TW200834816A - Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication therof and methods of fabricating the same - Google Patents

Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication therof and methods of fabricating the same Download PDF

Info

Publication number
TW200834816A
TW200834816A TW97101779A TW97101779A TW200834816A TW 200834816 A TW200834816 A TW 200834816A TW 97101779 A TW97101779 A TW 97101779A TW 97101779 A TW97101779 A TW 97101779A TW 200834816 A TW200834816 A TW 200834816A
Authority
TW
Taiwan
Prior art keywords
layer
diffusion barrier
metal
semiconductor device
nitride
Prior art date
Application number
TW97101779A
Other languages
Chinese (zh)
Inventor
Kyung-In Choi
Hyun-Bae Lee
Gil-Heyun Choi
Jong-Myeong Lee
Jong-Won Hong
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200834816A publication Critical patent/TW200834816A/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)

Abstract

A method of fabricating a semiconductor device is provided. The method includes providing a semiconductor substrate having a conductive pattern and forming an insulating layer on the conductive pattern and the semiconductor substrate. The insulating layer is patterned to form an opening which exposes a portion of the conductive pattern. A preliminary diffusion barrier layer is formed on an inner wall of the opening and a top surface of the insulating layer. Oxygen atoms are supplied onto the preliminary diffusion barrier layer to form a first diffusion barrier layer. A metal layer is formed on the first diffusion barrier layer. The metal layer is formed to fill the opening surrounded by the first diffusion barrier layer. A semiconductor device fabricated by the method and a semiconductor cluster tool used in fabrication of the semiconductor device are also provided.

Description

200834816 ζο^ζιρη 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體裝置,並且特別是有關於 一種半導體裝置的製造方法及用於製造此裝置的工具。 【先前技術】 ' , Ik著半導體裝置的積集度逐漸上升,金屬内連線的寬 ,度以及厚度逐漸降低,因此金屬内連線的電阻逐漸變大。 Φ 因而,廣泛作為金屬内連線層的鋁層逐漸被低電阻率的銅 層所取代。然而,用以形成最頂部的内連線(例如,接合墊) 的銅層容易被氧化。因此,在銅内連線中,仍然會使ϋ用鋁 層來形成最頂部的内連線。在這種情況下,鋁内連線會與 銅内連線在接觸區域(例如,接觸孔洞)中接觸,並且二/内 連線内的銅原子或者鋁内連線中的鋁原子會擴散出來,而 形成包含銅原子以及鋁原子的合金層。由於合金層具有高 電阻率,故會損傷半導體裝置的電特性。 Ν #此外’鋁内連線可能形成於開口内,例如,接觸孔洞。 響㈣半導體裝置的積集密度增加,接觸孔洞的長寬比 ’ ㈣⑽础㈣可能隨之增加。因而,在_連線的形成過 私中,要在沒有任何空隙(void)的情況下完全地填充接觸孔 洞有相當的難度。而接觸孔洞内的空隙可能損害半 置的電特性。 【發明内容】 本發明的貫施例是有關於具有金屬内連線的半導體 置及其製造方法,以及用於製造此半導體裝置的半導體群 200834816 zoyzipii 組工具。在一實施例中,半體 半導體基板。_設置於導 ,緣層具有穿透絕緣Μ暴露—部份導電圖忒= 屬内連線=於絕緣層切及開_。第 含氧原子。 电圏木之間。弟—擴散障壁圖案包 2些實施例中,氧原子位於第—擴散障壁圖案BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor device, and more particularly to a method of fabricating a semiconductor device and a tool for fabricating the same. [Prior Art] ', Ik's semiconductor device's accumulation gradually increases, the width, thickness and thickness of the metal interconnect are gradually reduced, so the resistance of the metal interconnect is gradually increased. Φ Thus, the aluminum layer, which is widely used as a metal interconnect layer, is gradually replaced by a low-resistivity copper layer. However, the copper layer used to form the topmost interconnect (e.g., bond pads) is susceptible to oxidation. Therefore, in the copper interconnect, the aluminum layer is still used to form the topmost interconnect. In this case, the aluminum interconnect will contact the copper interconnect in the contact area (for example, the contact hole), and the copper atoms in the two/internal lines or the aluminum atoms in the aluminum interconnect will diffuse out. And an alloy layer containing copper atoms and aluminum atoms is formed. Since the alloy layer has a high electrical resistivity, the electrical characteristics of the semiconductor device are impaired. Ν #又的铝内线线 may be formed in the opening, for example, in contact with the hole. The accumulation density of the (4) semiconductor device increases, and the aspect ratio of the contact hole ' (4) (10) (4) may increase. Therefore, in the formation of the _ wire, it is quite difficult to completely fill the contact hole without any void. The gaps in the contact holes may impair the electrical properties of the half. SUMMARY OF THE INVENTION A method of the present invention relates to a semiconductor device having a metal interconnection and a method of fabricating the same, and a semiconductor group 200834816 zoyzipii group tool for fabricating the semiconductor device. In one embodiment, a half-body semiconductor substrate. _ is set in the guide, the edge layer has a through-insulation Μ exposure - part of the conductive pattern 忒 = is an internal connection = in the insulation layer cut and open _. The first oxygen atom. Between electric beech. Brother-diffusion barrier pattern package. In some embodiments, the oxygen atom is located in the first diffusion barrier pattern.

粒邊界内。 在另-些實施例巾’導電_包括銅,而金屬内連線 包括鋁。 在另一些實施例中,半導體裝置更包括位於第一擴散 障壁圖案與金屬内連線之間的第二擴散障壁圖案。第一及 第二擴散障壁圖案可包括耐火金屬。耐火金屬可包括鈦 (Ti)、组(Ta)、鈮⑽)、鈒(V)、錯(Zr)、铪(Hf)、錮(M〇)、 鍊(Re)、鶴(W)以及欽籍(TiZr)中的至少一種。或者,第一 及第二擴散障壁圖案可分別包括耐火金屬氮化物。在這種 情況下,耐火金屬氮化物層可包括氮化鈦(TiN)、氮化钽 (TaN)、氮化鈮(NbN)、氮化飢(VN)、氮化锆(ZrN)、氮化铪 (HfN)、氮化鉬(MoN)、氮化銖(ReN)、氮化鎢(WN)以及氮 化鈦錯(TiZrN)中的一種。第二擴散障壁圖案可延伸到開口 的側壁上。在這種情況下,半導體裝置更包括設置於開口 内的第二擴散障壁圖案的上侧壁與開口内的金屬内連線的 上侧壁之間的抗沈積圖案。因此,開口内的第二擴散障壁 圖案的下側壁可能與金屬内連線直接接觸。第二擴散障壁 7 200834816 zoyzipn 圖案可包括第一金屬氮化物層 ^ 抗沈積圖案可肖括篆 勿層。第二金屬氮化物層的氮含量可以— :二?物層的氮含置。第一及第二金屬氮化物層可包括 相同的財火金屬。第二擴散障壁圖案可包括耐火全屬声, 而抗沈積圖案可包括耐火金屬氮化物層。曰 —在另一實施例中,半導體群組工i包括第-室,盆進 仃以下過程中的至少一個過程··在具 ^ 初步擴散障壁層;將氧原子供應到初步:障形成 形成第一擴散障壁層;以及在第—擴;二展土 =、二以 擴散障壁層。第二室配置成能在開口、二^ =^弟一 沈積層。抗沈積層暴露開口_第形成抗 辟。筮-玄硕罢士处+ 乐—擴散Ρ早壁層的下侧 =至配置υ訪抗沈積層喊板 層。金屬層填充開口。 乂攻至屬 —在某些實施例中,半導體群組工具可包括第四室以及 弟五室。在這種情況下,在第一室中 及 在第四室中㈣氧;^子ϋ笛/成初乂擴散障壁層, 層昂四至中i、[減子,而在就室中形成第二擴散障壁 在另-些實施例中,第四室可以是清潔室、 及冷卻室中的一個。清潔室可以配 ” 基板的表面。 1成具有開口的 在另-些實施例中,基板可具有絕緣層,並 置成能穿透絕緣層。 ^ 在另一實施例中,——種半導I#駐罢 徑千W衣置的_方法包括提 200834816 zo^zipn 七、1、有導的半導體基板。絕緣層形成於導安 及;導體基板上。圖案化絕緣層,以形成 =的開口。初步擴散障壁層形成於開口的;壁:二: 填充由弟—擴散障㈣包_開口。 、,蜀層Within the grain boundaries. In still other embodiments, the <conducting' includes copper and the metal interconnect comprises aluminum. In still other embodiments, the semiconductor device further includes a second diffusion barrier pattern between the first diffusion barrier pattern and the metal interconnect. The first and second diffusion barrier patterns may include a refractory metal. The refractory metal may include titanium (Ti), group (Ta), strontium (10), strontium (V), erbium (Zr), strontium (Hf), strontium (M〇), chain (Re), crane (W), and chin. At least one of (TiZr). Alternatively, the first and second diffusion barrier patterns may each comprise a refractory metal nitride. In this case, the refractory metal nitride layer may include titanium nitride (TiN), tantalum nitride (TaN), tantalum nitride (NbN), nitriding (VN), zirconium nitride (ZrN), nitriding. One of HfN, MoN, ReN, WN, and TiZrN. The second diffusion barrier pattern may extend onto the sidewall of the opening. In this case, the semiconductor device further includes an anti-deposition pattern between the upper sidewall of the second diffusion barrier pattern disposed in the opening and the upper sidewall of the metal interconnection within the opening. Therefore, the lower sidewall of the second diffusion barrier pattern in the opening may be in direct contact with the metal interconnect. Second diffusion barrier 7 200834816 The zoyzipn pattern may include a first metal nitride layer. The anti-deposition pattern may be omitted. The nitrogen content of the second metal nitride layer can be - two? The nitrogen of the layer is set. The first and second metal nitride layers may comprise the same fumes metal. The second diffusion barrier pattern may include a refractory full sound, and the anti-deposition pattern may include a refractory metal nitride layer.曰—In another embodiment, the semiconductor group i includes a first chamber, and at least one of the following processes is performed: • initial diffusion barrier layer; supply of oxygen atoms to preliminary: barrier formation a diffusion barrier layer; and in the first-expansion; two-expanding soil =, two to diffuse the barrier layer. The second chamber is configured to be capable of depositing at the opening, the second layer. The anti-deposition layer exposes the opening _ the first to form a resistance.筮 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄 玄The metal layer fills the opening. Attacking to the genus - In some embodiments, the semiconductor group tool can include a fourth chamber and a five-chamber. In this case, in the first chamber and in the fourth chamber (4) oxygen; ^ ϋ flute / into the initial 乂 diffusion barrier layer, layer ang four to medium i, [subtraction, and form a second in the chamber Diffusion Barrier In other embodiments, the fourth chamber can be one of a clean room, and a cooling chamber. The cleaning chamber may be provided with a "surface of the substrate." In other embodiments, the substrate may have an insulating layer and be placed to penetrate the insulating layer. ^ In another embodiment, - a semiconductor I The method of the station is to add a semiconductor substrate. The insulating layer is formed on the conductor and the conductor substrate. The insulating layer is patterned to form an opening of =. The initial diffusion barrier layer is formed in the opening; the wall: two: filling the brother-diffusion barrier (four) package _ opening.

子。在另—些實施例中,可使用熱氧處理製程來供應氧原 在另一些實施例中,使用氧電漿製程來供應氧原子。 在^二貝方也例中,使用〇2氣體、Ν20氣體、H2Q氣 體、〇2氣體與H2氣體的混合物以及α氣體中 來供應氧原子。 種 在另些貝加例中,在形成金屬層之前,更可於第一 擴政卩早童層上形成弟一擴散障壁層。第一及第二擴散障壁 層可分別由耐火金屬層形成。耐火金屬層可包括鈦(巧)、 钽(Ta)、鈮(Nb)、釩(V)、鍅(Zr)、铪(Hi)、錮(Mo)、銖(Re) 以及鎢(W)中的至少一種。或者,第一及第二擴散障壁層 分別由耐火金屬氮化物層形成。耐火金屬氮化物層可包括 氮化鈦(TiN)、氮化鈕(TaN)、氮化鈮(NbN)、氮化鈒(VN)、 氮化鍅(ZrN)、氮化銓(HfN)、氮化鉬(MoN)、氮化鍊(ReN)、 氮化鎢(WN)以及氮化鈦锆(TiZrN)中的一種。 在另一些實施例中,導電圖案可由銅層形成,而金屬 9 200834816 zoyzipn 層可由銘層形成。 在另一些實施例中,此方法更包括在形成金屬層之 前,於第一擴散障壁層上形成第二擴散障壁層,以及圖案 化金屬層、第二擴散障壁層以及第一擴散障壁層,以形成 依序堆疊的第一擴散障壁圖案、第二擴散障壁圖案以及金 屬内連線。在這種情況下,金屬内連線可填充由第二擴散 障壁圖案包圍的開口。在形成金屬層之前,更可在具有第 二擴散障壁層的基板上形成抗沈積層。抗沈積層可形成於 開口外的第一擴散障壁層的頂面以及開口内的第二擴散障 土層的上侧壁上’以暴露開口内的第二擴散障壁層的下侧 二可在形成金屬内連線的過程中,圖案化抗沈積層,以 4士孟-屬内連線下方形成抗沈積®案。以化學氣相沉積(CVD: ^成金屬層。在這種情況下,暴露之第二擴散障壁層 宏至屬—層的沈積速率彳高於抗&amp;積層上的金屬層的沈積 二擴散障壁層可由第—金屬氮化物層形成,而抗 j辟:含!T高於第一金屬氮化物層的氮含量。第二擴 以H沈積層可包括相同的耐火金屬。第二擴散 可㈣火金屬層形成’而抗沈積層可由耐火金屬氮 拮成:弟二擴散障壁層可使用化學氣相沉積(CVD) 1亚且抗沈積層可使用物理氣相沉積(PVD)技術 電圖案、初步擴散障壁層、第—擴散障壁層、第 =早壁層、抗沈積層以及金屬層可使用單個群組工具 形成。 200834816 ZWZipll 【實施方式】 將U圖更全面地描述本發明,附圖中顯示 明的實施例。然而,本發明能夠以不同形式實施並且# 解釋為雜於本案所闇述的實施例。更確切地說,提供= 些實施例是為了使本公開内容透徹且完整,並且向本 熟知此項技藝者轉達本發明的範圍。附圖中,為了清晰 見誇大了層及區域的尺寸以及相對尺寸。此外,本 述及顯示的各實施例包括其互補導電性^ 號始終表示相似的元件。 要理解,當元件或層被稱為“位於”、“連接於” =,,另—元件或層上時,它可以直接位於、連接於^^ 件上或者可畔在其他元件或層或者中間= 或層相反,當一兀件被稱為“ 姑 和/或“直接輕接於,,另一元 二=直接連接於” 或層。此外,術θ守則不存在中間元件 的任意以及所關列舉物品的—個或多個 描述不同術^第一 ”、、:第二”以及“第三,,等 部件、區、居和⑴ s、層和/或部份,但這些元件、 僅用於區分^伤不應被這些術語所限制。這此術古五 情、、/丁7曰矛/或邛伤。例如,在不脫離本取昍沾Μ ^兄下可以將第一元件、 t明的範圍的 简二部件、區、層和/或部份。 4部份稱為第二 '上 門相對街語,例如“下方,,、“下,,、“上方” 200834816 zovzipn 在本案中的使用是為了便於描述附圖所示的一個元件和/ 或特徵與另一元件和/或特徵的關係。要理解,除了附圖中 所描述的方位,這些術語意圖包括裝置在使用或操作時的 不同方位。例如,如果圖中的裝置反轉,則描述成位於其 他元件或特徵“下方”的元件則位於其他元件或特徵的“上 方”。因而,術語“下方”可以包括上方和下方兩種方位。裝 置還可以通過其他方式定位(旋轉90°或者其他方位),並且 本案所使用的空間相對描述相應地進行解釋。此外,如圖 所示,術語“下方”表示一層或區與另一層或區相對基板的 關係。 本案所使用的術語僅是為了描述特定實施例並不意圖 作為本發明的限制。如本案所使用的單數形式“一”和“該” 意圖包括復數形式,除非上下文中以其他方式清楚表明。 更要理解術語“包括”和/或“包含”在本案中使用時表示存 在所提到的特徵、整体、步驟、操作、元件和/或部件,但 不排除存在或增加一個或多個其他特徵、整体、步驟、操 作、元件、部件和/或其族群。 參照平面圖以及截面圖描述本發明的實施例,這些圖 示是本發明的理想化實施例(以及中間結構)的示意圖。要 預期到由於製造技術和/或公差產生的圖示的形狀變化。因 而,除非本案明確地這樣表示,本發明的實施例不應解釋 為侷限於本案所圖示的特定區形狀,而是要包括例如由製 造產生的形狀偏差。例如,圖示為矩形的植入區通常在其 邊緣具有圓形或弧形特徵和/或植入濃度梯度,而不是從植 12 200834816 zoyzipii 入區到非植入區的二位變化。同樣,藉由植入形成的埋入 區可以在埋入區與經其發生植入的表面之間的區内產生某 種程度的植入。因而,圖中所示的區本質上是示意性的並 且其形狀並不意圖限制裝置的實際形狀,並且不意圖限制 本發明的範圍,除非本案明確地這樣表示。child. In other embodiments, a thermal oxygen treatment process can be used to supply the oxygen source. In other embodiments, an oxygen plasma process is used to supply the oxygen atoms. In the example of the second square, an oxygen atom is supplied by using a mixture of helium 2 gas, helium 20 gas, H2Q gas, a mixture of helium 2 gas and H 2 gas, and an alpha gas. In other Bega cases, before the formation of the metal layer, a diffusion barrier layer can be formed on the first expansion of the early childhood layer. The first and second diffusion barrier layers may each be formed of a refractory metal layer. The refractory metal layer may include titanium (Ta), tantalum (Ta), niobium (Nb), vanadium (V), niobium (Zr), hafnium (Hi), hafnium (Mo), antimony (Re), and tungsten (W). At least one of them. Alternatively, the first and second diffusion barrier layers are each formed of a refractory metal nitride layer. The refractory metal nitride layer may include titanium nitride (TiN), nitride nitride (TaN), tantalum nitride (NbN), tantalum nitride (VN), tantalum nitride (ZrN), hafnium nitride (HfN), nitrogen. Molybdenum (MoN), nitriding chain (ReN), tungsten nitride (WN), and titanium zirconium nitride (TiZrN). In other embodiments, the conductive pattern may be formed from a copper layer, while the metal 9 200834816 zoyzipn layer may be formed from an inscribed layer. In still other embodiments, the method further includes forming a second diffusion barrier layer on the first diffusion barrier layer, and the patterned metal layer, the second diffusion barrier layer, and the first diffusion barrier layer, before forming the metal layer. A first diffusion barrier pattern, a second diffusion barrier pattern, and a metal interconnection are sequentially stacked. In this case, the metal interconnect may fill the opening surrounded by the second diffusion barrier pattern. An anti-deposition layer may be formed on the substrate having the second diffusion barrier layer before the formation of the metal layer. The anti-deposition layer may be formed on a top surface of the first diffusion barrier layer outside the opening and on an upper sidewall of the second diffusion barrier layer in the opening to expose the lower side of the second diffusion barrier layer in the opening In the process of metal interconnects, the anti-deposition layer is patterned to form an anti-deposition® case underneath the 4-Simen-genus interconnect. Chemical vapor deposition (CVD: ^ into a metal layer. In this case, the exposed second diffusion barrier layer macro to the genus - layer deposition rate 彳 higher than the anti- &amp; layer on the metal layer deposition two diffusion barrier The layer may be formed of a first metal nitride layer, and the ?T is higher than the nitrogen content of the first metal nitride layer. The second expanded H layer may comprise the same refractory metal. The second diffusion may be (four) fire The metal layer is formed 'the anti-deposition layer can be reinforced by the refractory metal nitrogen: the second diffusion barrier layer can be chemical vapor deposition (CVD) 1 and the anti-deposition layer can be electrically patterned using physical vapor deposition (PVD) technology, preliminary diffusion The barrier layer, the first diffusion barrier layer, the first = early wall layer, the anti-deposition layer, and the metal layer may be formed using a single group tool. 200834816 ZWZipll [Embodiment] The U diagram is more fully described, and the drawings show However, the present invention can be embodied in various forms and is interpreted as being inconsistent with the embodiments of the present invention. More specifically, the embodiments are provided to make the disclosure thorough and complete, and Well known The scope of the invention is conveyed by those skilled in the art, and the dimensions and relative dimensions of the layers and regions are exaggerated for clarity. In addition, the embodiments of the present description and the illustrated embodiments include elements whose complementary electrical conductivity always represents similar. It will be understood that when an element or layer is referred to as being "in" or "in" or "in" or "in" or "" = or the opposite of the layer, when a piece is called "gu and / or "directly connected to, another element two = directly connected to" or layer. In addition, the θ code does not exist in the middle of the arbitrary and related enumeration One or more of the descriptions of the item are different, first, second, and third, such as parts, zones, and (1) s, layers, and/or parts, but these elements are only used Distinguishing ^ injuries should not be limited by these terms. This is the ancient five emotions, / Ding 7 spears / or bruises. For example, the first element, t Ming can be removed without divorcing The scope of the two parts, zones, layers and / or parts. 4 parts called the second 'On the door relative to the street language, such as "below,", "below,", "above" 200834816 zovzipn is used in this case to facilitate the description of one element and / or feature and another element and / or feature shown in the figure It is to be understood that the terms are intended to include different orientations of the device in the <Desc/Clms Page number> The elements are located "above" other elements or features. Thus, the term "below" can include both upper and lower orientations. The device can also be otherwise positioned (rotated 90° or other orientation) and the space used in this case The relative description is explained accordingly. Further, as the figure is shown, the term "below" means the relationship of one layer or zone to another substrate or zone relative to the substrate. The terminology used in the description is for the purpose of describing particular embodiments and is not intended to be limiting. The singular forms "a", "the", and "the" It is to be understood that the terms "comprises" and "comprises" or "includes", when used in the context of the present invention, are intended to mean the presence of the features, integers, steps, operations, components and/or components mentioned, but do not exclude the presence or addition of one or more other features. , whole, steps, operations, components, components, and/or their ethnic groups. Embodiments of the present invention are described with reference to the plan and sectional drawings, which are schematic illustrations of idealized embodiments (and intermediate structures) of the present invention. Shape changes of the illustrations due to manufacturing techniques and/or tolerances are contemplated. Accordingly, the embodiments of the present invention are not to be construed as limited to the particular s For example, an implanted region illustrated as a rectangle typically has rounded or curved features and/or implant concentration gradients at its edges rather than a two-bit change from the implanted zone to the non-implanted zone. Similarly, a certain degree of implantation can be created in the region between the buried region and the surface through which implantation takes place by implantation of the implanted region. Thus, the regions illustrated in the figures are illustrative and are not intended to limit the scope of the present invention, and are not intended to limit the scope of the invention.

、除非以其他方式定義,本案所使用的所有術語(包括技 術和科學術語)的含義與本發明所屬領域的熟知此項技藝 者所通常理解的相同。更要理解,例如常用字典中所定義 的那些術語的含義應解釋為具有與本說明書的背景下以及 相關領域相同的含義並且不應以理想化或者過份正式的形 式進行解釋’除非本案中明確這樣定義。 圖1至圖8是根據本發明實施例的半導體裝置製造方 法以及以此方法製造的半導體裝置的橫截面圖。 食尸及圔 省兩 ,故供具有導電圖求《V干等HI板100。 圖案105可包括銅(Cu)。也就是,導電圖案可由 =形成。絕緣層m可形成於導電圖案10 而由氧切i1G可使用化學氣相沉積(CVD)技術 部份導電圖i 2。/透圖案化絕緣層110以形成暴露一 置或線形配置的開口115。開口115可具有孔洞形配 麥照圖2,於pan u 上形成初步擴散障=115的内壁以及絕緣層⑽的頂面 的側壁以及由門層12{)。開° 115的内壁包括開口 U5 2所示,初步挑115暴露的導電圖案105的表面。如圖 只放障壁層120可使用CVD技術形成,因此 13 200834816 ζο^ζιριι 其表面輪廓(surface profile)與包括絕緣層no以及開口 Π5 的基板的表面輪廓實質上一致。初步擴散障壁層120可由 耐火金屬層形成。例如,初步擴散障壁層120可由鈦(Ti) 層、鈕(Ta)層、鈮(Nb)層、釩(V)層、鍅(Zr)層、铪(Hf)層、 鉬(Mo)層、銖(Re)層、鎢(w)層以及鈦錘(TiZr)層中的至少 一種形成。或者,初步擴散障壁層120可由耐火金屬氮化 物層形成。例如,初步擴散障壁層12〇可由氮化鈦(丁沉) 層、氮化鈕(TaN)層、氮化鈮(NbN)層、氮化鈒(VN)層、氮 化錯(ZrN)層、氮化铪(HfN)層、氮化鉬(M〇N)層、氮化鍊 (ReN)層、氮化鶴(WN)層以及氮化鈦鍅(TiZrN)層中的至少 一種形成。 參照圖3,供應氧原子到初步擴散障壁層12()上,以 形成第一擴散障壁層12〇a。氧原子可在初步擴散障壁層 120上發生反應,以氧化初步擴散障壁層12〇的晶粒(grain) 或者填充初步擴散障壁層12〇的晶粒邊界(grain boundary)。可使用基於氧的氣體來供應氧原子。基於氧的 J體可包括〇2氣體、n2〇氣體、h2〇氣體、〇2氣體和氏 氣體的混合物以及〇3氣體中的至少一種。 ^或者,使用氧處理製程(oxygen treatment process)供應 氧f子。氧處理製程可包括在高溫下湘氧氣進行的熱處 理製程(thermal treatment process)。例如,在溫度大约2〇ι 旱600C、氧氣流速為大約每分鐘〗至1〇〇〇〇標準立方厘 米(seem)並且壓力大於大約〇托尔(t〇rr)且小於大約 lOOOtoir的製程條件下進行氧處理製程。在另_實施例 14 200834816 zwzipn 中’以氧電漿製程(oxygen plasma process)供應氧原子。例 如,在溫度為大約20°C至600t:,氧氣流速為大約1至 lOOOOsccm,惰性氣體流速為大約!至i〇〇〇〇scem以及壓 力大於大約Otorr並且小於或等於1 〇Q〇t〇rr的製程條件下, 利用氧自由基以及氧離子進行氧電漿製程。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the art. It is to be understood that the meanings of those terms, such as those defined in commonly used dictionaries, should be interpreted as having the same meaning as in the context of the present specification and related fields and should not be interpreted in an idealized or overly formal form 'unless otherwise clear in this case Defined like this. 1 to 8 are cross-sectional views showing a method of fabricating a semiconductor device and a semiconductor device fabricated in this manner according to an embodiment of the present invention. The corpse and the 圔 两 are two, so the supply has a conductive map for "V dry and other HI board 100. The pattern 105 may include copper (Cu). That is, the conductive pattern can be formed by =. The insulating layer m may be formed on the conductive pattern 10 and the oxygen-cut i1G may be a part of the conductive pattern i 2 using a chemical vapor deposition (CVD) technique. The insulating layer 110 is patterned to form an opening 115 that is exposed in a linear or linear configuration. The opening 115 may have a hole-shaped matte view 2, forming an inner wall of the preliminary diffusion barrier = 115 on the pan u and a sidewall of the top surface of the insulating layer (10) and the gate layer 12{). The inner wall of the opening 115 includes an opening U5 2 which initially picks the surface of the exposed conductive pattern 105. As shown in the figure, only the barrier layer 120 can be formed using a CVD technique, so that the surface profile of the substrate is substantially identical to the surface profile of the substrate including the insulating layer no and the opening Π5. The preliminary diffusion barrier layer 120 may be formed of a refractory metal layer. For example, the preliminary diffusion barrier layer 120 may be a titanium (Ti) layer, a button (Ta) layer, a niobium (Nb) layer, a vanadium (V) layer, a zirconium (Zr) layer, a hafnium (Hf) layer, a molybdenum (Mo) layer, At least one of a ruthenium (Re) layer, a tungsten (w) layer, and a titanium hammer (TiZr) layer is formed. Alternatively, the preliminary diffusion barrier layer 120 may be formed of a refractory metal nitride layer. For example, the preliminary diffusion barrier layer 12 may be a titanium nitride (butadiene) layer, a nitride button (TaN) layer, a tantalum nitride (NbN) layer, a tantalum nitride (VN) layer, a nitrided (ZrN) layer, At least one of a hafnium nitride (HfN) layer, a molybdenum nitride (M〇N) layer, a nitrided chain (ReN) layer, a nitrided (WN) layer, and a titanium nitride tantalum (TiZrN) layer is formed. Referring to Fig. 3, oxygen atoms are supplied onto the preliminary diffusion barrier layer 12 () to form a first diffusion barrier layer 12a. The oxygen atoms may react on the preliminary diffusion barrier layer 120 to oxidize the grain of the preliminary diffusion barrier layer 12 or fill the grain boundary of the preliminary diffusion barrier layer 12A. An oxygen-based gas can be used to supply oxygen atoms. The oxygen-based J body may include at least one of helium 2 gas, n2 helium gas, h2 helium gas, helium 2 gas and gas mixture, and helium 3 gas. ^ Alternatively, an oxygen treatment process is used to supply oxygen f. The oxygen treatment process may include a thermal treatment process performed at a high temperature. For example, under a process condition of a temperature of about 2 〇 drought 600 C, an oxygen flow rate of about 1:1 to 1 〇〇〇〇 standard cubic centimeter (seem), and a pressure greater than about 〇 Torr (t〇rr) and less than about 1000 Torr. Perform an oxygen treatment process. In another embodiment 14 200834816 zwzipn, oxygen atoms are supplied in an oxygen plasma process. For example, at a temperature of about 20 ° C to 600 t:, the oxygen flow rate is about 1 to 1000 sccm, and the inert gas flow rate is about! Under the process conditions of i〇〇〇〇scem and a pressure greater than about Otorr and less than or equal to 1 〇Q〇t〇rr, the oxygen plasma process is performed using oxygen radicals and oxygen ions.

參照圖4,第二擴散障壁層13〇可形成於第一擴散障 壁層120a上。如圖4所示,第二擴散障壁層13〇可使用 CVD技術形成,因此其表面輪廓與第一擴散障壁層i2〇a 的表面輪廓實質上一致。第二擴散障壁層13〇可由耐火金 屬層形成。例如,第二擴散障壁層13〇可由鈦(Ti)、鈕(Ta)、 銳(Nb)、鈒(V)、結(Zr)、铪(Hf)、錮(M〇)、銖(Re)、一嫣(w) 以及鈦鍅(TiZr)中的至少一種形成。或者,第二擴散障壁 層bo可㈣火金屬氮化物層形成。例如,帛二擴散障ς 層130可由氮化鈦(TiN)、氮化鈕(蘭)、氮化銳(NbN)、^ 化釩(VN),氮傾㈣)、氮化铪卿)、統鉬(施柯、Referring to FIG. 4, a second diffusion barrier layer 13A may be formed on the first diffusion barrier layer 120a. As shown in FIG. 4, the second diffusion barrier layer 13 can be formed using a CVD technique, and thus its surface profile substantially coincides with the surface profile of the first diffusion barrier layer i2a. The second diffusion barrier layer 13 can be formed of a refractory metal layer. For example, the second diffusion barrier layer 13 may be made of titanium (Ti), button (Ta), sharp (Nb), 鈒 (V), junction (Zr), 铪 (Hf), 锢 (M〇), 铢 (Re). At least one of tantalum (w) and titanium germanium (TiZr) is formed. Alternatively, the second diffusion barrier layer bo may be formed of a (four) fire metal nitride layer. For example, the second diffusion barrier layer 130 may be composed of titanium nitride (TiN), nitride button (lane), nitrided (NbN), vanadium (VN), nitrogen (four), nitrided, and Molybdenum

氮化銖(ReN),氮化鎢(WN)以及氮化鈦鍅(TiZrN)中的至小 一種形成。 V 參照圖5,於第二擴散障壁層⑽上形成抗沈積層 曰術。、在所示的實施例中,抗沈積層⑽a的形成方法例如 疋階梯覆盍率較差(poor step c〇ve零)的沈積製程。因此, =積層論可形成於開σ 115巾㈣二擴散障壁層⑽ 勺上側壁上,以及開口 115外的第二擴散障壁層13〇的頂 冰上。此外,抗沈積層14〇a形成於開口 US的底面上方的 弟-擴散障壁層13G _面上。因此,如騎*,抗沈積 15 200834816 zoyzipn 層140a可包括覆蓋開口 ii5的上角的突出物(〇verhang)。 進一步,如圖所示,抗沈積層14〇&amp;可暴露開口 115内的第 二擴散障壁層130的下側壁。抗沈積層140a可使用物理氣 相沉積(PVD)技術而由耐火金屬氮化物層形成。例如,抗 /尤和、層14〇a可使用濺鍍(SpUtiering)技術形成。在這種情況 下’氮氣可能用於形成抗沈積層14〇a。 - 第二擴散障壁層130可由第一金屬氮化物層形成,並 φ 且抗此積層140a可由第二金屬氮化物層形成。在這種情況 下5第二金屬氮化物的氮含量可大於第一金屬氮化物層的 氮含量。抗沈積層140a所包含的耐火金屬的材質與第二擴 散障壁層130所包含的耐火金屬相同。當第二擴散障壁層 130由耐火金屬層形成時,抗沈積層14加可由耐火金屬氮 化物層形成。 參照圖6,於包括抗沈積層140a的基板1〇〇上形成第 一金屬層152。第一金屬層152可使用CVD技術形成。第 一金屬層152可包括鋁。當以CVD技術形成第一金屬層 馨 152日夺,第一金屬層152以第一沈積速率沈積於暴露於開 口 115内部的第二擴散障壁層13〇上,並且以第二沈積速 ¥沈積於抗沈積層140a上。此處,因為第二擴散障壁層 I30的氮含量低於抗沈積層14〇a的氮含量,第一沈積速率 可回於第二沈積速率。因此,第一金屬層152可在沒有任 何空隙的情況下完全地填充開口 115。 、參照圖7,於第一金屬層152上形成第二金屬層154。 為了降低第二金屬層154的沈積時間,可使用pVD技術來 16 200834816 2692 Ipif 形成第二金屬層154。若在低溫下沈藉筮_ &quot;匕賴弟―金屬層154日吝, 可在沈積第二金屬層丨54之後進杆一 .. 丁回抓製程(reflow P雖ss)。然而,若在高溫下沈積第二金屬層15 略回流製程。第一及第二金屬層152 ^ 層150。 152以及154構成了金屬 120、第一擴散障壁層 i4〇a以及金屬層15〇A formation of at least one of tantalum nitride (ReN), tungsten nitride (WN), and titanium nitride (TiZrN). V Referring to Fig. 5, an anti-deposition layer is formed on the second diffusion barrier layer (10). In the illustrated embodiment, the method of forming the anti-deposition layer (10)a is, for example, a deposition process in which the step coverage is poor (poor step c〇ve zero). Therefore, the = stacking theory can be formed on the upper side wall of the scoop of the σ 115 (4) di-diffusion barrier layer (10) and the top ice of the second diffusion barrier layer 13 outside the opening 115. Further, an anti-deposition layer 14A is formed on the surface of the dipole-diffusion barrier layer 13G_ above the bottom surface of the opening US. Thus, such as riding *, anti-deposition 15 200834816 zoyzipn layer 140a may include a protrusion (〇verhang) covering the upper corner of opening ii5. Further, as shown, the anti-deposition layer 14A &amp; can expose the lower sidewall of the second diffusion barrier layer 130 within the opening 115. The anti-deposition layer 140a can be formed from a refractory metal nitride layer using physical vapor deposition (PVD) techniques. For example, the anti-//, layer 14 〇a can be formed using a SpU tiering technique. In this case, 'nitrogen gas may be used to form the anti-deposition layer 14〇a. The second diffusion barrier layer 130 may be formed of a first metal nitride layer, and φ and resistant to the buildup layer 140a may be formed of a second metal nitride layer. In this case, the nitrogen content of the 5 second metal nitride may be greater than the nitrogen content of the first metal nitride layer. The material of the refractory metal contained in the anti-deposition layer 140a is the same as that of the refractory metal contained in the second diffusion barrier layer 130. When the second diffusion barrier layer 130 is formed of a refractory metal layer, the anti-deposition layer 14 may be formed of a refractory metal nitride layer. Referring to Fig. 6, a first metal layer 152 is formed on a substrate 1A including an anti-deposition layer 140a. The first metal layer 152 can be formed using a CVD technique. The first metal layer 152 may comprise aluminum. When the first metal layer is formed by CVD technology, the first metal layer 152 is deposited on the second diffusion barrier layer 13〇 exposed to the inside of the opening 115 at a first deposition rate, and deposited at a second deposition rate. On the anti-deposition layer 140a. Here, since the nitrogen content of the second diffusion barrier layer I30 is lower than the nitrogen content of the anti-deposition layer 14a, the first deposition rate may return to the second deposition rate. Therefore, the first metal layer 152 can completely fill the opening 115 without any gap. Referring to FIG. 7, a second metal layer 154 is formed on the first metal layer 152. In order to reduce the deposition time of the second metal layer 154, a second metal layer 154 may be formed using pVD technology to 16 200834816 2692 Ipif. If you borrow 筮 _ &quot; 匕 弟 ― 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 However, if the second metal layer 15 is deposited at a high temperature, the process is slightly reflowed. First and second metal layers 152 ^ layer 150. 152 and 154 constitute metal 120, first diffusion barrier layer i4〇a, and metal layer 15〇

導電圖案105、初步擴散障壁層 120a、第二擴散障壁層130、抗沈積層 可使用單個群組工具形成。 才=上=貫施例,第一及第二嶋壁層12〇 ^止U導電圖案105中的鋼原子擴散到金屬層15〇 ^同=止錢免金屬層⑼巾_原子擴散到導 ,=奶内。換句話說,第—及第二擴散障壁層咖 =30中的-個可用於阻擋銅的擴散,而另—個可用靜 =的擴散。詳言之,由於第—擴散障壁層咖的晶粒邊 ^有乳原子,因此,金屬層15G中_原子可與氧原子反 ’而在晶粒邊界處形成氧她。氧脑可阻雛原子的 擴散路徑。 參照圖8,可圖案化金屬層⑼、抗沈積層1術、第 散障壁層13G以及第-擴散障壁層12〇a,以形成依序 ^且的第一擴散卩早壁圖案,、第二擴散障壁圖案1如,、 k沈積圖案140a’以及金屬内連線15〇,。金屬内連線15〇, 可包括依序堆$的第一金屬目案152,以及第二金屬圖案 154’。金屬内連線150,可覆蓋開口 115。 接下來將參照圖8描述根據本發明實施例的半導體裝 17 200834816 2692 Ipit 置。 茶照圖8 ’提供具有導電圖案i〇5的半導體基 板1(^0。導電圖案1〇5可包括銅。也就是,導電圖案他 可以疋銅線。層間絕緣層110可設置在導電圖案105以及 • t導體基板⑽上In 115穿透層間絕緣層11(),並暴 /路導包圖案l(b的-部份。金屬内連綍、15〇,設置於層間絕 、、彖層uo上以及開π 115内。金屬内連線15〇,可包括依序 • *疊的第—金屬懒152,以及第二金屬_ 154,。可使 用CVD技術形成第一金屬圖案152,,以填充開口 ιΐ5, 而可使用PVD技術形成第二金屬圖案154,。金屬内連線 150 1包括!g ’並且具有柱形配置或者線形配置。 、第一擴散障壁圖案120a,可設置於金屬内連線150,與 導電圖案105之間。第一擴散障壁圖案120a,可延伸到開 口 Π5的側壁以及層間絕緣層11〇的頂面上。也就是,第 -擴散障壁圖案12〇a,可設置於金屬内連線15(),以及層間 絕緣層」1〇之間。第一擴散障壁圖案120a,可包括氧。例 • =,於第一擴散障壁圖案120a,的晶粒邊界處填充氧原子。 第二擴散障壁圖案130,可設置於第一擴散障壁圖案l2〇a, ’ 與金屬内連線150,之間。 第一及第二擴散障壁圖案120a,以及130,可分別包括 耐火金屬。例如,第一及第二擴散障壁圖案l2〇a,及13〇, 可分別包括鈦(Ti)、纽(Ta)、鈮(Nb)、釩(¥)、結设)、铪(_、 銦(Mo)、銖(Re)、鎢(W)以及鈦锆(TiZr)中的至少一種。或 者’第一及第二擴散障壁圖案12〇a,以及130,可分別包括 18 200834816 2(3 似 pil 耐火金屬氮化物。例如 第一及第二擴散障壁圖案120a, 以及130_,可分別包括氮化鈦()、氮化纽(TaN)、氮化銳 (NbN)、^化叙(VN)、氮化鍅(ZrN)、氮化銓洱叫、氮化鉬 、氮化鶴(觀)以及氮化鈦錯(TiZrN) 〒的至^ 一牙审。 因„散:章壁圖案12加,的晶粒邊界處填充有氧 以弟一及第二擴散障壁圖案120a,及130,可防止 導電圖案H)5中的銅原子擴散到金屬 者 ϋί金屬㈣線⑼,内的銘原子擴散到導電圖案Κ)5Ϊ 二=1金屬内連線15&quot;_原子擴散至第一擴散障 土圖木 120a’時,紹肩早可命;^广7 八 凡卢# 士…/ 、,原子了人乳原子反應而在位於晶粒邊 &quot;处 &gt;成乳健。氧她可阻翻原子_散路徑。 全屬圖案14〇a,可設置於第二擴散障壁圖案130,與 =連㈣,之間的界面的—部份上。例如 圖 -130^ Π0 ί圖安un屬内連、線15〇,的邊緣之間。此外,抗沈 宰貝t白ϋ延伸成覆蓋開口 115内的第二擴散障壁圖 侧土。再者,抗沈積圖案1術,設置於開口 115 的入屬肉ί的弟二擴散障壁圖案130,的頂面與開口1 b内 =内連線15G,m金屬内連線15G,可 接觸開口 115内的第二擴散障辟 接 積層1他可包括耐火金屬氮化;;層木。勺下側壁。抗沈 抗沈賴案13G,可包括第—金屬氮化物層,而 尤嶋140a可包括第二金屬氮化物層。在這種情況 19 200834816 2692 Ipif 下,第二金屬氮化物的氮含量大於第一金屬氮化物層的氮 含量。抗沈積圖案14〇a’所包含的耐火金屬的材質與第二 擴散IV壁圖案130’所包含的耐火金屬相同。當第二擴散障 壁圖案130’包括耐火金屬層時,抗沈積圖案i4〇a,可包括 耐火金屬氮化物層。 圖9疋根據習知技術以及本發明所製造的各種金屬層 的面電阻(sheet resistance)變化的曲線圖。在圖9中,橫座The conductive pattern 105, the preliminary diffusion barrier layer 120a, the second diffusion barrier layer 130, and the anti-deposition layer may be formed using a single group tool. Only = upper = embodiment, the first and second crucible layers 12 钢 the steel atoms in the U conductive pattern 105 diffuse to the metal layer 15 〇 同 = = = = = = = = = = = = = = = = = = = = = = = = milk inside. In other words, the first and second diffusion barrier layers = 30 can be used to block the diffusion of copper, while the other can be used for static diffusion. In detail, since the grain edge of the first diffusion barrier layer has milk atoms, the atom in the metal layer 15G may be opposite to the oxygen atom to form oxygen at the grain boundary. The oxygen brain blocks the diffusion path of the young atoms. Referring to FIG. 8, a metal layer (9), an anti-deposition layer 1 , a first barrier layer 13G, and a first diffusion barrier layer 12 〇 a may be patterned to form a first diffusion 卩 early wall pattern, and a second The diffusion barrier pattern 1 is, for example, a k deposition pattern 140a' and a metal interconnection 15〇. The metal interconnect 15 〇 may include a first metal mesh 152 of sequentially stacked $ and a second metal pattern 154'. A metal interconnect 150 can cover the opening 115. Next, a semiconductor package 17 200834816 2692 Ipit according to an embodiment of the present invention will be described with reference to FIG. The photo substrate 8' provides a semiconductor substrate 1 having a conductive pattern i〇5. The conductive pattern 1〇5 may include copper. That is, the conductive pattern may be a copper line. The interlayer insulating layer 110 may be disposed on the conductive pattern 105. And • On the conductor substrate (10), In 115 penetrates the interlayer insulating layer 11 (), and the storm/road guide package pattern l (b-part. Metal lining, 15 〇, set in the interlayer, 彖 layer uo And the opening π 115. The metal interconnection 15〇, may include the first layer of the metal lazy 152, and the second metal _ 154. The first metal pattern 152 may be formed by using a CVD technique to fill The opening ιΐ5, and the second metal pattern 154 can be formed using a PVD technique. The metal interconnect 150 1 includes !g ' and has a cylindrical configuration or a linear configuration. The first diffusion barrier pattern 120a can be disposed in the metal interconnection 150, between the conductive pattern 105. The first diffusion barrier pattern 120a may extend to the sidewall of the opening Π5 and the top surface of the interlayer insulating layer 11〇. That is, the first diffusion barrier pattern 12〇a may be disposed on the metal The interconnect 15 (), and the interlayer insulating layer" between 1 。. The diffusion barrier pattern 120a may include oxygen. For example, the oxygen diffusion atoms are filled at the grain boundaries of the first diffusion barrier pattern 120a. The second diffusion barrier pattern 130 may be disposed on the first diffusion barrier pattern l2a, ' Between the first and second diffusion barrier patterns 120a, 130, respectively, the refractory metal may be included. For example, the first and second diffusion barrier patterns l2a, and 13〇 may respectively include Titanium (Ti), neon (Ta), niobium (Nb), vanadium (¥), junction), niobium (_, indium (Mo), antimony (Re), tungsten (W), and titanium zirconium (TiZr) At least one or 'the first and second diffusion barrier patterns 12a, and 130, respectively, may include 18 200834816 2 (3 like pil refractory metal nitrides, such as first and second diffusion barrier patterns 120a, and 130_, Titanium nitride (), nitrided (TaN), nitrided (NbN), varnish (VN), tantalum nitride (ZrN), nitrided yttrium, molybdenum nitride, nitrided crane Titanium nitride and Titanium nitride And 130, can prevent the copper atoms in the conductive pattern H)5 from diffusing to the metal ϋί metal (four) line (9), the inside of the atom diffuses into the conductive pattern Κ) 5 Ϊ 2 = 1 metal interconnect 15 &quot; _ atom diffusion to the first When the diffusion barrier is 120a', the shoulders are long-lived; ^ Guang 7 Ba Fanlu #士.../,, the atom is a human milk atomic reaction and is located at the edge of the grain &quot; Oxygen can block the atomic_scatter path. The whole pattern 14〇a can be disposed on the portion of the interface between the second diffusion barrier pattern 130 and the connection (=4). For example, Figure -130^ Π0 ί 图安un is an inline, line 15〇, between the edges. In addition, the anti-slitter scorpion t-white ridge extends to cover the side of the second diffusion barrier in the opening 115. Furthermore, the anti-deposition pattern 1 is disposed on the top surface of the aperture 115 of the opening 115 and the opening 1 b = the inner connecting line 15G, the m metal interconnecting line 15G, the contact opening The second diffusion barrier in layer 115 may include refractory metal nitriding; The lower side of the spoon. The anti-sinking anti-sinking film 13G may include a first metal nitride layer, and the yttrium 140a may include a second metal nitride layer. In this case 19 200834816 2692 Ipif, the nitrogen content of the second metal nitride is greater than the nitrogen content of the first metal nitride layer. The material of the refractory metal contained in the anti-deposition pattern 14〇a' is the same as the refractory metal contained in the second diffusion IV wall pattern 130'. When the second diffusion barrier pattern 130' includes a refractory metal layer, the anti-deposition pattern i4〇a may include a refractory metal nitride layer. Fig. 9 is a graph showing changes in sheet resistance of various metal layers manufactured according to the prior art and the present invention. In Figure 9, the horizontal seat

標代表習知金屬層以及根據本發明所製造的金屬層,而縱 座標代表金屬層的第一面電阻RS1(於進行退火製程之前) 以及金屬層的第二面電阻RS2(於進行退火製程之後 門 的面電阻變化RV。於橫座標上,習知金屬層標示為“了^,,、 “Ta2”一、、“TaNl”以及“TaN2”,而根據本發明所製造的金屬 層標不為“Tal(氧處理),,、“Ta2(氧處理),,、“τ N1(氧處 以及‘™(氧處理),,。由下列步驟製造各金屬層 體基板上形成銅層;在銅層上形成擴散障壁層;在擴散障 壁層上形彭亦_層、擴鱗以及 行 在這種情況下,在退火製程之前詈制楚 衣狂心刖里測弟一面電阻RS1,並 且在退火製程之後量測第二面電阻RS2c&gt;因而,面電阻 化RV可使用以下方程進行計算。 又 RV={(RS2-RSl)xl〇〇}-^Rsl 在習知賴巾,韻障顯丨厚度為5 ㈣“™,,)、厚度為⑽埃的第:㈣(參見“如,,)、厚; ί 4〇ν^ ! ^ ^UTaNl (ί 見a 2)。相反的,本發明的擴散障壁層是在形成初步擴 20 200834816 ZDWipi 丄 政P羊壁層之後,再以氧填充製程(〇Xygen stuffmgproeess), 處理而形成的(參見“Tai (氧處理),,、“Ta2(氧處理),,、 “TaNl(氧處理)”或“TaN2(氧處理),,)。在這種情況下,初 步擴散障壁層為習知擴散障壁層中的一種。 參照圖9,習知金屬層Tai、Ta2、TaNl以及TaN2的 面電阻變化RV約為80%至120%。相反的,本發明的金屬 層的面電阻變化RV約為5%至25%。可以把上述現象歸因 於,在退火製程中,由於包含銅以及鋁的合金層形成於習 知金屬層内,因而顯著地增加習知金屬層的面電阻。 圖10缘示具有不同氮含量的氮化组層的金屬層所具 有的物理參數以及電性參數的曲線圖。在圖1〇中,橫座標 代表具有不同氮含量的各種氮化叙層TaNl、TaN2、…, 以及TaN8 ’左側縱座標代表沈積於氮化组層上的cvd在呂 層厚度,而右侧縱座標代表各個氮化組層的電阻率。以氮 活性濺鍍(nitrogen reactive sputtering)技術形成氮化钽層 TaNl、TaN2、···以及了aN8,而分別於氮化鈕層上形成cVD 鋁層。以相同沈積時間來沈積CVD鋁層。氮化鈕層的氮 含1逐漸地由左侧縱座標向右侧縱座標增加。換句話說, 第八氮化鈕層TaN8的氮含量最大,而第一氮化钽層TaN1 的氮含量最小。 由圖10可知,氮化钽層的氮含量越高,氮化鈕層上的 CVD鋁層的沈積速率越低。因而,當以氮化组層形成圖4 ^圖5中描述的第二擴散障壁層130以及抗沈積層14〇a %,為了在沒有空隙的情況下,以氮化钽層完全地填充開 21 200834816 Ζό^Ζίριϊ 口,較佳為第二擴散障壁層130的氮含量低於抗沈積層 140a的氮含量。 '、曰 圖11是沈積於具有不同氮含量的各種氮化敛層上的 CVD鋁層的面電阻的曲線圖。在圖u,橫座標代^具有 不同氮含量的各種氮化鈦層TiN1、TiN2、TiN3以及, 而縱座標代表沈積於氮化鈦層TiN1、TiN2、TiN3以及 上的CVD鋁層的面電阻。以氮活性濺鍍技術形成氮化鈦 層TiNl、TiN2、TiN3以及™4。以相同的沈積時間來沈 積CVD鋁層。氮化鈦層的氮含量朝右侧縱座標逐漸增加。 也就是,第四氮化鈦層TiN4具有最高的氮含量,而第一 氮化鈦層TiNl則具有最低的氮含量。 由圖11可知,氮化鈦層的氮含量越高,氮化鈦層上的 CVD鋁層的面電阻越高。此現象可以理解為沈積於氮化鈦 層上的CVD鋁層的厚度與氮化鈦層的氮含量成反I。 圖12是根據本發明一實施例的用於製造半導體裝置 的半導體群組工具的示意圖。 ^ 參照圖12,半導體群組工具10可包括第一及第二裝 載鎖室20、第一及第二傳送室3〇、第一及第二冷卻室二 以及多個處理室。第一及第二裝載鎖室20可連接於第一傳 送至30並且弟一及弟一冷卻室44可平行地設置於第一 及第二傳送室30之間。處理室可包括清潔室42、除氣室 46以及第一至第七室52、54、56、58、62、64以及%。 清潔室42、除氣室46、第三室56以及第四室58連接於第 一傳送室30,而第一室52、第二室54、第五至第七室62、 22 200834816 ^Oy^ipx[ 64以及70連接於第二傳送室3〇。 各傳送室30可分別包括用以移動晶圓的晶圓傳送單 兀,並且晶圓傳送單元可具有機械臂35,晶圓置放於機械 臂35上。機械臂35可以將位於傳送室3〇内的晶圓移動到 與傳送室30連接的一個室内。進一步,機械臂%可將位 於與傳送室30連接的一個室内的晶圓傳輸到傳送室3〇内。Represents a conventional metal layer and a metal layer fabricated in accordance with the present invention, and the ordinate represents the first surface resistance RS1 of the metal layer (before the annealing process is performed) and the second surface resistance RS2 of the metal layer (after the annealing process) The surface resistance of the gate changes RV. On the abscissa, the conventional metal layers are labeled as ", ^, "Ta2", "TaNl" and "TaN2", and the metal layer produced according to the present invention is not "Tal (oxygen treatment),", "Ta2 (oxygen treatment),", "τ N1 (oxygen and 'TM (oxygen treatment),). The copper layer is formed on each of the metal layer substrates by the following steps; A diffusion barrier layer is formed on the layer; a layer is formed on the diffusion barrier layer, and the layer is expanded and scaled. In this case, before the annealing process, the resistor RS1 is measured and the annealing process is performed. Then, the second surface resistance RS2c is measured; thus, the surface resistance RV can be calculated using the following equation. RV={(RS2-RSl)xl〇〇}-^Rsl In the conventional Lai towel, the thickness of the rhyme is 5 (4) "TM,,", thickness (10) ang: (4) (see "如,,) ί 4〇ν^ ! ^ ^UTaNl (ί see a 2). In contrast, the diffusion barrier layer of the present invention is formed by the oxygen filling process after the formation of the initial layer 20 200834816 ZDWipi P. Xygen stuffmgproeess), formed by treatment (see "Tai (oxygen treatment),", "Ta2 (oxygen treatment),", "TaNl (oxygen treatment)" or "TaN2 (oxygen treatment),). In this case The preliminary diffusion barrier layer is one of the conventional diffusion barrier layers. Referring to Figure 9, the surface resistance change RV of the conventional metal layers Tai, Ta2, TaN1, and TaN2 is about 80% to 120%. Conversely, the present invention The sheet resistance change RV of the metal layer is about 5% to 25%. The above phenomenon can be attributed to the fact that in the annealing process, since an alloy layer containing copper and aluminum is formed in a conventional metal layer, the conventional knowledge is remarkably increased. The sheet resistance of the metal layer. Fig. 10 is a graph showing the physical parameters and electrical parameters of the metal layer of the nitrided layer having different nitrogen contents. In Fig. 1 , the abscissa represents various kinds of nitrogen having different nitrogen contents. Nitrided layers TaNl, TaN2, ..., and TaN8 'left side stand The cvd deposited on the nitrided layer is in the thickness of the layer, and the right side is the resistivity of each nitride layer. The tantalum nitride layer TaNl, TaN2 is formed by nitrogen reactive sputtering technology. ··· and aN8, respectively, forming a cVD aluminum layer on the nitride button layer. The CVD aluminum layer is deposited with the same deposition time. The nitrogen content of the nitride button layer is gradually changed from the left ordinate to the right ordinate. In other words, the eighth nitride button layer TaN8 has the largest nitrogen content, and the first tantalum nitride layer TaN1 has the smallest nitrogen content. As can be seen from Fig. 10, the higher the nitrogen content of the tantalum nitride layer, the lower the deposition rate of the CVD aluminum layer on the nitride button layer. Thus, when the second diffusion barrier layer 130 and the anti-deposition layer 14 〇a % described in FIG. 4 to FIG. 5 are formed with a nitride layer, in order to completely fill the ruthenium nitride layer without voids 21 Preferably, the nitrogen content of the second diffusion barrier layer 130 is lower than the nitrogen content of the anti-deposition layer 140a. ', 曰 Figure 11 is a graph of the sheet resistance of a CVD aluminum layer deposited on various nitrided layers having different nitrogen contents. In Fig. u, the abscissas represent various titanium nitride layers TiN1, TiN2, TiN3 having different nitrogen contents, and the ordinate represents the sheet resistance of the CVD aluminum layer deposited on the titanium nitride layers TiN1, TiN2, TiN3 and above. The titanium nitride layers TiN1, TiN2, TiN3, and TM4 are formed by a nitrogen active sputtering technique. The CVD aluminum layer was deposited with the same deposition time. The nitrogen content of the titanium nitride layer gradually increases toward the right ordinate. That is, the fourth titanium nitride layer TiN4 has the highest nitrogen content, and the first titanium nitride layer TiN1 has the lowest nitrogen content. As is apparent from Fig. 11, the higher the nitrogen content of the titanium nitride layer, the higher the sheet resistance of the CVD aluminum layer on the titanium nitride layer. This phenomenon is understood to mean that the thickness of the CVD aluminum layer deposited on the titanium nitride layer is opposite to the nitrogen content of the titanium nitride layer. Figure 12 is a schematic illustration of a semiconductor group tool for fabricating a semiconductor device in accordance with an embodiment of the present invention. Referring to Fig. 12, the semiconductor group tool 10 can include first and second loading lock chambers 20, first and second transfer chambers 3A, first and second cooling chambers 2, and a plurality of processing chambers. The first and second load lock chambers 20 are connectable to the first transfer to 30 and the first and second cooling chambers 44 are disposed in parallel between the first and second transfer chambers 30. The processing chamber may include a cleaning chamber 42, a degassing chamber 46, and first to seventh chambers 52, 54, 56, 58, 62, 64, and %. The cleaning chamber 42, the degassing chamber 46, the third chamber 56, and the fourth chamber 58 are connected to the first transfer chamber 30, and the first chamber 52, the second chamber 54, the fifth to seventh chambers 62, 22 200834816 ^Oy^ Ipx [64 and 70 are connected to the second transfer chamber 3〇. Each of the transfer chambers 30 may include a wafer transfer unit for moving the wafer, and the wafer transfer unit may have a mechanical arm 35 placed on the mechanical arm 35. The robot arm 35 can move the wafer located in the transfer chamber 3A into a chamber connected to the transfer chamber 30. Further, the robot arm % can transfer the wafer located in one chamber connected to the transfer chamber 30 into the transfer chamber 3A.

接下來將描述使用半導體群組工具1〇制造半導體裝 置的方法。 ^ 再次參照圖1至圖7以及圖12,晶圓可製造成具有開 口 115 ’例如接觸孔洞或者線形溝槽。可將呈有開口 I】; 的^加載到一裝載鎖室2 0内。裝载鎖室2〇'内的晶圓可 :第傳送至30傳送到清潔室42。在清潔室42内,使用 氣體並且/或者氦_氣體清洗具有開〇 ιΐ5的晶 圓。清洗後的晶圓經由第-及第二傳送室3G以及-冷卻室 44傳輸到第一室52肉,廿s^ ^ ^ 至2内亚且在弟一至52内,於清洗的晶 ^形成初步擴散障壁層12G。接下來,供應氧原子至第 一至52内,以形成第一擴散障壁層12〇a。或者,在將呈 散障壁層的晶圓傳輸到第二室54内後,再供應氧 ΊΪ弟二室54内。也就是說,第一擴散障壁層120a可 以在第一室52或第二室54内形成。 、、,具有第一擴散障壁層12〇a的晶圓可經由第一及第二 傳迗室30以及一冷卻室44而移動到第三室56。在第三室 ^内’、於第:擴散障壁層12Ga上形成第二擴散障壁層 〇或者,第二擴散障壁層130可在第一室52内形成。 23 200834816 zoyzipn t 障壁層120、第—擴散障壁層12如以及 弟ϋϊ壁層13Q可在供應有氧原子的同-室内形成。 i 擴散障壁層130的晶圓可傳輪到連接第-傳 的弟四室58内,並且於具有第二擴散障壁層⑽ 的晶圓上形成抗沈積層14〇a。在 ^ 曰 ^ ^ ^ ^ 况下,弟四室58 y疋八有%^階梯覆蓋率的PVD t ⑽a可形成於開㈣内的第二擴散障壁層二 乂 卜㈣一擴政p早壁層㈣的頂面上。因此, 在幵y成抗沈積層14〇a後,開口 115 130的下侧壁純持絲。 擴雜麟 :將具有抗沈積層14Ga的晶圓傳輸到第五室a内, 几沈積層_上及開口 115内形成第-金屬芦 一金屬層152的晶圓傳輸到第六t 64,並且於第一 152上形成第二金屬層154 ^〶里屬層 ' WPVDt〇 M木1 υ:&gt; 在開口 115形志夕告 於在第七室70内形成導電圖案1Q5 施中’ 可將用以形成第-擴散障壁;! 12Ga /二貝%例中’ 室46或者冷卻室44内。層咖的⑽子供應到除氣 根據上述實施例,擴散障壁層可由也人 可在擴散層的晶粒邊界填充氣原子。因此二 的擴散障壁層可作為銅擴散並日/、兄有虱原子 抗沈積層,且抗沈積層喊含旦壁層上形成 3里网於擴散障壁層的氮含 24 200834816 zoy/ipn 量。因此,於開口外的抗沈積層以及開口内的擴散障壁層 上形成鋁層時,鋁層可在沒有任何空隙的情況下完全地填 充開口。 儘管已經結合附圖所示的實施例描述了本發明,但本 發明並不侷限於此。本領域熟知此項技藝者顯然可以在不 脫離本發明的精神和範圍的情況下進行各種替換、修飾和 變化。 在附圖以及說明書中已經揭露了本發明的實施例。儘 管採用了特定的術語,但它們僅以一般性且描述性的方式 使用,而不是出於限制的目的,本發明的範圍在後續申請 專利範圍中進行了闡述。 【圖式簡單說明】 圖1至圖δ是根據本發明實施例的半導體裝置製造方 法以及以此方法所製造的半導體裝置的横截面圖。 圖9至圖11是顯示根據本發明的半導體裝置的一些 特性的曲線圖。 圖12是根據本發明一實施例的用於製造半導體裝置 的半導體群組工具的示意圖。 【主要元件符號說明】 10 :半導體群組工具 20 :裝載鎖室 30 :傳送室 35 :機械臂 42 :清潔室 25 200834816 丄丄 44 :冷卻室 46 :除氣室 52 :第一室 54 :第二室 56 :第三室 58 :第四室 62 :第五室 64 :第六室 70 :第七室 100 :半導體基板 105 :導電圖案 110:絕緣層 115 :開口 120 :初步擴散障壁層 120a :第一擴散障壁層 120a’ :第一擴散障壁圖案 130 :第二擴散障壁層 13(^ :第二擴散障壁圖案 140a :抗沈積層 140a’ :抗沈積圖案 150 ··金屬層 150’:金屬内連線 152 :第一金屬層 1521 :第一金屬圖案 26 200834816Next, a method of manufacturing a semiconductor device using the semiconductor group tool 1 will be described. ^ Referring again to Figures 1 through 7 and Figure 12, the wafer can be fabricated with openings 115' such as contact holes or linear grooves. The ^ having the opening I]; can be loaded into a load lock chamber 20. The wafers in the load lock chamber 2' can be transferred to the clean room 42 by the transfer to 30. In the clean room 42, the crystal having the opening ΐ5 is cleaned using gas and/or helium gas. The cleaned wafer is transferred to the first chamber 52 via the first and second transfer chambers 3G and the cooling chamber 44, and 廿 s ^ ^ ^ to 2 in the inner Asia and in the first one to the 52, the preliminary formation of the cleaning crystal Diffusion barrier layer 12G. Next, oxygen atoms are supplied into the first to 52 to form the first diffusion barrier layer 12a. Alternatively, after the wafer in which the barrier layer is dispersed is transferred into the second chamber 54, the oxygen chamber 2 is again supplied. That is, the first diffusion barrier layer 120a may be formed in the first chamber 52 or the second chamber 54. The wafer having the first diffusion barrier layer 12A can be moved to the third chamber 56 via the first and second transfer chambers 30 and a cooling chamber 44. A second diffusion barrier layer is formed on the third diffusion barrier layer 12Ga in the third chamber, or the second diffusion barrier layer 130 may be formed in the first chamber 52. 23 200834816 zoyzipn t The barrier layer 120, the first diffusion barrier layer 12, and the dipole wall layer 13Q may be formed in the same chamber to which oxygen atoms are supplied. The wafer of the diffusion barrier layer 130 can be transferred to the fourth chamber 58 connected to the first pass, and the anti-deposition layer 14A is formed on the wafer having the second diffusion barrier layer (10). In the case of ^ 曰 ^ ^ ^ ^, the fourth chamber 58 y 疋 有 % ^ ^ ^ ^ ^ PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV PV (4) On the top surface. Therefore, after the 抗y becomes the anti-deposition layer 14〇a, the lower side wall of the opening 115 130 is purely held. Spreading the wafer: the wafer having the anti-deposition layer 14Ga is transferred into the fifth chamber a, and the wafers forming the first-metal reed-metal layer 152 in the deposition layer and the opening 115 are transferred to the sixth t 64, and Forming a second metal layer 154 on the first 152 ^ 〒 层 layer ' WPVDt 〇 M wood 1 υ: &gt; In the opening 115 shape, the formation of a conductive pattern 1Q5 in the seventh chamber 70 To form a first-diffusion barrier; In the case of 12Ga / 2%, the chamber 46 or the cooling chamber 44 is inside. The (10) sub-layer is supplied to the degassing. According to the above embodiment, the diffusion barrier layer may be filled with gas atoms at the grain boundaries of the diffusion layer. Therefore, the diffusion barrier layer of the second layer can be used as a copper diffusion and the anti-deposition layer of the antimony atom, and the anti-deposition layer can form a nitrogen network on the diffusion barrier layer to form a nitrogen content of 24 200834816 zoy/ipn. Therefore, when an aluminum layer is formed on the anti-deposition layer outside the opening and the diffusion barrier layer in the opening, the aluminum layer can completely fill the opening without any void. Although the invention has been described in connection with the embodiments shown in the drawings, the invention is not limited thereto. It is apparent to those skilled in the art that various substitutions, modifications and changes can be made without departing from the spirit and scope of the invention. Embodiments of the invention have been disclosed in the drawings and the description. The specific terms are used, but they are used in a generic and descriptive manner only, and not for the purpose of limitation, the scope of the invention is set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 through Fig. δ are cross-sectional views showing a method of fabricating a semiconductor device and a semiconductor device manufactured by the method according to an embodiment of the present invention. 9 to 11 are graphs showing some characteristics of a semiconductor device in accordance with the present invention. Figure 12 is a schematic illustration of a semiconductor group tool for fabricating a semiconductor device in accordance with an embodiment of the present invention. [Main component symbol description] 10: semiconductor group tool 20: load lock chamber 30: transfer chamber 35: robot arm 42: clean room 25 200834816 丄丄 44: cooling chamber 46: degassing chamber 52: first chamber 54: Two chambers 56: third chamber 58: fourth chamber 62: fifth chamber 64: sixth chamber 70: seventh chamber 100: semiconductor substrate 105: conductive pattern 110: insulating layer 115: opening 120: preliminary diffusion barrier layer 120a: First diffusion barrier layer 120a': first diffusion barrier pattern 130: second diffusion barrier layer 13 (^: second diffusion barrier pattern 140a: anti-deposition layer 140a': anti-deposition pattern 150 · metal layer 150': within metal Connection 152: first metal layer 1521: first metal pattern 26 200834816

2〇y2ipiI 154 :第二金屬層 154f :第二金屬圖案2〇y2ipiI 154 : second metal layer 154f : second metal pattern

Claims (1)

200834816 Zb^Zlpit 十、申請專利範圍·· 1 . 一種半導體裝置的製造方法,包括: 提供具有導電圖案的半導體基板; 在所述導電圖案以及所述半導體基板上 · 圖案化所述絕緣層,以形成暴露〜 7成‘緣層, 的開口·, 所述導電圖案 在所述開口的内壁以及所述絕緣層 擴散障壁層; M面上形成初夕 供應氧原子到所述初步擴散障壁 散障壁層;以及 層上,以形成第/擴 在所述第一擴散障壁層上形成金屬層, 所、f„彳*金屬層填充自觸帛-心 所述開口。 双丨早壁層所包園的 2·如申請專利範圍第丨項所述之 尺其中所逑氧原子供應到所述初步丑二袭置的製造方 界内。 〃政蜂壁層的晶粒邊 、、麥,3 =申睛專利範圍第1項所述之半遂 / ’厂中使用熱氧處理製程供應 ^體裝置的製造方 4 ·如申請專利餘固 乳原子。 法,其中使用气 項所述之半導體梦署沾劁 5.、::::電漿製程供應所述氧原子體衣置的製造方 甲明辱利範圍第1箱 法,其令使用Q2氣體、n2〇 A^之半導體裝置的製造方 二氣體的混合物以及〇3氣體中至1f氣體、〇2氣體與 子。 至夕—種供應所述氧原 28 200834816 z〇y/丄 ριι 6 ·如申請專利範圍第1項所述之半導體裝置的製造方 法,更包括在所述金屬層形成之前,在所述第一擴散障壁 層上形成第二擴散障壁層。 7·如申請專利範圍第6項所述之半導體裝置的製造方 法’其中所述第一及第二擴散障壁層分別由耐火金屬層形 * 成。 - 8 ·如申請專利範圍第7項所述之丰導體裝置的製造方 鲁法’其中所述耐火金屬層包括鈦、钽(Ta)、鈮⑽)、釩 (V)、錯(Zr)、铪(Hi)、钥(M〇)、銖(Re)以及鶴(w)中的至少 ---種 ° 9·如申請專利範圍第7項所述之半導體裝置的製造方 法,其中所述耐火金屬層包括鈦锆(TiZr)。 10 ·如申請專利範圍第6項所述之半導體裝置的製造 方法’其中所述第一及第二擴散障壁層分別由耐火金屬氮 化物層形成。 11 ·如申請專利範圍第10項所述之半導體裝置的製造 馨 方法,其中所述耐火金屬氮化物層包括氮化鈦(TiN)、氮化 #s(TaN)、氮化銳(NbN)、氮化釩(VN)、氮化锆(ZrN)、氮化 铪(HfN)、氮化鉬(M〇N)、氮化鍊(ReN)以及氮化鎢(WN)中 的至少一種。 12 ·如申請專利範圍第1〇項所述之半導體裝置的製造 方法,其中所述耐火金屬氮化物層包括氮化鈦锆(TiZrN)。 13 ·如申請專利範圍第1項所述之半導體裝置的製造 方法’其中所述導電圖案包括銅,而所述金屬層包括鋁。 29 200834816 /〇y/ipn Η ·如申請專利範圍第6項所述之半導體裝置的製造 方法,更包括: 〜 圖案^化所述金屬層、所述第二擴散障壁層以及所述第 一擴政P早壁層,以形成依序堆疊的第一擴散障壁圖案、第 二擴散障壁圖案以及金屬内連線,所述金屬内連線填充由 , 所述第二擴散障壁圖案包圍的所述開口。 〃 15 ·如申請專利範圍第14項所述之半導體| f 生 方法,更包括在所述金屬層形成之前,^ • 健壁層_述基板上職抗沈積層,^弟一把 其中所述抗沈積層形成於所述開口外的所述第二擴散 障壁層的頂面上’以及所述開口内的所述第二擴散障壁層 的上侧壁上’以暴露所述開口内的所述第二擴散障壁層的 下侧壁, 並且在所述金屬内連線的形成過程中,圖案化所述抗 沈積層,藉此在所述金屬内連線下方形成抗沈積圖幸。 16.如㈣專纖圍仙韻述之半導體裝置的製造 , 方法,其中所述金屬層使用化學氣相沉積(cv職術形 • 成,以及 .其中所述暴露之第二擴散障壁層上的所述金屬層的沈 積速率大於所述抗沈積層上的所述金屬層的沈積速率。 17+中請專利範圍第16韻述之半導戢置的製造 方法,其中所述第二擴散障壁層由第—金屬氮化物層形 成,_述抗沈積層由第二金屬氮化物層形成, 亚且所述第-金屬氮化物層的氣含量高於所述第一金 30 200834816 zoy/ipi 丄 屬氮化物層的氮含量。 18·如申請專利範圍第17項所述之半導縣置的製造 方法’其中所㈣二擴散障壁相及所述抗沈積層包括相 同的耐火金屬。 19 ·如申清專利範圍第16項所述之半導體裝置的製造 方法,其中所述第二擴散障壁層由耐火金屬層形成,而所 述抗沈積層由耐火金屬氮化物層形成。 20 ·如申請專利範圍第15項所述之半導體裝置的製造 方法,其中所述第二擴散障壁層使用化學氣相沉積(CVD) 技術形成,而所述抗沈積層使用物理氣相沉積(pVD)技術 形成。 、 21 ·如申請專利範圍第15項所述之半導體裝置的製造 方法,其中所述導電圖案、所述初步擴散障壁層、所述第 一擴散障壁層、所述第二擴散障壁層、所述抗沈積層以及 所述金屬層使用單個群組工具形成。 22 · —種半導體裝置,包括: 半導體基板,包括導電圖案; 絕緣層,位於所述導電圖案以及所述半導體基板上, 所述絕緣層具有穿透所述絕緣層的開口,以暴露所述導電 圖案的一部份; 金屬内連線,填充所述開口;以及 第一擴散障壁圖案,設置於所述金屬内連線以及所述 導電圖案之間, 其中所述第一擴散障壁圖案包含氧原子。 31 200834816 厶丄Pu 23 ·如申請專利範圍第22項所述之半導體裝置,其中 所述氧原子位於所述第一擴散障壁圖案的晶粒邊界内。 24 ·如申請專利範圍第22項所述之半導體裝置,其中 所述導電圖案包括銅,而所述金屬内連線包括鋁。 25 ·如申請專利範圍第22項所述之半導體裝置,更包 _ 括第二擴散障壁圖案,位於所述第一擴散障壁圖案與所述 _ 金屬内連線之間。 26 ·如申請專利範圍第25項所述之半導體裝置,其中 籲 所述第一及第二擴散障壁圖案分別包括耐火金屬。 27 ·如申請專利範圍第%項所述之半導體裝置,其中 所述耐火金屬包括鈦(Ti)、组(Ta)、銳(Nb)、飢(V)、錯(Zr)、 铪(Hf)、鉬(Mo)、銖(Re)以及鶴(W)中的至少一種。 28 ·如申请專利範圍第26項所述之半導體裝置,其中 所述耐火金屬包括鈦錯(Tizr)。 29 ·如申請專利範圍第25項所述之半導體裝置,其中 所述第一及第二擴散障壁圖案分別包括耐火金屬氮化物。 # 30 ·如申睛專利範圍第29項所述之半導體裝置,其中 . 所述耐火金屬氮化物層包括氮化鈦(TiN)、氮化鈕(TaN)、 , 氮化銳(NbN)、氮化叙(VN)、氮化錯(ZrN)、氮化铪(HfN)、 氮化鉬(MoN) '氮化鍊(ReN)以及氮化鎢(WN)中的一種。 31 ·如申請專利範圍第29項所述之半導體裝置,其中 所述耐火金屬氮化物層包括氮化鈦錘(TiZrN)。 32 ·如申請專利範圍第25項所述之半導體裝置,其中 所述第二擴散障壁圖案延伸到所述開口的侧壁上~。 32 200834816 /0^2ip^ 33. 如申請專利範圍第32項所述之半、首—壯 括抗沈積圖案,設置於所述開口内的所、敗=體裝置,更包 案的上側壁與所述開π内的所述金屬二擴散障壁圖 間, 1連線的上侧壁之 其中所述開口内的所述第二擴散障辟 接接觸所述金屬内連線。 U圖案的下侧壁直 34. 如申請專利範圍第33項所述之半導體 所述第二擴散障壁圖案包括第一金屬 、 ^ Ψ 沈積圖案包括第二纖化物層,鼠化物層,而所述技 並且所述第二金屬氮化物層的氮含量高 屬氮化物層的氮含量。 弟孟 3^.如中請專魏圍第34項所述之半導體裝置,1中 所述弟—及第二金屬氮化物層包括相同的耐火金屬。/、 36· 一如申請專利範圍帛33項所述之半導體裝置,盆中 戶:ΪίΤί散障壁圖案包括耐火金屬層,而所述抗沈積圖 案包括耐火金屬氮化物層。 貝口 37 · —種半導體群組工具,包括·· ⑽^ f ’配置成能在具有開口的基板上形成初步擴散 ^將氧原子供應到所述初步擴散障壁層上以形成 第…擴輪壁層,並且/或者能在所述第_擴散障壁層上形 成弟*一擴散障壁層; 第一至,配置成能在所述開口内的所述第二擴散障壁 層的上^|翻及所述開口外的所述第二擴散障壁層的頂面 上幵y成抗沈和層’以暴露所述開口内的所述第二擴散障壁 33 200834816 ZD^ZipiI 層的下侧壁;以及 第二至’配置成施在具有所述抗沈積層的所述基板上 形成金屬層,以填充所述開口。 38 ·如申請專利範圍第37項所述之半導體群組工具, 更包括: 第四室;以及 第五室’200834816 Zb^Zlpit X. Patent Application Scope 1. A method of manufacturing a semiconductor device, comprising: providing a semiconductor substrate having a conductive pattern; patterning the insulating layer on the conductive pattern and the semiconductor substrate, Forming an opening exposing ~ 70% of the 'edge layer, the conductive pattern on the inner wall of the opening and the insulating layer diffusion barrier layer; forming an oxygen supply atom on the M surface to the preliminary diffusion barrier layer And a layer formed on the first diffusion barrier layer to form a metal layer, wherein the metal layer is filled with the opening of the self-touching-heart. 2. The scope of the patent application scope is as follows: The oxygen atom is supplied to the manufacturing boundary of the preliminary ugly second. The grain edge of the wall layer of the bee, the wheat, 3 = Shen Shen The semi-finished product mentioned in the first paragraph of the patent scope / 'The manufacturer of the thermal oxygen treatment process supply device in the factory 4 · If the patent application of the residual solid milk atom. The law, which uses the semiconductor system described by the gas project 5. , ::::: The plasma process provides the first box method for the production of the oxygen atomic clothing, which is a mixture of the two gases of the semiconductor device using Q2 gas, n2〇A^, and 〇3 In the gas, the gas is supplied to the gas, and the gas is supplied to the gas. The gas is supplied to the gas source. The method for producing the semiconductor device according to the first aspect of the invention is further included in the method of manufacturing the semiconductor device. Before the formation of the metal layer, a second diffusion barrier layer is formed on the first diffusion barrier layer. The method for manufacturing a semiconductor device according to claim 6, wherein the first and second diffusions The barrier layer is formed of a refractory metal layer, respectively. - 8 · The manufacturing method of the abundance conductor device according to claim 7 of the patent application method, wherein the refractory metal layer comprises titanium, tantalum (Ta), niobium (10) , at least one of vanadium (V), errone (Zr), strontium (Hi), molybdenum (M 〇), hydrazine (Re), and crane (w) ° 9 as described in claim 7 A method of fabricating a semiconductor device, wherein the refractory metal layer comprises titanium zirconium (TiZr). The method of manufacturing a semiconductor device according to the sixth aspect of the invention, wherein the first and second diffusion barrier layers are respectively formed of a refractory metal nitride layer. 11. The semiconductor device according to claim 10 A succinct method, wherein the refractory metal nitride layer comprises titanium nitride (TiN), nitride #s(TaN), nitrided (NbN), vanadium nitride (VN), zirconium nitride (ZrN), nitrogen At least one of hydrazine oxide (HfN), molybdenum nitride (M〇N), nitrided chain (ReN), and tungsten nitride (WN). The method of fabricating a semiconductor device according to the first aspect of the invention, wherein the refractory metal nitride layer comprises titanium zirconium nitride (TiZrN). The method of manufacturing a semiconductor device according to claim 1, wherein the conductive pattern comprises copper and the metal layer comprises aluminum. The method for manufacturing a semiconductor device according to claim 6, further comprising: ~ patterning the metal layer, the second diffusion barrier layer, and the first diffusion An early P-wall layer to form a first diffusion barrier pattern, a second diffusion barrier pattern, and a metal interconnection, which are sequentially stacked, the metal interconnection filling the opening surrounded by the second diffusion barrier pattern . 〃 15 · The semiconductor method according to claim 14 of the patent application, further comprising: before the formation of the metal layer, the surface layer of the substrate is deposited on the substrate, An anti-deposition layer is formed on a top surface of the second diffusion barrier layer outside the opening and on an upper sidewall of the second diffusion barrier layer in the opening to expose the inside of the opening a lower sidewall of the second diffusion barrier layer, and during formation of the metal interconnect, patterning the anti-deposition layer, thereby forming an anti-deposition pattern under the metal interconnect. 16. The method of manufacturing a semiconductor device according to (4) a fiber-optic material, wherein the metal layer is formed by chemical vapor deposition (CV), and wherein the exposed second diffusion barrier layer The deposition rate of the metal layer is greater than the deposition rate of the metal layer on the anti-deposition layer. The method for manufacturing a semi-conductive device according to the 16th aspect of the invention, wherein the second diffusion barrier layer Formed by a first metal nitride layer, wherein the anti-deposition layer is formed of a second metal nitride layer, and the gas content of the first metal nitride layer is higher than the first gold 30 200834816 zoy/ipi The nitrogen content of the nitride layer. The manufacturing method of the semi-conducting county according to claim 17 wherein the (four) two diffusion barrier phase and the anti-deposition layer comprise the same refractory metal. The method of manufacturing a semiconductor device according to Item 16, wherein the second diffusion barrier layer is formed of a refractory metal layer, and the anti-deposition layer is formed of a refractory metal nitride layer. 15 items The method of fabricating the semiconductor device, wherein the second diffusion barrier layer is formed using a chemical vapor deposition (CVD) technique, and the anti-deposition layer is formed using a physical vapor deposition (pVD) technique. The method of manufacturing a semiconductor device according to Item 15, wherein the conductive pattern, the preliminary diffusion barrier layer, the first diffusion barrier layer, the second diffusion barrier layer, the anti-deposition layer, and the The metal layer is formed using a single group of tools. 22 - A semiconductor device comprising: a semiconductor substrate including a conductive pattern; an insulating layer on the conductive pattern and the semiconductor substrate, the insulating layer having a penetration An opening of the insulating layer to expose a portion of the conductive pattern; a metal interconnect to fill the opening; and a first diffusion barrier pattern disposed between the metal interconnect and the conductive pattern, wherein The first diffusion barrier pattern includes an oxygen atom. 31 200834816 厶丄Pu 23, the semiconductor device according to claim 22, The oxygen atom is located in a grain boundary of the first diffusion barrier pattern. The semiconductor device of claim 22, wherein the conductive pattern comprises copper and the metal interconnect comprises aluminum The semiconductor device according to claim 22, further comprising a second diffusion barrier pattern between the first diffusion barrier pattern and the _ metal interconnection. The semiconductor device of claim 25, wherein the first and second diffusion barrier patterns respectively comprise a refractory metal. The semiconductor device according to claim 10, wherein the refractory metal comprises titanium ( At least one of Ti), group (Ta), sharp (Nb), hunger (V), wrong (Zr), hydrazine (Hf), molybdenum (Mo), strontium (Re), and crane (W). The semiconductor device according to claim 26, wherein the refractory metal comprises TiZr. The semiconductor device of claim 25, wherein the first and second diffusion barrier patterns respectively comprise a refractory metal nitride. The semiconductor device according to claim 29, wherein the refractory metal nitride layer comprises titanium nitride (TiN), nitride button (TaN), nitrided (NbN), nitrogen One of the chemical (VN), nitrided (ZrN), tantalum nitride (HfN), molybdenum nitride (MoN) 'nitrided chain (ReN), and tungsten nitride (WN). The semiconductor device according to claim 29, wherein the refractory metal nitride layer comprises a titanium nitride hammer (TiZrN). The semiconductor device of claim 25, wherein the second diffusion barrier pattern extends to a sidewall of the opening. 32 200834816 /0^2ip^ 33. The semi-finished anti-deposition pattern as described in item 32 of the patent application, the device disposed in the opening, the upper body of the case, and the upper side wall of the case Between the metal two-diffusion barrier patterns in the opening π, the second diffusion barrier in the opening of the upper side wall of the 1 line contacts the metal interconnection. The lower sidewall of the U pattern is straight 34. The second diffusion barrier pattern of the semiconductor of claim 33 includes a first metal, a ^ 沉积 deposition pattern including a second fiber layer, a mouse layer, and The high nitrogen content of the second metal nitride layer is the nitrogen content of the nitride layer.弟孟3^. For example, please refer to the semiconductor device described in Item 34 of Weiwei, the first and second metal nitride layers of 1 include the same refractory metal. /, 36. The semiconductor device of claim 33, wherein the barrier pattern comprises a refractory metal layer, and the anti-deposition pattern comprises a refractory metal nitride layer. a Bayer 37-based semiconductor group tool, comprising: (10)^f' configured to form a preliminary diffusion on a substrate having an opening to supply oxygen atoms to the preliminary diffusion barrier layer to form a ... a layer, and/or a diffusion barrier layer formed on the first diffusion barrier layer; first, configured to be capable of overlying the second diffusion barrier layer in the opening a top surface of the second diffusion barrier layer outside the opening 幵 y is resistant to sinking and layer 'to expose the second diffusion barrier 33 in the opening; 200834816 ZD^ZipiI layer lower sidewall; and second And forming a metal layer on the substrate having the anti-deposition layer to fill the opening. 38. The semiconductor group tool as described in claim 37, further comprising: a fourth room; and a fifth room 其中所述弟一至配置成能形成初步擴散障壁層,所述 第四室配置成能供應氧原子,並且所述第五室配置成能形 成第二擴散障壁層。 39 .如申請專利範圍第38項所述之半導體群組工具, 其中所述第四室配置成清潔室、除氣室並且/或者冷卻室。 40 .如申請專利範圍第39項所述之半導體群组工呈, 其中所述清織配置成清潔具有所述開口的所述基板的表 面0 41 ·如申請專利範圚篦π ^ II]弟37項所述之半導體群组工亘 其中所述基板具有絕緣層,所诚η /' 托 ^所迹開口定位成穿透所述絕 層0 34Wherein the first one is configured to form a preliminary diffusion barrier layer, the fourth chamber is configured to supply oxygen atoms, and the fifth chamber is configured to form a second diffusion barrier layer. 39. The semiconductor group tool of claim 38, wherein the fourth chamber is configured as a clean room, a degassing chamber, and/or a cooling chamber. 40. The semiconductor grouping of claim 39, wherein the clearing is configured to clean a surface of the substrate having the opening 0 41 · as claimed in the patent 圚篦 ^ ^ ^ ^ brother The semiconductor group process of claim 37, wherein the substrate has an insulating layer, and the opening of the trace is positioned to penetrate the layer 0 34
TW97101779A 2007-01-18 2008-01-17 Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication therof and methods of fabricating the same TW200834816A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070005732 2007-01-18
KR20070039874A KR100874442B1 (en) 2007-01-18 2007-04-24 Semiconductor device, method for forming the same, semiconductor cluster equipment

Publications (1)

Publication Number Publication Date
TW200834816A true TW200834816A (en) 2008-08-16

Family

ID=39822314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101779A TW200834816A (en) 2007-01-18 2008-01-17 Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication therof and methods of fabricating the same

Country Status (3)

Country Link
KR (1) KR100874442B1 (en)
CN (1) CN101312154A (en)
TW (1) TW200834816A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088813B1 (en) 2008-07-25 2011-12-01 주식회사 하이닉스반도체 Metal wiring of semiconductor device and method for forming the same
JP2010177393A (en) * 2009-01-29 2010-08-12 Sony Corp Semiconductor storage device and method of manufacturing the same
US20130320540A1 (en) * 2012-06-04 2013-12-05 Nanya Technology Corporation Semiconductor device and method for manufacturing the same
CN103165483B (en) * 2013-02-20 2015-08-19 上海华力微电子有限公司 A kind of method reducing aluminium pad surfaces defect
CN103258810B (en) * 2013-05-10 2015-07-08 华进半导体封装先导技术研发中心有限公司 Method for reducing over electroplating on surface of wafer after through silicon via (TSV) is electroplated with copper
US10825724B2 (en) 2014-04-25 2020-11-03 Taiwan Semiconductor Manufacturing Company Metal contact structure and method of forming the same in a semiconductor device

Also Published As

Publication number Publication date
CN101312154A (en) 2008-11-26
KR100874442B1 (en) 2008-12-17
KR20080068509A (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP3865599B2 (en) Method for forming an amorphous conductive diffusion barrier
JP4191900B2 (en) Method for forming tungsten contact plug of semiconductor device
US20080242088A1 (en) Method of forming low resistivity copper film structures
US7704879B2 (en) Method of forming low-resistivity recessed features in copper metallization
US20030072884A1 (en) Method of titanium and titanium nitride layer deposition
US20080174021A1 (en) Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication thereof and methods of fabricating the same
TW201214532A (en) Metal gate structures and methods for forming thereof
TW200834816A (en) Semiconductor devices having metal interconnections, semiconductor cluster tools used in fabrication therof and methods of fabricating the same
TW200836259A (en) Process integration scheme to lower overall dielectric constant in BEoL interconnect structures
EP1760771A1 (en) Semiconductor device and method for fabricating the same
JP2002075994A (en) Semiconductor device and its manufacturing method
US20080237860A1 (en) Interconnect structures containing a ruthenium barrier film and method of forming
TWI694501B (en) Dielectric/metal barrier integration to prevent copper diffusion
JP2009231497A (en) Semiconductor device and manufacturing method therefor
CN101308810A (en) Semiconductor circuit construction and manufacturing process
TW200539391A (en) Method for fabricating low resistivity barrier for copper interconnect
TWI283444B (en) Method for manufacturing semiconductor device
JP2000058544A (en) Semiconductor device and manufacture of the same
US20020132469A1 (en) Method for forming metal wiring layer
US20070108616A1 (en) Semiconductor device and method for fabricating the same
CN100431134C (en) Method for fabricating metal interconnection line with use of barrier metal layer formed in low temperature
KR100331521B1 (en) Method for producing a flat interface for a metal-silicon contact barrier film
KR100596794B1 (en) Method for forming metal line in semiconductor device
US9905460B2 (en) Methods of self-forming barrier formation in metal interconnection applications
US8008774B2 (en) Multi-layer metal wiring of semiconductor device preventing mutual metal diffusion between metal wirings and method for forming the same