TW200826136A - Method for manufacturing electron emitters and electron sources using the same - Google Patents

Method for manufacturing electron emitters and electron sources using the same Download PDF

Info

Publication number
TW200826136A
TW200826136A TW95144718A TW95144718A TW200826136A TW 200826136 A TW200826136 A TW 200826136A TW 95144718 A TW95144718 A TW 95144718A TW 95144718 A TW95144718 A TW 95144718A TW 200826136 A TW200826136 A TW 200826136A
Authority
TW
Taiwan
Prior art keywords
electron
carbon nanotube
substrate
electrode
emitting device
Prior art date
Application number
TW95144718A
Other languages
Chinese (zh)
Other versions
TWI328246B (en
Inventor
Peng Liu
Shou-Shan Fan
Liang Liu
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95144718A priority Critical patent/TWI328246B/en
Publication of TW200826136A publication Critical patent/TW200826136A/en
Application granted granted Critical
Publication of TWI328246B publication Critical patent/TWI328246B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention is related to a method for manufacturing an electron emitter. The manufacturing method includes the steps of: providing a substrate; forming two bottom electrodes on the substrate; arranging a number of carbon nanotubes between the two bottom electrons; forming two top electrodes on the two bottom electrons respectively; and forming gaps on the carbon nanotubes. The present invention is also related to a method for manufacturing an electron source with the electron emitter. The electron emitter can be applied in a Surface-Conduction Electron Emitter Display (SED).

Description

200826136 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種電子發射元件的製備方法,尤其涉及 一種表面傳導電子發射元件的製備方法。 【先前技術】 平板顯示係顯示器行業的一大趨勢,目前主要的平板 顯不技術有液晶顯示(LCD)技術、電漿顯示(pDp)技術 , 及場發射顯示(FED)技術等。其中,LCD技術係一種被動 發光型顯示技術,該顯示技術於光亮度及色彩保真方面有 一定的局限性。PDP技術係主動發光型顯示技術,該顯示 技術於色彩保真及能耗方向亦有其局限性。目前較成熟的 FED技術為Spindt型,但由於其成本高、電子發射體的堅 固性及均勻性低,故,難於實現產業化。1996年,佳能 (Canon)推出了 一種新型的顯示技術,即,表面傳導電子 發射(Surface-Conduction Electron Emitter Display, i 簡稱SED)。 SED技術亦亦屬於一種FED技術,但與傳統的FED技 術不同,SED器件的電子發射沿著平行於基板的方向。一 個SED器件係由複數表面傳導電子發射元件 (Surface-Conduction Electron Emitter,簡稱 SCE)組 成的’ SCE處於陰極表面,每一個SCE對應一個顯示單元。 請參閱圖1,傳統的SCE10包括一陰極基板12,兩個電極 112、114,一導電薄膜116,及一位於導電薄膜窄缝處的 沈積層118。於沈積層ι18上有一奈米級的間隙12〇。當於 6 200826136 電極112、114施加一定電壓時,由於遂穿效應,電子將從 電極112飛向電極114。一部分電子於飛躍過程中於陽極 14的作用下,被提取出來撞擊螢光屏16,從而發光。 SED技術與先前的陰極射線管顯示(CRT)技術的發光 原理相同,因而圖像具有同樣優秀的色彩效果。sed器件 由於藉由簡單的喷墨列印、啟動成形等簡單工藝製備,因 而生產成本大大降低。傳統4〇英寸的SED器件,光暗對比 度可達8600:1 ’厚度約為1Q_,且功耗約為相同尺寸的 LCD 件的一^半。 惟,於傳統SED器件的SCE巾,製備用於發射電子的 間隙需要長時間大電流的賴成形隸,造成能源的浪 費。且,由於發射電子的間隙僅有幾個奈米的寬度,電子 於其中飛行時·短,許多電子來不及·極電場提取出 來撞擊螢光屏,因*亦會造成能源的浪費。然,如果把該 間隙增加’發射電子需要更高的發射電壓,將會超過目前 驅動電路所緖供的麵襲。&,需要研究能克服上述 缺點的新型電子發射元件。 奈米碳官(CNTs)係-種新型碳材料,其具有優異的導 電性能,且具有幾乎接近理論極限的長徑比,故,奈米碳 管係目前已知最好的電子發射材料之一,其具有極低場發 射電壓,從而可於較小的發射電壓及較大的發射距離下發 射電子’且發射電流穩定,因而非常適合用於電子發射 件。 有雲於此’提供-種採用奈米碳管、以簡單工藝製備 200826136 具有較小能耗及較高電子發射效率的電子發射元件的方法 實爲必要。 - 【發明内容】 - 一種電子發射元件的製備方法,其包括以下步驟:(一) k供一基板;(二)間隔設置兩個平行的下電極於該基板表 面;(三)沿垂直於下電極方向於下電極上設置複數奈米碳 管元件;(四)對應設置兩個上電極於下電極上,並將上述 奈米碳管元件固定於上電極與下電極之間;(五)形成一間 隙於位於平行電極之間的奈米碳管元件間。 該步驟(二)及步驟(四)中,製備下電極與上電極 的方法為真空蒸鍍方法、磁控濺射方法或電子束蒸發方法。 該步驟(二)中,放置奈米碳管元件的方法為鋪設、 喷灑或沈積。 該步驟(五)中,奈米碳管元件間的間隙係藉由電漿 刻银方法形成的。 、 於步驟(三)之前,可進-步包括於兩下電極間的基 板表面形成支撐體的過程。 ⑴於步驟(二)之後,可進一步包括於兩上電極與奈米 碳管元件上表面形成固定層的過程。$,於步驟(五)之 後保留覆蓋於奈米碳管及上電極表面的光刻膠,形成一固 定層。 於步驟(五)之後,可進一步包括於奈米碳管元件的 間隙下的基板表面形成凹槽的過程。 與先刚技術相比,該表面傳導電子發射元件及電子源 8 200826136 可藉由光刻、沈積賴等現有賴單的工藝製備。由於採 用奈米碳管做為電子發㈣,降低了電子發射電壓,從而 降低了所製備電子發射元件的能耗。$,所製備的奈米碳 管元件的間隙可達幾個微米’電子於此_飛行有足夠的 4間被長:取出來撞擊電子,從而增加電子利用率。 【實施方式】 下面將結合附圖對本發明實施例作進一步的詳細說 明。 … 本發明第一實施例提供一種表面傳導電子發射元件2〇 (Surface-Conduction Electron Emitter,SCE)。請參閱 圖2 ’該SCE 20包括一基板22,平行設置於基板22表面 的第一電極24及第二電極24,,及兩個線狀奈米碳管元 件26。第一電極24及第二電極24,分別包括沿垂直於基 板22方向堆疊設置於基板22表面的下電極242、242,及 上電極244、244,。兩個奈米碳管元件26分別夾於下電 極242與上電極244之間及下電極242,與上電極244,之 間下電極242及242與基板22表面接觸,上電極244、 244’分別位於下電極242、242,及奈米碳管元件26上。 兩個奈米碳管元件26的相對的電子發射端262之間形成一 間隙28。 基板22可為石英、玻璃、陶瓷、塑膠等絕緣材料,或, 該基板22還可為表面覆有氧化物絕緣層的導體。基板& 的厚度可根據預定需求設置,當基板22為表面覆有氧化物 絕緣層的導體時,為了保證充分地絕緣,氧化物絕緣層應 9 200826136 /、有定厚度。本實施例的基板 氧化矽層的矽片,、為表面形成有—二 奈米# 4 層的厚度為〇.5至1微米。 乎碳其;二I轉26可為奈米碳料奈料管線等,該奈 未m由複數奈米碳管魏相連形成的束狀結構。 及第二電極24,的材料可為鈦、麵、金、 屬,厚度為20至15。奈米,寬度可分別為幾十 二It 長度可根據需要選擇,第—電極24及第 間隙28為幾微米至幾十微求。優選地,本 ii:微:第:電極24及第二_24’的寬度為90微米 190微未,長度為7厘米,間距為10微米。 進-步地,為增強下電極242、242,與基板22的附 者^下電極242、242,可選用鈦、鎢等附著力強的金屬。 同時’為增強上電極244、244,與奈米碳管元件抓的電 接觸,從而減小上電極244、244,與奈米碳管元件%的 接觸電阻,上電極244、244,可選用金、翻、把等導電性BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating an electron-emitting element, and more particularly to a method of preparing a surface-conduction electron-emitting element. [Prior Art] Flat panel display is a major trend in the display industry. At present, the main flat panel display technologies include liquid crystal display (LCD) technology, plasma display (pDp) technology, and field emission display (FED) technology. Among them, LCD technology is a passive light-emitting display technology, which has certain limitations in terms of brightness and color fidelity. The PDP technology is an active light-emitting display technology, and the display technology has its limitations in terms of color fidelity and energy consumption. At present, the more mature FED technology is Spindt type, but due to its high cost and low solidity and uniformity of electron emitters, it is difficult to achieve industrialization. In 1996, Canon introduced a new display technology called Surface-Conduction Electron Emitter Display (SED). SED technology also belongs to a FED technology, but unlike conventional FED technology, the electron emission of the SED device is along a direction parallel to the substrate. An SED device consists of a plurality of Surface Conduction Electron Emitter (SCE) 'SCEs on the cathode surface, and each SCE corresponds to one display unit. Referring to Fig. 1, a conventional SCE 10 includes a cathode substrate 12, two electrodes 112, 114, a conductive film 116, and a deposition layer 118 at a slit of the conductive film. There is a nanometer-scale gap of 12 于 on the deposited layer ι18. When a certain voltage is applied to the electrodes 112, 114 at 6 200826136, electrons will fly from the electrode 112 to the electrode 114 due to the tunneling effect. A part of the electrons are extracted by the anode 14 under the action of the anode 14 to strike the fluorescent screen 16 to emit light. The SED technique has the same principle as the previous cathode ray tube display (CRT) technique, so the image has the same excellent color effect. Since the sed device is prepared by a simple process such as simple ink jet printing, start-up molding, etc., the production cost is greatly reduced. Traditional 4" inch SED devices have a light-dark contrast ratio of 8600:1" and a thickness of approximately 1Q_, and consume approximately one and a half of the same size LCD device. However, in the SCE towel of the conventional SED device, the preparation of a gap for emitting electrons requires a long time of high current, resulting in waste of energy. Moreover, since the gap between the emitted electrons is only a few nanometers wide, the electrons fly in the short time, many electrons are out of reach, and the extreme electric field is extracted to hit the fluorescent screen, because * also causes waste of energy. However, if the gap is increased, 'the emission of electrons requires a higher emission voltage, which will exceed the surface of the current driver circuit. &, it is necessary to study a novel electron-emitting element that can overcome the above disadvantages. Nano carbon official (CNTs) is a new type of carbon material with excellent electrical conductivity and an aspect ratio almost close to the theoretical limit. Therefore, the carbon nanotube system is one of the best known electron emission materials. It has a very low field emission voltage, so that it can emit electrons at a small emission voltage and a large emission distance, and the emission current is stable, and thus is very suitable for use in an electron-emitting device. There is a way to provide a method for preparing an electron-emitting element with a small energy consumption and a high electron emission efficiency using a carbon nanotube and a simple process. - [Description of the Invention] - A method for preparing an electron-emitting device, comprising the steps of: (1) k for a substrate; (2) spacing two parallel lower electrodes on the surface of the substrate; (c) being perpendicular to the lower surface a plurality of carbon nanotube elements are disposed on the lower electrode in the electrode direction; (4) two upper electrodes are disposed on the lower electrode, and the carbon nanotube element is fixed between the upper electrode and the lower electrode; (5) forming A gap is between the carbon nanotube elements located between the parallel electrodes. In the step (2) and the step (4), the method of preparing the lower electrode and the upper electrode is a vacuum evaporation method, a magnetron sputtering method or an electron beam evaporation method. In the step (2), the method of placing the carbon nanotube component is laying, spraying or depositing. In the step (5), the gap between the carbon nanotube elements is formed by a plasma engraving method. Before step (3), the process of forming a support body on the surface of the substrate between the two lower electrodes may be further advanced. (1) After the step (2), a process of forming a fixed layer on the upper surfaces of the upper electrode and the carbon nanotube member may be further included. $, after the step (5), the photoresist covering the surface of the carbon nanotubes and the upper electrode is left to form a fixed layer. After the step (5), a process of forming a groove on the surface of the substrate under the gap of the carbon nanotube element may be further included. Compared with the prior art, the surface conduction electron-emitting element and the electron source 8 200826136 can be prepared by a process of photolithography, deposition, and the like. Since the carbon nanotube is used as the electron emission (four), the electron emission voltage is lowered, thereby reducing the energy consumption of the prepared electron-emitting element. $, the prepared carbon nanotube elements have a gap of up to several micrometers. The electrons here have enough 4 to be long: they are taken out to strike electrons, thereby increasing the utilization of electrons. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. The first embodiment of the present invention provides a Surface-Conduction Electron Emitter (SCE). Referring to FIG. 2, the SCE 20 includes a substrate 22, a first electrode 24 and a second electrode 24 disposed in parallel on the surface of the substrate 22, and two linear carbon nanotube elements 26. The first electrode 24 and the second electrode 24 respectively include lower electrodes 242, 242 and upper electrodes 244, 244 which are stacked on the surface of the substrate 22 in a direction perpendicular to the substrate 22. The two carbon nanotube elements 26 are respectively sandwiched between the lower electrode 242 and the upper electrode 244 and the lower electrode 242, and the upper electrode 244, the lower electrodes 242 and 242 are in surface contact with the substrate 22, and the upper electrodes 244 and 244' are respectively Located on the lower electrodes 242, 242, and the carbon nanotube element 26. A gap 28 is formed between the opposing electron emitting ends 262 of the two carbon nanotube elements 26. The substrate 22 may be an insulating material such as quartz, glass, ceramic, plastic, or the like, or the substrate 22 may be a conductor whose surface is covered with an oxide insulating layer. The thickness of the substrate & can be set according to a predetermined requirement. When the substrate 22 is a conductor whose surface is covered with an oxide insulating layer, in order to ensure sufficient insulation, the oxide insulating layer should have a thickness of 9 200826136 /. The ruthenium plate of the ruthenium oxide layer of the substrate of the present embodiment has a thickness of 〇.5 to 1 μm formed on the surface of the bismuth layer. It is carbon; the second I to 26 can be a nano carbon material pipeline, etc., which is a bundle structure formed by a plurality of carbon nanotubes. And the material of the second electrode 24 may be titanium, noodles, gold, and genus, and has a thickness of 20 to 15. For nanometers, the width may be several tens of two. The length of It may be selected as needed, and the first electrode 24 and the first gap 28 are several micrometers to several tens of microseconds. Preferably, the ii:micro:the:electrode 24 and the second _24' have a width of 90 μm, 190 μm, a length of 7 cm, and a pitch of 10 μm. Further, in order to reinforce the lower electrodes 242, 242 and the lower electrodes 242, 242 of the substrate 22, a metal having strong adhesion such as titanium or tungsten may be used. At the same time 'to enhance the upper electrodes 244, 244, electrical contact with the carbon nanotube components, thereby reducing the contact resistance of the upper electrodes 244, 244, and carbon nanotube components, the upper electrodes 244, 244, optional gold Conductivity

好的金屬。進-步地’為增強下電極242、242,與基板U 的附者力及其與奈米碳管元件26的電接觸,下電極⑽、 242可進一步包括多層金屬。下電極242、242,的最下 層金屬直接與基板22減觸,其㈣可域、鎢等附著力 強的金屬。下電極242、242’最上層金屬直接與奈米碳管 元件26相接觸,其材料可為金、鉑、鈀等導電性好的金屬。 本技術領域的技術人員應明白,本發明第一實施表面 傳^電子發射元件20可進-步包括複數奈米碳管元件 設置於第-電極24與第二電極24,之間,該複數奈米碳 200826136 官兀件26彼此相互平行且平行於基板&設置。進一步地, 請參閱圖3,該複數奈米碳管元件26可僅固定於第一電極 每個奈米石反官元件26可包括至少一電子發射端262向 第二電極24,延伸,並分別與第二電極24,形成間隙烈。 睛參閱圖4,該複數奈米碳管元件26亦可分別固定於第一 電極24及第二電極24,,該複數奈米碳管元件26分別包 括至少一電子發射端262彼此相對,形成間隙28。 本技術領域的技術人員應明白,本發明第一實施例表 面傳導電子發射元件2〇中的第—電極24及第二電極24, f可知用-體結構,奈米碳管元件26亦可藉由導電膠枯覆 等方式固定於第一電極24及第二電極24,表面,或者直 接嵌入第一電極24及第二電極24,的材料中。 請參閱圖5,本發明第一實施例進一步提供一種應用 上述表面傳導電子發射元件20的電子源30。該電子源3〇 包括複數上述表面傳導電子發射元件2〇,該複數表面傳導 電子發射元件20共用一個基板22,複數對第一電極24及 第一電極24’平行設置於該基板22表面,複數線狀奈米 碳管元件26分別固定於上述第一電極24及第二電極 24 ,該複數奈米碳管元件26分別包括至少一電子發射端 262彼此相對,相對的電子發射端262之間形成間隙為28。 本發明電子源30可進一步應用於SED,該SED包括一電子 源30 ’ 一設置於電子源3〇上方的一個陽極32,及一個設 置於陽極32上並與其配合的螢光屏34的。SED工作時, 於電子源30的第一電極24及第二電極24,施加訊號電 11 200826136 壓。由於奈米碳管元件26本身具有極佳的場發射性能,於 電場作用下,電子從固定於第二電極24,的奈米碳管元件 26射入間隙28,並飛向相鄰的第一電極24。於陽極電極 32的正向偏壓作用下,電子被拉向陽極電極%,並撞擊螢 光屏34從而發光。於本實施例中,當陽極犯的場強與第 一電極24與第二電極24,間的場強之比為6:1時,陽極 32的電流與第一電極24與第二電極24,間的電流大致相 同’說明電子源30具有較高的電子發射效率及電子利用 率。 請參閱圖6,本發明第二實施例提供一種表面傳導電 子發射元件40 ’該表面傳導電子發射元件4〇包括一個基 板42 ’平行設置於基板42表面的第一電極⑭及第二電極 44,,及兩個奈米碳管元件仙。第一電極44及第二電極 44分別包括沿垂直基板42 $向堆疊設置於基板42表面 的下電極442、442’及上電極444、444,。兩個奈米碳管 凡件46分別夾於下電極442與上電極444及下電極撕, 與電極444,之間。該表面傳導電子發射元件4〇的結構 與第-實施例表面傳導電子發射元件2〇結構基本相同,其 ,別在於:該表面傳導電子發射元件4〇於第一電極鈕及 第-電極44之間的基板42表面設置有一支撐體48,該 支撐體48的厚度小於或等於下電極视、442,的厚度。 ^撐體48根據基板42材料,可氧切、氧化紹、金 ’乳化物、陶究等材料。支撐體48可避免奈米碳管元件 6伸出電極44的部分於重力作訂易彎變形甚至斷裂, 12 200826136 從而影響表面傳導電子發射元件40電子發射的穩定性。本 實施例中,支撐體為一二氧化矽介質層,其厚度為40奈米 至70奈米。 4參閱圖7,本發明第三實施例提供一種表面傳導電 子發射元件50。該表面傳導電子發射元件5〇包括一個基 板52,平行設置於基板52表面的第一電極54及第二電極 54 ,及兩個線狀奈米碳管元件56。兩個奈米碳管元件56 分別固定於第一電極54及第二電極54,。該表面傳導電 子發射το件50的結構與第一實施例表面傳導電子發射元 件20的結構基本相同,其區別在於:該表面傳導電子發射 兀件50於兩電極54之間的基板52表面形成一凹槽58。 由於基板52為絕緣材料或其表面覆有一氧化物的絕緣 層,該基板52會對奈米碳管元件56的發射電子有一定的 遮罩作用。因此,基板52表面形成_凹槽58,可增加奈 米石反官το件56與基板52的距離,從而降低基板52的遮罩 作用。 μ參閱圖8’本發明第四實施例提供—種表面傳導電 子發射元件60。該表面傳導電子發射元件60包括-個基 板62 ’平行設置於基板62表面的第一電極64及第二電極 64’,及兩個線狀奈米碳f元件66。兩個奈米碳管元件阳 分別固定於第-電極64及第二電極&,。該表面傳導電 子發射元件60的結構與第—實施例表面傳導電子發射元 件20結構基本相同,其區別在於:該表面傳導電子發射元 件60進-步包括一固定層68。該固定層68覆蓋於電極 13 200826136 64 64的表面及奈米石反官辑阳的部分表面。該固定声 68可增強奈米碳管元件66的_性,防止狀電場作^ 下被拉出。該_層68可採用氧切、氮切、金屬氧化 物、陶瓷及光刻膠等絕緣材料。 另,本技術領域技術人員應明白,本發明第一實施例 的表面傳導電子發射元件2G,為降烟—電極24或% 内的相鄰奈米碳管元件26 _遮罩侧,奈米碳管元 件26的發射電子能力,奈米碳管科26的複數奈米碳管 可形成連續的顯狀等結構,詳如圖9所示。 睛-併參閱目10至圖14,本發明第一實施例表面傳 導電子發射元件1G的製備方法包括以下步驟: 步驟1’提供-基板22。該基板22可為石英、玻璃、 陶兗、塑轉絕緣材料’或表面覆有氧化物絕緣層的導體。 基板22的厚度可根據預定需求設置,當基板22為表面覆 有氧化物絕緣層的導料,為了保證充分地絕緣,氧化物 絕緣層應具有—定厚度。本實施_基板22為表面有一二 氧化石夕層的料’二氧化梦層的厚度為0. 5至1微米。 步驟2,請閱圖11,間隔設置兩個平行的下電極242、 242於基板22表面。其具體步驟包括:先於基板22塗覆 光刻膠,通過光刻方法於光刻膠層形成兩個平行的條帶狀 區域,於該區域露出基板22。然後,通過真空蒸鍍、磁控 濺射或者電子束蒸發等方法於整個基板22上沈積一層或 者多層金屬。最後,以放入丙酮等有機溶劑除去光刻膠及 其上的金屬層,即得到下電極242、242,。或者,先於整 14 200826136 個基板22上沈積-層或者多層金屬,於該金屬層表面塗覆 -層光卿,通過細方法形成光_的卿以保護所需 要電極,紐制紐触、離子束反蘭鱗方法去除 夕餘區域的金屬層,最後以丙_等有機溶劑去除光刻膠 層,即得到下電極242、242,。 少 下電極242、242’的材料可為鈦、翻、金、鎢或把等 金屬,厚度為40奈米至70奈米,長度及寬度為幾十微米 至幾百微米,’域微米至幾十微米。為增強下電極 242、242與基板22的附著力,下電極242、242,優選 鈦、鎢等附著力強的金屬。 ^下電極242、242’可包括多層金屬。下電極242、242, 的=下層金屬直接與基板22相接觸,其材料優選欽 、鎢等 附$力強的金屬,以增強下電極242、242,與基板22的 附著力。下電極242、242’ #最上層金屬直接與要於後續 2放置的奈米碳管元件26接觸,其材料優選為金翻、把 等導電性好的金屬,以增強下電極242、242,與奈米碳管 元件26的電接觸’從而減小接觸電阻。 驟3,4參閱圖12,沿垂直於下電極242、242,方 向Γ置複數奈米碳管元件26於下電極242、242,上。複 數不米石反g το件26相互平行且平行於基板22。奈米碳管 凡件26可為奈米礙管、奈米碳管線等。於下電極242、242, 碳f元件26可採用鋪設、喷灑、沈積等方法。 太、/ίΓ方法的具體步驟如下:提供一個奈米碳管膜;將 不米碳管膜平行於基板22且沿垂直於下 242、242, 15 200826136 的方j放於下電極242、242,㈣上,並滴少許乙醇於 奈米奴讀上使其I喊複數奈米碳管線並附著於下電極 242、242’的表面。該方法中製備奈米碳管膜的方法包括 以下步驟:提供-奈米碳管_,用—鑷子纽或用膠帶 枯住夕束不米奴官’施加外力抽拉。由於范德華力的作用, =碳管束端部首尾連接於—起,沿抽拉方向形成一奈米 碳管膜。奈米碳管膜及奈米好_具雜備方法參見論 文:Xia〇b〇Zhangetal.,AdvancedMaterials,2〇〇6, 18 1505-1510 。 ’ 亦本技術領域技術人員應明白,該鋪設方法亦可將步 驟2中已獲得的形成有下電極242、242,的基板22邊緣 枯上膠,並靠近並接觸奈米碳管㈣,沿垂直於下電極 242、242 #方向移動基板22拉出一個奈米破管膜,滴少 許乙醇於奈米碳管膜上,使魏職即得到奈米碳管線。 喷灑方法的具體步驟如下:將複數奈米<管分散於溶 劑中,該浴劑可為乙醇、丙酮、異丙醇、】,2-二氣乙烷等 有機浴劑,或者係摻入表面活性劑的溶液,如加入十二烷 基苯%酸鈉的水溶液。然後將含奈米碳管的溶液喷灑於下 電極242、242上,待溶劑揮發後,奈米碳管即置於平行 的下電極242、242上。優選地,可先將下電極242、242, 加熱至咼於溶劑沸點的溫度,而後將含奈米碳管的溶液噴 灑於下電極242、242’ 。由於溶劑於高溫下迅速揮發,可 防止奈米碳管於下電極242、242,表面上再次團聚。 沈積方法的具體步驟如下:將奈米碳管分散於溶劑 16 200826136 中,該溶劑可為乙醇、_'異丙醇小2—二氣乙烧等有 機溶劑,或者係摻入表面活性劑的溶液,如加入十二烷基 苯磺酸鈉的水溶液。然後將帶有下電極242、242,的基板 22放置於含有奈米碳管的溶液或懸濁液巾,靜置一段時 間。奈米碳官由於自身重力作用沈積於下電極242、242, 表面,待溶劑完全揮發後,奈米碳管元件26即置於下電極 242、242 表面。 另上述_種放置奈米碳管的方法中,喷麗與沈積放 置奈米碳管的方法,可進-步包括將奈米碳管26取向的過 程。取向方法包括以氣流吹使奈米碳管26垂直於下電極 242、242的氣流法,以外加電場使奈米石炭管加垂直於下 電極242、242’的電泳法等。 步驟4,請參閱圖13,對應設置兩個上電極辦、施, 於下電極上242、242’,並將上述奈米碳管元件沈固定 於上電極244、244’與下電極242、⑽,之間。上電極 244、244的製備方法與步驟2中製備下電極⑽、如, 的方法相同。上電極244、244,的結構與下電極242、242, 相同’上電極244、244,的材料可域、鈾、金、鶴或把 等金屬’優選的材料躺、金或鱗導電性好的金屬。 步驟、5,請參閱圖14,形成一間隙28於位於平行電極 之間的奈米碳管元件26。先;^太丰Λ & 撕售表面整體塗覆—與上電極 on ㈢先刻膠,通過光刻方法露出 26的—部分’然後,通過電射,邊等方法去 除不米碳管元件26的露出的部分,從而形成間隙狀。發 17 200826136 射電子間隙的寬度可為1至10微米。電漿刻蝕可用氩氣、 氧氣及六氟化硫等氣體。本實施例係採用氧氣電漿刻蝕, 壓強為2帕斯卡’功率為100瓦特,反應時間約為2分鐘, 即可完全去除奈米碳管元件26的露出部分。本技術領域人 員應明白,步驟5中間隙28還可通過掩模等方法製備。 步驟5可進一步包括去除多餘奈米碳管的步驟。如步 驟3中,除了放置於下電極242、242,的奈米碳管外,基 板22上還存於多餘的奈米碳管。該多餘的奈米碳管可通ς 電漿刻蝕等方法去除。 本發明第二實施例的表面傳導電子元件4〇的製備方 法與上述第-實關製備方法的步驟基本相同。兩者區別 在於’於步驟3設置奈米碳管元件26之前,進一步通過採 用真二蒸鑛、電子束蒸鑛及磁控賤射等方法,於平行於下 電極442之間的基板42上形成支撐體48。該支撐體牝為 一介質層。支撐體48根據基板的不同,可選用氧化石夕、氧 化铭、陶竟等材料,其厚度小於或等於下電極碰的高度。 本實施例巾’支撐體48為-二氧切介質層,其厚度為 40奈米至70奈米。 又 本發明第三實施例的表面傳導電子元件5〇的製備方 法與上述第-實施例製備方法的步驟基本相同。兩者區別 在於,於步驟5形成間隙之後,於兩個電極%間的基板 52表面上通過濕法職形成—凹槽58,根據基板52材料 不同可採用不同的職劑。基板52為絕緣材料或表面覆有 -氧化物絕緣層,對奈米碳f元件56的電子發射有—定的 18 200826136 遮罩作用。因此,凹槽+ 5一的距離,二==:= 實施例中’基板52為覆蓋有二氧切層的外,職= 用溫度為80t左右的氫氧化卸溶液,反應時片木 鐘,所得到的凹㈣深度大約為H)微米^微^分 本發明第四實施例的表面傳導電子元件6〇的 法與上述弟-實施例製備方法的步驟基本相同。兩者 ==驟5中,將覆蓋於奈米碳管阳及:表 面的先刻膠保留,形成—固定層βδ。該固定層⑽可^ 的穩固性’防止奈米碳管66於電場作用二 拉出。或者,於步驟4之後,進—步包括—沈積方法 =層68的步驟,該固定層68可為氧切、氮 屬氧化物、陶瓷等絕緣材料。 一 另步驟5中可通過採用錯齒狀的光刻方法,使 碳管元件的複數奈米碳管形成連續的顯狀結構,製備出、 _狀_隙’請參閱圖9。該鑛齒狀的間隙可降低夺米 ^官兀件的複數奈米碳管間的遮罩作用,從而增強奈米碳 的發射電子能力。奈米碳管元件的複數奈米碳管還 勺為具他形狀。 電子源30的餘方法與表面料電子發射元件别的 :備方法她’其製備方法具體步驟包括:提供—基板 於該基板22上製備複數相互平行的下電極;於下電極上放 置複數奈米碳管元件26,複數奈米碳管元件相互平行且平 行於基板,垂直於下電極;於奈米碳管元件26上製備與下 19 200826136 電極相同形狀的上電極,上電極與下電極共同構成電極 24,24 ,形成奈米碳管元件26間的間隙28。 與先前技術相比較,本發明實施例的表面傳導電子發 射兀件及電子源,通過簡單的光刻、顧工藝就可製備, 從而可簡化製備工藝。另,由於發射電子的間隙可達幾個 微米,電子於此_飛行有足_時陽極電場提取出 來撞擊螢絲,從而增加電子率。另,由於奈米碳管 ,良的電子發射特性,降低了電子發射電壓,從而降低了 能耗。因此,本發明實施例的表面傳導電子發射元件及電 子源,於簡化SED的製備工藝、提高SED的發光效率及降 低SED能耗方面都有著廣闊的應用前景 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係先前技術中表面傳導電子發射元件的側視示意 圖。 圖2係本發明第一實施例表面傳導電子發射元件的剖 視示意圖。 圖3與圖4係本發明第一實施例表面傳導電子發射元 件的俯視示意圖。 圖5係應用本發明第一實施例表面傳導電子發射元件 200826136 的電子源及應用該電子源的SED的側視示意圖。 圖6係本發明第二實施例表面傳導電子發射元件的剖 視不意圖。 圖7係本發明第三實施例表面傳導電子發射元件的剖 視示意圖。 圖8係本發明第四實施例表面傳導電子發射元件的杳j 視示意圖。 圖9係本發明第一實施例表面傳導電子發射元件的掃 描俯視圖。 圖10係本發明第一實施例的表面傳導電子發射元件 的製備方法的流程示意圖。 圖11至圖14係圖10的具體步驟示意圖。 【主要元件符號說明】 表面傳導電子發射元件10、20、40、50、60 電子源 基板 電極 陽極 上電極 下電極 奈米碳管 電子發射端 間隙 30 12、22、42、52、62 112、114、24、24’、44、44’ 、 54、54,、64、64, 14、32 244、244’ 、444、444’ 242、242,、442、442, 26、46、56、66 262 28、120 21 200826136 螢光屏 16、34 支撐體 48 凹槽 58 固定層 68 導電薄膜 116 沈積層 118 22Good metal. In order to enhance the lower electrodes 242, 242, the attachment force to the substrate U and its electrical contact with the carbon nanotube element 26, the lower electrodes (10), 242 may further comprise a plurality of layers of metal. The lowermost metal of the lower electrodes 242, 242 is directly in contact with the substrate 22, and (4) a metal having strong adhesion such as a domain or tungsten. The uppermost layer of the lower electrodes 242, 242' is in direct contact with the carbon nanotube element 26, and the material thereof may be a metal having good conductivity such as gold, platinum or palladium. It should be understood by those skilled in the art that the first embodiment of the present invention can further include a plurality of carbon nanotube elements disposed between the first electrode 24 and the second electrode 24, the complex number The m-carbon 200826136 mandrel pieces 26 are parallel to each other and parallel to the substrate & Further, referring to FIG. 3, the plurality of carbon nanotube elements 26 may be fixed only to the first electrode. Each of the nanoscopy elements 26 may include at least one electron emitting end 262 extending toward the second electrode 24, and respectively A gap is formed with the second electrode 24. Referring to FIG. 4, the plurality of carbon nanotube elements 26 may also be respectively fixed to the first electrode 24 and the second electrode 24, and the plurality of carbon nanotube elements 26 respectively include at least one electron emitting end 262 opposite to each other to form a gap. 28. It should be understood by those skilled in the art that the first electrode 24 and the second electrode 24, f of the surface conduction electron-emitting device 2 of the first embodiment of the present invention can be known to have a body structure, and the carbon nanotube component 26 can also be borrowed. It is fixed to the first electrode 24 and the second electrode 24 by a conductive paste or the like, or is directly embedded in the material of the first electrode 24 and the second electrode 24. Referring to Fig. 5, a first embodiment of the present invention further provides an electron source 30 to which the surface conduction electron-emitting element 20 is applied. The electron source 3 includes a plurality of the surface conduction electron-emitting elements 2, wherein the plurality of surface conduction electron-emitting elements 20 share a substrate 22, and the plurality of first electrodes 24 and the first electrodes 24' are disposed in parallel on the surface of the substrate 22, The linear carbon nanotube elements 26 are respectively fixed to the first electrode 24 and the second electrode 24, and the plurality of carbon nanotube elements 26 respectively include at least one electron emitting end 262 opposite to each other, and the opposite electron emitting ends 262 are formed. The gap is 28. The electron source 30 of the present invention can be further applied to an SED comprising an electron source 30', an anode 32 disposed above the electron source 3A, and a phosphor screen 34 disposed on and cooperating with the anode 32. When the SED is in operation, the signal voltage 11 200826136 is applied to the first electrode 24 and the second electrode 24 of the electron source 30. Since the carbon nanotube element 26 itself has excellent field emission performance, electrons are injected into the gap 28 from the carbon nanotube element 26 fixed to the second electrode 24 under the action of an electric field, and fly to the adjacent first Electrode 24. Under the forward bias of the anode electrode 32, electrons are pulled toward the anode electrode % and strike the phosphor screen 34 to emit light. In this embodiment, when the field strength of the anode and the field strength between the first electrode 24 and the second electrode 24 are 6:1, the current of the anode 32 and the first electrode 24 and the second electrode 24, The current between the two is substantially the same 'describes that the electron source 30 has a high electron emission efficiency and an electron utilization rate. Referring to FIG. 6 , a second embodiment of the present invention provides a surface conduction electron-emitting element 40 ′ including a first electrode 14 and a second electrode 44 that are disposed in parallel with the substrate 42 ′ on the surface of the substrate 42 . , and two carbon nanotube components. The first electrode 44 and the second electrode 44 respectively include lower electrodes 442, 442' and upper electrodes 444, 444 which are stacked on the surface of the substrate 42 along the vertical substrate 42 $. The two carbon nanotubes 46 are sandwiched between the lower electrode 442 and the upper electrode 444 and the lower electrode, respectively, and the electrode 444. The structure of the surface conduction electron-emitting element 4 is substantially the same as that of the surface conduction electron-emitting element of the first embodiment, and the surface conduction electron-emitting element 4 is disposed between the first electrode button and the first electrode 44. A support body 48 is disposed on the surface of the substrate 42. The thickness of the support body 48 is less than or equal to the thickness of the lower electrode view 442. The support 48 is made of a material such as a material of the substrate 42, an oxygen-cuttable, an oxidized, a gold emulsifier, a ceramics or the like. The support body 48 prevents the portion of the carbon nanotube member 6 that protrudes from the electrode 44 from being bent or deformed by gravity, and thus affects the stability of electron emission of the surface conduction electron-emitting element 40. In this embodiment, the support is a ceria dielectric layer having a thickness of from 40 nm to 70 nm. Referring to Figure 7, a third embodiment of the present invention provides a surface conduction electron-emitting element 50. The surface conduction electron-emitting element 5 includes a substrate 52, a first electrode 54 and a second electrode 54 which are disposed in parallel on the surface of the substrate 52, and two linear carbon nanotube members 56. Two carbon nanotube elements 56 are fixed to the first electrode 54 and the second electrode 54, respectively. The structure of the surface conduction electron-emitting electron-emitting element 50 is substantially the same as that of the surface-conduction electron-emitting element 20 of the first embodiment, except that the surface conduction electron-emitting electron-emitting element 50 forms a surface on the surface of the substrate 52 between the electrodes 54. Groove 58. Since the substrate 52 is an insulating material or an insulating layer whose surface is covered with an oxide, the substrate 52 has a certain masking effect on the electron emission of the carbon nanotube element 56. Therefore, the surface of the substrate 52 is formed with a recess 58 which increases the distance between the nano-reverse member 56 and the substrate 52, thereby reducing the masking effect of the substrate 52. Referring to Figure 8', a fourth embodiment of the present invention provides a surface conduction electron-emitting element 60. The surface conduction electron-emitting element 60 includes a first electrode 64 and a second electrode 64' which are disposed in parallel with the substrate 62' on the surface of the substrate 62, and two linear nanocarbon f elements 66. The two carbon nanotube elements are fixed to the first electrode 64 and the second electrode & The structure of the surface conduction electron-emitting element 60 is substantially the same as that of the surface conduction electron-emitting element 20 of the first embodiment, except that the surface conduction electron-emitting element 60 further includes a fixed layer 68. The fixing layer 68 covers the surface of the electrode 13 200826136 64 64 and a part of the surface of the nano stone. The fixed sound 68 enhances the characterization of the carbon nanotube element 66 to prevent the electric field from being pulled out. The layer 68 may be an insulating material such as oxygen cut, nitrogen cut, metal oxide, ceramic, or photoresist. In addition, those skilled in the art should understand that the surface conduction electron-emitting element 2G of the first embodiment of the present invention is an adjacent carbon nanotube element 26 in the smoke-reducing electrode 24 or % _ mask side, nano carbon The electron-emitting ability of the tube member 26, the plurality of carbon nanotubes of the carbon nanotubes 26 can form a continuous shape and the like, as shown in FIG. EMBODIMENT - Referring to Figures 10 to 14, the method of fabricating the surface conduction electron-emitting element 1G of the first embodiment of the present invention comprises the following steps: Step 1' provides a substrate 22. The substrate 22 may be quartz, glass, ceramic, plastic-transferred material or a conductor coated with an oxide insulating layer. The thickness of the substrate 22 can be set according to a predetermined requirement. When the substrate 22 is a conductive material whose surface is covered with an oxide insulating layer, the oxide insulating layer should have a constant thickness in order to ensure sufficient insulation. 5至1微米。 The thickness of the surface of the layer of the oxidized layer of the present invention. Step 2, referring to FIG. 11, two parallel lower electrodes 242, 242 are spaced apart from the surface of the substrate 22. The specific steps include: coating the photoresist on the substrate 22, and forming two parallel strip-shaped regions on the photoresist layer by photolithography, and exposing the substrate 22 in the region. Then, one or more layers of metal are deposited on the entire substrate 22 by vacuum evaporation, magnetron sputtering or electron beam evaporation. Finally, the photoresist and the metal layer thereon are removed by placing an organic solvent such as acetone to obtain lower electrodes 242 and 242. Alternatively, a layer or a plurality of layers of metal may be deposited on the entire substrate of 200826,136, and a layer of light is applied to the surface of the metal layer to form a light-clearing method to protect the desired electrode. The anti-blue scale method removes the metal layer in the outer region, and finally removes the photoresist layer by using an organic solvent such as C-, that is, the lower electrodes 242 and 242 are obtained. The material of the lower electrode 242, 242' may be titanium, flip, gold, tungsten or the like, the thickness is 40 nm to 70 nm, and the length and width are several tens of micrometers to several hundred micrometers, 'domain micron to several Ten micrometers. In order to enhance the adhesion between the lower electrodes 242 and 242 and the substrate 22, the lower electrodes 242 and 242 are preferably metals having strong adhesion such as titanium or tungsten. The lower electrodes 242, 242' may comprise a plurality of layers of metal. The lower layer metal of the lower electrodes 242, 242 is directly in contact with the substrate 22, and the material thereof is preferably a metal such as a strong metal such as tungsten or tungsten to enhance the adhesion of the lower electrodes 242 and 242 to the substrate 22. The lowermost electrode 242, 242' #the uppermost layer metal is directly in contact with the carbon nanotube element 26 to be placed in the subsequent 2, and the material thereof is preferably a metal flip, a metal having good conductivity, etc., to reinforce the lower electrodes 242, 242, and The electrical contact of the carbon nanotube element 26 reduces the contact resistance. Referring to Figure 12, a plurality of carbon nanotube elements 26 are placed on the lower electrodes 242, 242 in a direction perpendicular to the lower electrodes 242, 242. The plurality of non-meter stone anti-g τ means 26 are parallel to each other and parallel to the substrate 22. Nano carbon tube The piece 26 can be a nano tube, a nano carbon line, and the like. For the lower electrodes 242, 242, the carbon f element 26 may be laid, sprayed, deposited, or the like. The specific steps of the method are as follows: a carbon nanotube film is provided; the carbon nanotube film is placed parallel to the substrate 22 and placed along the side perpendicular to the lower 242, 242, 15 200826136 to the lower electrodes 242, 242, (d), and a little ethanol was added to the nanocap to read it so that I yed a plurality of nano carbon lines and attached to the surface of the lower electrodes 242, 242'. The method for preparing a carbon nanotube film in the method comprises the steps of: providing a carbon nanotube _, applying a force extraction with a scorpion nucleus or by using a tape to dry the stalk. Due to the effect of van der Waals force, the end of the carbon tube bundle is connected end to end, forming a carbon nanotube film along the drawing direction. Nano carbon nanotube film and nano-good method with miscellaneous preparations See the article: Xia〇b〇Zhangetal., AdvancedMaterials, 2〇〇6, 18 1505-1510. It should also be understood by those skilled in the art that the laying method can also glue the edge of the substrate 22 formed with the lower electrodes 242, 242 obtained in the step 2, and close to and contact the carbon nanotubes (four), along the vertical The bottom electrode 242, 242 moves the substrate 22 to pull out a nano-barrel film, and drops a little ethanol on the carbon nanotube film to obtain a nano carbon line. The specific steps of the spraying method are as follows: the plurality of nano tubes are dispersed in a solvent, and the bath may be an organic bath such as ethanol, acetone, isopropanol, or 2-dioxaethane, or may be incorporated. A solution of a surfactant such as an aqueous solution of sodium dodecyl benzene%. The solution containing the carbon nanotubes is then sprayed onto the lower electrodes 242, 242. After the solvent is volatilized, the carbon nanotubes are placed on the parallel lower electrodes 242, 242. Preferably, the lower electrodes 242, 242 are first heated to a temperature at the boiling point of the solvent, and then the solution containing the carbon nanotubes is sprayed onto the lower electrodes 242, 242'. Since the solvent is rapidly volatilized at a high temperature, the carbon nanotubes can be prevented from agglomerating again on the surfaces of the lower electrodes 242, 242. The specific steps of the deposition method are as follows: the carbon nanotubes are dispersed in a solvent of 16 200826136, and the solvent may be an organic solvent such as ethanol, _'isopropanol small 2-diethylene b-ethene, or a solution doped with a surfactant. For example, an aqueous solution of sodium dodecylbenzenesulfonate is added. The substrate 22 with the lower electrodes 242, 242 is then placed in a solution containing a carbon nanotube or a suspension towel and allowed to stand for a period of time. The carbon nanotubes are deposited on the surface of the lower electrodes 242, 242 by their own gravity, and after the solvent is completely volatilized, the carbon nanotube elements 26 are placed on the surfaces of the lower electrodes 242, 242. In the above method of placing a carbon nanotube, the method of spraying and depositing the carbon nanotube may further include a process of orienting the carbon nanotube 26. The orientation method includes an air flow method in which the carbon nanotubes 26 are perpendicular to the lower electrodes 242, 242 by a gas flow, and an electric field is applied to add a nanocarbon tube to the electrophoresis method perpendicular to the lower electrodes 242, 242'. Step 4, referring to FIG. 13, correspondingly, two upper electrodes are disposed on the lower electrodes 242, 242', and the above-mentioned carbon nanotube components are fixed to the upper electrodes 244, 244' and the lower electrodes 242, (10) ,between. The preparation method of the upper electrodes 244, 244 is the same as the method of preparing the lower electrode (10), for example, in the step 2. The upper electrodes 244, 244 have the same structure as the lower electrodes 242, 242, the same 'upper electrodes 244, 244, the material of which can be uranium, gold, crane or metal. The preferred material is lying, gold or scales are electrically conductive. metal. Steps 5, Referring to Figure 14, a gap 28 is formed in the carbon nanotube element 26 between the parallel electrodes. First; ^太丰Λ & tearing the surface of the overall coating - with the upper electrode on (three) first engraving, through the lithography method to expose the part of 26 'and then, by electro-radiation, edge and other methods to remove the carbon nanotube element 26 The exposed portion forms a gap shape. Hair 17 200826136 The electron gap can be from 1 to 10 microns wide. The plasma etching may be performed by using a gas such as argon gas, oxygen gas or sulfur hexafluoride. In this embodiment, oxygen plasma etching is used, the pressure is 2 Pascals, and the power is 100 watts. The reaction time is about 2 minutes, and the exposed portion of the carbon nanotube member 26 can be completely removed. It will be understood by those skilled in the art that the gap 28 in step 5 can also be prepared by a method such as a mask. Step 5 may further comprise the step of removing excess carbon nanotubes. In step 3, in addition to the carbon nanotubes placed on the lower electrodes 242, 242, excess carbon nanotubes are present on the substrate 22. The excess carbon nanotubes can be removed by plasma etching or the like. The method of preparing the surface conduction electronic component 4 of the second embodiment of the present invention is basically the same as the step of the above-described first-real preparation method. The difference between the two is that the formation of the carbon nanotube element 26 in step 3 is further formed on the substrate 42 parallel to the lower electrode 442 by using a method such as true distillate, electron beam evaporation, and magnetron sputtering. Support body 48. The support body is a dielectric layer. The support body 48 may be made of materials such as oxidized stone, oxidized, and ceramic, depending on the substrate, and the thickness thereof is less than or equal to the height of the lower electrode. The support ' support 48 of the present embodiment is a dioxo-cut dielectric layer having a thickness of from 40 nm to 70 nm. Further, the method of preparing the surface conduction electronic component 5 of the third embodiment of the present invention is basically the same as the steps of the above-described production method of the first embodiment. The difference between the two is that after the gap is formed in step 5, the wet mask is formed on the surface of the substrate 52 between the two electrodes %, and the groove 58 can be used depending on the material of the substrate 52. The substrate 52 is an insulating material or is surface-coated with an oxide insulating layer and has a masking effect on the electron emission of the nanocarbon f-element 56. Therefore, the distance of the groove + 5, two ==:= In the embodiment, the substrate 52 is covered with a dioxygen layer, and the water is discharged with a temperature of about 80 tons, and the reaction time is a wooden clock. The resulting concave (four) depth is approximately H). The method of the surface conduction electronic component 6 of the fourth embodiment of the present invention is substantially the same as that of the above-described preparation method of the embodiment. Both == 5, which will cover the carbon nanotubes of the carbon nanotubes and the surface of the surface, and the formation of the fixed layer βδ. The stability of the pinned layer (10) prevents the carbon nanotube 66 from being pulled out by the electric field. Alternatively, after step 4, the step of including - deposition method = layer 68 may be carried out, and the pinned layer 68 may be an insulating material such as oxygen cut, nitrogen oxide, ceramic or the like. In another step 5, a plurality of carbon nanotubes of the carbon tube element can be formed into a continuous sinuous structure by using a denticular lithography method, and a _-_ gap is prepared. The tooth-tooth gap can reduce the masking effect between the plurality of carbon nanotubes of the man-made element, thereby enhancing the electron-emitting ability of the nanocarbon. The carbon nanotubes of the carbon nanotube elements are also scooped into a shape. The remaining method of the electron source 30 is different from the surface material electron-emitting element: the preparation method comprises the following steps: providing a substrate on which the plurality of lower electrodes are parallel to each other; and placing a plurality of nanometers on the lower electrode The carbon tube element 26, the plurality of carbon nanotube elements are parallel to each other and parallel to the substrate, perpendicular to the lower electrode; the upper electrode of the same shape as the lower 19 200826136 electrode is prepared on the carbon nanotube element 26, and the upper electrode and the lower electrode are combined The electrodes 24, 24 form a gap 28 between the carbon nanotube elements 26. Compared with the prior art, the surface conduction electron-emitting element and the electron source of the embodiment of the present invention can be prepared by simple photolithography and process, thereby simplifying the preparation process. In addition, since the gap of the emitted electrons can reach several micrometers, the electrons are extracted from the anode to absorb the filaments, thereby increasing the electron ratio. In addition, due to the good electron emission characteristics of the carbon nanotubes, the electron emission voltage is lowered, thereby reducing energy consumption. Therefore, the surface conduction electron-emitting device and the electron source of the embodiments of the present invention have broad application prospects in simplifying the preparation process of the SED, improving the luminous efficiency of the SED, and reducing the energy consumption of the SED. In summary, the present invention has been met. The requirements for invention patents, and patent applications are filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side elevational view showing a surface conduction electron-emitting element of the prior art. Fig. 2 is a schematic cross-sectional view showing a surface conduction electron-emitting device of a first embodiment of the present invention. 3 and 4 are schematic plan views showing a surface conduction electron-emitting element of a first embodiment of the present invention. Fig. 5 is a side elevational view showing an electron source to which the surface conduction electron-emitting element 200826136 of the first embodiment of the present invention is applied and an SED to which the electron source is applied. Figure 6 is a cross-sectional view showing a surface conduction electron-emitting device of a second embodiment of the present invention. Figure 7 is a schematic cross-sectional view showing a surface conduction electron-emitting device of a third embodiment of the present invention. Figure 8 is a schematic view showing a surface conduction electron-emitting device of a fourth embodiment of the present invention. Fig. 9 is a scanning plan view showing a surface conduction electron-emitting device of a first embodiment of the invention. Fig. 10 is a flow chart showing the preparation method of the surface conduction electron-emitting element of the first embodiment of the present invention. 11 to 14 are schematic views of specific steps of FIG. [Description of main component symbols] Surface conduction electron-emitting element 10, 20, 40, 50, 60 Electron source substrate electrode Anode upper electrode Lower electrode Carbon nanotube Electron emission end gap 30 12, 22, 42, 52, 62 112, 114 , 24, 24', 44, 44', 54, 54, 64, 64, 14, 32 244, 244', 444, 444' 242, 242, 442, 442, 26, 46, 56, 66 262 28 , 120 21 200826136 Fluorescent screen 16, 34 Support 48 Groove 58 Fixed layer 68 Conductive film 116 Deposited layer 118 22

Claims (1)

200826136 十、申請專利範圍 1. 一種電子發射元件的製備方法,其包括以下步 驟:提供一基板;間隔設置兩個平行的下電極於 該基板表面;沿垂直於下電極方向於下電極上設 置複數奈米碳管元件;對應設置兩個上電極於下 電極上,並將上述奈米碳管元件固定於上電極與 下電極之間;以及形成一間隙於位於平行電極之 間的奈米碳管元件間。 2. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,設置下電極與上電極的方法包括 真空蒸鍍方法、磁控濺射方法或電子束蒸發方法。 3. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,設置奈米碳管元件的方法包括鋪 設方法、喷灑方法或沈積方法。 4. 如申請專利範圍第3項所述的電子發射元件的製 備方法,其中,該鋪設方法包括以下步驟··提供 一個奈米碳管膜;將奈米碳管膜沿平行於基板且 垂直於下電極的方向鋪放於下電極表面上;以 及,滴少許乙醇於奈米碳管膜上使其收縮後,形 成複數奈米碳管線鋪設於下電極的表面。 5. 如申請專利範圍第3項所述的電子發射元件的製 備方法,其中,該喷灑方法包括以下步驟:提供 複數奈米碳管分散於溶劑中;將含奈米碳管的溶 液喷灑於下電極上;使溶劑揮發,形成複數奈米 23 200826136 碳管設置於下電極的表面。 6. 如申請專利範圍第3項所述的電子發射元件的製 備方法,其中,該沈積方法包括以下步驟:提供 複數奈米碳管分散於溶劑中;將帶有下電極的基 板放置於含有奈米碳管的溶液中;靜置一段時 間,使溶劑完全揮發,形成複數奈米碳管設置於 下電極的表面。 7. 如申請專利範圍第5項或第6項所述的電子發射 元件的製備方法,其中,進一步包括使奈米碳管 元件垂直於下電極的取向步驟。 8. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,該間隙的形成方法包括以下步驟: 於奈米碳管元件與上電極的表面整體塗覆一層光 刻膠;通過光刻方法露出該奈米碳管元件的一部 分;以及,通過電漿刻蝕去除奈米碳管元件的露 出的部分,形成間隙。 9. 如申請專利範圍第8項所述的電子發射元件的製 備方法,其中,形成間隙後將覆蓋於奈米碳管及 上電極表面的光刻膠保留,形成一固定層。 10. 如申請專利範圍第8項所述的電子發射元件的製 備方法,其中,進一步包括通過光刻形成連續的 鋸齒狀間隙。 11. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,形成間隙前進一步包括形成一固 24 200826136 定層於上電極與奈米碳管元件的上表面。 12. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,形成間隙後進一步包括形成一凹 槽於間隙下面的基板表面。 13. 如申請專利範圍第1項所述的電子發射元件的製 備方法,其中,設置奈米碳管元件之前進一步包 括通過真空蒸鍍、電子束蒸鍍或磁控濺射方法形 成一支撐體於兩下電極間的基板表面。 14. 一種應用電子發射元件的電子源的製備方法,其 包括以下步驟:提供一基板;以一定間隔設置複 數平行電極於上述基板表面;以及沿平行於基板 及垂直於上述電極方向設置複數奈米碳管元件並 固定於上述電極。 15. —種應用電子發射元件的電子源的製備方法,其 包括以下步驟:提供一基板;以一定間隔設置複 數電極於上述基板表面;以及於上述電極上設置 複數奈米碳管元件並固定於上述電極。 25200826136 X. Patent application scope 1. A method for preparing an electron-emitting element, comprising the steps of: providing a substrate; spacing two parallel lower electrodes on the surface of the substrate; and setting a plurality of pixels on the lower electrode perpendicular to the direction of the lower electrode a carbon nanotube component; correspondingly, two upper electrodes are disposed on the lower electrode, and the carbon nanotube component is fixed between the upper electrode and the lower electrode; and a gap is formed between the carbon nanotubes located between the parallel electrodes Between components. 2. The method of producing an electron-emitting device according to claim 1, wherein the method of providing the lower electrode and the upper electrode comprises a vacuum evaporation method, a magnetron sputtering method, or an electron beam evaporation method. 3. The method of producing an electron-emitting device according to claim 1, wherein the method of disposing the carbon nanotube component comprises a laying method, a spraying method, or a deposition method. 4. The method for preparing an electron-emitting device according to claim 3, wherein the laying method comprises the steps of: providing a carbon nanotube film; and the carbon nanotube film is parallel to the substrate and perpendicular to The direction of the lower electrode is laid on the surface of the lower electrode; and a small amount of ethanol is allowed to shrink on the carbon nanotube film to form a plurality of nanocarbon lines laid on the surface of the lower electrode. 5. The method for producing an electron-emitting device according to claim 3, wherein the spraying method comprises the steps of: providing a plurality of carbon nanotubes dispersed in a solvent; spraying the solution containing the carbon nanotubes On the lower electrode; volatilize the solvent to form a plurality of nanometers 23 200826136 The carbon tube is disposed on the surface of the lower electrode. 6. The method for producing an electron-emitting device according to claim 3, wherein the deposition method comprises the steps of: providing a plurality of carbon nanotubes dispersed in a solvent; and placing the substrate with the lower electrode in the containing In the solution of the carbon nanotubes; after standing for a period of time, the solvent is completely volatilized, and a plurality of carbon nanotubes are formed on the surface of the lower electrode. 7. The method of producing an electron-emitting device according to Item 5 or 6, wherein the method further comprises the step of orienting the carbon nanotube element perpendicular to the lower electrode. 8. The method for preparing an electron-emitting device according to claim 1, wherein the method for forming the gap comprises the steps of: coating a surface of the surface of the carbon nanotube element and the upper electrode with a layer of photoresist; A photolithography method exposes a portion of the carbon nanotube component; and the exposed portion of the carbon nanotube component is removed by plasma etching to form a gap. 9. The method of producing an electron-emitting device according to claim 8, wherein the photoresist covering the surface of the carbon nanotube and the upper electrode is retained after the gap is formed to form a fixed layer. 10. The method of producing an electron-emitting device according to claim 8, further comprising forming a continuous zigzag gap by photolithography. 11. The method of producing an electron-emitting device according to claim 1, wherein the forming of the gap further comprises forming a solid layer of the upper surface of the upper electrode and the carbon nanotube element. 12. The method of producing an electron-emitting device according to claim 1, wherein the forming the gap further comprises forming a surface of the substrate below the gap. The method for preparing an electron-emitting device according to claim 1, wherein the step of forming the carbon nanotube component further comprises forming a support by vacuum evaporation, electron beam evaporation or magnetron sputtering. The surface of the substrate between the two lower electrodes. 14. A method of fabricating an electron source using an electron-emitting element, comprising the steps of: providing a substrate; arranging a plurality of parallel electrodes on the surface of the substrate at intervals; and setting a plurality of nanometers in a direction parallel to the substrate and perpendicular to the electrode The carbon tube element is fixed to the above electrode. 15. A method of preparing an electron source for applying an electron-emitting element, comprising the steps of: providing a substrate; arranging a plurality of electrodes on the surface of the substrate at intervals; and providing a plurality of carbon nanotube elements on the electrode and fixing the same The above electrode. 25
TW95144718A 2006-12-01 2006-12-01 Method for manufacturing electron emitters and electron sources using the same TWI328246B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95144718A TWI328246B (en) 2006-12-01 2006-12-01 Method for manufacturing electron emitters and electron sources using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95144718A TWI328246B (en) 2006-12-01 2006-12-01 Method for manufacturing electron emitters and electron sources using the same

Publications (2)

Publication Number Publication Date
TW200826136A true TW200826136A (en) 2008-06-16
TWI328246B TWI328246B (en) 2010-08-01

Family

ID=44772305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95144718A TWI328246B (en) 2006-12-01 2006-12-01 Method for manufacturing electron emitters and electron sources using the same

Country Status (1)

Country Link
TW (1) TWI328246B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415789B (en) * 2009-04-24 2013-11-21 Nat Univ Chung Hsing Method of forming self-assembled and uniform fullerene array on surface of substrate
US8986782B2 (en) 2009-04-24 2015-03-24 Mon-Shu Ho Method of forming self-assembly and uniform fullerene array on surface of substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415789B (en) * 2009-04-24 2013-11-21 Nat Univ Chung Hsing Method of forming self-assembled and uniform fullerene array on surface of substrate
US8986782B2 (en) 2009-04-24 2015-03-24 Mon-Shu Ho Method of forming self-assembly and uniform fullerene array on surface of substrate
US9109278B2 (en) 2009-04-24 2015-08-18 Mon-Shu Ho Method of forming self-assembly and uniform fullerene array on surface of substrate

Also Published As

Publication number Publication date
TWI328246B (en) 2010-08-01

Similar Documents

Publication Publication Date Title
CN101192490B (en) Surface conductive electronic emission element and electronic source applying same
JP3481578B2 (en) Electron-emitting device, electron source using the same, field-emission-type image display device, fluorescent lamp, and manufacturing method thereof
JP3600126B2 (en) Electron source array and method of driving electron source array
JP5038109B2 (en) Method for manufacturing surface conduction electron-emitting device, surface conduction electron-emitting device, and electron source using the electron-emitting device
KR100791686B1 (en) Electron-emitting device and electron source comprising the same, field-emission image display, fluorescent lamp, and methods for producing them
KR101239395B1 (en) field emission source, device adopting the source and fabrication method of the device
US20080261337A1 (en) Low voltage electron source with self aligned gate apertures, fabrication method thereof, and luminous display using the electron source
JP2000123711A (en) Electric field emission cold cathode and manufacture thereof
KR20010110131A (en) Electron emitting device, electron source, and image forming apparatus
US7147534B2 (en) Patterned carbon nanotube process
JP2003197131A (en) Plane display device and its manufacturing method
JP2003173744A (en) Field emission electron source and its manufacturing method and display device
TW200826136A (en) Method for manufacturing electron emitters and electron sources using the same
JP2007103346A (en) Electron emitting element, electron emission display device, and its manufacturing method
JP2003331712A (en) Field emission type electron source and its manufacturing method and display device
JP2006261074A (en) Coating method of field emission material and field emission element
TW200415670A (en) Field emission device, and method of manufacturing such a device
TW200823953A (en) Surface-conduction electron emitter and electron source using the same
KR20010029761A (en) Field emission display device using carbon nanotube and manufacturing method thereof
JP2001195972A (en) Cold cathode and manufacturing method of the same
JP2000311590A (en) Manufacture of electron emitting source, electron emitting source and fluorescence emission type display
JP4605425B2 (en) Method for manufacturing electron-emitting device
TWI235401B (en) A method for making a field emission device
TWI360831B (en) Field emission electron device
TW472284B (en) Field emission display and the manufacturing method thereof