TW200831233A - Control device and control method for parallel link type carrying apparatus - Google Patents
Control device and control method for parallel link type carrying apparatus Download PDFInfo
- Publication number
- TW200831233A TW200831233A TW96148176A TW96148176A TW200831233A TW 200831233 A TW200831233 A TW 200831233A TW 96148176 A TW96148176 A TW 96148176A TW 96148176 A TW96148176 A TW 96148176A TW 200831233 A TW200831233 A TW 200831233A
- Authority
- TW
- Taiwan
- Prior art keywords
- sliders
- torque command
- parallel link
- link
- control
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/106—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/1623—Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
- Machine Tool Units (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
200831233 九、發明說明: 【發明所屬之技術領域】 本發明係關於驅動平行拿 送之平行連桿式搬送㈣㈣的搬 •【先前技術】、衣置之控制裝置及控制方法。 驅動平行連桿機構μ㈣㈣的 式搬送裝置,#頊从仃連才干 ,、用作為例如,串列衝壓機(tandempress)箄 之衝壓機間的搬送震置 press)荨 妒译駐®#时 b閲例如下述專利文獻1)。此種 r機槿^ Γ 置從搬送物的目標位置變換到平行連 位控制》然而,依目授控制,藉此進行定 搬送物的質量之二平行連桿機構會有支撐 才干刚端處的定位精度降低之情形。 于連 針對㈣的問題’下述專利文獻2 位置計算出各馬達軸的 係攸目私 土把人 ㈣料衡力,並將之加料給馬達的電 流指令值,藉此而改善各馬達軸之平衡力的不均衡 (專利文獻〗)日本特開2004-344899號公報 (專利文獻2)日本特開2002_178237號公報 【發明内容】 (發明所欲解決之課題) 然而,專利文獻2之方法’由於只以平衡力作為修正 、关 口此,、此改善連桿為靜止狀況之定位精度。在使搬 =移動的動作進行中,不只是會受到由於重力而產生之 平衡力的影響’也會受到由於加速度而產生之慣性力的影 319806 200831233 二;Γ吏:送,高速移動的情況下’前述慣性力的影響變 于仅,、有平衡力的修正並無法補償位置精产。 種即有鐘於上述問題而完成者,其“在提供- .位置ίΐί移動的動作進行中,亦能使連桿前端的 、法/月又“之平行連桿式搬送裝置之控制裝置及控制方 (解決課題之手段) 之控:述的課題,本發明之平行連桿式搬送裝置 工裝置及控制方法採用以下的手段。 =)本發明之平行連桿式搬送裝置之控制裝置中,該平 仃連杯式搬送裝置係具備 該複數個連桿所連複數個連杯的驅動而決定 別驅動m 置之平行連桿機構、分 ϊ 驅動前述複數個驅動馬達之複數個馬達= :月』逑平仃連桿機構之驅動而進行搬送物的搬送 前=個= 值之轉矩修:手段。'^曰令值分別加上前述修正轉矩指令 在上述平灯連桿式搬送裝置之控制裝置中,前述 固連桿係分別為由前述驅動馬達透過直線移動的複數^ 6 319806 200831233 滑塊加以驅動者,前述轉矩修正手段係根據複數個函數來 求出丽述複數個修正轉矩指令值,其中該複數個函數係以 w述複數個滑塊的移動座標分別對從搬送物的目標執道及 目標速度求出的動能及位能之差進行偏微分者。 (3)在上述平行連桿式搬送裝置之控制裝置中,前述複 數個連彳干係分別為由前述驅動馬達透過直線移動的複數個 滑塊$以驅動者,前述轉矩修正手段係根據複數個函數來 $出前述複數個修正轉矩指令值,其中該複數個函數係以 剛述複數個滑塊的移動座標分別對從搬送物的目標速度求 出的動能進行偏微分者。 又 數個(奎4)=上述平行連桿式搬送裝置之控制袭置中,前述複 、典連杯係分別為由前述驅動馬達透過直線移動的複數個 驅:者’前述轉矩修正手段係根據複數個函數來 求“逑稷數個修正轉矩指令值,其中該複數 ==滑塊的移動座標分別對從搬送物的目標』求 出的位%進行偏微分者。 (5)在上述平行連桿式搬送裝置 =連桿係分別為由前述驅動馬達透過直 ;=!者’前述轉矩修正手段係根據複數個第一函 叙個弟一函數、或複數個第三 個修正轉矩指令值,苴数w出則返稷數 ,、中數個弟—函數係以前述複數 的目標 % 求出的動能及位能之差進行偏微分者目“速度 係以前述複數個滑塊的移動 =固弟二函數 心刀別對料μ進行偏微 319806 7 200831233 刀者A複數個第二函數係以前述複數個滑塊的 !Γ=Γ!行偏微分者,而且在前述平行連桿式搬 k衣 ,削述轉矩修正手段係依據前述搬送物的位 ,及/或速度而進行切換,以決定根據前述第—函數、前述 前述第三函數之任-者來求出前述複數個修 進行平行連桿式搬送裝置之控制|置中,前述經 效的式子:函數係與拉格朗其(Lagrange)運動方程式等 ()在上述平行連桿式搬送裝置之控制裝置中, 系隨著前述位置目標值的變化而時時刻刻計算 収I m修正轉域令值,並將 複數個轉矩指令值。 』對應的刚述 (8) 本發明之平行連桿賴送裝置之 =式搬送裝置係具備:藉由複數個連桿的驅動中3 該複數個連桿所連結成的前端的位置之平行 ==峨個連桿之複數個驅動馬達、以及‘ r 驅動前述複數個驅動馬達之複數個馬達驅動 :今稭由前述平行連桿機構之驅動而進行搬送物的搬送 連桿式撤送裝置之控制方法的特徵在 =π連桿機構之前端的位置目標值與 二而求出的複數個修正轉矩指令值,分別 數個馬達_器之各轉矩指令值。 要,述複 (9) 在上述平行連桿式搬送裝置之控制方法中,前述複 319806 200831233 =個連桿係分料由前述驅動馬達透過直線移動的複數個 滑塊加以驅動者,前述複數個修正轉矩指令值係根據複數 夕四數來求出,其中該複數個函數係以前述複數個滑塊的 ,動座標分別對從搬送物的目標執道及目標速度求出的 能及位能之差進行偏微分者。 、— ( )在上述平行連桿式搬送裝置之控制方法中,前述 W =個連彳ϋ別為由前述驅動馬達透過直線移動的複數 〜驅動者’前述複數個修正轉矩指令值係根據複 、㈡來求出,其中該複數個函數係以前述複數個滑塊 =移動座標分別對從搬送物的目標速度求出的動能進行偏 m分者。 、—(1)在上述平行連桿式搬送裝置之控制方法中,前述 ^個連桿係分料由前述驅動馬達透過直線移動的複數 =塊加以驅動者,前述複數個修正轉矩指令值係根據複 固函數來求出’其中該複數個函數係以前述複數個滑塊 ^夕動座標分別對從搬送物的目標執道求出的位能進行偏 微分者。 、(12)在上述平行連桿式搬送裝置之控制方法中,前述 =個連桿係分別為由前述驅動馬達透過直線移動的複數 :滑=加以驅動者,前述複數個修正轉矩指令值係根據複 個第一函數、複數個第二函數、或複數個第三函數來求 2其中該複數個第一函數係以前述複數個滑塊的移動座 二刀別對$搬送物的目標軌道及目標速度求出的動能及位 犯之差進彳了偏微分者’該複數個第二函數係以前述複數個 319806 9 200831233 ?月塊的移動座標分別對前诚叙、也—a 第三函數係以前述複數個分者’該複數個 進行偏微分者,而且在前二的標分別對前述位能 述千订連桿式搬送裝置運轉中, 料搬送㈣位置及/或速“進行城,以決定根 據則述弟一函數、前述第二 .者來求出前述複數個修正轉矩指令二函數之任一 -J-13:在上述平行連桿式搬送裳置之控制方法中,前述 丨;::::嫩函數係與拉格朗其一刚方程式 著前(:Γ署上述平行連桿式搬送裝置之控制方法中,係隨 ==目標值的變化而時時刻刻計算前述複數個修正 值。曰7 i將之分別加到對應的前述複數個轉矩指令 (發明之效果) 質量m:^正轉矩私令值係根據位置目標值與搬送物的 且及咏φ Λ出者’不僅反映出驅動轴之平衡力的影響,而 == 生力的影響。因此,將此修正轉矩指令值加到 ^馬達驅動器之轉矩指令值,即可進行對構 ==連桿的運動的補債控制,因而即使在使搬送物‘ 、 進仃中,亦能使連桿前端的位置精度提高。 端重:二==矩指令值,可將能咖 達驅二響之修正份轉矩指令提供給馬 行對構:;回授控制系相組合的情況,回授部只進 成干仃連桿機構之各連桿的運動的補償控制。因 319806 200831233 •此,回授控制系的增益(gain)調整及性能補償變得較容易。 此外,根據針對複數個滑塊的移動座標分別對彳^〜° 物的目標軌道及目標速度求出的動能及位能之差進= 分之後數個函數、以複數個滑塊的移動座標分別對從^ 物的目標速度求出的動能進行偏微分之複數•數、或^ 複數個滑塊的移動座標分別對從搬送物的目標軌道求 =能進料微分之複數個函數(與拉格朗其(㈣咖㈣運動 耘式等效的式子),來求出複數個修正轉矩指令值,可瞀 出正確反應慣性力的影響之適切的修正轉矩指令值。” 另外’在修正轉矩指令值的算出巾,只對動 位能進行偏微分,盥對動 對 相比,鴻此及位叙差進行偏微分的情況 计异1減少,可抑制控制裝置的負荷。 外’料成可從動能及位能之差的偏微分、只對動 此的偏微分以及只對位能的偏微分 = 進扞切始纟轉中依據搬送物的位置、速度而適宜地 :’計算量亦會減少’同樣可抑制控制裝置的負荷。 修正轉矩扑=位置目標值的變化而時時刻刻計算複數個 矩指:值 那時的目標位置指令之適切的修正轉 【實施方式】 中,::H::附圖詳細說明本發明之較佳實施形態。其 的說明。口 ,、通的部份標註以相同的符號,並省略重複 319806 11 200831233 • 第1圖係顯示具備本發明控制裝置之平行連桿式搬送 裝置10的概略構成。此搬送裝置10係具有與上述專利文 獻1(日本特開2004-344899號公報)同樣的構成者,設置於 上游側衝壓站(press stati〇n)14a與下游侧衝壓站丨仆之 .間,接文來自上游側衝壓站14a之經成形的搬送物(板件 1) ’將之搬送到下游侧衝壓站l4b。 如第1圖所不,搬送裝置〗0具備有平行連桿機構6、 馨連接於平行連;j:干機構6的前端之板件(panei)把持部15、以 及2接於平行連桿機構6的另一端之第一連桿驅動機構11 及第二連桿驅動機構12。 板件把持部15具備有用以吸取板件(panei)i之真空吸 盤(vacuum cup)等之工件把持具2、以及安裝有工件把持具 2且在與搬送線呈直角的方向(與紙面垂直的方向)延伸之 橫桿(cross bar)3。 _ ^平仃連桿機構6由第一連桿7及第二連桿8所構成。 ^ 連桿7的另一端與第一連桿驅動機構11連接,第二連 桿8的另一端與第二連桿驅動機構12連接。 第一連桿驅動機構11及第二連桿驅動機構安裝於 I字形的基座構件16。第一連桿驅動機構n包括:由螺 2軸構成之第一滑塊軸9、用以驅使第一滑塊軸9旋轉之 弟一驅動馬達17、以及由第一滑塊軸9之旋轉加以驅動而 >、欠私動之第一滑塊4。第二連桿驅動機構12包括:由螺 疋^構成的第二滑塊軸13、用以驅使第二滑塊軸13旋轉 之第—驅動馬達18、以及由第二滑塊轴13之旋轉加以驅 12 319806 200831233 動而直線移動之第二滑塊5。 第一驅動馬達17及第二驅動馬達18分別由後述之馬 達驅動器(motor driver)25, 26所驅動。 … • =由上述第一驅動馬達17及第二驅動馬達18之驅 •動,分別使第-滑塊4及第二滑塊5直線移動,並且利用 數值控制等使之正確地定位。 '此外,如第1圖所示,第一滑塊軸9及第二滑塊軸i 3 春係相互從鉛直軸γ朝相反的方向傾斜預定的角度(圖中 Θ /2) 〇 # 藉由此一構成,使第一滑塊4在第一連桿驅動機構n 的驅動下,在其驅動領域中以在搬送線的上游侧為低位 置在下游側為高位置的方式相對於水平面傾斜地做直線 運動。 同樣地,使第二滑塊5在第二連桿驅動機構12的驅 動下,在其驅動領域中以在搬送線的上游側為高位置、在 下游侧為低位置的方式相對於水平面傾斜地做直線運動。 此外,在本實施形態中,第一連桿驅動機構丨丨及第 二連桿驅動機構12係利用滾珠螺捍機構來構成直線運動 驅動機構,惟本發明並不限於此,亦可利用確動皮帶 (·ηιίη§ belt)、液壓缸、齒條與齒輪(rack and phi⑽)等來構 成直線運動驅動機構。 藉由上述構成,由後述的控制裝置2()給與動作指令 來驅動第一驅動馬達17及第二驅動馬達18,即可分別獨 立地驅動第一連桿7及第二連桿8。如此一來,平行連桿 319806 13 200831233 機構6的前端位置即由第 -滑…第二滑塊5)的相互位置關 二蜀動馬達17及第二驅動馬達⑺的驅動错 35 的位置,得到所希望的搬送動作。 牛把持部 第2圖中顯示本發明實施形態之平行 之控制裝置20的構成。 飞振k裝置 如第2圖所示’本發明之控制裝 標位置計算手段21、馬達控 一備有滑塊目 段24。 3違控制°”2,23、以及轉矩修正手 據=(冗 r置標位置(時以下,目標位置二 移動22,23為複數個’分別將用以使連桿前端 置之轉矩指令值,提供給驅動上述第-驅動 馬達17及弟二驅動馬達18之複數個馬達驅動哭2 本實施形態中,驅動第一驅動馬達17 :紅二26。 軸馬達驅動器25,驅動第二驅動馬達18之馬達:動: Z 5之馬達控制部設為p軸馬達控制部22,將轉矩指人 ,給"軸馬達驅動器26之馬達控制部設為q軸馬達控二 口 P 2 3。 第-駆動馬達17及第二驅動馬達18分別由p轴馬達 319806 14 200831233 驅動器25及q轴馬達驅動器26所 ,碼器㈣—27, 28加以檢測出,檢出的轉由編 作缺私Λ S h or 欢巧出的5虎作為回授 L唬輸入至P軸馬達控制部2 F勹U扠 ^ 23 ° ^ 制而進行定位控制。 、、、達7,進行回授控 轉矩修正手段24根據平 持部1”的位置目標值及搬二連㈣“的前端(㈣ 卜與板件!的合計質量),求出量m(板件把持部15 數個修正轉矩指令值Kfp,Kf,並將 =正轉矩指令值之複 …分別加到複數個馬達控制:…=轉矩指令值% 指令值。該修正轉矩指令值Kf Kf 別接受的轉矩 -滑物及第二滑塊㈣分二,^ 5在軸方向移動 — 及第二滑塊 的值。以下,將f f r f力心,^乘以調整增益K所得到 、 將fp,fq稱為滑塊驅動力。 以下’說明上述的滑 ίρ,ίς之算出方法。 不置(P,q)、滑塊驅動力 弟3圖中顯示第!圖所示 之模式圖。第3圖中,ίχ γ、…仃連杯式搬送裝置10 L表示連桿7 8的〇(,Υ)表不板件把持部15的位置, 第二滑塊輛U的驅動:ρ轴,q,表示第-滑塊轴9, ^ 軸’ p,q表示連辉7 8 ώ 接點(第一滑塊4,第二滑塊5)的位置,’ ’、=及q 軸與Q軸的交點(?轴,味的原點),“表示(χ j)表示P 夾角,沒表示X轴與q轴的㈣。 …P轴的 板件把持部15的位置(X 、、典 ,)/、巧塊位置(P,q)之間成 319806 200831233 立下述數式i所示的關係。 【數式1】 p = ((X - +(Γ - r〇)sin a)+Jl1 _((X - XQ) sin α - (y -}ς ) cos or)2 (厶1式) 不)c〇s々+〇r-:Qsk 戶 (Α·2 式) y ^P〇〇sa + qQ〇s0 t pBma-qsmfi | 4L2 2 2 li 〆切2 - 2/^g(众一灼’ (Β·1 式)200831233 IX. OBJECTS OF THE INVENTION: 1. Field of the Invention The present invention relates to a parallel link type transport (four) (four) that drives parallel feeding. [Prior Art], a control device for clothes, and a control method. The type of conveyance device that drives the parallel link mechanism μ (4) (4), #顼 from the 仃连才, used as a tandem press (tandempress), the transfer between the presses, press For example, the following patent document 1). This kind of r machine 变换^ 变换 changes from the target position of the conveyed object to the parallel position control. However, according to the visual control, the parallel bar mechanism of the fixed conveyance quality will have the support at the end. The situation where the positioning accuracy is lowered. Yu Lian's question on (4) 'The following patent document 2 position calculates the current value of each motor shaft and the current command value of the motor (4), and feeds it to the motor, thereby improving the motor shaft. In the case of the invention of the patent document 2, the method of the patent document 2 is due to the problem of the invention. Only the balance force is used as the correction and the gateway, and this improves the positioning accuracy of the connecting rod in a stationary state. In the action of moving/moving, not only will the influence of the balance force due to gravity be affected, but also the shadow of inertial force due to acceleration. 319806 200831233 2; Γ吏: send, high-speed movement 'The influence of the aforementioned inertial force is changed to only, and the correction of the balance force cannot compensate for the positional production. The kind of person who has completed the above problems, and the control device and control of the parallel link type conveying device which can also make the front end of the link and the French/monthly "in the position of the movement" The control of the means (the means to solve the problem): The problem described above, the parallel link type conveying apparatus and the control method of the present invention employ the following means. =) In the control device of the parallel link type conveying device of the present invention, the parallel cup type conveying device is provided with a plurality of links connected to the plurality of links, and determines a parallel link mechanism for driving the m-position ϊ 复 复 ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ ϊ And the correction torque command is respectively added to the control device of the flat lamp link conveying device, wherein the fixed link is a plurality of 319806 200831233 sliders that are linearly moved by the drive motor. The driver, the torque correction means is configured to obtain a plurality of modified torque command values according to a plurality of functions, wherein the plurality of functions are respectively performed on the moving target of the plurality of sliders The difference between the kinetic energy and the potential energy obtained by the track and the target velocity is partially differentiated. (3) In the control device of the parallel link type conveying device, each of the plurality of linked rafts is driven by a plurality of sliders $ that are linearly moved by the drive motor, and the torque correction means is based on a plurality of The function extracts the plurality of corrected torque command values, wherein the plurality of functions respectively differentiate the kinetic energy obtained from the target speed of the transport by the moving coordinates of the plurality of sliders. In addition, a plurality of (Kui 4) = control of the parallel link type conveying device, wherein the complex and the series of cups are respectively a plurality of drives that are linearly moved by the drive motor: the torque correction means According to a plurality of functions, "the number of corrected torque command values, wherein the complex number == the moving coordinate of the slider respectively differentiates the bit % obtained from the target of the transport object" is obtained. (5) Parallel link type conveying device=the connecting rod system is respectively transmitted by the driving motor; the right torque correction means is based on a plurality of first letters, or a plurality of third correcting torques. The command value, the number of turns w is returned to the number of turns, and the middle number of brothers - the function is the difference between the kinetic energy and the potential energy obtained by the target % of the complex number, and the difference is "the speed is based on the plurality of sliders" Move = Gu Di two function knives do not compare the material μ 319806 7 200831233 The knives A complex second function is the above multiple sliders! Γ = Γ! line partial differential, and in the aforementioned parallel link Type of k-shirt, the method of cutting the torque correction is based on Switching the position of the transport object and/or the speed to determine whether to control the plurality of parallel parallel link transport devices based on the first function and the third function. The above-mentioned effective formula: the function system and the Lagrange equation of motion, etc. in the control device of the parallel link type conveying device are calculated at all times as the position target value changes. I m corrects the turn command value and sets the multiple torque command values. 。 。 。 。 。 。 。 。 。 。 。 。 。 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式 式= a plurality of drive motors of the connecting rods, and a plurality of motor drives that drive the plurality of drive motors: the control of the transfer link type withdrawing device for transporting the objects by the parallel linkage mechanism The method features a plurality of corrected torque command values obtained by the position target value at the front end of the =π link mechanism and the plurality of torque command values of the plurality of motor_devices. (9) In the control method of the parallel link type conveying device, the plurality of 319806 200831233 = one link system is driven by a plurality of sliders that are linearly moved by the drive motor, the plurality of The corrected torque command value is obtained according to a complex number of four times, wherein the plurality of functions are the energy and potential energy obtained from the target and target speeds of the transport object by the plurality of sliders and the movable coordinates. The difference is made by partial differentiation. In the above-described control method of the parallel link type conveying device, the W = one continuation is a plural number to the driver that is linearly moved by the drive motor. The plurality of correction torque command values are based on the complex And (2) determining, wherein the plurality of functions respectively perform a partial deviation of kinetic energy obtained from a target speed of the transport object by the plurality of sliders=moving coordinates. (1) In the control method of the parallel link type conveying device, the plurality of link system components are driven by a plurality of blocks of the drive motor that are linearly moved, and the plurality of correction torque command values are According to the complex function, the plurality of functions are differentiated by the bit energy obtained from the target obstruction of the transport object by the plurality of sliders. (12) In the control method of the parallel link type conveying device, the plurality of link systems are respectively a plurality of linearly moving by the drive motor: slip = drive, and the plurality of corrected torque command values are Calculating 2 according to the plurality of first functions, the plurality of second functions, or the plurality of third functions, wherein the plurality of first functions are the target track of the moving object by using the moving blocks of the plurality of sliders The difference between the kinetic energy and the bit traversal obtained by the target velocity is the partial differential. The complex second function is based on the moving coordinates of the aforementioned plurality of 319806 9 200831233? In the above-mentioned plurality of sub-sectors, the plurality of sub-differentiators are performed, and in the operation of the first two-digit linkage-type conveying device, the material transfer (four) position and/or speed is performed. Determining, according to the function of the second brother, the second function, the second function of the plurality of correction torque commands - J-13: in the control method of the parallel link type transporting, the foregoing ;::::Tender function system and In the control method of the above-mentioned parallel link type conveying device, the above-mentioned plurality of correction values are calculated at all times with the change of the target value of =1. 曰7 i respectively add To the corresponding plurality of torque commands (effect of the invention) mass m: ^ positive torque private value is based on the position target value and the conveyed object and the 咏 φ Λ 者 ' not only reflects the balance of the drive shaft Influence, and == influence of the force. Therefore, by adding this corrected torque command value to the torque command value of the motor driver, the debt control of the motion of the == link can be performed, and thus even The conveyance of the moving object and the advancement of the connecting rod can also improve the positional accuracy of the front end of the connecting rod. The end weight: two == moment command value, the correct torque command can be provided to the horse line: When the feedback control system is combined, the feedback part only enters the compensation control of the movement of each link of the dry link mechanism. Since 319806 200831233 • This, the feedback control system gain adjustment and performance compensation It's easier. Also, based on the movement of multiple sliders The moving coordinates respectively determine the difference between the kinetic energy and the potential energy of the target trajectory and the target velocity of the 彳^~° object, the number of functions, and the moving coordinates of the plurality of sliders respectively determine the target velocity of the object. The kinetic energy of the partial differential of the kinetic energy, the number, or the moving coordinates of the plurality of sliders respectively for the target orbit from the transport object = a plurality of functions that can feed the differential (with the Lagrange ((4) coffee (four) sports 耘The equivalent formula) is used to obtain a plurality of corrected torque command values, and the appropriate corrected torque command value for the influence of the correct reaction inertial force can be extracted. "In addition, the correction torque command value is calculated only. Compared with the moving pair, the difference between the 盥 and the moving pair is reduced by the difference of 1 and the position can be suppressed. The difference between the kinetic energy and the potential energy can be suppressed. Partial differentiation, partial differentiation of only this movement, and partial differentiation of only the positional energy = in the beginning and the end of the rotation, depending on the position and speed of the conveyed object, it is appropriate: 'the amount of calculation will also decrease'. The load. Correcting the change of the torque flap = position target value and calculating a plurality of moment fingers at all times: the appropriate correction of the target position command at the time of the value [Embodiment], :: H:: The detailed description of the present invention Preferred embodiment. Its description. Portions of the mouth and the parts are denoted by the same reference numerals and are not repeated. 319806 11 200831233 • Fig. 1 shows a schematic configuration of a parallel link type conveying apparatus 10 including the control device of the present invention. In the same manner as the above-mentioned Patent Document 1 (Japanese Laid-Open Patent Publication No. 2004-344899), the present invention is provided between the upstream side press station 14a and the downstream side press station. The article is conveyed from the formed conveyance (plate 1) of the upstream side press station 14a to the downstream side press station 14b. As shown in Fig. 1, the transport device ???0 is provided with a parallel link mechanism 6, and is connected to the parallel connection; j: the front end of the dry mechanism 6 (panei) gripping portions 15, and 2 are connected to the parallel link mechanism The first link drive mechanism 11 and the second link drive mechanism 12 at the other end of 6. The plate holding portion 15 is provided with a workpiece holder 2 for vacuum cups or the like for sucking a plate member i, and a workpiece holder 2 attached thereto and at a right angle to the conveying line (perpendicular to the paper surface) Direction) extends the cross bar 3. The flat link mechanism 6 is composed of a first link 7 and a second link 8. The other end of the link 7 is connected to the first link drive mechanism 11, and the other end of the second link 8 is connected to the second link drive mechanism 12. The first link drive mechanism 11 and the second link drive mechanism are attached to the I-shaped base member 16. The first link driving mechanism n includes a first slider shaft 9 composed of a screw 2 shaft, a drive motor 17 for driving the first slider shaft 9 to rotate, and a rotation of the first slider shaft 9 Driven by >, the first slider 4 that is underperforming. The second link driving mechanism 12 includes a second slider shaft 13 formed of a screw, a first drive motor 18 for driving the second slider shaft 13 to rotate, and a rotation of the second slider shaft 13 Drive 12 319806 200831233 The second slider 5 that moves in a straight line. The first drive motor 17 and the second drive motor 18 are respectively driven by motor drivers 25, 26 which will be described later. The drive of the first drive motor 17 and the second drive motor 18 causes the first slider 4 and the second slider 5 to linearly move, and is accurately positioned by numerical control or the like. Further, as shown in Fig. 1, the springs of the first slider shaft 9 and the second slider shaft i 3 are inclined from the vertical axis γ in opposite directions by a predetermined angle (Θ /2 in the figure) 〇# With this configuration, the first slider 4 is tilted with respect to the horizontal plane in the driving field in such a manner that the upstream side of the transport line is at a low position on the downstream side of the transport line by the first link drive mechanism n. Linear motion. Similarly, the second slider 5 is tilted with respect to the horizontal plane in the driving field by the second link driving mechanism 12 so that the upstream side of the conveying line is at a high position and the downstream side is at a low position. Linear motion. Further, in the present embodiment, the first link drive mechanism 丨丨 and the second link drive mechanism 12 constitute a linear motion drive mechanism by a ball screw mechanism, but the present invention is not limited thereto, and may be activated. A belt (·ηιίη§ belt), a hydraulic cylinder, a rack and a gear (rack and phi (10)), etc. constitute a linear motion drive mechanism. According to the above configuration, the first drive motor 17 and the second drive motor 18 can be independently driven by the first drive motor 17 and the second drive motor 18 by the operation command 2 (hereinafter) given by the control device 2 (). In this way, the position of the front end of the parallel link 319806 13 200831233, that is, the position of the first slide of the second slide 5) is the position of the drive motor 17 and the drive error 35 of the second drive motor (7). The desired transport action. Bull Holding Unit Fig. 2 shows the configuration of the parallel control device 20 according to the embodiment of the present invention. The flying vibration k device is shown in Fig. 2, and the control target position calculating means 21 and the motor control unit of the present invention are provided with a slider unit 24. 3 violation control °" 2, 23, and torque correction hand data = (duplicate r mark position (below, target position two moves 22, 23 is a plurality of ' respectively, will be used to make the front end of the link torque command The value is supplied to a plurality of motor drives for driving the first drive motor 17 and the second drive motor 18. In the present embodiment, the first drive motor 17 is driven: red two 26. The shaft motor driver 25 drives the second drive motor. Motor of 18: Movement: The motor control unit of Z 5 is set as the p-axis motor control unit 22, and the torque is given to the motor control unit of the shaft motor driver 26 to be the q-axis motor control two port P 2 3 . The first-push motor 17 and the second drive motor 18 are respectively detected by the p-axis motor 319806 14 200831233 driver 25 and the q-axis motor driver 26, and the encoders (4)-27, 28 are detected, and the detected turn is made by the user. S h or the 5 tigers that are happily used as the feedback L唬 input to the P-axis motor control unit 2 F勹U fork ^ 23 ° ^ for positioning control.,,, up to 7, for the feedback control torque correction means 24 According to the position target value of the flat part 1" and the front end of the "two (4)" and the board Quantity), the amount m is obtained (the number of correction torque command values Kfp, Kf of the plate holding portion 15 and the complex value of the positive torque command value are respectively added to a plurality of motor controls: ... = torque command value % Command value: The corrected torque command value Kf Kf does not accept the torque-slider and the second slider (four) divided into two, ^ 5 moves in the axial direction - and the value of the second slider. Below, the ffrf force, ^ is multiplied by the adjustment gain K, and fp, fq is called the slider driving force. The following 'describes the above method of calculating the sliding ίρ, ς 。. No setting (P, q), slider driving force 3 shows the first In the third figure, the γ, γ, and the cup-type conveying device 10 L indicates that the 7 (Υ) of the connecting rod 7 indicates the position of the plate holding portion 15, and the second slider Drive of U: ρ axis, q, indicates the first slider axis 9, ^ axis 'p, q indicates the position of the junction (the first slider 4, the second slider 5), ' ' , = and the intersection of the q axis and the Q axis (? axis, the origin of the taste), "represents (χ j) indicates the angle P, and does not indicate the X axis and the q axis (4). ... the P axis of the plate holding portion 15 Location (X,, Code,) / The block position (P, q) is 319806 200831233 and the relationship shown by the following formula i is obtained. [Expression 1] p = ((X - +(Γ - r〇)sin a)+Jl1 _(( X - XQ) sin α - (y -}ς ) cos or)2 (厶1) 不)c〇s々+〇r-:Qsk (Α·2) y ^P〇〇sa + qQ〇 S0 t pBma-qsmfi | 4L2 2 2 li 〆切2 - 2/^g(众一灼' (Β·1)
Y^Y^Psma^qsiri0 pcosa-qcos0 I ^4iT 2 2 iP2 +(l2 ^2Pq〇os^^β) *1 =此’希望將連桿前端(板件把持部收位 的障况,只要根據上述數式i中的 對應的滑塊位置(P,q) ’再使第一滑塊4 : (A:2式)算出 到算出的滑塊位置即可。 弟一π塊5移動 如前述,板件把持部15與板 ^質量m的物體以時間函數刚γ⑼合計質量為m。 肢的動能I,位能 U係用下述數式之執道移動時,物 异。 的(式D及(式2)來計 【數式2】 (式1) (式2) 16 200831233 其中’g表示重力加速度[m/s2],X二y 動能I,位能u已給定時,所需的滑塊驅動力f f 1 — 在考慮到拉格朗其(Lagrange)運動方程式的情I十" 用下述數式3的(式3)及(式4)來進行。 /下,係利 【數式3】 dl 兔Y^Y^Psma^qsiri0 pcosa-qcos0 I ^4iT 2 2 iP2 +(l2 ^2Pq〇os^^β) *1 = This is the wish to put the front end of the connecting rod (the obstacle of the plate holding part is as long as The corresponding slider position (P, q) ' in the above equation i can be calculated by calculating the first slider 4: (A: 2) to the calculated slider position. The π block 5 moves as described above. The weight of the plate holding portion 15 and the object of the plate mass m is γ(9) as a function of time m. The kinetic energy I of the limb, the potential energy U is moved by the following equation, and the difference is (Form D and (Formula 2) to calculate [Expression 2] (Formula 1) (Formula 2) 16 200831233 where 'g represents the gravitational acceleration [m/s2], X y kinetic energy I, the potential energy u has been given, the required slip The block driving force ff 1 - is considered in the case of the Lagrange equation of motion, and is expressed by (Expression 3) and (Formula 4) of the following Equation 3. Formula 3] dl rabbit
Tt L{^ du (式3> 射(式4) (式3)及(式4)係以滑塊的位置座標對動能!與位 之進行偏微分,然而在位能相較於動能幾乎不變化匕 況’動能成為支配性因素,因此可只對動能進行偏微: 考慮位能)。反之,在動能相較於位能幾乎不變化的〜 =)成為支配性因素,因此可只對位能進行偏微心考慮 位能相較於動能幾乎不變化的情況,可相 為搬送物在水平座標面移動之情況(例 ' 彳 =下來的情況)。此外,即使是第〗圖之構成,= ^的執道會使得搬送物的位能幾乎不隨時間而變化= 就是支配性因素。 ^子不逢化之情況等),動能 處於==nrr變化的情況,可想成搬送裳置 :之狀況。此外,即使搬送裝置 況’只要搬送物的速度會使得搬送物的動能幾乎不二 319806 17 200831233 .而^化(例如’非常低速之情況等),位能就是支配性因素。 ^關於同%考慮動能及位能兩者還是只考慮動能及位 =之任方’可根據搬送裝置的構成、運轉方法而預先決 疋,亚在搬达裝置運轉開始後到運轉結束都不改變設定。 •或者,亦可在搬送裝置之運轉中根據搬送物的位置、速度 ^適§地進彳了切換。藉由設計成如此之構成,可減少計算 f,抑制控制裝置20的負荷。而且,這樣的切換,係由第 _ ®所不的控制裝置2〇中之轉矩修正手段24來執行。 以下,針對同時考慮動能及位能兩者之情況進行說 理=式〗)及(式2)代入上述的(式3)及(式4)並加以整 理,可得到下述數式4之(式5 乂正 【數式4】 d〔嗜 Of d (式5) =ΛTt L{^ du (Formula 3) (Formula 4) (Formula 3) and (Formula 4) are based on the positional coordinates of the slider to kinetic energy! The position is differentiated from the bit, but the in situ energy is almost no compared to the kinetic energy. In the case of change, kinetic energy becomes a dominant factor, so only kinetic energy can be biased: considering potential energy. On the other hand, ~=), which has almost no change in kinetic energy compared to the potential energy, becomes a dominant factor. Therefore, only the positional energy can be considered to be slightly different from the kinetic energy, and the phase can be the transported object. The case where the horizontal coordinate surface moves (for example, '彳=down case). In addition, even if it is the composition of the figure, the command of = ^ will make the position of the conveyed material hardly change with time = it is the dominant factor. ^In the case of a sub-conformity, etc.), the kinetic energy is in the case of a change of ==nrr, and it can be thought of as a situation in which the dress is placed. Further, the positional energy is a dominant factor as long as the conveyance condition is such that the speed of the conveyed object is such that the kinetic energy of the conveyed object is almost 319,806, and 1731,323, and the like (for example, at a very low speed, etc.). ^About the same consideration of kinetic energy and potential energy, or only consider kinetic energy and position = any of the 'can be determined in advance according to the structure and operation method of the transport device, and the sub-transfer device does not change after the start of operation set up. • Alternatively, it is possible to switch between the position and speed of the conveyed material during the operation of the transport unit. By designing such a configuration, the calculation f can be reduced, and the load of the control device 20 can be suppressed. Further, such switching is performed by the torque correcting means 24 in the control device 2 of the first. In the following, when the kinetic energy and the potential energy are simultaneously considered, the following formula (4) and (formula 2) are substituted and the following formula 4 is obtained. 5 乂正【数式4】d[嗜Of d (式5) =Λ
Jt di (式6) 另外,回到先前考慮的平行連桿 況,從上述導丨式卿式)可知,^ 板件把持部15的位置Μ可說是滑塊位=式、5所示 【數式5】 置(Ρ,❸的函數 斗(0,#)) (式7) (式8) 319806 18 200831233 因此,(式5)及(式6)中的元素 可表示成如 下述數式 【數式6】 • 8X .dX . dp aqJt di (Formula 6) In addition, returning to the previously considered parallel link condition, it can be seen from the above-mentioned guide type, that the position of the plate holding portion 15 can be said to be the position of the slider = formula, 5 Equation 5: Set (Ρ, ❸'s function bucket (0, #)) (Equation 7) (Equation 8) 319806 18 200831233 Therefore, the elements in (Equation 5) and (Equation 6) can be expressed as follows [Expression 6] • 8X .dX . dp aq
YY
dY ΡdY Ρ
dt d2x . t d2x . —=—^泠-1--ο dp φ2 dpdq dx d2x Ψ t d2x . 上二-P+-irQ dq φθΖ V —.丨.一 ZZ _·_' dp Φi一% d2Y ^ dp1 dpdqq di 护 y Φ^ίΤ dqlH dYDt d2x . t d2x . —=—^泠-1--ο dp φ2 dpdq dx d2x Ψ t d2x . Upper two-P+-irQ dq φθΖ V —.丨.一ZZ _·_' dp Φi-% d2Y ^ Dp1 dpdqq di protection y Φ^ίΤ dqlH dY
dq % Φ dY :…I dq (武9) (式 1〇) 域11) (式12) (式13) (式 14) (式 15) (式 16) (式 17> (式18> 其中,p =生沒々一 dq(t) di dt •將上述之(式9)至(式18)代入(式〇及(式可得到如 卞达數式7所示之滑塊驅動力fp,fq的計算式(式I9)及(式 2〇) ° 19 319806 200831233 【數式7】Dq % Φ dY :...I dq (Wu 9) (Formula 1) Field 11) (Equation 12) (Equation 13) (Equation 14) (Equation 15) (Equation 16) (Equation 18> p = birth without dq(t) di dt • Substituting the above (Equation 9) to (Equation 18) into (the formula can be obtained as the slider driving force fp, fq as shown in Equation 7 The calculation formula (Equation I9) and (Formula 2〇) ° 19 319806 200831233 [Expression 7]
X f dzX . d2X Λ ^ <dp1 P + dpdqqj +X f dzX . d2X Λ ^ <dp1 P + dpdqqj +
fPfP
X fd2X . dzX /X fd2X . dzX /
J + ί^ρ+J + ί^ρ+
d2Y Λ1 dY Λ (式 19) 试2〇) (式19)及(式2〇)包含連桿前端位置(χ,Y)之偏微 數。連捍前端位置(Χ,Υ)之偏 、 (Β-2式)進行偏科八 w敎你精由釕1匕1式)及 8所示之一二^求传。偏微分的結果可用如下述數1 【數式8】,函數來表示。 式 物,¢) 詈=巧⑽) (式 21) (式 22〉 (式 23) d2JC (武24) (式25> (式 2S> 發:远(p,q) ^27) d2Y (^28) d'Y ^Fiv Μ (式 2S) dPdg -Fw(P,q) (式 30〉 319806 20 200831233 (式21)至(式3〇)可事先從(Β-l式)及(B_2式)求得,於 是相對於連桿前端的質量為m之滑塊驅動力& &可利用 以下的步驟1至6而從(式〗9)及(式2〇)算出。 (步驟1) 將板件把持部之位置目標值[X,γ]代入(a_1 (A。式),求出第一滑塊與第二滑塊的位置目標值_及 • 將步驟1中求出的[p,q]代入上述數式8之Fl(t) F10(P,q),求出偏微分值。 ’ q)至 (步驟3)d2Y Λ1 dY Λ (Equation 19) Test 2〇) (Equation 19) and (Formula 2〇) include the partial number of the front end position (χ, Y) of the link. Even if the front end position (Χ, Υ) is biased, (Β-2), the partial 八 八 敎 敎 精 精 精 精 精 精 精 精 精 精 精 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The result of partial differentiation can be expressed by a function such as the following number 1 [Expression 8]. ¢, ¢) 詈 = Qiao (10)) (Equation 21) (Equation 22) (Equation 23) d2JC (Wu 24) (Equation 25) (Formula 2S> Hair: Far (p, q) ^27) d2Y (^28 ) d'Y ^Fiv Μ (Formula 2S) dPdg -Fw(P,q) (Expression 30> 319806 20 200831233 (Formula 21) to (Formula 3〇) can be obtained from (Β-l) and (B_2) in advance Therefore, the slider driving force && mass with respect to the front end of the link is calculated from (Formula 9) and (Formula 2〇) by the following steps 1 to 6. (Step 1) Substituting the position target value [X, γ] of the plate holding portion into (a_1 (A.)), determining the position target value of the first slider and the second slider _ and • [p, obtained in step 1] q] Substituting Fl(t) F10(P, q) of the above formula 8 to obtain a partial differential value. ' q) to (step 3)
以及第一滑塊 運算,求出T 對板件把持部15之位置目標值[χ,yj、 4與第二滑塊5之位置目標值[p,q]進行微分 述數式9之速度目標值。 【數式9】 板件把持部之速度目標值[文、h 第一滑塊與第二滑塊之速度目標值[多、Μ (步驟4) 計算出下述數式l〇之 Vp, 從步驟2與步驟3之結果, Cp,Gp,Vq,Cq,Gq。 319806 21 200831233 ^ 【數式10】 VP ^Pi(P>q)^ + F6(p,q)^Y (式31) = X. (^3 (p, q) · p + F${p, q)-q)+f. (jr ^ q)^p + Fl0 (py q) · q) (式3 2) ‘ s’h{p,q) (式 33)And the first slider operation is performed to obtain a speed target of the position target value [χ, yj, 4 of the plate gripping portion 15 and the position target value [p, q] of the second slider 5 value. [Equation 9] Speed target value of the plate holding portion [Text, h The speed target value of the first slider and the second slider [Multiple, Μ (Step 4) Calculate the Vp of the following equation l〇, from The result of step 2 and step 3, Cp, Gp, Vq, Cq, Gq. 319806 21 200831233 ^ [Expression 10] VP ^Pi(P>q)^ + F6(p,q)^Y (Expression 31) = X. (^3 (p, q) · p + F${p, q)-q)+f. (jr ^ q)^p + Fl0 (py q) · q) (Equation 3 2) ' s'h{p,q) (Equation 33)
Vq =^(P^)-X + F7(p3?)-T (式 34) (F5(^)j+F4(M).々)+f.(Fi0(p,《)j+F9(MH) (式 35) 鲁 ^q-S^nip^q) (式 36) (步驟5) 求出在步驟4中求得的Vp與Vq2微分值(下述數式 11)〇 【數式11】Vq =^(P^)-X + F7(p3?)-T (Expression 34) (F5(^)j+F4(M).々)+f.(Fi0(p,")j+F9(MH (Expression 35) Lu^qS^nip^q) (Expression 35) (Step 5) Find the Vp and Vq2 differential values obtained in Step 4 (Expression 11 below) 〇 [Formula 11]
Vp之微分值F :匕 P dtDifferential value of Vp F :匕 P dt
Vq之微分值浐一 dVq dt (步驟6) 利用下述數式12之(式37)及(式38)而從步驟4與步 驟5之結果來求出滑塊驅動力fp,fq。 【數式12】 (式 37) (式 38) fp^m^P-Cp+Gp) Λ zzfn^q-cq+Q^ ττ 319806 200831233 將經由上述步驟1至6之處理而求出的滑塊驅動力f 心乘以調整W K,可求出前述之修正轉矩 力p, KV前述之轉矩修正手段就是執行如上述之處 正轉矩指令值Kfp,Kfq。 叩开出修 以下㈣上4本發明平行連桿式 置20及控制方法之作用效果。 之控制裝 γι j述f修正轉矩指令值叫叫係根據位置 二搬送物的質量m而求出者,不 力的影響’而且反映出慣性力的影響。因此,::千衡 矩知,值Kfp,Kfq加到要給馬達驅動器 得 值,可進行對構成平 ,轉矩指令 控制,所以即使在6之各連桿的運動的補償 桿前端的位置精度提高移動的動作進行中,亦能使連 Μ Γ者,根據以複數個滑塊4,5的位置座桿分別豐η 軌道及目標速度求出的 == 微刀之複數個函數(拉格朗其 :,差進仃偏 修正轉矩指令值, 王式),來求出複數個 的修正轉矩指令值。π 反映出慣性力的影響之適切 此外’在修正轉矩指令值Kf 能或只對位能進行偏 q的异出中’只對動 分的情況相比,計嘗旦:/、對動月匕及位能之差進行偏微 另外,設計成可從可抑制控制裝置20之負荷。 一只對位能:偏對動能 h值’並在運轉中依據搬送物的位置、速度而二= 319806 200831233 行切換,計算量亦會減少,同樣可抑制控制褒置⑼之負? 二卜制=驟1至6之處理係在每-個更新轉矩: 周她亍。亦即’隨著位置目標值之變化而日士 時刻刻計算複數個修正轉矩指令值Kfp,Kfq ’並將之= 個轉矩指令值,可運算出對應於那時的目 “位置b之適切的修正轉矩指令值Kfp,Kfq。 另外,在所要生產的板件尺寸(panel size)有變化 的工具⑽U重量有變更的情況,只要相對應1 、吏更貝置m即可因應,面對搬送物的重 確的修正轉矩指令值Kfp,KV 更门求出正 地、亩二卜1藉轉正轉矩指令值Kfp,KV可將能夠正綠 核心重量部的變化及運動的料 =授方式提,給馬達驅動器’且在與第2圖所 :各’回糾只進行對於構成平行連桿機構6 補償控制。換言之,係針對褒置對於搬 的曰篮调整及性能補償變得較容易。 此外’上述實施形態係以具有2自由度的平行連桿機 trr桿式搬送裝置為對象,惟本發明之適用範圍並 構之平行連桿式搬送裝置。自由度以上的平行連桿機 之太Γ上,係就本發明之實施形態進行說明,惟以上揭示 明的實施形態只是一個例子,本發明之範圍並不限 、处之各貫施形態。本發明之範圍涵蓋申請專利範圍所 319806 24 200831233 ’ 記載者、以及與申請專利範圍所記載者均等的涵義及範圍 ‘ 内的所有變化。 【圖式簡單說明】 第1圖係具備本發明控制裝置之平行連桿式搬送裝置 ‘的概略構成圖。 ^ 第2圖係本發明實施形態之平行連桿式搬送裝置之控 制裝置的構成圖。 I 第3圖係第1圖所示的平行連桿式搬送裝置之模式 圖。 【主要元件符號說明】 1 板件 2 工件把持具 3 橫桿 4 第一滑塊 5 第二滑塊 6 平行連桿機構 7 第一連桿 8 第二連桿 9 第一滑塊軸 10 搬送裝置 11 第一連桿驅動機構 12 第二連桿驅動機構 13 第二滑塊軸 14a 上游侧衝壓站 14b 下游侧衝壓站 15 板件把持部 16 基座構件 17 馬達 18 馬達 20 控制裝置 21 滑塊目標位置計算手段 22 p軸馬達控制部 23 q軸馬達控制部 24 轉矩修正手段 25 p軸馬達驅動器 26 q軸馬達驅動器 27 編碼器 28 編碼器 25 319806 200831233 fp,fq 滑塊驅動力 Kfp, Kfq 修正轉矩指令值 L 連桿長度 (p,q) 滑塊目標位置 [X,Y] 位置目標值 (X0, Y0) ρ軸與q軸的交點 (X,γ) 板件把持部的位置 ❿ 26 319806The differential value of Vq is one dVq dt (step 6) The slider driving forces fp, fq are obtained from the results of steps 4 and 5 by the following equations (Expression 37) and (Expression 38). [Expression 12] (Expression 37) (Expression 38) fp^m^P-Cp+Gp) Λ zzfn^q-cq+Q^ ττ 319806 200831233 The slider obtained by the above steps 1 to 6 The driving force f is multiplied by the adjustment WK to obtain the aforementioned corrected torque force p, and the above-described torque correction means performs the positive torque command values Kfp, Kfq as described above. The following four effects of the parallel connecting rod type 20 and the control method of the present invention are as follows. The control device γι j describes the corrected torque command value, which is determined based on the mass m of the position, the influence of the force, and reflects the influence of the inertial force. Therefore, the value of Kfp and Kfq is added to the value of the motor driver, and the position and accuracy of the front end of the compensating rod of the movement of each of the 6 links can be performed. In the process of improving the movement, it is also possible to make a series of functions of the == micro-knife obtained from the position of the plurality of sliders 4, 5, respectively, based on the position of the sliders 4 and 5 (Lagrange) It is: a differential correction torque command value, Wang type), to obtain a plurality of corrected torque command values. π reflects the influence of the inertial force. In addition, in the case where the corrected torque command value Kf can be used or only the positional energy can be biased, the difference is only in the case of the momentum. The difference between the enthalpy and the potential energy is slightly different, and is designed to suppress the load on the control device 20. A aligning energy: partial kinetic energy h value ‘and in operation depends on the position and speed of the moving object 2 = 319806 200831233 line switching, the calculation amount will also be reduced, the same can suppress the negative control device (9)? The second system = the processing of the steps 1 to 6 is in each of the updated torque: she is 周. That is, as the position target value changes, the Japanese character calculates a plurality of corrected torque command values Kfp, Kfq ' at a time and = torque command value, and can calculate the position "b) corresponding to the time Correctly correct the torque command values Kfp, Kfq. In addition, if the weight of the tool (10) U with a change in the panel size to be produced is changed, as long as the corresponding 1 and 吏 are set to m, the surface can be adapted. For the correct correction torque command value Kfp, KV of the transported object, the positive and the positive mutual torque command value Kfp can be obtained, and the KV can change the weight and movement of the positive green core weight portion. According to the teaching method, the motor driver is provided with the compensation control for the parallel link mechanism 6 in the same manner as in Fig. 2, in other words, the basket adjustment and performance compensation for the loading are improved. Further, the above-described embodiment is a parallel link type conveying device which is a parallel link machine having a two-degree-of-freedom, but a parallel link type conveying device having a range of application of the present invention. On the sun, The embodiments described above are described, but the embodiments disclosed above are only examples, and the scope of the present invention is not limited to the scope of the present invention. The scope of the present invention covers the scope of the patent application 319806 24 200831233 ' All changes in the meaning and scope of the claims are as follows. [Simplified description of the drawings] Fig. 1 is a schematic configuration diagram of a parallel link type conveying device having the control device of the present invention. ^ Fig. 2 Fig. 3 is a schematic view of a parallel link type conveying device shown in Fig. 1. [Main element symbol description] 1 Plate 2 workpiece Gripper 3 Crossbar 4 First slider 5 Second slider 6 Parallel link mechanism 7 First link 8 Second link 9 First slider shaft 10 Transport device 11 First link drive mechanism 12 Second connection Rod drive mechanism 13 Second slider shaft 14a Upstream side press station 14b Downstream side press station 15 Plate gripping portion 16 Base member 17 Motor 18 Motor 20 Control device 21 Slider target Position calculation means 22 p-axis motor control unit 23 q-axis motor control unit 24 torque correction means 25 p-axis motor driver 26 q-axis motor driver 27 encoder 28 encoder 25 319806 200831233 fp,fq slider driving force Kfp, Kfq correction Torque command value L Link length (p, q) Slider target position [X, Y] Position target value (X0, Y0) The intersection of the ρ axis and the q axis (X, γ) Position of the plate grip ❿ 26 319806
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007014465A JP2008178945A (en) | 2007-01-25 | 2007-01-25 | Control unit and control method for parallel link type carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200831233A true TW200831233A (en) | 2008-08-01 |
Family
ID=39644261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96148176A TW200831233A (en) | 2007-01-25 | 2007-12-17 | Control device and control method for parallel link type carrying apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2008178945A (en) |
TW (1) | TW200831233A (en) |
WO (1) | WO2008090683A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI728757B (en) * | 2020-03-23 | 2021-05-21 | 微正股份有限公司 | Direct pose feedback control method and direct pose feedback controlled machine |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010221322A (en) * | 2009-03-23 | 2010-10-07 | Yamatake Corp | Positioner |
CN106695759B (en) * | 2016-12-13 | 2023-04-11 | 九江精密测试技术研究所 | Three-degree-of-freedom parallel stable platform with symmetrical parallel-serial branches |
GB201707473D0 (en) | 2017-05-10 | 2017-06-21 | Moog Bv | Optimal control of coupled admittance controllers |
JP7342352B2 (en) * | 2018-10-25 | 2023-09-12 | 株式会社Ihi | Conveyance device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4725003B2 (en) * | 2003-05-20 | 2011-07-13 | 株式会社Ihi | Panel conveyor |
JP4340208B2 (en) * | 2004-09-28 | 2009-10-07 | オークマ株式会社 | Parallel mechanism machine tool position control device |
-
2007
- 2007-01-25 JP JP2007014465A patent/JP2008178945A/en active Pending
- 2007-12-06 WO PCT/JP2007/073562 patent/WO2008090683A1/en active Application Filing
- 2007-12-17 TW TW96148176A patent/TW200831233A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI728757B (en) * | 2020-03-23 | 2021-05-21 | 微正股份有限公司 | Direct pose feedback control method and direct pose feedback controlled machine |
Also Published As
Publication number | Publication date |
---|---|
JP2008178945A (en) | 2008-08-07 |
WO2008090683A1 (en) | 2008-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200831233A (en) | Control device and control method for parallel link type carrying apparatus | |
TWI226304B (en) | Object handling apparatus | |
EP2311735B1 (en) | Bag-making packaging machine | |
TWI736216B (en) | Robot hand, robot and robot system | |
CN107186106A (en) | The work transfer device of forcing press | |
TW201006636A (en) | Parallel mechanism | |
CN108780770A (en) | The teaching method of base board delivery device and baseplate transportation robot | |
WO2006132201A1 (en) | Work conveying device, control method for work conveying device, and press line | |
SE519617C2 (en) | Apparatus and means for providing square and folded booklets with square spines | |
CN112218799A (en) | Box assembling and packaging system and controller for box assembling and packaging system | |
JP2003159683A (en) | Dual-arm robot and method for controlling the same | |
JP5631372B2 (en) | Work transfer device | |
SE468000B (en) | ROBOTIZED HANDLING | |
CN209023659U (en) | The turnover type jig transmission line of intelligence manufacture flexible production line | |
JP2002079493A (en) | Cutting device for automatically cutting print | |
IT8922032U1 (en) | EQUIPMENT FOR THE CONTROLLED FEEDING OF SHEET PRODUCTS IN A COLLATING OR PACKAGING MACHINE | |
KR101772931B1 (en) | Vinyl fabric punching/transfer device | |
CN104609243A (en) | Cystosepiment gluing machine | |
CN108622630A (en) | The turnover type jig transmission line of intelligence manufacture flexible production line | |
US5104365A (en) | Paper sheet bending apparatus in bag making machine | |
JP2019048364A (en) | Workpiece conveyance device | |
TW397749B (en) | Tool head positioning device | |
WO2018117229A1 (en) | Conveyance system and operation method therefor | |
JP6634088B2 (en) | Articulated robot arm | |
JP2019073386A (en) | Work piece cutting device |