爲1 (步驟S 1 0 1)。 接著,近似式常數決定部43將常數Ki(xl)設爲一 1, 再將常數Ci(xl)設爲0(步驟S102)。 然後,加減法部4 1從接收信號之I頻道成分χΐ減去常 數CiUI)。又,乘法部42計算減法結果、常數KiUI)以及 常數記憶部44內的常數(一 2/σ 2)之値的積,將其結果作爲 接收信號之I頻道成分xl的第1位元之近似對數可能性比 λ 1(1)並輸出(步驟S103)。 其次,近似式常數決定部4 3將控制變數i僅增加1 (步 -56- 200835169 驟S 104卜 近似式常數決定部43在控制變數i的値係L以下時(在 步驟S105是YES),利用以下的處理,導出第1位元之近 似對數可能性比λ I(i)。在此,L是I頻道成分的調變位元 數。The multiplication unit 42 calculates the product of the calculation result of the addition and subtraction unit 41, the constant Ki(xl) or Ki(xQ), and the constant (a 2/σ 2) in the constant memory unit 44, and outputs an approximate log likelihood ratio λ I , λ Q. Fig. 29 is a flow chart showing the procedure of the calculation process of the logarithmic probability ratio of the I channel component of the received signal in the fourth embodiment. Referring to Fig. 29, first, the approximation constant determining unit 43 sets the control variable i to 1 (step S1 0 1). Next, the approximation constant determination unit 43 sets the constant Ki(x1) to one, and sets the constant Ci(x1) to 0 (step S102). Then, the addition and subtraction unit 41 subtracts the constant CiUI) from the I channel component 接收 of the received signal. Further, the multiplication unit 42 calculates the product of the subtraction result, the constant KiUI) and the constant (a 2/σ 2) in the constant memory unit 44, and uses the result as the approximation of the first bit of the I channel component x1 of the received signal. The logarithmic probability ratio is outputted as λ 1 (1) (step S103). Then, the approximation constant determining unit 43 increases the control variable i by only one (step-56-200835169 step S104, when the approximation constant determining unit 43 is below the control system L of the variable i (YES in step S105), The approximate log likelihood ratio λ I(i) of the first bit is derived by the following processing. Here, L is the number of modulation bits of the I channel component.

近似式常數決定部43在接收信號之I頻道成分xl的値 係前一次所算出之常數Ci-iUI)値以上時(在步驟S106是 YES),將常數Ki(xl)設爲+1,再將上一次所算出之常數已 -Kxl)値和2 i + 1)相加,並將常數Ci〇cI)設爲加法結果的 値(步驟S 1 0 7)。 另一方面,近似式常數決定部43在接收信號之I頻道 成分xl的値係小於前一次所算出之常數Ci- Jxl)値時(在步 驟S106是NO),將常數Ki(xl)設爲—1,再從上一次所算出 之常數Ci- !(χΙ)減去2 i+1),並將常數Ci (xl)設爲減法結 果的値(步驟S108)。 接著,加減法部4 1從接收信號之I頻道成分xl減去常 數Ci (U)。此外,乘法部42計算減法結果、常數KiUI)以 及常數記憶部44內的常數(―2/ σ 2)之値的積,將其結果作 爲接收信號之I頻道成分xl的第i位元之近似對數可能性 比λ I(i)並輸出(步驟S109)。 然後,重複來自步驟S 1 04之處理,而算出近似對數可 能性比λ 1(1)〜λ I(L),並作爲近似對數可能性比λ 1〜λ L輸 出。 -57- 200835169 一樣地,從接收信號之Q頻道成分xQ,算出近似對數 可能性比λ Q(l)〜λ Q(L),並作爲近似對數可能性比λ L+1〜 入2L輸出。 依此方式,從一個接收信號得到2L個近似對數可能性 比λ 1〜λ 2L。然後,在後段之解碼處理部7,每得到碼長 度Ν之個數份量的對數可能性比λ,就按照碼長度Ν之單 位進行錯誤訂正解碼。 (具體例)The approximation constant determination unit 43 sets the constant Ki(xl) to +1 when the constant Ci-iUI) 算出 calculated by the enthalpy of the I channel component x1 of the received signal is equal to or greater than the previous time (YES in step S106). The constant calculated by the last time has been -Kxl) 値 and 2 i + 1), and the constant Ci 〇 cI) is set as the result of the addition (step S 1 0 7). On the other hand, when the 式 system of the I channel component x1 of the received signal is smaller than the constant Ci-Jxl) 前 calculated by the previous time (NO in step S106), the approximate constant constant determining unit 43 sets the constant Ki(xl) to -1, 2 i + 1 is subtracted from the last calculated constant Ci - ! (χΙ), and the constant Ci (xl) is set as the result of the subtraction (step S108). Next, the addition and subtraction unit 41 subtracts the constant Ci (U) from the I channel component x1 of the received signal. Further, the multiplication unit 42 calculates the product of the subtraction result, the constant KiUI), and the constant (-2/σ 2) in the constant memory unit 44, and uses the result as the i-th bit of the I channel component x1 of the received signal. The log likelihood ratio is λ I(i) and is output (step S109). Then, the processing from step S104 is repeated, and the approximate logarithmic probability ratios λ 1(1) to λ I(L) are calculated and output as approximate log likelihood ratios λ 1 to λ L . -57- 200835169 Similarly, the approximate log likelihood ratio λ Q(l) λλ(L) is calculated from the Q channel component xQ of the received signal, and is output as an approximate log likelihood ratio λ L+1 〜2L. In this way, 2L approximate log likelihood ratios λ 1 λ λ 2L are obtained from one received signal. Then, in the decoding processing unit 7 of the subsequent stage, the error correction ratio is performed in units of the code length 每 for each log probability ratio λ of the code length 得到. (Specific example)

第30圖係用以說明常數Ki U1)及Ci (xl)之設定例的 圖。 參照第30圖,將接收信號以64QAM進行調變,而將 接收信號之I頻道成分xl値設爲「-5.5」。因爲將接收信號 以64Q AM進行調變,所以I頻道成分之調變位元數L係3。 首先,設定 Ki (xl)= — 1、Ci (xl) = 0。 接著,因爲xl(=— 5·5)値小於Ci(xl)( = 0),所以設定K2 (xl)= — 1,並設定 C2UI)= CiUI) — 2 (L- 2+" =0 — 2 2= — 4。 然後,因爲xl(=- 5·5)値小於,C2(xl)(= - 4),所以設定 K3(xl)= — 1,並設定 C3(xl)= C2(xl) — 2(L-3 + 1)=— 4-2^- 6。 (計算量) 第3 1(a)圖係表示在習知方式1和上述之本發明的實施 形態之方式的接收信號之I頻道成分xl的對數可能性比之 計算量的比較圖。Fig. 30 is a view for explaining setting examples of the constants Ki U1) and Ci (xl). Referring to Fig. 30, the received signal is modulated by 64QAM, and the I channel component xl 接收 of the received signal is set to "-5.5". Since the received signal is modulated by 64Q AM, the number of modulation bits L of the I channel component is three. First, set Ki (xl)= — 1, and Ci (xl) = 0. Then, since xl(=—5·5)値 is smaller than Ci(xl)(= 0), set K2 (xl)= — 1, and set C2UI)= CiUI) — 2 (L- 2+" =0 — 2 2= — 4. Then, since xl(=- 5·5)値 is less than C2(xl)(= - 4), set K3(xl)= — 1, and set C3(xl)= C2( Xl) — 2(L-3 + 1)=− 4-2^- 6. (Calculation) Fig. 3(a) shows the reception of the conventional mode 1 and the above-described embodiment of the present invention. A comparison of the log likelihood of the I channel component xl of the signal compared to the calculated amount.

參照第31(a)圖,關於加法及減法,在習知方式1係{L -58- 200835169 χ4χ2 ο)個,而在本發明之實施形態的方式係UxL- 1} 個。關於乘法及除法,在習知方式1係{Lx6x2 個,而 在本發明之實施形態的方式係丨3xL - 1}個。關於指數計 算,在習知方式1係{Lx2x2 ,個,而在本發明之實施形 態的方式係0個。關於對數計算,在習知方式1係L個, 而在本發明之實施形態的方式係0個。又,關於IF敘述, 在習知方式1係0個,而在本發明之實施形態的方式係{L -1 }個。Referring to Fig. 31(a), the addition and subtraction are in the conventional mode 1 system {L - 58 - 200835169 χ 4 χ 2 ο ), and the embodiment of the present invention is UxL - 1}. Regarding the multiplication and division, the conventional method 1 is {Lx6x2, and the mode according to the embodiment of the present invention is 丨3xL-1}. Regarding the index calculation, the conventional method 1 is {Lx2x2, and the mode in the embodiment of the present invention is 0. Regarding the logarithmic calculation, there are L in the conventional method 1 and 0 in the embodiment of the present invention. Further, regarding the IF description, there are 0 in the conventional method 1 and {L - 1 } in the embodiment of the present invention.

在將一個計算或IF敘述處理的計算量設爲^ 1」時, 習知方式1之總計算量係{Lx(12x2 +1)}個,而在本發 明之實施形態的方式之總計算量係{ 6xL — 3 }個。如此,在 本發明之實施形態的方式,其計算量比習知方式1少。又, 在本發明之實施形態的方式,因爲不需要花太多計算時間 之指數計算及對數計算,所以可比習知方式1大幅度地縮 短計算時間。 第3 1(b)圖係表示調變位元數L和第31(a)圖之總計算 量的關係之一例的圖。 參照第31(b)圖,在調變位元數L是「2」之情況的總 計算量,習知方式1係「5 0」,而本發明之實施形態的方式 係「9」。又,在調變位元數L是「6」之情況的總計算量, 習知方式1係「2430」,而本發明之實施形態的方式係「33」。 如此,調變位元數L愈大,藉本發明之實施形態的方式之 計算量的減少效果愈顯著。 -59- 200835169 (模擬結果) 第3 2圖係表示習知方式1和本發明之實施形態的方式 之模擬結果的圖。 參照第32圖,各模擬使用10000組的編碼資料,各編 碼資料將碼長度N設爲96,將資訊位元數K設爲48,將同 位位元數Μ設爲48。調變方式使用16〇八“,而錯誤訂正解 碼法使用sum-product解碼法。When the calculation amount of one calculation or IF narration processing is set to ^1", the total calculation amount of the conventional mode 1 is {Lx (12x2 +1)}, and the total calculation amount of the mode of the embodiment of the present invention. System { 6xL — 3 }. As described above, in the embodiment of the present invention, the amount of calculation is smaller than that of the conventional method 1. Further, in the embodiment of the present invention, since the index calculation and the logarithmic calculation which take too much calculation time are not required, the calculation time can be greatly shortened compared to the conventional method 1. Fig. 3(b) is a diagram showing an example of the relationship between the number of modulation bits L and the total calculation amount of the 31st (a) figure. Referring to Fig. 31(b), in the case where the number of modulation bits L is "2", the conventional calculation amount is "50", and the embodiment of the present invention is "9". Further, in the case where the number of modulation bits L is "6", the conventional calculation amount is "2430", and the embodiment of the present invention is "33". Thus, the larger the number of modulation bits L, the more significant the effect of reducing the amount of calculation by the embodiment of the present invention. -59-200835169 (Simulation result) Fig. 3 is a view showing simulation results of the conventional mode 1 and the embodiment of the present invention. Referring to Fig. 32, each simulation uses 10000 sets of coded data. Each coded data sets the code length N to 96, the information bit number K to 48, and the parity bit number to 48. The modulation method uses 16〇8”, and the error correction decoding method uses sum-product decoding.

曲線d 1表示無錯誤訂正的情況之習知方式1的位元錯 誤率。曲線d2表示無錯誤訂正的情況之本發明的實施形態 之方式之位元錯誤率。曲線d3表示有藉sum-product解碼 法之錯誤訂正的情況之習知方式1的位元錯誤率。曲線d4 表示有藉sum-product解碼法之錯誤訂正的情況之本發明 的實施形態之方式之位元錯誤率。 如第32圖所示,曲線dl和曲線d2類似甚至表面上無 法區別的程度,而曲線d3和曲線d4類似甚至表面上無法 區別的程度。因此,若依據此模擬結果,表示本發明之實 施形態的方式具有和習知方式1 一樣的性能。 如以上所示,若依據本實施形態,因爲以簡單之計算 式算出對數可能性比的近似値,所以能以精度和習知方式 1 一樣,而且比習知方式1更少的計算量進行錯誤訂正解 碼。尤其,在接收信號係如第26圖所示之特定的配置之情 況,能以簡單式算出常數Ki、Ci。又,在本實施形態,因 爲根據sum-product解碼法進行錯誤訂正解碼,所以可進行 -60- 200835169 高精度之錯誤訂正。 [第5實施形態] 第5實施形態係有關於一種解碼器,其目的在於減輕 解碼的處理負擔,並進行藉簡化列處理或行處理之解碼法 的錯誤訂正解碼。The curve d 1 represents the bit error rate of the conventional mode 1 in the case of no error correction. The curve d2 indicates the bit error rate of the embodiment of the present invention in the case where no error is corrected. The curve d3 indicates the bit error rate of the conventional mode 1 in the case of the error correction by the sum-product decoding method. The curve d4 indicates the bit error rate in the embodiment of the present invention in the case where the error correction by the sum-product decoding method is performed. As shown in Fig. 32, the curve d1 and the curve d2 are similar to the extent that there is no difference in the surface, and the curve d3 and the curve d4 are similar or even indistinguishable from the surface. Therefore, according to the result of the simulation, the mode showing the embodiment of the present invention has the same performance as the conventional mode 1. As described above, according to the present embodiment, since the approximate 値 of the logarithmic probability ratio is calculated by a simple calculation formula, it is possible to perform the error with the same precision as the conventional method 1 and with less calculation amount than the conventional method 1. Corrected decoding. In particular, in the case where the reception signal is in a specific configuration as shown in Fig. 26, the constants Ki and Ci can be calculated in a simple manner. Further, in the present embodiment, since the error correction decoding is performed based on the sum-product decoding method, it is possible to perform -60-200835169 high-accuracy error correction. [Fifth Embodiment] The fifth embodiment relates to a decoder which is intended to reduce the processing load of decoding and to perform error correction decoding by a decoding method of a simplified column process or a row process.

在這種簡化之錯誤訂正解碼,對數可能性比使用使接 收信號之値或接收信號變成常數倍(此常數係和接收信號 所包含之雜訊成分之分散不相依)的値。 作爲簡化列處理之代表性的解碼法,替代計算第(3)式 的Gallager函數,有係求得將本身除外之最小値的手法之 min-sum解碼法(非專利文獻3)、(5 — min解碼法(酒井等, 「LDPC碼之簡易解碼法和其離散化密度發展法」,信學技 法,IEICE Technical Report,RCS2005 — 42,(2005 — 7),ρρ·13 — 18)、A — min 解碼法(Jones C.,E. ValT e s, M . S mi th, an d J.Villasenor.13 — 16 Oct.2003). u Approximate — Min * Constraint Node Updating for L dp c code Decoding ” ,Military CommunicationsIn this simplified erroneous correction decoding, the logarithmic probability is greater than the use of the 信号 or received signal of the received signal to become a constant multiple (this constant is independent of the dispersion of the noise components contained in the received signal). As a representative decoding method for simplifying the column processing, instead of calculating the Gallager function of the equation (3), there is a min-sum decoding method (Non-Patent Document 3) for obtaining a minimum 値 which excludes itself (Non-Patent Document 3), (5 — Min decoding method (Sakai et al., "Easy Decoding Method of LDPC Code and Its Discrete Density Development Method", IEICE Technical Report, RCS2005 — 42, (2005 — 7), ρρ·13 — 18), A — Min decoding method (Jones C., E. ValT es, M. S mi th, an d J.Villasenor.13 — 16 Oct.2003). u Approximate — Min * Constraint Node Updating for L dp c code Decoding ” ,Military Communications

Conference,200 3,MILCOM 2003·ΙΕΕΕ·)、以及 λ — min 解碼 法(Guilloud F.,Sept.l — 5,2003b. “ λ — min DecodingConference, 200 3, MILCOM 2003·ΙΕΕΕ·), and λ — min decoding method (Guilloud F., Sept.l — 5, 2003b. “ λ — min Decoding

Algorithm of Regular and Irregular LDPC Codes. ”,3rdAlgorithm of Regular and Irregular LDPC Codes. ", 3rd

International Symposium on Turbo Codes &related topics.) 等。其他的作爲簡化列處理之解碼法,有一種方法(特願 2006 — 1 62646號),其進行位元單位之邏輯運算,並近似地 -61- 200835169 算出將本身除外的最小値。International Symposium on Turbo Codes & related topics.) As another decoding method for simplifying column processing, there is a method (Japanese Patent Application No. 2006-1 62646) which performs a logical operation of a bit unit and approximates -61-200835169 to calculate a minimum 除外 which excludes itself.

又,作爲簡化行處理之代表性的解碼法’有APP解碼 法(MarcP.C.Fossorier, “ Reduced Complexity Iterative Decoding of Low — Desity Parity Check Codes Based on Brief Propagation ” ,IEEE Trans.ONFurther, as a representative decoding method for simplifying line processing, there is an APP decoding method (MarcP.C. Fossorier, "Redundant Complexity Iterative Decoding of Low - Desity Parity Check Codes Based on Brief Propagation", IEEE Trans. ON

Communications,Vol.47,No.5,May 1 999,ρρ·673 — 680)、及使 用改良APP解碼法之虛擬對數可能性比的手法(特願2006 - 1 6493 5號)等。在使用虛擬對數可能性比的手法,各行方 塊之列處理的結果全部相加’再將此加法結果和前一時刻 的虛擬對數可能性比相加’而依序更新虛擬對數可能性比。 又,亦可將上述之簡化手法組合並使用。 在以下,以係如上述所示之簡化的解碼法之中的代表 性解碼法之m i η - s U m解碼法爲例說明。 在本實施形態,列處理部及對數可能性比算出部係和 第4實施形態相異,其他係和第4實施形態一樣。 在藉min-sum解碼法之錯誤訂正解碼,列處理部9根 據替代第(1)式之第(18)式,進行計算處理。 f \ Π S㈣人,+An, 1 …⑽ :初期値爲ο 於使用min-sum解碼法之情形,接收信號之I頻道成 分χΐ之近似對數可能性比λ I(i)係以下式表之,以替換第 -62- 200835169 (11)式。 (i: 1 〜L) 一樣地,接收信號之Q頻道成分Xq的近似對數可能 φ 性比λ Q(i)以替代第(12)式之下式表示。 …(20) AQ(i) = -f X K|(xQ) χ |xQ - Cj (xQ)} (i = l-L) 在第(19)式及第(20)式,f係不和接收信號之I頻道成 分xl及Q頻道成分XQ相依的正數。Communications, Vol. 47, No. 5, May 1 999, ρρ·673 — 680), and a method of using the virtual logarithmic probability ratio of the improved APP decoding method (Japanese Patent Application No. 2006 - 1 6493 5). In the method of using the virtual log likelihood ratio, the results of the column processing of each row block are all added together, and then the addition result is added to the virtual log likelihood ratio of the previous time to sequentially update the virtual log likelihood ratio. Moreover, the above simplified methods can also be combined and used. Hereinafter, the m i η - s U m decoding method of the representative decoding method among the simplified decoding methods as described above will be described as an example. In the present embodiment, the column processing unit and the logarithmic possibility ratio calculating unit are different from the fourth embodiment, and the other systems are the same as those in the fourth embodiment. In the error correction decoding by the min-sum decoding method, the column processing unit 9 performs calculation processing in accordance with the equation (18) instead of the equation (1). f \ Π S (four) person, +An, 1 ... (10): initial 値 is ο In the case of using min-sum decoding method, the approximate log likelihood ratio of the I channel component 接收 of the received signal is λ I(i) is the following formula To replace the formula -62- 200835169 (11). (i: 1 to L) Similarly, the approximate logarithm of the Q channel component Xq of the received signal may be expressed as φ Q(i) instead of the following equation (12). ...(20) AQ(i) = -f XK|(xQ) χ |xQ - Cj (xQ)} (i = lL) In equations (19) and (20), f is not and the received signal A positive number of the I channel component xl and the Q channel component XQ.

又,在第(13)式〜第(17)式,此min-sum解碼法亦一樣 地使用。 其次,說明算出這種近似對數可能性比之對數可能性 比算出部5 1的構造。 第3 3圖係表示第5實施形態之對數可能性比算出部5 1 的構造圖。 此對數可能性比算出部5 1係和第4實施形態一樣,係 在所接收的調變信號具有上述之特定的星座點之配置的情 -63- 200835169 況,即在I頻道成分及Q頻道成分各自之調變位元數係1 的情況,在各頻道成分之星座點的座標係一(2b - 1)以上, 而且(2b - 1)以下之奇數的情況,算出近似對數可能性比之 裝置。又,此對數可能性比算出部5 1係和第4實施形態一 樣,首先,根據接收信號之I頻道成分XI導出近似對數可 能性比λ I,然後,根據接收信號之Q頻道成分XQ導出近 似對數可能性比λ Q。Further, in the equations (13) to (17), the min-sum decoding method is also used in the same manner. Next, the structure of the logarithmic probability ratio calculating unit 51 which calculates the approximate logarithmic probability ratio will be described. Fig. 3 is a structural diagram showing the logarithmic probability ratio calculating unit 5 1 of the fifth embodiment. This logarithm likelihood ratio calculation unit 5 1 is the same as the fourth embodiment, and the received modulation signal has the above-described arrangement of the specific constellation points - in the case of the I channel component and the Q channel. In the case where the number of modulation bits of each component is 1, the approximate logarithmic probability ratio is calculated when the coordinate system of each channel component has a coordinate system of one (2b - 1) or more and an odd number of (2b - 1) or less. Device. Further, the logarithmic probability ratio calculating unit 5 1 is similar to the fourth embodiment. First, the approximate log likelihood ratio λ I is derived from the I channel component XI of the received signal, and then the approximation is derived based on the Q channel component XQ of the received signal. The log likelihood is greater than λ Q.

參照第3 3圖,此對數可能性比算出部5 1具備有近似 式常數決定部43、加減法部41、乘法部52以及常數記憶 部54。 近似式常數決定部43及加減法部4 1係和第4實施形 態的相同。 常數記憶部54記憶常數(- f)的値。常數f係和接收信 號之Ϊ頻道成分xl及Q頻道成分xQ不相依的正數。 乘法部52計算加減法部41之計算結果、常數1 (xl) φ 或Ki(xQ)以及常數記憶部54內的常數(―f)之積,並輸出近 似對數可能性比λ I、λ Q。 第34圖係表示在第5實施形態之關於接收信號之I頻 道成分的近似對數可能性比之計算處理的步驟之流程圖。 參照第34圖,首先,近似式常數決定部43將控制變 數i設爲1 (步驟S 1 0 1)。 接著’近似式常數決定部43將常數Ki(xI)設爲一 1,再 將常數Ci(xl)設爲0(步驟Si〇2)。 -64- 200835169 然後,加減法部4 1從接收信號之1頻道成分以減去常 數CiUI)。又,乘法部52計算減法結果、常數KiUI)以及 常數記憶部5 4內的常數(- f)之値的積,將其結果作爲接收 信號之I頻道成分xI的第1位元之近似對數可能性比λ 1(!) 並輸出(步驟S 2 0 3 )。 其次,近似式常數決定部43將控制變數i僅增加1 (步 驟 S104) 〇Referring to Fig. 3, the logarithmic probability ratio calculating unit 5 1 includes an approximate type constant determining unit 43, an addition and subtraction unit 41, a multiplication unit 52, and a constant memory unit 54. The approximation constant determining unit 43 and the addition and subtraction unit 4 1 are the same as those of the fourth embodiment. The constant memory unit 54 stores the 常数 of the constant (-f). The constant f is a positive number in which the channel component x1 and the Q channel component xQ of the received signal are not dependent. The multiplication unit 52 calculates the product of the calculation result of the addition and subtraction unit 41, the constant 1 (xl) φ or Ki (xQ), and the constant (-f) in the constant memory unit 54, and outputs the approximate log likelihood ratio λ I, λ Q . . Fig. 34 is a flow chart showing the procedure of the calculation process of the approximate logarithmic probability ratio of the I channel component of the received signal in the fifth embodiment. Referring to Fig. 34, first, the approximation constant determining unit 43 sets the control variable i to 1 (step S1 0 1). Then, the approximated constant constant determining unit 43 sets the constant Ki(xI) to one, and sets the constant Ci(x1) to 0 (step Si〇2). -64- 200835169 Then, the addition and subtraction unit 4 1 subtracts the constant CiUI) from the channel component of the received signal. Further, the multiplication unit 52 calculates the product of the subtraction result, the constant KiUI), and the constant (-f) in the constant memory unit 54, and uses the result as the approximate logarithm of the first bit of the I channel component xI of the received signal. The sex ratio λ 1 (!) is output (step S 2 0 3 ). Next, the approximation constant determining unit 43 increases the control variable i by only 1 (step S104).

近似式常數決定部43在控制變數i的値係L以下時(在 步驟S105是YES),利用以下的處理,導出第i位元之近似 對數可能性比λ I(i)。在此,L是I頻道成分的調變位元數。 近似式常數決定部43在接收信號之I頻道成分xl的値 係前一次所算出之常數Ci-Kxl)値以上時(在步驟S106是 YES) ’將常數KiUI)設爲+1,再將上一次所算出之常數G -Kxl)値和2 i + 1)相加,並將常數GUI)設爲加法結果的 値(步驟S 1 0 7)。 另一方面,近似式常數決定部4 3在接收信號之I頻道 成分χΐ的値係小於前一次所算出之常數Ci- i(xl)値時(在步 驟S106是NO),將常數ΚΚχΙ)設爲—1,再從上一次所算出 之常數Ci— ΚχΙ)減去2 (Λ— i + 1),並將常數C,(xl)設爲減法結 果的値(步驟S108)。 接著’加減法部41從接收信號之I頻道成分xI減去常 數CiUI)。此外,乘法部52計算減法結果、常數KKxI)以 及常數記憶部54內的常數(一 f)之値的積,將其結果作爲接 -65- 200835169 收信號之I頻道成分xl的第i位元之近似對數可能性比λ I(i)並輸出(步驟S209)。 然後,重複來自步驟S 1 04之處理,而算出近似對數可 能性比λ 1(1)〜;I I(L),並作爲近似對數可能性比λ 1〜λ L輸 出。When the approximation constant determining unit 43 controls the variable L of the variable i or less (YES in step S105), the approximate log likelihood ratio λ I(i) of the i-th bit is derived by the following processing. Here, L is the number of modulation bits of the I channel component. When the constant constant determining unit 43 receives the constant Ci-Kxl) of the I channel component x1 of the received signal from the previous time (YES in step S106), the constant KiUI is set to +1, and then the upper limit is determined. The calculated constant G - Kxl) 一次 and 2 i + 1) are added at a time, and the constant GUI) is set as the result of the addition (step S 1 0 7). On the other hand, when the 式 system of the I channel component χΐ of the received signal is smaller than the constant Ci-i(xl) 前 calculated by the previous time (NO in step S106), the approximation constant determining unit 43 sets the constant ΚΚχΙ) It is -1, and 2 (Λ - i + 1) is subtracted from the last calculated constant Ci - ΚχΙ), and the constant C, (xl) is set as the result of the subtraction result (step S108). Next, the addition and subtraction unit 41 subtracts the constant CiUI from the I channel component xI of the received signal. Further, the multiplication unit 52 calculates the product of the subtraction result, the constant KKxI), and the constant (a f) in the constant memory unit 54, and uses the result as the i-th bit of the I channel component x1 which receives the signal of -65-200835169. The approximate log likelihood ratio is λ I(i) and is output (step S209). Then, the processing from step S104 is repeated, and the approximate logarithmic probability ratio λ 1(1) 〜; I I(L) is calculated and output as the approximate log likelihood ratio λ 1 λ λ L .

一樣地,從接收信號之Q頻道成分xQ,算出近似對數 可能性比λ Q( 1)〜λ Q(L),並作爲近似對數可能性比λ L+ 1〜 λ 2L輸出。 依此方式,從一個接收信號得到2L個近似對數可能性 比λ 1〜λ 2L。在解碼處理部7,每得到碼長度Ν之個數份 量的對數可能性比λ,就按照碼長度Ν之單位進行錯誤訂 正解碼。 如以上所示,若依據本實施形態,和第4實施形態一 樣,能以精度和習知方式1 一樣,而且比習知方式1更少 的計算量進行錯誤訂正解碼,在接收信號係如第26圖所示 φ 之特定的配置之情況,能以簡單式算出常數Ki、Ci。又, 在本實施形態,因爲根據min-sum解碼法進行錯誤訂正解 碼,所以較之s u m - p r q d u c t解碼法,可簡化近似對數可能性 比之計算及錯誤訂正解碼的處理。 [第6實施形態] 第6實施形態係有關於對數可能性比算出部,其具備 有可同時算出複數個近似對數可能性比之硬體構造。 第3 5圖係表示第6實施形態之對數可能性比算出部60 -66- 200835169 的構造圖。 此對數可能性比算出部60係和第4及第5實施形態一 樣,當在所接收的調變信號具有上述之特定的星座點之配 置的情況’即在I頻道成分及Q頻道成分各自之調變位元 數係L的情況’在各頻道.成分之星座點的座標係一(21^ - 1) 以上,而且(2b — 1)以下之奇數的情況,算出近似對數可能 性比之裝置。又,此對數可能性比算出部6 0係和第4及第 5實施形態一樣’首先.,根據接收信號之I頻道成分xI導 出近似對數可能性比λ I,然後,根據接收信號之Q頻道成 分xQ導出近似對數可能性比λ Q。此電路雖然輸出近似對 數可能性比λ I、λ Q之中將sum-product解碼法之係數(― 2/ σ 2)、或min-sum解碼法的係數(一 f)除外的値之絕對値和 符號的,但是權宜上將此係數除外的値作爲是近似對數可 能性比λ .1、λ Q來說明。 此對數可能性比算出部60,在將接收信號以4QAM、 • 16QAM、64QAM、256QAM、1 024Q AM、409 6Q AM 之任一種 進行調變的情況,能依以下所示之方式算出近似對數可能 性比。 (4QAM的情況) 在輸入端子II,輸入接收信號之I頻道成分xl。I頻 道成分xl以2位元的信號Data[6 : 5]表示。信號Data[6 : 5]以2的補數表達。 2位元的信號Data[6 : 5]之從最上階的第1個位元(位 -67- 200835169 元6),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2的最上階位元,再經.由信號線抽出部EX1,被送 至邏輯反電路NOT1。 2位元的信號Data[6: 5]經由匯流排寬度調整用匯流排 Busl及溢流防止用匯流排Bus2被送至絕對値計算電路 Magi °Similarly, the approximate log likelihood ratio λ Q(1) to λ Q(L) is calculated from the Q channel component xQ of the received signal, and is output as the approximate log likelihood ratio λ L+ 1 to λ 2L. In this way, 2L approximate log likelihood ratios λ 1 λ λ 2L are obtained from one received signal. In the decoding processing unit 7, for each logarithm likelihood ratio λ of the code length 得到, the error correction decoding is performed in units of the code length 。. As described above, according to the present embodiment, as in the fourth embodiment, it is possible to perform error correction decoding in the same manner as the conventional method 1 with the same accuracy as the conventional method 1, and the received signal is as described in the first embodiment. In the case of the specific arrangement of φ shown in Fig. 26, the constants Ki and Ci can be calculated in a simple manner. Further, in the present embodiment, since the error correction decoding is performed according to the min-sum decoding method, the processing of the approximate logarithmic probability ratio calculation and the error correction decoding can be simplified as compared with the s u m - p r q d u c t decoding method. [Sixth embodiment] The sixth embodiment relates to a logarithm possibility ratio calculation unit including a hardware structure capable of simultaneously calculating a plurality of approximate logarithmic probability ratios. Fig. 35 is a structural diagram showing the logarithmic probability ratio calculating unit 60-66-200835169 of the sixth embodiment. The logarithm likelihood ratio calculation unit 60 is similar to the fourth and fifth embodiments in that the received modulation signal has the arrangement of the specific constellation points described above, that is, the I channel component and the Q channel component. In the case where the modulation bit number L is 'in the case where the coordinates of the constellation points of the respective channel components are one (21^ - 1) or more, and the odd number is equal to or less than (2b - 1), the approximate logarithmic probability ratio device is calculated. . Further, the logarithmic probability ratio is similar to that of the fourth and fifth embodiments. First, the approximate log likelihood ratio λ I is derived from the I channel component xI of the received signal, and then, based on the Q channel of the received signal. The component xQ derives an approximate log likelihood ratio λ Q . This circuit outputs an approximate logarithmic probability ratio λ I, λ Q which is the absolute coefficient of the coefficient of the sum-product decoding method (― 2/ σ 2) or the coefficient of the min-sum decoding method (a f). And the symbol, but the 値 which is excluded from this coefficient is expedient as an approximate logarithm probability ratio λ.1, λ Q . When the received signal is modulated by any one of 4QAM, 16QAM, 64QAM, 256QAM, 1 024Q AM, and 409 6Q AM, the logarithm likelihood ratio calculating unit 60 can calculate the approximate logarithm as follows. Sex ratio. (In the case of 4QAM) At the input terminal II, the I channel component x1 of the received signal is input. The I channel component xl is represented by a 2-bit signal Data[6:5]. The signal Data[6:5] is expressed in 2's complement. The 2-bit signal Data[6:5] is from the uppermost first bit (bit -67-200835169 yuan 6), via the bus width adjustment bus bus 1 and the overflow prevention bus bus Bus2 The uppermost bit is sent to the logic inverse circuit NOT1 by the signal line extraction unit EX1. The 2-bit signal Data[6: 5] is sent to the absolute 値 calculation circuit via the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2.

邏輯反電路NOT1將2位元的信號Data[6: 5]之從最上 階的第1個位元(位元6)變成反相,再將其作爲第1個近似 對數可能性比λ 1(1)的符號,並經由匯流排寬度調整用匯流 排B u s 3向輸出端子Ο 1輸出。 絕對値計算電路Magi計算2位元的信號Data[6 : 5] 的絕對値,再將其作爲第1個近似對數可能性比λ 1( 1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整 用匯流排Bus9向輸出端子07輸出。 以未圖示的乘法電路將從輸出端子01所輸出之第1 φ 個近似對數可能性比λ 1(1)的符號和從輸出端子07所輸出 之第1個近似對數可能性比λ 1(1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1( 1) 輸出。 一樣地,在輸入端子II輸入接收信號之Q頻道成分 xQ,並輸出近似對數可能性比λ Q(l)。 在解碼處理部7根據sum-pro duct解碼法進行錯誤訂正 解碼的情況,以未圖示的乘法電路對近似對數可能性比λ -68- 200835169 1(1)、λ Q(l)乘以(―2/ σ 2)的値,將乘法結果作爲(已考慮 係數)近似對數可能性比並送至解碼處理部7。在解碼處理 部7根據min-sum解碼法進行錯誤訂正解碼的情況,以未 圖示的乘法電路對近似對數可能性比λ I (1 )、λ Q (1)乘以 (- f)的値,將乘法結果作爲(已考慮係數)近似對數可能性 比並送至解碼處理部7。 (16QAM的情況)The logic inverse circuit NOT1 changes the 2-bit signal Data[6:5] from the uppermost first bit (bit 6) to the inversion, and uses it as the first approximate log likelihood ratio λ 1 ( The symbol of 1) is output to the output terminal Ο 1 via the bus width adjustment bus bar B us 3 . The absolute 値 calculation circuit Magi calculates the absolute 値 of the 2-bit signal Data[6 : 5], and uses it as the absolute 値 of the first approximate log likelihood ratio λ 1( 1), and via the overflow prevention bus The Bus 1 5 and the busbar width adjustment busbar Bus9 are output to the output terminal 07. The first φ approximate log likelihood ratio λ 1 (1) sign output from the output terminal 01 and the first approximate log likelihood ratio λ 1 outputted from the output terminal 07 by a multiplication circuit (not shown) 1) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1( 1). Similarly, the Q channel component xQ of the received signal is input to the input terminal II, and the approximate logarithmic probability ratio λ Q(l) is output. When the decoding processing unit 7 performs error correction decoding based on the sum-pro duct decoding method, the approximate logarithmic probability ratio λ -68 - 200835169 1(1), λ Q(l) is multiplied by a multiplication circuit (not shown) ( In the case of ―2/ σ 2), the result of the multiplication is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit 7. When the decoding processing unit 7 performs error correction decoding based on the min-sum decoding method, the approximate logarithmic probability ratio λ I (1 ) and λ Q (1) are multiplied by (-f) by a multiplication circuit (not shown). The multiplication result is approximated to the log likelihood ratio (considered coefficient) and sent to the decoding processing unit 7. (in the case of 16QAM)

在輸入端子Π,輸入接收信號之I頻道成分xl。I頻 道成分xl以3位元的信號Data[6: 4]表示。信號Data[6: 4]以2的補數表達。 3位元的信號Data[6 : 4]之從最上階的第1個位元(位 元6),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2的最上階位元,再經由信號線抽出部EX1,被送 至邏輯反電路NOT1。 3位元的信號Data[6 : 4]之從最上階的第2個位元(位 φ 元5),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第2個位元,再經由信號線抽出部 EX2,被送至互斥邏輯或電路XOR2,而且被送至邏輯反電 路NOT3。邏輯反電路NOT3的輸出被送至內建匯流排BL2 之從最上階的第1個位元及從最上階的第2個位元。 3位兀的信號D a t a [ 6 : 4 ]之從最上階的第3個位元(位 元4) ’經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第3個位元,再經由信號線抽出部 -69- 200835169 EX3,被送至內建匯流排BL2之從最上階的第3個位元。 3位元之信號Data[6 : 4]經由匯流排寬度調整用匯流排 Busl及溢流防止用匯流排Bus2,被送至絕對値計算電路 M a g 1 〇 邏輯反電路NOT1將3位元的信號Data [6: 4]之從最上 階的第1個位元(位元6)變成反相,再將其向互斥邏輯或電 路X0R2輸出,而且將其作爲第1個近似對數可能性比λ 1(1) 的符號,並經由匯流排寬度調整用匯流排Bus3向輸出端子At the input terminal Π, the I channel component x1 of the received signal is input. The I channel component xl is represented by a 3-bit signal Data[6:4]. The signal Data[6:4] is expressed in 2's complement. The 3-bit signal Data[6:4] is transmitted from the uppermost first bit (bit 6) via the bus width adjustment bus bus 1 and the overflow prevention bus bus 2 to the uppermost bit. Then, it is sent to the logic counter circuit NOT1 via the signal line extracting unit EX1. The 3-bit signal Data[6:4] is from the topmost second bit (bit φ element 5), and the bus bar width adjustment bus bar Bus1 and the overflow prevention bus bar Bus2 are from the topmost level. The second bit is sent to the exclusive OR circuit XOR2 via the signal line extracting unit EX2, and is sent to the logic counter circuit NOT3. The output of the logic inverse circuit NOT3 is sent to the first bit from the topmost order and the second bit from the topmost stage of the built-in bus bar BL2. The 3-bit 兀 signal D ata [ 6 : 4 ] is from the top third bit (bit 4) 'By the bus bar width adjustment bus bus 1 and the overflow prevention bus bar Bus2 from the top The third bit is sent to the third bit from the top of the built-in bus bar BL2 via the signal line extraction unit -69-200835169 EX3. The 3-bit signal Data[6:4] is sent to the absolute 値 calculation circuit M ag 1 via the bus width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 〇 the logic inverse circuit NOT1 is a 3-bit signal Data [6: 4] changes from the first bit (bit 6) of the top to the inversion, and then outputs it to the mutually exclusive logic OR circuit X0R2, and uses it as the first approximate log likelihood ratio λ. 1 (1) symbol, and through bus bar width adjustment bus Bus3 to the output terminal

〇1輸出。 互斥邏輯或電路X0R2算出3位元的信號Data [6 : 4] 之從最上階的第1個位元(位元6)之反相値和3位元的信號 Data[6:4]之從最上階的第2個位元(位元5)之互斥邏輯或, 再將其作爲第2個近似對數可.能性比λ 1(2)的符號,並經由 匯流排寬度調整用匯流排Bus4向輸出端子02輸出。 絕對値計算電路Magi計算3位元的信號Data[6: 4] φ 的絕對値,再將其作爲第1個近似對數可能性比λ 1( 1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整 用匯流排Bus9向輸出端子07輸出。 內建匯流排BL2將3條匯流排(第4位元〜第6位元)集 中成1條匯流排。 絕對値計算電路Mag2計算以3位元的信號Data[6 : 4] 之從最上階的第2個位元(位元5)之反相値爲最上階位元、 以3位元的信號Data[6 : 4]之從最上階的第2個位元(位元 -70- 200835169 5)之反相値爲從最上階的第2個位元、以及以3位元的信 號Data[6 : 4]之從最上階的第3個位元(位元4)爲從最上階 之第3個位元的3位元値之絕對値,再將其作爲第2個近 似對數可能性比A 1(2)的絕對値,並經由溢流防止用匯流排 Busl6及匯流排寬度調整用匯流排BuslO向輸出端子〇8輸 出。〇1 output. The mutually exclusive logic OR circuit X0R2 calculates the inverse of the first bit (bit 6) and the signal of the 3-bit signal Data[6:4] of the 3-bit signal Data [6:4]. From the mutually exclusive logical OR of the second bit (bit 5) of the uppermost order, it is used as the symbol of the second approximate logarithm logarithm energy ratio λ 1(2), and is adjusted by the bus width adjustment. The row Bus4 is output to the output terminal 02. The absolute 値 calculation circuit Magi calculates the absolute 値 of the 3-bit signal Data[6: 4] φ and uses it as the absolute 値 of the first approximate log likelihood ratio λ 1( 1), and the sink for overflow prevention The row Bus 1 5 and the bus bar width adjustment bus bar Bus9 are output to the output terminal 07. The built-in bus bar BL2 integrates three bus bars (4th to 6th bits) into one bus. The absolute 値 calculation circuit Mag2 calculates the inverse of the second-order bit (bit 5) of the 3-bit signal Data[6:4] as the uppermost bit, and the signal of the 3-bit data. [6: 4] The inverse of the second bit from the top (bit -70-200835169 5) is the second bit from the top and the signal of the 3-bit Data[6: 4] The third bit from the top (bit 4) is the absolute 値 of the 3-bit 从 from the third bit of the top, and then it is taken as the second approximate log likelihood ratio A 1 The absolute enthalpy of (2) is output to the output terminal 〇8 via the overflow prevention bus bar Bus16 and the bus bar width adjustment bus bar BuslO.

以未圖示的乘法電路將從輸出端子01所輸出之第1 個近似對數可能性比λ 1(1)的符號和從輸出端子07所輸出 之第1個近似對數可能性比λ 1(1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ I (1) 輸出。 以未圖示的乘法電路將從輸出端子02所輸出之第2 個近似對數可能性比λ 1(2)的符號和從輸出端子〇8所輸出 之第2個近似對數可能性比λ 1(2)的絕對値相乘(即,經由 對絕對値附加符號的電路)’並作爲近似對數可能性比λ 1(2) 輸出。 一樣地,在輸入端子II輸入接收信號之Q頻道成分 XQ,並輸出近似對數可能性比λ Q(l)、λ Q(2)。 在解碼處理部7根據s u m - p r o d u c t解碼法進行錯誤訂正 解碼的情況,以未圖示的乘法電路對近似對數可能性比λ 1(1)、又1(2)、AQ(1)、AQ⑺乘以(―2/σ2)的値,將乘法 結果作爲(已考慮係數)近似對數可能性比並送至解碼處理 部7。在解碼處理部7根據m i η - s u m解碼法進行錯誤訂正解 -71- 200835169 碼的情況,以未圖示的乘法電路對近似對數可能性比λ 1(1)、λ 1(2)、λ Q(l)、λ Q(2)乘以(一 f)的値,將乘法結果 作爲(已考慮係數)近似對數可能性比並送至解碼處理部7。 (64QAM的情況) 在輸入端子II,輸入接收信號之I頻道成分xl。〗頻 道成分χΐ以4位元的信號Data[6 ·· 3]表示。信號DaU[6 : 3 ]以2的補數表達。The first approximate logarithmic probability ratio λ 1 (1) of the output from the output terminal 01 and the first approximate log likelihood ratio λ 1 (1) output from the output terminal 07 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ I (1). The second approximate logarithmic probability ratio λ 1 (2) from the output terminal 02 and the second approximate log likelihood ratio λ 1 outputted from the output terminal 以 8 by a multiplication circuit (not shown). 2) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute ))' and is output as an approximate log likelihood ratio λ 1(2). Similarly, the Q channel component XQ of the received signal is input to the input terminal II, and the approximate log likelihood ratios λ Q(l) and λ Q(2) are output. When the decoding processing unit 7 performs error correction decoding based on the sum-product decoding method, the multiplication circuit (not shown) multiplies the approximate logarithmic probability ratios λ 1 (1), 1 (2), AQ (1), and AQ (7). The result of the multiplication is approximated to the logarithmic probability ratio (considered coefficient) by the (((2/σ2) 并 and sent to the decoding processing unit 7. When the decoding processing unit 7 performs the error correction solution-71-200835169 code according to the mi η - sum decoding method, the approximate log likelihood ratios λ 1(1), λ 1(2), and λ are used by a multiplication circuit pair (not shown). When Q(l) and λ Q(2) are multiplied by (f), the multiplication result is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit 7. (In the case of 64QAM) At the input terminal II, the I channel component x1 of the received signal is input. The channel component χΐ is represented by a 4-bit signal Data[6 ·· 3]. The signal DaU[6:3] is expressed in 2's complement.

4位元的信號Data[6 : 3]之從最上階的第1個位元(位 元6),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2的最上階位元,再經由信號線抽出部EX1,被送 至邏輯反電路NOT1。 4位元的信號Data [6 : 3]之從最上階的第2個位元(位 元5),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第2個位元,再經由信號線抽出部 EX2,被送至互斥邏輯或電路 XOR2及互斥邏輯或電路 φ XOR3,而且被送至邏輯反電路NOT3。邏輯反電路NOT3 的輸出被送至內建匯流排BL2之從最上階的第1個及從最 上階的第2個位元。 4位元的信號Data[6 : 3]之從最上階的第3個位元(位 元4),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第3個位元,再經由信號線抽出部 EX3,被送至互斥邏輯或電路XOR3、內建匯流排BL2之從 最上階的第3個位元以及邏輯反電路NOT4。邏輯反電路 -72- 200835169 NOT4之輸出被送至內建匯流排BL3之從最上階的第1個及 從最上階的第2個位元。 4位元的信號Data[6 : 3]之從最上階的第4個位元(位 元3),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第4個位元,再經由信號線抽出部 EX4,被送至內建匯流排BL2之從最上階的第4個位元、 內建匯流排BL3之從最上階的第3個位元。The 4-bit signal Data[6:3] is transmitted from the uppermost first bit (bit 6) via the bus width adjustment bus bus 1 and the uppermost bit of the overflow prevention bus bus Bus2. Then, it is sent to the logic counter circuit NOT1 via the signal line extracting unit EX1. The 4-bit signal Data [6:3] is from the topmost second bit (bit 5), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. The two bits are sent to the exclusive OR circuit XOR2 and the exclusive OR circuit φ XOR3 via the signal line extraction unit EX2, and are sent to the logic inverse circuit NOT3. The output of the logic inverse circuit NOT3 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL2. The 4-bit signal Data[6:3] is transmitted from the topmost third bit (bit 4) through the bus bar width adjustment bus bus 1 and the overflow prevention bus bar Bus2 from the topmost The third bit is further supplied to the exclusive logic OR circuit XOR3, the third bit from the uppermost stage, and the logical inverse circuit NOT4 via the signal line extracting unit EX3. Logic Inverse Circuit -72- 200835169 The output of NOT4 is sent to the first bit from the top and the second bit from the top of the built-in bus BL3. The 4-bit signal Data[6:3] is from the topmost fourth bit (bit 3), via the bus bar width adjustment bus bar Bus 1 and the overflow prevention bus bar Bus2 from the topmost The fourth bit is further sent to the fourth bit from the top of the built-in bus bar BL2 and the third bit from the topmost stage of the built-in bus bar BL2 via the signal line extracting portion EX4.

4位元之信號Data[6: 3]經由匯流排寬度調整用匯流排 Busl及溢流防止用匯流排Bus2,被送至絕對値計算電路 Mag 1 ° 邏輯反電路NOT1將4位元的信號Data[6: 3]之從最上 階的第1個位元(位元6)變成反相,再將其向互斥邏輯或電 路XOR2輸出,而且將其作爲第1個近似對數可能性比λ 1(1 Γ 的符號’並經由匯流排寬度調整用匯流排Bus3向輸出端子 〇1輸出。 互斥邏輯或電路XOR2算出4位元的信號Data [6 : 3] 之從最上階的第1個位元(位元6)之反相値和4位元的信號 Data[6: 3]之從最上階的第2個位元(位元5)之互斥邏輯或, 再將其作爲第2個近似對數可能性比λ 1(2)的符號,並經由 匯流排寬度調整用匯流排Bus4向輸出端子〇2輸出。 互斥邏輯或電路X〇R3,算出4位元的信號Data [6 : 3] 之從最上階的第2個位元(位元5)和4位元的信號Data [6 : 3]之從最上階的第3個位元(位元4)之互斥邏輯或,再將其 -73- 200835169 作爲第3個近似對數可能性比λ 1(3)的符號,並經由匯流排 寬度調整用匯流排Bus5向輸出端子03輸出。 內建匯流排BL2將4條匯流排(第0位元〜第3位元)集 中成1條匯流排。內建匯流排BL3將3條匯流排(第〇位元 〜第2位元)集中成1條匯流排。 絕對値計算電路Magi計算4位元的信號Data[6 : 3] 的絕對値,再將其作爲第1個近似對數可能性比λ 1(1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整The 4-bit signal Data[6:3] is sent to the absolute 値 calculation circuit Mag 1 via the bus width adjustment bus bus Bus1 and the overflow prevention bus bus Bus2. The logic counter circuit NOT1 will be the 4-bit signal Data. [6: 3] changes from the first bit (bit 6) of the top to the inversion, and then outputs it to the mutually exclusive logic OR circuit XOR2, and uses it as the first approximate log likelihood ratio λ 1 (1 Γ symbol ' is output to the output terminal 经由1 via the bus width adjustment bus bus Bus3. The exclusive logic OR circuit XOR2 calculates the 4-bit signal Data [6: 3] from the uppermost first bit The inverse 値 of the element (bit 6) and the mutually exclusive logical OR of the second bit (bit 5) of the signal Data[6:3] of the 4-bit, and then the second The sign of the approximate logarithmic probability ratio λ 1(2) is output to the output terminal 〇2 via the bus width adjustment bus bus Bus4. The exclusive logic OR circuit X〇R3 calculates the 4-bit signal Data [6: 3 From the top-level second bit (bit 5) and the 4-bit signal Data [6:3] from the top-order third bit (bit 4) of the mutually exclusive logical OR, and then will -73- 200835169 As the symbol of the third approximate logarithmic probability ratio λ 1 (3), it is output to the output terminal 03 via the bus bar width adjustment bus bar Bus5. The built-in bus bar BL2 will have 4 bus bars (0th The bit to the third bit are concentrated into one bus. The built-in bus BL3 concentrates three bus bars (the third bit to the second bit) into one bus. Absolute 値 calculation circuit Magi calculation 4 The absolute 値 of the bit signal Data[6:3] is taken as the absolute 値 of the first approximate logarithmic probability ratio λ 1(1), and via the overflow prevention bus bar Bus 1 5 and the bus bar width Adjustment

用匯流排Bus9向輸出端子07輸出。 絕對値計算電路Mag2計算以4位元的信號Data[6 : 3] 之從最上階的第2個位元(位元5)之反相値爲最上階位元、 以4位元的信號Data[6 : 3]之從最上階的第2個位元(位元 5)之反相値爲從最上階的第2個位元、以及以4位元的信 號Data[6: 3]之從最上階的第1(3 S IS 4)個位元値爲從最上 階之第I個位元的4位元値之絕對値,再將其作爲第2個 φ 近似對數可能性比λ 1(2)的絕對値,並經由溢流防止用匯流 排Bus 16及匯流排寬度調整用匯流排Bus 10向輸出端子〇8 輸出。 絕對値計算電路Mag3計算以4位元的信號Data[6 : 3] 之從最上階的第3個位元(位元4)之反相値爲最上階位元、 以4位元的信號Data[6 : 3]之從最上階的第3個位元(位元 4)之反相値爲從最上階的第2個位元、以及以4位元的信 號Data[6: 3]之從最上階的第4個位元値爲從最上階之第3 -74- 200835169 個位元的3位元値之絕對値,再將其作爲第3個近似對數 可能性比λ 1(3)的絕對値,並經由溢流防止用匯流排Bus 17 及匯流排寬度調整用匯流排Busll向輸出端子09輸出。It is output to the output terminal 07 by the busbar Bus9. The absolute 値 calculation circuit Mag2 calculates the inverse of the second bit (bit 5) of the 4-bit signal Data[6:3] from the uppermost 値 to the uppermost bit, and the 4-bit signal Data. [6:3] The inverse of the second bit (bit 5) from the top is the second bit from the top and the signal of the 4-bit signal Data[6:3] The first (3 S IS 4) bit 最 of the uppermost order is the absolute 値 of the 4-bit 値 from the first-order first bit, and is used as the second φ approximate log likelihood ratio λ 1 ( The absolute enthalpy of 2) is output to the output terminal 〇8 via the overflow prevention bus row Bus 16 and the bus bar width adjustment bus bar Bus 10. The absolute 値 calculation circuit Mag3 calculates the inverse of the third bit (bit 4) of the 4-bit signal Data[6:3] as the uppermost bit and the 4-bit signal Data. [6:3] The inverse of the third bit (bit 4) from the top is the second bit from the top and the signal of the 4-bit signal Data[6:3] The fourth bit of the topmost level is the absolute 値 of the 3-bit 第 from the top of the 3rd - 74th to the 200835169 bits, and is taken as the 3rd approximation log likelihood ratio λ 1(3) Absolutely, the bus bar Bus 17 for overflow prevention and the bus bar Busll for bus bar width adjustment are output to the output terminal 09.

以未圖示的乘法電路將從輸出端子0 1所輸出之第1 個近似對數可能性比A 1(1)的符號和從輸出端子07所輸出 之第1個近似對數可能性比λ 1(1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1( 1) 輸出。 以未圖示的乘法電路將從輸出端子02所輸出之第2 個近似對數可能性比λ 1(2)的符號和從輸出端子08所輸出 之第2個近似對數可能性比λ 1(2)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(2) 輸出。 以未圖示的乘法電路將從輸出端子03所輸出之第3 個近似對數可能性比λ 1(3)的符號和從輸出端子09所輸出 φ 之第3個近似對數可能性比λ 1(3)的絕對値相乘(g卩,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(3) 輸出。 一樣地,在輸入端子II輸入接收信號之Q頻道成分 xQ,並輸出近似對數可能性比λ Q(l)、λ Q(2)、λ Q(3)。 在解碼處理部7根據sum-product解碼法進行錯誤訂正 解碼的情況,以未圖示的乘法電路對近似對數可能性比λ 1(1)、又1(2)、 λΙ(3)、 AQ(1)、 ;IQ(2)、 ;IQ(3)乘以(一2/ -75- 200835169 σ 2)的値,將乘法結果作爲(已考慮係數)近似對數可能性比 並送至解碼處理部7。在解碼處理部7根據min-sum解碼法 進行錯誤訂正解碼的情況,以未圖示的乘法電路對近似對 數可能性比 λ 1(1)、Λ 1(2)、λ 1(3)、λ Q(l) ' λ Q(2)、λ Q(3) 乘以(一 f)的値,將乘法結果作爲(已考慮係數)近似對數可 能性比並送至解碼處理部7。 (256QAM的情況)The first approximate logarithmic probability ratio A 1 (1) of the output from the output terminal 0 1 and the first approximate log likelihood ratio λ 1 outputted from the output terminal 07 by a multiplication circuit (not shown). 1) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1( 1). The second approximate log likelihood ratio λ 1 (2) from the output terminal 02 and the second approximate log likelihood ratio λ 1 (2) output from the output terminal 08 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(2). The third approximate logarithmic probability ratio λ 1 (3) from the output terminal 03 and the third approximate log likelihood ratio λ 1 from the output terminal 09 are multiplied by a multiplication circuit (not shown). 3) The absolute 値 is multiplied (g卩, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(3). Similarly, the Q channel component xQ of the received signal is input to the input terminal II, and the approximate logarithmic probability ratios λ Q(l), λ Q(2), and λ Q(3) are output. When the decoding processing unit 7 performs error correction decoding based on the sum-product decoding method, the approximate logarithmic probability ratios λ 1 (1), 1 (2), λ Ι (3), and AQ (for the multiplication circuit pair (not shown) are used. 1), ; IQ(2), ; IQ(3) are multiplied by (一2/ -75- 200835169 σ 2), and the multiplication result is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit. 7. In the case where the decoding processing unit 7 performs error correction decoding based on the min-sum decoding method, the approximate logarithmic probability ratio λ 1(1), Λ 1(2), λ 1(3), λ is performed by a multiplication circuit pair (not shown). Q(l) ' λ Q (2) and λ Q (3) are multiplied by (f), and the result of the multiplication is approximated to the log likelihood ratio as (considered coefficient) and sent to the decoding processing unit 7. (in the case of 256QAM)

在輸入端子II,輸入接收信號之I頻道成分xl。I頻 道成分χΐ以5位元的信號Data[6 : 2]表示。信號Data[6 : 2]以2的補數表達。 5位元的信號Data [6 : 2]之從最上階的第1個位元(位 元6),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2的最上階位元,再經由信號線抽出部EX1,被送 至邏輯反電路NOT1。 5位元的信號Data[6 : 2]之從最上階的第2個位元(位 元5),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第2個位元,再經由信號線抽出部 k EX2,被送至互斥邏輯或電路X〇R2及互斥邏輯或電路 XOR3,而且被送至邏輯反電路NOT3。邏輯反電路NOT3 的輸出被送至內建匯流排BL2之從最上階的第1個及從最 上階之第2個位元。 5位元的信號Data[6 : 2]之從最上階的第3個位元(位 元4),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 -76 - 200835169 流排Bus2之從最上階的第3個位元,再經由信號線抽出部 EX3,被送至互斥邏輯或電路XOR3、互斥邏輯或電路 XOR4、內建匯流排BL2之從最上階的第3個位元以及邏輯 反電路NOT4。邏輯反電路NOT4的輸出被送至內建匯流排 BL3之從最上階的第1個及從最上階的第2個位元。At the input terminal II, the I channel component x1 of the received signal is input. The I channel component is represented by a 5-bit signal Data[6:2]. The signal Data[6:2] is expressed in 2's complement. The 5-bit signal Data [6: 2] is transmitted from the uppermost first bit (bit 6) via the bus width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2. Then, it is sent to the logic counter circuit NOT1 via the signal line extracting unit EX1. The 5-bit signal Data[6:2] is from the topmost second bit (bit 5), via the bus bar width adjustment bus bar Bus 1 and the overflow prevention bus bar Bus2 from the topmost The second bit is sent to the exclusive OR circuit X〇R2 and the exclusive OR circuit XOR3 via the signal line extraction unit k EX2 and sent to the logic inverse circuit NOT3. The output of the logic inverse circuit NOT3 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL2. The 5-bit signal Data[6:2] is from the top third bit (bit 4), and the bus bar width adjusting bus bus Bus1 and the overflow preventing bus sink-76 - 200835169 bus bar Bus2 From the third bit of the uppermost level, and then to the exclusive OR circuit XOR3, the exclusive logic OR circuit XOR4, and the third bit from the topmost stage of the built-in bus bar BL2 via the signal line extracting unit EX3. And the logic inverse circuit NOT4. The output of the logic inverse circuit NOT4 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL3.

5位元的信號Data[6 : 2]之從最上階的第4個位元(位 元3),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第4個位元,再經由信號線抽出部 EX4,被送至互斥邏輯或電路XOR4、內建匯流排BL2之從 最上階的第4個位元、內建匯流排BL3之從最上階的第3 個位元以及邏輯反電路NOT5。邏輯反電路NOT5之輸出被 送至內建匯流排BL4之從最上階的第1個及從最上階的第 2個位元。 5位元的信號Data [6 : 2]之從最上階的第5個位元(位 元2),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 φ 流排Bus2·之從最上階的第5個位元,再經由信號線抽出部 EX5,被送至內建匯流排BL2之從最上階的第5個位元、 內建匯流排BL3之從最上階的第4個位元、以及內建匯流 排BL4之從最上階的第3個位元。 5位元之信號Data[6: 2]經由匯流排寬度調整用匯流排 Busl及溢流防止用匯流排Bus2,被送至絕對値計算電路 M a g 1 〇 邏輯反電路NOT1將5位元的信號Data[6: 2]之從最上 -77- 200835169 階的第1個位元(位元6)變成反相,再將其向互斥邏輯或電 路XOR2輸出,而且將其作爲第1個近似對數可能性比λ 1(1) 的符號,並經由匯流排寬度調整用匯流排Bus3向輸出端子 01輸出。The 5-bit signal Data[6:2] is from the top 4th bit (bit 3), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. 4 bits are then sent to the exclusive logic OR circuit XOR4 via the signal line extraction unit EX4, the fourth bit from the topmost level of the built-in bus bar BL2, and the uppermost stage from the built-in bus bar BL3. 3 bits and logical inverse circuit NOT5. The output of the logic inverse circuit NOT5 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL4. The 5-bit signal Data [6: 2] is from the top 5th bit (bit 2), and the bus bar width adjustment bus bus 1 and the overflow prevention bus φ bus bar Bus2· The fifth bit of the uppermost order is sent to the fifth bit from the topmost stage of the built-in bus bar BL2, and the fourth bit from the topmost stage of the built-in bus bar BL2 via the signal line extracting portion EX5. The third and the third bit from the top of the built-in bus bar BL4. The 5-bit signal Data[6: 2] is sent to the absolute 値 calculation circuit M ag 1 via the bus width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 〇 the logic inverse circuit NOT1 is a 5-bit signal The first bit (bit 6) of Data[6: 2] from the top-77-200835169 becomes inverted, and then outputs it to the mutually exclusive logic OR circuit XOR2, and uses it as the first approximate logarithm The symbol of the probability ratio λ 1 (1) is output to the output terminal 01 via the bus bar width adjustment bus line Bus3.

互斥邏輯或電路XOR2算出5位元的信號Data[6 : 2] 之從最上階的第1個位元(位元6)之反相値和5位元的信號 Data[6: 2]之從最上階的第2個位元(位元5)之互斥邏輯或, 再將其作爲第2個近似對數可能性比λ 1(2)的符號,並經由 匯流排寬度調整用匯流排Bus4向輸出端子02輸出。 \ 互斥邏輯或電路XOR3算出5位元的信號Data [6 : 2] 之從最上階的第2個位元(位元5)和5位元的信號Data [6 : 2]之從最上階的第3個位元(位元4)之互斥邏輯或,再將其 作爲第3個近似對數可能性比λ 1(3)的符號,並經由匯流排 寬度調整用匯流排Bus5向輸出端子03輸出。 互斥邏輯或電路X0R4算出5位元的信號Data[6 : 2] φ 之從最上階的第3個位元(位元4)和5位元的信號Data[6 : 2]之從最上階的第4個位元(位元3)之互斥邏輯或,再將其 作爲第4個近似對數可能性比λ 1(4)的符號,並經由匯流排 寬度調整用匯流排Bus6向輸出端子04輸出。 內建匯流排BL2將5條匯流排(第0位元〜第4位元)集 中成1條匯流排。內建匯流排BL3將4條匯流排(第〇位元 〜第3位元)集中成1條匯流排。內建匯流排BL4將3條匯 流排(第0位元〜第2位元)集中成1條匯流排。 -78- 200835169 絕對値計算電路Magi計算5位兀的信號Data[6: 2] 的絕對値,再將其作爲第1個近似對數可能性比λ 1(1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整 用匯流排Bus9向輸出端子07輸出。The mutually exclusive logic OR circuit XOR2 calculates the inverse phase 从 of the first bit (bit 6) and the signal of the 5-bit signal Data[6: 2] of the 5-bit signal Data[6:2] From the mutually exclusive logical OR of the second bit (bit 5) of the uppermost order, it is used as the symbol of the second approximate log likelihood ratio λ 1(2), and is adjusted by the bus width adjustment bus Bus4 Output to the output terminal 02. \ Mutually exclusive logic or circuit XOR3 calculates the 5-bit signal Data [6: 2] from the top second bit (bit 5) and the 5-bit signal Data [6: 2] from the top The mutually exclusive logical OR of the third bit (bit 4) is used as the symbol of the third approximate log likelihood ratio λ 1 (3), and is connected to the output terminal via the bus width adjustment bus bus Bus5 03 output. The mutually exclusive logic OR circuit X0R4 calculates the 5-bit signal Data[6: 2] φ from the uppermost third bit (bit 4) and the 5-bit signal Data[6: 2] from the topmost The mutually exclusive logical OR of the 4th bit (bit 3) is used as the symbol of the 4th approximate logarithmic probability ratio λ 1(4), and is connected to the output terminal via the bus width adjustment bus bus Bus6 04 output. The built-in bus bar BL2 integrates five bus bars (0th bit to 4th bit) into one bus bar. The built-in bus bar BL3 concentrates four bus bars (the third bit to the third bit) into one bus bar. The built-in bus bar BL4 concentrates three bus bars (0th bit to 2nd bit) into one bus bar. -78- 200835169 The absolute 値 calculation circuit Magi calculates the absolute 値 of the 5-bit 兀 signal Data[6: 2], and then uses it as the absolute value of the first approximate log likelihood ratio λ 1(1), and overflows The bus bar Bus 1 5 and the bus bar width adjustment bus bus 9 are output to the output terminal 07.

絕對値計算電路Mag2計算以5位元的信號Data[6 : 2] 之從最上階的第2個位元(位元5)之反相値爲最上階位元、 以5位元的信號Data[6 ·· 2]之從最上階的第2個位元(位元 5)之反相値爲從最上階的第2個位元、以及以5位元的信 號Data[6: 2]之從最上階的第I(3S 5)個位元値爲從最上 階之第I個位元的5位元値之絕對値’再將其作爲第2個 近似對數可能性比λ 1(2)的絕對値,並經由溢流防止用匯流 排Bus 16及匯流排寬度調整用匯流排Bus 1〇向輸出端子〇8 輸出。 絕對値計算電路Mag3計算以5位元的信號Data[6 : 2] 之從最上階的第3個位元(位元4)之反相値爲最上階位元、 φ 以5位元的信號Data[6 : 2]之從最上階的第3個位元(位元 4)之反相値爲從最上階的第2個位元、以及以5位元的信 號Data[6: 2]之從最上階的第個(3SJ‘4)位元値爲從 最上階之第〗個位元的4位元値之絕對値,再將其作爲第3 個近似對數可能性比λ 1(3)的絕對値,並經由溢流防止用匯 流排Busl7及匯流排寬度調整用匯流排Busl 1向輸出端子 09輸出。 絕對値計算電路Mag4計算以5位元的信號Data[6 : 2] -79- 200835169 之從最上階的第4個位元(位元3)之反相値爲最上階位元、 以5位元的信號Data[6 : 2]之從最上階的第4個位元(位元 3)之反相値爲從最上階的第2個位元、以及以5位元的信 號Data[6: 2]之從最上階的第5個位元値爲從最上階之第3 個位元的3位元値之絕對値,再將其作爲第4個近似對數 可能性比λ 1(4)的絕對値,並經由溢流防止用匯流排Bus 18 及匯流排寬度調整用匯流排Busl2向輸出端子010輸出。The absolute 値 calculation circuit Mag2 calculates the 5-bit signal Data[6: 2] from the uppermost second bit (bit 5), the inverse 値 is the uppermost bit, and the 5-bit signal Data [6 ·· 2] The inverse of the second bit (bit 5) from the top is the second bit from the top and the signal of the 5-bit data [6: 2] The first (3S 5)-bit from the top is the absolute 値' of the 5-bit 从 from the first-order first-order bit, and then it is taken as the second approximate log likelihood ratio λ 1(2) The absolute 値 is output to the output terminal 〇 8 via the overflow prevention bus cradle 16 and the bus width adjustment bus BUS 1 . The absolute 値 calculation circuit Mag3 calculates the signal of the 5-bit signal Data[6: 2] from the uppermost third bit (bit 4), the inverse 値 to the uppermost bit, and the φ to the 5-bit signal. The inverse of the third bit (bit 4) from the top of Data[6:2] is the second bit from the top and the signal of the five bits Data[6: 2] The first (3SJ'4) bit from the top is the absolute 値 of the 4-bit 从 from the top of the top, and then the third approximate log likelihood ratio λ 1(3) Absolutely, it is output to the output terminal 09 via the overflow prevention bus bar Busl7 and the bus bar width adjustment bus bar Bus1. Absolute 値 calculation circuit Mag4 calculates the 5-bit signal Data[6: 2] -79- 200835169 from the uppermost fourth bit (bit 3), the inverse 値 is the highest order bit, with 5 bits The inverse of the fourth signal (bit 3) of the signal Data[6:2] from the top is the second bit from the top and the signal of the 5-bit data[6: 2] The 5th bit from the top is the absolute 値 of the 3rd bit from the 3rd bit of the top, and then the 4th nearest logarithm likelihood ratio λ 1(4) Absolutely, it is output to the output terminal 010 via the overflow prevention bus bar 18 and the bus bar width adjustment bus bus Bus1.

以未圖示的乘法電路將從輸出端子01所輸出之第1 個近似對數可能性比λ 1(1)的符號和從輸出端子07所輸出 之第1個近似對數可能性比Λ Ι( 1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1( 1) 輸出。 以未圖示的乘法電路將從輸出端子02所輸出之第2 個近似對數可能性比λ 1(2)的符號和從輸出端子08所輸出 之第2個近似對數可能性比λ 1(2)的絕對値相乘(即,經由 φ 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(2) 輸出。 以未圖示的乘法電路將從輸出端子03所輸出之第3 個近似對數可能性比λ 1(3)的符號和從輸出端子09所輸出 之第3個近似對數可能性比λ 1(3)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(3) 輸出。 以未圖示的乘法電路將從輸出端子04所輸出之第4 -80- 200835169 個近似對數可能性比λ 1(4)的符號和從輸出端子οιο所輸 出之第4個近似對數可能性比λ 1(4)的絕對値相乘(g卩,經 由對絕對値附加符號的電路),並作爲近似對數可能性比入 1(4)輸出。 一樣地,在輸入端子II輸入接收信號之Q頻道成分 X Q,並輸出近似對數可能性比λ Q (1)、λ Q (2)、λ Q (3 )、λ Q(4) 〇 即,在解碼處理部7根據sum-product解碼法進行錯誤 訂正解碼的情況,以未圖示的乘法電路對近似對數可能性 比 λΙ(1)、 λΙ(2)、 λΙ(3)、 λΙ(4)、 AQ(1)、 AQ(2)、 AQ(3)、 λ Q(4)乘以(一2/σ 2)的値,將乘法結果作爲(已考慮係數) 近似對數可能性比並送至解碼處理部7。在解碼處理部7 根據min-sum解碼法進行錯誤訂正解碼的情況,以未圖示 的乘法電路對近似對數可能性比λ 1(1)、λ 1(2)、λ 1(3)、 λ 1(4)、又 Q(l)、 λ Q(2)、λ Q(3)、又 Q(4)乘以(一 f)的値, 將乘法結果作爲(已考慮係數)近似對數可能性比並送至解 碼處理部7。 (1024QAM的情況) 在輸入端子11,輸入接收信號之I頻道成分XI。I頻 道成分χΐ以6位元的信號Data[6 : 1]表示。信號Data[6 : 1 ]以2的補數表達。 6位元的信號D a t a [ 6 : 1 ]之從最上階的第1個位元(位 元6),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 -81- 200835169 流排Bus2之最上階位元,再經由信號線抽出部EXl,被送 至邏輯反電路NOT1。The first approximate logarithmic probability ratio λ 1 (1) from the output terminal 01 and the first approximate log likelihood ratio output from the output terminal 07 are 以 Ι (1) by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1( 1). The second approximate log likelihood ratio λ 1 (2) from the output terminal 02 and the second approximate log likelihood ratio λ 1 (2) output from the output terminal 08 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, a circuit that adds a sign to 値 to absolute 经由) and is output as an approximate log likelihood ratio λ 1(2). The third approximate logarithmic probability ratio λ 1 (3) of the output from the output terminal 03 and the third approximate log likelihood ratio λ 1 (3) output from the output terminal 09 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(3). The fourth logarithmic probability ratio of the 4th - 80th - 200835169 approximate log likelihood ratio λ 1 (4) outputted from the output terminal 04 and the 4th approximate logarithm outputted from the output terminal οιο by a multiplication circuit (not shown) The absolute 値 multiplication of λ 1(4) (g卩, via a circuit that adds a sign to the absolute )) is output as an approximate log likelihood ratio into 1(4). Similarly, the Q channel component XQ of the received signal is input to the input terminal II, and the approximate log likelihood ratios λ Q (1), λ Q (2), λ Q (3 ), and λ Q (4) are output, that is, When the decoding processing unit 7 performs error correction decoding according to the sum-product decoding method, the approximate logarithmic probability ratios λ Ι (1), λ Ι (2), λ Ι (3), λ Ι (4), and the multiplication circuit pair (not shown). AQ(1), AQ(2), AQ(3), λ Q(4) are multiplied by (一2/σ 2) 値, and the multiplication result is taken as (considered coefficient) approximate log likelihood ratio and sent to decoding Processing unit 7. In the case where the decoding processing unit 7 performs error correction decoding based on the min-sum decoding method, the approximate logarithmic probability ratios λ 1(1), λ 1(2), λ 1(3), λ are multiplied by a multi-circuit circuit (not shown). 1(4), Q(l), λ Q(2), λ Q(3), and Q(4) multiplied by (a f), the multiplicative result is taken as the (considered coefficient) approximate logarithm probability The ratio is sent to the decoding processing unit 7. (In the case of 1024QAM) At the input terminal 11, the I channel component XI of the reception signal is input. The I channel component is represented by a 6-bit signal Data[6:1]. The signal Data[6:1] is expressed in 2's complement. The 6-bit signal D ata [ 6 : 1 ] is the first bit from the top (bit 6), and the bus bar Busl and the overflow prevention bus are adjusted via the bus bar width adjustment -81- 200835169 The uppermost bit is sent to the logic counter circuit NOT1 via the signal line extracting unit EX1.

6位元的信號Data[6: 1]之從最上階的第2個位元(位 元5),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第2個位元,再經由信號線抽出部 EX2,被送至互斥邏輯或電路 XOR2及互斥邏輯或電路 XOR3,而且被送至邏輯反電路NOT3。邏輯反電路N〇T3 的輸出被送至內建匯流排BL2之從最上階的第1個及從最 上階之第2個位元。 6位元的信號Data[6 : 1]之從最上階的第3個位元(位 元4),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第3個位元,再經由信號線抽出部 EX3,被送至互斥邏輯或電路XOR3、互斥邏輯或電路 XOR4、內建匯流排BL2之從最上階的第3個位元以及邏輯 反電路NOT4。邏輯反電路NOT4的輸出被送至內建匯流排 BL3之從最上階的第1個及從最上階的第2個位元。 6位元的信號Data[6 : 1]之從最上階的第4個位元(位 元3),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第4個位元,再經由信號線抽出部 EX4,被送至互斥邏輯或電路XOR4、互斥邏輯或電路 XOR5、內建匯流排BL2之從最上階的第4個位元、內建匯 流排BL3之從最上階的第3個位元以及邏輯反電路NOT5。 邏輯反電路NOT5之輸出被送至內建匯流排BL4之從最上 -82- 200835169 階的第1個及從最上階的第2個位元。 6位元的信號Data[6 : 1]之從最上階的第5個位元(位 元2),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第5個位元,再經由信號線抽出部 EX5,被送至互斥邏輯或電路X〇R5、內建匯流排BL2之從 最上階的第5個位元、內建匯流排BL3之從最上階的第4The 6-bit signal Data[6:1] is from the topmost second bit (bit 5), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. The two bits are sent to the exclusive OR circuit XOR2 and the exclusive OR circuit XOR3 via the signal line extraction unit EX2, and are sent to the logic inverse circuit NOT3. The output of the logic inverse circuit N〇T3 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL2. The 6-bit signal Data[6:1] is transmitted from the topmost third bit (bit 4) through the bus bar width adjustment bus bus 1 and the overflow prevention bus bar Bus2 from the topmost The third bit is sent to the exclusive logic OR circuit XOR3, the exclusive logic OR circuit XOR4, the third bit from the topmost stage, and the logic inverse circuit via the signal line extraction unit EX3. NOT4. The output of the logic inverse circuit NOT4 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL3. The 6-bit signal Data[6:1] is from the top 4th bit (bit 3), and the bus bar width adjustment bus bus 1 and the overflow prevention bus bar Bus2 are from the topmost level. The fourth bit is sent to the exclusive logic OR circuit XOR4, the exclusive logic OR circuit XOR5, the fourth bit from the topmost stage, and the built-in confluence via the signal line extraction unit EX4. The third bit from the top of the row BL3 and the logic inverse circuit NOT5. The output of the logic inverse circuit NOT5 is sent to the first block of the built-in bus bar BL4 from the top -82-200835169 and the second bit from the top. The 6-bit signal Data[6:1] is from the topmost fifth bit (bit 2), and the bus bar width adjustment bus bar Bus 1 and the overflow prevention bus bar Bus2 are from the topmost level. The fifth bit is sent to the mutually exclusive logic or circuit X〇R5 via the signal line extraction unit EX5, and the fifth bit from the topmost stage of the built-in bus bar BL2 and the built-in bus bar BL3 are from the top. 4th of the order

個位元、內建匯流排BL4之從最上階的第3個位元以及邏 輯反電路NOT6。邏輯反電路NOT6之輸出被送至內建匯流 排BL5之從最上階的第1個及從最上階的第2個位元。 6位元的信號Data [6 : 1]之從最上階的第6個位元(位 元1 ),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之從最上階的第6個位元,再經由信號線抽出部 EX6,被送至內建匯流排BL2之從最上階的第6個位元、 內建匯流排BL3之從最上階的第5個位元、內建匯流排BL4 之從最上階的第4個位元、以及內建匯流排BL5之從最上 階的第3個位元。 6位元之信號Data[6: 1]經由匯流排寬度調整用匯流排 Busl及溢流防止用匯流排Bus2,被送至絕對値計算電路The bit, the third bit from the top of the built-in bus BL4, and the logic counter circuit NOT6. The output of the logic inverse circuit NOT6 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL5. The 6-bit signal Data [6:1] is from the top 6th bit (bit 1), and the bus bar width adjustment bus bus 1 and the overflow prevention bus bar Bus2 are from the topmost level. The sixth bit is sent to the sixth bit from the top of the built-in bus bar BL2, and the fifth bit from the topmost row of the built-in bus bar BL3 via the signal line extracting portion EX6. The fourth bit from the top of the bus bar BL4 and the third bit from the top of the built-in bus bar BL5. The 6-bit signal Data[6:1] is sent to the absolute 値 calculation circuit via the busbar width adjustment busbar Busl and the overflow prevention busbar Bus2.

Mag 1 〇 邏輯反電路NOT1將6位元的信號Data [6: 1]之從最上 階的第1個位元(位元6)變成反相,再將其向互斥邏輯或電 路XOR2輸出,而且將其作爲第1個近似對數可能性比λ 1(1) 的符號,並經由匯流排寬度調整用匯流排Bus3向輸出端子 -83- 200835169 Ο 1輸出。 互斥邏輯或電路XOR2算出6位元的信號Data[6 : 1] 之從最上階的第1個位元(位元6)之反相値和6位元的信號Mag 1 〇 logic inverse circuit NOT1 changes the 6-bit signal Data [6: 1] from the uppermost first bit (bit 6) to invert, and then outputs it to the mutually exclusive logic OR circuit XOR2. Further, this is taken as the sign of the first approximate logarithmic probability ratio λ 1 (1), and is output to the output terminal -83 - 200835169 Ο 1 via the bus bar width adjustment bus line Bus3. The mutually exclusive logic OR circuit XOR2 calculates the inverted 値 and 6-bit signals of the 6-bit signal Data[6:1] from the highest-order first bit (bit 6).

Data[6 : 1]之從最上階的第2個位元(位元5)之互斥邏輯或, 再將其作爲第2個近似對數可能性比λ 1(2)的符號,並經由 匯流排寬度調整用匯流排Bus4向輸出端子02輸出。The mutually exclusive logical OR of the second bit (bit 5) of Data[6:1], which is used as the symbol of the second approximation log likelihood ratio λ 1(2), and is connected via the confluence The row width adjustment bus bar Bus4 is output to the output terminal 02.

互斥邏輯或電路XOR3算出6位元的信號Data[6: 1] 之從最上階的第2個位元(位元5)和6位元的信號Data[6 : 1]之從最上階的第3個位元(位元4)之互斥邏輯或,再將其 作爲第3個近似對數可能性比λ 1(3)的符號,並經由匯流排 寬度調整用匯流排Bus5向輸出端子03輸出。 互斥邏輯或電路XOR4算出6位元的信號Data[6 : 1] 之從最上階的第3個位元(位元4)和6位元的信號Data [6 : 1]之從最上階的第4個位元(位元3)之互斥邏輯或,再將其 作爲第4個近似對數可能性比λ 1(4)的符號,並經由匯流排 寬度調整用匯流排Bus6向輸出端子〇4輸出。 互斥邏輯或電路X0R5算出6位元的信號Data[6 : 1] 之從最上階的第4個位元(位元3)和6位元的信號Data[6 : 1]之從最上階的第5個位元(位元2)之互斥邏輯或,再將其 作爲第5個近似對數可能性比λ 1(5)的符號,並經由匯流排 寬度調整用匯流排Bus7向輸出端子〇5輸出。 內建匯流排BL2將6條匯流排(第〇位元〜第5位元)集 中成1條匯流排。內建匯流排BL3將5條匯流排(第0位元 200835169 〜第4位元)集中成1條匯流排。內建匯流排BL4將4條匯 流排(第0位元〜第3位元)集中成1條匯流排。內建匯流排 BL5將3條匯流排(第0位元〜第2位元)集中成1條匯流排。 絕對値計算電路Magi計算6位元的信號Data[6 : 1] 的絕對値,再將其作爲第1個近似對數可能性比λ 1(1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整 用匯流排Bus9向輸出端子07輸出。The mutually exclusive logic OR circuit XOR3 calculates the 6-bit signal Data[6:1] from the topmost second bit (bit 5) and the 6-bit signal Data[6:1] from the topmost The mutually exclusive logical OR of the third bit (bit 4) is used as the symbol of the third approximate logarithmic probability ratio λ 1(3), and is connected to the output terminal 03 via the bus width adjustment bus bus Bus5 Output. The mutually exclusive logic OR circuit XOR4 calculates the 6-bit signal Data[6:1] from the uppermost third bit (bit 4) and the 6-bit signal Data[6:1] from the topmost The mutually exclusive logical OR of the 4th bit (bit 3) is used as the sign of the 4th approximate logarithmic probability ratio λ 1(4), and is output to the output terminal via the bus width adjustment bus bus Bus6. 4 output. The mutually exclusive logic OR circuit X0R5 calculates the 6-bit signal Data[6:1] from the topmost 4th bit (bit 3) and the 6-bit signal Data[6:1] from the topmost The mutually exclusive logical OR of the 5th bit (bit 2) is used as the symbol of the 5th approximate logarithmic probability ratio λ 1(5), and is connected to the output terminal via the bus width adjustment bus bus Bus7. 5 output. The built-in bus bar BL2 integrates six bus bars (the third bit to the fifth bit) into one bus. The built-in bus bar BL3 concentrates five bus bars (0th bit 200835169 to 4th bit) into one bus bar. The built-in bus bar BL4 concentrates four bus bars (0th bit to 3rd bit) into one bus bar. The built-in bus bar BL5 concentrates three bus bars (0th bit to 2nd bit) into one bus bar. The absolute 値 calculation circuit Magi calculates the absolute 値 of the 6-bit signal Data[6 : 1], and uses it as the absolute 値 of the first approximate log likelihood ratio λ 1(1), and via the overflow prevention bus The Bus 1 5 and the busbar width adjustment busbar Bus9 are output to the output terminal 07.

絕對値計算電路Mag2計算以6位元的信號DaU[6 : 1] 之從最上階的第2個位元(位元5)之反相値爲最上階位元、 以6位元的信號Data[6 : 1]之從最上階的第2個位元(位元 5)之反相値爲從最上階的第2個位元、以及以6位元的信 號Data [6: 1]之從最上階的第1(3 € IS 6)個位元値爲從最上 階之第I個位元的6位元値之絕對値,再將其作爲第2個 近似對數可能性比λ 1(2)的絕對値,並經由溢流防止用匯流 排Bus 16及匯流排寬度調整用匯流排Bus 10向輸出端子〇8 輸出。 絕對値計算電路Mag3計算以6位元的信號Data [6 : 1] 之從最上階的第3個位元(位元4)之反相値爲最上階位元、 以6位元的信號Data[6 : 1]之從最上階的第3個位元(位元 4)之反相値爲從最上階的第2個位元、以及以6位元的信 號Data[6: 1]之從最上階的第J + 1個(3SJS5)位元値爲從 最上階之第】個位元的5位元値之絕對値,再將其作爲第3 個近似對數可能性比λ 1(3)的絕對値,並經由溢流防止用匯 -85 - 200835169 流排Busl7及匯流排寬度調整用匯流排Busll向輸出端子 09輸出。 絕對値計算電路Mag4計算以6位元的信號Data[6 : 1] 之從最上階的第4個位元(位元3)之反相値爲最上階位元、 以6位元的信號DaU[6 : 1]之從最上階的第4個位元(位元 3)之反相値爲從最上階的第2個位元、以及以6位元的信 號Data[6 : 1]之從最上階的第J + 2個(3€ 4)個位元値爲The absolute 値 calculation circuit Mag2 calculates the inverted phase 从 from the uppermost second bit (bit 5) of the 6-bit signal DaU[6:1] to the uppermost bit, and the signal of the 6-bit data. [6:1] The inverse of the second bit (bit 5) from the top is the second bit from the top and the signal of the 6-bit data [6: 1] The first (3 € IS 6) bit 最 of the uppermost order is the absolute 値 of the 6-bit 第 from the highest-order I-th bit, and then it is taken as the second approximate log likelihood ratio λ 1 (2 The absolute 値 is output to the output terminal 〇8 via the overflow prevention bus bar 16 and the bus bar width adjustment bus bus 10 . The absolute 値 calculation circuit Mag3 calculates the inverse of the third bit (bit 4) of the signal of the 6-bit data [6: 1], which is the uppermost bit, and the signal of the 6-bit data. [6: 1] The inverse of the third bit (bit 4) from the top is the second bit from the top and the signal of the 6-bit data [6: 1] The J + 1 (3SJS5) bit 最 of the uppermost order is the absolute 値 of the octet 第 from the top octet, and then it is the third approximate log likelihood ratio λ 1(3) Absolutely, it is output to the output terminal 09 via the overflow prevention bus-85 - 200835169 bus bar Busl7 and the bus bar width adjustment bus bar Busll. The absolute 値 calculation circuit Mag4 calculates the signal of the 6-bit signal Data[6:1] from the uppermost fourth bit (bit 3), the inverse 値 to the uppermost bit, and the 6-bit signal DaU. [6: 1] The inverse of the fourth bit (bit 3) from the top is the second bit from the top and the signal of the 6-bit data [6: 1] The top J + 2 (3 € 4) bits are

從最上階之第J個位元的4位元値之絕對値,再將其作爲 第4個近似對數可能性比λ 1(4)的絕對値,並經由溢流防止 用匯流排Busl8及匯流排寬度調整用匯流排Busl2向輸出 端子0 1 0輸出。 絕對値計算電路Mag5計算以6位元的信號Data[6 : 1] 之從最上階的第5個位元(位元2)之反相値爲最上階位元、 以6位元的信號Data[6 : 1]之從最上階的第5個位元(位元 2)之反相値爲從最上階的第2個位元、以及以6位元的信 φ 號Data [6: 1]之從最上階的第6個位元値爲從最上階之第3 個位元的3位元値之絕對値,再將其作爲第5個近似對數 可能性比λ 1(5)的絕對値,並經由溢流防止用匯流排Bus 19 及匯流排寬度調整用匯流排Busl3向輸出端子01 1輸出。 以未圖示的乘法電路將從輸出端子01所輸出之第1 個近似對數可能性比λ 1(1)的符號和從輸出端子〇7所輸出 之第1個近似對數可能性比λ I (1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1( 1) -86- 200835169 輸出。 以未圖示的乘法電路將從輸出端子02所輸出之第2 個近似對數可能性比λ 1(2)的符號和從輸出端子08所輸出 之第2個近似對數可能性比λ 1(2)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(2) 輸出。From the absolute 値 of the 4-bit 第 of the J-th bit of the top, and then it is the absolute 値 of the fourth approximate logarithmic probability ratio λ 1(4), and the busbar Bus8 and the sink are prevented by the overflow. The row width adjustment bus bus Bus1 is output to the output terminal 0 1 0. The absolute 値 calculation circuit Mag5 calculates the inverse of the fifth-order bit (bit 2) of the signal of the 6-bit data [6: 1], which is the uppermost bit, and the signal of the 6-bit data. [6: 1] The inverse of the fifth bit (bit 2) from the top is the second bit from the top, and the letter φ with 6 bits Data [6: 1] The 6th bit from the top is the absolute 値 of the 3rd 从 from the 3rd bit of the top, and then it is the absolute value of the 5th approximate logarithm probability ratio λ 1(5) And output to the output terminal 01 1 via the overflow prevention bus bar 19 and the bus bar width adjustment bus bus Bus1. The first approximate logarithmic probability ratio λ 1 (1) of the output from the output terminal 01 and the first approximate log likelihood ratio λ I (outputted from the output terminal 〇 7) by a multiplication circuit (not shown) 1) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1( 1) -86- 200835169. The second approximate log likelihood ratio λ 1 (2) from the output terminal 02 and the second approximate log likelihood ratio λ 1 (2) output from the output terminal 08 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(2).

以未圖示的乘法電路將從輸出端子03所輸出之第3 個近似對數可能性比λ 1(3)的符號和從輸出端子09所輸出 之第3個近似對數可能性比λ 1(3)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(3) 輸出。 以未圖示的乘法電路將從輸出端子04所輸出之第4 個近似對數可能性比λ 1(4)的符號和從輸出端子〇1〇所輸 出之第4個近似對數可能性比λ 1(4)的絕對値相乘(即,經 由對絕對値附加符號的電路),並作爲近似對數可能性比λ φ 1(4)輸出。 以未圖示的乘法電路將從輸出端子05所輸出之第5 個近似對數可能性比λ 1(5)的符號和從輸出端子〇 1 1所輸 出之第5個近似對數可能性比λ 1(5)的絕對値相乘(即,經 由對絕對値附加符號的電路),並作爲近似對數可能性比入 1(5)輸出。 一樣地’在輸入端子11輸入接收信號之Q頻道成分 xQ,並輸出近似對數可能性比λ Q(l)、λ QC2)、λ QC3)、λ -87- 200835169 Q(4) 、 λ Q(5) 〇 在解碼處理部7根據sum-prodiict解碼法進行錯誤訂正 解碼的情況,以未圖示的乘法電路對近似對數可能性比λThe third approximate logarithmic probability ratio λ 1 (3) of the output from the output terminal 03 and the third approximate log likelihood ratio λ 1 (3) output from the output terminal 09 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(3). The fourth approximate logarithmic probability ratio λ 1 (4) from the output terminal 04 and the fourth approximate log likelihood ratio λ 1 output from the output terminal 以1 以 are outputted by a multiplication circuit (not shown). The absolute 値 multiplication of (4) (i.e., via a circuit that adds a sign to the absolute )) is output as an approximate log likelihood ratio λ φ 1(4). The fifth approximate logarithmic probability ratio λ 1 (5) from the output terminal 05 and the fifth approximate log likelihood ratio λ 1 output from the output terminal 〇1 1 by a multiplication circuit (not shown) (5) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio to 1 (5). Similarly, the Q channel component xQ of the received signal is input to the input terminal 11, and the approximate log likelihood ratios λ Q(l), λ QC2), λ QC3), λ -87 - 200835169 Q(4) , λ Q ( 5) When the decoding processing unit 7 performs error correction decoding based on the sum-prodiict decoding method, the approximate logarithmic probability ratio λ is used by a multiplication circuit (not shown).

1(1)、 λ 1(2)、 λ 1(3)、 λ 1(4)、又 1(5)、 λ Q(l)、 λ q(2)、 AQ(3)、AQ(4)、AQ(5)乘以(-2/σ2)的値,將乘法結果作 爲(已考慮係數)近似對數可能性比並送至解碼處理部7。在 解碼處理部7根據m i η · s u m解碼法進行錯誤訂正解碼的情 況,以未圖示的乘法電路對近似對數可能性比λ 1( 1 )、λ 1(2)、 λΙ(3)、人1(4)、 λΙ(5)、 AQ(1)、 ;IQ(2)、 AQ(3)、 λ Q(4) 、λ Q(5)乘以(—f)的値,將乘法結果作爲(已考慮 係數)近似對數可能性比並送至解碼處理部7。 (4096QAM的情況) 在輸入端子II,輸入接收信號之I頻道成分xl。〗頻 道成分xl以7位元的信號Data [6 : 0]表示。信號Data [6 : 0]以2的補數表達。 7位元的信號Data[6 ·· 0]之從最上階的第1個位元(位 元6),經由匯流排寬度調整用匯流排Bus 1及溢流防止用匯 流排Bus2之最上階位元,再經由信號線抽出部EX1,被送 至邏輯反電路N0T1。 7位元的信號Data[6 : 0]之從最上階的第2個位元(位 元5),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第2個位元,再經由信號線抽出部 EX2,被送至互斥邏輯或電路X0R2及互斥邏輯或電路 -88- 200835169 X〇R3,而且被送至邏輯反電路NOT3。邏輯反電路NOT3 的輸出被送至內建匯流排BL2之從最上階的第1個及從最 上階之第2個位元。 .1(1), λ 1(2), λ 1(3), λ 1(4), again 1(5), λ Q(l), λ q(2), AQ(3), AQ(4) When AQ(5) is multiplied by (-2/σ2), the multiplication result is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit 7. When the decoding processing unit 7 performs error correction decoding based on the mi η · sum decoding method, the approximate logarithmic probability ratios λ 1 ( 1 ), λ 1 (2), λ Ι (3), and human are obtained by a multiplication circuit pair (not shown). 1(4), λΙ(5), AQ(1), ;IQ(2), AQ(3), λ Q(4), λ Q(5) are multiplied by (—f), and the multiplication result is taken as (The coefficient has been considered) The approximate logarithmic probability ratio is sent to the decoding processing unit 7. (In the case of 4096QAM) At the input terminal II, the I channel component x1 of the received signal is input. The channel component xl is represented by a 7-bit signal Data [6: 0]. The signal Data [6 : 0] is expressed in 2's complement. The 7-bit signal Data[6··0] is transmitted from the uppermost first bit (bit 6) via the bus width adjustment bus bus 1 and the overflow prevention bus bus 2 to the uppermost bit. The element is further sent to the logic inverting circuit N0T1 via the signal line extracting portion EX1. The 7-bit signal Data[6:0] is from the topmost second bit (bit 5), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. The two bits are then sent to the exclusive logic OR circuit X0R2 and the exclusive OR circuit -88-200835169 X〇R3 via the signal line extraction unit EX2, and are sent to the logic inverse circuit NOT3. The output of the logic inverse circuit NOT3 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL2. .

7位元的信號Data[6 : 0]之從最上階的第3個位元(位 元4),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第3個位元,再經由信號線抽出部 EX3,被送至互斥邏輯或電路 XOR3、互斥邏輯或電路 XOR4、內建匯流排BL2之從最上階的第3個位元以及邏輯 反電路NOT4。邏輯反電路NOT4的輸出被送至內建匯流排 BL3之從最上階的第1個及從最上階的第2個位元。 7位元的信號Data [6 : 0]之從最上階的第4個位元(位 元3),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最.上階的第4個位元,再經由信號線抽出部 EX4,被送至互斥邏輯或電路 XOR4、互斥邏輯或電路 XOR5、內建匯流排BL2之從最上階的第4個位元、內建匯 流排BL3之從最上階的第3個位元以及邏輯反電路NOT5。 邏輯反電路NOT5之輸出被送至內建匯流排BL4之從最上 階的第1個及從最上階的第2個位元。 7位元的信號Data[6 ·· 0]之從最上階的第5個位元(位 元2),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第5個位元,再經由信號線抽出部 EX5,被送至互斥邏輯或電路XOR5、互斥邏輯或電路 X〇R6、內建匯流排BL2之從最上階的第5個位元、內建匯 -89- 200835169 流排BL3之從最上階的第4個位元、內建匯流排BL4之從 最上階的第3個位元以及邏輯反電路NOT6。邏輯反電路 NOT6之輸出被送至內建匯流排BL5之從最上階的第1個及 從最上階的第2個位元。The 7-bit signal Data[6:0] is from the uppermost third bit (bit 4), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. The three bits are then sent to the exclusive logic OR circuit XOR3, the exclusive logic OR circuit XOR4, the third bit from the topmost stage, and the logic inverse circuit NOT4 via the signal line extraction unit EX3. . The output of the logic inverse circuit NOT4 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL3. The 7-bit signal Data [6:0] is from the top 4th bit (bit 3), via the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2. The fourth bit is sent to the exclusive logic OR circuit XOR4, the exclusive logic OR circuit XOR5, the fourth bus from the top of the built-in bus bar BL2, built in via the signal line extraction unit EX4, built-in The third bit from the top of the bus bar BL3 and the logic inverse circuit NOT5. The output of the logic inverse circuit NOT5 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL4. The 7-bit signal Data[6 ·· 0] is from the topmost fifth bit (bit 2), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are from the topmost level. The fifth bit is sent to the mutually exclusive logic or circuit XOR5, the exclusive circuit OR circuit X〇R6, and the built-in bus bar BL2 from the topmost fifth bit, via the signal line extraction unit EX5. Jianhui-89- 200835169 The third bit from the top of the row BL3, the third bit from the top of the built-in bus BL4, and the logical inverse circuit NOT6. The output of the logic inverse circuit NOT6 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL5.

7位元的信號Data[6 : 0]之從最上階的第6個位元(位 元1),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bus2之從最上階的第6個位元,再經由信號線抽出部 EX6,被送至互斥邏輯或電路XOR6、內建匯流排BL2之從 最上階的第6個位元、內建匯流排BL3之從最上階的第5 個位元、內建匯流排BL4之從最上階的第4個位元、內建 匯流排 BL5之從最上階的第 3個位元以及邏輯反電路 NOT7。邏輯反電路NOT7之輸出被送至內建匯流排BL6之 從最上階的第1個及從最上階的第2個位元。 7位元的信號Data[6 : 0]之從最上階的第7個位元(位 元0),經由匯流排寬度調整用匯流排Busl及溢流防止用匯 流排Bns2之從最上階的第7個位元,再經由,信號線抽出部 EX7,被送至內建匯流排BL2之從最上階的第7個位元、 內建匯流排BL3之從最上階的第6個位元、內建匯流排BL4 之從最上階的第5個位元、內建匯流排BL5之從最上階的 第4個位元以及內建匯流排BL6之從最上階的第3個位元。 7位元之信號Data[6: 0]經由匯流排寬度調整用匯流排 Bus l及溢流防止用匯流排Bus2,被送至絕對値計算電路 M a g 1 〇 -90- 200835169 邏輯反電路NOT1將7位元的信號Data[6: 0]之從最上 階的第1個位元(位元6)變成反相,再將其向互斥邏輯或電 路X0R2輸出,而且將其作爲第1個近似對數可能性比λ 1(1) 的符號,並經由匯流排寬度調整用匯流排Bus3向輸出端子 〇1輸出。The 7-bit signal Data[6:0] is from the top 6th bit (bit 1), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bus2 are the highest order. 6 bits are then sent to the exclusive OR circuit XOR6 via the signal line extraction unit EX6, the sixth bit from the topmost stage of the built-in bus bar BL2, and the uppermost stage from the built-in bus bar BL3. 5 bits, the 4th bit from the top of the built-in bus bar BL4, the 3rd bit from the top of the built-in bus bar BL5, and the logical inverse circuit NOT7. The output of the logic inverse circuit NOT7 is sent to the first bit from the top stage and the second bit from the top stage of the built-in bus bar BL6. The 7-bit signal Data[6:0] is from the uppermost 7th bit (bit 0), and the bus bar width adjustment bus bus Bus1 and the overflow prevention bus bar Bns2 are the highest order. 7 bits, and then, via the signal line extraction unit EX7, are sent to the 7th bit from the top of the built-in bus bar BL2, and the 6th bit from the top of the built-in bus bar BL3. The fifth bit from the topmost level of the bus bar BL4, the fourth bit from the top of the built-in bus bar BL5, and the third bit from the top of the built-in bus bar BL6. The 7-bit signal Data[6:0] is sent to the absolute 値 calculation circuit via the bus width adjustment bus bus 1 and the overflow prevention bus bus Bus2. 逻辑-90- 200835169 The logic inverse circuit NOT1 will The 7-bit signal Data[6:0] is inverted from the first bit (bit 6) of the uppermost order, and is output to the mutually exclusive logic OR circuit X0R2, and is taken as the first approximation. The sign of the logarithmic probability ratio λ 1(1) is output to the output terminal 〇1 via the bus bar width adjustment bus line Bus3.

互斥邏輯或電路XOR2算出7位元的信號Data[6 : 0] 之從最上階的第1個位元(位元6)之反相値和7位元的信號 D at a [6 : 0]之從最上階的第2個位元(位元5)之互斥邏輯或, 再將其作爲第2個近似對數可能性比λ 1(2)的符號,並經由 匯流排寬度調整用匯流排Bus4向輸出端子02輸出。 互斥邏輯或電路XOR3算出7位元的信號Data[6 : 0] 之從最上階的第2個位元(位元5)和7位元的信號Data[6 : 0]之從最上階的第3個位元(位元4)之互斥邏輯或,再將其 作爲第3個近似對數可能性比λ 1(3)的符號,並經由匯流排 寬度調整用匯流排Bus 5向輸出端子03輸出。 互斥邏輯或電路X0R4算出7位元的信號Data[6 : 〇] 之從最上階的第3個位元(位元4)和7位元的信號Data[6 ·· 0]之從最上階的第4個位元(位元3)之互斥邏輯或,再將其 作爲第4個近似對數可能性比λ 1(4)的符號,並經由匯流排 寬度調整用匯流排Bus6向輸出端子〇4輸出。 互斥邏輯或電路X0R5算出7位元的信號Data[6 ·· 〇] 之從最上階的第4個位元(位元3)和7位元的信號Data[6 : 0]之從最上階的第5個位元(位元2)之互斥邏輯或,再將其 -91- 200835169 作爲第5個近似對數可能性比λ 1(5)的符號,並經由匯流排 寬度調整用匯流排B u s 7向輸出端子0 5輸出。 互斥邏輯或電路XOR6算出7位元的信號Data[6 : 0] 之從最上階的第5個位元(位元2)和7位元的信號Data[6 : 0]之從最上階的第6個位元(位元1)之互斥邏輯或,再將其 作爲第6個近似對數可能性比λ 1(6)的符號,並經由匯流排 寬度調整用匯流排BuS8向輸出端子〇6輸出。The mutually exclusive logic OR circuit XOR2 calculates the inverted phase 从 of the 7-bit signal Data[6:0] from the uppermost first bit (bit 6) and the 7-bit signal D at a [6 : 0 The mutually exclusive logical OR of the second bit (bit 5) from the top, and then used as the sign of the second approximate log likelihood ratio λ 1(2), and the bus through the bus width adjustment The row Bus4 is output to the output terminal 02. The mutually exclusive logic OR circuit XOR3 calculates the 7-bit signal Data[6:0] from the uppermost second bit (bit 5) and the 7-bit signal Data[6:0] from the topmost The mutually exclusive logical OR of the third bit (bit 4) is used as the symbol of the third approximate log likelihood ratio λ 1 (3), and is connected to the output terminal via the bus width adjusting bus bus 5 03 output. The mutually exclusive logic OR circuit X0R4 calculates the 7-bit signal Data[6: 〇] from the uppermost third bit (bit 4) and the 7-bit signal Data[6 ·· 0] from the top The mutually exclusive logical OR of the 4th bit (bit 3) is used as the symbol of the 4th approximate logarithmic probability ratio λ 1(4), and is connected to the output terminal via the bus width adjustment bus bus Bus6 〇 4 output. The mutually exclusive logic OR circuit X0R5 calculates the 7-bit signal Data[6 ··〇] from the uppermost fourth bit (bit 3) and the 7-bit signal Data[6:0] from the topmost The 5th bit (bit 2) of the mutually exclusive logical OR, and then its -91-200835169 as the 5th approximate logarithmic probability ratio λ 1 (5) symbol, and through the bus width adjustment bus B us 7 outputs to output terminal 0 5 . The mutually exclusive logic OR circuit XOR6 calculates the 7-bit signal Data[6:0] from the topmost 5th bit (bit 2) and the 7-bit signal Data[6:0] from the topmost The mutually exclusive logical OR of the sixth bit (bit 1) is used as the sign of the sixth approximate logarithmic probability ratio λ 1 (6), and is connected to the output terminal via the bus width adjustment bus bar BuS8. 6 output.

內建匯流排BL2將7條匯流排(第0位元〜第6位元)集 中成1條匯流排。內建匯流排BL3將6條匯流排(第0位元 〜第5位元)集中成1條匯流排。內建匯流排BL4將5條匯 流排(第0位元〜第4位元)集中成1條匯流排。內建匯流排 BL5將4條匯流排(第0位元〜第3位元)集中成1條匯流排。 內建匯流排BL6將3條匯流排(第0位元〜第2位元)集中成 1條匯流排。 絕對値計算電路Magi計算7位元的信號Data[6: 0] φ 的絕對値,再將其作爲第1個近似對數可能性比λ 1(1)的絕 對値,並經由溢流防止用匯流排Bus 1 5及匯流排寬度調整 用匯流排Bus9向輸出端子07輸出。 絕對値計算電路M a g 2計算以7位元的信號D a t a [ 6 : 0 ] 之從最上階的第2個位元(位元5)之反相値爲最上階位元、 以7位元的信號Data [6 : 0]之從最上階的第2個位元(位元 5)之反相値爲從最上階的第2個位元、以及以7位元的信 號Data [6 : 0]之從最上階的第1(3 S 1$ 7)個位元値爲從最上 -92- 200835169 階之第I個位元的7位元値之絕對値,再將其作爲第2個 近似對數可能性比λ 1(2)的絕對値,並經由溢流防止用匯流 排Busl6及匯流排寬度調整用匯流排BuslO向輸出端子〇8 輸出。The built-in bus bar BL2 integrates 7 bus bars (0th bit to 6th bit) into one bus bar. The built-in bus bar BL3 concentrates 6 bus bars (0th bit to 5th bit) into one bus bar. The built-in bus bar BL4 concentrates five bus bars (0th bit to 4th bit) into one bus bar. The built-in bus bar BL5 concentrates four bus bars (0th bit to 3rd bit) into one bus bar. The built-in bus bar BL6 concentrates three bus bars (0th bit to 2nd bit) into one bus bar. The absolute 値 calculation circuit Magi calculates the absolute 値 of the 7-bit signal Data[6: 0] φ, and uses it as the absolute 値 of the first approximate log likelihood ratio λ 1(1), and the sink by the overflow prevention The row Bus 1 5 and the bus bar width adjustment bus bar Bus9 are output to the output terminal 07. The absolute 値 calculation circuit M ag 2 calculates the inverse of the second bit (bit 5) of the signal of the 7-bit signal D ata [ 6 : 0 ] from the highest order to the highest order bit, 7 bits The signal [6:0] is inverted from the topmost second bit (bit 5), the second bit from the top, and the 7-bit signal Data [6:0] The 1st (3 S 1$ 7) bit from the top is the absolute 値 of the 7-bit 第 from the top of the top-92-200835169, and then the second approximation The absolute probability of the logarithmic probability ratio λ 1 (2) is output to the output terminal 〇 8 via the overflow prevention bus bar Bus16 and the bus bar width adjustment bus bar Bus1O.

絕對値計算電路Mag3計算以7位元的信號Data [6 : 0] 之從最上階的第3個位元(位元4)之反相値爲最上階位元、 以7位元的信號Data [6 : 0]之從最上階的第3個位元(位元 4)之反相値爲從最上階的第2個位元、以及以7位元的信 號Data[6 : 0]之從最上階的第J+1個(3S :i S 6)位元値爲從 最上階之第〗個位元的6位元値之絕對値,再將其作爲第3 個近似對數可能性比λ 1(3)的絕對値,並經由溢流防止用匯 流排Bus 17及匯流排寬度調整用匯流排Busl 1向輸出端子 〇9輸出。 絕對値計算電路Mag4計算以7位元的信號Data[6 : 0] 之從最上階的第4個位元(位元3)之反相値爲最上階位元、 φ 以7位元的信號Data[6 : 0]之從最上階的第4個位元(位元 3)之反相値爲從最上階的第2個位元、以及以7位元的信 號Data[6 : 0]之從最上階的第J + 2個(3S5)個位元値爲 從最上階之第〗個位元的5位元値之絕對値,再將其作爲 第4個近似對數可能性比λ 1(4)的絕對値,並經由溢流防止 用匯流排B u s 1 8及匯流排寬度調整用匯流排B u s 1 2向輸出 端子010輸出。 絕對値計算電路Mag5計算以7位元的信號Data [6 : 0] -93- 200835169 之從最上階的第5個位元(位元2)之反相値爲最上階位元、 以7位元的信號Data[6 : 0]之從最上階的第5個位元(位元 2)之反相値爲從最上階的第2個位元、以及以7位元的信 號Data[6: 0]之從最上階的第J + 3個(3SJS4)位元値爲從 最上階之第】個位元的4位元値之絕對値,再將其作爲第5 個近似對數可能性比λ 1(5)的絕對値,並經由溢流防止用匯 流排Bus 1 9及匯流排寬度調整用匯流排Bus 1 3向輸出端子 〇1 1輸出。Absolute 値 calculation circuit Mag3 calculates the 7-bit signal Data [6: 0] from the uppermost third bit (bit 4), the inverse 値 is the highest order bit, and the 7-bit signal Data [6: 0] The inverse of the third bit from the top (bit 4) is the second bit from the top and the signal of the 7-bit data [6: 0] The J+1th (3S:i S 6) bit 最 of the uppermost order is the absolute 値 of the 6-bit 从 from the highest order of the first bit, and then it is taken as the third approximate log likelihood ratio λ. The absolute enthalpy of 1 (3) is output to the output terminal 〇 9 via the overflow prevention bus bar Bus 17 and the bus bar width adjustment bus bar Bus1 1 . The absolute 値 calculation circuit Mag4 calculates the signal of the 7-bit signal Data[6:0] from the uppermost fourth bit (bit 3), the inverse 値 to the uppermost bit, and the φ to the 7-bit signal. The inverse of the fourth bit (bit 3) from Data[6:0] is the second bit from the top and the signal of Data[6:0] with 7 bits. From the top-level J + 2 (3S5) bits 値 is the absolute 値 of the 5-bit 从 from the highest-order ary bit, and then use it as the fourth approximate log-probability ratio λ 1 ( The absolute 値 of 4) is output to the output terminal 010 via the overflow prevention bus bar B us 1 8 and the bus bar width adjustment bus bar B us 1 2 . Absolute 値 calculation circuit Mag5 calculates the 7-bit signal Data [6: 0] -93- 200835169 from the uppermost 5th bit (bit 2), the inverse 値 is the highest order bit, 7 bits The inverse of the fifth signal (bit 2) of the signal Data[6:0] from the top is the second bit from the top and the signal of the 7-bit Data[6: 0] The J + 3 (3SJS4) bit from the top is the absolute 値 of the 4-bit 从 from the top of the first bit, and then it is the 5th approximate log likelihood ratio λ The absolute enthalpy of 1 (5) is output to the output terminal 〇1 1 via the overflow prevention bus BUS 1 1 and the bus width adjustment bus BUS 1 1 .

絕對値計算電路Mag6計算以7位元的信號Data[6 : 0] 之從最上階的第6個位元(位元1)之反相値爲最上階位元、 以7位元的信號Data[6 : 0]之從最上階的第6個位元(位元 1)之反相値爲從最上階的第2個位元、以及以7位元的信 號Data[6: 0]之從最上階的第3個位元値爲從最上階之第3 個位元的3位元値之絕對値,再將其作爲第6個近似對數 可能性比λ 1(6)的絕對値,並經由溢流防止用匯流排Bus20 及匯流排寬度調整用匯流排B u s 1 4向輸出端子〇 1 2輸出。 以未圖示的乘法電路將從輸出端子01所輸出之第1 個近似對數可能性比λ I (1)的符號和從輸出端子〇 7所輸出 之第1個近似對數可能性比λ 1(1)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1( 1) 輸出。 以未圖不的乘法電路將從輸出端子〇2所輸出之第2 個近似對數可能性比λ 1(2)的符號和從輸出端子〇8所輸出 -94- 200835169 之第2個近似對數可能性比;ί 1(2)的絕對値相乘(即,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(2) 輸出。 以未圖示的乘法電路將從輸出端子03所輸出之第3 個近似對數可能性比λ 1(3)的符號和從輸出端子09所輸出 之第3個近似對數可能性比λ 1(3)的絕對値相乘(g卩,經由 對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(3) 輸出。The absolute 値 calculation circuit Mag6 calculates the 7-bit signal (6: 0) from the uppermost 6th bit (bit 1) as the uppermost bit, and the 7-bit signal. [6: 0] The inverse of the sixth bit (bit 1) from the top is the second bit from the top and the signal of the 7-bit data [6: 0] The third bit 最 of the uppermost order is the absolute 値 of the 3-bit 从 from the third bit of the uppermost order, and is taken as the absolute 値 of the sixth approximate log likelihood ratio λ 1(6), and The bus bar Bus20 for overflow prevention and the bus bar B us 1 4 for bus bar width adjustment are output to the output terminal 〇1 2 . The first approximate logarithmic probability ratio λ I (1) of the output from the output terminal 01 and the first approximate log likelihood ratio λ 1 outputted from the output terminal 〇7 by a multiplication circuit (not shown). 1) The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1( 1). The second approximate logarithmic probability ratio λ 1(2) of the output from the output terminal 〇2 and the second approximate logarithm of -94-200835169 output from the output terminal 〇8 may be obtained by the multiplication circuit not shown. Sex ratio; ί 1(2) is the absolute 値 multiplication (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(2). The third approximate logarithmic probability ratio λ 1 (3) of the output from the output terminal 03 and the third approximate log likelihood ratio λ 1 (3) output from the output terminal 09 by a multiplication circuit (not shown). The absolute 値 is multiplied (g卩, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(3).

以未圖示的乘法電路將從輸出端子04所輸出之第4 個近似對數可能性比λ 1(4)的符號和從輸出端子010所輸 出之第4個近似對數可能性比λ 1(4)的絕對値相乘(g卩,經 由對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(4)輸出。 以未圖示的乘法電路將從輸出端子05所輸出之第5 個近似對數可能性比λ 1(5)的符號和從輸出端子〇 1 1所輸 ^ 出之第5個近似對數可能性比λ I (5 )的絕對値相乘(即,經 由對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(5)輸出。 以未圖示的乘法電路將從輸出端子06所輸出之第6 個近似對數可能性比λ 1(6)的符號和從輸出端子012所輸 出之第6個近似對數可能性比λ 1(6)的絕對値相乘(即,經 由對絕對値附加符號的電路),並作爲近似對數可能性比λ 1(6)輸出。 -95- 200835169 一樣地,在輸入端子Π輸入接收信號之Q頻道成分 X Q,並輸出近似對數可能性比λ Q (1)、λ Q (2)、λ Q (3 )、λ Q(4) 、 λ Q(5) 、 λ Q(6)。The fourth approximate logarithmic probability ratio λ 1 (4) from the output terminal 04 and the fourth approximate log likelihood ratio λ 1 from the output terminal 010 are multiplied by a multiplication circuit (not shown). The absolute 値 is multiplied (g卩, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1(4). The fifth approximate logarithmic probability ratio of the fifth approximate logarithmic probability ratio λ 1 (5) outputted from the output terminal 05 and the fifth approximate logarithmic probability outputted from the output terminal 〇1 1 by a multiplication circuit (not shown) The absolute 値 multiplication of λ I (5 ) (ie, via a circuit that adds a sign to the absolute )) is output as an approximate log likelihood ratio λ 1(5). The sixth approximate logarithmic probability ratio λ 1 (6) of the output from the output terminal 06 and the sixth approximate log likelihood ratio λ 1 (6) output from the output terminal 012 by a multiplication circuit (not shown). The absolute 値 is multiplied (ie, via a circuit that adds a sign to the absolute )) and is output as an approximate log likelihood ratio λ 1 (6). -95- 200835169 Similarly, input the Q channel component XQ of the received signal at the input terminal ,, and output the approximate log likelihood ratio λ Q (1), λ Q (2), λ Q (3 ), λ Q(4) , λ Q(5) , λ Q(6).

在解碼處理部7根據sum-product解碼法進行錯誤訂正 解碼的情況,以未圖示的乘法電路對近似對數可能性比入 1(1) 、 λ 1(2) 、 λ 1(3) 、 λ 1(4)、人 1(5) 、 λ 1(6) 、 λ、Q(l)、 AQ(2)、AQ(3)、AQ(4)、AQ(5)、AQ(6)乘以(一2/σ2)的 値,將乘法結果作爲(已考慮係數)近似對數可能性比並送 至解碼處理部7。在解碼處理部7根據min-sum解碼法進行 錯誤訂正解碼的情況,以未圖示的乘法電路對近似對數可 能性比 λ 1(1)、λ 1(2)、. λ 1(3)、λ 1(4)、λ 1(5)、λ 1(6)、λ Q(l)、λ Q(2)、 λ Q(3)、λ Q(4) 、λ Q (5)、λ Q (6)乘以(一 f)的値,將乘法結果作爲(已考慮係數)近似對數可能性比並 送至解碼處理部7。 如以上所示,若依據第6實施形態,和第1及第2實 φ 施形態一樣,能以精度和習知方式1 一樣,而且比習知方 式1更少的計算量進行錯誤訂正解碼。又,因爲接收信號 配置於如第26圖所示之特定的星座點,並以2之乘方爲基 本的式子算出常數Ki、Ci,所以可利用以位元運算爲基本 之硬體電路算出以 4QAM、16QAM、64QAM、25 6QAM、 1024QAM以及409 6QAM等所調變的信號之近似對數可能性 比。又,若依據此硬體電路,可對於以16QAM、64QAM、 256QAM、1024QAM以及4096QAM等所調變的信號,同時 •96- 200835169 算出複數個近似對數可能性比。 [第4〜第6實施形態之變形例] (1)特定之星座點的配置 在第4〜第6實施形態,作爲特定之星座,在I頻道成 分及Q頻道成分各自之調變位元數係L的情況,在各頻道 成分之星座點的座標係P(P係—(/一1)以上,而且(21^—1) 以下之奇數)的情況,雖然表示常數Ki及常數Ci變成第(14)When the decoding processing unit 7 performs error correction decoding based on the sum-product decoding method, the approximate logarithmic probability is compared with 1(1), λ 1(2), λ 1(3) , λ by a multiplication circuit (not shown). 1(4), person 1(5), λ 1(6), λ, Q(l), AQ(2), AQ(3), AQ(4), AQ(5), AQ(6) multiplied by In the case of (a 2/σ2), the result of the multiplication is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit 7. When the decoding processing unit 7 performs error correction decoding based on the min-sum decoding method, the approximate logarithmic probability ratios λ 1 (1), λ 1 (2), and λ 1 (3) are obtained by a multiplication circuit (not shown). λ 1(4), λ 1(5), λ 1(6), λ Q(l), λ Q(2), λ Q(3), λ Q(4) , λ Q (5), λ Q (6) When 乘 is multiplied by (f), the multiplication result is approximated to the logarithmic probability ratio (considered coefficient) and sent to the decoding processing unit 7. As described above, according to the sixth embodiment, as in the first and second embodiments, the error correction decoding can be performed with the same precision as the conventional method 1 and with less calculation amount than the conventional method 1. Further, since the reception signal is placed at a specific constellation point as shown in Fig. 26, and the constants Ki and Ci are calculated based on the equation of 2, the calculation can be performed by using a hardware circuit based on the bit operation. The approximate logarithmic probability ratio of signals modulated by 4QAM, 16QAM, 64QAM, 25 6QAM, 1024QAM, and 409 6QAM. Moreover, according to the hardware circuit, a plurality of approximate logarithmic probability ratios can be calculated for signals modulated by 16QAM, 64QAM, 256QAM, 1024QAM, and 4096QAM, and at the same time, •96-200835169. [Modifications of the fourth to sixth embodiments] (1) Arrangement of specific constellation points In the fourth to sixth embodiments, the number of modulation bits of the I channel component and the Q channel component is specified as a specific constellation. In the case of the case of the L, the coordinate system P (P system - (/1) or more, and the odd number of (21^-1) or less) in the constellation point of each channel component indicates that the constant Ki and the constant Ci become the first (14)

式〜第(17)式,但是未限定如此。 例如,亦可係各頻道成分之星座點的座標係P之a倍。 其中,a係0以外的數字。在此情況,常數KiUI)的値不是 以第(14)式,而是以第(21)式表示,常數CiUI)的値不是以 第(15)式,而是以第(22)式表示。對於Q成分亦一樣。 KJxI): -1~- la| …(21) |a| |a| (2^i^L)Equation ~ (17), but is not limited to this. For example, it may be a times the coordinate system P of the constellation point of each channel component. Where a is a number other than 0. In this case, the constant KiUI) is not represented by the formula (14) but by the formula (21), and the constant CiUI) is not represented by the formula (15) but by the formula (22). The same is true for the Q component. KJxI): -1~- la| ...(21) |a| |a| (2^i^L)

Ct(xl) = 0 ^ Cl(xI) = Cw(xI) + axKi(xI)x2(L-W) …(22) (2^i^L) -97- 200835169 (2)灰碼 雖然在第4〜第6實施形態,說明將接收信號以多値 QAM方式進行調變的情況,但是未限定如此。一般,在將 接收信號以灰碼進行調變的情況等,即在以接收信號之相 鄰的星座點(記號點)間僅1位元變化之方式映射的情況, 能以在本發明之第4〜第6實施形態所說明的方式算出近似 對數可能性比。Ct(xl) = 0 ^ Cl(xI) = Cw(xI) + axKi(xI)x2(LW) (22) (2^i^L) -97- 200835169 (2) Although the gray code is in the 4th~ In the sixth embodiment, the case where the reception signal is modulated by the multi-turn QAM method will be described, but the present invention is not limited thereto. In general, in the case where the received signal is modulated by a gray code, that is, in a case where only one bit is changed between adjacent constellation points (marked points) of the received signal, the present invention can be 4 to the method described in the sixth embodiment, the approximate logarithmic probability ratio is calculated.

(3 ) m i η - s u m解碼法之對數可能性比 在第5實施形態,在將f値設爲「1」的情況,可不需 要常數記憶部54及乘法部52,而可更簡化對數可能性比之 計算。 (4)對數可能性比算出部 雖然在第4〜第6實施形態,對數可能性比算出部首先· 根據接收信號之I頻道成分xl引出近似對數可能性比λ I, 然後,根據接收信號之Q頻道成分X Q引出近似對數可能 φ 性比λ Q,但是未限定如此。亦可採用I頻道成分用之對數 可能性比算出部和Q頻道成分用的對數可能性比算出部同 時動作,而平行地引出近似對數可能性比。 (5)近似式 雖然在第4〜第6實施形態,根據將對數可能性比之理 論式在判定値附近進行泰勒展開至1次爲止的式子,而算 出近似對數可能性比,但是未限定如此。亦可根據將對數 可能性比之理論或在判定値附近泰勒展開至η次(η爲2以 •98- 200835169 上之自然數)爲止的式子,而算出近似對數可能性比。又, 亦可不是將理論式進行泰勒展開的式子,而是根據愈接近 判定値精度愈高之其他的式子,或者除此以外之任意的近 似式,算出近似對數可能性比。 (6)第6實施形態之對數可能性比算出部(3) Logarithmic Possibility Ratio of mi η - sum Decoding Method In the fifth embodiment, when f 値 is set to "1", the constant memory unit 54 and the multiplication unit 52 are unnecessary, and the logarithm possibility can be simplified. Calculated by comparison. (4) Logarithm likelihood ratio calculation unit In the fourth to sixth embodiments, the log likelihood ratio calculation unit first extracts the approximate log likelihood ratio λ I from the I channel component x1 of the received signal, and then based on the received signal The Q channel component XQ leads to an approximate logarithm possible φ sex ratio λ Q , but is not limited thereto. The logarithmic probability ratio calculation unit for the I channel component and the log likelihood ratio calculation unit for the Q channel component may be simultaneously operated, and the approximate logarithmic probability ratio may be derived in parallel. (5) Approximate formula In the fourth to sixth embodiments, the approximate logarithmic probability ratio is calculated based on the equation in which the logarithm possibility is compared with the theoretical expression in the vicinity of the determination of the 値 to Taylor, but the approximate equation is not limited. in this way. The approximate logarithmic probability ratio can also be calculated based on the formula that compares the logarithm probability to the theory or the Taylor to the nearest n (η is 2 to the natural number on 98-200835169). Further, instead of formulating the Taylor expansion of the theoretical expression, the approximate logarithmic probability ratio may be calculated from another equation in which the accuracy is determined to be higher, or an arbitrary equation other than the above. (6) Logarithmic probability ratio calculation unit of the sixth embodiment

在第6實施形態所說明之第35圖的對數可能性比算出 部係在第(21)式及第(22)式之參數a爲正數時可使用。在參 數a爲負數時,對數可能性比算出部變成如第36圖所示。 第3 6圖的對數可能性比算出部係刪除在第3 5圖之邏輯反 電路NOT1的構造。在此情況,X位元的信號Data[6 : (7 一 X)]之從最上階的第1個位元(位元6),經由匯流排寬度 調整用匯流排B U s 1及溢流防止用匯流排B u s 2之最上階位 元,被送至互斥邏輯或電路XOR2,而且作爲第1個近似對 數可能性比λ 1( 1)的符號,經由匯流排寬度調整用匯流排 Bus3向輸出端子01輸出。互斥邏輯或電路XOR2算出X 位元的信號Data [6 : (7 — X)]之從最上階的第1個位元(位元 6)、和X位元的信號Data[6 : (7 - X)]之從最上階的第2個 位元(位元5)之互斥邏輯或,並作爲第2個近似對數可能性 比λ 1(2)的符號,經由匯流排寬度調整用匯流排Bus4向輸 出端子02輸出。 (7)接收信號之調變位元數 雖然在第4〜第6實施形態,以將接收信號進行多値調 變爲前提,但是未限定如此,即使係將接收信號以2値(0 -99- 200835169 和l)進行調變者,亦可應用本發明。 (8)傳送方式 雖然在第4〜第6實施形態,說明使用基頻帶方式的情 況’但是未限定如此。作爲對多値調變之信號的傳送方式, 在不是使用基頻帶方式而是頻帶傳送的情況,亦可一樣地 應用本發明。 (整體之變形例)The log likelihood ratio calculation unit of Fig. 35 described in the sixth embodiment can be used when the parameter a of the equations (21) and (22) is a positive number. When the parameter a is a negative number, the log likelihood ratio calculation unit becomes as shown in Fig. 36. The logarithmic probability ratio calculation unit of Fig. 3 deletes the structure of the logical inverse circuit NOT1 of Fig. 5 . In this case, the X-bit signal Data[6: (7-X)] is transmitted from the uppermost first bit (bit 6) via the bus width adjustment bus BU s 1 and overflow prevention. The highest order bit of the bus bar B us 2 is sent to the mutually exclusive logic OR circuit XOR2, and as the sign of the first approximate log likelihood ratio λ 1( 1), via the bus width adjustment bus bar Bus3 Output terminal 01 output. The mutually exclusive logic OR circuit XOR2 calculates the signal of the X bit element Data [6 : (7 - X)] from the topmost bit (bit 6), and the signal of the X bit Data[6 : (7 - X)] The mutually exclusive logical OR of the second bit (bit 5) from the top, and the second approximation log likelihood ratio λ 1 (2) symbol, via the bus width adjustment convergence The row Bus4 is output to the output terminal 02. (7) The number of modulation bits of the received signal is assumed to be a multi-turn adjustment of the received signal in the fourth to sixth embodiments. However, the present invention is not limited thereto, even if the received signal is 2 値 (0 - 99) - 200835169 and l) For the modulation, the invention can also be applied. (8) Transmission method Although the case of using the baseband method has been described in the fourth to sixth embodiments, the present invention is not limited thereto. The present invention can be applied in the same manner as the transmission method of the signal for multi-tone modulation, even in the case of using the baseband method but the frequency band transmission. (Modification of the whole)

本發明未限定爲上述之實施形態,可在不超出其主旨 之範圍進行各種變形,.例如亦包含有以下所示的變形例。 (1)解碼程式 在本發明之實施形態所說明的解碼器未限定爲以專用 之硬體裝置實現者。亦可作成從外部將解碼程式安裝於記 憶體,電腦再從記憶體讀出此解碼程式並執行,藉此實現 解碼器之功能。例如,在第4〜第6實施形態,解碼程式就 變成具備有第24圖、第29圖以及第34圖等之流程圖的各 步驟。 (2)錯誤訂正碼 雖然在第1〜第6實施形態,作爲藉重複解碼法之解碼 器,說明LDPC解碼器,但是未限定如此。在如Viterbi解 碼器或Turbo解碼器之其他的解碼器亦可應用在第1〜第6 實施形態所說明的方法。 應認爲這次所公開之實施形態在全部的事項上係舉例 表示,而不是用以限制的。本發明之範圍不是上述的說明, -100- 200835169 而欲圖藉申請專利範圍表示,包含有和申請專利範圍同等 的意義及範圍內之所有的變更。 【圖式簡單說明】 第1圖係第1實施形態之通信系統的示意構造圖。 第2圖係表示傳送資料和解調資料之對應例的圖。 第3圖係槪略表示第1實施形態之接收側的裝置之構 造圖。The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, the following modifications are also included. (1) Decoding program The decoder described in the embodiment of the present invention is not limited to a dedicated hardware device. It is also possible to externally install the decoding program on the memory, and the computer reads the decoding program from the memory and executes it, thereby realizing the function of the decoder. For example, in the fourth to sixth embodiments, the decoding program becomes each step including a flowchart of Figs. 24, 29, and 34. (2) Error Correction Code Although the LDPC decoder is described as a decoder by the repetition decoding method in the first to sixth embodiments, the present invention is not limited thereto. The methods described in the first to sixth embodiments can also be applied to other decoders such as a Viterbi decoder or a turbo decoder. It should be considered that the embodiments disclosed herein are exemplified in all matters, and are not intended to be limiting. The scope of the present invention is defined by the scope of the claims and the scope of the claims and the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a communication system according to a first embodiment. Fig. 2 is a view showing a correspondence example of transmission data and demodulation data. Fig. 3 is a schematic view showing the configuration of the apparatus on the receiving side of the first embodiment.

第4圖係表示第1實施形態之解碼器的構造圖。 第5圖係表示檢查陣列例之圖。 第6圖係第4圖所示之檢查陣列的Tanner圖形之圖。 第7圖係表示第1實施形態之查表例的圖。 第8圖係第2實施形態之接收側的裝置之構造的示意 第9圖係表示第2實施形態之解碼器的構造圖° 第1 0圖係表示第2實施形態之查表例的圖° 第11圖係表示信號雜訊比(SNR)和錯誤率之關係的圖 形。 第1 2圖係表示第3實施形態之解碼器的構造®1 ° 第1 3圖係用以說明反複結束條件設定部之一例的® ° 第1 4圖係用以說明反複結束條件設定部之其他的例 子之圖。 第1 5圖係用以說明反複結束條件設定部之其他的例 子之圖。 -101- 200835169 第1 6圖係表示包含有反複次數資訊In之資訊段的資 料構造圖。 第1 7圖係表示內容配送模型圖。 第1 8圖係傳送裝置之方塊圖。 第1 9圖係表示通信品質相關資料庫D B 1之資料構造 第20圖係表示傳送裝置之傳送處理順序的流程圖。Fig. 4 is a structural diagram showing a decoder of the first embodiment. Figure 5 is a diagram showing an example of an inspection array. Figure 6 is a diagram of the Tanner graph of the inspection array shown in Figure 4. Fig. 7 is a view showing an example of a look-up table according to the first embodiment. Fig. 8 is a view showing a structure of a device on the receiving side according to the second embodiment. Fig. 9 is a view showing a structure of a decoder according to a second embodiment. Fig. 10 is a view showing a table of the table according to the second embodiment. Figure 11 is a graph showing the relationship between signal noise ratio (SNR) and error rate. Fig. 1 is a view showing the structure of the decoder of the third embodiment. 1° Fig. 3 is a diagram for explaining an example of the repeated termination condition setting unit. Fig. 14 is a diagram for explaining the repeated termination condition setting unit. A diagram of other examples. Fig. 15 is a view for explaining another example of the repeated termination condition setting unit. -101- 200835169 Figure 16 shows a data structure diagram containing the information segment of the iteration information In. Figure 17 shows a content distribution model diagram. Figure 18 is a block diagram of a conveyor. Fig. 19 is a view showing the data structure of the communication quality related database D B 1 Fig. 20 is a flow chart showing the transfer processing procedure of the transfer device.

第2 1圖係表示通信品質相關資料庫DB 1的資料構造之 其他的例子之圖。 第22圖係第4實施形態之通信系統的示意構造圖。 第23圖係表示第4實施形態之解碼器的構造圖。 第24圖係表示第4實施形態之判定部的處理動作之流 程圖。 第25圖係表示16Q AM之星座圖。 第26圖係表示在256QAM之特定的星座點之I頻道成 ^ 分及Q頻道成分的座標圖。 第27 (a)圖係表示在16Q AM的情況之第1個對數可能 性比λ Γ和第1個近似對數可能性比λ 1的圖。(b)圖係表 示在16QAM的情況之第2個對數可能性比λ 2°和第2個近 似對數可能性比λ 2的圖。 第28圖係表示第4實施形態之對數可能性比算出部的 構造圖。 第29圖係表示在第4實施形態之關於接收信號之I頻 -102- 200835169 道成分的對數可能性比之計算處理的順序之流程圖。 第30圖係用以說明常數Ki(xl)及Ci(xl)之設定例的 圖。 第3 1 (a)圖係表示在習知方式1和第4實施形態之方式 的接收信號之I頻道成分的對數可能性比之計算量的比 較之圖。(b)圖係表示調變位元數L和U)圖之總計算量的關 係之一例的圖。Fig. 2 is a view showing another example of the data structure of the communication quality related database DB 1. Fig. 22 is a schematic structural view showing a communication system of the fourth embodiment. Fig. 23 is a view showing the configuration of a decoder of the fourth embodiment. Fig. 24 is a flow chart showing the processing operation of the determination unit in the fourth embodiment. Figure 25 shows the constellation diagram of 16Q AM. Figure 26 is a graph showing the coordinates of the I channel and the Q channel components at a particular constellation point of 256QAM. Fig. 27(a) is a graph showing the first log likelihood ratio λ Γ and the first approximate log likelihood ratio λ 1 in the case of 16Q AM. (b) The graph shows a graph of the second log likelihood ratio λ 2° and the second approximate log likelihood ratio λ 2 in the case of 16QAM. Fig. 28 is a structural diagram showing a logarithmic probability ratio calculating unit in the fourth embodiment. Fig. 29 is a flow chart showing the procedure of the calculation process of the logarithmic probability ratio of the I-band -102-200835169 channel component of the received signal in the fourth embodiment. Fig. 30 is a view for explaining a setting example of the constants Ki(xl) and Ci(xl). Fig. 3 (a) is a view showing a comparison of the logarithmic probability of the I channel component of the received signal in the conventional mode 1 and the fourth embodiment as compared with the calculated amount. (b) A diagram showing an example of the relationship between the number of modulation bits L and the total calculation amount of the U) map.

第32圖係表示習知方式1和第4實施形態之方式的模 擬結果的圖。 第3 3圖係表示第5實施形態之對數可能性比算出部的 構造圖。 第3 4圖係表示在第5實施形態之關於接收信號的I頻 道成分的近似對數可能性比之計算處理的順序之流程圖。 第3 5圖係表示第6實施形態之對數可能性比算出部的 構造圖。 第3 6圖係表示第6實施形態之變形例的對數可能性比 算出部之構造圖。 【主要元件符號說明】 72 74 4a 4b 編碼器 調變器 通信路線 解調器 解調電路 類比/數位轉換電路 103- 200835169 5、75、85、95 解碼器 5a 編碼資料輸入埠Fig. 32 is a view showing simulation results of the modes of the conventional mode 1 and the fourth embodiment. Fig. 3 is a structural diagram showing a logarithmic probability ratio calculating unit in the fifth embodiment. Fig. 34 is a flow chart showing the procedure of the calculation process of the approximate logarithmic probability ratio of the I channel component of the received signal in the fifth embodiment. Fig. 35 is a structural diagram showing a logarithmic probability ratio calculating unit in the sixth embodiment. Fig. 3 is a structural diagram showing a logarithmic possibility ratio calculating unit according to a modification of the sixth embodiment. [Main component symbol description] 72 74 4a 4b Encoder Modulator Communication path Demodulator Demodulation circuit Analog/digital conversion circuit 103- 200835169 5, 75, 85, 95 Decoder 5a Encoded data input埠

5b 5 c 6 、 76 、 51 、 60 、 65 7 、 9 10 11、81 12、 15 13、 14 20 ^ 120 ^ 220 21a 、 22 、 23 30 35c 解碼資料輸出埠 錯誤率輸入埠 對數可能性比算出部 解碼處理部 列處理部 行處理部 判定部 次數決定部 查表 反複結束條件設定部 電氣配線 通信控制部 結束條件輸入埠5b 5 c 6 , 76 , 51 , 60 , 65 7 , 9 10 11 , 81 12 , 15 13 , 14 20 ^ 120 ^ 220 21a , 22 , 23 30 35c Decoding data output 埠 error rate input 埠 logarithmic probability ratio Part decoding processing unit column processing unit row processing unit determination unit number determining unit table repeating completion condition setting unit electric wiring communication control unit end condition input埠

40 、 91 、 92 、 93 41 42、5 2 4 3 44、 54 50 250 61 82 終端裝置 加減法部 乘法部 近似式常數決定部 常數記憶部 反複結束條件抽出部 傳送資訊產生部 傳送部 暫存器(反複結束條件記憶部) 輸入端子 -104-40, 91, 92, 93 41 42, 5 2 4 3 44, 54 50 250 61 82 Terminal device addition and subtraction unit multiplication unit approximation constant determination unit constant memory unit repetition end condition extraction unit transmission information generation unit transmission unit register (End of condition memory section) Input terminal -104-

II 200835169II 200835169

〇1〜〇1 7 輸出编子 Magi 〜Mag7 絕對値計算部 XOR2〜XOR6 互斥邏輯或電路 N 0 T 1 〜N 〇 T 7 邏輯反電路 B L 2 〜B L 6 內建匯流排 Busl 、 Bus3〜Busl4 匯流排寬調整用匯流排 Bus2、 Busl5〜Bus20 溢流防止用匯流排 SI 、 S5 、 S6 傳送裝置 R1 〜R6 接收裝置 DB 1 通信品質相關資料庫 DB2 內容資料庫 In 反複次數資訊 Xn 編碼資料 CDn 解碼資料 EX1〜EX7 信號線抽出部〇1~〇1 7 Output editor Magi ~ Mag7 Absolute 値 calculation section XOR2~XOR6 Mutual exclusion logic or circuit N 0 T 1 ~N 〇T 7 Logic inverse circuit BL 2 ~BL 6 Built-in busbar Busl, Bus3~Busl4 Busbar width adjustment busbar Bus2, Busl5~Bus20 Overflow prevention busbar SI, S5, S6 Transmitter R1 to R6 Receiver DB 1 Communication quality related database DB2 Content database In Repeat number information Xn Coded data CDn decoding Information EX1~EX7 signal line extraction section

105-105-

Claims (1)

200835169 十、申請專利範圍: 1.一種解碼器’其對通信路線所傳送之編碼資料進行錯誤 訂正解碼,而得到解碼資料,該解碼器具備有: 解碼處理部,係藉反複地進行解碼運算之重複解碼法而 進行該編碼資料的錯誤訂正解碼;及 次數決定部,係根據該通信路線之傳送特性而決定解碼 運算的反複次數。200835169 X. Patent application scope: 1. A decoder that performs error correction decoding on the encoded data transmitted by the communication path to obtain decoded data. The decoder is provided with: a decoding processing unit that repeatedly performs decoding operations. The error correction method is performed by repeating the decoding method, and the number determining unit determines the number of repetitions of the decoding operation based on the transmission characteristics of the communication path. 2 ·如申請專利範圍第1項之解碼器,其中,’ 該通信路線之傳送特性係該編碼資料的雜訊特性; 該次數決定部係根據使用該編碼資料所包含之指引信 號而算出之該編碼資料的雜訊特性,決定解碼運算之反 複次數。 3 ·如申請專利範圍第1項之解碼器,其中 又具備有輸入埠,其用以從外部輸入該解碼資料之錯 誤特性; . 該通信路線的傳送特性係該輸入埠所輸入之該解碼資 料的錯誤特性; 該次數決定部係根據該解碼資料之錯誤特性,而決定 解碼運算的反複次數。 4 ·如申請專利範圍第1項之解碼器,其中, 又具備有輸入埠,其用以從外部輸入該解碼資料之錯 誤特性; 該通信路線的傳送特性係該編碼資料的雜訊特性和該 -106- 200835169 輸入璋所輸入之該解碼資料的錯誤特性; 該次數決定部係選擇根據該編碼資料的雜訊特性而特 定之解碼運算的反複次數,和根據該解碼資料之錯誤特 性而特定之解碼運算的反複次數之中比較多的反複次 數。 5. —種接收裝置,其接收通信路線所傳送之編碼資料並進 行解碼,該接收裝置具備有:2. The decoder of claim 1, wherein the transmission characteristic of the communication route is a noise characteristic of the coded data; the number determination unit is calculated based on a guidance signal included in the coded data. The noise characteristics of the encoded data determine the number of iterations of the decoding operation. 3. The decoder of claim 1 of the patent application, further comprising an input port for inputting an error characteristic of the decoded data from the outside; the transmission characteristic of the communication route is the decoded data input by the input channel Error characteristic; The number determining unit determines the number of iterations of the decoding operation based on the error characteristic of the decoded data. 4. The decoder of claim 1, wherein the decoder further has an input port for inputting an error characteristic of the decoded data from the outside; a transmission characteristic of the communication route is a noise characteristic of the coded data and the -106- 200835169 Enter the error characteristic of the decoded data input by the input unit; the number determining unit selects the number of repetitions of the decoding operation specified according to the noise characteristic of the encoded data, and is specified according to the error characteristic of the decoded data. The number of iterations among the number of iterations of the decoding operation. 5. A receiving device that receives and decodes encoded data transmitted by a communication path, the receiving device having: 解調器,係將所接收之該編碼資料進行數位解調;及 如申請專利範圍第1至4項中任一項之解碼器,係將已 解調之該編碼資料的數位信號進行解碼。 6. —種編碼資料之解碼方法,其對通信路線所傳送之編碼 資料,藉重複解碼法進行錯誤訂正解碼,而得到解碼資 料,該解碼方法包含有: 決定步驟,係根據該通信路線之傳送特性而決定解碼運 算的反複次數;及 進行步驟,係根據該決定之反複次數,而藉該重複解碼 法進行錯誤訂正解碼。 7. —種通信系統,其具備有向通信路線傳送編碼資料的傳 送裝置、和接收所傳送之該編碼資料並進行解碼的接收 裝置, 該接收裝置具,有解碼器,其對所接收之該編碼資料執 行重複解碼法,而得到解碼資料; 該接收裝置係根據該通信路線之傳送特性而決定解碼 • 107- 200835169 運算的反複次數後,藉該重複解碼法進行錯誤訂正解碼。 8.—種解碼器’其對通信路線所傳送之編碼資料進行錯誤 訂正解碼,而得到解碼資料, 具備有: 解碼處理部,係藉反複地進行解碼運算之重複解碼法 而進行該編碼資料的錯誤訂正解碼;The demodulator performs digital demodulation on the received encoded data; and the decoder of any one of claims 1 to 4 decodes the demodulated digital signal of the encoded data. 6. A decoding method for encoding data, which performs error correction decoding on a coded data transmitted by a communication route by using a repeated decoding method to obtain decoded data, the decoding method comprising: a determining step, which is based on the transmission of the communication route The number of iterations of the decoding operation is determined by the characteristics; and the step of performing the error correction decoding by the repeated decoding method is performed according to the number of iterations of the decision. 7. A communication system comprising: a transmitting device for transmitting encoded data to a communication path; and a receiving device for receiving and decoding the transmitted encoded data, the receiving device having a decoder for receiving the received data The coded data performs a repeated decoding method to obtain decoded data. The receiving device determines the number of iterations of the decoding according to the transmission characteristics of the communication path, and then performs error correction decoding by the repeated decoding method. 8. A decoder that performs error correction decoding on the coded data transmitted by the communication path to obtain decoded data, and includes: a decoding processing unit that performs the coded data by repeatedly decoding the decoding operation Error correction decoding 判定部’係判定藉該解碼處理部之解碼運算的反複之 結束;以及 結束條件輸入璋,係用以從該解碼器之外部受理反複 結束條件, 該判定部係根據從該結束條件輸入埠所輸入之反複結 束條件’而判定藉該解碼處理部之解碼運算的反複之結 束。 9 . 一*種解碼系統, 具備有: 解碼器’係對通信路線所傳送之編碼資料進行錯誤訂 正解碼,而得到解碼資料;及 反複結束條件設定部,係和該解碼器進行外部連接, 該解碼器包含有: 解碼處理部’係藉反複地進行解碼運算之重複解碼法 而進行該編碼資料的錯誤訂正解碼, 判定部’係判定藉該解碼處理部之解碼運算的反複之 結束,以及 -108- 200835169 結束條件輸入埠,係用以從該解碼器之外部受理反複 結束條件, 該反複結束條件設定部係以將已調整之反複結束條件 供給該解碼器的該結束條件輸入埠之方式構成, 該判定部係根據從該結束條件輸入璋所輸入之反複結 束條件,而判定藉該解碼處理部之解碼運算的反複之結 束。 10.—種接收裝置,其可經由通信路線接收編碼資料’The determination unit 'determines the end of the repetition of the decoding operation by the decoding processing unit; and the termination condition input 璋 is for receiving a repetition end condition from the outside of the decoder, and the determination unit inputs the 从 根据 according to the termination condition The input of the repeated termination condition 'determines the end of the repetition of the decoding operation by the decoding processing unit. 9. A decoding system, comprising: a decoder that performs error correction decoding on the encoded data transmitted by the communication path to obtain decoded data; and an iterative termination condition setting unit that externally connects to the decoder. The decoder includes: a decoding processing unit that performs error correction decoding of the encoded data by a repeated decoding method that repeatedly performs a decoding operation, and the determination unit determines that the decoding operation by the decoding processing unit ends the repetition of the decoding operation, and 108-200835169 End condition input 埠 is for receiving a repeating end condition from the outside of the decoder, and the repeating end condition setting unit is configured to input the adjusted end condition to the end condition of the decoder. The determination unit determines the end of the repetition of the decoding operation by the decoding processing unit based on the repeated termination condition input from the end condition input. 10. A receiving device that can receive encoded data via a communication route. 具備有解碼器,其對該編碼資料進行錯誤訂正解碼,而 得到解碼資料; 該解碼器具備有: 解碼處理部,係藉反複地進行解碼運算之重複解碼法 而進行該編碼資料的錯誤訂正解碼, 判定部,係判定藉該解碼處理部之解碼運算的反複之 結束,以及 結束條件輸入埠,係用以從該解碼器之外部受理反複 結束條件, 該判定部係根據從該結束條件輸入埠所輸入之反複 結束條件,而判定藉該解碼處理部之解碼運算的反複之 結束’ 該接收裝置又具備有反複結束條件抽出部,其接收經 由該通信路線所傳送的反複結束條件,並將該反複結束 條件供給該解碼器的該結束條件輸入埠。 -109- 200835169 11. 一種傳送裝置,具備有: 反複結束條件設定部,係設定錯誤訂正解碼器將編碼 資料進行解碼時之解碼運算的反複結束條件;及 傳送部,係向該錯誤訂正解碼器傳送藉該反複結束條 件設定部所設定之反複結束條件。 12.如申請專利範圍第11項之傳送裝置,其中,A decoder is provided, which performs error correction decoding on the encoded data to obtain decoded data. The decoder includes: a decoding processing unit that performs error correction decoding of the encoded data by repeatedly decoding the decoding operation. The determination unit determines that the end of the repetition of the decoding operation by the decoding processing unit and the end condition input are for receiving a repetition end condition from the outside of the decoder, and the determination unit inputs the condition based on the end condition. The repeated termination condition is input, and the end of the repetition of the decoding operation by the decoding processing unit is determined. The receiving device further includes a repeated termination condition extracting unit that receives the repeated termination condition transmitted via the communication path, and the The end condition input 该 is supplied to the decoder by the end condition. -109- 200835169 11. A transmission device comprising: a repetition end condition setting unit that sets a repetition end condition of a decoding operation when an error correction decoder decodes encoded data; and a transmission unit that is to the error correction decoder The repeated termination condition set by the repeated termination condition setting unit is transmitted. 12. The transfer device of claim 11, wherein 又具備有資料庫,其儲存用以決定傳送編碼資料時之 通信品質的資訊; 該反複結束條件設定部參照該資料庫,決定傳送該編 碼資料時之通信品質,並因應於該通信品質而設定反複 結束條件。 1 3 ·如申請專利範圍第1 1項之傳送裝置,其中, 該傳送部係傳送包含有標題部和實際資料部的資訊 段; 在該標題部記述該反複結束條件; 該實際資料部係記述根據該反複結束條件進行解碼 運算之編碼資料,或用以特定根據該反複結束條件進行 解碼運算之編碼資料的資訊。 1 4 · 一種通信品質調整方法,其對具有反複地進行解碼運算 之錯誤訂正解碼器的使用者側通信裝置,調整傳送已被 編碼之資料時的通信品質, 該方法具備有: 設定步驟’係設定該錯誤訂正解碼器將該編碼資料進 -110· 200835169 行解碼時之解碼運算的反複結束條件;及 傳送步驟’係向該錯誤訂正解碼器傳送該設定之反複 結束條件, 該設定步驟包含有因應於使用者所得之通信品質而 設定該反複結束條件的步驟。 1 5 · —種解碼器,其對通信路線所傳送之編碼資料進行錯誤 訂正解碼,而得到解碼資料,該解碼器具備有:Further, a database is provided, which stores information for determining the communication quality when the encoded data is transmitted; the repeated termination condition setting unit refers to the database, determines the communication quality when the encoded data is transmitted, and sets the communication quality according to the communication quality. End the condition repeatedly. The transfer device of claim 11, wherein the transfer unit transmits an information segment including a header portion and an actual data portion; wherein the repeated termination condition is described in the header portion; and the actual data portion is described The coded data subjected to the decoding operation based on the iterative end condition or the information for specifying the coded data subjected to the decoding operation based on the iterative end condition. 1 4 A communication quality adjustment method for adjusting a communication quality when transmitting a coded material to a user side communication device having an error correction decoder that repeatedly performs decoding calculation, the method comprising: a setting step And setting a repetition end condition of the decoding operation when the error correction decoder converts the encoded data into -110·200835169 lines; and transmitting a step of transmitting the setting to the error correction decoder, the setting step includes The step of repeating the end condition is set in response to the communication quality obtained by the user. 1 5 - a decoder that performs error correction decoding on the encoded data transmitted by the communication path to obtain decoded data, and the decoder has: 對數可能性比算出部,係根據將表示編碼資料x和對 數可能性比之關係的理論式近似的近似式,算出所輸入 之編碼資料X的對數可能性比之近似値;及 解碼處理部,係根據該對數可能性比近似値λ i,而 進行該編碼資料X之錯誤訂正解碼。 1 6 ·如申請專利範圍第1 5項之解碼器,其中, 該近似式係該編碼資料x之値愈接近判定値,愈高精 度地將該理論式近似; 該判定値係在該理論式中該編碼資料x之値係〇的機 率,和該編碼資料X之値係1的機率變成相等之値。 1 7 ·如申請專利範圍第1 6項之解碼器,其中該近似式係將 該理論式在該判定値進行泰勒展開的式子。 1 8 · —種解碼器,其對通信路線所傳送之編碼資料進行錯誤 訂正解碼,而得到解碼資料,該解碼器具備有: 可能性算出部,係對於編碼資料X,根據第(A1)式算 出對數可能性比的近似値λ i(i = l〜L);及 -111- 200835169 -(AD ^i = -gxKj x(x-Cj) (i = 1〜L) 解碼處理部,係根據該對數可能性比的近似値入 i(i=l〜L),而進行該編碼資料X之錯誤訂正解碼,The logarithm likelihood ratio calculating unit calculates an approximation 对 of a logarithmic probability ratio of the input coded data X based on an approximation formula that approximates a theoretical expression indicating a relationship between the coded data x and a log likelihood ratio; and a decoding processing unit; The error correction decoding of the encoded data X is performed according to the log likelihood ratio 値λ i . 1 6 · The decoder of claim 15 wherein the approximation is that the closer the code x is closer to the decision, the more accurately the theoretical formula is approximated; the decision is based on the theoretical expression The probability of the system of the encoded data x is equal to the probability that the coded data X is 値1. 1 7 - The decoder of claim 16 of the patent application, wherein the approximation is a formula in which the theoretical formula performs Taylor expansion in the determination. a decoder that performs error correction decoding on the encoded data transmitted by the communication path to obtain decoded data, and the decoder includes: a likelihood calculation unit for encoding the data X according to the formula (A1) Calculate the logarithm likelihood ratio approximation 値λ i(i = l~L); and -111- 200835169 -(AD ^i = -gxKj x(x-Cj) (i = 1~L) The decoding processing unit is based on The approximate ratio of the logarithmic probability ratio is i(i=l~L), and the error correction decoding of the encoded data X is performed. 其中,L係該編碼資料x之調變位元數,g係常數, KI、CI係和該編碼資料X的値、其星座點之座標以及l 相依的數。 19·如申請專利範圍第18項之解碼器,其中該編碼資料X 係以灰編碼所_變的信號。 20.如申請專利範圍第18項之解碼器,其中, 在該第(A1)式,g係常數2/σ 2 ; 該解碼處理部係根據sum-product解碼法進行錯誤訂 正解碼’其中,1 2係該編碼資料x所包含之雜訊成分的 發散。 2 1,如申請專利範圍第1 8項之解碼器,其中, 在該第(A1)式,g係不和該編碼資料x相依的正數; 該解碼處理部係根據簡化之解碼法進行錯誤訂正解 碼。 22·如申請專利範圍第18項之解碼器,其中, 該編碼資料X之星座點的座標係 axp,其中,a係0 以外的數,p係—(2L— 1)以上,而且(2L— 1)以下之奇數, 在該第(A1)式,Ki以第(A2)式表示, -112- 200835169 κ.=-— 1 la! …(A2) …(A3) ’ x 2 Cw 時 K! =+y~j*、x <時 κ· = 一-1» |a| la| (2^i^L)Where L is the number of modulation bits of the coded data x, the g-system constant, the KI, the CI system, the 値 of the coded data X, the coordinates of the constellation points, and the number of the l-dependent. 19. The decoder of claim 18, wherein the coded data X is a gray coded signal. 20. The decoder of claim 18, wherein in the formula (A1), g is a constant 2/σ 2 ; the decoding processing unit performs error correction decoding according to a sum-product decoding method, wherein 1 2 is the divergence of the noise component contained in the encoded data x. 2: The decoder of claim 18, wherein in the formula (A1), g is a positive number that does not depend on the encoded data x; the decoding processing unit performs error correction according to a simplified decoding method decoding. 22. The decoder of claim 18, wherein the coordinate of the constellation point of the encoded data X is axp, wherein a is a number other than 0, p is - (2L - 1) or more, and (2L - 1) The following odd number, in the formula (A1), Ki is expressed by the formula (A2), -112-200835169 κ.=--1 la! (A2) ... (A3) ' x 2 Cw when K! =+y~j*,x <hκ· =一-1» |a| la| (2^i^L) 在該第(Al)式,Ci以第(A3)式表示, Ci =0 ,Cj = Cw + a x K丨 x 2(1/·1+1) (2SigL) 23·如申請專利範圍第22項之解碼器,其中, 該編碼資料X係以2之補數所表達的S個(S ^ 2)位元 袠示,在a爲負數的情況, 該可能性算出部將該編碼資料X之從最上階的第1個 位元之値作爲第1個對數可能性比之近似値λ 1的符號 輸出; 該可能性算出部包含有第1個絕對値計算電路,其計 算該編碼資料χ之絕對値,並輸出第1個對數可能性比 近似値λ 1的絕對値。 24 ·$α申請專利範圍第22項之解碼器,其中, -113- 200835169 該編碼資料x係以2之補數所表達的S個(S^2)位元 表示,在a爲正數的情況, 該可能性算出部包含有: 第1個邏輯或電路,係將該編碼資料X之從最上階的 第1個位元變成反相,並輸出第1個對數可能性比之近 似値λ 1的符號;及In the (Al) formula, Ci is represented by the formula (A3), Ci =0, Cj = Cw + ax K丨x 2 (1/·1+1) (2SigL) 23· as claimed in the 22nd item a decoder in which the coded data X is represented by S (S^2) bits expressed by 2's complement, and when a is a negative number, the probability calculation unit reads the coded data X The first bit of the uppermost order is the symbol output of the first logarithmic probability ratio 値λ 1 ; the likelihood calculating unit includes a first absolute chirp computing circuit that calculates the absolute value of the encoded data値, and output the first logarithm probability ratio is approximately 値λ 1 absolute 値. 24 · $α Patent Application No. 22 decoder, where -113- 200835169 The coded data x is represented by S (S^2) bits expressed by 2's complement, when a is a positive number The possibility calculation unit includes: the first logic OR circuit that changes the first bit of the coded data X from the top to the inversion, and outputs the first log likelihood ratio 値λ 1 Symbol; and 第1個絕對値計算電路,係計算該編碼資料X之絕對 値,並輸出第1個對數可能性比近似値λ 1的絕對値。 25·如申請專利範圍第23或24項之解碼器,其中, 在S 2 3的情況, 該可能性算出部又包含有: 第2個邏輯或電路,係計算該編碼資料X之從最上階 的第1個位元値或其反相値和從最上階之第2個位元値 的互斥邏輯或,並輸出第2個對數可能性比之近似値λ 2 的符號;及 第2個絕對値計算電路,係計算將從最上階之第丨個 位元値及從最上階的第2個位元値作爲該編碼資料X之 從最上階的第2個位元之反相値,並將從最上階的第I 個位元値作爲該編碼資料X之從最上階的第I個位元値 之S位元的値之絕對値,再輸出第2個對數可能性比λ 2 的絕對値, 其中,I係滿足(3SISS)之全部的自然數。 26.如申請專利範圍第25項之解碼器,其中, -114- 200835169 在S ^ 4的情況, 該可能性算出部又包含有: 第K個邏輯或電路,係計算該編碼資料x之從最上階 的第(K — 1)個位元値和從最上階之第κ個位元値的互斥 邏輯或,並輸出第K個對數可能性比之近似値λ k的符 號;及The first absolute 値 calculation circuit calculates the absolute 値 of the coded data X and outputs an absolute 値 of the first log likelihood ratio 値λ 1 . 25. The decoder of claim 23 or 24, wherein, in the case of S 2 3, the possibility calculation unit further includes: a second logic or circuit for calculating the highest order of the encoded data X The first bit 値 or its inverse 値 and the second octet from the topmost 値 逻辑 logical OR, and output the second log likelihood ratio 値 λ 2 symbol; and the second The absolute 値 calculation circuit calculates the inverse of the second bit from the topmost bit and the second bit from the top, and the second bit from the topmost bit of the encoded data X, and The first bit from the top is used as the absolute 値 of the S bit from the uppermost first bit of the encoded data X, and then the absolute of the second log likelihood ratio λ 2 is output.値, where I is the natural number of all (3SISS). 26. The decoder of claim 25, wherein -114-200835169 in the case of S^4, the likelihood calculation section further comprises: a Kth logical OR circuit for calculating the slave data x a mutually exclusive (K-1)-bit 値 and a mutually exclusive logical OR from the uppermost κ-bit 値, and output a symbol of the Kth log likelihood ratio 値λ k; and 第K個絕對値計算電路,係計算將從最上階之第1個 位元値及從最上階的第2個位元値作爲該編碼資料X之 從最上階的第K個位元之反相値,並將從最上階的第J 個位元値作爲該編碼資料X之從最上階的第U + K - 2)個 位元値之(S — K +2)位元的値之絕對値,再輸出第K個對 數可能性比近似値λ k的絕對値, 其中,K係滿足(3 S KS (S — 1))之全部的自然數,J係 滿足(3SJS(S—K + 2))之全部的自然數。 27 · —種解碼方法,其對通信路線所傳送之編碼資料進行錯 誤訂正解碼,而得到解碼資料, 編碼資料X之星座點的座標係axp,其中,a係〇以外 的數,P係一(2L— 1)以上,而且(2L - 1)以下之奇數,其 中,L係該編碼資料X的調變位元數, 該解碼方法包含有: 可能性計算步驟,係對於該編碼資料X,按照從i = 1 至L爲止依序計算對數可能性比之近似値λ i(i = l〜L); 及 -115- 200835169 解碼步驟,係根據該對數可能性比之近似値,而進行 該編碼資料X的錯誤訂正解碼, 該可能性計算步驟包含有: 設定步驟,係將常數Κι設爲一a/ | a | ,並將常數Ci 設爲0 ; 計算步驟,係根據常數c i- !及第(A4)式,計算常數 Ki (i = 2〜L);The Kth absolute 値 calculation circuit calculates the inversion of the first bit from the uppermost level and the second bit from the uppermost level as the Kth bit from the uppermost order of the encoded data X.値, and the Jth bit from the top of the order is the absolute value of the (S - K + 2) bit of the U + K - 2) bit from the top of the encoded data X And then output the Kth logarithmic probability ratio to the absolute 値 値 λ k , where the K system satisfies all the natural numbers of (3 S KS (S — 1)), and the J system satisfies (3SJS(S—K + 2 )) All natural numbers. 27 - a decoding method, which performs error correction decoding on the encoded data transmitted by the communication route, and obtains decoded data, and the coordinate of the constellation point of the encoded data X is axp, wherein the number other than the a system is P, and the P is one ( 2L-1) or more, and an odd number below (2L - 1), wherein L is the number of modulation bits of the coded data X, and the decoding method includes: a possibility calculation step for the coded data X, according to Calculate the log likelihood ratio 値λ i(i = l~L) from i = 1 to L; and -115- 200835169 The decoding step is based on the log likelihood ratio, and the encoding is performed. The error correction decoding of the data X, the possibility calculation step includes: a setting step of setting the constant Κι to an a/ | a | and setting the constant Ci to 0; the calculation step is based on the constant c i- ! In the formula (A4), the constant Ki (i = 2 to L) is calculated; i=+RX<Ci-丨時 K丨=_il] …(A4) 計算步驟,係根據該常數K ^及第(A5)式,計算Ci (i = 2〜L);以及 …(A5) ^ CM + a X Kj X 2(W4*l) l (2gigL)i=+RX<Ci-丨K丨=_il] (A4) The calculation step is based on the constant K ^ and the formula (A5), and Ci (i = 2 to L); and (A5) ^ CM + a X Kj X 2(W4*l) l (2gigL) 計算步驟,係根據係常數K i及Ci,並根據該第(A6) 式’計算對數可能性比之近似値λ i(i = l~L) ’ 〜gxK丨χ(χ〇 …⑽ (i = l〜L) 其中,g係常數。 28·〜種電腦可讀取之記錄媒體,其記錄解碼程式,而該程 式係用以對通信路線所傳送之編碼資料進行錯誤訂正解 -116- 200835169 碼,而得到解碼資料’ 該解碼程式用以使電腦作爲如下之構件發揮功能, 可能性算出部,係對於編碼資料X,根據第(A7)式算 出對數可能性比的近似値;I 1(i=l~L);及 ^ = -gxKix(x~Ci) …⑽ (i = l〜L) 角军碼Μ Ϊ里部’係根據該對數可能性比的近似値入 1(1 —丨〜丄)’而進行該編碼資料X之錯誤訂正解碼, 其中’ L係該編碼資料X之調變位元數,g係常數, Ki ' Ci係和該編碼 廿B+ e碰丨、丨XL T 1 _枓X的値、其星座點之座標以及L 相依的數。The calculation step is based on the system constants K i and Ci and calculates the log likelihood ratio 値 λ i(i = l~L) ' 〜gxK丨χ(χ〇...(10) (i) according to the equation (A6) = l~L) where g is a constant. 28·~ A computer-readable recording medium that records the decoding program, and the program is used to correct the encoded data transmitted by the communication route-116-200835169 The code is used to obtain the decoded data. The decoding program is used to cause the computer to function as the following component. The likelihood calculation unit calculates the log likelihood ratio based on the equation (A7) for the coded data X; I 1 ( i=l~L); and ^ = -gxKix(x~Ci) ...(10) (i = l~L) 角军码Μ Ϊ 部 ' is based on the approximation of the logarithm probability ratio 1 (1 - 丨~丄)' and the error correction correction of the coded data X is performed, where 'L is the number of modulation bits of the coded data X, g is a constant, Ki 'Ci and the code 廿B+e 丨, 丨XL T 1 枓 値 X 値, its constellation point coordinates and L dependent number. -117--117-
TW96147799A 2006-12-15 2007-12-14 Decoder for performing error correction decoding by repetition decoding method TW200835169A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006338844A JP2008153874A (en) 2006-12-15 2006-12-15 Soft decision decoding apparatus, soft decision decoding method, and soft decision decoding program
JP2007194361A JP2009033393A (en) 2007-07-26 2007-07-26 Decoder, decoding system, communication apparatus, repeated end condition setting device, data structure, and communication quality adjusting method
JP2007202750A JP5056247B2 (en) 2007-08-03 2007-08-03 Decoder, receiving device, decoding method of encoded data, and communication system

Publications (1)

Publication Number Publication Date
TW200835169A true TW200835169A (en) 2008-08-16

Family

ID=39511625

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96147799A TW200835169A (en) 2006-12-15 2007-12-14 Decoder for performing error correction decoding by repetition decoding method

Country Status (2)

Country Link
TW (1) TW200835169A (en)
WO (1) WO2008072604A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495284B2 (en) * 2008-11-26 2014-05-21 日本電気株式会社 Mobile communication system, reception format decoding method, and portable terminal
EP2328312B1 (en) * 2009-11-27 2013-03-20 STMicroelectronics Srl Method of estimating log-likelihood ratios and relative S-FSK receiver

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429506B1 (en) * 1998-04-18 2004-11-20 삼성전자주식회사 apparatus and method for coding/decoding channel data in communication system
US6594318B1 (en) * 1999-12-02 2003-07-15 Qualcomm Incorporated Method and apparatus for computing soft decision input metrics to a turbo decoder
EP1281241A2 (en) * 2000-04-04 2003-02-05 Advanced Hardware Architectures, Inc Enhanced turbo product code decoder system
JP2003018019A (en) * 2001-06-29 2003-01-17 Hitachi Kokusai Electric Inc Decoder for digital wireless communication system
JP2003198514A (en) * 2001-12-28 2003-07-11 Canon Inc Radio communication device and radio communication method
DE60202587T2 (en) * 2002-02-15 2005-06-16 Matsushita Electric Industrial Co., Ltd., Kadoma Method for hybrid ARQ retransmission with reduced buffer memory requirement and corresponding receiver
JP2004304620A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Turbo decoder and turbo decoding method

Also Published As

Publication number Publication date
WO2008072604A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
CN111628785B (en) Method for generating soft information by decoder in hard selection hard decoding mode
US7395495B2 (en) Method and apparatus for decoding forward error correction codes
Valenti et al. Constellation shaping for bit-interleaved LDPC coded APSK
Wang et al. New RLL decoding algorithm for multiple candidates in visible light communication
Yeo et al. Improved hard-reliability based majority-logic decoding for non-binary LDPC codes
Wang et al. Soft-input soft-output run-length limited decoding for visible light communication
JP4341639B2 (en) Decoding device and decoding program
JP2005347883A (en) Decoder and decoding circuit
Wang et al. Bit-level soft run-length limited decoding algorithm for visible light communication
CN109478895A (en) Use the optical transmission system of the LDPC code with variable coding rate
Lu et al. An efficient hybrid decoder for block turbo codes
EP2991231A1 (en) Multilevel encoding and multistage decoding
Yang et al. Design and optimization of protograph LDPC-coded multipulse PPM systems over Poisson channels
Lei et al. A soft-aided staircase decoder using three-level channel reliabilities
Wang et al. Design of polar codes for run-length limited codes in visible light communications
Yazdani et al. Reliable communication over non-binary insertion/deletion channels
Shibata et al. Design of irregular LDPC codes without markers for insertion/deletion channels
TW200835169A (en) Decoder for performing error correction decoding by repetition decoding method
JP2007311891A (en) Transmitter, receiver, transmission method and reception method
Mani et al. Symbol-level stochastic Chase decoding of Reed-Solomon and BCH codes
JP5056247B2 (en) Decoder, receiving device, decoding method of encoded data, and communication system
Heloir et al. Stochastic chase decoder for reed-solomon codes
JP2008153874A (en) Soft decision decoding apparatus, soft decision decoding method, and soft decision decoding program
Ullah et al. Performance improvement of multi-stage threshold decoding with difference register
JP5556933B2 (en) COMMUNICATION SYSTEM, REPEAT END CONDITION SETTING DEVICE, AND CONTENT QUALITY ADJUSTING METHOD