TW200826333A - Organic opto-electronic devices - Google Patents

Organic opto-electronic devices Download PDF

Info

Publication number
TW200826333A
TW200826333A TW096140032A TW96140032A TW200826333A TW 200826333 A TW200826333 A TW 200826333A TW 096140032 A TW096140032 A TW 096140032A TW 96140032 A TW96140032 A TW 96140032A TW 200826333 A TW200826333 A TW 200826333A
Authority
TW
Taiwan
Prior art keywords
compound
dendrimer
alkyl
aryl
cyclo
Prior art date
Application number
TW096140032A
Other languages
Chinese (zh)
Inventor
Hendrik Jan Bolink
Original Assignee
Dsm Ip Assets Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets Bv filed Critical Dsm Ip Assets Bv
Publication of TW200826333A publication Critical patent/TW200826333A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to an organic opto-electronic device comprising an organic layer between an anode and cathode, the organic layer comprising (a) 1-70 wt% of a dendritic compound, (b) 0-50 wt% of a compound for hole transport, (c) 0-50 wt% of a compound for electron transport and (d) 0-40 wt% of a compound for light emission, wherein the sum of elements (b), (c) and (d) is more than 20 wt% and the dendritic compound is inert. The invention also relates to organic opto-electronic single layer devices and a solution based process for making an organic opto-electronic device such as OLED's.

Description

200826333 九、發明說明: 本發明係關於有機發光裝置,諸如聚合物發光二極 體、有機彩色顯示器,且特別係關於一樹狀化合物為主之 高度有效有機發光材料。200826333 IX. INSTRUCTIONS: The present invention relates to organic light-emitting devices, such as polymer light-emitting diodes, organic color displays, and in particular to a highly active organic light-emitting material based on a dendrimer.

L· iltr J 使用有機材料之光電裝置由於多項理由故,逐漸符合 所需。多種用來製造此等裝置之材料相對廉價,故有機光 電裝置具有優於無機裝置之成本優勢的潛力。此外,有機 10材料之特有性質諸如其可撓性,讓有機材料皆為適合用於 特殊應用,諸如製造於可撓性基材上。有機光電裝置之實 例例如包括有機薄膜電晶體、有機光伏打電池、有機紐 測器及有機該發光裝置諸如有機發綠置(〇led)。用於 ◦LED ’有機材料具有優於f知材料之效能優勢。例如,有 15機發光層之發光波長容易使用適當摻雜劑調整。 士此處使用’有機」-§司包括可用於製造有機光電裝 置之聚合物料以及小分子有機材料。「小分子」係指非聚合 物之任何有機材料,而「小分子」實際上可能相當大。於 某二If况下小分子包括重複單位。例如使用長鏈烧基作為 2〇取代基並未將分子從「小分子」類別中除名。小分子也可 摻混於聚合物中,例如作為聚合物主鍵之側出基團,或作 為主鏈之一部分。小分子也可作為樹狀體之核心部分,樹 狀體係由-系列化學殼建立於核心部分上所組成。樹狀體 之核心部分可為螢光或碌光小分子發射體以及可傳輸電荷 5 200826333 之基團。 ◦led使时機薄膜,t跨該裝置施加電壓時,有機薄 膜發光。OLED用於諸如平板顯示器、照明、背光等用途逐 漸變成令人感興趣之技術。數種〇LED材料之組態說明於美 5國專利案5,844,363、6,303,238及5,707,745,各案全文以引 用方式併入此處。 OLED裝置通常(但非經常性)意圖用來經由其中至少 一個電極發光,一個或多個透明電極可用於有機光電裝 置。例如,透明電極材料諸如氧化銦錫(IT〇)可用作為底電 ίο極。也可使用透明頂電極,諸如揭示於美國專利案5,7〇3,436 及5,707,745,一案全文以引用方式併入此處。對於音圖只 經由底電極發光之裝置,頂電極無需為透明,而可包含具 有高導電性之厚反射金屬層。同理,對於意圖只經由頂電 極發光之裝置,底電極可為不透明及/或反射性。當電極無 15需為透明時,使用較厚層可獲得較佳導電性,且使用反射 電極經由將光朝向透明電極反射,可增加經由另一個電極 所發光之數量。也可製造全透明裝置,此處兩個電極皆為 透明。也可製造側面發光OLED,於此種裝置中一個電極或 兩個電極可為不透明或反射性。 2 〇 基於低分子量材料及聚合物料之有機發光二極體 (OLED)於先進應用階段係應用於平板顯示器。於1987年 Tang及VanSlyke以及1990年Burroughes等人初次報告後,於 裝置參數諸如效率及亮度之最佳化已經達成快速進展。但 儘管有此等成功的發展,仍然需要有具有改良可靠度及效 200826333 能之新穎oled。 於OLED中,發光係經由注入有機材料作為活性層之電 子與電洞復合所產生。電子與電洞於活性層内復合,於復 合中心產生單峰或三峰激光態。有效注入程序要求分子具 5 有高能LUMO(最低未被占用分子執域)及低能HOMO(最高 被占用分子軌域)。 有機活性層可由導電聚合物例如聚-伸苯基-伸乙烯基 (PPV)製造,或可較佳由「小」分子所組成,小分子有不同 功能,例如電洞傳輸分子、電子傳輸分子、寬帶隙主體分 10 子、電洞及激子阻擋分子及有效螢光或磷光分子。聚合物 層可藉旋塗製備,「小」分子可藉熱真空沈積或較佳藉基於 溶液之方法例如旋塗法,使用刮刀或喷墨印刷而沈積來形 成薄膜。 為了讓OLED正確發揮功能,重要地有機層為完全透 I5 明’表不薄膜不會散射入射光’當多於'—個小分子係使用 溶液加工技術諸如旋塗法沈積時,難以達成此項目的。因 此具有特定功能之使用小分子之OLED通常係使用氣相沈 積技術製備。 於多層OLED使用電洞阻擔層經進行來防止過量電洞 20喪失至陰極。於大部分情況下,電洞阻擋層(HBL)也作為激 子遷移的障壁,如此也可作為激子阻擋層。本層之關鍵特 性為其分子具有比用來傳輸電洞(正電荷)之分子HOMO能 更低之HOMO能,以及具有等於或高於用來傳輸電子(負電 何)之分子之LUMO能之LUMO能。此點指示於附圖(第1 7 200826333 圖),此處顯示高效率電致發磷光OLED之示意能階圖。電 洞係連同HOMO能階傳輸,電子係連同LUMO階傳輸。激 子於發光層以光芒圖案表示。 US 2005/0017629說明一種由「小」分子堆疊成為分開 5 層所組成之多層OLED。該OLED包含一基材(圖中未顯 示)、一陽極(ITO材料;(+))、一電洞傳輸層(HTL)、一發光 層(EL)、一電子傳輸層(ETL)、一金屬(陰極;㈠)及一保護 層(圖中未顯示)。電洞h+由陽極傳輸至發光層,電子e·由陰 極傳輸至發光層。於US 2005/0017629,發光層包含一具有 10鑭陰離子之樹狀體,且該樹狀體可活性發光。若屬適當, OLED裝置係於1(Γ8托耳之標準高度真空室内製造。此等類 別之OLED具有合理效能,但製造上極為昂貴,製備產率 低’且只能製造成小尺寸。 US 7,053,547說明包含一種聚合物之〇LED之實例,該 15 〇LED比較多層〇LED為較少層。此等類別oled之優點為 其可以旋塗技術或喷墨技術簡單製造,但比較基於多層小 分子之OLED之效能低。 t發明内容3 本發明之目的係k供一種改良之OLed。改良部分例如 20為改良效能、改良效率或可以成本有效方式製造。特別, 改良可為良好效能、高效率及以成本有效方式製備之組合。 本發明也有一目的係提供一種具有高透明度之 OLED,故該層實質上不會散射入射光或發光。 本發明包含一種於一陽極與一陰極間包含至少一層有 8 200826333 機層之有機光電裝置,該至少一層有機層包含 a· 1-70 wt%樹狀化合物 b· 0-50 wt%電洞傳輸化合物 c· 0-50 wt%電子傳輸化合物及 5 d· 0.2-40 wt%發光化合物, 其中組成分b、c及d之和係大於20 wt%,以及該樹狀化合物 之至少一部分為惰性。 本案所述重量百分比(wt%)為最終裝置,換言之,於製 備步驟諸如硬化、乾燥等後之有機層所占之重量百分比。 10 惰性一詞於此處表示該化合物並非電子或電洞傳輸之 主要因素,且該化合物並非發光之主要因素。如此有過渡 金屬共價鍵結其上之過渡金屬錯合物中之樹狀化合物典型 並非惰性。也須注意,此處惰性一詞係非關化學反應性, 如此,根據本發明之惰性樹狀化合物例如對化合物中之其 15 它物種具有反應性,諸如可參與後來之硬化反應而形成網 狀系統。 至少部分樹狀化合物為惰性一詞表示本發明涵蓋存在 有活性樹狀化合物(亦即參與電洞傳輸或電子傳輸及/或發 光)及惰性樹狀化合物二者之情況。 20 若存在時,組成分a、b、c及d分別係由一種或多種化 合物所組成。於主要實施例中,組成分b、c及d亦即電洞傳 輸化合物、電子傳輸化合物及發光化合物之重量和係大於 20 wt%,以有機層總重為基準。典型地,組成分b、c及d 之重量和係小於80%,較佳小於70%諸如小於5〇%。 9 200826333 a、b、c及d以外之組成分也可存在於有機層,例如技 藝界已知之有機填充劑或無機填充劑、溶劑、交聯劑及多 種添加劑。 根據本發明之第一態樣之裝置典型包含數層,各自負 5 責電洞傳輸、電子傳輸、發光及阻擋電洞等一項或多項功 能。較佳其中至少一層包含此等功能中之多於一項,如此 可減少需要的層數。 於另一態樣中’本發明包含一種於一陽極與一陰極間 包含至少一層有機層之有機光電裝置,該至少一層有機層 10 包含 a. 1-40 wt%樹狀化合物 b. 10-50 wt%電洞傳輸化合物 c. 10-50 wt%電子傳輸化合物及 d. 0.2-40 wt%發光化合物。 15 本發明裝置之優點為裝置具有簡單結構含有(容易接 近之)小分子,提供電子傳輸、電洞傳輸及發光功能。該裝 置的製造比較其它多層系統也相對容易。 本發明之OLED之優點為電子傳輸分子及電洞傳輸分 子存在於一層且同一層,藉此形成極為簡單之結構化 20 OLED。 較佳本發明之OLED包含於陽極與陰極間之有機層,該 有機層包含 a. 5-40 wt%樹狀化合物 b. 20-40 wt%電洞傳輸化合物 10 200826333 c. 20-40 wt%電子傳輸化合物及 d. 1-10 wt%發光化合物。 本發明之又一實施例為一種於一陽極與一陰極間包含 一有機層之有機光電裝置,該有機層包含 a. 5-40 wt%高度分支分子 b· 20-40 wt%電洞傳輸化合物 c. 20-40 wt%電子傳輸化合物及 d. 1_10 wt%發光化合物。 本發明之另一個實施例為一種於一陽極與一陰極間包 10 含一有機層之有機光電裝置,該有機層包含 a. 5-40 wt%高度分支分子 b. 20-40 wt%電洞傳輸化合物 c. 20-40 wt%電子傳輸化合物及 d. l_10wt%發光化合物, 15 其中該南度分支分子具有根據下式之結構式L·iltr J Optoelectronic devices using organic materials have gradually met the requirements for a number of reasons. A variety of materials used to make such devices are relatively inexpensive, so organic photonic devices have the potential to outperform the cost advantages of inorganic devices. In addition, the unique properties of the organic 10 material, such as its flexibility, make the organic material suitable for use in special applications, such as on flexible substrates. Examples of the organic optoelectric device include, for example, an organic thin film transistor, an organic photovoltaic cell, an organic photodetector, and an organic light-emitting device such as an organic light-emitting device. The use of ◦LED' organic materials has a superior performance advantage over that of materials. For example, the emission wavelength of a 15 luminescent layer is easily adjusted using an appropriate dopant. The term "organic" is used here to include polymer materials and small molecular organic materials that can be used in the manufacture of organic optoelectronic devices. "Small molecule" means any organic material that is not a polymer, and "small molecule" may actually be quite large. In the case of a certain two, the small molecule includes a repeating unit. For example, the use of a long chain alkyl group as a 2 〇 substituent does not remove the molecule from the "small molecule" category. Small molecules can also be incorporated into the polymer, for example as a pendant group of the primary bond of the polymer, or as part of the main chain. Small molecules can also be used as a core part of the dendrimer, which consists of a series of chemical shells built on the core. The core of the dendrimer may be a fluorescent or fluorescent small molecule emitter and a group capable of transporting charge 5 200826333. When the LED is applied to a voltage across the device, the organic film emits light. OLEDs are used in applications such as flat panel displays, lighting, backlighting, etc., to become an interesting technology. The configuration of several 〇LED materials is described in U.S. Patent Nos. 5,844,363, 6, 303, 238 and 5, 707, 745, each of which is incorporated herein by reference. OLED devices are typically (but not infrequently) intended to illuminate via at least one of the electrodes, and one or more transparent electrodes can be used in the organic optoelectronic device. For example, a transparent electrode material such as indium tin oxide (IT〇) can be used as the bottom electrode. A transparent top electrode can also be used, such as disclosed in U.S. Patent Nos. 5,7,3,436 and 5,707,745, the entireties of each of For devices in which the sound image is illuminated only through the bottom electrode, the top electrode need not be transparent, but may comprise a thick reflective metal layer with high electrical conductivity. Similarly, for devices intended to emit light only through the top electrode, the bottom electrode can be opaque and/or reflective. When the electrode is not required to be transparent, a thicker layer is used to obtain better conductivity, and the use of a reflective electrode to reflect light toward the transparent electrode increases the amount of light emitted through the other electrode. It is also possible to manufacture a fully transparent device where both electrodes are transparent. Side-emitting OLEDs can also be fabricated, in which one or both of the electrodes can be opaque or reflective. 2 有机 Organic light-emitting diodes (OLEDs) based on low molecular weight materials and polymer materials are used in flat panel displays in advanced applications. After the initial reports of Tang and Van Slyke in 1987 and Burroughes et al. in 1990, rapid progress has been made in the optimization of device parameters such as efficiency and brightness. However, despite these successful developments, there is still a need for innovative oled with improved reliability and efficiency. In OLEDs, light is generated by recombination of electrons and holes by injecting an organic material as an active layer. Electrons and holes recombine in the active layer to produce a single or triple peak laser state at the center of the complex. The effective injection procedure requires that the molecule has a high-energy LUMO (lowest unoccupied molecular domain) and a low-energy HOMO (highest occupied molecular orbital domain). The organic active layer may be made of a conductive polymer such as poly-phenylene-vinylene (PPV), or may preferably be composed of "small" molecules, which have different functions, such as hole transport molecules, electron transport molecules, The wide band gap body is divided into 10, holes and exciton blocking molecules and effective fluorescent or phosphorescent molecules. The polymer layer can be prepared by spin coating, and the "small" molecules can be formed by thermal vacuum deposition or preferably by a solution-based method such as spin coating, using a doctor blade or ink jet printing. In order for the OLED to function properly, it is important that the organic layer be completely permeable, and that the film does not scatter incident light. When more than one small molecule is deposited using solution processing techniques such as spin coating, it is difficult to achieve this project. of. Therefore, OLEDs using small molecules having a specific function are usually prepared using a vapor deposition technique. The use of a hole-resisting layer in the multilayer OLED is performed to prevent the excess hole 20 from being lost to the cathode. In most cases, the hole blocking layer (HBL) also acts as a barrier to exciton migration, which can also act as an exciton blocking layer. The key characteristic of this layer is that its molecule has a lower HOMO energy than the molecule HOMO used to transport holes (positive charge), and a LUMO with a LUMO energy equal to or higher than the molecule used to transport electrons (negative charge). can. This point is indicated in the drawing (Fig. 1 7 200826333), which shows a schematic energy diagram of a high efficiency electroluminescent phosphor OLED. The hole system is transmitted along with the HOMO energy level transmission, and the electron system is transmitted along with the LUMO order. The excitons are represented by a luminescent pattern in the luminescent layer. US 2005/0017629 describes a multilayer OLED consisting of "small" molecules stacked into five separate layers. The OLED comprises a substrate (not shown), an anode (ITO material; (+)), a hole transport layer (HTL), an luminescent layer (EL), an electron transport layer (ETL), a metal (Cathode; (a)) and a protective layer (not shown). The hole h+ is transmitted from the anode to the luminescent layer, and the electron e· is transmitted from the cathode to the luminescent layer. In US 2005/0017629, the luminescent layer comprises a dendrimer having 10 镧 anions, and the dendrimer is active luminescent. If appropriate, OLED devices are manufactured in a standard high vacuum chamber of 1 (8 Torr). These types of OLEDs have reasonable performance, but are extremely expensive to manufacture, have low yields and can only be fabricated into small sizes. US 7,053,547 An example of a 〇 LED comprising a polymer, the 15 〇 LED is compared to a multilayer 〇 LED for fewer layers. The advantages of these categories of oled are that they can be simply fabricated by spin coating or inkjet technology, but are based on multiple layers of small molecules. The performance of the OLED is low. t OBJECT 3 The object of the present invention is to provide an improved OLed. The improved portion, such as 20, can be manufactured for improved performance, improved efficiency, or can be manufactured in a cost effective manner. In particular, the improvement can be good performance, high efficiency, and A combination of cost effective ways of preparation. It is also an object of the present invention to provide an OLED having high transparency such that the layer does not substantially scatter incident light or luminescence. The present invention comprises an at least one layer between an anode and a cathode. 200826333 Organic electro-optical device of the carrier layer, the at least one organic layer comprises a·1-70 wt% dendrimer b· 0-50 wt% hole transport compound c. 0-50 wt% electron transporting compound and 5 d·0.2-40 wt% of the luminescent compound, wherein the sum of the component parts b, c and d is more than 20 wt%, and at least a part of the dendrimer is inert. The weight percentage (wt%) is the final device, in other words, the weight percentage of the organic layer after the preparation step such as hardening, drying, etc. 10 The term inert is used herein to mean that the compound is not the main electron or hole transport. Factor, and the compound is not the main factor of luminescence. The dendrimer in the transition metal complex on which the transition metal is covalently bonded is typically not inert. It should also be noted that the term inert is not a chemical reaction. Thus, the inert dendrimer according to the invention is, for example, reactive with its species in the compound, such as may participate in subsequent hardening reactions to form a network system. The term at least partially dendrimer is inert means the invention Covers the presence of active dendrimers (ie, involved in hole transport or electron transport and/or luminescence) and inert dendrimers. 20 If present The components a, b, c and d are respectively composed of one or more compounds. In the main embodiment, the components b, c and d, that is, the weight transfer system of the hole transporting compound, the electron transporting compound and the luminescent compound are larger than 20 wt%, based on the total weight of the organic layer. Typically, the weights of the constituent parts b, c and d are less than 80%, preferably less than 70% such as less than 5%. 9 200826333 a, b, c and d Other components may also be present in the organic layer, such as organic fillers or inorganic fillers, solvents, crosslinking agents, and various additives known in the art. The apparatus according to the first aspect of the present invention typically comprises several layers, each negatively 5 Responsible for one or more functions such as transmission, electronic transmission, illumination, and blocking of holes. Preferably, at least one of the layers contains more than one of these functions, thus reducing the number of layers required. In another aspect, the invention comprises an organic optoelectric device comprising at least one organic layer between an anode and a cathode, the at least one organic layer 10 comprising a. 1-40 wt% dendrimer b. 10-50 Wt% hole transport compound c. 10-50 wt% electron transport compound and d. 0.2-40 wt% luminescent compound. An advantage of the apparatus of the present invention is that the apparatus has a simple structure containing (easy to access) small molecules, providing electron transport, hole transport, and illuminating functions. The manufacture of this device is also relatively easy compared to other multilayer systems. An advantage of the OLED of the present invention is that the electron transport molecules and the hole transport molecules are present in one layer and in the same layer, thereby forming an extremely simple structured 20 OLED. Preferably, the OLED of the present invention comprises an organic layer between the anode and the cathode, the organic layer comprising a. 5-40 wt% dendrimer b. 20-40 wt% hole transport compound 10 200826333 c. 20-40 wt% Electron transport compound and d. 1-10 wt% luminescent compound. A further embodiment of the present invention is an organic optoelectric device comprising an organic layer between an anode and a cathode, the organic layer comprising a. 5-40 wt% highly branched molecule b· 20-40 wt% hole transport compound c. 20-40 wt% electron transporting compound and d. 1_10 wt% luminescent compound. Another embodiment of the present invention is an organic optoelectronic device comprising an organic layer between an anode and a cathode, the organic layer comprising a. 5-40 wt% highly branched molecules b. 20-40 wt% holes Transfer compound c. 20-40 wt% electron transport compound and d. l_10 wt% luminescent compound, 15 wherein the south branch molecule has a structural formula according to the following formula

其中among them

、Η、(C6-C1())芳基或(CrC2〇)(環)烷基; B = (C2-C24),視需要可經取代之芳基或(環)烷基脂肪族 11 200826333 二基; R、R、R3、r4、r5及r6各自分別為相同或相異且為H、 (CVCu))芳基或(crC8)(環)垸基以及各個η分別為i_4。 大致上,根據本發明所利用之樹狀化合物視需要可經 5化學改性。特別,〇H官能基可經改性成為酯、醚、醯胺、 胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。其混合 物一詞表示各個改性〇H基之改性無需為相同,以及對個別 〇H基,可包括官能基混合物,諸如〇H基改性成為胺官能 基烷基部分透過酯鍵或醚鍵而鍵結至樹狀分子。其它改性 10實例包括反應成為端帽基,諸如有機酸部分(諸如苯曱酸戋 脂肪酸),連接至Cl_C24(環)燒基部分、Ci_C24(環)芳基部分、 聚環氧乙燒或聚環氧丙烧部分、含有其它官能基部分,例 如含胺基、磷基、硫基、含矽基或聚合物(諸如本身或鄰近 樹狀聚合物或該裝置之另一種聚合物成分)。發現0H端基之 15改性對高度分支化合物為特佳,對高度分支聚酯醯胺:為 最佳。 、 本發明之另一個實施例為包含一有機層於一陽極與一 陰極間之有機光電裝置,該有機層包含 a· M〇wt°/0樹狀化合物 20 b· 10_5〇wt%電洞傳輸化合物 c· 10-50 wt%電子傳輸化合物及 d· 0.2-40 wt°/〇發光化合物, 其t該裝置含有於該陰極與該有機層間之電洞阻擋成分, 其係由下述分子所組成,該等分子具有比用來傳二二荷 12 200826333 之分子更低的HOMO能及具有類似或高於用來傳輸負電荷 之分子之LUMO之LUMO。 此等OLED經由添加適當樹狀分子,於蒸發去除溶劑 後’形成高度透明薄膜,經由防止相分離及/或防止薄膜中 5之不同分子的結晶化,此等OLED具有低分子量分子之組合 且具有諸如電洞傳輸、電子傳輸及螢光或磷光之特殊功能。 圖式簡單說明 第1圖係高效率電致發磷光OLED之示意能階圖。 第2圖係實例所述〇LED之電流密度及光強度相對於所 1〇施加之電壓及效率相對於所施加之電壓。 C實施方式;j 較佳實施例之詳細說明 樹狀化合物為三度空間合成分子,結合重複分支順序 來形成獨特的架構。樹狀化合物之實例為樹狀體及高度分 15 支聚合物及高度分支分子。 樹狀體為高度分支分子或高度分支聚合物,具有完美 的或接近完美的結構對稱性、密度梯度顯示分子内最小值 及經過明確界定之分子量及端基數目。樹狀體係由核心分 子於殼合成或逐代方式合成而製備,結果導致產品昂貴, 20村料性質微調的選項有限。對樹狀體製備發展出之合成程 序允許對關鍵性分子設計參數諸如尺寸、形狀、表面/内部 化學結構及表面地形之接近完全控制。合成技術提供形成 樹狀體結構之有效途徑,包括光芒發散策略(Tonlalia及同 仁)、收斂生長策略(Frechet及同仁)及自行組裝策略 13 200826333 (Zimmerman及同仁)〇 / 高度分支聚合物為樹狀化合物之特例,高度分支聚合 物具有比Μ狀體更不完美分支結構。高度分支聚合物可以 比較樹狀體更非結構化方式製備,結果以更有效之高度彈 5性方式合成,有高度改良能力來微調材料性質。此等特性 之組合形成於高度分支分子内部之一種環境,可協助有獨 特性質之可靠經濟功能性奈米級材料之發展及製造,構成 新穎奈米級裝置及新穎技術的基礎。適當高度分支分子及 合成之實例例如可參考WO 99/16810、WO 00/58388及WO 10 01/62865,各案全文以引用方式併入此處。 較佳高度分支分子為高度分支聚酯醯胺,原因在於高 度分支聚酯醯胺可提供有高度極性節段之分子,其中可含 括非極性節段或低極性節段來實現可高度調整之性質。特 別,高度分支聚酯醯胺聚合物提供分散溶液中之各個組成 15分之優異載媒劑,如此可避免於光電裝置製造期間之過早 相轉換。適當高度分支分子之聚合物之實例為根據式(I)含 有至少兩個基團之聚合物 20 其中, Η, (C6-C1()) aryl or (CrC2〇)(cyclo)alkyl; B = (C2-C24), optionally substituted aryl or (cyclo)alkyl aliphatic 11 200826333 II R, R, R3, r4, r5 and r6 are each the same or different and are H, (CVCu)) aryl or (crC8) (cyclo) fluorenyl and each η is i_4, respectively. In general, the dendrimers utilized in accordance with the present invention may be chemically modified by 5 as needed. In particular, the hydrazine H functional group can be modified to be an ester, an ether, a decylamine, an amine, a thiol, a polyethylene oxide, a polypropylene oxide or a mixture thereof. The term mixture means that the modification of each modified hydrazine H group need not be the same, and for individual hydrazine H groups, may include a mixture of functional groups, such as a hydrazine H group modified to an amine functional group, the alkyl moiety is transesterified or etherically bonded. And the bond to the dendrimer. Other examples of modification 10 include reacting to an end cap group, such as an organic acid moiety (such as a guanidinium benzoate fatty acid), attached to a Cl_C24 (cyclo)alkyl moiety, a Ci_C24 (cyclo)aryl moiety, a polyepoxydene or a poly The propylene-acrylic moiety, containing other functional moiety, such as an amine-containing, phospho-, thio-, thiol-containing or polymer (such as itself or adjacent dendrimer or another polymeric component of the device). It has been found that the 15 modification of the 0H end group is particularly preferred for highly branched compounds and is preferred for highly branched polyester decylamines. Another embodiment of the present invention is an organic optoelectric device comprising an organic layer between an anode and a cathode, the organic layer comprising a·M〇wt°/0 dendrimer 20 b·10_5〇wt% hole transmission a compound c· 10-50 wt% electron transporting compound and d·0.2-40 wt°/〇 luminescent compound, wherein the device comprises a hole blocking component between the cathode and the organic layer, which is composed of the following molecules These molecules have a lower HOMO energy than the molecule used to transport the gemini 12 200826333 and a LUMO having a LUMO similar or higher than the molecule used to transport the negative charge. These OLEDs form a highly transparent film by adding appropriate dendrimers after evaporation to remove the solvent, by preventing phase separation and/or preventing crystallization of different molecules of 5 in the film, such OLEDs having a combination of low molecular weight molecules and having Special features such as hole transmission, electron transmission, and fluorescent or phosphorescent. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic energy diagram of a high efficiency electroluminescent phosphor OLED. Figure 2 is an example of the current density and light intensity of the 〇LED relative to the applied voltage and efficiency relative to the applied voltage. C. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The dendrimer is a three-dimensional space-synthesizing molecule that combines repeated branching sequences to form a unique architecture. Examples of dendrimers are dendrimers and highly branched polymers and highly branched molecules. Dendrimers are highly branched or highly branched polymers with perfect or near perfect structural symmetry, density gradients showing intramolecular minimums and well defined molecular weights and number of end groups. The dendrimer system is prepared by core synthesis in shell synthesis or from generation to generation. As a result, the product is expensive, and the options for fine-tuning the properties of the 20 village materials are limited. The synthetic procedure developed for dendrimer preparation allows complete control of critical molecular design parameters such as size, shape, surface/internal chemical structure, and surface topography. Synthetic technology provides an effective way to form dendritic structures, including ray divergence strategies (Tonlalia and colleagues), convergent growth strategies (Frechet and colleagues), and self-assembly strategies 13 200826333 (Zimmerman and colleagues) 〇 / highly branched polymers are dendritic A special example of a compound, a highly branched polymer has a more imperfect branching structure than a scorpion. Highly branched polymers can be prepared in a more unstructured manner than dendrimers, resulting in a more efficient high-elasticity synthesis with a high degree of improved ability to fine tune material properties. The combination of these characteristics forms an environment within the highly branched molecules that assists in the development and manufacture of unique economical and functional nanoscale materials that form the basis of novel nanoscale devices and novel technologies. Examples of suitable highly branched molecules and synthesis can be found, for example, in WO 99/16810, WO 00/58388, and WO 10 01/62865, each of which is incorporated herein in its entirety by reference. Preferred highly branched molecules are highly branched polyester guanamines because the highly branched polyester guanamine provides molecules with highly polar segments, which may include non-polar segments or low polarity segments for highly adjustable nature. In particular, the highly branched polyester guanamine polymer provides an excellent carrier for 15 parts of each of the dispersed solutions, thus avoiding premature phase transitions during the manufacture of photovoltaic devices. An example of a polymer of a suitably highly branched molecule is a polymer 20 having at least two groups according to formula (I).

γ ^γ ^

OH _ Η 14 200826333 、Η、(C6-C1())芳基或(CrC2〇)(環)烷基; b = (c2-c24),視需要可經取代之芳基或(環)烷基脂肪族 二基; R1、R2、R3、R4、R5及R6各自分別為相同或相異且為Η、 5 (C6-C1())芳基或(CrC8)(環)烷基以及各個η分別為1-4。 ΟΗ基團中之至少一者視需要可改性成酯、醚、醯胺、 胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物,如本文 他處所述。 適當樹狀化合物之另一個實例為含有至少兩個根據式 10 (II)基團之高度分支聚合物:OH _ Η 14 200826333 Η, (C6-C1()) aryl or (CrC2〇)(cyclo)alkyl; b = (c2-c24), optionally substituted aryl or (cyclo)alkyl Aliphatic diyl; R1, R2, R3, R4, R5 and R6 are each the same or different and are Η, 5 (C6-C1()) aryl or (CrC8)(cyclo)alkyl and each η respectively It is 1-4. At least one of the oxime groups can be modified, if desired, to an ester, ether, guanamine, amine, thiol, polyethylene oxide, polypropylene oxide or mixtures thereof, as described elsewhere herein. Another example of a suitable dendrimer is a highly branched polymer containing at least two groups according to formula 10 (II):

Ο 0 1 1!Ο 0 1 1!

I 其中 R4 9.I where R4 9.

、Η、(CrQoX環)烷基、或(C6-C10) 芳基; 15 B = (C2-C24),視需要可經取代之芳基或(環)烷基脂肪族 二基,以及 R1、R2、R3、R4、R5及R6各自分別為相同或相異且為Η、 (C6-C1())芳基或(CrC8)(環)烷基。 又另一個實例為含有根據式(III)之羥基烷基醯胺基之 20 聚合物: 15 200826333 A.".: ΟI! iK 择 —*‘雜Μ Ϋ !_I Η _ 其中:, hydrazine, (CrQoX ring) alkyl, or (C6-C10) aryl; 15 B = (C2-C24), optionally substituted aryl or (cyclo)alkyl aliphatic diyl, and R1 R2, R3, R4, R5 and R6 are each the same or different and are respectively fluorene, (C6-C1())aryl or (CrC8)(cyclo)alkyl. Yet another example is a 20 polymer containing a hydroxyalkylguanamine group according to formula (III): 15 200826333 A.".: ΟI! iK ─ ─ ‘‘‘ Μ _ ! _ I Η _ where:

Η、(CrC2())(環)烷基、或 (C6_C1Q)芳基 # 一.—y , T- M-niniwr 亡脚:__聊·yw—誦 T u 5 ¥ R H 或 OH, B = (C2-C24),視需要可經取代之芳基或(環)烷基脂肪族 二基, Ο 0 R1 f II II | |Η, (CrC2())(cyclo)alkyl, or (C6_C1Q) aryl# I.-y, T-M-niniwr Death foot: __聊·yw—诵T u 5 ¥ RH or OH, B = (C2-C24), an optionally substituted aryl or (cyclo)alkyl aliphatic diyl, Ο 0 R1 f II II |

I i, I Y ir h X2 = H或X1及 ίο R1、R2、R3、R4、R5及R6各自分別為相同或相異且為Η、 (C6-C1())芳基或(CVC8)(環)烷基或 CH2-OX2。 式(II)及(III)中,R基可共同或與相鄰碳原子共同形成 環烷基之一部分。 適當樹狀體之另一個實例為含有根據式(IV)之羥基烷 15 基醯胺基之聚合物: 16 200826333 ΟI i, IY ir h X2 = H or X1 and ίο R1, R2, R3, R4, R5 and R6 are each the same or different and are Η, (C6-C1()) aryl or (CVC8) (ring Alkyl or CH2-OX2. In formulae (II) and (III), the R groups may together or together with adjacent carbon atoms form part of a cycloalkyl group. Another example of a suitable dendrimer is a polymer containing a hydroxyalkane 15 amide group according to formula (IV): 16 200826333 Ο

IIII

Squat

m 其中: 5m where: 5

(CVGo)芳基(CVGo) aryl

H、(Cl_c2〇)(環m基、或 或OH, B二(C2-C24),視需 二基, 要可經取狀芳錢(環m基脂肪族H, (Cl_c2〇) (cyclo-m-group, or OH, B-di(C2-C24), depending on the need of the two groups,

10 r3==h或((VCl°)芳基或(LQ成基以及 R6 = H或(CVCl。)芳基或(Ci々燒基。 根據本t月之I合物之重量平均分子量通常為_至 5〇〇,〇00克/莫*且幸父佳為1〇〇〇克/莫耳至25,_克,莫耳。 ;本心月之個車父佳實施例中,樹狀化合物具有玻璃 15轉換溫度(聯少切m至少⑽。c之Tg。 、、树狀化σ物用作為分散劍之用途,較佳樹狀化合 17 200826333 物包含含有根據式(I)之至少 南度分支分子, 兩個基團之高度分支聚合物或10 r3==h or ((VCl°) aryl or (LQ-based and R6=H or (CVCl.) aryl or (Ci-pyrylene). The weight average molecular weight of the I compound according to this month is usually _ to 5 〇〇, 〇 00 g / Mo * and fortunately the father is 1 gram / Moer to 25, _ gram, Moer. In this embodiment of the heart of the car, the dendrimer has The glass 15 conversion temperature (at least (10). The Tg of c. The dendritic sigma is used as a dispersing sword. Preferably, the dendrimer is compounded. 200826333 contains at least a southern branching molecule according to formula (I). , a highly branched polymer of two groups or

m mm m

^钱卜M^钱卜M

_ H 5 B H、(C6_Cl°)芳基或(CrC2。)(環)燒基; (c2 c24)’視需要可經取代之芳基或(環)烧基脂肪族 二基; R R R、R5及R6各自分別為相同或相異且為H、 (6 1G)芳基或(CrC8)(環)燒基以及各個η分別為1_4。較佳 10 ΟΗ基團中之至少—者視需要可改性成自旨、醚、酿胺、胺、 硫醇、聚環氧乙烧、聚環氧城或魏合物,如本文他處 所述。 以用於製備有機層之溶液總重為基準,或以終有機層 (亦即於任遥的硬化及/或任選溶劑之蒸發後)之總重為基 15準’树狀化合物漠度可於〇·1 wt%至約70 wt%之極為寬廣範 圍變化。典型地,樹狀化合物當單獨用作為分散劑時,濃 度為1至40 wt% ’諸如2至30 wt%及特別為5至20 wt%。於本 發明之較佳實施例中,樹狀化合物於施用後經交聯。藉由 交聯可獲得有機層之移動性減低,結果導致裝置之壽命延 20 長。此外,當由溶劑中施用下一層有機層時,交聯有機層 18 200826333 不會再度浴解。限制兩種有機層的交混,結果導致裝置效 能、預測性及/或耐用性改良。 經由添加適當交聯劑之配方可達成交聯。適當化學可 用於塗料或塗覆業界,此處可交聯系統用來獲得夠長之儲 5存壽命與足夠良好之反應性質組合。於施用後,有機層例 如經加熱’故乂聯反應加速。可能可添加催化劑來進一步 提升反應性。實例有醇類與異氰酸酯類或經封阻之異氰酸 酉曰類之組合、胺類與環狀碳酸醋之組合、緩酸與環氧化物 之組合、乙酿乙酸酯與(甲基)丙烯酸酯之組合。於較佳實施 10例中,5-20 wt%交聯劑添加至配方,於硬化階段存在於根 據本發明之裝置。 於本較佳實施例中,裝置或由其中製備有機層之溶液 包含可硬化化合物。於一個實施例中,可硬化化合物為分 開樹脂系統包含交聯劑,於硬化期間可將樹狀化合物結合 15或未結合入網路。於另一個實施例中,經由摻混適當反應 性基團且反應性基團於硬化期間結合入網絡内部,至少部 分樹狀化合物可硬化。因此樹狀化合物包含至少一個反應 基。樹狀化合物也可作為交聯劑,其為特佳,原因在於經 由樹狀化合物有多於一項功能,可減少整體系統之組件數 20 目。 另一種交聯樹狀化合物之方式係將反應性部分實作於 樹狀化合物上,然後可藉Uv潛隱催化劑藉uv照射所形成 之基團、陰離子或陽離子而硬化。此種反應基之實例為用 於基團硬化系統之丙烯酸根、甲基丙稀酸根、衣康酸根、 19 200826333 丙細基。環氧化物或環氡化物與醇類之組合為陽離子固 化糸統之適當實例。適當_子固化系統之實例為液晶酸 醋與醇類之組合、環氧化物與紐之組合及乙醢丙酮酸醋 與(甲基)丙烯酸酯之組合。 電洞傳輸化合物之實例可參考us 5,554,45〇、us 5,061,569、US 5 853 90s # & • ,,,各案以引用方式併入此處。特例 為a-本胺ϋ及二笨腙之化合物,述於書籍:「成像系 統之有機光受體」,附錄3,作者paul Μ· Β〇_.及 10_ H 5 BH, (C6_Cl°) aryl or (CrC2.) (cyclo)alkyl; (c2 c24) 'optionally substituted aryl or (cyclo)alkylidene aliphatic diyl; RRR, R5 and Each of R6 is the same or different and is H, (6 1G) aryl or (CrC8) (ring) alkyl and each η is 1-4, respectively. Preferably at least one of the 10 oxime groups can be modified as desired, ether, amine, amine, thiol, polyepoxy, polyepoxy or wei compound, as elsewhere herein. Said. Based on the total weight of the solution used to prepare the organic layer, or based on the total weight of the final organic layer (ie, after the hardening of Ren Yao and/or the evaporation of the optional solvent), the quasi-tree compound inequality can be A very wide range of variation from 1 wt% to about 70 wt%. Typically, the dendrimer, when used alone as a dispersing agent, has a concentration of from 1 to 40 wt% 'such as from 2 to 30 wt% and especially from 5 to 20 wt%. In a preferred embodiment of the invention, the dendrimer is crosslinked after application. The mobility of the organic layer is reduced by cross-linking, resulting in a 20-long life of the device. Further, when the next organic layer is applied from a solvent, the crosslinked organic layer 18 200826333 does not dehydrate again. Limiting the mixing of the two organic layers results in improved device performance, predictability, and/or durability. The combination can be achieved by adding a suitable cross-linking agent. Appropriate chemistry can be used in the coatings or coatings industry where a cross-linking system can be used to achieve a combination of long enough storage life and sufficiently good reactive properties. After application, the organic layer is accelerated, e.g., by heating. It is possible to add a catalyst to further increase the reactivity. Examples are a combination of an alcohol and an isocyanate or a blocked isocyanate, a combination of an amine and a cyclic carbonate, a combination of a slow acid and an epoxide, an ethyl acetate and a (meth) A combination of acrylates. In a preferred embodiment 10, 5-20 wt% of the crosslinker is added to the formulation and is present in the hardening stage in the apparatus according to the present invention. In the preferred embodiment, the device or the solution from which the organic layer is prepared comprises a hardenable compound. In one embodiment, the hardenable compound is a separate resin system comprising a crosslinking agent which can bind or not incorporate a dendrimer during hardening. In another embodiment, at least a portion of the dendrimer can be hardened by incorporating a suitable reactive group and the reactive group is incorporated into the interior of the network during hardening. Thus the dendrimer contains at least one reactive group. The dendrimer can also be used as a cross-linking agent, which is particularly preferred because it has more than one function through the dendrimer, which reduces the number of components in the overall system by 20 mesh. Another way of crosslinking the dendrimer is to effect the reactive moiety on the dendrimer and then harden by Uv latent catalyst by irradiation of the group, anion or cation formed. An example of such a reactive group is acrylate, methyl acrylate, itaconate, 19 200826333 propyl groups for the group hardening system. The combination of an epoxide or a cyclic oxime with an alcohol is a suitable example of a cationic curing system. Examples of suitable _ sub-curing systems are combinations of liquid crystal vinegar and alcohols, combinations of epoxides and ketones, and combinations of acetoacetate vinegar and (meth) acrylates. Examples of electron-transporting compounds can be found in U.S. Patent Nos. 5,554,45, issued toU.S. Patent No. 5,061,569, the entire disclosure of which is incorporated herein by reference. Special cases are a-amine and alum, which are described in the book: "Organic Photoreceptors for Imaging Systems", Appendix 3, by paul Μ·Β〇_. and 10

David S· Weiss ’ 麻索待克公司(Marcd Dekker,inc )紐約 1998 年。 電子傳輸化合物之實例為唑類、二唑類、三唑類、噚 一坐颌、苯并埒唑類、苯并唑類及菲啉類,其各自視需要 可經取代。特佳取代基為芳基,特別為苯基、噚二唑類特 別為芳基取代之,号二唾類。電子傳輸化合物之特例為參嗖 15基-喳啉鋁(A1Q3)、3_苯基-4-(1-萘基)-5_苯基-1,2,4-三唑及 2,9-一甲基-4,7-二苯基-菲琳。 1 π隙主體化合物之實例為4,4,_貳(味吐_9-基)聯苯, 稱作為CBP及(4,4’,4”·參(吟嗤_9_基)三苯胺,稱作為 TCTA,揭示於Ikai等人(Appl. Phys· Lett.,79 no· 2,2001,156) 20及二芳基胺諸如參-4-(N_3_甲基苯基-N-苯基)苯胺,稱作為 MTDATA。 電洞阻擋分子及激子阻擋分子之實例為BAlq (貳(2-甲 基-8-喳啉酸根)4-苯基酚酸4-聯苯聯氧基鋁(in))、BCP(貝索 苦波音(bathocuproine))及TPBI (1,3,5-參(2-N-苯基苯并咪唑 20 200826333 基)苯)例如Adamovich等人(有機電子學4 (2003) 77-87)之說 明。 有效螢光分子或磷光分子之實例為4-(二氰基亞甲基)2 甲基_6-(對-二甲基胺基苯乙浠基)·4Η_σ辰喃(DCM)或參(2-苯 5基吡啶)銥(Η〗)。發光層可發單色光(例如紅光、綠光或藍光 中之一者),或發光層可發多色光,諸如白光或由數個分開 波長所組成之光。此種多色發光可由螢光分子或填光分子 中之型發出有數個波長之光來實現,或經由利用螢光分 子或磷光分子之混合物實現。 1〇 、—料材料可呈小分子形式存在,或可提供絲合物之 重複單位特別為位於聚合物主鏈之重複單位,或提供作 為由聚合物主鏈所旁出之取代基。 本發明之OLED可含有聚合物料,只要〇咖之透明度 不會被存在有一種或多種聚合物所干擾即可。 15 $傳輸材料可為兩極性,換言之,可傳輸電洞及電子。 適當兩極性材料較佳含有至少兩個十坐單位(创David S. Weiss ’ Marc Dekker, Inc., New York, 1998. Examples of electron transporting compounds are azoles, diazoles, triazoles, guanidine, benzoxazoles, benzoxazoles and phenanthroline, each of which may be substituted as needed. Particularly preferred substituents are aryl groups, especially phenyl and oxadiazoles, especially those substituted by aryl groups. Specific examples of electron transport compounds are ruthenium 15 phenyl-porphyrin aluminum (A1Q3), 3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole and 2,9- Monomethyl-4,7-diphenyl-phenanthrene. An example of a 1 π-gap host compound is 4,4,_贰 (tattoo-9-yl)biphenyl, which is referred to as CBP and (4,4',4"·parameter (吟嗤_9_yl)triphenylamine, Called TCTA, disclosed in Ikai et al. (Appl. Phys. Lett., 79 no. 2, 2001, 156) 20 and diarylamines such as -4-(N_3_methylphenyl-N-phenyl) Aniline, referred to as MTDATA. An example of a hole blocking molecule and an exciton blocking molecule is BAlq (贰(2-methyl-8-porphyrinate) 4-phenylphenolic acid 4-biphenylalkoxy aluminum (in) ), BCP (bathocuproine) and TPBI (1,3,5-paran (2-N-phenylbenzimidazole 20 200826333) benzene) such as Adamovich et al. (Organic Electronics 4 (2003) Description of 77-87) An example of an effective fluorescent molecule or phosphorescent molecule is 4-(dicyanomethylidene) 2 methyl-6-(p-dimethylaminophenylidene)·4Η_σ辰(DCM) or ginseng (2-phenyl-5-pyridine) 。 (Η). The luminescent layer can emit monochromatic light (such as one of red, green or blue light), or the luminescent layer can emit multi-colored light, such as White light or light consisting of several separate wavelengths. This multi-color luminescence can be emitted by fluorescent molecules or light-filling molecules. Light of a wavelength is achieved, or by using a mixture of fluorescent molecules or phosphorescent molecules. The material may be present in the form of small molecules, or the repeating unit of the filament may be provided, especially in the polymer backbone. The repeating unit is provided as a substituent pendant from the polymer backbone. The OLED of the present invention may contain a polymeric material as long as the transparency of the coffee is not interfered by the presence of one or more polymers. The material can be bipolar, in other words, can transmit holes and electrons. Suitable bipolar materials preferably contain at least two ten-seat units (invasive

Mater· Chem·,2〇〇〇, 1〇, 125)。 »卜兩極性主體材料可為包含電洞傳輸節段及電子 之材料。此種材料之實例為包含電洞傳輸節段及 2〇電子傳輸節段之聚合物,揭示於WO 〇〇/55927,其中電洞之 :輸係由位於聚合物主鏈内部之三芳基胺重複單位所提 、^之傳輸係由聚合物主鏈内部之共軛聚芴鏈所提 供。 另外’電祠傳輸及電子傳輸性質可由共輕或非共辆聚 21 200826333 合物主鏈旁出之重複單位所提供。 均來物及共聚物包括視需要可經取代之聚芳烴類諸如 聚苟類、聚螺苟類、聚辦苟類或聚亞苯類,如前文就電 洞傳輸層之說明。 5 〇則典型係、於主要係塗覆電洞注入電極之透明基材 上製造。通常氧化錮錫(IT〇)用作為電洞注入電極,形成透 明導電陽極層。然後藉熱蒸發(於小型有機染料分子之情 況)、於聚合物之情況下藉旋塗,或較佳藉噴墨印刷技術塗 覆一層或多層有機層。除了發光材料活性層本身外,其它 10有機層可用來提升電子及/或電洞之注入及傳輸。電洞阻播 層及金屬陰極(諸如鎂銀合金、鋰-鋁或鈣)可使用高度真空 賴技術而沈積於多層結構頂上。此等金屬係以其低功函 數選擇來提供有效電子的注入。有機層總厚度約為100奈 米。兩個電極(ΙΤΟ陽極及金屬陰極)對裝置總厚度增加約 15 200奈米。因此OLED結構之總厚度(及重量)大半係由基材 決定。 OLED之料皙 本發明之OLED於可見波長範圍為透明。 實例 20 22 200826333 縮寫 化學名 供應商 Pedot:PSS 或 貝崇(Baytron) P 聚(3,4-伸乙基'一氧基喧吩),聚 (苯乙烯磺酸) HC-史塔克(HC-Starck) TPD N,N’-二苯基-NH(3-甲基-苯基)-[U’_聯苯H,4’-二胺 亞利須(Aldrich) tBu-PBD 2-(4-聯苯基)-5-(4-第三丁基苯 基)-1,3,4-哼二唑 亞利須 Ir(tpy)3 參-甲苯基吡啶銥(III) 美國染料來源(American Dye Source) ΤΡΒΙ (1,3,5-參(2-N-苯基苯弁_ °坐 基)苯) 杉惜:S成像技術公司(Sensient Imaging Technologies GmbH) OLED奘詈之製造 OLED之製法係經由將含有電洞傳輸分子、電子傳輸分 5 子、發光劑(螢光或磷光分子)及高度分支化合物作為薄膜形 成添加劑之溶液旋塗於預先製作圖樣之ITO玻璃板上,該玻 璃板恰在有機層沈積之前已經使用化學方法及紫外光-臭 氧方法徹底清潔。於某些情況下,於發光層沈積前先沈積 電洞注入層,通常為貝崇-P (購自HC-史塔克公司)水溶液。 10 發光層厚度通常約為80奈米,PEDOT : PSS厚度約為100奈 米。於某些情況下,於金屬電極沈積前可添加額外電洞及 激子阻擋層。此種阻擋層係經由於高度真空(小於lxl〇·6毫 巴)下熱蒸鍍適當分子至20_40奈米典型厚度而製備。金屬反 電極係使用熱真空蒸發(基本壓力小於lxlO-6毫巴)使用,大 15 部分情況下金屬反電極係由5奈米鋇及80奈米銀雙層所組 成。OLED裝置之製備係於惰性氣氛手套箱(<〇」 ppm 02及 40)中進行銀減少空氣及水分的影響。電流密度及亮度相 對電壓係使用凱士雷(Keithley) 2400來源計測定以及耗接 至飢士雷6485皮安培計之光二極體使用米挪塔(Minolta) 23 200826333 LS100校準光電流測定。亞凡提司(Avantes)亮度光譜儀用來 測定EL光譜。裝置係於惰性氣氛決定特徵。 於典型實驗中,300毫克海布恩(Hybrane) PB2295 (得 自DSM海布恩BV)混合300毫克電洞傳輸分子N,N’-二苯基 5 _N,N’_貳(3-甲基-苯基)_[1,1’_聯苯]_4,4’_二胺(TPD),350毫 克電子傳輸分子2-(4-聯苯基)-5-(4-第三丁基苯基)-1,3,4-噚 二唑(tBu-PBD)及50毫克磷光分子參-甲苯基吡啶銥(III) (Ir(tpy)3)。此混合物溶解於3〇毫升甲苯獲得完全透明溶液。 溶劑經0.45微米過濾器過濾及以2000 rpm旋塗於含厚1 〇〇奈 10米貝崇P層之經製作圖樣之ITO覆蓋基材上(獲得厚約80奈 米之發光層)。如此所得雙層膜轉移至高度真空時,抽真空 至基板壓力<lxl(T6毫巴,藉蒸鍍分子TPBI (1,3,5_參(2善 苯基苯并咪唑基)苯)製備厚20奈米之電洞阻擋層。裝置之製 備係藉熱真空蒸鍍而循序蒸鍍5奈米鋇及8〇奈米銀完成。 15 0LED裝置性能典型係以所得電流密度及亮度(光強度) 相對於所施加之電壓表示,由其中直接導出效率相對於電 壓。由前述裝置所得結果顯示於第2圖,電流密度(實心方 形)及光党度(空心圓形)相對於所施加電壓(左)及效率相對 於所施加電壓(右)係對前述OLED裝置顯示。 20 本發明之0LED可達成低於12伏特之亮度值100燭/平 方米,電流效率高於1燭/安培。 已Μ參照附圖說明本發明之較佳實施例,須了解本發 月並非限於5亥碟切實施例,可由熟諳技藝人士未悖離如隨 附t明專利$爸圍戶斤界定之本發明之範圍及精趙而於其中 24 200826333 做出多項變化及修改。 L圖式簡單說明3 第1圖係高效率電致發磷光OLED之示意能階圖。 第2圖係實例所述OLED之電流密度及光強度相對於所 5 施加之電壓及效率相對於所施加之電壓。 【主要元件符號說明】 (無) 25Mater·Chem·, 2〇〇〇, 1〇, 125). The bipolar host material can be a material that includes a hole transport segment and electrons. An example of such a material is a polymer comprising a hole transport segment and a 2-inch electron transport segment, as disclosed in WO 〇〇/55927, wherein the hole: the transport system is repeated by a triarylamine located inside the polymer backbone The transmission by the unit is provided by a conjugated polyfluorene chain inside the polymer backbone. In addition, the nature of the electron transport and electron transport can be provided by repeating units that are adjacent to the main chain of the light or non-common vehicle. The homopolymers and copolymers include polyaromatic hydrocarbons such as polyfluorenes, polysulfoniums, polybenzazoles or polyphenylenes which may be substituted as desired, as previously described for the hole transport layer. 5 典型 is typically fabricated on a transparent substrate that is primarily coated with a hole injection electrode. Typically, antimony tin oxide (IT〇) is used as a hole injecting electrode to form a transparent conductive anode layer. The layer or layers of organic layer are then coated by thermal evaporation (in the case of small organic dye molecules), by spin coating in the case of a polymer, or preferably by ink jet printing techniques. In addition to the luminescent material active layer itself, other 10 organic layers can be used to enhance the injection and transport of electrons and/or holes. The hole blocking layer and the metal cathode (such as magnesium-silver alloy, lithium-aluminum or calcium) can be deposited on top of the multilayer structure using a high vacuum technique. These metals are selected with their low work function to provide efficient electron injection. The organic layer has a total thickness of about 100 nm. The two electrodes (ΙΤΟ anode and metal cathode) increased the total thickness of the device by approximately 15 200 nm. Therefore, most of the total thickness (and weight) of the OLED structure is determined by the substrate. OLEDs The OLED of the present invention is transparent in the visible wavelength range. Example 20 22 200826333 Abbreviation chemical name supplier Pedot:PSS or Baytron P poly(3,4-extended ethyl 'monooxyporphin), poly(styrenesulfonic acid) HC-Stark (HC -Starck) TPD N,N'-diphenyl-NH(3-methyl-phenyl)-[U'_biphenyl H,4'-diamine aliquot (Aldrich) tBu-PBD 2-(4 -biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazolidinide Ir(tpy)3 gins-tolylpyridinium (III) US dye source (American Dye Source) ΤΡΒΙ (1,3,5-para (2-N-phenylbenzoquinone _ °) phenyl) 杉惜:Sensient Imaging Technologies GmbH OLED manufacturing system for OLED manufacturing By spin coating a solution containing a hole transporting molecule, an electron transporting component, a luminescent agent (fluorescent or phosphorescent molecule), and a highly branched compound as a film forming additive on a pre-formed ITO glass plate, the glass plate is just The organic layer has been thoroughly cleaned prior to deposition using chemical methods and UV-ozone methods. In some cases, a hole injection layer is deposited prior to deposition of the luminescent layer, typically an aqueous solution of Beso-P (available from HC-Stark). 10 The thickness of the luminescent layer is usually about 80 nm, and the thickness of PEDOT: PSS is about 100 nm. In some cases, additional holes and exciton blocking layers may be added prior to deposition of the metal electrode. Such barrier layers are prepared by hot evaporation of the appropriate molecules to a typical thickness of 20-40 nm under high vacuum (less than 1 x 16 mbar). The metal counter electrode is used by thermal vacuum evaporation (basic pressure less than lxlO-6 mbar). In the larger part, the metal counter electrode consists of 5 nanometer 钡 and 80 nanometer silver double layer. The preparation of the OLED device was carried out in an inert atmosphere glove box (<〇" ppm 02 and 40) to reduce the effects of air and moisture. The current density and brightness were measured using a Keithley 2400 source meter and a light diode that was consumed by a snorkeling 6485 picoampere meter using Minolta 23 200826333 LS100 calibration photocurrent measurement. An Avantes brightness spectrometer was used to determine the EL spectrum. The device is characterized by an inert atmosphere. In a typical experiment, 300 mg of Hybrane PB2295 (from DSM Haibun BV) mixed 300 mg hole transport molecule N, N'-diphenyl 5 _N, N' 贰 (3-methyl -phenyl)_[1,1'-biphenyl]_4,4'-diamine (TPD), 350 mg electron transport molecule 2-(4-biphenyl)-5-(4-tert-butylbenzene Base)-1,3,4-oxadiazole (tBu-PBD) and 50 mg of phosphorescent ginseng-tolylpyridinium(III) (Ir(tpy)3). This mixture was dissolved in 3 ml of toluene to obtain a completely clear solution. The solvent was filtered through a 0.45 μm filter and spin-coated at 2000 rpm on a patterned ITO-coated substrate having a thickness of 1 Å Nai 10 m to obtain a luminescent layer of about 80 nm thick. When the thus obtained two-layer film was transferred to a high vacuum, vacuum was applied to a substrate pressure < lxl (T6 mbar, prepared by evaporation of the molecule TPBI (1,3,5-g (2)phenylbenzimidazolyl). The hole barrier layer is 20 nm thick. The preparation of the device is carried out by sequential vacuum evaporation of 5 nm 钡 and 8 〇 nano silver by thermal vacuum evaporation. The performance of the 15 LED device is typically obtained by the current density and brightness (light intensity). Relative to the applied voltage, the efficiency is directly derived from the voltage. The results obtained by the above device are shown in Figure 2, current density (solid square) and party (open circle) relative to the applied voltage ( The left side and the efficiency relative to the applied voltage (right) are shown for the aforementioned OLED device. 20 The OLED of the present invention achieves a brightness value of less than 12 volts of 100 s/m2 and a current efficiency of more than 1 s/amp. The preferred embodiment of the present invention will be described with reference to the accompanying drawings, and it is to be understood that the present invention is not limited to the five-disc embodiment, and that the skilled artisan may not deviate from the scope of the invention as defined by the accompanying patent. And Jing Zhao and made it in 24 200826333 A number of changes and modifications. L diagram simple description 3 Figure 1 is a schematic energy diagram of a high-efficiency electroluminescent phosphor OLED. Figure 2 is an example of the current density and light intensity of the OLED relative to the voltage applied by 5 Efficiency relative to the applied voltage. [Main component symbol description] (none) 25

Claims (1)

200826333 十、申請專利範圍: 1. 一種於一陽極與一陰極間包含至少一層有機層之有機 光電裝置,該至少一層有機層包含 a. 1-70 wt%樹狀化合物 5 b. 0-50 wt%電洞傳輸化合物 c. 0-50 wt%電子傳輸化合物及 d. 0.2-40 wt%發光化合物, 其中元件b、c及d之和係大於20 wt%,以及該樹狀 化合物之至少一部分為惰性,換言之,未形成組成分b、 10 c或d之一部分。 2. 如申請專利範圍第1項之裝置,其中該有機層包含 a. 1-40 wt%樹狀化合物 b. 10-50 wt%電洞傳輸化合物 c. 10_50wt%電子傳輸化合物及 15 d. 0.2-40 wt%發光化合物; 較佳該有機層包含 a. 5-40 wt%樹狀化合物 b· 20-40 wt%電洞傳輸化合物 c· 20-40 wt%電子傳輸化合物及 20 d. 1-10 wt%發光化合物。 3. 如申請專利範圍第1或2項中任一項之裝置,其中該樹狀 化合物為含有至少兩個根據式(I)之基團之一高度分支 聚合物或分子, 26 200826333200826333 X. Patent Application Range: 1. An organic optoelectronic device comprising at least one organic layer between an anode and a cathode, the at least one organic layer comprising a. 1-70 wt% dendrimer 5 b. 0-50 wt % hole transport compound c. 0-50 wt% electron transport compound and d. 0.2-40 wt% luminescent compound, wherein the sum of elements b, c and d is greater than 20 wt%, and at least a part of the dendrimer is Inert, in other words, does not form part of the component b, 10 c or d. 2. The device of claim 1, wherein the organic layer comprises a. 1-40 wt% dendrimer b. 10-50 wt% hole transport compound c. 10_50 wt% electron transport compound and 15 d. 0.2 -40 wt% luminescent compound; preferably the organic layer comprises a. 5-40 wt% dendrimer b · 20-40 wt% hole transport compound c · 20-40 wt% electron transport compound and 20 d. 10 wt% luminescent compound. 3. The device of any one of claims 1 or 2 wherein the dendrimer is a highly branched polymer or molecule containing at least two groups according to formula (I), 26 200826333 R4 r6 /lx 1 γ ^ •十 C O H Un I RS H 、H、(C6_C1())芳基或(q-C^oX環)燒基; B = (CVC24),視需要可經取代之芳基或(環)院基脂 肪族二基; R、R、R、R、R5及r6各自分別為相同或相異且 為Η、(CVC1())芳基或(crC8)(環)烷基以及各個n分別為 1 -4, 〇H基團中之至少一者視需要可改性成酯、醚、醯 胺、胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 4·如申請專利範圍第3項之裝置,其中該樹狀化合物為包 含至少兩個根據式(11)基團之一高度分支聚合物或分 子:R4 r6 /lx 1 γ ^ • 十 COH Un I RS H , H, (C6_C1()) aryl or (qC^oX ring) alkyl; B = (CVC24), optionally substituted aryl or Ring-based aliphatic dibasic group; R, R, R, R, R5 and r6 are each the same or different and are Η, (CVC1()) aryl or (crC8) (cyclo)alkyl and each n At least one of the 1-4 groups, respectively, may be modified to an ester, an ether, a guanamine, an amine, a thiol, a polyethylene oxide, a polypropylene oxide, or a mixture thereof. 4. The device of claim 3, wherein the dendrimer is a highly branched polymer or molecule comprising at least two groups according to formula (11): m γ鑒m γ 、H、(Ci-C2〇)(^)烧基、或(C6-Ci〇) 27 15 200826333 芳基; B = (c2-c24),視需要可經取代之芳基或(環)烷基脂 肪族二基,以及 R1、R2、R3、R4、R5及R6各自分別為相同或相異且 5 為Η、(C6-C1())芳基或(CrC8)(環)烷基, OH基團中之至少一者視需要可改性成酯、醚、醯 胺、胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 5. 如申請專利範圍第1-4項中任一項之裝置,其中該樹狀 化合物具有Tg至少100°C,較佳該樹狀化合物具有Tg至 10 少 130°C。 6. 如申請專利範圍第1-5項中任一項之裝置,其中該裝置 於該陰極與包含高度分支分子之有機層間包含一電洞 傳輸阻擋層。 7. 如申請專利範圍第1至6項中任一項之裝置,包含一可硬 15 化化合物,較佳該可硬化化合物為一分開樹脂系統,或 至少該樹狀化合物之一部分為可硬化,更佳該樹狀化合 物包含至少一個反應基。 8. 如申請專利範圍第1至7項中任一項之裝置,其中該裝置 為一有機發光裝置。 20 9. —種於一陽極與陰極間包含一有機層之有機光電裝 置,該有機層包含 a. 1-40 wt%樹狀化合物 b. 10-50 wt%電洞傳輸化合物 c. 10-50 wt%電子傳輸化合物及 28 200826333 d. 0.2-40 wt%發光化合物, 其中該樹狀化合物為含有至少兩個根據式(I)之基 團之一高度分支聚合物或分子,, H, (Ci-C2〇)(^)alkyl, or (C6-Ci〇) 27 15 200826333 aryl; B = (c2-c24), optionally substituted aryl or (cyclo)alkyl The aliphatic diyl group, and R1, R2, R3, R4, R5 and R6 are each the same or different and 5 is fluorene, (C6-C1()) aryl or (CrC8)(cyclo)alkyl, OH group At least one of the groups may be modified to an ester, an ether, a guanamine, an amine, a thiol, a polyethylene oxide, a polypropylene oxide or a mixture thereof as needed. 5. The apparatus of any one of claims 1-4, wherein the dendrimer has a Tg of at least 100 ° C, preferably the dendrimer has a Tg of 10 to 130 ° C. 6. The device of any one of claims 1-5, wherein the device comprises a hole transport barrier between the cathode and the organic layer comprising highly branched molecules. 7. The device of any one of claims 1 to 6 comprising a hardenable compound, preferably the hardenable compound is a separate resin system, or at least one of the dendrimers is hardenable, More preferably, the dendrimer comprises at least one reactive group. 8. The device of any one of claims 1 to 7, wherein the device is an organic light-emitting device. 20 9. An organic optoelectric device comprising an organic layer between an anode and a cathode, the organic layer comprising a. 1-40 wt% dendrimer b. 10-50 wt% hole transport compound c. 10-50 Wt% electron transport compound and 28 200826333 d. 0.2-40 wt% luminescent compound, wherein the dendrimer is a highly branched polymer or molecule containing at least two groups according to formula (I), Y R2 ΗY R2 Η 、Η、(C6-C1(})芳基或(CrC2〇)(環)烷基; B = (C2-C24),視需要可經取代之芳基或(環)烷基脂 肪族二基; R1、R2、R3、R4、R5及R6各自分別為相同或相異且 為Η、(C6-C1())芳基或(CrC8)(環)烷基以及各個η分別為 1_4, \ 10 ΟΗ基團中之至少一者視需要可改性成酯、醚、醯 胺 '胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 10.如申請專利範圍第9項之裝置,其中該樹狀化合物為包 含至少兩個根據式(II)基團之一高度分支聚合物或分 子:, Η, (C6-C1(}) aryl or (CrC2〇)(cyclo)alkyl; B = (C2-C24), optionally substituted aryl or (cyclo)alkyl aliphatic diyl; R1, R2, R3, R4, R5 and R6 are each the same or different and are Η, (C6-C1()) aryl or (CrC8)(cyclo)alkyl and each η is 1_4, \10 ΟΗ At least one of the groups may be modified to an ester, an ether, a guanamine 'amine, a thiol, a polyethylene oxide, a polypropylene oxide or a mixture thereof as needed. 10. A device according to claim 9 Wherein the dendrimer is a highly branched polymer or molecule comprising at least two groups according to formula (II): 29 20082633329 200826333 Η 環)烷基、或(c6-c10) 芳基; b = (c2-c24),視需要可經取代之芳基或(環)烷基脂 肪族二基,以及 5 R1、R2、R3、R4、R5及R6各自分別為相同或相異且 為Η、(C6-C1())芳基或(CrC8)(環)烷基, OH基團中之至少一者視需要可改性成酯、醚、醯 胺、胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 11. 如申請專利範圍第9或10項之裝置,其中該有機層包含 10 a. 5_40 wt%樹狀化合物 b. 20-40 wt%電洞傳輸化合物 c. 20-40 wt%電子傳輸化合物及 d. 1-10 wt%發光化合物。Η ring)alkyl, or (c6-c10) aryl; b = (c2-c24), optionally substituted aryl or (cyclo)alkyl aliphatic diyl, and 5 R1, R2, R3, R4, R5 and R6 are each the same or different and are fluorene, (C6-C1())aryl or (CrC8)(cyclo)alkyl, at least one of which may be modified to an ester as needed , ether, guanamine, amine, thiol, polyethylene oxide, polypropylene oxide or mixtures thereof. 11. The device of claim 9 or 10, wherein the organic layer comprises 10 a. 5-40 wt% dendrimer b. 20-40 wt% hole transport compound c. 20-40 wt% electron transport compound and d. 1-10 wt% luminescent compound. 12. 如申請專利範圍第9-11項中任一項之裝置,其中該樹狀 15 化合物具有Tg至少100°C,較佳該樹狀化合物具有Tg至 少 130°C。 13. 如申請專利範圍第9-12項中任一項之裝置,其中存在一 種化合物其於一個分子内包含電洞傳輸性質及電子傳 輸性質,該等性質係由一共軛聚合物主鏈或非共軛聚合 20 物主鏈旁出之重複單位所提供。 14. 如申請專利範圍第9-13項中任一項之裝置,其中該裝置 於該陰極與包含高度分支分子之有機層間包含一電洞 30 200826333 傳輸阻擋層。 15·如申明專利範圍第14項之裝置,其中該電洞傳輸阻擋層 包含選自於由BAlq (貳(2-甲基_8_喳啉酸根)4_苯基酚酸 4·聯苯聯氧基紹⑽)、BCP (貝索苦波音(bath〇cupr〇ine)) 5 及TPBI (1,3,5-參(2_N-苯基苯并咪唑基)苯)所組成之組 群之一種化合物。 16·如申請專利範圍第9至15項中任一項之裝置,包含一可 硬化化合物,較佳該可硬化化合物為一分開樹脂系統, 或至少該樹狀化合物之一部分為可硬化,更佳該樹狀化 10 合物包含至少一個反應基。 17·如申請專利範圍第9至16項中任一項之裝置,其中該裝 置為電致發光裝置,較佳該電致發光裝置為有機發光裝 置。 18. —種製造一光電裝置之方法,該方法係使用基於溶液之 15 方法,較佳係使用以溶液來旋塗一基材。 19·如申請專利範圍第18項之方法,其中該溶液包含一可硬 化化合物,以及該方法包含下列步驟,提供該溶液至一 基材之至少一部分上,隨後至少部分硬化該可硬化化合 物,以及視需要可重複該順序來提供一多層裝置,較佳 10 該可硬化化合物包括一樹狀化合物。 20.如申請專利範圍第19項之方法,其中該可硬化化合物包 含含有至少兩個根據式(I)之基團之一高度分支聚合物 或分子, 31 20082633312. The device of any one of claims 9-11, wherein the dendrimer compound has a Tg of at least 100 ° C, preferably the dendrimer has a Tg of at least 130 °C. 13. The device of any one of claims 9-12, wherein there is a compound comprising a hole transporting property and an electron transporting property in a molecule, the properties being a conjugated polymer backbone or non- The conjugated polymerization 20 is provided by the repeating unit of the main chain. 14. The device of any one of claims 9-13, wherein the device comprises a hole 30 200826333 transport barrier between the cathode and the organic layer comprising the highly branched molecules. The device of claim 14, wherein the hole transport barrier layer comprises a biphenyl group selected from the group consisting of BAlq (贰(2-methyl-8-porphyrinate) 4_phenylphenolic acid 4·biphenyl a group consisting of oxyspor (10)), BCP (bath〇cupr〇ine) 5 and TPBI (1,3,5-paran (2_N-phenylbenzimidazolyl)benzene) Compound. The device of any one of claims 9 to 15, comprising a hardenable compound, preferably the hardenable compound is a separate resin system, or at least one of the dendrimers is hardenable, preferably The dendrimer 10 comprises at least one reactive group. The device of any one of claims 9 to 16, wherein the device is an electroluminescent device, preferably the electroluminescent device is an organic light-emitting device. 18. A method of making an optoelectronic device, the method using a solution based method 15, preferably using a solution to spin coating a substrate. 19. The method of claim 18, wherein the solution comprises a hardenable compound, and the method comprises the steps of providing the solution to at least a portion of a substrate, followed by at least partially hardening the hardenable compound, and The sequence may be repeated as needed to provide a multilayer device. Preferably, the hardenable compound comprises a dendrimer. 20. The method of claim 19, wherein the hardenable compound comprises a highly branched polymer or molecule comprising at least two groups according to formula (I), 31 200826333 OH r4 m jl\\ y as .十 c -卜 C — O H 、* Λ丨 RS h 、η、(C6-C10)芳基或(Cl_c2())(環)烧基; 5 B = (C2_C:24),視需要可經取代之芳基或(環)烧基脂 肪族二基; R1、R2、R3、R4、R5及R6各自分別為相同或相異且 為Η、(CVC1())芳基或(Q-C8)(環)烷基以及各個n分別為 1-4, 〇H基團中之至少一者視需要可改性成酯、醚、醯 胺、胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 21·—種樹狀化合物用於一製造一光電裝置之方法中作為 分散劑之用途。 22·如申請專·圍第⑽之用途,其巾轉狀化合物包含 含有至少兩個根據式⑴之基團之一高度分支聚合物或 〇 ΟOH r4 m jl\\ y as . 十c-Bu C — OH , * Λ丨RS h , η, (C6-C10) aryl or (Cl_c2()) (ring) alkyl; 5 B = (C2_C: 24) an optionally substituted aryl or (cyclo)alkylidene aliphatic diyl; R1, R2, R3, R4, R5 and R6 are each the same or different and are Η, (CVC1()) aryl Or a (Q-C8)(cyclo)alkyl group and each n is 1-4, respectively, and at least one of the 〇H groups may be modified to an ester, an ether, a guanamine, an amine, a thiol, a poly ring, if necessary. Oxyethane, polypropylene oxide or a mixture thereof. 21. The use of a dendrimer as a dispersant in a method of making an optoelectronic device. 22. If the application of the application (10) is applied, the towel-transformed compound comprises a highly branched polymer or 〇 含有 containing at least two groups according to formula (1) _ OH γ m Η 32 200826333 r4 r6_ OH γ m Η 32 200826333 r4 r6 、h、(cvc1())芳基或(crc2〇)(環)烷基; B = (C2-C24),視需要可經取代之芳基或(環)烷基脂 肪族二基; 5 R1、R2、R3、R4、R5及R6各自分另》J為相同或相異且 為Η、(C6-C1())芳基或(CVC8)(環)烷基以及各個η分別為 1-4, ΟΗ基團中之至少一者視需要可改性成酯、醚、醯 胺、胺、硫醇、聚環氧乙烷、聚環氧丙烷或其混合物。 10 23· —種適合用於有機發光二極體(OLED)之製造方法之組 成物,包含溶劑及如申請專利範圍第1至17項中之任一 種成分。 24· —種儀器,包含如申請專利範圍第1至17項中任一項之 電致發光裝置,較佳該電致發光裝置為一OLED。 33, h, (cvc1())aryl or (crc2〇)(cyclo)alkyl; B = (C2-C24), optionally substituted aryl or (cyclo)alkyl aliphatic diyl; 5 R1 , R2, R3, R4, R5 and R6 are each the same or different and are Η, (C6-C1()) aryl or (CVC8) (cyclo)alkyl and each η is 1-4 At least one of the oxime groups can be modified to an ester, an ether, a guanamine, an amine, a thiol, a polyethylene oxide, a polypropylene oxide, or a mixture thereof as needed. 10 23 - A composition suitable for use in a method for producing an organic light-emitting diode (OLED), comprising a solvent and any one of the components of claims 1 to 17. An apparatus comprising an electroluminescent device according to any one of claims 1 to 17, preferably the electroluminescent device is an OLED. 33
TW096140032A 2006-10-25 2007-10-25 Organic opto-electronic devices TW200826333A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06022263 2006-10-25

Publications (1)

Publication Number Publication Date
TW200826333A true TW200826333A (en) 2008-06-16

Family

ID=37875794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096140032A TW200826333A (en) 2006-10-25 2007-10-25 Organic opto-electronic devices

Country Status (2)

Country Link
TW (1) TW200826333A (en)
WO (1) WO2008049577A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481385B2 (en) 2007-11-15 2014-04-23 日東電工株式会社 Light emitting device and light emitting composition
WO2009142763A1 (en) * 2008-05-23 2009-11-26 Swaminathan Ramesh Hybrid photovoltaic cell module
JP2012505298A (en) 2008-10-13 2012-03-01 日東電工株式会社 Printable luminescent composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206838B2 (en) * 2000-06-12 2012-06-26 Sumitomo Chemical Co., Ltd. Polymer matrix electroluminescent materials and devices
DE10218788A1 (en) * 2002-04-26 2003-11-20 Infineon Technologies Ag Novel dinaphthylene diamine monomers are used to produce poly-o-hydroxyamides which can be cyclized to low dielectric constant polybenzoxazoles useful in electronics
GB0220080D0 (en) * 2002-08-29 2002-10-09 Isis Innovation Blended dendrimers
GB0222268D0 (en) * 2002-09-25 2002-10-30 Isis Innovation Fluorene-containing dendrimers
WO2004099296A1 (en) * 2003-05-05 2004-11-18 Dsm Ip Assets B.V. Nanoporous materials suitable for use in semiconductors

Also Published As

Publication number Publication date
WO2008049577A1 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
US20100224859A1 (en) Organic Light-Emitting Diodes with Electrophosphorescent-Coated Emissive Quantum Dots
TWI463913B (en) Charge transporting layer for organic electroluminescent device
Rehmann et al. Advanced device architecture for highly efficient organic light‐emitting diodes with an orange‐emitting crosslinkable iridium (III) complex
JP6018063B2 (en) Crosslinked charge transport layer containing additive compound
CN100583490C (en) Electroluminescent device
TWI469682B (en) Organic light emitting devices with an emissive region having emissive and non-emissive layers and method of making
JP4318648B2 (en) Organic electroluminescent device
TW201312820A (en) Organic light emitting device and method
JP5194414B2 (en) Organic electroluminescence device and method for manufacturing the same
CN104380494A (en) Organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device
CN106816544B (en) A kind of cross-linking bipolarity organic semiconductor and its Organic Light Emitting Diode application
JP2006510231A (en) Electroluminescent device
JP5050467B2 (en) Organic electroluminescence device and method for manufacturing the same
US20120049164A1 (en) Cross-Linked Hole Transport Layer With Hole Transport Additive
US8257839B2 (en) Polyvinyl pyrrole host material, luminescent layer comprising the same, and organic electroluminescent device comprising the luminescent layer
TW200901529A (en) Organoelectric device and manufacturing process thereof
Tang et al. Transfer printing of polymer light-emitting devices with a small molecular seeding layer featuring thermally activated delayed fluorescence for triplet harvesting
Samaeifar et al. The Root Causes of the Limited Electroluminescence Stability of Solution-Coated Versus Vacuum-Deposited Small-Molecule OLEDs: A Mini-Review
JP2006257196A (en) Crosslinking polycarbazole and organic electronic device
TW200826333A (en) Organic opto-electronic devices
JP2009021343A (en) Organic electroluminescence element
JP2017527109A (en) Organic light emitting device and method of manufacturing the same
Cameron et al. Ferda Hacıvelioglu1, 2 and Peter J. Skabara1 1WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
JP6503699B2 (en) Organic electroluminescent device, method of manufacturing the same, and organic electroluminescent lighting device
JP6492565B2 (en) Method of manufacturing organic electroluminescent device, and method of manufacturing organic electroluminescent lighting device