TW200827474A - Method for making a carbon nanotubes array - Google Patents

Method for making a carbon nanotubes array Download PDF

Info

Publication number
TW200827474A
TW200827474A TW95149801A TW95149801A TW200827474A TW 200827474 A TW200827474 A TW 200827474A TW 95149801 A TW95149801 A TW 95149801A TW 95149801 A TW95149801 A TW 95149801A TW 200827474 A TW200827474 A TW 200827474A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube array
preparing
array according
substrate
Prior art date
Application number
TW95149801A
Other languages
Chinese (zh)
Other versions
TWI329133B (en
Inventor
Zhuo Chen
Chun-Xiang Luo
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95149801A priority Critical patent/TWI329133B/en
Publication of TW200827474A publication Critical patent/TW200827474A/en
Application granted granted Critical
Publication of TWI329133B publication Critical patent/TWI329133B/en

Links

Abstract

A method for making a carbon nanotubes array includes the steps of: providing a substrate having a first surface and an opposite second surface; forming a catalyst layer on the first surface of the substrate; introducing a mixed gas including carbon source gas and carrying gas flowing though a surface of the catalyst layer; and focusing a laser on the second surface of the substrate and growing the carbon nanotubes array from the catalyst layer.

Description

200827474 九、發明說明: • 【發明所屬之技術領域】 本發明涉及一種奈米碳管陣列的製備方法,尤其涉及 採用雷射輔助化學氣相沈積法製備奈米碳管陣列的方 【先前技術】 奈米碳管係九十年代初發現的一種新型一維奈米材 料。奈米碳管的特殊結構決定了其具有特殊的性質,如高 ❿ 抗張強度和高熱穩定性;隨著奈米碳管螺旋方式的變化了 奈米碳管可呈現出金屬性或半導體性等。由於奈米碳管具 有理想的-維結構以及在力學、電學、熱學等領域優良的 性質,其在材料科學、化學、物理學等交又學科領域已展 現出廣闊的應用前景,在科學研究以及產業應用上也受到 越來越多的關注。 目别比較成熟的製備奈米碳管的方法主要包括電弧放 電法(Arc Discharge)、雷射燒蝕法(Laser Ablation)及化 • +氣相沈積法(Chemical Vapor Deposition)。其中,化學 氣相沈積法和前兩種方法相比具有產量高、可控性強、與 先蓟的積體電路工藝相容等優點,便於工業上進行大規模 合成,因此近幾年備受關注。 用於製備奈米碳管的化學氣相沈積法一般包括傳統熱 化學氣相沈積法(Thermal Chemical Vapor Deposition, CVD )、電漿化學氣相沈積法(piasma chemical Vapor Deposition,PCVD)與雷射辅助化學氣相沈積法 (Laser-Induced Chemical Vapor Deposition , LICVD)。 6 200827474 . ^的雷職助化學氣相沈積法-般以雷射為快速加 • _源’细雷射光束直接照射在生長所需的基底上使其 溫度升高’達耻長所需的溫度。#含碳反應氣體流經高 溫基底表面時,受基底影響升溫,通過與基底上的催化劑 作用’反應氣體產生熱解或化學反應,從而實現奈米碳管 的生長。 惟,先W的雷射輔助化學氣相沈積法生長奈米碳管有 • α下不足之處:首先,該方法-般需在-密封的反應爐内 進行,並使得反應氣體充滿整個反應空間,其設備較為複 雜,且難以製作大型的反紐用於在大面積基板上通過化 學氣相沈積法生長奈米碳管。其次,該方法採用雷射光束 直接正面照射在奈米碳管生長所需的基底上,由於雷射場 強度較高,容易破壞奈米碳管的生長。 有鑒於此,確有必要提供一種改進的雷射辅助化學氣 相沈積法’其無需在密封的反應室,且可儘量減少正面照 • 射時雷射對奈米碳管生長的破壞。 【發明内容】 一種奈米碳管陣列的製備方法,其包括以下步 驟:提供一基底,該基底包括相對的第一表面及第二 表面;在上述基底第一表面形成一催化劑層;通入碳 源氣與載氣的混合氣體流經上述催化劑層表面;以及 以雷射光束聚焦照射上述基底第二表面從而生長奈 米碳管陣列。 相較於先前技術,所述的奈米碳管陣列的製備方 7 200827474 法採用雷射光束聚焦後從基底反面照射生長奈米石炭 管陣列,可避免雷射正面照射破壞新生長出來的奈米 碳管,同時在反應過程中可避免雷射作用於反應氣體 引起反應氣體性質改變。另,由於雷射光束聚焦後半 徑較小,催化劑被局部加熱至所需生長溫度,且,石炭 源氣被直接通入到催化劑表面附近,故,本發明實施 例奈米碳管陣列的製備方法無需在一密封的反應室 内進行,有利於簡化設備、節約能源。 【實施方式】 以下將結合附圖對本發明作進一步的詳細說明。 請參閱圖1,本發明實施例奈米碳管陣列的製備方 法主要包括以下幾個步驟: 步驟一:提供一基底,該基底包括相對的第—表 面與弟二表面。 本實施例中基底材料選用耐高溫材料製成。根據 不同應用,本實施例中基底材料還可分別選用透明戈 不透明的材料’如,當應用於半導體電子器件時可^ =為矽、二氧化矽或金屬材料等不透明材料;當應用 、/、面積平板顯示器時,優選為玻璃、可塑性有機材 料等透明材料。 如太二選用透明材料時,基底本身厚度不影響本實施 =二米碳管陣列的生長,其也可根據實際應用選擇不 7厚度。當選用不透明材料時,本實施例基底厚度應 、七較薄’優選為小於1 〇 〇微米,以利於熱量迅速 8 200827474 傳導。 步驟二:在上述基底的第一表面均勻形成一催化 劑層。 該催化劑層的形成可利用熱沈積、電子束沈積或 藏射法來完成。催化劑層的材料選用鐵,也可選用其 他材料,如氮化鎵、鈷、鎳及其合金材料等。進一步 地,可通過高溫退火等方式氧化催化劑層,形成催化 劑氧化物顆粒。 另,本發明實施例催化劑層也可選用形成一種含 碳的催化劑層,或者在該催化劑層與基底之間預先形 成一光吸收層。 當選用形成一種含碳的催化劑層時,該含碳的催 化劑層的製備方法包括以下步驟:提供一種分散劑與 一種含碳物質的混合物,並與一溶劑混合形成溶液; 將該溶液進行超聲波處理分散;在該分散後的溶液中 加入金屬>6肖酸鹽混合物溶解得到一催化劑溶液;將該 催化劑溶液均勻塗敷於基底的第一表面;烘烤該塗敷 有催化劑溶液的基底從而在基底的第一表面形成一 含碳的催化劑層。 其中,該含碳物質包括碳黑或石墨等含碳材料。 該分散劑用於將含碳物質均勻分散,優選為十二烷基 苯績酸納(Sodium Dodecyl Benzene Sulfonate, SDBS)。溶劑可選擇為乙醇溶液或水。該分散劑與含 碳物質的質量比為1:2〜1:10,本實施例優選為將 9 200827474 、 0〜100毫克的十二烷基苯磺酸鈉與100〜500毫克的碳 黑混合物與乙醇溶液混合形成溶液。 該金屬硝酸鹽混合物包括硝酸鎂(Mg(N〇3)2.6H2〇) 與石肖酸鐵(Fe(N〇3)3.9H2〇)、硝酸鈷(C〇(N〇3)2.6H2〇)或硝 酸錄(Ni(N〇3)2.6H2〇)中任一種或幾種組成的混合物。 本實施例優選為將硝酸鐵(Fe(N〇3)3· 9H2〇)與硝酸鎂 (Mg(NO〇r6H2〇)加入到溶液中形成催化劑溶液,該催 _ 化劑溶液中含有〇·〇1〜0.5摩爾/升(Mol/L)的硝酸鎂 與0.01〜(K5M〇l/L的硝酸鐵。 烘烤的溫度為β〇〜l〇d。烘烤的作用為將催化劑 溶液中的溶劑蒸發從而形成一含碳催化劑層。 本實施例中,該含碳的催化劑層的厚度為1〇〜1〇〇 微米。催化劑溶液塗敷於基底表面可採用旋轉塗敷的 方式其轉速為1000〜5000轉/分(rpm),優選為 1500rpm。 參 另’當選用在該催化劑層與基底之間預先形成一 光吸收層時,該光吸收層的製備方法包括以下步驟: 將一含碳材料塗敷於上述基底的第一表面,該含碳材 料要求能與基底表面結合緊密;在保護氣體環境中, 將塗敷有含碳材料的基底逐漸加溫到約3〇〇。〇以上, 並烘烤一段時間;自然冷卻到室溫形成一光吸收層於 基底的第一表面。 本發明實施例中’保護氣體可為氮氣或惰性氣 體,含後材料優選為目前廣泛應用於電子產品如冷陰 200827474 極顯像管中的石墨乳材料。進一步地,該石墨乳可通 過旋轉塗敷方式形成於基底表面,其轉速為 1000〜5000印111,優選為150011)111。所形成的光吸收層 的厚度為1〜20微米。另,烘烤的目的在於使得含碳 材料中的其他材料洛發,如將石墨乳中的有機物条 發。 進一步地,當使用光吸收層時,該催化劑層也可 通過將一催化劑溶液塗敷於光吸收層上形成,其具體 步驟包括:提供一催化劑乙醇溶液;將該催化劑乙醇 溶液塗敷於上述光吸收層表面。 本實施例中,該催化劑乙醇溶液為將金屬硝酸鹽 混合物與乙醇溶液混合形成。該金屬硝酸鹽混合物為 石肖酸鎮(Mg(N〇3)2_6H2〇)與石肖酸鐵(Fe(N〇3)3_9H2〇)、确酸 鈷(Co(N〇3)2_6H2〇)或硝酸鎳(Ni(Ν〇3)2·6Η2〇)中任一種 或幾種組成的混合物。優選地,該催化劑乙醇溶液為 硝酸鎂與硝酸鐵組成的混合物的乙醇溶液,溶液中硝 酸鐵的含量為0.01〜0. 5Mol/L,頌酸鎂的含量為 0. 01〜0. 5Mol/L。該催化劑乙醇溶液可通過旋轉塗敷 形成於光吸收層表面,其轉速優選為約1500rpm。所 形成的催化劑層的厚度為1〜100奈米。 步驟三:通入碳源氣與載氣的混合氣體流經上述 催化劑表面。 該碳源氣優選為廉價氣體乙炔,也可選用其他碳 氫化合物如曱烷、乙烷、乙烯等。載氣氣體優選為氬 11 200827474 氣,也可選用其他惰性氣體如氮氣等。本實施例中, 碳源氣與載氣可通過一氣體喷嘴直接通入到上述催 化劑層表面附近。載氣與碳源氣的通氣流量比例為 5 : 1〜10 : 1,本實施例優選為通以200標準毫升/分 (seem)的氬氣與25sccm的乙炔。 步驟四:以雷射光束聚焦照射上述基底的第二表 面從而生長奈米碳管陣列。 本實施例中,雷射光束可通過傳統的氬離子雷射 器或二氧化碳雷射器產生,其功率為0〜5W,優選為 470mW。產生的雷射光束可通過一透鏡聚焦後從正面 直接照射在上述基底的第二表面,可以理解,該雷射 光束可採用垂直照射或傾斜照射聚焦於基底的第二 表面上。 當雷射光束聚焦照射在基底第二表面時,由於本 發明實施例採用厚度較薄的不透明基底或透明基 底,該雷射光束能量可迅速透過基底傳遞到催化劑層 並加熱催化劑。反應預定時間後,由於催化劑的作 用,以及雷射光束照射在基底催化劑層上加熱催化 劑,通入到基底附近的碳源氣在一定溫度下熱解成碳 單元(OC或C)與氳氣。其中,氩氣會將被氧化的催 化劑還原,竣單元吸附於催化劑層表面,從而生長出 奈米碳管。 本發明實施例中,由於採用雷射聚焦反面照射基 底生長奈米碳管陣列,可有效避免雷射光束正面照射 12 200827474 基底破壞奈米碳管陣列。且,雷射光束也不會與參與 奈米碳管生長反應的氣體進行任何直接作用,不會對 氣體的性質產生影響,進而破壞奈米碳管陣列的生 長。 另,本實施例中,利用含碳催化劑層或光吸收層 吸收雷射能量的作用,該化學氣相沈積法反應溫度可 低於600攝氏度。另,該含碳催化劑層或光吸收層可 在反應過程中釋放出碳原子促進奈米碳管的成核及 生長。 另,由於本發明實施例採用雷射聚焦照射生長奈 米碳管陣列’催化劑局部溫度在較短時間内能夠被加 熱並吸收足夠的能量,同時,碳源氣為直接通入到被 加熱的催化劑表面附近。故,本發明實施例無需一密 封的反應室,即可同時保證生長奈米碳管陣列的催化 劑附近達到所需的溫度及碳源氣的密度,且,由於碳 源氣分解產生的氬氣的還原作用,可確保氧化的催化 劑能夠被還原,並促使奈米碳管陣列生長。 士請參閱圖2,當本發明實施例採用含碳的催化劑層 犄採用聚焦後直徑範圍在50〜20〇微米的雷射光束 垂直地從反面照射在玻璃基底的催化劑上約5秒鐘, 可得到如圖2所示的奈米碳管陣列。該奈米碳管陣列 為山丘形狀,且垂直於玻璃基底生長。該奈米碳管陣 列的直#為50〜80微米,高度為1〇〜2〇微米。每個奈 米碳管的直徑為40〜80奈米。 13 200827474 請參閱圖3,當本發明實施例採用石墨乳層作為光 吸收層時形成於基底與催化劑層之間時,顧聚焦後 直徑犯圍纟50〜2GG微米的雷射光束垂直地從反面照 射在玻璃基底的催化劑上約3G秒鐘,可得到如圖s 所示的奈米碳管_。該奈米碳管_為山丘形狀, 且垂直於基底生長。該奈米碳管陣列的直徑為 100〜200微米,高度為10〜2〇微米。每個奈米碳管的 直徑為10〜30奈米。200827474 IX. DESCRIPTION OF THE INVENTION: 1. Technical Field of the Invention The present invention relates to a method for preparing a carbon nanotube array, and more particularly to a method for preparing a carbon nanotube array by laser assisted chemical vapor deposition [Prior Art] The carbon nanotubes are a new type of one-dimensional nanomaterial discovered in the early 1990s. The special structure of the carbon nanotubes determines its special properties, such as high tensile strength and high thermal stability. With the change of the carbon nanotube spiral mode, the carbon nanotubes can exhibit metallic or semiconducting properties. . Because carbon nanotubes have an ideal-dimensional structure and excellent properties in the fields of mechanics, electricity, heat, etc., they have shown broad application prospects in the fields of materials science, chemistry, physics, etc., in scientific research and Industrial applications are also receiving more and more attention. The more mature methods for preparing carbon nanotubes include Arc Discharge, Laser Ablation, and Chemical Vapor Deposition. Among them, the chemical vapor deposition method has the advantages of high yield, strong controllability, compatibility with the advanced integrated circuit process, and the like, which is convenient for large-scale synthesis in the industry, and thus has been widely accepted in recent years. attention. Chemical vapor deposition methods for preparing carbon nanotubes generally include conventional thermal chemical vapor deposition (CVD), piasma chemical Vapor Deposition (PCVD) and laser assisted Laser-Induced Chemical Vapor Deposition (LICVD). 6 200827474 . ^ Ray-assisted chemical vapor deposition method - generally with laser as fast - _ source 'fine laser beam directly irradiated on the substrate required for growth to increase its temperature 'to achieve a long shave length temperature. When the carbon-containing reaction gas flows through the surface of the high-temperature substrate, it is heated by the substrate, and the reaction gas is reacted with the catalyst on the substrate to generate a pyrolysis or chemical reaction, thereby realizing the growth of the carbon nanotubes. However, the first laser-assisted chemical vapor deposition method for the growth of carbon nanotubes has the following disadvantages: First, the method is generally carried out in a sealed reactor and the reaction gas is filled throughout the reaction space. The equipment is relatively complicated, and it is difficult to make a large anti-neutral for growing carbon nanotubes by chemical vapor deposition on a large-area substrate. Secondly, the method uses a laser beam to directly illuminate the substrate required for the growth of the carbon nanotubes. Due to the high intensity of the laser field, it is easy to destroy the growth of the carbon nanotubes. In view of this, it is indeed necessary to provide an improved laser-assisted chemical vapor deposition method that does not require a sealed reaction chamber and minimizes damage to the carbon nanotube growth during frontal illumination. SUMMARY OF THE INVENTION A method for preparing a carbon nanotube array includes the steps of: providing a substrate comprising an opposite first surface and a second surface; forming a catalyst layer on the first surface of the substrate; and introducing carbon A mixed gas of source gas and carrier gas flows through the surface of the catalyst layer; and a laser beam is focused to illuminate the second surface of the substrate to grow an array of carbon nanotubes. Compared with the prior art, the preparation method of the carbon nanotube array 7 200827474 method uses a laser beam to focus and irradiate the nano carboniferous tube array from the reverse side of the substrate, thereby avoiding the laser frontal irradiation to destroy the newly grown nanometer. The carbon tube can avoid the change of the properties of the reaction gas caused by the action of the laser on the reaction gas during the reaction. In addition, since the laser beam is locally heated to a desired growth temperature after the laser beam is focused, and the carbonaceous source gas is directly introduced into the vicinity of the catalyst surface, the method for preparing the carbon nanotube array of the embodiment of the present invention It does not need to be carried out in a sealed reaction chamber, which is conducive to simplifying equipment and saving energy. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to Fig. 1, a method for preparing a carbon nanotube array according to an embodiment of the present invention mainly comprises the following steps: Step 1: Providing a substrate comprising opposite first surface and second surface. In the embodiment, the base material is made of a high temperature resistant material. According to different applications, the base material in this embodiment may also be selected from transparent opaque materials, such as opaque materials such as tantalum, cerium oxide or metal materials when applied to semiconductor electronic devices; In the case of an area flat panel display, a transparent material such as glass or a plastic organic material is preferable. If the transparent material is selected for Tai 2, the thickness of the substrate itself does not affect the growth of the present embodiment = 2 m carbon tube array, and it may also be selected according to the actual application. When an opaque material is selected, the thickness of the substrate of this embodiment should be seven, thinner, preferably less than 1 〇 〇 micron, to facilitate rapid heat transfer. Step 2: uniformly forming a catalyst layer on the first surface of the substrate. The formation of the catalyst layer can be accomplished by thermal deposition, electron beam deposition or trapping. The material of the catalyst layer is iron, and other materials such as gallium nitride, cobalt, nickel and alloy materials thereof may also be used. Further, the catalyst layer may be oxidized by high temperature annealing or the like to form catalyst oxide particles. Further, the catalyst layer of the embodiment of the present invention may alternatively form a carbon-containing catalyst layer or a light absorbing layer may be formed in advance between the catalyst layer and the substrate. When a catalyst layer for forming a carbon is used, the method for preparing the carbon-containing catalyst layer comprises the steps of: providing a mixture of a dispersant and a carbonaceous material, and mixing with a solvent to form a solution; and ultrasonically treating the solution. Dispersing; adding a metal > 6 mixture in the dispersed solution to obtain a catalyst solution; uniformly applying the catalyst solution to the first surface of the substrate; baking the substrate coated with the catalyst solution to The first surface of the substrate forms a carbon-containing catalyst layer. Wherein, the carbonaceous material comprises a carbonaceous material such as carbon black or graphite. The dispersant is used to uniformly disperse the carbonaceous material, preferably Sodium Dodecyl Benzene Sulfonate (SDBS). The solvent can be selected from an ethanol solution or water. The mass ratio of the dispersing agent to the carbonaceous material is 1:2 to 1:10. In this embodiment, it is preferred to mix 9200827474, 0~100 mg of sodium dodecylbenzenesulfonate with 100~500 mg of carbon black. Mix with an ethanol solution to form a solution. The metal nitrate mixture includes magnesium nitrate (Mg(N〇3)2.6H2〇) and iron oxalate (Fe(N〇3)3.9H2〇), cobalt nitrate (C〇(N〇3)2.6H2〇) Or a mixture of any one or several of nitric acid (Ni(N〇3)2.6H2〇). In this embodiment, it is preferred to add ferric nitrate (Fe(N〇3)3·9H2〇) and magnesium nitrate (Mg(NO〇r6H2〇) to the solution to form a catalyst solution, and the catalyst solution contains 〇·〇 1~0.5 mol/L (Mol/L) of magnesium nitrate with 0.01~(K5M〇l/L of ferric nitrate. The baking temperature is β〇~l〇d. The effect of baking is to use the solvent in the catalyst solution. Evaporating to form a carbon-containing catalyst layer. In this embodiment, the carbon-containing catalyst layer has a thickness of 1 〇 1 to 1 μm. The catalyst solution is applied to the surface of the substrate by spin coating, and the rotation speed is 1000 〜 5000 rpm, preferably 1500 rpm. When the light absorbing layer is preliminarily formed between the catalyst layer and the substrate, the method for preparing the light absorbing layer comprises the following steps: coating a carbonaceous material Applied to the first surface of the substrate, the carbonaceous material is required to be tightly bonded to the surface of the substrate; in a protective gas environment, the substrate coated with the carbonaceous material is gradually heated to about 3 Torr. Bake for a while; naturally cool to room temperature to form a light absorbing layer on the base In the embodiment of the present invention, the protective gas may be nitrogen or an inert gas, and the post-containing material is preferably a graphite milk material which is widely used in electronic products such as cold cathode 200827474 extreme picture tube. Further, the graphite emulsion may be It is formed on the surface of the substrate by spin coating at a rotation speed of 1000 to 5000 stamps 111, preferably 150011) 111. The thickness of the light absorbing layer formed is 1 to 20 micrometers. Further, the purpose of baking is to make carbonaceous materials. The other materials in Luofa, such as the organic matter in the graphite milk. Further, when the light absorbing layer is used, the catalyst layer can also be formed by applying a catalyst solution to the light absorbing layer, the specific steps of which include Providing a catalyst ethanol solution; applying the catalyst ethanol solution to the surface of the light absorbing layer. In this embodiment, the catalyst ethanol solution is formed by mixing a metal nitrate mixture with an ethanol solution. The metal nitrate mixture is Shi Xiao Acid town (Mg(N〇3)2_6H2〇) with iron oxalate (Fe(N〇3)3_9H2〇), cobalt (Co(N〇3)2_6H2〇) or nickel nitrate (Ni( 5Mol。 The amount of iron nitrate in the solution is a mixture of the mixture of magnesium nitrate and ferric nitrate, the content of iron nitrate in the solution is 0.01~0. 5Mol /L, the content of the magnesium citrate is 0. 01~0. 5Mol / L. The catalyst ethanol solution can be formed on the surface of the light absorbing layer by spin coating, and the rotation speed thereof is preferably about 1500 rpm. The thickness of the formed catalyst layer is 1 to 100 nm. Step 3: a mixed gas of carbon source gas and carrier gas is passed through the surface of the catalyst. The carbon source gas is preferably an inexpensive gas acetylene, and other hydrocarbons such as decane, ethane, or the like may be used. Ethylene and the like. The carrier gas is preferably argon 11 200827474 gas, and other inert gases such as nitrogen may also be used. In this embodiment, the carbon source gas and the carrier gas can be directly introduced into the vicinity of the surface of the catalyst layer through a gas nozzle. The ratio of the aeration flow rate of the carrier gas to the carbon source gas is 5:1 to 10: 1, and this embodiment is preferably an argon gas of 200 standard milliliters per minute (seem) and an acetylene of 25 seem. Step 4: illuminating the second surface of the substrate with a laser beam to grow the carbon nanotube array. In this embodiment, the laser beam can be generated by a conventional argon ion laser or carbon dioxide laser having a power of 0 to 5 W, preferably 470 mW. The resulting laser beam can be focused by a lens and directly illuminated from the front side onto the second surface of the substrate. It will be appreciated that the laser beam can be focused on the second surface of the substrate by vertical or oblique illumination. When the laser beam is focused on the second surface of the substrate, since the embodiment of the present invention employs a thinner opaque substrate or a transparent substrate, the laser beam energy can be rapidly transmitted through the substrate to the catalyst layer and heat the catalyst. After the reaction for a predetermined period of time, the carbon source gas introduced into the vicinity of the substrate is pyrolyzed into a carbon unit (OC or C) and helium at a certain temperature due to the action of the catalyst and the irradiation of the laser beam on the base catalyst layer to heat the catalyst. Among them, argon gas will reduce the oxidized catalyst, and the ruthenium unit adsorbs on the surface of the catalyst layer to grow a carbon nanotube. In the embodiment of the present invention, since the nano-carbon nanotube array is irradiated by the laser focusing back surface, the front side of the laser beam can be effectively prevented from being irradiated by the front surface of the laser beam. Moreover, the laser beam does not directly interact with the gas involved in the growth reaction of the carbon nanotubes, and does not affect the properties of the gas, thereby destroying the growth of the carbon nanotube array. Further, in the present embodiment, the effect of absorbing the laser energy by the carbon-containing catalyst layer or the light absorbing layer, the reaction temperature of the chemical vapor deposition method may be lower than 600 °C. Alternatively, the carbon-containing catalyst layer or the light absorbing layer can release carbon atoms during the reaction to promote nucleation and growth of the carbon nanotubes. In addition, since the embodiment of the present invention uses a laser focused irradiation to grow a carbon nanotube array, the local temperature of the catalyst can be heated and absorb sufficient energy in a short time, and at the same time, the carbon source gas is directly passed to the heated catalyst. Near the surface. Therefore, the embodiment of the invention does not require a sealed reaction chamber, and simultaneously ensures that the desired temperature and the density of the carbon source gas are reached in the vicinity of the catalyst for growing the carbon nanotube array, and the argon gas generated by the decomposition of the carbon source gas The reduction ensures that the oxidized catalyst can be reduced and promotes the growth of the nanotube array. Referring to FIG. 2, when a carbonaceous catalyst layer is used in the embodiment of the present invention, a laser beam having a diameter ranging from 50 to 20 μm is used to vertically illuminate the catalyst on the glass substrate from the reverse surface for about 5 seconds. A carbon nanotube array as shown in Fig. 2 was obtained. The carbon nanotube array is in the shape of a hill and grows perpendicular to the glass substrate. The carbon nanotube array has a straight #50 to 80 μm and a height of 1 to 2 μm. Each carbon nanotube has a diameter of 40 to 80 nm. 13 200827474 Please refer to FIG. 3 , when the embodiment of the present invention is formed between the substrate and the catalyst layer when the graphite emulsion layer is used as the light absorbing layer, the laser beam having a diameter of 50 to 2 GG micrometers after focusing is vertically from the reverse side. The carbon nanotubes shown in Figure s were obtained by irradiating the catalyst on the glass substrate for about 3 G seconds. The carbon nanotubes are in the shape of a hill and grow perpendicular to the substrate. The carbon nanotube array has a diameter of 100 to 200 μm and a height of 10 to 2 μm. Each carbon nanotube has a diameter of 10 to 30 nm.

進-步地’本實_雷射辅助化學氣相沈積法生 長奈米碳管陣列過程中,可通過控制移動雷射光束掃 描照射在基底的催化劑層上,可實現大面積基底上生 長奈米碳管陣列。 綜上所述,本發明確已符合發明專利之要件,遂 依法提出專射請。惟,以上所述者料本發明之較 佳實施例,自不能以此限制本案之申請專利範圍。舉 凡熟悉本案技藝之人士援依本發明之精神所作之等 效修飾或變化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施例奈米碳管陣列的製造方法的 流程示意圖。 圖2係本發明實施例採用含碳催化劑層獲得的奈 米碳管陣列的掃描電鏡照片。 圖3係本發明實施例採用光吸收層獲得的奈米碳 管陣列的掃描電鏡照片。 14 200827474 【主要元件符號說明】 益 4 %»\In the process of growing a carbon nanotube array by laser-assisted chemical vapor deposition in a step-by-step manner, it is possible to realize the growth of a large-area substrate by controlling the moving laser beam to be irradiated onto the catalyst layer of the substrate. Carbon tube array. In summary, the present invention has indeed met the requirements of the invention patent, and 提出 legally proposed special shots. However, the above-mentioned preferred embodiments of the present invention are not intended to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of manufacturing a carbon nanotube array according to an embodiment of the present invention. Fig. 2 is a scanning electron micrograph of a carbon nanotube array obtained by using a carbon-containing catalyst layer in an embodiment of the present invention. Fig. 3 is a scanning electron micrograph of a carbon nanotube array obtained by using a light absorbing layer in an embodiment of the present invention. 14 200827474 [Explanation of main component symbols] Benefit 4 %»\

1515

Claims (1)

200827474 十、申請專利範圍 1. 一種奈米碳管陣列的製備方法,其包括以下步驟: 提供一基底,該基底包括相對的第一表面及第二表 面; 在上述基底第一表面形成一催化劑層; 通入碳源氣與載氣的混合氣體流經上述催化劑表 面;以及 以雷射光束聚焦照射在上述基底第二表面從而生 長奈米碳管陣列。 2. 如申請專利範圍第1項所述的奈米碳管陣列的製備 方法,其中,該基底材料為矽、氧化矽或金屬,其 厚度小於100微米。’ 3. 如申請專利範圍第1項所述的奈米碳管陣列的製備 方法,其中,該基底材料為玻璃或可塑性有機材料。 4. 如申請專利範圍第1項所述的奈米碳管陣列的製備 方法,其中,該催化劑層為含碳的催化劑層,其製 備方法包括以下步驟: 提供一種分散劑與一種含碳物質的混合物; 將該混合物與一溶劑混合形成溶液; 將該溶液進行超聲波處理分散; 在該分散後的溶液中加入金屬硝酸鹽混合物溶解 得到一催化劑溶液; 將該催化劑溶液均勻塗敷於基底表面;以及 烘烤該塗敷有催化劑溶液的基底從而在基底表面 16 200827474 形成一含碳的催化劑層。 ^ 5.如申請專利範圍第4項所述的奈米碳管陣列的製備 * 方法,其中,該含碳物質為碳黑或石墨,該分散劑 為十二烧基苯續酸鈉。 6. 如申請專利範圍第5項所述的奈米碳管陣列的製備 方法,其中,該分散劑與含碳物質的質量比為 1:2〜1:10 。 7. 如申請專利範圍第4項所述的奈米碳管陣列的製備 馨 方法,其中,該金屬頌酸鹽混合物為石肖酸鎂與石肖酸 鐵、瑞酸銘或頌酸鎳中任一種或幾種組成的混合物。 8. 如申請專利範圍第4項所述的奈米碳管陣列的製備 方法,其中,該溶劑為乙醇溶液或水。 9. 如申請專利範圍第4項所述的奈米碳管陣列的製備 方法,其中,該催化劑層的厚度為10〜100微米。 10. 如申請專利範圍第1項所述的奈米碳管陣列的製 0 備方法,其中,進一步包括先形成一光吸收層於基 底第一表面,催化劑層形成於該光吸收屠表面。 11. 如申請專利範圍第10項所述的奈米碳管陣列的製 備方法,其中,該光吸收層的形成包括以下步驟: 形成一含碳材料層於上述基底表面; 在氣氣壞境中’將塗敷有含碳材料的基底逐漸加溫 到300°C以上並烘烤;以及 自然冷卻到室溫形成一光吸收層於基底表面。 12. 如申請專利範圍第11項所述的奈米碳管陣列的製 17 200827474 備方法,其中,該含碳材料為石墨乳。 13. 如申請專利範圍第12項所述的奈米碳管陣列的製 備方法,其中,該石墨乳層採用旋轉塗敷形成於基 底表面。 14. 如申請專利範圍第10項所述的奈米碳管陣列的製 備方法,其中,該光吸收層的厚度為1〜20微米。 15. 如申請專利範圍第10項所述的奈米碳管陣列的製 備方法,其中,該催化劑層的形成包括以下步驟: 提供一催化劑溶液;以及 將該催化劑溶液塗敷於上述光吸收層表面。 16. 如申請專利範圍第15項所述的奈米碳管陣列的製 備方法,其中,該催化劑溶液為含有金屬硝酸鹽混 合物的乙醇溶液。 17. 如申請專利範圍第16項所述的奈米碳管陣列的製 備方法,其中,該金屬硝酸鹽混合物為硝酸鎂與硝 酸鐵、蛾酸钻或瑞酸鎳中任一種或幾種組成的混合 物。 18. 如申請專利範圍第15項所述的奈米碳管陣列的製 備方法,其中,該催化劑層的厚度為1〜100奈米。 19. 如申請專利範圍第1項所述的奈米碳管陣列的製 備方法,其中,該碳源氣包括曱烷、乙烷、乙烯或 乙炔,該載氣包括氬氣或氮氣。 20. 如申請專利範圍第19項所述的奈米碳管陣列的製 備方法,其中,該載氣與碳源氣的通氣流量比例為 18 200827474 5 : 1〜10 :卜 21. 如申請專利範圍第1項所述的奈米碳管陣列的製 備方法,其中,該雷射光束可通過傳統的氬離子雷 射器或二氧化碳雷射器產生,並通過一透鏡聚焦照 射在基底上。 22. 如申請專利範圍第21項所述的奈米碳管陣列的製 備方法,其中,該雷射光束聚焦後直徑範圍為 50〜200微米。200827474 X. Patent Application 1. A method for preparing a carbon nanotube array, comprising the steps of: providing a substrate comprising an opposite first surface and a second surface; forming a catalyst layer on the first surface of the substrate a mixed gas of a carbon source gas and a carrier gas flows through the surface of the catalyst; and a laser beam is focused on the second surface of the substrate to grow the carbon nanotube array. 2. The method of preparing a carbon nanotube array according to claim 1, wherein the substrate material is ruthenium, iridium oxide or metal having a thickness of less than 100 μm. 3. The method of preparing a carbon nanotube array according to claim 1, wherein the substrate material is a glass or a plastic organic material. 4. The method for preparing a carbon nanotube array according to claim 1, wherein the catalyst layer is a carbon-containing catalyst layer, and the preparation method comprises the steps of: providing a dispersing agent and a carbonaceous material; a mixture; mixing the mixture with a solvent to form a solution; dispersing the solution by ultrasonic treatment; adding a metal nitrate mixture to the dispersed solution to dissolve to obtain a catalyst solution; uniformly applying the catalyst solution to the surface of the substrate; The substrate coated with the catalyst solution is baked to form a carbon-containing catalyst layer on the substrate surface 16 200827474. 5. The preparation of a carbon nanotube array according to claim 4, wherein the carbonaceous material is carbon black or graphite, and the dispersant is sodium dodecyl benzoate. 6. The method for preparing a carbon nanotube array according to claim 5, wherein the mass ratio of the dispersing agent to the carbonaceous material is 1:2 to 1:10. 7. The method for preparing a carbon nanotube array according to claim 4, wherein the metal citrate mixture is magnesium stearate and iron tartaric acid, resin or nickel citrate. A mixture of one or several constituents. 8. The method of preparing a carbon nanotube array according to claim 4, wherein the solvent is an ethanol solution or water. 9. The method of preparing a carbon nanotube array according to claim 4, wherein the catalyst layer has a thickness of 10 to 100 μm. 10. The method of preparing a carbon nanotube array according to claim 1, further comprising forming a light absorbing layer on the first surface of the substrate, and forming a catalyst layer on the light absorbing surface. 11. The method for preparing a carbon nanotube array according to claim 10, wherein the forming of the light absorbing layer comprises the steps of: forming a carbonaceous material layer on the surface of the substrate; in an air atmosphere 'The substrate coated with the carbonaceous material is gradually warmed to above 300 ° C and baked; and naturally cooled to room temperature to form a light absorbing layer on the surface of the substrate. 12. The method of preparing a carbon nanotube array according to claim 11, wherein the carbonaceous material is graphite emulsion. 13. The method of producing a carbon nanotube array according to claim 12, wherein the graphite emulsion layer is formed on the surface of the substrate by spin coating. 14. The method of producing a carbon nanotube array according to claim 10, wherein the light absorbing layer has a thickness of 1 to 20 μm. 15. The method for preparing a carbon nanotube array according to claim 10, wherein the forming of the catalyst layer comprises the steps of: providing a catalyst solution; and applying the catalyst solution to the surface of the light absorbing layer . 16. The method of preparing a carbon nanotube array according to claim 15, wherein the catalyst solution is an ethanol solution containing a metal nitrate mixture. 17. The method for preparing a carbon nanotube array according to claim 16, wherein the metal nitrate mixture is composed of any one or more of magnesium nitrate and iron nitrate, moth acid or nickel retorate. mixture. 18. The method of preparing a carbon nanotube array according to claim 15, wherein the catalyst layer has a thickness of from 1 to 100 nm. 19. The method of preparing a carbon nanotube array according to claim 1, wherein the carbon source gas comprises decane, ethane, ethylene or acetylene, and the carrier gas comprises argon or nitrogen. 20. The method for preparing a carbon nanotube array according to claim 19, wherein the ratio of the aeration flow rate of the carrier gas to the carbon source gas is 18 200827474 5 : 1 to 10: The method for preparing a carbon nanotube array according to Item 1, wherein the laser beam is generated by a conventional argon ion laser or a carbon dioxide laser and is focused on a substrate by a lens. 22. The method of preparing a carbon nanotube array according to claim 21, wherein the laser beam has a diameter ranging from 50 to 200 μm after focusing. 1919
TW95149801A 2006-12-29 2006-12-29 Method for making a carbon nanotubes array TWI329133B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149801A TWI329133B (en) 2006-12-29 2006-12-29 Method for making a carbon nanotubes array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149801A TWI329133B (en) 2006-12-29 2006-12-29 Method for making a carbon nanotubes array

Publications (2)

Publication Number Publication Date
TW200827474A true TW200827474A (en) 2008-07-01
TWI329133B TWI329133B (en) 2010-08-21

Family

ID=44817254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149801A TWI329133B (en) 2006-12-29 2006-12-29 Method for making a carbon nanotubes array

Country Status (1)

Country Link
TW (1) TWI329133B (en)

Also Published As

Publication number Publication date
TWI329133B (en) 2010-08-21

Similar Documents

Publication Publication Date Title
Kumar et al. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage
CN101205059B (en) Preparation of nano-carbon tube array
US7780940B2 (en) Laser-based method for growing array of carbon nanotubes
US7820133B2 (en) Laser-based method for growing array of carbon nanotubes
US20060269668A1 (en) Method for making carbon nanotube array
JPWO2008029927A1 (en) Method for producing carbon nanotube
US8926934B2 (en) Laser-based method for growing an array of carbon nanotubes
US20060115409A1 (en) Method for producing carbon nanotube
TWI378897B (en) Method for producing carbon nanocoils
US8481128B2 (en) Laser-based method for growing array of carbon nanotubes
US8206624B2 (en) Method for producing carbon nanotube
TWI329133B (en) Method for making a carbon nanotubes array
CN114105109B (en) Preparation method of fig-shaped hollow hexagonal boron nitride nanostructured powder
CN115340084A (en) Method for preparing carbon nano tube by hydrogen-free chemical vapor deposition
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
TWI311591B (en) Method for making an array of carbon nanotubes
CN101206979B (en) Method of preparing field-emission cathode
TW200827475A (en) Method for making a carbon nanotubes array
TWI321805B (en) Method for making a field emission cathode
TW200827471A (en) Method for making a carbon nanotubes array
TWI321806B (en) Method for making a field emission cathode
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
TW200827472A (en) Method for making a carbon nanotubes array
Peng et al. Preparation and growth mechanism of clustered one-dimensional SiOx amorphous nanowires by catalytic pyrolysis of a polymer precursor
TW200912026A (en) Method for manufacturing carbon nanotubes and method for forming carbon particles