200825829 九、發明說明 【發明所屬之技術領域】 本發明大致係有關於基材處理系統中的智慧元件的使 用及智慧元件爲主的管理技術,以改善基材處理系統的安 裝、運作、以及維護。 【先前技術】 基材處理系統(如電漿處理系統、濕式化學處理系統 、化學機械硏磨(CMP )系統、以及類似系統)長久以來 已用於基材(例如,半導體晶圓、平面顯示面板、光學基 材、奈米機基材、以及類似物)的處理。由於技術的進展 ,所以取得及維護基材處理系統(如電漿處理系統)已變 得更爲昂貴。一部分的成本增加可歸因於基材處理系統本 身的複雜度增加。這是因爲當裝置縮小且生產壓力增加, 以試圖跟上不斷提升的電子產品之持續增加的消費者需求 時,客戶期望基材處理系統能達成高需求的蝕刻及沈積製 程,以及能有高生產率。因此,現代基材處理系統之增加 的特徵爲高智慧設計、奇特材料、以及精確地加工零件。 當需安裝零件時(如例如是根據預定維護排程的更換 零件),基材處理系統的製造者時常堅持認爲需驗證更換 零件。驗證程序可確保零件符合嚴格的工程規格,例如是 相關於零件材料的成分及零件的尺寸。 當使用驗證過的零件時,基材處理系統的製造者可合 理地確保基材處理系統具有預期的配置且符合預期的系統 -5- 200825829 規格,以執行所需的應用(例如,蝕刻或沈積製程)。使 用驗證過的零件可同時有益於基材處理系統的擁有者(享 有產生預期製程結果之可靠系統)及製造者(享有不必修 復由於次等零件所產生的損壞之基材處理系統)。 就最高品質產品的情況而言,驗證過的零件之花費會 高於次等複製品。對於不擇手段的水貨市場製造者而言, 因爲實質上利益可藉由使零件很便宜且將其賣到高價零件 市場而增加,所以生產基材處理系統的次等複製品且使其 完成爲「可接受替代品」之誘惑很大。對於基材處理系統 的擁有者而言,因爲驗證過的零件(以高精確度製造)短 期間內之花費較高,所以購買且使用未驗證過的零件之誘 惑很大。在這些情況中,擁有者及製造者會同時遭受很大 誘惑。 儘管短期間內節省一些錢,擁有者一定還會遭受系統 效能不可靠,並且由於設備故障而常常造成生產排程中斷 。製造者會遭受必須支援及修復較多數量的受損系統,並 且可能遭受不可靠的基材處理系統之製造者的不正當品牌 之侵害。 會有其他有關於零件的安裝、運作、以及維護的問題 。在今日的基材處理系統中,因爲太過簡單,所以安裝零 件不能錯誤,不能將錯誤零件安裝於已知系統及/或應用 裝置,及/或不能對零件遺漏所需的維護。當基材處理系 統變得更爲複雜,問題會更惡化。 鑑於上述,需要一種管理基材處理系統元件的不同方 • 6 - 200825829 法。 【發明內容】 在一實施例中,本發明係相關於一種基材處理系統中 的元件管理之方法。此基材處理系統具有一組元件,此組 元件中的至少多數個元件被指定爲智慧元件,該等元件中 的每個元件具有智慧元件增強(ICE )。此方法包括查詢 該等元件,以自其各自的ICE中,請求其各自的特有識別 資料。此方法更包括若該等元件中的任一個元件回應此查 詢,則接收來自該等元件的特有識別資料。此方法另外包 括當預期第一元件識別資料時,若該等元件中的第一元件 無法提供第一元件特有識別資料,則標示第一元件需要修 正動作。 在另一實施例中,本發明係相關於一種基材處理系統 中的元件管理之方法。此基材處理系統具有一組元件,此 組元件中的至少多數個元件係被指定爲智慧元件,該等元 件中的每個元件具有ICE。此方法包括經由轉換器,查詢 該等元件中的第一元件,以自與智慧元件相關的I C E中, 接收第一特徵資料。此方法還包括經由轉換器,接收第一 特徵資料。此方法另外包括將特徵資料與智慧元件的可接 受規格資料進行比較。若第一特徵資料無法符合智慧元件 的可接受規格資料,則此方法包括電子式地標示第一元件 需要修正動作。 在另一實施例中,本發明係相關於一種基材處理系統 200825829 中的元件管理之方法。此基材處理系統具有一組元件,此 組元件中的至少多數個元件係指定爲智慧元件,該等元件 中的每個元件具有智慧元件增強(ICE )。此方法包括經 由轉換器’查詢該等元件中的第一元件,以得到第一校正 資料。第一校正資料係使用第一技術及第二技術其中之一 而得到。第一技術涉及自與第一元件相關的ICE中得到該 第一校正資料。第二技術涉及自ICE得到特有識別資料, 並且使用特有識別資料,以自位於第一元件外部的資料儲 存器中得到第一校正資料。此方法另外包括將第一校正資 料用於安裝基材處理系統及保持基材處理系統其中之一。 本發明的這些及其他特性將於以下之本發明的詳細說 明及結合圖式而進行更詳細地說明。 【實施方式】 本發明現在將參考如附圖中所示的一些較佳實施例而 詳細說明。在以下的說明中,會提及各種特定細節,以使 本發明完全了解。然而,顯然可知的是,對於熟習此項技 術者而言,本發明可在無某些或全部的這些特定細節之下 實施。在其他的例子中,熟知的製程步驟及/或結構並未 詳細說明,以避免不必要地阻礙本發明。 在一實施例中,本發明係相關於用於基材處理環境及 技術中之智慧元件,以使智慧元件有效率地改善個別元件 、次系統、以及系統管理。爲了詳細說明,智慧元件會以 最小化加入智慧元件增強(ICE ),其至少特有地指明該 200825829 元件。如在此使用的名詞所述,智慧元件可代表一個別之 基本零件(如單一實體件的鑄鋁合金)或次系統(如RF 電源供應器)。 智慧元件可以是基於基材處理系統的一部分之任何元 件,不管此種元件是否與反應氣體、液體或電漿直接接觸 否。例如,電漿處理系統的元件可包括噴氣器、噴氣系統 、電漿室、電漿耦合的介電窗、襯套、聚焦環或其他邊緣 環或均勻環、夾盤組件、夾盤本身、夾盤支撐元件、端點 偵測系統及/或其他診斷系統、RF電源供應器、或匹配 網路等。不必然所有基材處理系統的元件都是智慧元件。 智慧元件及傳統元件(亦即,無ICE的那些元件)的混合 可共存於已知系統上。 一般來說,每個智慧元件可藉由其ICE加以特有地識 別。較佳而言,雖然本發明並未排斥人工可讀取的ICE及 利用此種人工可讀取的I C E之技術與外部資料的組合,但 是ICE會包含可爲機器可讀取的資料,以改善基材處理系 統的安裝、運作、以及維護。人工可讀取的ICE之例子包 括蝕刻、附加、塗抹、或雕刻到智慧元件之字母與數字, 或其他視覺可感知的符號。 若ICE爲機器可讀取,則與智慧元件相關的資料可以 人工或自動地方式是讀取。例如,若ICE爲條碼,則人工 讀取可包括使用手持式條碼讀取器來讀取條碼。若條碼的 掃瞄可在無人工查核下完成,則相同的條碼當然可自動讀 取。雖然使用電腦條碼當作例子,但是任何可視、電子式 -9- 200825829 、電磁式、光學、化學、或可聽見地感知機制可由ICE來 使用。此種例子包括欲辨識的形狀或圖案,欲化學偵測或 經由電磁偵測配置之以同位素或化學品的各種形式之添加 或塗抹。自動讀取可使用如RFID的技術,其允許智慧元 件在不需接觸或視線讀取及/或寫入之下進行辨識。 事實上,RFID爲較佳的ICE致能技術之一。對於未 直接實際接觸或目視電磁頻譜而可傳送資料而言,RFID 的運作係與條碼類似,但是具有更強大的性能。一例示的 RFID系統會需要以下元件:詢答機(或標籤)、讀取器 /寫入器(訊問器)、天線、以及主電腦。 詢答機爲系統的一部分且包括較佳爲具有附加的矽晶 片之小電子電路。RFID標籤可供以電源且可分類爲主動 或被動。某些主動標籤具有可遠距進行讀取之內部電池。 其通常爲可讀取/寫入,並且時常可在例如是收費應用裝 置中看到。被動標籤不具有電池,並且通常由查詢器的分 離外部電源所供電。 典型的讀取器一般會包含天線,以將資訊傳送至標籤 ,以及從標籤接收資訊。天線的尺寸及形式可取決於特定 應用,以及所選擇的頻率而定。其通常包圍有解碼器及 RF模組,以及天線。讀取器可取決於應用而爲固定式( 亦即,固定安裝),或如手持的攜帶式。 再者,ICE可用來抵抗受到智慧元件所造成的環境之 腐蝕及/或破壞效應。因此,在電漿環境中之1 c E將被建 立,使得其可顯著抵抗電漿蝕刻或沈積,以及在如果需要 -10- 200825829 使智慧元件曝露時,抵抗與電極產生相關的RF會g 或高溫環境所造成的損壞。同樣地,化學蝕刻環 ICE將可顯著地抵抗蝕刻製程中所使用的化學品。 言,伴隨任何支撐或遮蔽結構的ICE係用來使對基 製程的衝擊最小(例如,藉由使對製程參數的污染 衝擊最小化)。 爲了使得ICE較能抵抗損壞,ICE或其一部分 於智慧元件內,使得ICE或其易受損的部分實際上 露出來。對於資料轉移而言,此種內藏式元件ICE 非直接可見技術。或者,ICE及其部分可藉由適當 物(由如金屬、介電質、陶瓷、塑膠等的合適材料 來遮蔽。遮蔽物及其部分爲光學透明的,且可允許 部份程度的光學透明度之可見資料轉移技術。甚至 物爲光學上不透明時,若遮蔽物係設計有適當的皮 (skin depth ),或有介電質邊界,則遮蔽物可透 的電磁訊號,使得RFID或其他非接觸、非可見技 用於資料傳輸。人工操作者也可移除遮蔽物作資料 但是較佳而言,ICE係在不必人工介入下,可自動 移。 到目前爲止,所討論的ICE爲靜態裝置,其資 可變。然而,本發明的實施例也包括可程式IC E, 資料寫入ICE。就某種程度上來說,所有ICE需爲 ,在工廠)寫一次,此時,特有識別資料會被初始 給此元件。如果在這些ICE中的資料不能現場改變 量及/ 境中的 較佳而 材處理 及/或 可安裝 不會曝 可依賴 的遮蔽 形成) 使用需 當遮蔽 膚深度 射足夠 術仍可 轉移, 資料轉 料爲不 其允許 (例如 地指定 ,則這 -11 - 200825829 些ICE在此係稱爲靜態ICE。 可程式ICE與靜態ICE的不同之處在於,資料可以 在現場寫入可程式ICE中。一般來說,可程式ICE包括 用來儲存另外資料的板內記憶體。記憶體的量可爲小至僅 用來儲存特有識別資料的幾個位元組,或可以足以記錄例 如是製程執行期間所收集的記錄資料。記憶體可例如是以 半導體爲基礎,或可爲光學或以光電磁爲基礎。 如前所述,可將資料寫入一次(例如,在工廠)且不 可改變。可選擇或另外地將資料以不可改變的方式寫入, 使得舊資料不能被抹除。此種不可改變的寫入資料有助於 查核。在ICE中之資料可另外或選擇地反覆地寫入及重新 寫入。在某些情況中,也可適當地將一種類型以上之記憶 體或晶片或電路包含於ICE中。另外,較佳地,在某些情 況中,在IC E中有強大保全配置(如加密及/或密碼), 以保護資料不受竄改及/或未授權存取。當使用在此稍後 所討論的技術而將資料善用於元件及/或系統管理時,此 態樣將會顯然可知。 ICE中的資料可藉由外部裝置(亦即,與ICE相關的 智慧元件之外的裝置)寫入。例如,主電腦或基材處理系 統控制窃可局入至各種部件的I C E。或者,I C E可另外包 括探針,以得到寫入其本身I C E之資料。例如,夾盤可包 括有溫度探針’以將溫度資料寫入其IC E。就另一*例而言 ,匹配網路可包括電流探針,以記錄流入基材處理系統的 電流量。在基材處理週期的期間,在一實施例中,資料可 -12- 200825829 記錄至智慧元件的ICE,或在另一實施例中,可藉由ICE 而傳送至另一裝置(例如,另一智慧元件、主電腦、或基 材處理系統控制器)。 ICE中的資料儲存,以及將資料轉移至ICE與從ICE 轉移資料較佳係以高度保全性來達成。數位簽名、DES、 以及其他保全技術可用來達成資料安全性。 在電漿處理期間,曝露於電漿環境且需要轉移資料的 ICE可以被設計,使得其讀取/寫入RF頻率,該RF頻 率係在基材處理所使用之RF訊號的頻率範圍之外。例如 ,許多基材處理系統使用 2MHz、13.56MHz、或 27MHz 的RF訊號,以進行蝕刻應用。藉由避免此種頻率範圍, 資料轉移可更可靠及/或更有效率地達成。或者,:[CE可 使用任何頻率作資料傳輸,但是在將資料傳送至接收裝置 之前需等待,直到完成電漿處理爲止,且僅在資料傳輸電 路可以應用實際製程執行期間所使用的任何RF或其他電 源。 在一實施例中,ICE的特有識別資料係用來協助存取 外部資料儲存器(其可以基材處理系統配置在一起,或可 經由如區域網路、廣域網路或網際網路的網路加以取用) 。特別是若I C E不能儲存大量資訊時,使用此種額外之外 部資料儲存器可大大地改善此種特有識別資料的有效性。 在一貫施例中’特有識別資料可用來當作決定屬於該智慧 元件之電氣、機械、及/或材料複合物之資料。智慧元件 的經歷(包括例如是其製造資料、其佈置資料、其使用資 -13- 200825829 料、以及類似資料)、其校正資料、其規格等也可藉 尋使用當作特有識別資料的指標之外部資料儲存器加 資料庫可例如是藉由基材處理系統的製造者或藉 銷商或另一單位來維護,並且經由資料網路來取用。 來說,外部資料儲存器較佳係以保護基材處理系統的 擁有者或操作者之機密資訊的方式而儲存。可使用可 的資料安全性技術來保護機密。 就以智慧元件爲主的管理技術爲例,ICE資料可 即時或接近即時地確定元件是否爲驗證過的元件。本 的態樣係藉由圖1 A及1 B來說明。藉由查詢(例如 裝時間、系統啓動時間、或任何其他的隨機時間)智 件相關之特有識別資料,基材處理系統或主電腦能判 元件是否係設計用於特定建議的應用(例如,特定蝕 沈積製程)。基材處理系統或主電腦具有包含屬於該 應用及該等元件可適用之資料的資料庫,或者可經由 網路存取的資料庫。基材處理系統或主電腦也可簡單 由查詢智慧元件(例如,圖1A : 1 02- 1 04,圖1B : 1 54 )來決定驗證智慧元件是否被驗證過,而決定該 是否根據製造者的規格或在適當授權下製造。若發現 件未適當地進行驗證(依據所接收到的特有識別資料 則該元件會被電子式地標示(例如,資料庫中的標示 元件需要修正動作(例如,圖〗A ·· 1 1 0,圖1 B ·· 1 6 0 ) 就以智慧元件爲主的管理技術爲例,所查詢特有 由搜 以取 由經 一般 個人 取得 用來 發明 ,安 慧元 斷此 刻或 特定 電腦 地藉 152- 元件 一元 ), )此 〇 識別 -14- 200825829 資料與外部資料儲存器之間的相關性可被用以防止狀況或 在狀況下採行校正動作,該等狀況包含過時元件或例如磨 損元件應被丟棄,但其在不被允許下安裝及使用。當然, 若元件爲僞造元件或未驗證元件,則其識別資料,或沒有 識別資料(例如,圖1A : 106,圖1B : 156 )將會洩漏此 種僞造企圖或試圖使用未驗證元件。即使複製特有識別資 料,中央資料庫還是能偵測出兩個不同基材處理系統中及 /或兩個地理上不同位置中檢出相同的特有識別資料,並 且能產生適當的警告。 若接收到與所預期相同的特有識別資料,則可允許繼 續進行進一步的系統安裝及/或電源開啓及/或基材處理 (例如,圖 1 A : 1 0 8,圖 1 B : 1 5 8 )。 就另一例而言,ICE可包括元件特徵資料(包括描述 一個或更多個最新的元件使用圖案、校正資料、與使用智 慧元件的應用相關之資料、及/或類似物之歷史資料)。 然後,元件特徵資料可被查詢(例如,圖2 : 202-204 ) ,並且與某些可接受的規格資料進行比較(例如,圖2 : 2 06 )。若比較顯示此智慧元件未在使用的規格內(例如 ,太舊、磨損、已經歷過太多處理週期、過時等),則會 電子式地標示(例如,資料庫中的標示)此智慧元件要修 正動作(例如,圖2 ·· 2 1 0 )。要注意的是,智慧元件的 可接受規格資料及比較邏輯可內藏於智慧元件本身內,這 樣可使智慧元件進行基本的自我診斷。可接受規格資料可 選擇性或另外地儲存於外部資料庫中。若所接收到的元件 -15- 200825829 特徵資料符合要求,則可允許繼續進行進一步的系統安裝 及/或電源開啓及/或基材處理(例如,圖2:208)。 如所所述,也可儲存元件的校正資料(亦即,初始校 正資料及/或隨時間登錄的歷史校正資料)。此種校正資 料可儲存於ICE的基材上,或此種校正資料可儲存於外部 資料庫中。所儲存的初始校正資料(可在工廠測試期間得 到)可進行查詢(例如,圖3 : 3 02 ),並且在安裝時完 成元件之校正(例如,圖3:304)。所儲存的歷史校正 資料可用以決定是否元件會在不久的將來故障。在一實施 例中,若歷史校正資料顯示近來有很顯著改變,則此種圖 案表示在不久的未來此零件會故障。例如,一元件之目前 校正値與初始校正値間的比較可提供有關元件狀態之資訊 。另一例子中,一元件的校正資料中之改變的圖案表示系 統的另一零件或部分出現問題。藉由利用所儲存的校正資 料’預先動作元件及/或系統維護可在故障實際發生前被 執行。 一般來說,當來自智慧元件之查詢資料顯示該元件不 該被使用,至少兩種動作可供選擇。首先,可使系統去能 ’使得與不適當元件有關之操作不被允許。第二,系統也 可允許操作(在一實施例中,在產生警告之後),但是資 料被登錄’以提供擁有者在被警告後持續使用系統,以承 擔損壞的風險之證明。此種證明有助於使合法系統製造者 避免例如是必須承擔因使用不合適元件而造成系統受損的 擔保修復工作。 -16- 200825829 在安裝、配置、或開啓電源的期間,也可使用特有識 別資料,以判斷基材處理系統中的一元件或所有元件是否 適合用於建議的應用。要注意的是,當安裝在一起的一組 其他驗證過的元件相互衝突時,個別元件會分開進行驗證 及/或視爲適合用於已知的應用,及/或當一起用於另一 應用時,個別元件會產生效能降低的情況。藉由自動查詢 個別智慧元件的特有識別資料(例如,圖4 : 402 _4 04 ) 及使用結合基材處理系統所主控的專家資料庫與經由網路 的此種查詢資料,可保證在處理單一基材之前(例如,圖 4:408 ),此種預先動作的方法確信基材處理系統可適當 或最佳地用於執行建議的應用(例如,圖4 : 406 )。 若發現一個或更多個元件不適合用於特定應用,則會 提供推薦給系統擁有者或操作者,建議改變元件及/或製 程程式,或基材處理系統會使基材處理系統(若其具有配 置能力)進行配置,使得可更爲最佳地達成此應用。例子 包括使匹配網路具有不同的阻抗値。以此方式,由於不正 確地配置基材處理系統所造成之基材浪費的數量可以顯著 減少。 由智慧元件自動查詢智慧元件資料之能力也可被用於 預先維護基材處理系統。若替基材系統製造者工作的工程 師認爲特定一批次的智慧元件有缺陷,則能使用電腦網路 查詢部署系統(其可經由製造地擴展或與跨洲的不同擁有 者相關),以確保其是否包含此種元件。若智慧元件有回 應,則工程師能在系統損壞發生之前,預先請求改變元件 -17- 200825829 ICE還可包括與使用情況相關的歷史資料、伴隨著安 裝於系統中的其他元件、及/或與應用相關的資料。歷史 資料可儲存於智慧元件本身,或可儲存於外部資料儲存器 中’該外部資料儲存器可使用ICE的特有識別資料當作搜 尋鑰來進行存取。資料可爲主電腦及/或基材處理系統來 收集,並且可下載至智慧元件的ICE。資料也可藉由具有 智慧元件及/或具有ICE的探針來收集。資料收集可隨時 (在預定或可配置區間)進行,或資料收集能力可以是可 被使用者配置,並且只有在請求的時候才會開始。當資料 被收集時,所收集的歷史資料可被上載,或智慧元件可等 到適當時間(例如,在電漿週期完成後或在請求時),才 會上載資料。 歷史資料可用來判斷智慧元件是否爲或仍然爲適合用 於特定系統(結合已知系統中的其他元件,及/或其他特 定應用)。歷史資料不只包括元件識別資料,而且包括其 校正資料、其使用記錄(例如,現場時數)、及/或應用 資料(例如,相對於其他應用,某些應用會產生較高程度 的損耗)。歷史資料特別可用維護,這些資料允許擁有者 及/或操作者能對元件替代及/或清除及/或任何其他的 維護工作預先動作。在一實施例中,若歷史資料建議在不 久的未來需替代元件,則替代元件可,藉由適當驅動軟體的 商業邏輯自動叫貨。歷史資料可被自動收集及可用來自動 觸發維護動作不只可使預先維護較爲可行,同時也可顯著 -18- 200825829 降低負擔很重的維護記錄,以及降低追蹤錯誤的機會。 在一實施例中,歷史資料可用來推斷智慧元件是否適 合用於建議的生產運作。假設智慧元件接近使用壽命的末 期,則其歷史資料可允許工程師判斷是否仍有足夠的使用 壽命來從事建議的生產運作,或是否在生產運作開始之前 ,換掉此元件。要注意的是,因爲智慧元件本身具有與使 用情況、使用態樣、過去應用等相關的歷史資料,所以可 以較高程度的精確性進行仍可使用壽命的自我檢查。以此 方式,可使元件的可使用壽命最大化。或者,歷史資料允 許系統校正及/或修改其他元件及/或其他製程參數,而 對一已知元件條件,產生更適當環境作出更佳之製程結果 〇 來自系統中的一個或更多個元件之歷史資料也允許工 程師更精確地確認過去一時間點之運作情況。此種過去資 料的鑑定重建可大大地幫助準確地確定記錄資料的智慧元 件,或系統中的任何其他元件無法使用的原因。若擁有者 使用未驗證過的元件(例如,不合適或未確認的元件)且 這樣使用改變了運作情況,並造成故障,則自智慧元件所 查詢的歷史資料允許使用者準確地指出故障的原因,及/ 或將解釋的鑑定證據提供給無辜的系統製造者,以允許製 造者避免必須由於使用未授權的不合適元件而造成損壞的 系統,進行無報酬的擔保工作。 以下將說明智慧元件及本發明的元件管理技術顯著改 善基材處理系統的安裝、運作、以及維護之範例方法。當 -19- 200825829 初始安裝時,系統會查詢其智慧元件,並且比較相關於智 慧兀件及元件校正參數的識別所得到的資料,以判斷元件 是否授權及/或適合個別或一起用於本系統中(例如,元 件是否與另一元件相互衝突)。 一旦確認系統正確地安裝(可能藉由比較來自智慧元 件的查詢資料與來自參考資料庫的資料),來自智慧元件 的查詢資料會自動地得到及儲存(在個別的智慧元件及/ 或在集中式資料庫中),以保持歷史記錄,使得系統智慧 元件所查詢的後續資料組可與維護及/或診斷用的歷史資 料集進行比較。 在開啓電源時,系統會自我識別及/或查詢用於特有 識別資料的部份,以及所需的校正及/或歷史及/或收集 環境的資料,以進行自我診斷,還可設定與希望的校正及 補償設定相關之任何必須的參數變量。此資料允許系統判 斷零件是否仍在規格內,以進行例如是建議的蝕刻及/或 沈積。 若應用資料(例如,程式)可取用,則來自系統的智 慧元件之ICE資料可用來確保系統(如共同全體或如一起 運作的大量零件)是否最佳地架構,以進行建議的應用。 要注意的是,自我診斷測試及適合應用的測試可同時進行 。系統也可進行各種可移動或動作的零件(如質流控制器 ,RF電源系統等)之自我測試。 要注意的是,若發現元件不適合用於系統中及/或不 適用以進行建議的應用,則系統會被去能,以防止其執行 -20- 200825829 及損壞。若損壞的風險輕微,則會以清楚地給予警告且記 錄資料(較佳是以可抗竄改的形式)的方式,允許擁有者 執行具有視爲不合適零件之系統,以當基材處理系統最後 由於使用不合適元件而損壞時,防止不擇手段的使用者稍 後得到合法系統製造者的免費保證服務及/或任何其他的 給予物。 若在安裝或運作的期間,智慧元件其中之一遭遇異常 情況’則收集的環境資料會使警報產生聲音。資料會記錄 下來且選擇性地傳送至系統製造者,作爲品質控制之用。 如所提及的,此資料會以安全的方式保留下來,使得資料 可抗竄改或未授權存取。 如可從上述而了解到的,本發明可顯著改善與基材處 理系統的安裝、運作、以及維護相關之元件及系統管理。 藉由使基材處理系統的零件加入有特有識別資料及較佳具 有可由合適轉換器自動讀取之特有識別資料,查詢的資料 然後可藉由本發明的元件管理技術來使用,以改善安裝精 確性,並且改善使系統中的零件最佳執行建議的應用之可 能性。 結合以揭露的智慧元件爲主的管理技術之特有識別資 料可顯著消除偵測基材處理系統中使用僞造及/或次等替 代品的機會。零件中所儲存的歷史資料有助於降低欺詐的 保證請求,並且有助於工程師重新產生過去任一時間點之 運作情況,以更精確地調整基材處理系統及/或準確地確 定故障源。零件上所儲存的資料與外部資料儲存器間的相 -21 - 200825829 關係可擴大使用ICE之實用性作爲顯著改善基材處理系統 的安裝、運作、以及維護的工具。 因此,雖然本發明已就許多較佳實施例進行說明,但 是於本發明的範圍內仍有各種變化、變更、以及等效物。 例如,雖然特定例子係針對一電漿處理系統,特別是一電 漿蝕刻系統加以說明,但是本發明也可用於其他的基材處 理系統,如化學氣相沈積(CVD )系統、電漿加強化學氣 相沈積(PECVD )系統、物理氣相沈積(PVD )系統、快 速熱處理(RTP )系統、微影系統等。應該也要注意的是 實施本發明的方法及裝置有許多變化的方式。因此意謂以 下後附的申請專利範圍係解讀爲包含落於本發明的真實精 神及範圍內之所有此種的變化、變更、以及等效物。 【圖式簡單說明】 本發明係藉由附圖的圖式中之非受限的例子作說明, 且其中相似的參考標號係與類似元件相關,且其中: 圖1A係例示根據本發明的一實施例之利用來自智慧 元件的資料來管理元件之方法; 圖1 B係例示根據本發明的另一實施例之利用來自智 慧元件的資料來管理元件之方法; 圖2係例示根據本發明的另一實施例之利用來自智慧 元件的資料來管理元件之方法; 圖3係例示根據本發明的另一實施例之利用來自智慧 兀件的資料來管理元件之方法;以及 -22- 200825829 圖4係例示根據本發明的另一實施例之利用來自智慧 元件的資料來管理元件之方法。 -23-200825829 IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention generally relates to the use of smart components in a substrate processing system and management techniques based on smart components to improve the installation, operation, and maintenance of the substrate processing system. . [Prior Art] Substrate processing systems (such as plasma processing systems, wet chemical processing systems, chemical mechanical honing (CMP) systems, and the like) have long been used for substrates (eg, semiconductor wafers, flat displays) Processing of panels, optical substrates, nanomachine substrates, and the like. As technology advances, the acquisition and maintenance of substrate processing systems, such as plasma processing systems, has become more expensive. A portion of the cost increase can be attributed to the increased complexity of the substrate processing system itself. This is because when the device shrinks and production pressure increases in an attempt to keep up with the ever-increasing consumer demand for ever-increasing electronic products, customers expect substrate processing systems to achieve high-demand etching and deposition processes, as well as high productivity. . Therefore, the added features of modern substrate processing systems are high-intelligence designs, exotic materials, and precision machining of parts. When parts need to be installed (such as, for example, replacement parts based on a scheduled maintenance schedule), the manufacturer of the substrate handling system often insists that the replacement parts need to be verified. The verification process ensures that the part meets strict engineering specifications, such as the composition of the part material and the size of the part. When using validated parts, the manufacturer of the substrate processing system can reasonably ensure that the substrate processing system has the desired configuration and meets the expected system-5-200825829 specifications to perform the desired application (eg, etching or deposition) Process). The use of validated parts can benefit both the owner of the substrate processing system (the reliable system that produces the desired process results) and the manufacturer (the substrate handling system that does not have to repair the damage caused by the inferior parts). In the case of the highest quality product, the cost of the verified part will be higher than the secondary copy. For the unscrupulous parallel market makers, since the substantial benefits can be increased by making the parts cheap and selling them to the high-priced parts market, an inferior replica of the substrate processing system is produced and made The temptation to accept alternatives is great. For the owner of the substrate handling system, the cost of purchasing and using unverified parts is high because the cost of the verified parts (made with high precision) is high in a short period of time. In these cases, the owner and the manufacturer will suffer a lot of temptation at the same time. Despite saving some money in a short period of time, the owner must suffer from unreliable system performance and often cause production interruptions due to equipment failure. Manufacturers suffer from the necessity to support and repair a large number of damaged systems and may be subject to unfair branding by manufacturers of unreliable substrate handling systems. There are other issues related to the installation, operation, and maintenance of the parts. In today's substrate handling systems, because it is too simple, the parts can't be mistaken, the wrong parts can't be installed on known systems and/or applications, and/or the required maintenance can't be missed. As the substrate handling system becomes more complex, the problem gets worse. In view of the above, there is a need for a different method of managing components of a substrate processing system. 6 - 200825829 Method. SUMMARY OF THE INVENTION In one embodiment, the present invention is directed to a method of component management in a substrate processing system. The substrate processing system has a set of components, at least a majority of which are designated as smart components, each of which has a smart component enhancement (ICE). The method includes querying the components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the elements if any one of the elements responds to the query. The method additionally includes, when the first component identification material is expected, indicating that the first component requires a corrective action if the first component of the components is unable to provide the first component specific identification material. In another embodiment, the invention relates to a method of component management in a substrate processing system. The substrate processing system has a set of components, at least a majority of which are designated as smart components, each of the components having an ICE. The method includes querying, via a converter, a first one of the components to receive the first feature data from an I C E associated with the smart component. The method also includes receiving the first profile via the converter. The method additionally includes comparing the feature data to the acceptable specification data of the smart component. If the first feature data does not meet the acceptable specifications of the smart component, then the method includes electronically indicating that the first component requires a corrective action. In another embodiment, the invention relates to a method of component management in a substrate processing system 200825829. The substrate processing system has a set of components, at least a majority of which are designated as smart components, each of which has a smart component enhancement (ICE). The method includes querying a first one of the elements via a converter to obtain first correction data. The first correction data is obtained using one of the first technique and the second technique. The first technique involves obtaining the first correction data from an ICE associated with the first component. The second technique involves obtaining unique identification data from the ICE and using the unique identification data to obtain the first calibration data from a data store located outside of the first component. The method additionally includes using the first calibration material for one of mounting the substrate processing system and maintaining the substrate processing system. These and other features of the present invention will be described in more detail in the detailed description of the invention appended claims. [Embodiment] The present invention will now be described in detail with reference to some preferred embodiments as illustrated in the accompanying drawings. In the following description, specific details are set forth in order to provide a It will be apparent, however, that the invention may be practiced without some or all of these specific details. In other instances, well-known process steps and/or structures have not been described in detail to avoid unnecessarily obscuring the invention. In one embodiment, the present invention relates to smart components for use in substrate processing environments and technologies to enable intelligent components to efficiently improve individual components, subsystems, and system management. For purposes of detail, the smart component will be added to the Intelligent Component Enhancement (ICE) with minimality, which at least uniquely identifies the 200825829 component. As the term is used herein, a smart component can represent a different basic component (such as a cast aluminum alloy with a single physical component) or a secondary system (such as an RF power supply). The smart component can be any component based on a portion of the substrate processing system, whether or not such component is in direct contact with a reactive gas, liquid or plasma. For example, components of a plasma processing system may include a gas jet, a jet system, a plasma chamber, a plasma coupled dielectric window, a bushing, a focus ring or other edge ring or uniform ring, a chuck assembly, a chuck itself, a clip Disk support components, endpoint detection systems and/or other diagnostic systems, RF power supplies, or matching networks. Not necessarily all components of the substrate processing system are smart components. The mixing of smart components and conventional components (i.e., those without ICE) can coexist on known systems. In general, each smart component can be uniquely identified by its ICE. Preferably, although the present invention does not exclude the combination of a manually readable ICE and the technology and external data using such a manually readable ICE, the ICE will contain machine readable information to improve Installation, operation, and maintenance of the substrate processing system. Examples of manually readable ICE include letters, numbers, or other visually perceptible symbols that are etched, attached, smeared, or engraved into smart components. If the ICE is machine readable, the information associated with the smart component can be read manually or automatically. For example, if the ICE is a bar code, manual reading can include reading the bar code using a handheld bar code reader. If the bar code scan can be completed without manual checking, the same bar code can of course be read automatically. Although computer bar codes are used as examples, any visual, electronic, -9-200825829, electromagnetic, optical, chemical, or audible sensing mechanism can be used by the ICE. Such examples include the shape or pattern to be identified, the addition or application of various forms of isotopes or chemicals to be chemically detected or configured via electromagnetic detection. Automatic reading can use techniques such as RFID that allow smart elements to be identified without contact or line of sight reading and/or writing. In fact, RFID is one of the better ICE-enabled technologies. For data that can be transmitted without direct physical contact or visual electromagnetic spectrum, RFID operates similarly to bar codes, but with more powerful performance. An exemplary RFID system would require the following components: an interrogator (or tag), a reader/writer (interrogator), an antenna, and a host computer. The interrogator is part of the system and includes a small electronic circuit preferably having an additional germanium wafer. RFID tags are available for power and can be classified as active or passive. Some active tags have an internal battery that can be read remotely. It is typically readable/writable and can often be seen, for example, in a toll application. Passive tags do not have a battery and are typically powered by the detacher's separate external power source. A typical reader typically includes an antenna to transmit information to and receive information from the tag. The size and form of the antenna can depend on the particular application and the frequency chosen. It is usually surrounded by a decoder and RF module, as well as an antenna. The reader may be stationary (i.e., fixedly mounted) depending on the application, or portable as a hand. Furthermore, ICE can be used to resist the corrosive and/or damaging effects of the environment caused by smart components. Therefore, 1 c E in the plasma environment will be established such that it can significantly resist plasma etching or deposition, and to resist RF generation associated with electrode generation when exposure of the smart component is required -10- 200825829 Damage caused by high temperature environment. Likewise, the chemically etched ring ICE will significantly resist the chemicals used in the etching process. In other words, the ICE system with any supporting or shielding structure is used to minimize the impact on the base process (e.g., by minimizing the impact of contamination on process parameters). In order to make the ICE more resistant to damage, the ICE or part of it is inside the smart component, so that the ICE or its vulnerable parts are actually exposed. For data transfer, this built-in component ICE is not directly visible. Alternatively, the ICE and portions thereof may be obscured by suitable materials (suitable by suitable materials such as metals, dielectrics, ceramics, plastics, etc. The mask and portions thereof are optically transparent and may allow for some degree of optical transparency) Visible data transfer technology. Even if the object is optically opaque, if the mask is designed with a suitable skin depth or a dielectric boundary, the shield can be permeable to electromagnetic signals, making RFID or other non-contact, Non-visible techniques are used for data transmission. Manual operators can also remove masks for data. Preferably, however, the ICE system can be automatically moved without human intervention. So far, the ICE in question is a static device, However, embodiments of the present invention also include programmable IC E, which is written to the ICE. To some extent, all ICEs need to be written once in the factory, at which point the unique identification data will be initialized. Give this component. If the data in these ICEs cannot be changed in the field and / or better in the environment, and / or can be installed without obstruction of the formation of the shadow), the use of the skin should be transferred to the depth of the skin, the data can be transferred If it is not allowed (for example, the -11 - 200825829 ICE is called static ICE here. The difference between the programmable ICE and the static ICE is that the data can be written into the programmable ICE in the field. In other words, the programmable ICE includes in-board memory for storing additional data. The amount of memory can be as small as a few bytes for storing unique identification data, or can be sufficient to record, for example, during process execution. Recorded data collected. The memory may be, for example, based on a semiconductor, or may be optical or optically electromagnetic. As previously mentioned, the data may be written once (eg, at the factory) and may not be changed. In addition, the data is written in an immutable manner, so that the old data cannot be erased. Such unchangeable written data is helpful for checking. The information in the ICE can be additionally or selected. Write and rewrite repeatedly, in some cases, it is also appropriate to include more than one type of memory or chip or circuit in the ICE. Also, preferably, in some cases, in the IC E has a strong security configuration (such as encryption and/or password) to protect data from tampering and/or unauthorized access. When using the techniques discussed later, the data is used for components and/or systems. This aspect will be apparent when managing. The data in the ICE can be written by an external device (ie, a device other than the smart component associated with the ICE). For example, the host computer or substrate processing system can control theft. The ICE may be included in various components. Alternatively, the ICE may additionally include a probe to obtain information written to its own ICE. For example, the chuck may include a temperature probe 'to write temperature data to its IC E. In one example, the matching network can include a current probe to record the amount of current flowing into the substrate processing system. During the substrate processing cycle, in one embodiment, the data can be recorded to the smart component -12-200825829 ICE, or in another In the example, it can be transmitted to another device (for example, another smart component, host computer, or substrate processing system controller) by ICE. Data storage in ICE, and transfer of data to ICE and transfer from ICE Data is better achieved with a high degree of security. Digital signatures, DES, and other security techniques can be used to achieve data security. During plasma processing, ICE exposed to the plasma environment and requiring transfer of data can be designed such that Read/write RF frequency outside the frequency range of the RF signal used for substrate processing. For example, many substrate processing systems use 2MHz, 13.56MHz, or 27MHz RF signals for etch applications. . By avoiding such frequency ranges, data transfer can be achieved more reliably and/or more efficiently. Or: [CE can use any frequency for data transmission, but wait until the data is transmitted to the receiving device until the plasma processing is completed, and only the data transmission circuit can apply any RF or used during the actual process execution. Other power sources. In one embodiment, the unique identification data of the ICE is used to assist in accessing an external data store (which may be configured with a substrate processing system or via a network such as a regional network, a wide area network, or an internet network). Access). In particular, if I C E cannot store large amounts of information, the use of such additional external data storage can greatly improve the effectiveness of such unique identification data. In the usual practice, 'specific identification data can be used as a means of determining electrical, mechanical, and/or material composites belonging to the smart component. The experience of a smart component (including, for example, its manufacturing materials, its layout information, its use of materials, and similar materials), its calibration data, its specifications, etc., may also be used to identify indicators that are uniquely identified. The external data storage plus database may be maintained, for example, by a manufacturer or a reseller of the substrate processing system or another unit, and accessed via a data network. In other words, the external data storage is preferably stored in a manner that protects the confidential information of the owner or operator of the substrate processing system. Confidentiality can be protected using available data security technologies. For example, in the case of management techniques based on smart components, ICE data can determine whether a component is a verified component in real time or near-instant. This aspect is illustrated by Figures 1A and 1B. By querying (eg, loading time, system startup time, or any other random time) unique identification data associated with the puzzle, the substrate processing system or host computer can determine whether the component is designed for a particular suggested application (eg, specific Etching deposition process). The substrate processing system or host computer has a library containing information pertaining to the application and the components, or a database accessible via the network. The substrate processing system or the host computer can also be determined by querying the smart component (for example, Figure 1A: 1 02-104, Figure 1B: 1 54) to determine whether the smart component has been verified, and whether it is based on the manufacturer's Specifications are manufactured under appropriate authority. If the component is not properly verified (the component will be electronically marked according to the unique identification data received (for example, the marker component in the database needs to be corrected (for example, Figure A ·· 1 1 0, Figure 1 B ·· 1 6 0 ) Take the management technology based on smart components as an example. The specific query is obtained by the general individual for invention, and An Huiyuan breaks the 152-component one yuan at the moment or the specific computer. ), ) This identification - the correlation between the data and the external data store can be used to prevent or correct the condition, including obsolete components or, for example, worn components should be discarded. However, it is installed and used without permission. Of course, if the component is a counterfeit component or an unverified component, its identification data, or no identification material (e.g., Figure 1A: 106, Figure 1B: 156), will leak such a forged attempt or attempt to use an unverified component. Even if the unique identification information is copied, the central repository can detect the same unique identification data in two different substrate processing systems and/or two geographically distinct locations, and can generate appropriate warnings. If the same unique identification data as expected is received, further system installation and/or power-on and/or substrate processing may be allowed to continue (eg, Figure 1A: 1 0 8, Figure 1 B: 1 5 8) ). In another example, the ICE may include component profile data (including historical data describing one or more of the most recent component usage patterns, calibration materials, data related to applications using the smart components, and/or the like). Component profile data can then be queried (eg, Figure 2: 202-204) and compared to certain acceptable specification data (eg, Figure 2: 2 06). If the comparison shows that the smart component is not in the used specifications (for example, too old, worn, has experienced too many processing cycles, obsolescence, etc.), it will be electronically marked (for example, the label in the database). To correct the action (for example, Figure 2 ··· 2 1 0 ). It should be noted that the acceptable specification data and comparison logic of the smart component can be embedded in the smart component itself, which allows the smart component to perform basic self-diagnosis. Acceptable specifications can be optionally or additionally stored in an external database. Further system installation and/or power-on and/or substrate handling may be permitted if the received component -15-200825829 profile meets the requirements (eg, Figure 2: 208). As described, the calibration data for the component (i.e., the initial calibration data and/or historical calibration data logged in over time) may also be stored. This calibration information can be stored on the ICE substrate or the calibration data can be stored in an external database. The stored initial calibration data (available during factory testing) can be queried (for example, Figure 3: 3 02) and the component corrections are performed at installation (eg, Figure 3: 304). The stored historical calibration data can be used to determine if the component will fail in the near future. In an embodiment, if the historical correction data shows a significant change in recent times, such a pattern indicates that the part will fail in the near future. For example, a comparison of the current calibration 一 of an element to the initial calibration provides information about the state of the component. In another example, a changed pattern in the correction data for an element indicates a problem with another part or portion of the system. Pre-action components and/or system maintenance can be performed prior to the actual occurrence of the fault by utilizing the stored calibration information. In general, at least two actions are available when the query from the smart component indicates that the component should not be used. First, the system can be de-enabled so that operations related to inappropriate components are not allowed. Second, the system may also allow operation (in an embodiment, after a warning is generated), but the information is logged in to provide proof that the owner continues to use the system after being warned to bear the risk of damage. Such proofs help legitimate system builders avoid, for example, warranty repairs that must be compromised by the use of improper components. -16- 200825829 Special identification data can also be used during installation, configuration, or power-on to determine if one or all of the components in the substrate handling system are suitable for the recommended application. It should be noted that when a group of other verified components that are mounted together conflict with each other, the individual components are separately verified and/or deemed suitable for use in known applications, and/or when used together for another application. Individual components can have reduced performance. By automatically querying the unique identification data of individual smart components (for example, Figure 4: 402 _4 04) and using the expert database controlled by the combined substrate processing system and such query data via the network, it is guaranteed to handle a single Prior to the substrate (e.g., Figure 4: 408), such a pre-action method is believed to be suitable or optimal for performing the proposed application (e.g., Figure 4: 406). If one or more components are found to be unsuitable for a particular application, a recommendation is provided to the system owner or operator, suggesting that the component and/or process program be changed, or that the substrate processing system will cause the substrate processing system (if it has Configuration capabilities) are configured to make this application even better. Examples include having matching networks with different impedances. In this way, the amount of substrate waste due to improperly configured substrate processing systems can be significantly reduced. The ability to automatically query smart component data from smart components can also be used to pre-maintain substrate processing systems. If the engineer working for the substrate system manufacturer believes that a particular batch of smart components is defective, then the computer network can be used to query the deployment system (which can be expanded by manufacturing or related to different owners across continents) Make sure it contains such components. If the smart component responds, the engineer can request to change the component before the system damage occurs. -17- 200825829 ICE may also include historical data related to usage, accompanying other components installed in the system, and/or with the application. relating documents. The historical data can be stored in the smart component itself or can be stored in an external data store. The external data store can be accessed using the unique identification data of the ICE as a search key. Data can be collected from the main computer and/or substrate processing system and downloaded to the ICE of the smart component. Data can also be collected by means of smart elements and/or probes with ICE. Data collection can be done at any time (in a predetermined or configurable interval), or data collection capabilities can be configured by the user and will only begin when requested. When the data is collected, the collected historical data can be uploaded, or the smart component can wait until the appropriate time (for example, after the plasma cycle is completed or upon request) to upload the data. Historical data can be used to determine whether a smart component is or is still suitable for use in a particular system (in combination with other components in known systems, and/or other specific applications). Historical data includes not only component identification data, but also its calibration data, its usage records (eg, field hours), and/or application data (eg, some applications generate a higher level of loss relative to other applications). Historical data is particularly useful for maintenance, which allows the owner and/or operator to pre-action on component replacement and/or removal and/or any other maintenance work. In one embodiment, if the historical data suggests that the component needs to be replaced in the near future, the replacement component can be automatically called by the business logic of the appropriate driver software. Historical data can be automatically collected and used to automatically trigger maintenance actions. Not only can pre-maintenance be more feasible, but it can also be significant. -18- 200825829 Reduces the burden of maintenance records and reduces the chance of tracking errors. In one embodiment, historical data can be used to infer whether the smart component is suitable for the proposed production operation. Assuming that the smart component is near the end of its useful life, its historical data allows the engineer to determine if there is still enough useful life to perform the proposed production operation, or to replace the component before the production operation begins. It should be noted that since the smart component itself has historical data related to usage, usage, past applications, etc., self-checking of the service life can be performed with a high degree of accuracy. In this way, the useful life of the component can be maximized. Alternatively, historical data allows the system to correct and/or modify other components and/or other process parameters, and to produce a better process for a known component condition, resulting in better process results, history from one or more components in the system. The data also allows engineers to more accurately confirm the operation of the past point in time. The identification and reconstruction of such past data can greatly help to accurately determine the wisdom elements of the recorded data, or the reasons why any other components in the system are unusable. If the owner uses unverified components (eg, inappropriate or unconfirmed components) and such use changes the operation and causes a malfunction, the historical data queried by the smart component allows the user to accurately indicate the cause of the failure. And/or provide the evidence of the interpretation to the innocent system manufacturer to allow the manufacturer to avoid unwarranted warranty work for systems that must be damaged by the use of unauthorized, unsuitable components. Exemplary methods for the smart component and the component management techniques of the present invention to significantly improve the installation, operation, and maintenance of the substrate processing system are described below. When -19-200825829 is initially installed, the system will query its smart components and compare the information obtained from the identification of the smart components and component calibration parameters to determine whether the components are authorized and/or suitable for individual or together. Medium (for example, whether a component conflicts with another component). Once the system is properly installed (possibly by comparing the query data from the smart component with the data from the reference library), the query data from the smart component is automatically obtained and stored (in individual smart components and/or in centralized In the database, to maintain the history, so that the subsequent data sets queried by the system smart components can be compared with the historical data sets for maintenance and/or diagnosis. When the power is turned on, the system will self-identify and/or query the part for the unique identification data, as well as the required correction and / or history and / or collection of environmental information for self-diagnosis, but also set and hope Correct any necessary parameter variables associated with the compensation settings. This information allows the system to determine if the part is still in specification for, for example, the recommended etching and/or deposition. If application data (eg, programs) is available, the ICE data from the system's smart components can be used to ensure that the system (eg, a common or a large number of parts that work together) is optimally architected for the recommended application. It should be noted that self-diagnostic tests and tests suitable for the application can be performed simultaneously. The system can also perform self-testing of various moving or moving parts (such as mass flow controllers, RF power systems, etc.). It should be noted that if the component is found to be unsuitable for use in the system and/or not suitable for the intended application, the system will be de-energized to prevent it from performing -20-200825829 and damage. If the risk of damage is minor, the owner is allowed to perform a system with parts deemed to be unsuitable in a manner that clearly warns and records the data (preferably in a tamper-resistant form) to When damaged by the use of inappropriate components, the unscrupulous user is prevented from obtaining a free warranty service and/or any other giver from the legitimate system manufacturer. If one of the smart components encounters an abnormal condition during installation or operation, the collected environmental data will cause the alarm to sound. The data is recorded and selectively transmitted to the system manufacturer for quality control purposes. As mentioned, this information will be retained in a secure manner so that the information is resistant to tampering or unauthorized access. As can be appreciated from the foregoing, the present invention significantly improves component and system management associated with the installation, operation, and maintenance of substrate processing systems. By incorporating features of the substrate processing system with unique identification data and preferably with unique identification data that can be automatically read by a suitable converter, the queried data can then be used by the component management techniques of the present invention to improve mounting accuracy. And improve the possibility of making the parts in the system optimally perform the recommended application. The unique identification of management techniques, combined with exposed smart components, significantly eliminates the opportunity to detect counterfeit and/or inferior substitutes in substrate processing systems. Historical data stored in the part helps reduce fraudulent assurance requests and helps engineers reproduce the operation at any point in the past to more accurately adjust the substrate handling system and/or accurately determine the source of the fault. The relationship between the data stored on the part and the external data storage -21 - 200825829 expands the utility of ICE as a tool to significantly improve the installation, operation, and maintenance of the substrate handling system. Accordingly, while the invention has been described with respect to the preferred embodiments, the various modifications and For example, although specific examples are described with respect to a plasma processing system, particularly a plasma etching system, the invention is also applicable to other substrate processing systems, such as chemical vapor deposition (CVD) systems, plasma enhanced chemistry. Vapor deposition (PECVD) systems, physical vapor deposition (PVD) systems, rapid thermal processing (RTP) systems, lithography systems, and the like. It should also be noted that there are many variations to the method and apparatus embodying the invention. It is intended that the scope of the appended claims be construed as being BRIEF DESCRIPTION OF THE DRAWINGS The present invention is illustrated by the non-limiting example of the drawings, wherein like reference numerals refer to like elements, and wherein: FIG. Embodiment of the method for managing components using data from smart components; FIG. 1B illustrates a method for managing components using data from smart components in accordance with another embodiment of the present invention; FIG. 2 illustrates another embodiment in accordance with the present invention A method of managing components using data from smart components in an embodiment; FIG. 3 is a diagram illustrating a method of managing components using data from smart components in accordance with another embodiment of the present invention; and -22-200825829 A method of managing components using data from smart components in accordance with another embodiment of the present invention is illustrated. -twenty three-