TW200832503A - Dopant activation in doped semiconductor substrates - Google Patents
Dopant activation in doped semiconductor substrates Download PDFInfo
- Publication number
- TW200832503A TW200832503A TW096132587A TW96132587A TW200832503A TW 200832503 A TW200832503 A TW 200832503A TW 096132587 A TW096132587 A TW 096132587A TW 96132587 A TW96132587 A TW 96132587A TW 200832503 A TW200832503 A TW 200832503A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- processing chamber
- carbon film
- plasma
- precursor
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 312
- 239000002019 doping agent Substances 0.000 title claims abstract description 17
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 230000004913 activation Effects 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 146
- 238000012545 processing Methods 0.000 claims abstract description 140
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 118
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 118
- 238000000151 deposition Methods 0.000 claims abstract description 72
- 239000007833 carbon precursor Substances 0.000 claims abstract description 48
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 39
- 230000008033 biological extinction Effects 0.000 claims abstract description 26
- 230000003213 activating effect Effects 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 149
- 239000007789 gas Substances 0.000 claims description 105
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 64
- 239000002243 precursor Substances 0.000 claims description 63
- 230000008569 process Effects 0.000 claims description 38
- 230000008021 deposition Effects 0.000 claims description 36
- 239000012159 carrier gas Substances 0.000 claims description 34
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 33
- 229910052757 nitrogen Inorganic materials 0.000 claims description 33
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 230000001965 increasing effect Effects 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 13
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 230000003750 conditioning effect Effects 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000002826 coolant Substances 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims 1
- 201000011510 cancer Diseases 0.000 claims 1
- 125000005626 carbonium group Chemical group 0.000 claims 1
- 238000009795 derivation Methods 0.000 claims 1
- 229910001882 dioxygen Inorganic materials 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000000137 annealing Methods 0.000 description 21
- 230000005855 radiation Effects 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 238000005137 deposition process Methods 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008093 supporting effect Effects 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- -1 alkane compounds Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical group [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
200832503 九、發明說明: 【發明所屬之技術領域】 本發明有關於用於活化在摻雜式半導體基板中之摻雜 物的方法。 【先前技術】200832503 IX. Description of the Invention: [Technical Field] The present invention relates to a method for activating dopants in a doped semiconductor substrate. [Prior Art]
U 推動電子元件發展的兩個因素是希望提高基板上之元 件密度和和藉由減少此等元件之回應時間而提高其速度。 該兩因素均與使用電子元件之產品的整體效能有關。元件 密度提高不僅允許促進此等產品小型化,還允許放置更多 數目之元件;這樣又可以利用此等元件來實現更多樣的用 途或更強功能。提高各別元件之速度還可以在任意指定時 間區段内執行更多數目之指令,從而增進其功能。 目則已經研究多種方 圖可了解用於提高元件速度之技術,第1圖提供一種典型 電晶體100之結構的示意圖。元件100具有位在一半導體 基板116内的源極104及汲極1〇8區域。常用於基板 的材料為矽。對閘極112施加電壓能使電流穿過接面120 而在源極104及汲# 108之間流動。藉由含有且活化一合 適之推雜物來提高接面1 20之傳導性, ^ ^ < 1寻導性,從而可以提高此元 件的速度。舉例而言,已知, 對該、纟°構經過退火以促進摻 雜物與鄰近矽原子結合時, 導柯. 及中荨摻雜物可提高矽之傳 導。退火處理導致摻雜物 高偯莫+ 電子、、Ό構重新排列,從而提 同傳導性,在所屬技術領 扠 步驟。 此步驟有時被稱為「活化」 6 200832503 通常藉著提高整個基板之溫度而以加熱方 步驟。活化對於提升傳導性的效果與所達溫度 比’所以最好將基板溫度升高到接近其熔點。 1410C ’所以在用熱退火來進行活化時,希望 度升南至1300至135〇。〇。但是在此等溫度下 原子擴散性亦會提高。儘管熱退火可以實現所 物活化效果,但此種退火方式亦可能需要相對 來升兩基板溫度。如此一來會降低對接面120 狀的控制。 提兩接面傳導性之能力及控制接面大小及 均為吾人所需。因此,在所屬技術領域需要一 雜物且能夠保持對元件接面大小及形狀之控制 【發明内容】 本發明實施例提供用於在一基板上沉積非 方法。在特定應用中,該非晶碳薄膜可用於活 板内的摻雜物。 U 在第一組實施例中,對一基板處理室進行 在該基板處理室内的表面上沉積調整材舉 _ material)。將基板傳遞到經過調整的基板處理 , 熱氣體流入該調整後的基板處理室中。在令 内,由該加熱氣體形成一第一電漿。該第一 ^ 电 整材料沉積在該基板上以作為一襯墊。之後, 流入該基板處理室。在該基板處理室内由該碳 一第二電漿,利用該第二電漿在該襯墊上沉積 式執行活化 大體上成正 矽的熔點為 將基板之溫 ’基板中的 需要之換雜 較長的時間 之大小及形 形狀之能力 種能活化摻 的方法。 晶碳薄膜的 化佈植在基 調整,用於 f (seasoning 室内。一加 基板處理室 漿導致該調 一碳前驅物 前驅物形成 該非晶碳薄 7 200832503 膜。 在一些實施例中,該調整材料包含碳,該襯墊包含一 碳襯墊。在其他實施例中,該調整材料包含氮,該襯墊包 含一氮襯墊。有時在將該基板傳送到該基板處理室之前, 可預先加熱該基板。U Two factors driving the development of electronic components are the desire to increase the density of components on the substrate and to increase the speed by reducing the response time of such components. Both of these factors are related to the overall performance of the product using electronic components. The increased density of components not only allows for the miniaturization of these products, but also allows for the placement of a larger number of components; this allows them to be used for a wider variety of uses or functions. Increasing the speed of individual components also increases the functionality by executing a greater number of instructions in any given time segment. Various techniques have been studied to understand the technique for increasing the speed of the component, and Fig. 1 provides a schematic diagram of the structure of a typical transistor 100. Element 100 has a source 104 and a drain 1 〇 8 region in a semiconductor substrate 116. The material commonly used for substrates is ruthenium. Applying a voltage to the gate 112 allows current to flow through the junction 120 and between the source 104 and the 汲# 108. The conductivity of the junction 1 20 is improved by containing and activating a suitable tamper, and ^ ^ < 1 is steered, thereby increasing the speed of the element. For example, it is known that when the 构 structure is annealed to promote the incorporation of dopants with adjacent ruthenium atoms, the ruthenium and ruthenium dopants can enhance the conduction of ruthenium. The annealing treatment results in the dopants being high in enthalpy + electrons, and the enthalpy rearrangement, thereby enhancing conductivity, in the art step. This step is sometimes referred to as "activation". 6 200832503 The heating step is usually performed by increasing the temperature of the entire substrate. The effect of activation on the conductivity is increased by the ratio of the temperature reached, so it is preferable to raise the substrate temperature to near its melting point. 1410C ' So when the activation is performed by thermal annealing, the degree of hope rises to 1300 to 135 南. Hey. However, atomic diffusivity also increases at these temperatures. Although thermal annealing can achieve the activation effect, this annealing method may also require a relative substrate temperature. This will reduce the control of the butt surface 120. The ability to mention the conductivity of the two joints and the size of the control joints are all required by us. Accordingly, there is a need in the art for a foreign matter and to maintain control over the size and shape of the component joints. SUMMARY OF THE INVENTION Embodiments of the present invention provide a method for depositing a non-method on a substrate. In certain applications, the amorphous carbon film can be used as a dopant in a disk. U In a first set of embodiments, a substrate processing chamber is deposited with a material on the surface of the substrate processing chamber. The substrate is transferred to the conditioned substrate for processing, and hot gas flows into the conditioned substrate processing chamber. Within the order, a first plasma is formed from the heated gas. The first ^ electrical material is deposited on the substrate to act as a liner. Thereafter, it flows into the substrate processing chamber. In the substrate processing chamber, the second plasma is used to perform activation on the liner by using the second plasma to form a melting point which is substantially positive, and the replacement of the substrate in the temperature of the substrate is longer. The size of the time and the ability of the shape to activate the blending method. The crystallization of the crystalline carbon film is adjusted in the base for f (seasoning chamber). The addition of the substrate processing chamber slurry causes the tuned carbon precursor precursor to form the amorphous carbon thin 7 200832503 film. In some embodiments, the adjustment The material comprises carbon and the liner comprises a carbon liner. In other embodiments, the conditioning material comprises nitrogen, the liner comprising a nitrogen liner, sometimes before the substrate is transferred to the substrate processing chamber The substrate is heated.
合適的碳前驅物包含烴前驅物。當使用此等前驅物 時,該非晶碳薄膜可能包含氫。在某些實施例中,氮前驅 物流入具有該碳前驅物的基板處理室。然後由該碳前驅物 及該氮前驅物形成該第二電漿,使得該非晶碳薄膜中包含 氮。在其他實施例中,使一種含氧氣體流入具有該碳前驅 物之基板處理室。也可以將一載氣流入具有該碳前驅物之 基板處理室。 在沉積該非晶碳薄膜時,可以對該基板施用一電偏 壓。在一些實施例中,可以在沉積期間改變該電偏壓之強 度。例如,在一實施例中,在將該非晶碳薄膜沉積在該基 板上的起始階段,可以將一起始電偏壓施加於該基板。該 起始偏壓低於一穩態偏壓。將該電偏壓自該起始電偏壓提 高到一超出穩態偏壓的最大電偏壓。然後,在該基板溫度 升高到大於 5 00 °C之前,該電偏壓自該最大電偏壓降低到 該穩態偏壓。 該第二電漿可感應形成為一高密度電漿,其密度大於 1 0 11個離子/立方公分。 在一第二組實施例中,該基板傳送到一基板處理室。 在基板處理室外利用一遠端電漿系統由一第一前驅物形成 8A suitable carbon precursor comprises a hydrocarbon precursor. When such precursors are used, the amorphous carbon film may contain hydrogen. In certain embodiments, the nitrogen precursor is streamed into a substrate processing chamber having the carbon precursor. The second plasma is then formed from the carbon precursor and the nitrogen precursor such that the amorphous carbon film contains nitrogen. In other embodiments, an oxygen containing gas is passed to a substrate processing chamber having the carbon precursor. It is also possible to carry a carrier gas into the substrate processing chamber having the carbon precursor. When the amorphous carbon film is deposited, an electrical bias can be applied to the substrate. In some embodiments, the strength of the electrical bias can be varied during deposition. For example, in one embodiment, an initial electrical bias can be applied to the substrate at the initial stage of depositing the amorphous carbon film on the substrate. The starting bias is below a steady state bias. The electrical bias is raised from the initial electrical bias to a maximum electrical bias that exceeds the steady state bias. The electrical bias is then reduced from the maximum electrical bias to the steady state bias before the substrate temperature rises above 500 °C. The second plasma can be induced to form a high density plasma having a density greater than 10 11 ions per cubic centimeter. In a second set of embodiments, the substrate is transferred to a substrate processing chamber. Formed by a first precursor using a remote plasma system outside the substrate processing chamber 8
υ 200832503 第一電漿。來自該第一電漿之離子物種流入該基板處 室,以在該基板上沉積一襯墊。之後,一第二前驅物流 該基板處理室。該第二前驅物包含碳。在該基板處理室产 由該第二前驅物形成第二電漿。利用該第二電漿在該襯 上沉積該非晶碳薄膜。 在一些實施例中,該第一前驅物包含碳,使得該概 包括碳襯墊。在其他實施例中,該第一前驅物包含氮, 襯墊包含氮襯墊。在一些實施例中,在將該基板傳送到 基板處理室之前,先預熱該基板。該第二前驅物有時亦 含氫,該非晶碳薄膜因而包含氫。一第三前驅物有時可 入具有該第二前驅物之基板處理室,且由該等第二及第 前驅物形成該第二電漿。例如,該第三前驅物可包含氮 該非晶碳薄膜因此可包含氮。在其他實施例中,一含氧 體流入具有該第二前驅物之基板處理室。許多實施例包 將一載氣流入具有該碳前驅物之基板處理室中。 在一些實施例中,在沉積該非晶碳薄膜時,對該基 施用一電偏壓。在沉積期間,可以採用類似於前文依據 一組實施例所述的方式改來變此電偏壓,即施加一低於 態偏壓的起始偏壓,將該偏壓提高到超過該穩態偏壓的 最大偏壓,然後在該基板溫度升高到大於500°C之前, 該偏壓降低到該穩態偏壓。同樣類似於該第一組具體實 例,在某些第二組實施例中,該第二電漿可感應形成為 高密度電漿,其密度大於1011個離子/立方公分。 在第三組實施例中,該基板被傳送到一基板處理室 理 入 , 墊 墊 該 該 包 流 氣 含 板 第 穩 將 施 9υ 200832503 The first plasma. An ionic species from the first plasma flows into the substrate chamber to deposit a liner on the substrate. Thereafter, a second precursor is streamed to the substrate processing chamber. The second precursor comprises carbon. A second plasma is formed from the second precursor in the substrate processing chamber. The amorphous carbon film is deposited on the liner using the second plasma. In some embodiments, the first precursor comprises carbon such that the carbon liner is included. In other embodiments, the first precursor comprises nitrogen and the liner comprises a nitrogen liner. In some embodiments, the substrate is preheated prior to transferring the substrate to the substrate processing chamber. The second precursor sometimes also contains hydrogen, and the amorphous carbon film thus contains hydrogen. A third precursor is sometimes incorporated into the substrate processing chamber having the second precursor, and the second plasma is formed by the second and precursors. For example, the third precursor may comprise nitrogen. The amorphous carbon film may thus comprise nitrogen. In other embodiments, an oxygenate flows into the substrate processing chamber having the second precursor. Many embodiments package a carrier gas stream into a substrate processing chamber having the carbon precursor. In some embodiments, an electrical bias is applied to the substrate when depositing the amorphous carbon film. During deposition, the electrical bias can be changed in a manner similar to that described above in accordance with a set of embodiments, i.e., an initial bias is applied that is biased below the state, and the bias is raised beyond the steady state. The maximum bias voltage is biased and then the bias voltage is reduced to the steady state bias before the substrate temperature rises above 500 °C. Also similar to the first set of specific examples, in some second set of embodiments, the second plasma can be induced to form a high density plasma having a density greater than 1011 ions per cubic centimeter. In a third set of embodiments, the substrate is transferred to a substrate processing chamber for processing, and the pad is filled with a gas plate.
U 200832503 且一電偏壓施加至該基板。一第一碳前驅物注入該基板 理室,在該室内形成大於1〇〇毫托之壓力。利用該偏壓 該第一碳前驅物形成一第一電漿,用於形成該電衆之源 率低於500瓦。利用該第一電漿在該基板上沉積一襯螯 之後,該基板處理室中的壓力降低到低於5 0毫托。一第 碳前驅物流入該基板處理室’利用超過1 000瓦之源功率 該第二碳前驅物感應形成一第二電漿。該第二電漿係一 密度電漿,其密度大於ι〇Μ個離子/立方公分。利用該 二電蒙在該概塾上沉積該非晶碳薄膜。 如同在其他組實施例中一樣,在將該基板傳送到該 理室之前,可先預熱該基板,且供應至該處理室的各種 驅物及附加流體類似於依據他實施例所述者。 在各種實施例中,所沉積的非晶碳薄膜在8 1 0奈米 波長處可能具有大於〇. 3之消光係數。 本發明實施例還提供活化一摻雜式半導體基板中之 雜物的方法。在第四組實施例中,一碳前驅物流入一基 處理室,並且在該基板處理室中放置該摻雜式半導體 板。在該基板處理室内,由該碳前驅物形成一電漿。利 該電漿在該基板上沉積一碳襯墊。在沉積該碳薄膜期間 該基板溫度保持低於 500°C。使該沉積碳薄膜暴露在一 磁輻射下短於1 0毫秒之時間,並且該沉積碳薄膜在該電 輻射所包含的一波長處具有大於0 · 3之消光係數。 該電磁輻射實質上可以為單色。或者,該電磁輻射 以包含一波長頻帶,該碳薄膜之消光係數在該波長頻帶 處 將 功 由 高 第 處 前 之 掺 板 基 用 電 磁 可 的 10 200832503 每一波長處係大於 0.3。該沉積碳薄膜之整個表面可同時 完全暴露到該電磁輻射中。在其他實施例中,塑造該電磁 輻射光束的形狀,並且讓該形狀之光束掃描過該沉積碳薄 膜的一表面,以實質涵蓋整個表面。在一些實施例中,例 如藉由將該基板暴露至氧氣電漿,而從該基板上去除該沉 積碳薄膜。U 200832503 and an electrical bias is applied to the substrate. A first carbon precursor is injected into the substrate chamber to create a pressure greater than 1 Torr in the chamber. Utilizing the bias, the first carbon precursor forms a first plasma for forming the source with a source of less than 500 watts. After depositing a liner on the substrate using the first plasma, the pressure in the substrate processing chamber is reduced to less than 50 mTorr. A first carbon precursor is introduced into the substrate processing chamber to utilize a source power of more than 1000 watts. The second carbon precursor induces a second plasma. The second plasma is a density plasma having a density greater than ι 离子 ions per cubic centimeter. The amorphous carbon film is deposited on the outline by the second electric charge. As in other sets of embodiments, the substrate may be preheated prior to delivery of the substrate to the chamber, and the various floods and additional fluids supplied to the processing chamber are similar to those described in accordance with the embodiments thereof. In various embodiments, the deposited amorphous carbon film may have an extinction coefficient greater than 0.3 at a wavelength of 81 nm. Embodiments of the present invention also provide a method of activating a dopant in a doped semiconductor substrate. In a fourth set of embodiments, a carbon precursor is introduced into a substrate processing chamber and the doped semiconductor wafer is placed in the substrate processing chamber. A plasma is formed from the carbon precursor in the substrate processing chamber. The plasma deposits a carbon liner on the substrate. The substrate temperature was maintained below 500 ° C during the deposition of the carbon film. The deposited carbon film is exposed to a magnetic radiation for a period of less than 10 milliseconds, and the deposited carbon film has an extinction coefficient of more than 0.3 at a wavelength included in the electrical radiation. The electromagnetic radiation can be substantially monochromatic. Alternatively, the electromagnetic radiation comprises a wavelength band, and the extinction coefficient of the carbon film in the wavelength band is greater than 0.3 at each wavelength of the 10200832503. The entire surface of the deposited carbon film can be completely exposed to the electromagnetic radiation at the same time. In other embodiments, the shape of the beam of electromagnetic radiation is shaped and a beam of the shape is scanned across a surface of the deposited carbon film to substantially cover the entire surface. In some embodiments, the deposited carbon film is removed from the substrate, e.g., by exposing the substrate to an oxygen plasma.
Ο 該碳前驅物可以包含烴類前驅物,該沉積碳薄膜包含 氫。在某些實施例中,氮前驅物亦流入具有該碳前驅物之 基板處理室。然後由該碳前驅物及該氮前驅物形成該電 聚,使得該沉積碳薄膜中包含氮。在其他實施例中,一含 氧氣體流入具有該碳前驅物之基板處理室。在一些實施例 中,一載氣也可以流入該基板處理室。合適的載氣範例包 含氬及氮分子。該載氣流量可隨時間變化。例如,在開始 流入該載氣時,其流速可低於一穩態流速,然後當一部分 的碳薄膜已經沉積在該基板上以後,將流速提高至該穩態 流速。 在一些實施例中,在沉積該碳薄膜期間,該基板溫度 低於4 0 0 °C。用於保持該基板溫度之技術在於在該基板處 理室内於臨近該基板之背側處流入一冷卻劑。 在第五組實施例中,一碳前驅物亦流入一基板處理 室,其内放置有該摻雜式半導體基板。在該基板處理室内, 由該碳前驅物形成一高密度電漿。該高密度電漿之密度大 於 1011個離子/立方公分。一電偏壓施加至該基板。利用 同時提供沉積及濺射部件之製程,利用該高密度電漿將一 11 200832503 碳薄膜沉積在該基板上。使該沉積碳薄膜暴露在一電 射下短於1 〇毫秒之時間,並且該沉積碳薄膜在該電磁 所包含的一波長處具有大於0 · 3之消光係數。 許多特定實施例都具有對應於上述第一組實施例 化範例的特徵。此外,可能在一些實施例中,當在基 沉積該碳薄膜時,所施加的電偏壓係一實質恆定量的 ' 壓。還可能在一些實施例中,可在沉積碳薄膜期間變 , 電偏壓。例如,在一實施例中,在將該碳薄膜沉積在 C, 板上的起始階段,可將一起始電偏壓施加於該基板; 始偏壓低於一穩態偏壓。將該電偏壓自該起始電偏壓 到一超過穩態偏壓的最大電偏壓。然後,在該基板溫 南到大於5 0 0 C之前’該電偏壓從該最大電偏壓降低 穩態偏壓。 參考本說明書及圖式之其餘部分,可進一步理解 ' 明之實質及優點。 【實施方式】 本發明實施例利用電磁機制來退火基板。此類型 制藉由暴露在電磁輻射下以在非常短的時間内提升溫 - 該時間通兩在亳秒等級。所得到之溫度特性示意性地 • 於第2圖中,它顯示經過短時間△ t,該溫度急速升高 低於該基板熔點7¾¾板〉的溫度。例如,當該基板為矽時 2圖中之虛線可以對應至141〇t:之溫度,在退火期間 溫度快速地升高至約ΐ 5 3 5 〇Ό。由於溫度特 線的形狀,此種用於退火的電磁機制有時被稱為「尖 磁輻 輻射 之變 板上 電偏 化該 該基 該起 提高 度升 到該 本發 之機 度, 繪示 到稍 ,第 ,該 性曲 峰退 12 200832503 火(spike anneal)」。該電磁輻射的強度通常與所獲得的峰 值温度有關,可以對電磁輻射強度進行調整以獲得執行退 火所需要的期望溫度。 將溫度實質保持在峰值溫度的時間有時被稱為退火的 「停留時間(dwell time)」,根據對該基板施加電磁輻射的 方式’可以採用許多種不同方式來控制該時間。例如,在 特定實施例中,可以藉由適當排列的透鏡、反射鏡及類似 部件來塑造電磁輻射之形狀,且以該輻射掃描該基板。在 此等實施例中,掃描速度可用於控制停留時間,掃描速度 有時介於約2 0毫米/秒至3 0 0毫米/秒範圍内。使用此種暴 光輪射光束成形法的實施例,通常使用實質上為單色光的 光源’儘管在替代實施例中也可以使用寬頻帶光源。舉例 而吕’ 一實施例使用4 0千瓦的雷射來提供波長約為8 1 〇 奈米的光束,並且將其形狀設置為約1毫米乂12毫米的長 條狀。 在其他實施例中,以實質均勻的方式將電磁輻射施用 於整體基板上。不需要將該基板所在環境的溫度升高至接 近基板熔點,而可以藉著啟動該電磁源一短暫時間來獲得 尖峰退火。在此類實施例中,該電磁輻射通常具有一寬頻 帶光源’儘管替代實施例可以使用窄頻帶或者近似單色的 光源。在此等實施例中,該基板被設置在該基板處理室内 的一或多個「弧光燈」或「閃光燈」照射,該等燈配置成 可在短時間内以期望強度對該基板進行均一照射。 無論究竟採用何種機制提供電磁輻射,也就是不論它 13 200832503 是單色光源還是寬頻帶光源, 〜q卜順疋局部邊β 提供至基板,該退火效果都會受到基板反射率::體地 響。更明確而言,即使基板厚度與組成中存在相::的影 的變化(這種變化在商業用基板中报常見),也。< 較溫和 為基板上不同點處反射率的竇 ,可能會轉換 干〕只貝差異。這是因為,去 輕射射到基板表面上時’輕射源之能量輕合到基板:Π 率…=反射率。反射率的局部變化轉換為執行退火時 的局部溫度變化。由於在指 丁、火枯 隹相疋基板上的不同位置 不同的元件結構,所以這此、、w 9 ^ ^ 、二μ度變化又會導致元件 一致,此種元件性能不一致 匕不 a疋不希望發生的。 本發明實施例於是在雷 ^ 在電磁退火期間在該基板上使用一 碳薄膜來提高退火的均勻性 K H ^ Ab ^ 反薄膜是作為黑體(black body),其能有效且實質约句 X貝杓勾地將來自電磁照射源之能量耦 合到該基板,以在尖峰退火湘Μ担似 把里稱 嗶退火期間提供一致的峰值溫度。由 於該碳薄膜通常在元件製造 、你丁 +趣作用,所以可以在 執行完退火之後將其去除。 為了有效吸收電磁輻射,該碳 薄膜之消光係數最好大於 ^ 聢好大於〇·3,在一些實施例中,該消光 係數大於 0 · 5。此消本总批加 為先係數k供了一般性的量測,用於表 示電磁波在材料中&妄、、士 # ώ /_ 的衣減輊度。儘官此消光係數通常取決 於輻射源的波長,徊夫I ηη — t 我仁本發明貫施例提供的碳薄膜,其消光 係數在所欲波县下士 ~ Λ 大於0·3 ;在使用單色輻射源之情況 下該'肖光係數在該輻射波長下超過〇 · 3,在使用寬頻帶 輻射源時,該消光係數在整個頻帶皆超過〇 · 3。 因此’在第3圖之流程圖中提供在基板上製造元件之 14 200832503 製程的概述。此流程圖表示該製程通常始於準備基 3 0 4 ^ ^ ” 。可以採用各種不同方式來製備基板,包括用一些 :積及/或钕刻製程在該基板上形成某些特徵。此基板 ’ V驟通常包括對該基板進行離子佈植以植入摻雜 、後利用尖峰退火(spike aneal)對活化摻雜物。 驟3 0 8中,脸山咕 少 將妷溥膜沉積在該基板上。在沉積碳薄膜之德, 由於碳蓮脫τ 1 ’Ο The carbon precursor may comprise a hydrocarbon precursor comprising hydrogen. In some embodiments, the nitrogen precursor also flows into the substrate processing chamber having the carbon precursor. The electropolymer is then formed from the carbon precursor and the nitrogen precursor such that the deposited carbon film contains nitrogen. In other embodiments, an oxygen-containing gas flows into the substrate processing chamber having the carbon precursor. In some embodiments, a carrier gas can also flow into the substrate processing chamber. A suitable example of a carrier gas contains argon and nitrogen molecules. The carrier gas flow rate can vary over time. For example, at the beginning of the inflow of the carrier gas, the flow rate can be lower than a steady state flow rate, and then after a portion of the carbon film has been deposited on the substrate, the flow rate is increased to the steady state flow rate. In some embodiments, the substrate temperature is below 40 °C during deposition of the carbon film. A technique for maintaining the temperature of the substrate consists in flowing a coolant into the substrate processing chamber adjacent to the back side of the substrate. In a fifth set of embodiments, a carbon precursor also flows into a substrate processing chamber in which the doped semiconductor substrate is placed. A high density plasma is formed from the carbon precursor in the substrate processing chamber. The density of the high density plasma is greater than 1011 ions per cubic centimeter. An electrical bias is applied to the substrate. A high-density plasma is used to deposit a 11200832503 carbon film on the substrate using a process that simultaneously provides deposition and sputtering features. The deposited carbon film is exposed to a period of time shorter than 1 〇 millisecond, and the deposited carbon film has an extinction coefficient of more than 0.3 at a wavelength included in the electromagnetic. Many specific embodiments have features corresponding to the first set of embodiment examples described above. Moreover, in some embodiments, the applied electrical bias is a substantially constant amount of 'pressure' when the carbon film is deposited on the substrate. It is also possible, in some embodiments, to be electrically biased during deposition of the carbon film. For example, in one embodiment, an initial electrical bias can be applied to the substrate at the initial stage of depositing the carbon film on the C, the substrate; the initial bias is below a steady state bias. The electrical bias is biased from the initial electrical impedance to a maximum electrical bias that exceeds the steady state bias voltage. Then, the electrical bias reduces the steady state bias from the maximum electrical bias before the substrate is warmed up to more than 50,000 C. With reference to the remainder of this specification and the drawings, the substance and advantages of the invention can be further understood. [Embodiment] Embodiments of the present invention utilize an electromagnetic mechanism to anneal a substrate. This type is used to raise the temperature in a very short period of time by exposure to electromagnetic radiation - this time passes two levels in the leap second. The resulting temperature characteristics are schematically shown in Fig. 2, which shows that after a short period of time Δt, the temperature rapidly rises below the melting point of the substrate by 73⁄43⁄4 plate. For example, when the substrate is 矽 2 the dotted line in the figure may correspond to a temperature of 141 〇 t: during which the temperature rapidly rises to about 3 5 3 5 〇Ό. Due to the shape of the temperature special line, such an electromagnetic mechanism for annealing is sometimes referred to as "the magnetic biasing of the magnetic radiation of the sharp magnetic radiation. The height of the substrate rises to the degree of the hair," To the slightest, the first, the sex peaks retreat 12 200832503 fire (spike anneal). The intensity of the electromagnetic radiation is typically related to the peak temperature obtained, and the intensity of the electromagnetic radiation can be adjusted to achieve the desired temperature required to perform the annealing. The time at which the temperature is substantially maintained at the peak temperature is sometimes referred to as the "dwell time" of annealing, and the time can be controlled in a number of different ways depending on the manner in which electromagnetic radiation is applied to the substrate. For example, in a particular embodiment, the shape of the electromagnetic radiation can be shaped by suitably arranged lenses, mirrors, and the like, and the substrate scanned with the radiation. In such embodiments, the scan speed can be used to control the dwell time, which sometimes ranges from about 20 mm/sec to 300 mm/sec. Embodiments using such a laser beam shaping method typically use a source of substantially monochromatic light 'although a wideband source may be used in alternative embodiments. For example, an embodiment uses a 40 kW laser to provide a beam having a wavelength of about 8 1 奈 nanometer and a shape of about 1 mm 乂 12 mm. In other embodiments, electromagnetic radiation is applied to the unitary substrate in a substantially uniform manner. It is not necessary to raise the temperature of the environment in which the substrate is placed to the melting point of the substrate, and the peak annealing can be obtained by activating the electromagnetic source for a short period of time. In such embodiments, the electromagnetic radiation typically has a wide band source' although alternative embodiments may use narrow band or nearly monochromatic sources. In such embodiments, the substrate is illuminated by one or more "arc lights" or "flash lamps" disposed within the substrate processing chamber, the lamps being configured to uniformly illuminate the substrate with a desired intensity in a short period of time . Regardless of the mechanism used to provide electromagnetic radiation, that is, whether it is a monochromatic source or a broadband source, the local edge β is supplied to the substrate, and the annealing effect is affected by the substrate reflectivity: . More specifically, even if there is a change in the thickness of the substrate and the phase in the composition (this change is common in commercial substrates), too. < Mild sinus for different reflectivities at different points on the substrate, may convert dry] only shell differences. This is because when light is shot onto the surface of the substrate, the energy of the light source is lightly coupled to the substrate: Π rate...=reflectance. The local change in reflectance is converted to a local temperature change at the time of performing the annealing. Due to the different component structures at different positions on the substrate, the change of w 9 ^ ^ and 2 μ degrees leads to the same component. The performance of this component is inconsistent. Hope to happen. In the embodiment of the invention, a carbon film is used on the substrate during the electromagnetic annealing to improve the uniformity of the annealing. The KH ^ Ab ^ anti-film is a black body, which is effective and substantially X-shaped. The energy from the electromagnetic source is coupled to the substrate to provide a consistent peak temperature during the annealing of the peak. Since the carbon film is usually used in the manufacture of components, it can be removed after the annealing is performed. In order to effectively absorb electromagnetic radiation, the extinction coefficient of the carbon film is preferably greater than ^ 聢 better than 〇 · 3, and in some embodiments, the extinction coefficient is greater than 0.5. The total amount of this subtraction is added to the first coefficient k for general measurement, which is used to indicate the reduction of the electromagnetic wave in the material &妄,,士士# / /_. The extinction coefficient usually depends on the wavelength of the radiation source. The carbon film provided by the embodiment of the present invention has an extinction coefficient of less than 0·3 in the squatting of the county. In the case of a color radiation source, the 'shear optical coefficient exceeds 〇·3 at the radiation wavelength, and when a broadband radiation source is used, the extinction coefficient exceeds 〇·3 over the entire frequency band. Thus, an overview of the process for fabricating components on a substrate is provided in the flowchart of FIG. This flow diagram indicates that the process typically begins with a preparation base of 3 0 4 ^ ^ ". The substrate can be prepared in a variety of different ways, including the formation of certain features on the substrate using a number of: and/or engraving processes. The V-segment generally includes ion implantation of the substrate to implant doping, followed by spike aneal to activate the dopant. In step 308, the ruthenium film is deposited on the substrate. In the deposition of carbon film, due to carbon lotus τ 1 '
寻膜不會形成最終元件結構中的一部分,所以對沉 積過程中—,士 a扣 ' 口 , 二吊關注因素的要求可以寬鬆一些。其中包括 :放:,碳薄膜厚度-致性的要求及其他因素的嚴格程The film-seeking process does not form part of the final component structure, so the requirements for the factors of concern during the deposition process can be relaxed. These include: release: carbon film thickness-induced requirements and other factors of strict
疋,其他特定的處理條件仍然保留,其中 一 B 埶箱皙α /、τ < 疋對 #、約束’它會影響沉積的進展。 磁尖峰 質單色 不同具 峰退火 板上掃 然 中’有 術通常 又不太 去除步 基板佈 以實現 步驟3 08中沉積該碳薄膜之後,在步驟312執行電 退火。如前所述,在不同具體實施例中可以使用實 窄頻▼或寬頻帶的電磁輻射來執行尖峰退火,在 體實施例中可以使用局部方式或整體方式來執行尖 。在局部執行時,可塑造該該輻射的形狀且在該= 插’在整體執行時則同時照射該基板整個碳化表面。 ^在步驟3 1 6去除該碳薄膜。在不同具體實施例 :多不同技術可用於去除該碳薄膜。一種合適的技 用::電漿灰化,它既可以有效地去除碳薄膜, 玲貝傷缚膜下方的基板。可能對步驟316中的薄膜 驟產生影響的因辛包· 、 植碳,儘管在=需要避免從薄膜中向 g在特疋應用中可能會對此過程進行修改 此種佈植。藉由竑仅兮土队土 丁I改 確保該去除步驟將該基板上碳薄膜 15疋, other specific processing conditions are still preserved, where one B 埶 皙 α /, τ < 疋 pair #, constraint 'it will affect the progress of deposition. The magnetic peak is monochromatic. The different annealing of the peaked plate is usually performed by removing the substrate from the substrate. After the carbon film is deposited in step 308, electrical annealing is performed in step 312. As previously mentioned, the peak anneal can be performed using substantially narrow frequency or wide band electromagnetic radiation in different embodiments, and the tip can be performed in a partial or holistic manner in an embodiment. When performed locally, the shape of the radiation can be shaped and the entire carbonized surface of the substrate can be illuminated simultaneously when the = insert is performed as a whole. ^ The carbon film is removed in step 3 16 . In different embodiments: a number of different techniques can be used to remove the carbon film. A suitable technique: plasma ashing, which can effectively remove the carbon film, and the substrate below the film. It is possible to modify the film in step 316 because of the inclusion of carbon, although it is necessary to avoid modification of the process from the film to the g in the special application. By the 兮 兮 竑 土 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保 确保
Ο 200832503 的殘留量降至最低,以及藉由避免在沉積過程中對 施加過高電偏壓(施加過高電偏壓會驅使碳進入義# 常可以避免碳佈植。 在去除碳薄膜之後,可以在該基板上完成剩餘 程,如步驛3 2 0所示。 配合第4圖更詳細地描述一種用於沉積該碳薄 法,第4圖是大體上對應於第3圖之步驟3丨2的流 在該圖中,多個步驟顯示出一示範製程,但此製程 變化態樣也屬於本發明範圍。例如,有時可以執行 在圖式中明確指出的特定附加步驟,有時可以省略 指示的一些步驟,有時可以更改此等步驟的順序。 當基板溫度升高時,由於基板中摻雜物之特性 現滿足第4圖之製程的熱預算。在摻雜物植入之後 内摻雜物之分佈大致均勻。在該等摻雜物被活化且 中的石夕鍵結時,通常期望保持此大體均勻的分佈情 是,當基板溫度升高到高於約500。(:時,將出現捧 熱遷移,伴隨發生一些摻雜物之聚集,從而使摻雜 板内的分佈均勻度降低。當在第3圖之步驟316執 退火的時間夠短,使得摻雜物在當時所在位置處 結。為了使活化摻雜物大體均勻分佈,希望在第3 驟3 1 6執行尖峰退火之前,使該基板溫度保持低於 第4圖所不的特定製程態樣允許在沉積碳薄膜期間 種熱預算" 此過程通常始於步驟408, 步驟408將基板傳 該基板 文),通 製造製 膜的方 程圖。 的多種 一些未 圖式中 ,會出 ,基板 與基板 形。但 雜物之 物在基 行尖峰 與矽鍵 圖之步 5 00〇C。 滿足此 送到基 16 404 200832503 板處理室。但在一些實例中,進行此傳送之前,在步驟 對基板進行預熱;下文將描述此預加熱之作用。一旦 基板處理室,在步驟412以加熱氣體來增壓該處理室 步驟416由該加熱氣體產生一電漿,用於在步驟420 該基板。該製程的此加熱階段用於將基板的溫度升高 以有效地完成後續之沉積過程,而不會超出所存在之 * 算。該加熱氣體通常為不與該基板反應之氣體,在不 ζ% 施例中可包含諸如氦、氖或氬之類的惰性氣體。其他 不同實施例中使用的合適加熱氣體包括氫氣和氮氣等 本案發明人發現到,此製程中之加熱階段可能會 基板傳導性之下降,特別是當加熱氣體包含氦時。傳 下降有悖於提高元件接面傳導性的目的,因此最好將 時間縮短至最短。在步驟404,在處理室外部預熱基 一種用於將步驟420中暴露至加熱電漿之時間縮至最 ^ 技術。舉例而言,在一實施例中,為實現此種預熱, 該基板傳送至該處理室之前,可在負載鎖定室中將該 Q 暴露於燈下。其他可實現初始加熱基板的技術包含, 加熱後之靜電夾盤,將基板保持在該處理室内之一位 - 透過該夾盤對該基板施加以電阻產生之熱能,可以避 • 電聚加熱在導電性方面所產生的負面影響。 假定暴露至加熱電漿而對導電性產生影響係由來 加熱氣體之輻射所導致。在該氣體被加熱時,它自然 出其電子結構所帶有之特定波長的電磁輻射。根據本 明人的研究’在暴露到氦輻射波長的電磁輻射中時, 進入 ,在 加熱 到足 熱預 同實 可在 導致 導性 加熱 板是 短的 在將 基板 利用 置。 免純 自該 發射 案發 該基 17Ο The amount of residue in 200832503 is minimized, and by avoiding the application of excessive electrical bias during deposition (the application of excessively high electrical bias will drive carbon into the sense # often avoids carbon implantation. After removing the carbon film, The residual path can be completed on the substrate as shown in step 325. A method for depositing the carbon thin is described in more detail in conjunction with Fig. 4, and Fig. 4 is substantially corresponding to step 3 of Fig. 3 Flow of 2 In this figure, a plurality of steps show a demonstration process, but this process variation is also within the scope of the invention. For example, certain additional steps explicitly indicated in the drawings may sometimes be performed, sometimes omitted Some of the steps indicated, sometimes the order of these steps can be changed. When the substrate temperature rises, the characteristics of the dopant in the substrate now satisfy the thermal budget of the process of Figure 4. The distribution of the impurities is substantially uniform. It is generally desirable to maintain this substantially uniform distribution when the dopants are activated and in the middle of the bond, when the substrate temperature rises above about 500. (:, There will be a hot migration, As the concentration of some dopants occurs, the uniformity of distribution within the doped plate is reduced. When the annealing is performed in step 316 of Figure 3, the time is short enough to cause the dopant to settle at the current location. The dopants are generally evenly distributed, and it is desirable to keep the substrate temperature below the specific process pattern not shown in Figure 4 before performing the spike anneal in the third step 361 to allow the thermal budget during the deposition of the carbon film. Generally, in step 408, the step 408 transfers the substrate to the substrate, and the equation of the film is formed. In some of the various patterns, the substrate and the substrate are formed, but the debris is at the base line and The step of the key map is 5 00 〇 C. This is sent to the base 16 404 200832503 board processing chamber. However, in some examples, the substrate is preheated in steps prior to this transfer; the effect of this preheating will be described below. Once the substrate processing chamber is pressurized, the processing chamber is pressurized with a heated gas at step 412. Step 416 produces a plasma from the heated gas for use in the substrate at step 420. This heating phase of the process is used to base the substrate. The temperature rises to effectively complete the subsequent deposition process without exceeding the presence of the gas. The heated gas is typically a gas that does not react with the substrate, and may include, for example, ruthenium, osmium, or An inert gas such as argon. Suitable heating gases used in other different embodiments include hydrogen and nitrogen, etc. The inventors have discovered that the heating phase in this process may cause a decrease in substrate conductivity, especially when the heating gas contains helium. The drop is not conducive to improving the junction conductivity of the component, so it is preferable to shorten the time to the shortest. At step 404, preheating the substrate outside the processing chamber for a time to expose the step 420 to the heated plasma. For example, in one embodiment, to achieve such preheating, the Q may be exposed to the lamp in a load lock chamber prior to delivery to the processing chamber. Other techniques for initializing the substrate include: heating the electrostatic chuck to hold the substrate in one of the processing chambers - applying thermal energy generated by the resistor through the chuck to avoid electrical heating. The negative impact of sexuality. It is assumed that the effect of exposure to the heated plasma on the conductivity is caused by the radiation of the heated gas. When the gas is heated, it naturally emits electromagnetic radiation of a specific wavelength carried by its electronic structure. According to the study of the present invention, when exposed to electromagnetic radiation of a radiant wavelength, the entry into the heat of the foot can be caused to cause the conductive heating plate to be short when the substrate is used. Free from the launch of the case
200832503 板之導電性尤其容易受影響。因此,某些實施例利用 或氬氣作為加熱氣體。 不論是完全藉由暴露至加熱電漿,還是藉由預熱 蒙加熱之組合方式來達成基板加熱步驟,一旦該基板 地加熱後,都在會該處理室内建立適於在步驟424中 該碳薄膜的環境條件。通常,此種環境條件包括介於約 °C至約5 0 0 °C之間的溫度,有時該溫度低於4 0 0 °C,以 符合更嚴格的熱預算。該基板處理室内之壓力可介於 毫托至約5 0毫托之間,儘管有時可對此範圍進行變化 下所述。 在步驟 4 2 8,一或多個前驅物流入該基板處理室 能伴隨一載氣流入。由該前驅物及載氣形成一電漿。 作可藉由保持該加熱電漿並且將該前驅物流入處理室 成,或者可在流入該前驅物之前終止該加熱電漿,並 生第二電漿。在任一情況下,該電漿有時可包含高密 漿,在此處係指密度高於1 0 11個離子/立方公分之電 高密度電漿的其一特征在於具有足夠之密度,使該材 夠自該基板被機械性地濺射出,同時自該電漿將材料 到基板上。使用高密度電漿之實施例可能更易於滿足 算,但某些實施例中可利用較低電漿密度的較傳統電 強沉積製程。 還有其他不同技術可用於形成電漿,包括利用電 合機制與感應耦合機制。感應耦合所產生的電漿離子 高於電容耦合產生的電漿離子密度,通常用於形成高 氮氣 與電 適當 沉積 300 確保 約 5 ,如 ,可 此工 來達 且產 度電 漿。 料能 沉積 熱預 漿增 容耦 密度 密度 18 200832503 電漿。在某些實施例中,係用1 ο ο ο - 8 0 0 0瓦之源功率來形 成感應耦合電漿,而可有效地實行碳薄膜沉積。200832503 The conductivity of the board is particularly susceptible. Therefore, some embodiments utilize or argon as the heating gas. Whether the substrate heating step is achieved either by exposure to the heated plasma or by a combination of preheating and heating, once the substrate is heated, the carbon film suitable for the step 424 is established in the processing chamber. Environmental conditions. Typically, such environmental conditions include temperatures between about °C and about 850 °C, and sometimes temperatures below 4,000 °C to meet a more stringent thermal budget. The pressure within the substrate processing chamber can range from millitorr to about 50 mTorr, although variations in this range can sometimes be made. In step 4 2 8, one or more precursors are introduced into the substrate processing chamber to be accompanied by a carrier gas flow. A plasma is formed from the precursor and the carrier gas. The heated plasma may be terminated by maintaining the heated plasma and flowing the precursor into the processing chamber, or a second plasma may be generated prior to flowing the precursor. In either case, the plasma may sometimes comprise a high-density slurry, herein referred to as an electrical high-density plasma having a density greater than 10 11 ions/cm 3 and characterized by having a sufficient density to render the material Sufficient from the substrate is mechanically sputtered while the material is applied to the substrate from the plasma. Embodiments using high density plasma may be easier to meet, but in some embodiments a more conventional electro-potential deposition process with lower plasma density may be utilized. There are other different techniques that can be used to form the plasma, including the use of electrical and inductive coupling mechanisms. The plasma ion generated by inductive coupling is higher than the plasma ion density generated by capacitive coupling, and is usually used to form high nitrogen and electricity. Deposition 300 ensures that about 5, for example, can be used to produce plasma. Material deposition, thermal pre-slurry, volumetric coupling, density, density, 18 200832503, plasma. In some embodiments, the inductively coupled plasma is formed with a source power of 1 ο ο ο - 800 watts to effectively effect carbon film deposition.
在步驟4 2 8流入該基板處理室的前驅物包括一含碳前 驅物,在不同實施例中,其可能採用氣體形式或汽化的液 體形式。該含碳前驅物可包含烴類前驅物,其範例包含甲 烷(CH4)、乙烷(C2H6)、丙烷(C3H8)等烷類化合物;烯類化 合物,其範例包括乙烯(C2H4)、丙烯(C3H6)、丁烯(C4H8) 等;炔類化合物,其範例包括乙炔(C2H2)、丙炔(C3H4)、 丁炔(C4H6)等,芳香族化合物包括C6H6、C8H6、C8H8等。 儘管前述烴類前驅物示範由碳與氫所組成的前驅物範例, 但在不同實施例中,也可以使用含有附加元素(如氮)的其 他化合物。在一些實施例中,在步驟4 2 8中前驅物之適當 流速可介於50及lOOOsccm之間。 利用不同烴類前驅物可導致該沉積碳薄膜中納入的氫 含量不同。例如,使用具有雙鍵或三鍵的烴類前驅物通常 會在電漿中提供較低密度之氫,使得碳薄膜中所納入的氫 濃度較低,當然也可使用純單鍵的烴類前驅物。認識到利 用烴前驅物可以得到不同氫含量,所以本文中使用術語「碳 薄膜」包含那些可能在組成中含有明顯量之非碳元素的薄 膜,尤其包含那些含有明顯量之氫的薄膜。此外應注意, 在該薄膜之不同部分,碳鍵的形式可以不同。儘管該薄膜 最可能採用非晶碳之形式,但也可能存在熱解碳 (pyrolytic)、石墨或類鑽石形式的部分或區域。但是,因 為該薄膜通常主要是非晶碳,所以在所屬技術領域中有時 19 200832503 將其稱為「非晶碳」薄膜;此種術語並非暗示該薄膜為1 〇〇% 非晶狀或100%的碳。 除了利用含有其他元素之碳前驅物使薄膜中納入其他 元素之外,有時可以提供額外的前驅物氣流至該處理室。 例如,在某些實施例中,可以藉著流入氮氣或氨氣氣流而 使薄膜中含有氮。如此可提高消光係數,從而提高電磁尖 峰退火之效果,但使薄膜更易於剝落。The precursor flowing into the substrate processing chamber at step 4 2 8 includes a carbonaceous precursor, which in various embodiments may be in the form of a gas or a vaporized liquid. The carbonaceous precursor may comprise a hydrocarbon precursor, examples of which include alkane compounds such as methane (CH4), ethane (C2H6), and propane (C3H8); alkenes, examples of which include ethylene (C2H4), propylene (C3H6) , butene (C4H8), etc.; acetylene compounds, examples of which include acetylene (C2H2), propyne (C3H4), butyne (C4H6), etc., aromatic compounds include C6H6, C8H6, C8H8 and the like. While the foregoing hydrocarbon precursors exemplify precursor examples consisting of carbon and hydrogen, in other embodiments, other compounds containing additional elements such as nitrogen may also be used. In some embodiments, the appropriate flow rate of the precursor in step 4 2 8 can be between 50 and 1000 sccm. The use of different hydrocarbon precursors can result in different hydrogen contents in the deposited carbon film. For example, the use of hydrocarbon precursors with double or triple bonds typically provides a lower density of hydrogen in the plasma, resulting in a lower concentration of hydrogen incorporated into the carbon film, although a pure single bond hydrocarbon precursor can be used. Things. It is recognized that the use of hydrocarbon precursors can result in different hydrogen contents, so the term "carbon film" as used herein encompasses those films which may contain significant amounts of non-carbon elements in the composition, especially those containing significant amounts of hydrogen. It should also be noted that the form of the carbon bonds may vary in different portions of the film. Although the film is most likely to be in the form of amorphous carbon, there may be portions or regions in the form of pyrolytic, graphite or diamond-like forms. However, since the film is generally predominantly amorphous carbon, it is sometimes referred to in the art as a "amorphous carbon" film by 19 200832503; this term does not imply that the film is 1% amorphous or 100% Carbon. In addition to incorporating other elements into the film using carbon precursors containing other elements, additional precursor gas streams can sometimes be provided to the processing chamber. For example, in some embodiments, the film may contain nitrogen by flowing a stream of nitrogen or ammonia gas. This increases the extinction coefficient, thereby improving the effect of electromagnetic peak annealing, but makes the film easier to peel off.
Ο 在步驟428,也可提供其他氣體流到該基板處理室, 即便它們沒有提供欲整合至該碳薄膜中的元素。此種額外 氣流可提供與其他電漿元素反應的元素,用於控制如何生 成該碳薄膜。例如,氧分子(〇2)氣流提供氧原子,它與薄 膜中弱鍵結的碳原子發生反應。雖然此過程沒有將氧併入 薄膜中,但使該碳薄膜更為緻密,且由於密度更高而使薄 膜具有更高的消光係數。 儘管在步驟42 8中包含一載氣,但它可以是步驟412 中所使用的加熱氣體,也可以是不同氣體。在一些實例中, 可以在沉積過程期間改變該載氣之組成。例如,在該沉積 過程之早期階段,氦對基板導電性的負面影響可能很明 顯,若沉積至少一些碳薄膜之後,由於該基板不再直接暴 露在來自氦氣的輻射之下,所以此負面影響會減弱。在一 些實施例中,在使用不同的載氣(例如氬)進行沉積之起始 部分之後,可以轉而使用氦氣作為載氣。在任何情況中, 本案發明人相信,在沉積期間使用氦氣作為載氣會比在加 熱期間使用氦氣所造成的危害要少一些,這是因為部分沉 20 1000 200832503 積碳薄膜提供了保護效果。载氣的適當流速介於0至 seem之間。 本案發明人亦發現,在沉積期間,載氣之流速變 助於穩定薄膜。其說明於第5圖,其中該載氣流速在 時相對較低,然後在沉積過程中升高到其穩態流速。 始流速比穩態流態要慢,但比穩態流速的5 0%要大。 • 在該製程配方也包含許多變化。例如,第4圖之 4 3 2表示可以對該基板施加偏壓。施用偏壓可提高電 子朝向基板的吸引力,從而提高沉積速度,且提高該 膜對基板的黏附性。但是,先前已指出,如果該偏壓過 則會提高將碳植入基板中的風險。因此,雖然有些實 中對基板施以恆定偏壓,如第6A圖中所示,但其他 例則使用變化偏壓。合適的偏壓曲線示於第6B圖中 利用此曲線的實施例中,提供低於該穩態值得起始偏 如此可提供該薄膜起始沉積的穩定性,而不會大幅提 入碳的風險。然後,在沉積該薄膜的保護部分之後, () 偏壓增加到超過該穩態值,用於穩定該薄膜,且提高 ^ ^ Η ^ ° ^ ^ ^ Μ %, ί 該段時 j iLil, • 避免影響該製程之熱預算),該偏壓減弱至穩態值,在 • 實施例中,偏壓將一直保持穩態值,直到該薄膜沉積 完成為止。在如第6A圖所示擁有實質恆定偏壓的實 中’以及在諸如第6 B圖所示偏壓值隨時間變化的實 中’合適的穩態偏壓值介於〇至5 〇 〇 〇瓦之間。 在 些實施例中’可在該基板背面進行冷卻,如 化有 起始 該起 步驟 漿離 碳薄 高, 施例 實施 〇在 壓; 高植 將該 該薄 足以 一些 製程 施例 施例 第4 21 200832503Ο At step 428, other gases may also be supplied to the substrate processing chamber even if they do not provide an element to be integrated into the carbon film. This additional gas stream provides an element that reacts with other plasma elements to control how the carbon film is produced. For example, an oxygen molecule (〇2) gas stream provides an oxygen atom that reacts with weakly bonded carbon atoms in the film. Although this process does not incorporate oxygen into the film, the carbon film is made denser and the film has a higher extinction coefficient due to higher density. Although a carrier gas is included in step 42 8 , it may be the heated gas used in step 412 or it may be a different gas. In some examples, the composition of the carrier gas can be varied during the deposition process. For example, in the early stages of the deposition process, the negative effects of germanium on the conductivity of the substrate may be significant. If at least some of the carbon film is deposited, this negative effect is caused because the substrate is no longer directly exposed to radiation from helium. Will weaken. In some embodiments, helium may be used as a carrier gas after the initial portion of deposition using a different carrier gas (e.g., argon). In any case, the inventor believes that the use of helium as a carrier gas during deposition will be less harmful than the use of helium during heating, as the partial deposition of 20 1000 200832503 carbon film provides protection. . The appropriate flow rate of the carrier gas is between 0 and seem. The inventors of the present invention also found that the flow rate of the carrier gas during the deposition helped to stabilize the film. This is illustrated in Figure 5, where the carrier gas flow rate is relatively low at time and then rises to its steady state flow rate during deposition. The initial flow rate is slower than the steady state flow state, but greater than 50% of the steady state flow rate. • There are also many variations in the recipe. For example, 4 3 2 of Fig. 4 indicates that a bias voltage can be applied to the substrate. Applying a bias voltage increases the attractive force of the electrons toward the substrate, thereby increasing the deposition rate and increasing the adhesion of the film to the substrate. However, it has previously been pointed out that if the bias voltage is exceeded, the risk of implanting carbon into the substrate is increased. Therefore, although some implementations impose a constant bias on the substrate, as shown in Figure 6A, other examples use a varying bias voltage. A suitable bias curve is shown in Figure 6B. In the embodiment utilizing this curve, providing a lower than the steady state value of the initial bias provides the stability of the initial deposition of the film without the risk of substantial carbon addition. . Then, after depositing the protective portion of the film, () the bias voltage is increased beyond the steady state value for stabilizing the film, and increasing ^ ^ Η ^ ° ^ ^ ^ Μ %, ί j iLil, To avoid affecting the thermal budget of the process, the bias is reduced to a steady state value, and in the embodiment, the bias voltage will remain at a steady state until the film deposition is complete. In the real world with a substantially constant bias as shown in Fig. 6A and in the real-time bias value of the bias value as shown in Fig. 6B as a function of time, the appropriate steady-state bias value is between 〇 and 5 〇〇〇. Between the tiles. In some embodiments, 'cooling can be performed on the back side of the substrate, such as the initial step, the slurry is thinner than the carbon, and the embodiment is applied to the pressure; the high planting is sufficient for the process. 21 200832503
1; 圖中步驟436所示。為提供背面冷卻,通常在處理室内支 撐基板的結構内流過氦冷卻流,且其可用於補償欲升高基 板温度的其他製程態樣。例如,利用背面冷卻可防止基板 温度偏離熱預算限制,而可使用較高偏壓來提高碳薄膜在 基板上的黏附性。在其他情況下,利用背面冷卻可以使用 較高的源功率來形成電漿。在使用擁有雙鍵或三鍵之碳前 驅物的實施例中,在形成電漿時,由於打破雙鍵或三鍵所 需要的能量比打破其他前驅物中之單鍵所需的能量要多, 在這些實施例中特別希望使用較高的源功率。 第4圖之步驟440表示在一些實施例中,可在基板上 形成一襯墊。利用該襯墊至少為了兩目的:保護基板免於 電漿對其導電性造成負面影響,以及改善碳薄膜對基板的 黏附性。在不同實施例中,有許多技術可用於形成一襯墊。 注意到,儘管許多實施例可以沉積該襯墊作為碳襯墊,但 此並非本發明之嚴格要求,亦可使用其他的組成來形成該 襯墊。此係因為在步驟444中,碳薄膜隨後將沉積在該襯 墊上,以提供所期望的電磁輻射吸收。在沉積該碳薄膜之 後 » Λ 44 8 it M M m ^ A 452 m M ΆΜ iti 該基板處理室以進行其他處理。 用於沉積襯墊的方法以第7圖流程圖說明之。在第4 圖之步驟4 0 8中將該基板傳送至處理室之前,此方法對處 理室進行調整。在步驟704清洗該處理室之後,在步驟708 中,藉由在該處理室之内表面形成一塗層來進行調整 (s e a s ο n i n g)。在不同實施例中,取決於該襯墊之期望組成, 22 200832503 該塗層可包括碳、氮及其他元素。在步驟712中將基板傳 送到該基板處理室之後,在步驟7 1 6形成一電漿以加熱該 處理室,該調整材料被重新沉積到該基板上作為襯墊。在 步驟716中所形成的電漿相當於在第4圖之步驟416中所 形成的加熱電漿,且其組成類似於參考第4圖所述之組成。1; Step 436 is shown in the figure. To provide backside cooling, a helium cooling stream is typically flowed through the structure of the support substrate within the processing chamber, and it can be used to compensate for other process aspects where the substrate temperature is to be raised. For example, backside cooling prevents the substrate temperature from deviating from the thermal budget limit, while higher bias voltages can be used to increase the adhesion of the carbon film to the substrate. In other cases, the use of backside cooling allows the use of higher source power to form the plasma. In embodiments using a carbon precursor having a double or triple bond, the energy required to break the double or triple bond is greater than the energy required to break a single bond in other precursors when forming the plasma. It is particularly desirable in these embodiments to use higher source power. Step 440 of Figure 4 illustrates that in some embodiments, a liner can be formed on the substrate. The liner is utilized for at least two purposes: to protect the substrate from the negative effects of the plasma on its electrical conductivity, and to improve the adhesion of the carbon film to the substrate. In various embodiments, there are a number of techniques that can be used to form a liner. It is noted that although many embodiments may deposit the liner as a carbon liner, this is not a critical requirement of the present invention, and other compositions may be used to form the liner. This is because in step 444, a carbon film will then be deposited on the liner to provide the desired absorption of electromagnetic radiation. After depositing the carbon film » Λ 44 8 it M M m ^ A 452 m M ΆΜ iti The substrate processing chamber for additional processing. The method for depositing the liner is illustrated by the flow chart of Figure 7. The method adjusts the processing chamber before transferring the substrate to the processing chamber in step 408 of Figure 4. After cleaning the processing chamber at step 704, in step 708, adjustment (s e a s n i n g) is performed by forming a coating on the inner surface of the processing chamber. In various embodiments, depending on the desired composition of the liner, 22 200832503 the coating may include carbon, nitrogen, and other elements. After the substrate is transferred to the substrate processing chamber in step 712, a plasma is formed in step 716 to heat the processing chamber, and the conditioning material is redeposited onto the substrate as a liner. The plasma formed in step 716 corresponds to the heated plasma formed in step 416 of Figure 4, and its composition is similar to that described with reference to Figure 4.
用於沉積襯墊的另一方法以第8圖之流程圖說明之。 在此方法中,僅在高壓偏壓條件下,或者僅藉由弱源功率, 來形成起始沉積電漿。其可限定在第4圖之步驟428中最 初的電漿條件。此等條件中,典型壓力介於約1 0 0毫托至 1托之間。在此等壓力及最好是弱源功率下,在感應耦合 處理室中之條件類似於在典型電容耦合處理室中的條件。 即,電漿密度很低,而得以在步驟8 0 8中沉積具有更佳黏 附性的襯墊且造成較少電漿傷害。然後在沉積該襯墊之 後,在步驟8 1 2沉積該碳薄膜主體。 沉積襯墊的又一方法以第9圖之流程圖說明之。使用 此方法的實施例,係在步驟904中利用一遠端電漿系統來 活化該載氣物種。該等活化的載氣物種用於在步驟9 0 8中 打1前塁1土的1 襯塾,而不會 將該基板直接暴露至該電漿中。在步驟916中,轉換至主 體沉積條件。 基板處理系統之示例 可用來執行本發明實施例的其中一基板處理系統範例 係由加州聖克拉拉市的應用材料公司製造的ULTIMA™系 統,在共同讓與之美國專利第6 1 70428號且標題「對稱性 23 200832503 可調感應耦合HDP-CVD反應器」中對此系統進行整體描 述,該專利案於1996年7月由Fred C. Redeker、Farhad Moghadam 、 Hirogi Hanawa、 Tetsuya Ishikawa、 Dan Maydan > Shijian Li、Brian Lue、Robert Steger、Yaxin Wang、Manus Wong和Ashok Sinha等人申請,該專利以 引用的方式整體併入本文中以供參考。下文係配合第1 〇 A , 及1 0B圖提供此系統的綜述。第1 〇A圖示意性地示出一實 施例中此HDP-CVD系統1010的結構。該系統1〇1〇包括 C ί • 一處理室1013、一真空系統1 070、一源電漿系統1 0 8 0A、 一偏壓電漿系統1 080B、一氣體輸送系統1 03 3及一遠端電 漿清洗系統1 0 5 0。 處理室1013的上部分包括一室頂1014,其由陶瓷介 電材料製成,例如氧化鋁或氮化鋁。室頂1 〇丨4定義出電漿 處理區域1016的上邊界。電漿處理區域i〇16由基板1017 • 的上表面以及基板支撐構件1018界定出其底邊界。 一加熱板1 023及一冷卻板1 024位於室頂1014上方, (j 且與至頂熱耦合。加熱板1〇23及冷卻板1024允許將室頂 溫度控制在約100艺到200t:範圍且約±l〇<t以内。而可為 - 各種製程提供最佳化的室頂溫度。例如,對於清洗或蝕刻 • 製程,可能希望將室頂溫度保持在高於沉積製程的室頂溫 度準確控制室頂溫度還可以減少處理室内的碎片或顆粒 數目’從而提高沉積層與基板之間的黏附性。 處理至1 0 1 3的下部分包括一主體構件丨〇22 ,其將該 處理室連接到該真空系統。基板支撐構件1〇18之底座部分 24 200832503 1021安裝在主體構件1〇22上,且盥 i鋒允邱志& ”主體構件1 022形成一 連續内斗表面。透過處理室1〇1 -山、竑士 ^ 的插入/移除開口(未 不出),耩由一機器刀葉(未 1Λ1,六m , 、丁出)將基板傳入或傳出處理室 1013。在馬達(未示出)之和: ^ " 下,可升兩且隨後降低升降 銷(未不出),以將該基板從 丨裝載位置1057的機器 刀葉上’移動到一下部處理位置1〇56位置在處理位置 觸,基板被放置在基板支撐料1G18的基板接收部分Another method for depositing a liner is illustrated by the flow chart of Figure 8. In this method, the initial deposition plasma is formed only under high voltage bias conditions, or only by weak source power. It may define the initial plasma conditions in step 428 of Figure 4. Of these conditions, the typical pressure is between about 10 mTorr and 1 Torr. Under these pressures and preferably weak source power, the conditions in the inductively coupled processing chamber are similar to those in a typical capacitively coupled processing chamber. That is, the plasma density is very low, and it is possible to deposit a liner having better adhesion in step 808 and cause less plasma damage. Then, after depositing the liner, the carbon film body is deposited in step 81. Yet another method of depositing a liner is illustrated by the flow chart of Figure 9. An embodiment using this method utilizes a remote plasma system to activate the carrier gas species in step 904. The activated carrier gas species are used to strike 1 lining of the first 塁1 soil in step 908 without directly exposing the substrate to the plasma. In step 916, the transition to the host deposition condition is made. Example of a Substrate Processing System One example of a substrate processing system that can be used to perform an embodiment of the present invention is the ULTIMATM system manufactured by Applied Materials, Inc. of Santa Clara, Calif., in conjunction with U.S. Patent No. 6,1,470,428, and title. This system is described in its entirety in Symmetry 23 200832503 Adjustable Inductively Coupled HDP-CVD Reactor. The patent was filed in July 1996 by Fred C. Redeker, Farhad Moghadam, Hirogi Hanawa, Tetsuya Ishikawa, Dan Maydan > Shijian Li, Brian Lue, Robert Steger, Yaxin Wang, Manus Wong, and Ashok Sinha, et al., the entire disclosure of which is incorporated herein by reference. A summary of this system is provided below in conjunction with Figures 1A and 10B. Fig. 1A schematically shows the structure of this HDP-CVD system 1010 in an embodiment. The system 1〇1〇 includes C ί • a processing chamber 1013 , a vacuum system 1 070 , a source plasma system 1 0 8 0A, a bias plasma system 1 080B, a gas delivery system 1 03 3 and a far End plasma cleaning system 1 0 50. The upper portion of the processing chamber 1013 includes a chamber top 1014 made of a ceramic dielectric material such as alumina or aluminum nitride. The top of the chamber 1 〇丨 4 defines the upper boundary of the plasma processing zone 1016. The plasma processing region i 〇 16 defines a bottom boundary thereof by the upper surface of the substrate 1017 • and the substrate supporting member 1018. A heating plate 1 023 and a cooling plate 1 024 are located above the chamber top 1014, (j and thermally coupled to the top. The heating plate 1〇23 and the cooling plate 1024 allow the chamber top temperature to be controlled in the range of about 100 art to 200t: Approximately ±1〇<t. can provide optimized chamber top temperatures for various processes. For example, for cleaning or etching processes, it may be desirable to maintain the chamber top temperature above the top of the deposition process. Controlling the temperature at the top of the chamber can also reduce the number of debris or particles in the processing chamber' thereby increasing the adhesion between the deposited layer and the substrate. The lower portion processed to 101 includes a body member 22 that connects the processing chamber To the vacuum system, the base portion 24 200832503 1021 of the substrate supporting member 1〇18 is mounted on the main body member 1〇22, and the main body member 1 022 forms a continuous inner bucket surface. 1〇1 - Insertion/removal of the mountain, gentleman's ^ (not shown), the substrate is transferred into or out of the processing chamber 1013 by a machine blade (not 1 Λ 1, 6 m, diced out). The sum of the motors (not shown): ^ " Raise the two and then lower the lift pin (not shown) to move the substrate from the machine blade of the 丨 loading position 1057 to the lower processing position 1 〇 56 position at the processing position, the substrate is placed on the substrate support 1G18 substrate receiving part
Ο ⑽上。基板接收部分1019包括一靜電失盤1〇2〇,在基 板處理期間,它將基板固定在基板支撐構件ι〇ΐ8上。在一 較佳實施例中’基板支#構件1G18由氧化m陶曼材料 製成。下文提供本發明實施例之基板支撐構件的更多詳細 資訊。 真空系統1 070包括節流閥體1 025,其容納雙葉片節 流閥(twin-blade throttle valve) 1 026,且連接到閘閥 1〇27 及渦輪式分子泵浦1 028。應注意,節流閥主體1〇25爲氣 流提供最小阻礙且允許對稱抽吸。閘閥i 〇 2 7可隔開泵浦 1 0 2 8和節流閥主體1 〇 2 5,還可以在節流閥i 〇 2 6完全打開 時’藉由限制排氣流量來控制處理室壓力。此節流閥、閘 閥及渦輪式分子泵浦之配置方式允許更準確和穩定地將處 理室壓力控制在介於約1亳托至約2托之間。 源電漿系統1 0 8 0 A包括一頂線圈1 〇 2 9及一側線圈 1 〇3 0,其安裝在室頂1014上。一對稱接地遮罩(未示出) 減少兩線圈之間的電耦合。頂部源射頻(SRF)產生器103 1 A 供電給頂線圈1 029,而側面SRF產生器103 1B供電給側 25Ο (10). The substrate receiving portion 1019 includes an electrostatic loss disk 1〇2〇 which fixes the substrate on the substrate supporting member 〇ΐ8 during substrate processing. In a preferred embodiment, the substrate support member 1G18 is made of an oxidized m Tauman material. Further details of the substrate supporting member of the embodiment of the present invention are provided below. The vacuum system 1 070 includes a throttle body 1 025 that houses a twin-blade throttle valve 1 026 and is coupled to a gate valve 1〇27 and a turbo molecular pump 1 028. It should be noted that the throttle body 1〇25 provides minimal obstruction to the airflow and allows for symmetrical suction. The gate valve i 〇 2 7 separates the pump 1 0 2 8 from the throttle body 1 〇 2 5 and can also control the chamber pressure by limiting the exhaust flow when the throttle valve i 〇 2 6 is fully open. This throttle valve, gate valve, and turbomolecular pumping configuration allows for more accurate and stable control of the chamber pressure between about 1 Torr and about 2 Torr. The source plasma system 1 0 8 0 A includes a top coil 1 〇 2 9 and a side coil 1 〇 30 that is mounted on the roof 1014. A symmetrical grounding shield (not shown) reduces the electrical coupling between the two coils. The top source radio frequency (SRF) generator 103 1 A supplies power to the top coil 1 029 and the side SRF generator 103 1B supplies power to the side 25
Ο 200832503 線圈1 03 0, *允許料線圈提供獨立的電源、量和操作 率。此雙線圈系統可控制處理室1013内之徑向離子密户: 從而提高電漿均勻性。側線圈1030及頂線圈1 029通2 感應驅動,其不需要互補電卜在本發明實施例中?:由 線圈包含在具有上述特徵的侧線圈組合 „ 涊頂部及側 面射頻產生器的操作頻率可以超過額定操作頻率(例如,八 別偏移至1.7至19百萬赫及19至2丨百萬赫),以提= 電漿產生效率。 偏壓電裝系統1 0 8 0 B包含一偏壓射頻(B R F)產生器 1 〇 3 1 C及一偏壓匹配網路丨〇 3 2 c。偏壓電漿系統丨〇 8 〇 b將 基板部分1017電容耦合到主體部件ι〇22,以作為互補電 極。偏壓電漿系統1 〇 8 〇 B用於幫助將源電漿系統1 〇 8 0 A所 產生之電漿物種(例如離子)傳送到基板表面。 射頻產生器1031A及1031B包含數位控制合成器,其 操作頻率介於約1 · 8至約2 ·丨百萬赫之範圍内。容相關領 域中具有通常技術者所知悉的,每個產生器包含一射頻控 制電路(未示出)’其量測由該處理室及線圈反射回該產生 ¥的功率’且調整操作頻率以獲得最低的反射功率。射頻 產生器通常設計用來操作具有5 〇歐姆阻抗之負載。如果負 载之特徵阻抗與該產生器不相同,則會由該等負載反射功 率。這樣會減少傳送至負載之功率。另外,由負載反射回 發電器的功率可能會超载且損壞發電器。因為電漿的阻抗 的變化範圍可根據電漿離子密度及其他因素而在小於5歐 姆到大於900歐姆之間變化,且因為被反射之功率可能是 26 200832503 頻率的之函數,所以根據反射功率調整產生器頻率可以提 高由射頻產生器傳送給電漿之功率,且保護該產生器。另 一種降低反射功率且提高效率之方法係使用匹配網路。Ο 200832503 Coil 1 03 0, * Allows the material coil to provide independent power, quantity and operating rate. This dual coil system controls the radial ionics within the processing chamber 1013: thereby increasing plasma uniformity. The side coil 1030 and the top coil 1 029 are driven inductively by 2, which do not require complementary power in the embodiment of the present invention. : The operating frequency of the top and side RF generators contained by the coils in the above-mentioned features can exceed the rated operating frequency (for example, eight offsets to 1.7 to 19 megahertz and 19 to 2 megahertz) To increase the plasma generation efficiency. The bias electrical system 1 0 8 0 B includes a bias RF (BRF) generator 1 〇 3 1 C and a bias matching network 丨〇 3 2 c. The plasma system 丨〇8 〇b capacitively couples the substrate portion 1017 to the body member ι 22 as a complementary electrode. The bias plasma system 1 〇8 〇B is used to help the source plasma system 1 〇8 0 A The generated plasma species (eg, ions) are delivered to the surface of the substrate. The RF generators 1031A and 1031B include digitally controlled synthesizers operating at frequencies ranging from about 1 · 8 to about 2 · 丨 megahertz. As is known to those of ordinary skill in the art, each generator includes a radio frequency control circuit (not shown) that measures the power generated by the processing chamber and the coil back to the generated fuel and adjusts the operating frequency to obtain the lowest reflection. Power. RF generators are usually Used to operate a load with a 5 ohm impedance. If the characteristic impedance of the load is different from the generator, the power is reflected by the load. This reduces the power delivered to the load. In addition, the load is reflected back to the generator. The power may be overloaded and damage the generator. Because the impedance of the plasma can vary from less than 5 ohms to more than 900 ohms depending on the plasma ion density and other factors, and because the reflected power may be 26 200832503 The function of the frequency, so adjusting the generator frequency based on the reflected power can increase the power delivered to the plasma by the RF generator and protect the generator. Another way to reduce the reflected power and improve efficiency is to use a matching network.
匹配網路 1032A及 1032B將該等產生器 1031A及 1031B的輸出阻抗匹配至各自的線圈1 029及1 030。射頻 控制電路可以藉由改變匹配網路中的電容值來調整兩個匹 配網路,以在負載變化時,使該產生器與負載匹配。當自 負載反射回產生器的功率超出一特定限度時,該射頻控制 電路可以調整一匹配網路。一種提供恆定匹配且有效禁止 射頻控制電容調整匹配網路的方式是將反射功率限至設定 成高於任何反射功率值。這樣有助於在某些條件下,藉由 在其最近條件中保持匹配網路恆定而穩定電漿。 其他措施亦可幫助穩定電漿。例如,該射頻控制電路 可用於確定輸傳給負載(電漿)的功率,並且可提高或降低 產生器輸出功率,以在沉積薄膜期間,保持所輸傳之功率 實質恆定。 送氣系統1 03 3經由氣體輸送管線1 03 8(僅示出其一部 分)從數個氣體源 1 034A- 1 034E供應氣體給用來處理基板 的處理室。熟習此項技術者應當理解,可根據在處理室 1013内執行的沉積及清洗製程,來改變作為氣體源 1 034A-1 034E 的實際來源以及輸送管線 1 03 8至處理室 1 0 1 3之間的實際連接方式。氣體經由氣環1 0 3 7及/或頂部 噴嘴1045而引入處理室1013。第10B圖係處理室1013的 簡化部分戴面圖,其顯示了氣環1 03 7之其他細節。 27 200832503 在一實施例中,第一及第二氣源1 034Α、1 03 4Β和第 一及第二氣流控制器1 03 5 Α’、1 03 5 Β’,經由氣體輸送管線 1 03 8(僅示出其一部分)提供氣體至氣環 1 03 7中的氣環氣 室1036。氣環1037擁有多個源氣體喷嘴1039(僅示出其中 之一作為說明),以在基板上方提供均勻氣流。可依據各處 理室内之特定製程來改變噴嘴長度及噴嘴角度,以調整氣 體的均勻分佈曲線及氣體利用效率。在一較佳實施例中, 氣環1 03 7擁有1 2個氧化鋁陶瓷製成的氣體喷嘴。The matching networks 1032A and 1032B match the output impedances of the generators 1031A and 1031B to the respective coils 1 029 and 1 030. The RF control circuit can adjust the two matching networks by changing the value of the capacitance in the matching network to match the generator to the load as the load changes. The RF control circuit can adjust a matching network when the power reflected from the load back to the generator exceeds a certain limit. One way to provide a constant match and effectively disable the RF control capacitor to adjust the matching network is to limit the reflected power to a value higher than any reflected power. This helps to stabilize the plasma under certain conditions by keeping the matching network constant in its most recent conditions. Other measures can also help stabilize the plasma. For example, the RF control circuit can be used to determine the power delivered to the load (plasma) and can increase or decrease the generator output power to maintain the transmitted power substantially constant during deposition of the film. The air supply system 103 3 supplies gas from a plurality of gas sources 1 034A - 1 034E to a processing chamber for processing the substrate via a gas delivery line 108 8 (only a portion of which is shown). It will be understood by those skilled in the art that the actual source of gas source 1 034A-1 034E and the transfer line 1 03 8 to the process chamber 1 0 1 3 can be varied depending on the deposition and cleaning processes performed within the process chamber 1013. The actual connection method. Gas is introduced into the process chamber 1013 via a gas ring 1 0 3 7 and/or a top nozzle 1045. Figure 10B is a simplified partial wear view of the process chamber 1013 showing additional details of the gas ring 107 7 . 27 200832503 In one embodiment, the first and second air sources 1 034 Α, 1 03 4 Β and the first and second air flow controllers 1 03 5 Α ', 1 03 5 Β ', via the gas delivery line 1 03 8 ( Only a portion thereof) is provided to supply the gas to the gas ring plenum 1036 in the gas ring 1 03 7 . The gas ring 1037 has a plurality of source gas nozzles 1039 (only one of which is illustrated) to provide a uniform gas flow over the substrate. The nozzle length and nozzle angle can be varied to adjust the gas's uniform distribution curve and gas utilization efficiency according to the specific process in each chamber. In a preferred embodiment, the gas ring 107 7 has a gas nozzle made of 12 alumina ceramics.
Ο 氣環1 03 7還擁有多個氧化劑氣體噴嘴1 040(僅示出其 中之一),在一較佳實施例中,氧化劑氣體喷嘴1 040與源 氣體喷嘴1039共平面且比源氣體噴嘴要短,並且在一實施 例中其從主體氣室1 04 1接收氣體。在一些實施例中,將氣 體注入處理室1 0 1 3之前,最好不要混合源氣體和氧化劑氣 體。在其他實施例中,藉由在主體氣室1041及氣環氣室 1 0 3 6之間提供一開口(未示出)而在將氣體注入處理室 1 0 1 3之前,先行混合氧化劑氣體與源氣體。在一實施例 中,第三、第四及第五氣源1034C、1034D、1034D1以及第 三與第四氣流控制器1 03 5 C、1 03 5D’,經由氣體輸送管線 1038提供氣體給主體氣室。諸如1043B等其他閥(未示出 其他閥)可關閉從氣流控制器流到處理室的氣體。在實施本 發明之特定實施例時,氣源1 034A包含矽烷(SiH4)源,氣 源1 034B包含氧分子(02)源,氣源1 03 4C包含矽烷源,氣 源1 03 4D包含一氦氣(He)源,氣源1 034D’包含氫分子(H2) 源。 28 200832503 在使用可燃、有毒或腐蝕性氣體的實施例中,可能希 望在沉積之後,清除殘留在氣體輸送管線中之氣體。例如, 可以藉由使用三向閥(例如閥1 0 4 3 B )將處理室1 〇 1 3與輸送 管線1038A隔離開來’以及將輸送管線1038A連通至真空 前置管線1044來達成此目的。如第10A圖所示,其他類 似闊(例如1043A及1043C)可整合在其他氣體輸送管線 上。此等三向閥可設置在盡可能接近處理室1013之處,以 將非排氣的氣體輸送管線(介於三向閥與處理室之間)體積 減至最小。此外,也可以在質量流控制器(MFC)與處理室 之間或者在氣源與MFC之間設置雙向(開關)閥(未示出)。 再次參考第10A圖,處理室1013也擁有頂噴嘴1〇45 及頂排氣口 1046。頂喷嘴1045與頂排氣口 1〇46允許獨立 控制氣體的頂部流量與側面流量,其能提高薄膜均勻度, 且允許精細調整該薄膜的沉積及摻雜參數。頂排氣口 1〇46 係圍繞著頂噴嘴1 045的一環狀開口。在一實施例中,第— 氣源1 034A提供源氣體喷嘴1 03 9及頂喷嘴1〇45。源嘴嘴 MFC 1035A1控制著輸送至源氣體嘴嘴M39的氣體量,頂 喷嘴MFC 1 03 5A控制輸送給頂部氣體喷嘴1〇45的氣體 量。類似地,兩個MFC 1 03 5B及1〇35Β,可用於控制從單 一氧源(例如源1 034B)向頂排氣口 1 046及氧化劑氣體嘴嘴 1 040傳送氧氣之流量。在一些實施例中,未從任何側面噴 嘴向處理室提供氧氣。將氣體流入處理室1 〇 义 、 丄J <月,可以 該些供應至頂部喷嘴1 045及頂部排氣口 1046的备触 〜乳體可以 保持分離’或者在氣體流入處理室1 〇 i 3之前, J』以在頂部 29 200832503 氣室1048内混合該些氣體。相同氣體的多個分離氣體來源 可為處理室的不同部件供應氣體。 提供遠端微波產生電漿的清洗系統1 〇 5 〇,以定期清洗 掉處理室部件中的沉積殘留物。該清洗系統包括一遠端微 波產生器1051 ’其可在反應腔1 05 3中利用一清洗氣源 1 03 4E(例如’氟分子、三I化氮、其他碳氟化合物或等效 物)產生電裝。將此電聚所產生的反應物種利用供應管 1 055經由清洗氣體饋入口 1 054輸傳到處理室ι〇13。用於 容納該清洗電漿的材料(例如腔1〇53及供應管1〇55)必須 能夠抵抗電漿攻擊。反應腔1 05 3及饋入口 1〇54之間的距 離應當儘可能地短,因為所需要的電漿物種濃度可能隨著 反應腔1053距離增大而降低。原位產生電漿可能存在輝光 放電情形,而在遠端腔内產生清洗電漿允許使用高效微波 產生器,卻不會使處理室部件受到溫度、輻射、輝光放電 等影響。因此,相對較敏感的部件(例如靜電夾盤1〇2〇)不 需要如原位電漿清洗製程般可能需要空白晶圓或其他保護 裝置的保護。在第10A圖中,顯示該電漿清洗系統1050 設置在處理室1013上方,但是也可設置在其他位置。 在頂噴嘴附近可以提供一導流板1 0 6 1,以將該頂部喷 嘴提供的源氣體流引導到該處理室,以及引導遠端産生的 電漿。引導由頂喷嘴1 045所提供的源氣體通過中心通道 1 062而進入處理室,同時利用導流板1061將清洗氣體饋 入口 1054所提供的遠端產生電漿物種引導到該處理室 1 0 1 3的多個側面。 30 200832503 實施例 在第1表中,顯示出可根據本發明一實施例沉積碳薄 膜的特定配方範例。 第1表:示範配方 編 時間 /r/r 即 流閥 射頻功率(瓦) 載氣流 C2H4流速 號 (秒) 源功率 偏壓 功率 (seem) (seem) 1 15.0 關 閉 0 + 0 0 600氬 0 2 1.0 關 閉 0+4000 0 200氬 0 3 2.0 打開 15% 2000+2000 0 200氬 100+100 氦 0 4 60.0 打 開 4000+7000 0 100氬 0+250 氦 0 5 1.0 打 開 10+10 0 0+250 氦 100 6 1.0 打 開 10+10 0 0+500 氦 200 7 1.0 打 開 10+10 600 0+500 氦 200 8 3.0 打 開 2000+2000 500 0+500 氦 200 9 125.0 .打 開 3000+0 2400 0+200 氦 450 10 5.0 打 開 2000+1000 0 50氬 200+80 氦 0 11 10.0 打 開 2000+1000 0 50氬 200+80 氦 0The xenon ring 1 03 7 also has a plurality of oxidant gas nozzles 1 040 (only one of which is shown). In a preferred embodiment, the oxidant gas nozzles 1 040 are coplanar with the source gas nozzles 1039 and are larger than the source gas nozzles. It is short, and in one embodiment it receives gas from the main body plenum 104 1 . In some embodiments, it is preferred not to mix the source gas and the oxidant gas prior to injecting the gas into the process chamber 1 01. In other embodiments, by providing an opening (not shown) between the main body plenum 1041 and the gas ring plenum 1063, the oxidant gas is first mixed with before the gas is injected into the process chamber 1 01. Source gas. In one embodiment, the third, fourth, and fifth air sources 1034C, 1034D, 1034D1 and the third and fourth airflow controllers 1 03 5 C, 1 03 5D' provide gas to the body gas via the gas delivery line 1038. room. Other valves, such as 1043B (not shown other valves), can shut off the flow of gas from the airflow controller to the process chamber. In carrying out a particular embodiment of the invention, gas source 1 034A comprises a source of decane (SiH4), gas source 1 034B comprises a source of oxygen molecules (02), gas source 1 03 4C comprises a source of decane, and gas source 1 03 4D comprises a enthalpy The gas (He) source, gas source 1 034D' contains a source of hydrogen molecules (H2). 28 200832503 In embodiments using flammable, toxic or corrosive gases, it may be desirable to remove the gases remaining in the gas transfer line after deposition. For example, this can be accomplished by isolating process chamber 1 〇 1 3 from transfer line 1038A using a three-way valve (e.g., valve 1 04 3 B) and communicating transfer line 1038A to vacuum front line 1044. As shown in Figure 10A, other similar broad (eg, 1043A and 1043C) can be integrated into other gas delivery lines. These three-way valves can be placed as close as possible to the process chamber 1013 to minimize the volume of the non-vented gas delivery line (between the three-way valve and the process chamber). In addition, a bidirectional (switching) valve (not shown) may be provided between the mass flow controller (MFC) and the process chamber or between the gas source and the MFC. Referring again to Figure 10A, the processing chamber 1013 also has a top nozzle 1 〇 45 and a top vent 1046. Top nozzle 1045 and top vent 1 〇 46 allow independent control of the top and side flow of the gas, which improves film uniformity and allows for fine adjustment of deposition and doping parameters of the film. The top vent 1 〇 46 surrounds an annular opening of the top nozzle 1 045. In one embodiment, the first gas source 1 034A provides a source gas nozzle 109 9 and a top nozzle 1 〇 45. The nozzle MFC 1035A1 controls the amount of gas delivered to the source gas nozzle M39, and the top nozzle MFC 1 03 5A controls the amount of gas delivered to the top gas nozzle 1〇45. Similarly, two MFCs 1 03 5B and 1〇35Β can be used to control the flow of oxygen from a single oxygen source (e.g., source 1 034B) to overhead vent 1 046 and oxidant gas nozzle 1 040. In some embodiments, oxygen is not supplied to the processing chamber from any of the side nozzles. The gas flows into the processing chamber 1 〇, 丄 J < month, the contact-to-milk that can be supplied to the top nozzle 1 045 and the top vent 1046 can remain separated 'or in the gas flowing into the processing chamber 1 〇i 3 Previously, J was mixed with the gas in the top 29 200832503 gas chamber 1048. A plurality of separate gas sources for the same gas can supply gas to different components of the process chamber. A cleaning system that provides remote microwave-generated plasma 1 〇 5 〇 to periodically remove deposits from the chamber components. The cleaning system includes a remote microwave generator 1051 'which can be generated in the reaction chamber 105 using a purge gas source 103 4E (eg, 'fluorine molecule, tri-nitrogen, other fluorocarbon or equivalent) Denso. The reaction species produced by this electropolymerization are transferred to the processing chamber ι 13 via the purge gas feed inlet 1 054 using the supply pipe 1 055. The material used to hold the cleaning plasma (e.g., chamber 1 〇 53 and supply tube 1 〇 55) must be resistant to plasma attack. The distance between the reaction chamber 105 3 and the feed inlet 1 〇 54 should be as short as possible because the required plasma species concentration may decrease as the distance of the reaction chamber 1053 increases. In-situ generated plasma may have a glow discharge condition, while the generation of cleaning plasma in the remote chamber allows the use of an efficient microwave generator without subjecting the process chamber components to temperature, radiation, glow discharge, and the like. Therefore, relatively sensitive components (such as electrostatic chucks 1〇2〇) do not require the protection of blank wafers or other protective devices as in the in-situ plasma cleaning process. In Fig. 10A, it is shown that the plasma cleaning system 1050 is disposed above the processing chamber 1013, but may be disposed at other locations. A baffle 1 0 6 1 may be provided adjacent the top nozzle to direct the source gas flow provided by the top nozzle to the processing chamber and to direct the plasma generated at the distal end. The source gas supplied by the top nozzle 1 045 is guided into the processing chamber through the center channel 1 062, while the remotely generated plasma species provided by the cleaning gas feed inlet 1054 is guided to the processing chamber by the baffle 1061. Multiple sides of 3. 30 200832503 Embodiment In Table 1, a specific formulation example in which a carbon film can be deposited in accordance with an embodiment of the present invention is shown. Table 1: Demonstration recipe time /r/r Flow valve RF power (Watt) Carrier gas flow C2H4 Flow number (seconds) Source power bias power (seem) (seem) 1 15.0 Close 0 + 0 0 600 Argon 0 2 1.0 Off 0+4000 0 200 Argon 0 3 2.0 Open 15% 2000+2000 0 200 Argon 100+100 氦0 4 60.0 Open 4000+7000 0 100 Argon 0+250 氦0 5 1.0 Open 10+10 0 0+250 氦100 6 1.0 Open 10+10 0 0+500 氦200 7 1.0 Open 10+10 600 0+500 氦200 8 3.0 Open 2000+2000 500 0+500 氦200 9 125.0 .Open 3000+0 2400 0+200 氦450 10 5.0 Open 2000+1000 0 50 Argon 200+80 氦0 11 10.0 Open 2000+1000 0 50 Argon 200+80 氦 0
在本表中,第一直行表示該製程配方中的步驟編號; 第二直行表示該步驟的最大執行時間;第三直行表示節流 閥1 026的打開程度;第四及第五直行表示所施加的源功率 和偏壓射頻功率;第六直行表示載氣流速;最後一直行表 示乙烯(C 2 Η 2 )流速,乙稀作為本實施例中的前驅物。乙稀 在兩個碳原子之間有雙鍵。在使用源射頻功率的情況下, 兩個數字之間用「+」號分開;第一個數字表示所提供的 側面射頻功率,第二個數字表示所提供之頂部射頻功率。 採用類似方式,氦載氣流由兩個數字來表示,這兩個數字 31In this table, the first straight line indicates the step number in the process recipe; the second straight line indicates the maximum execution time of the step; the third straight line indicates the degree of opening of the throttle valve 1 026; and the fourth and fifth straight lines indicate the The applied source power and bias RF power; the sixth straight line indicates the carrier gas flow rate; the last line indicates the ethylene (C 2 Η 2 ) flow rate, and ethylene is the precursor in this embodiment. Ethylene has a double bond between two carbon atoms. In the case of source RF power, the two numbers are separated by a "+" sign; the first number indicates the side RF power provided and the second number indicates the top RF power provided. In a similar manner, the helium carrier airflow is represented by two numbers, these two numbers 31
200832503 也由「+」號分開,第一個數字表示透過側來源之流 第二個數字表示經由頂來源之流速。 在此實施例中,在步驟1中放置該基板且關閉節 後加壓該處理室,在步驟2中產生該電漿。在步驟3 該節流閥之後,在步驟4中對該基板執行電漿加熱。 驟5開始流入沉積氣體,並且在步驟6中增大該氣體ί) 而在步驟7中形成該沉積電漿。在步驟8中沉積一襯 在步驟9中執行碳薄膜大量沉積。在步驟1 0及步驟1 關閉該偏壓並且取出該基板。 根據本發明實施例所沉積的碳薄膜展現出高消光 (即k ^0.3),使得該等碳薄膜適用於在退火應用中暴 電磁輻射下。當基板上相鄰結構之間包含縫隙時,該 膜也呈現良好的縫隙填充特性,從而形成實質上無孔 沉積。在第11圖之掃描式電子顯微鏡(SEM)相片可說 一點,該圖顯示出使用上述方法在200毫米之基板上 非晶碳薄膜。對該沉積薄膜進行光學測試顯示出在 63 3奈米處,其消光係數大於0.3。 其他測試實驗也證實本發明方法能夠在較大波長 内獲得大於〇. 3之消光係數,如第1 2圖提供之資料靡 能夠製造出在廣泛波長範圍内具有一致的高消光係數 此波長範圍内消光係數變化緩慢之薄膜的能力,讓本 允許在退火製程中使用寬頻帶、窄頻帶或實質單色的i 相關領域中具有通常技術者將理解到,可針對不 理處理室及不同處理條件來改變特定參數,而不會背 速, 流閥 打開 在步 ^速, 塾, ί中, 係數 露至 等薄 隙的 明這 沉積 波長 範圍 示。 且在 發明 b源。 同處 離本 32 200832503 發明之精神。熟習此項技術者也會明瞭其他變化方式。這 些等效及替代實施例亦涵蓋在本發明範圍内。因此,本發 明範圍不應限制於所述實施例,而是應由以下申請專利範 圍界定。 【圖式簡單說明】 第1圖顯示一電晶體典型結構的示意截面圖式;200832503 is also separated by a "+" sign. The first number indicates the flow from the source of the source. The second number indicates the flow rate through the top source. In this embodiment, the substrate is placed in step 1 and the chamber is pressurized after the section is closed, and the plasma is produced in step 2. After the throttle valve of step 3, plasma heating is performed on the substrate in step 4. The flow of the deposition gas begins in step 5, and the gas is increased in step 6 and the deposition plasma is formed in step 7. Depositing a liner in step 8 performs a substantial deposition of the carbon film in step 9. The bias is turned off in steps 10 and 1 and the substrate is taken out. Carbon thin films deposited in accordance with embodiments of the present invention exhibit high extinction (i.e., k^0.3), making such carbon films suitable for use in blasting electromagnetic radiation in annealing applications. When a gap is formed between adjacent structures on the substrate, the film also exhibits good gap filling characteristics, thereby forming substantially non-porous deposition. One of the scanning electron microscope (SEM) photographs in Fig. 11 shows an amorphous carbon film on a 200 mm substrate using the above method. Optical testing of the deposited film revealed an extinction coefficient of greater than 0.3 at 63 3 nm. Other test experiments have also confirmed that the method of the present invention is capable of obtaining an extinction coefficient greater than 〇3 in a larger wavelength, as provided in Figure 12, which is capable of producing a uniform high extinction coefficient over a wide range of wavelengths in this wavelength range. The ability of a film with a slow extinction coefficient to allow for the use of broadband, narrowband or substantially monochromatic in the annealing process, as would be understood by those of ordinary skill in the art, can be directed to the processing chamber and different processing conditions. Changing the specific parameters without the back speed, the flow valve is opened in the step speed, 塾, ί, the coefficient is exposed to the thin gap, and the deposition wavelength range is shown. And invented b source. The same place from the spirit of this invention 32 200832503. Those skilled in the art will also be aware of other variations. These equivalent and alternative embodiments are also encompassed within the scope of the invention. Therefore, the scope of the invention should not be limited to the described embodiments but should be defined by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a typical structure of a transistor;
Ο 第2圖係本發明特定實施例中所使用之尖峰退火的溫 度特性曲線; 第3圖之流程圖綜述了本發明實施例中在基板上製造 微電子元件的方法; 第4圖之流程圖總結了本發明實施例中用於在基板上 沉積一吸收劑碳薄膜的方法; 第5圖係一載氣之流速時間特性的示意曲線,該載體 在特定實施例之第4圖的方法中供應至具有一前驅物之基 板處理室; 第6Α及6Β圖係電偏壓之時間特性的示意曲線,該電 偏壓在特定實施例中第4圖之方法期間施加至一基板; 第7圖流程圖總結出第一組用於沉積一襯墊的方法, 該等方法可作為第4圖方法的一部分; 第8圖流程圖總結出第二組用於沉積一襯墊的方法, 該等方法可作為第4圖方法的一部分; 第9圖流程圖總結出第三組用於沉積一襯墊之方法, 該等方法可作為第4圖方法的一部分; 第1 0 Α圖係高密度電漿化學氣相沉積系統之具體實施 33 200832503 例的簡圖; 第1 0B圖係一氣體環的簡化截面圖,該氣體環可與第 1 2 A圖之示範處理系統併用; 第1 1圖係使用本發明方法在基板上沉積碳薄膜的掃 描式電子顯微鏡影像;以及 第 1 2圖提供利用本發明方法所沉積之碳薄膜的消光 係數對波長依賴性的測量結果。 【主要元件符號說明】 100典型電晶體 I 0 8汲極 II 6基板 1 0 1 3處理室 1016電漿處理區域 1 0 1 8基板支撐構件 1 020靜電夾盤 1 022主體構件 1 024冷卻板 1 026雙葉片節流閥 1 0 4源極 1 1 2閘極 1010 HDP-CVD 系統 1 0 1 4室頂 1 0 1 7基板2 is a temperature characteristic curve of peak annealing used in a specific embodiment of the present invention; FIG. 3 is a flowchart summarizing a method of manufacturing a microelectronic element on a substrate in an embodiment of the present invention; A method for depositing an absorbent carbon film on a substrate in an embodiment of the present invention is summarized; FIG. 5 is a schematic diagram showing a flow rate time characteristic of a carrier gas, which is supplied in the method of FIG. 4 of the specific embodiment. To a substrate processing chamber having a precursor; FIGS. 6 and 6 are graphs showing the time characteristics of the electrical bias applied to a substrate during the method of FIG. 4 in the specific embodiment; The figure summarizes a first set of methods for depositing a liner, which may be part of the method of Figure 4; Figure 8 is a flow chart summarizing a second set of methods for depositing a liner, the methods As part of the method of Figure 4; Figure 9 is a flow chart summarizing the third set of methods for depositing a liner, which can be used as part of the method of Figure 4; Figure 10 is a high-density plasma chemistry Vapor deposition system DETAILED DESCRIPTION OF THE INVENTION 33 A simplified diagram of an example of a method of 200832503; a 10B diagram is a simplified cross-sectional view of a gas ring that can be used in conjunction with the exemplary processing system of Figure 1A; Figure 11 is a method of using the method of the present invention on a substrate A scanning electron microscope image of a deposited carbon film; and FIG. 2 provides a wavelength-dependent measurement of the extinction coefficient of the carbon film deposited by the method of the present invention. [Main component symbol description] 100 typical transistor I 0 8 drain II 6 substrate 1 0 1 3 processing chamber 1016 plasma processing area 1 0 1 8 substrate supporting member 1 020 electrostatic chuck 1 022 main body member 1 024 cooling plate 1 026 double vane throttle valve 1 0 4 source 1 1 2 gate 1010 HDP-CVD system 1 0 1 4 chamber top 1 0 1 7 substrate
L 1 〇 1 9基板接收部分 1021底座部分 1 0 2 3加熱板 1 025節流闊體 1027閘閥 1 028渦輪式分子泵浦 1 029頂線圈 1 0 3 0側線圈 1 〇 3 1 A頂部源射頻產生器 1031B側面SRF產生器 1031C偏壓射頻產生器 1 032A匹配網路 1 032B匹配網路 1 03 2C偏壓匹配網路 1 03 3送氣系統 1034A-1034E 氣源 34 200832503 1 0 3 5 A- 1 0 3 5 E氣流控制器 1 0 3 6氣環氣室 1 0 3 7氣環 1 0 3 9源氣體喷嘴 1041主體氣室 1044真空前置管線 1 046頂排氣口 1 050電漿清洗系統 1 0 5 3反應腔 1 0 5 5供應管 1 0 5 7上部加載位置 1 0 6 2中心通道 1 080A偏壓電漿系統 1 03 8氣體輸送管線 1 040氧化劑氣體噴嘴 1 043 閥 1 045頂喷嘴 1 048頂部氣室 1 0 5 1遠端微波產生器 1 054氣體饋入口 1 0 5 6下部處理位置 1061導流板 1 070真空系統 1 0 80B偏壓電漿系統L 1 〇1 9 Substrate receiving part 1021 Base part 1 0 2 3 Heating plate 1 025 Throttle wide body 1027 Gate valve 1 028 Turbo molecular pumping 1 029 Top coil 1 0 3 0 Side coil 1 〇 3 1 A Top source RF Generator 1031B Side SRF Generator 1031C Bias RF Generator 1 032A Matching Network 1 032B Matching Network 1 03 2C Bias Matching Network 1 03 3 Air Supply System 1034A-1034E Air Source 34 200832503 1 0 3 5 A- 1 0 3 5 E air flow controller 1 0 3 6 gas ring air chamber 1 0 3 7 gas ring 1 0 3 9 source gas nozzle 1041 main body air chamber 1044 vacuum front line 1 046 top exhaust port 1 050 plasma cleaning system 1 0 5 3 reaction chamber 1 0 5 5 supply tube 1 0 5 7 upper loading position 1 0 6 2 center channel 1 080A bias plasma system 1 03 8 gas delivery line 1 040 oxidant gas nozzle 1 043 valve 1 045 top nozzle 1 048 top air chamber 1 0 5 1 remote microwave generator 1 054 gas feed inlet 1 0 5 6 lower processing position 1061 deflector 1 070 vacuum system 1 0 80B bias plasma system
3535
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82422906P | 2006-08-31 | 2006-08-31 | |
US82422506P | 2006-08-31 | 2006-08-31 | |
US11/844,810 US7989366B2 (en) | 2006-08-31 | 2007-08-24 | Dopant activation in doped semiconductor substrates |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200832503A true TW200832503A (en) | 2008-08-01 |
TWI434323B TWI434323B (en) | 2014-04-11 |
Family
ID=39136762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096132587A TWI434323B (en) | 2006-08-31 | 2007-08-31 | Dopant activation in doped semiconductor substrates |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI434323B (en) |
WO (1) | WO2008027845A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI692543B (en) * | 2015-06-05 | 2020-05-01 | 美商應用材料股份有限公司 | Graded in-situ charge trapping layers to enable electrostatic chucking and excellent particle performance for boron-doped carbon films |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220020612A1 (en) * | 2020-07-19 | 2022-01-20 | Applied Materials, Inc. | Systems and methods for faceplate temperature control |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5952060A (en) * | 1996-06-14 | 1999-09-14 | Applied Materials, Inc. | Use of carbon-based films in extending the lifetime of substrate processing system components |
US7465478B2 (en) * | 2000-08-11 | 2008-12-16 | Applied Materials, Inc. | Plasma immersion ion implantation process |
US6533910B2 (en) * | 2000-12-29 | 2003-03-18 | Lam Research Corporation | Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof |
US6926926B2 (en) * | 2001-09-10 | 2005-08-09 | Applied Materials, Inc. | Silicon carbide deposited by high density plasma chemical-vapor deposition with bias |
US6936551B2 (en) * | 2002-05-08 | 2005-08-30 | Applied Materials Inc. | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices |
US7094442B2 (en) * | 2004-07-13 | 2006-08-22 | Applied Materials, Inc. | Methods for the reduction and elimination of particulate contamination with CVD of amorphous carbon |
US7459824B2 (en) * | 2004-10-29 | 2008-12-02 | Lambert Haner | High torque repulsion motor |
-
2007
- 2007-08-27 WO PCT/US2007/076910 patent/WO2008027845A2/en active Application Filing
- 2007-08-31 TW TW096132587A patent/TWI434323B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI692543B (en) * | 2015-06-05 | 2020-05-01 | 美商應用材料股份有限公司 | Graded in-situ charge trapping layers to enable electrostatic chucking and excellent particle performance for boron-doped carbon films |
US10930475B2 (en) | 2015-06-05 | 2021-02-23 | Applied Materials, Inc. | Graded in-situ charge trapping layers to enable electrostatic chucking and excellent particle performance for boron-doped carbon films |
TWI747211B (en) * | 2015-06-05 | 2021-11-21 | 美商應用材料股份有限公司 | Graded in-situ charge trapping layers to enable electrostatic chucking and excellent particle performance for boron-doped carbon films |
Also Published As
Publication number | Publication date |
---|---|
WO2008027845A3 (en) | 2008-06-19 |
WO2008027845A2 (en) | 2008-03-06 |
TWI434323B (en) | 2014-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI554634B (en) | Ultra high selectivity ashable hard mask film | |
TWI541376B (en) | Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films | |
TWI328618B (en) | High-throughput hdp-cvd processes for advanced gapfill applications | |
US7049247B2 (en) | Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made | |
TWI426545B (en) | Method for depositing an amorphous carbon film with improved density and step coverage | |
JP4066332B2 (en) | Method for manufacturing silicon carbide film | |
TW202325879A (en) | Highly etch selective amorphous carbon film | |
EP1523034A2 (en) | Method of manufacturing silicon carbide film | |
US20080153311A1 (en) | Method for depositing an amorphous carbon film with improved density and step coverage | |
US8679987B2 (en) | Deposition of an amorphous carbon layer with high film density and high etch selectivity | |
US20030232495A1 (en) | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices | |
TWI397960B (en) | Reduction of etch-rate drift in hdp processes | |
TW201233840A (en) | Polysilicon films by HDP-CVD | |
TWI352390B (en) | Impurity control in hdp-cvd dep/etch/dep processes | |
WO2007030258A2 (en) | Post deposition plasma treatment to increase tensile stress of a hdp-cvd si 02 layer | |
TW201139723A (en) | PECVD multi-step processing with continuous plasma | |
WO2008027196A9 (en) | Dynamic surface annealing of implanted dopants with low temperature hdpcvd process for depositing a high extinction coefficient optical absorber layer | |
KR101959183B1 (en) | Method of depositing dielectric films using microwave plasma | |
TWI831824B (en) | Non-uv high hardness low k film deposition | |
US7989366B2 (en) | Dopant activation in doped semiconductor substrates | |
TW200832503A (en) | Dopant activation in doped semiconductor substrates | |
US11600486B2 (en) | Systems and methods for depositing low-κdielectric films | |
TW200908097A (en) | Gapfill extension of HDP-CVD integrated process modulation SiO2 process | |
US9371430B2 (en) | Porous film with high hardness and a low dielectric constant and preparation method thereof | |
US20240087880A1 (en) | Systems and methods for depositing low-k dielectric films |