TW200825579A - A method to form alignment layers on a substrate of an LCD - Google Patents
A method to form alignment layers on a substrate of an LCD Download PDFInfo
- Publication number
- TW200825579A TW200825579A TW96118459A TW96118459A TW200825579A TW 200825579 A TW200825579 A TW 200825579A TW 96118459 A TW96118459 A TW 96118459A TW 96118459 A TW96118459 A TW 96118459A TW 200825579 A TW200825579 A TW 200825579A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- vacuum chamber
- alignment layer
- vapor deposition
- patent application
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
200825579 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一個液晶顯示器(LCD),尤其是有關 於一種在基板上形成有機配向層之方法及裝置,以對多象 限垂直配向(muitj-domain vertical alignment)液晶顯示 中的液晶分子配向。 【先前技術】200825579 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display (LCD), and more particularly to a method and apparatus for forming an organic alignment layer on a substrate for vertical alignment of multiple quadrants (muitj -domain vertical alignment) The alignment of liquid crystal molecules in a liquid crystal display. [Prior Art]
液晶顯不器(LCD)從最初用在如電子計算機和數字領 示電子錶之簡單的單色顯示器變成主導顯示器的科技,l = 目前取代了陰極射線管(CRT)而經常使用在電腦顯示器及 電視顯示器,且在克服各種LCD缺點後的品質更為改:, 例如,主動式陣列顯示器(利用薄膜電晶體)取代被動矩陣 顯示器以改善解析度、對比、視角、反應時間,並且 殘影(gh〇sting)。 一 a ^优月与μ東笮 , 對比車乂低’即使主動式矩陣的視角仍然遠小於習用择 射線管—(CRT)顯示器的視角,特別是-個觀看者若直^ LCD w方可接㈣高品質的影像,但若在LCD側方男 接收到^貝的影像。多象限垂直配向液晶顯示器(h )被用來改善LCD的視角與對比,但MVA LCD的3 缺點則是製造成本較高。請參看第一A與一b圖所示 系表不夕象限垂直配向液晶顯示器㈧VA [CD)(⑽)之』 像素功能’更清楚地說,第_A與一 B圖所示㈣ LCD(1〇〇)可操作用以表示灰階。 5 200825579 MVA LCD(100)具有第一偏光板(105)、第一基板 (110)、第一電極(12〇)、第一配向層(125)、液晶(135 137)、 第二配向層(140)、第二電極〇45)、第二基板(15〇)、第二 偏光板(1 55)以及突出物(彳6〇),典型的配向層(125、140) 是用一層聚亞酿胺(pl)薄膜塗層所形成的,一光源(圖中未 不)從設置在第一基板(11〇)上的第一偏光板(1〇5)射出,第 一偏光板(105)的偏極性方向通常是指第一方向,而第二偏 光板(155)的偏振光是垂直於第一偏光板(1〇5),因此,從 光源射出的光無法穿透第一偏光板(1 〇5)以及第二偏光板 (155) ’除非光的偏極性在第一偏光板(1〇5)以及第二偏光 板(155)之間旋轉9〇度才行。在此加以說明,第一圖中只 有非常少的液晶被表示出來。在實際的顯示器中,液晶分 子疋像桿狀結構’其寬度大約是5埃(angstr〇mS),而長度 大約疋20〜25埃。因此一個尺寸為1〇〇微米("m)的寬度、 4米的長度以及3微米的高度的像素中大概有超過1 千萬個液晶分子。 在第一 A圖中,液晶(135,137)是直立式排列,特別的 疋配向層(125,140)將液晶排列在所要的靜止位置,使其呈 直立式排列。在直立式的排列中,液晶(135,137)將不會旋 轉從燈源發射出來的光之偏極性,因此,第二偏光板(155) 遮敝了在第一方向藉由第一偏光板(105)偏極化的光,所以 MVA LCD (100)的像素可提供一個在光學上完全黑色的 狀怨’結果MVA LCD (1GQ)可在任何顏色與任何基板間隙 提供非常高的對比。請參看第一 B圖所示,當電壓施加在 200825579 弟-電極(120)與第二電極(145)之間時,則該液晶⑴51⑺ 重新定位於呈偏斜狀態,特別的是藉由突出物(⑽)使液晶 (135)傾向至左邊以形成第一象限,而液晶傾向至右 邊以形成第二象限。處於傾向位置的液晶將從第一偏光板 (105)透出之偏振光的偏極性旋轉9Q纟,使該光能繼續穿 透弟一偏光板(155)。傾斜的程度能控制光之偏極化的旋 曰因此穿透LCD之光的量(如像素的亮度)部分是取決於 電場所施加的電壓。而複數個象限(例如液晶(135)與液晶 • (137))的產生就可增加MVA LCD的視角)。通常一個單 一薄膜電晶體(TFT)用於各個像素中,然而在彩色顯示器 中 個彩色像素被劃分為三個顏色單元,且每個顏色單 元(通系疋紅、綠、藍色)都各有一個獨立的tFT。 MVA LCD的主要缺點就是在製作LCD時的成本較高, 雖然聚亞醯胺的材料成本很低,但形成配向層(125,14〇)的 方法卻非常耗費成本。再者,習用的聚亞醯胺方法會產生 灰塵以及顆粒狀的汙染物,因此需要昂貴的清潔設備與花 • f。配向層製造成本的減少可以大量減少製造液晶螢幕的 整體費用。另外,習用的MVA配向層製造方法每次僅能 加工單一個基板,因此導致非常低的產率。 另一個於MVA LCD製造配向層的常見方法為在高真 工至中將如一氧化石夕(Sj|jccm Dioxide, Si〇2)或氧化石夕 (SHicon Monoxide, Si〇)與矽氧化合物(siOX)之無機材料 熱瘵鍍(thermal evaporation)在基板上。此方法可以製The liquid crystal display (LCD) has changed from a simple monochrome display such as an electronic computer and a digital display electronic watch to a dominant display technology. l = currently replaces a cathode ray tube (CRT) and is often used in computer displays and TV monitors, and the quality after overcoming various LCD shortcomings has changed: For example, active array displays (using thin film transistors) replace passive matrix displays to improve resolution, contrast, viewing angle, reaction time, and afterimages (gh) 〇sting). One a ^Yueyue and μ Dongyu, compared to the low '' even if the perspective of the active matrix is still much smaller than the viewing angle of the conventional ray tube- (CRT) display, especially if a viewer can directly connect to the LCD (4) High-quality images, but if the male side of the LCD receives the image of ^bei. The multi-quadrant vertical alignment liquid crystal display (h) is used to improve the viewing angle and contrast of the LCD, but the disadvantage of the MVA LCD is that the manufacturing cost is high. Please refer to the first A and b diagrams for the vertical alignment of the liquid crystal display (8) VA [CD] ((10)) "Pixel function" more clearly, the first _A and a B picture (four) LCD (1) 〇〇) Operable to represent grayscale. 5 200825579 MVA LCD (100) has a first polarizing plate (105), a first substrate (110), a first electrode (12 〇), a first alignment layer (125), a liquid crystal (135 137), and a second alignment layer ( 140), the second electrode 〇 45), the second substrate (15 〇), the second polarizing plate (1 55), and the protrusion (彳6〇), the typical alignment layer (125, 140) is a layer of poly-branched Formed by an amine (pl) thin film coating, a light source (not shown) is emitted from a first polarizing plate (1〇5) disposed on the first substrate (11〇), the first polarizing plate (105) The polarity direction generally refers to the first direction, and the polarized light of the second polarizing plate (155) is perpendicular to the first polarizing plate (1〇5), so that light emitted from the light source cannot penetrate the first polarizing plate (1) 〇5) and the second polarizing plate (155) 'unless the polarity of the light is rotated by 9 degrees between the first polarizing plate (1〇5) and the second polarizing plate (155). Here, only a very small amount of liquid crystal is shown in the first figure. In an actual display, the liquid crystal molecules are rod-like structures having a width of about 5 angstroms (angstr 〇 mS) and a length of about 20 to 25 angstroms. Therefore, there are approximately 10 million liquid crystal molecules in a pixel having a width of 1 μm ("m), a length of 4 m, and a height of 3 μm. In the first A diagram, the liquid crystals (135, 137) are arranged in an upright arrangement, and the special iridium alignment layers (125, 140) align the liquid crystals in the desired rest position so that they are arranged in an upright position. In the upright arrangement, the liquid crystal (135, 137) will not rotate the polarity of the light emitted from the light source, and therefore, the second polarizing plate (155) conceals the first polarizing plate in the first direction (105) ) Polarized light, so the pixels of the MVA LCD (100) provide an optically completely black slogan's result. The MVA LCD (1GQ) provides a very high contrast with any substrate gap in any color. Referring to FIG. B, when a voltage is applied between the 200825579-electrode (120) and the second electrode (145), the liquid crystal (1) 51 (7) is repositioned in a skewed state, particularly by protrusions. ((10)) The liquid crystal (135) is tilted to the left to form a first quadrant, and the liquid crystal is tilted to the right to form a second quadrant. The liquid crystal in the inclined position rotates the polarization of the polarized light which is transmitted from the first polarizing plate (105) by 9Q纟, so that the light can continue to pass through the polarizing plate (155). The degree of tilt can control the polarization of the light, so the amount of light that penetrates the LCD (such as the brightness of the pixel) depends in part on the voltage applied by the field. The generation of multiple quadrants (such as liquid crystal (135) and liquid crystal (137)) can increase the viewing angle of the MVA LCD). Usually a single thin film transistor (TFT) is used in each pixel, whereas in a color display, a color pixel is divided into three color units, and each color unit (through the system is red, green, blue) An independent tFT. The main disadvantage of MVA LCDs is the high cost of making LCDs. Although the material cost of polyamines is very low, the method of forming alignment layers (125, 14 〇) is very costly. Furthermore, the conventional polyamine method produces dust and particulate contaminants and therefore requires expensive cleaning equipment and flowers. The reduction in the manufacturing cost of the alignment layer can greatly reduce the overall cost of manufacturing the LCD screen. In addition, the conventional MVA alignment layer manufacturing method can process only a single substrate at a time, thus resulting in a very low yield. Another common method for fabricating alignment layers in MVA LCDs is to use high-performance to medium-sized sulphur oxides (Sj|jccm Dioxide, Si〇2) or oxidized sulphur (SHicon Monoxide, Si〇) and oxime compounds (siOX). The inorganic material is thermally evaporated on the substrate. This method can be made
Xe出一個穩定的直立式液晶配向層。然而該方法須在高直 7 200825579Xe produces a stable upright liquid crystal alignment layer. However, the method must be in high straight 7 200825579
空室中進行,且僅可實施在小基板(通常為小於1 〇英吋) 上’該製造出來的液晶配向層對於表面清潔度及質地非常 敏感,且與二氧化石夕蒸鍍的角度相關,只有一些蒸鍍角度 才此製造出欲得到的液晶配向角度。再者,此方法每次亦 僅能加工單一或是非常少量的基板(一般而言不超過6個 基板)’因此’此方法並不適合用於大量的批次製程,且不 能用於超過1 〇英吋的基板,而且此方法通常因為表面的 顆粒汗染物而有高不良率,除此之外,以一氧化矽形成的 配向層具有受潮濕的問題。 因此需要一個在MVA液晶顯示器中製造配向層的低 成本製程及裝置。另外在此低成本的方法中亦能讓多個基 板在同時間加工(如批次製造方法)。 【發明内容】 本^月係種在多象限垂直配向液晶顯示器(|yjVA LCD)基板上製作配向層的低成本製程及裝置,其製作方法 係將一基板放置於真空室中,淨化該真.空室且接著填充惰 性氣體,重複數次該真空室的淨化與填充以排除真空室中 的水蒸氣。再者,該惰性氣體可被事先預熱,使得基板在 淨化與再填充步驟中被加溫,該配向層接著藉由使时烧 材料的氣相沉積法形成於基板上。 兀 使用本發明之方法很容易達成批次製作複數基板,例 如’許多基板(通常是8Q〜12G憾板)可—起放置在該真 空室中以方便同時在全部基板上製作配向^,因此本發明 之製程可在高產率以及低成本下製造非常薄的有機液晶配 8 200825579 向層。 而且本發明可使用對環境無毒性之MSDS(物質安全資 料)特性的材料(全氟辛基三乙氧It is carried out in an empty chamber and can only be implemented on a small substrate (usually less than 1 inch). The manufactured liquid crystal alignment layer is very sensitive to surface cleanliness and texture, and is related to the angle of evaporation of the dioxide. Only some evaporation angles can be used to create the desired liquid crystal alignment angle. Furthermore, this method can only process a single or very small number of substrates (generally no more than 6 substrates) at a time. 'So this method is not suitable for a large number of batch processes and cannot be used for more than 1 〇. In the case of a ruthenium substrate, and this method generally has a high defect rate due to particulate sweat on the surface, the alignment layer formed of ruthenium oxide has a problem of moisture. There is therefore a need for a low cost process and apparatus for making alignment layers in MVA liquid crystal displays. In addition, in this low-cost method, multiple substrates can be processed simultaneously (such as batch manufacturing methods). SUMMARY OF THE INVENTION This is a low-cost process and apparatus for making an alignment layer on a multi-quadrant vertical alignment liquid crystal display (|yjVA LCD) substrate. The fabrication method is to place a substrate in a vacuum chamber to purify the truth. The empty chamber is then filled with an inert gas, and the purification and filling of the vacuum chamber is repeated several times to remove water vapor in the vacuum chamber. Further, the inert gas may be preheated in advance so that the substrate is warmed in the purification and refilling step, and the alignment layer is then formed on the substrate by vapor deposition of the material.很 It is easy to achieve batch production of a plurality of substrates by using the method of the present invention. For example, 'many substrates (usually 8Q~12G regret boards) can be placed in the vacuum chamber to facilitate the alignment on all the substrates at the same time. The process of the invention can produce a very thin organic liquid crystal 8 200825579 layer in high yield and low cost. Further, the present invention can use a material which is environmentally non-toxic to MSDS (Material Safety Information) characteristics (perfluorooctyltriethoxy)
perfluorooctyitriethoxysilane,PFOTES))以製造直立式 LC 配向層。大多數其他的矽烷材料都是有毒的,因此並不適 合作為LC配向層,然而,藉由特定的矽烷材料用於化學 氣相沉積法使得最後塗佈於基板上的材料為無毒,除此之 外本發明所使用的如全氟辛基三乙氡基石夕烧、三曱基矽 鲁少完基二乙胺、十八烷基三乙氧基矽烷以及三氯矽烷的矽烷 材料,其係可附著於|T〇(|ndium Tjn〇xide銦鍚氧化物) 或其他材料上,這些材料可被用於直接形成液晶配向層或 被用於作為一附著於|τ〇的中間層,以讓其他無法附著於 ΙΤ0的矽烷附著其上。特別的是於之後所述之本發明實施 j中係使用王氟辛基三乙氧基石夕烧,這是由於其對環境為 然毋性質、絕佳的MSDS性質以及對於ιτ〇以及其他材料 的高附著性。 再者,在本發明中,電漿法係可被結合在氣相沉積步 驟中,该電漿法係在氣相沉積法中尚未讓基板接觸到可能 面的氣體前,提供基板之基板的電漿清潔步驟。在 其匕t月形中,電漿辅助氣相沉積法被用於提供直立式液晶 4向層的塗佈材料以及製造被塗佈的材料,電漿的產生刺 本〜予物貝,並產生與基板更活潑的反應。除此之外, 2月使用如四氟曱烷或六氟丙烯之材料以製造聚四氟乙 細寻含氣材料,其係可附著於ιτο以及其他材料上,= 9 •200825579 材料可被用於直接形成液晶配向層或作為一在ιτ〇上的中 間附著層,以供其他無法附著於|丁〇上的矽烷附著。 【實施方式】 Θ請參看第二圖所示,其係習用於多象限垂直配向液晶 顯示器中形成配向層傳統方法(200)的流程圖,習用方法 (=〇〇)需要利用許多不同的機器,例如基板清洗機、聚亞酿 胺塗佈機、聚亞醯胺預硬化爐、聚亞醯胺後硬化爐、超音 波清洗機以及複數個基板載/卸機。在製造過程中,在具有 一個或多個基板的LCD中,複數個基板會先被承載於卡匣 上’再放置於機器上以進行之後步驟。 在承載基板步驟(204)時,該基板會被承載至一卡匣 中,且被放置在第一基板載/卸機中;在卸下基板至輸送帶 步驟(206)中,第一基板載/卸機從卡匣中卸下基板,並且 將其放置在輸送帶上以前往基板清洗機;在清洗及乾燥基 板步驟(208)中,該清洗機之後會將基板進行一連串的清洗 並乾燥;之後在承載基板步驟(212)中,該基板會藉由第二 载/卸機被承載至第二卡匣中;在卸下基板至輸送帶步驟 (214}中’於第二卡匣中的基板會接著被卸下至輸送帶,以 w往聚亞醯胺塗佈機;在聚亞醯胺薄膜塗佈步驟(216)中, 該聚亞醯胺塗佈機一連串地將聚亞醯胺薄膜塗佈在每一個 基板上’在聚亞酿胺預洪烤步驟(220)中,每一個基板接著 會被輸送帶傳送至聚亞醯胺預烘烤爐以依序進行預硬化聚 亞醯胺薄膜。 在聚亞酿胺薄膜檢驗步驟(224)中,每一個基板會個別 200825579 地被檢驗,若沒通過檢驗的基板則會被移除;在承載基板 步骤(226)中’通過檢驗的基板會被承載至第三卡匣以準備 硬化;在卸下基板至輸送帶步驟(228)中,該基板會從第三 卡E被卸下並置放在輸送帶以前往聚亞醯胺硬化爐;之後 在聚亞醯胺薄膜硬化步驟(230)中,該聚亞醯胺爐依序將每 一個基板上的聚亞醯胺薄膜硬化;接著在承載基板步驟 (232)中,另一個載/卸機從聚亞醯胺硬化爐中將基板承載 至弟四卡£以準備進行基板的清洗;在卸下基板至輸送帶 步驟(234)中,一基板載/卸機將基板從第四卡匣卸除,並 將其放置於輸送帶上以前往超音波清洗機以及刷洗機;在 超音波清洗步驟(236)中,該超音波清洗機以及刷洗機一連 串地將基板進行超音波的清洗及刷洗;在基板乾燥步驟 (240}中,基板被乾燥;最後,在承載基板步驟(244)中, 基板載/卸機將基板從超音波清洗與刷洗機輸送帶承載至 第五卡匣。 因此,利用習用方法(200)製造LCD配向層係包括昂 貴的機械裝置以及幾個作動密集或昂貴的自動化載卸步 驟,而且每一個使用在習用方法(200)的機器都需耗費數百 萬美元再者,習用方法(2 00)損耗大量的水,並且製造出 大量的廢棄物或塵粒,另外,很多用於習用方法(2〇〇)的機 器只能依序對基板加工,因此導致很低的產率。 請翏看第三A圖所示,其係本發明MVA LCD之液晶 配向層—實施例製造方法(300a)的流程圖,此一新穎方法 (300a)的執行需要利用基板載/卸機以及真空烘烤/氣相塗 11 200825579 佈機,該真空烘烤/氣相塗佈機可由不同的來源所提供,例 如 Yield Engineering Systems Inc·,of San J0se 的 Mode| 1224。在將基板承載至卡匣步驟(3〇2)中,該基板被承載 至卡匣中;之後在承載卡匣至真空室步驟(3〇4)中,該基板 載/卸機承載该卡匣至真空烘烤/氣相塗佈機;購自Perfluorooctyitriethoxysilane, PFOTES)) to produce an upright LC alignment layer. Most other decane materials are toxic and therefore not suitable as LC alignment layers, however, the materials used for the final coating on the substrate are non-toxic by the use of specific decane materials for chemical vapor deposition. The decane material of the present invention, such as perfluorooctyltriethylsulfanyl sulphate, triterpene sulphate, octadecyltriethoxydecane and trichlorodecane, which can be attached On |T〇(|ndium Tjn〇xide), or other materials, these materials can be used to directly form a liquid crystal alignment layer or be used as an intermediate layer attached to |τ〇 to make other The decane attached to ΙΤ0 is attached thereto. In particular, in the practice of the invention described hereinafter, the use of w-fluorooctyl triethoxy zebra is due to its environmentally friendly nature, excellent MSDS properties, and for ιτ〇 and other materials. High adhesion. Furthermore, in the present invention, the plasma method can be incorporated in a vapor deposition step which provides electricity to the substrate of the substrate before the substrate is brought into contact with the gas of the possible surface in the vapor deposition method. Pulp cleaning step. In its 匕t-shaped shape, a plasma-assisted vapor deposition method is used to provide a coating material for a vertical liquid crystal four-direction layer and to manufacture a coated material, and a plasma is generated to produce a thorn-like material, and is produced. A more active reaction with the substrate. In addition, materials such as tetrafluorodecane or hexafluoropropylene are used in February to produce polytetrafluoroethylene fine gas-seeking materials, which can be attached to ιτο and other materials, = 9 • 200825579 materials can be used In the direct formation of the liquid crystal alignment layer or as an intermediate adhesion layer on the 〇τ〇, for other decane that cannot adhere to the butyl hydride. [Embodiment] Please refer to the second figure, which is a flow chart for the conventional method (200) for forming an alignment layer in a multi-quadrant vertical alignment liquid crystal display. The conventional method (=〇〇) requires the use of many different machines. For example, a substrate cleaning machine, a polyiamine coating machine, a polyamidene pre-hardening furnace, a polyilylimide post-hardening furnace, an ultrasonic cleaning machine, and a plurality of substrate loaders/unloaders. In the manufacturing process, in an LCD having one or more substrates, a plurality of substrates are first carried on the cassette and then placed on the machine for the subsequent steps. When the substrate carrying step (204) is carried, the substrate is carried into a cassette and placed in the first substrate carrier/unloader; in the step of removing the substrate to the conveyor belt (206), the first substrate carries The unloader removes the substrate from the cassette and places it on the conveyor belt to go to the substrate cleaning machine; in the step of cleaning and drying the substrate (208), the cleaning machine then performs a series of cleaning and drying of the substrate; Then in the carrier substrate step (212), the substrate is carried into the second cassette by the second loader/unloader; in the second cassette after removing the substrate to the conveyor belt step (214} The substrate will then be unloaded to the conveyor belt to the polyamine coating machine; in the polyamido film coating step (216), the polyamido coater will serially polymerize the polyimide The film is coated on each of the substrates. In the poly-branched amine pre-bake step (220), each substrate is then transferred by a conveyor belt to a polyamido pre-baking oven for pre-hardening poly-Asianium. Amine film. In the polyamidamine film inspection step (224), each substrate will be individually 2008255 79 The ground is inspected, and the substrate that has not passed the inspection will be removed; in the carrying substrate step (226), the substrate that passes the inspection will be carried to the third cassette to prepare for hardening; in the step of removing the substrate to the conveyor belt In (228), the substrate is unloaded from the third card E and placed on the conveyor belt to go to the polyamine hardening furnace; thereafter, in the polyamido film hardening step (230), the polyamidene furnace The polyimide film on each substrate is sequentially hardened; then, in the carrier substrate step (232), another carrier/unloader carries the substrate from the polyamidene hardening furnace to the fourth card for preparation. Cleaning of the substrate; in the step of removing the substrate to the conveyor belt (234), a substrate loading/unloading machine removes the substrate from the fourth cassette and places it on the conveyor belt to go to the ultrasonic cleaning machine and the scrubber In the ultrasonic cleaning step (236), the ultrasonic cleaning machine and the scrubbing machine ultrasonically clean and scrub the substrate in a series; in the substrate drying step (240), the substrate is dried; and finally, in the carrier substrate step (244), the substrate loader/unloader will The board is carried from the ultrasonic cleaning and brushing conveyor belt to the fifth cassette. Thus, the use of conventional methods (200) for fabricating LCD alignment layers includes expensive mechanical devices and several automated or expensive automated loading and unloading steps, and each A machine that uses the conventional method (200) costs millions of dollars. The conventional method (200) consumes a lot of water and produces a lot of waste or dust particles. In addition, many of them are used in the conventional method ( The machine can only process the substrate sequentially, thus resulting in a very low yield. Please see Figure 3A, which is the liquid crystal alignment layer of the MVA LCD of the present invention - an embodiment manufacturing method (300a) Flowchart, the implementation of this novel method (300a) requires the use of a substrate loader/unloader and a vacuum bake/vapor coating 11 200825579 cloth machine, which can be supplied from different sources. For example, Yield Engineering Systems Inc., of San J0se Mode | 1224. In carrying the substrate into the cassette step (3〇2), the substrate is carried into the cassette; then in the carrying cassette to vacuum chamber step (3〇4), the substrate carrier/unloader carries the cassette To vacuum baking / vapor coating machine; purchased from
Engineering Systems 的 ModeM224 可支撐寬度達 π 英 吋且長度長達17英吋的基板,具有大尺寸的基板可藉由 本發明揭露的塗佈過程以大型的塗佈機加工,例如在本發 • 明之一實施例中,四個卡匣中的每一個卡匣都承載了總共 具有非常大尺寸(例如150公分X 180公分)的2〇〜25個基 板,且被放置在塗佈室中,因此在這個實施例中,8〇至 1 00個大尺寸基板可同時在一個沉積步驟中被加工。 在真空室淨化步驟(308)中,其係為了完全地移除可能 存在於真空室或基板的水蒸氣,特別的是,該真空室被排 氣至如10〜30毫托耳(mnntor「s)的低壓,再於8〇〜2〇〇艺 下填充已預先加熱的惰性氣體,如氮氣,其中排氣/再填充 _ 說氣的步驟可以重複數次,以確保水蒸氣完全從真空室被 移除。另外由於預先加熱的惰性氣體以及真空室的加熱元 件’使得基板能夠達到更適合氣相沉積的溫度(如下所述)。 接著在第一低壓穩定步驟(312)中,該真空室係保持在 低壓(約1托耳)下大約10分鐘,第一低壓穩定步驟(312) 可讓整個基板被加熱到設定溫度,因此,較厚的基板在這 個低壓過程的時間會比較薄的基板長。 而貫際上配向層係形成於第一氣相沉積步称(316a)以 12 200825579 及一個選擇性的第二氣相沉積步雜(324a)。根據本發明特 別的實施例,氣相沉積所包含的技術有化學氣相沉積、物 理氣相沉積或二者的合併,然而,在本發明大部分的實施 例中,氣相沉積係包括至少一些化學反應,例如在本發明 的一些實施例中,發烧(silane)化學物會直接從原料瓶抽至 氣相反應室中,而在將矽烷轉移至氣相反應室前,該原料 瓶可將内部氣體排空並填充如氮氣的惰性氣體以減少化學 物的降解(chemical degradation)。而用於第一氣相沉積步 • 驟(316a)的各參數會根據使用的化學物不同而有所改變, 然基本上時間是5〜10分鐘,溫度為i5(rc。在第一氣相 沉積步驟(316a}進行中,一測定量的化學物先被引入蒸氣 量瓶中,再直接導入氣相反應室中。各種矽烷物質皆可被 使用,例如氨基矽烷(amino silanes)、矽烷環氧樹酯(epoxy silanes)以及硫醇基石夕烧(mercapto silanes),這些石夕烧物 質可被用來構成直立式或平行式的液晶配向層。在本發明 的一實施例中’該矽烷物質為1 00%的純全氟辛基三乙氧 ® 基矽烷(1 H,1 H,2H,2H-perfluorooctyltriethoxysilane, PFOTES);在另一個本發明之實施例中,該矽烷物質為 100% 的 純 三甲基 矽烷基 二乙胺 (T「imethylsiyldiethylamine);另一個合適的矽烷物質包括 三氯矽烷(Trichlorosilane)、3-胺丙基三乙氧基矽烷 (3-Aminopropyltriethoxysilane)、十八烧基三乙氧基石夕燒 (Octyltriethoxysilane)、二甲基十八烧基[3_(三甲氧甲石夕院 基)丙基]氯化銨(Dimethyle octadecyl[3-(trimethoxysilyl) 13 200825579 propyi]ammonium chloride, DMOAP)、二氧基二氯矽烷 (Dimethyldichlorosilane)以及 L- α -膽鹼磷脂(1„-3丨口[13- phosphatidylcholine)。這些 匕學物可從 Alfa Aesar 公司(a Johnson Matthey Company of Windham, NH 或 / 和Engineering Systems' ModeM224 can support substrates up to π inches in width and up to 17 inches in length. Large-sized substrates can be processed by large coating machines by the coating process disclosed in the present invention, for example, in one of the present inventions. In the embodiment, each of the four cassettes carries 2 to 25 substrates having a very large size (for example, 150 cm X 180 cm) and is placed in the coating chamber, so in this case In an embodiment, 8 to 1000 large-sized substrates can be processed simultaneously in one deposition step. In the vacuum chamber purification step (308), in order to completely remove water vapor that may be present in the vacuum chamber or substrate, in particular, the vacuum chamber is vented to, for example, 10 to 30 mTorr (mnntor "s The low pressure is then filled with a preheated inert gas such as nitrogen under 8〇~2〇〇, where the exhaust/refill _ gas step can be repeated several times to ensure that the water vapor is completely removed from the vacuum chamber In addition, the preheated inert gas and the heating element of the vacuum chamber enable the substrate to reach a temperature more suitable for vapor deposition (described below). Next in the first low pressure stabilizing step (312), the vacuum chamber Maintaining at low pressure (about 1 Torr) for about 10 minutes, the first low voltage stabilizing step (312) allows the entire substrate to be heated to a set temperature, so that a thicker substrate will have a shorter substrate length during this low pressure process. And the intermediate alignment layer is formed in the first vapor deposition step (316a) at 12 200825579 and a selective second vapor deposition step (324a). According to a particular embodiment of the invention, vapor deposition Place The techniques involved are chemical vapor deposition, physical vapor deposition, or a combination of both, however, in most embodiments of the invention, the vapor deposition system includes at least some chemical reactions, such as in some embodiments of the invention. The silane chemical is pumped directly from the raw material bottle to the gas phase reaction chamber, and the raw material bottle is evacuated and filled with an inert gas such as nitrogen before transferring the decane to the gas phase reaction chamber. Reducing chemical degradation. The parameters used in the first vapor deposition step (316a) will vary depending on the chemicals used, but the time is usually 5 to 10 minutes. I5 (rc.) In the first vapor deposition step (316a), a measured amount of the chemical is first introduced into the vapor volume bottle and directly introduced into the gas phase reaction chamber. Various decane materials can be used, for example Amino silanes, epoxy silanes, and mercapto silanes, which can be used to form upright or parallel liquid crystal alignment layers. In one embodiment of the invention, the decane species is 100% pure perfluorooctyltriethoxy® decane (1 H, 1 H, 2H, 2H-perfluorooctyltriethoxysilane, PFOTES); In the examples, the decane material is 100% pure trimethyl decyldiethylamine; another suitable decane species includes Trichlorosilane, 3-aminopropyltriethoxy decane. (3-Aminopropyltriethoxysilane), Octadecyltriethoxysilane, dimethyl octadecyl [3_(trimethoxymethionine)propyl]ammonium chloride (Dimethyle octadecyl[3- (trimethoxysilyl) 13 200825579 propyi]ammonium chloride, DMOAP), Dimethyldichlorosilane and L-α-choline phospholipid (13- phosphatidylcholine). These dropouts are available from Alfa Aesar (a Johnson Matthey Company of Windham, NH or / and
Sigma-Aldrich Corp of St. Louis,MO·)獲得。 在第一氣相沉積步驟(316a)之後,該氣相反應室中的 化學物被第一化學淨化步驟(320)所淨化,特別的是該氣相 反應室被排空再被如氮氣之惰性氣體所充滿,重複多次後 移除化學物,在真空排放管線中的一氣體排放管可被用來 防止矽烷化學物質進入真空泵内。若一第二氣相沉積的流 程(例如前述第二氣相沉積步驟(324a))未被使用,則第二 低壓穩定步驟(322)、第二氣相沉積步驟(3243)以及第二化 學淨化步驟(326)將被省略,接著若有需要,該真空室在增 壓與冷卻步驟(328)中可正常增壓以及允許被冷卻,之後卡 匣可在卸除卡匣步驟(330}中藉由載/卸機被卸下。 然而,若想進行第二氣相沉積步驟,則在第二低壓穩 定步驟(322)中該真空室則會被排空以維持在低壓(如1托 耳)大約10分鐘,該第二低壓穩定步驟(322)可讓全部的基 板都被加熱到設定的溫度,在第二氣相沉積步驟(324a)中, 化學物質會如同前述第一氣相沉積步驟(316a)一樣直接從 原料瓶抽至氣相反應室中,在第二氣相沉積步驟(324a)之 後的第二化學淨化步驟(326)中,該真空室會排除化學物 質’特別的是該真空室會先排空,再重新灌入如氮氣的惰 性氣體,重複多次以移除化學物,若需要,在增壓與冷卻 14 200825579 步驟(328)中該真空室會被正常增壓並且可被冷卻,接著該 卡S可在卸除卡匣步驟(330)中藉由載/卸機被卸除。經過 兩次的氣相沉積步驟,該第二化學物可在蒸氣之間沒有任 何交互作用的情形下沉積於第一化學物的上方。然而,在 本發明之一些實施例中,第一化學淨化步驟(32〇)被省略, 化学物可在 而當第一化學淨化步驟(32〇μ皮省略時,Sigma-Aldrich Corp of St. Louis, MO·). After the first vapor deposition step (316a), the chemical in the gas phase reaction chamber is purified by a first chemical purification step (320), in particular, the gas phase reaction chamber is evacuated and then inerted as nitrogen. The gas is filled and the chemical is removed after repeated repetitions. A gas discharge pipe in the vacuum discharge line can be used to prevent decane chemistry from entering the vacuum pump. If a second vapor deposition process (eg, the aforementioned second vapor deposition step (324a)) is not used, the second low pressure stabilizing step (322), the second vapor phase deposition step (3243), and the second chemical purification Step (326) will be omitted, and if necessary, the vacuum chamber can be properly pressurized and allowed to be cooled in the boost and cool step (328), after which the cassette can be borrowed in the unloading step (330) It is removed by the loader/unloader. However, if a second vapor deposition step is to be performed, the vacuum chamber will be evacuated in the second low pressure stabilization step (322) to maintain a low pressure (e.g., 1 Torr). In about 10 minutes, the second low pressure stabilizing step (322) allows all of the substrate to be heated to a set temperature. In the second vapor deposition step (324a), the chemical will be as in the first vapor deposition step described above ( 316a) is pumped directly from the raw material bottle into the gas phase reaction chamber. In the second chemical purification step (326) after the second vapor deposition step (324a), the vacuum chamber excludes the chemical 'specifically the vacuum The chamber will be emptied first, then refilled with nitrogen. The gas is repeatedly repeated to remove the chemical, if necessary, in the pressurization and cooling 14 200825579 step (328), the vacuum chamber will be normally pressurized and can be cooled, and then the card S can be unloaded. The step (330) is removed by a loader/discharger. After two vapor deposition steps, the second chemical can be deposited over the first chemical without any interaction between the vapors. However, in some embodiments of the invention, the first chemical purification step (32〇) is omitted, and the chemical may be in the first chemical purification step (32μμμ,
第一氣相沉積步驟(316a)中被注入,而第二化學物可在第 二氣相沉積步驟(324a)中被注入,因此第一及第二化學物 可能會被混合或產生交互作用以形成一新的化學物層。在 大多數的MVA LCD的電極通常會用氧化銦錫(丨ndium 丁·|η Oxide,丨TO))以及氧化錮鋅⑼djum Zinc⑽心,丨z〇),其 皆為透明_電物f ’大部分的石夕燒物質不t附著於|τ〇或 ιζ〇上’例如石夕烧物f DM0Ap會附著於玻璃基材上,但 不會附著於IT0 4 lzo上’然而氟辛基三乙氧基石夕燒、三 曱基矽烷基二乙胺、辛基三乙氧基矽烷和三氟矽烷會良好 地附著於丨TO#丨20上。除此之外,很多材料都不會附著 於丨T〇或丨Z〇i,而會附著於氟辛基三乙氧基矽烷、三甲 基矽烷基二乙胺和三氟矽烷。因Λ,本發明的一些實施例 I’在第-氣相沉積㈣(316a>,許多黏性對準層材料如 說辛基三乙氧基矽烷、辛基三乙氧基矽烷和三氟矽烷會沉 積於1T〇或1Z〇電極上,之後在第二氣相沉積步称(324a> 中,沉積弟二配向層材料在較具有黏性之材料上用來形成 液晶配向層。 笔漿法係結合於氣相 再者’在本發明一些實施例中 15 200825579 /儿積法中,特別的是一個合適的電漿系統會被設置於氣相 初始V驟中,在基板上以電漿清潔或執行電漿辅助氣相沉 積步驟,該電漿的產生會刺激化學物,並且可能造成化學 物更具活性地舆基板反應。合適的電漿系統可從化學氣相 /儿% (CVD)或電漿輔助化學氣相沉積(PECVD)所用儀器的 供>C商所獲得,例如Yield Eng比的加卩syStems的|yj〇de| 1224P〇 明芩看第二B圖所示,其係本發明一些包括電漿法之 Φ 方法(3〇〇b)的實施例,因為該方法(300b)與第三A圖的方 法(300)相似,因此下述只敘述其不同之處。特別的是在真 空室淨化步驟(308)之後的電漿低壓穩定步驟(3〇9)中,該 真空室會維持在一低壓(例如100〜30Ό毫托耳(mimtcms)) 約10〜20分鐘以準備進行電漿清潔。 接著,在電漿清潔步驟(31〇)中,此步驟係用於清潔基 板。基本上是於電漿清潔流程中使用一流程方法,例如, 揭露在Dommarm等人之美國專利第62〇3 637號「一個 •冑潔方法、.傾倒方法、連接方法及一工作部件組的使用方 法(Use of a cleaning process,a |eaning pr〇cess,a connection process and a workpiece pajr)」的氫氣法, 其可用在本發明之某些實施例中。在本發明的其他實施例 中,私漿 >月深法包括以氬氣或氧氣之加工氣體的回充填。 在本發明另外-些實施例中,電漿清潔法系包括以熱絲產 生一個低壓直流電漿,電漿的低能離子以及原子團會與基 板表面髒污反應以形成活潑的化合物。又一些其他本發明 16 200825579 之實施例中,如錢鍍等電漿物理清潔法亦可被用在該電漿 清潔法中。 藉由將電漿清潔法與氣相沉積法結合至一項儀器中, 基板就可在氣相沉積前經過電漿處理,而且因為不用曝露 於大氣環境下,且不用轉送至不同的儀器,因此不會接觸 到可能污染基板的氣體(例如環境中的氣體)。 除了電漿清潔之外,方法(300b)也可用電漿輔助氣相 沉積法,特別的是,第一氣相沉積步驟(316a)可被第一電 • 漿輔助氣相沉積步驟(31 6b)所取代,在本發明之一實施例 中,電漿在第一電漿辅助氣相沉積步驟(316b)被使用,特 別的是電漿的產生能激發化學物質,並且讓化學物質更活 潑地與基板反應。在本發明之一些實施例中,該電漿輔助 氣相沉積法還包括減壓至小於1 00毫托耳(mTorr),接著 回充填加工氣體。另外,在本發明之一些實施例中,該加 工氣體的激發可藉由在氣相沉積塗佈室外的電漿來源所達 成,電漿輔助氣相沉積非常適合六氟丙烯 • (hexafluoropropylene,HFP)氣體,因此,本發明之實施例 在能夠使用電漿輔助化學氣相沉積(PECVD)塗佈方法下能 維持氣相沉積法的低成本以及基板尺寸級的製程。第二電 漿辅助氣相沉積步驟(324b)與上述第一電漿辅助氣相沉積 步驟(31 6b)相似,可代替第二氣相沉積步驟(324a),儘管 方法(300b)包括有電漿清潔以及電漿辅助氣相沉積,但本 發明其他實施例可在沒有使用電漿辅助氣相沉積下利用電 漿清潔,再於另外的實施例中可能在沒有電漿清潔的狀況 17 200825579 下利用電漿輔助氣相沉積。 在本&月中利用電漿輔助氣相沉積可讓如四氣甲烧 (CF4))、多乱曱院(CFX)、聚四氟乙烯Cf2_cF2_CF2. ·(即 (CF2-)n)等含氟聚合物沉積,這些材料非常適合用於直立 式液晶配向層,且無毒性,並且不會有殘留的離子或電荷, 各種起始物質可被用於本發明’例如本發明之一實施例就 疋用四氟曱烷,第二個實施例適用六氟丙烯 (hexaflU〇r〇P「〇Pyiene,C3F6 (HFp)),而另一個本發明的實 施例,反應可藉著少量氫氣伴隨著四氟甲烷或HFp而被加 強。本發明之其他實施例可用如含氟聚合物膜的多說甲燒 人氟烷基氫氟烷基、裱氟烷基、氟苯及不飽合物的含氟 單體。 因此本*日月的新穎、方法藉由比習用還少的裝置以及 勞力或自動化設備(如載/卸基板裝置)就可製造配向層,執 灯本毛明之方去的裝置成本估計只有習用方法所需的裝置 成本的20%就可在液晶顯示器中形成配向層。再者,由於 化子廢茱物及廢水大量的減少也因此降低成本,除此之 外由於所而的機為少,因此所需的卫廠空間也隨之大量 減少。 、本發明另—個優點就是可以批次加卫基板。如上所 述,習用聚亞醯胺配向層形成方法的許多部分都是以連續 式處理基板(如在同—時間),因此’本發明比習用方法有 更佳的生產率,此高產率可以降低配向層的製造成本,而 且此批次處理方法可降低製造成本以及材料成本。 18 200825579The first vapor deposition step (316a) is implanted, and the second chemical is implanted in the second vapor deposition step (324a), so the first and second chemicals may be mixed or interacted to Form a new layer of chemicals. In most MVA LCD electrodes, indium tin oxide (丨ndium 丁·|η Oxide, 丨TO) and yttrium zinc oxide (9) djum Zinc (10) core, 丨z〇), which are transparent _electric material f 'large Part of the stone smoldering material does not adhere to |τ〇 or ιζ〇', for example, Shixi burning f DM0Ap will adhere to the glass substrate, but will not adhere to IT0 4 lzo 'however, fluorooctyl triethoxy The basestone, tridecylsulfanyldiethylamine, octyltriethoxydecane and trifluorodecane adhere well to the 丨TO#丨20. In addition, many materials do not adhere to 丨T〇 or 丨Z〇i, but adhere to fluorooctyltriethoxydecane, trimethyldecyldiethylamine and trifluorodecane. Because of this, some embodiments of the invention are described in the first vapor deposition (four) (316a), a plurality of viscous alignment layer materials such as octyltriethoxydecane, octyltriethoxydecane and trifluorodecane. It will be deposited on the 1T〇 or 1Z〇 electrode, and then in the second vapor deposition step (324a>, the deposited second alignment layer material is used to form the liquid crystal alignment layer on the more viscous material. In combination with the gas phase, in some embodiments of the invention, 15 200825579 / ediometry, in particular, a suitable plasma system will be placed in the initial V-phase of the gas phase, cleaned on the substrate by plasma or Performing a plasma-assisted vapor deposition step that stimulates the chemical and may cause the chemical to react more efficiently to the substrate. Suitable plasma systems may be from chemical vapor/child (CVD) or electricity. Obtained by the apparatus for slurry-assisted chemical vapor deposition (PECVD), for example, the yy y Stems of the Yield Eng ratio, yj〇de| 1224P 〇明芩, see the second B diagram, which is the invention Some examples of the Φ method (3〇〇b) including the plasma method because The method (300b) is similar to the method (300) of the third A diagram, so only the differences will be described below, in particular in the plasma low pressure stabilization step (3〇9) after the vacuum chamber purification step (308). The vacuum chamber is maintained at a low pressure (for example, 100 to 30 Torr millimts) for about 10 to 20 minutes to prepare for plasma cleaning. Next, in the plasma cleaning step (31 〇), this step is used. In the cleaning of the substrate, a process is basically used in the plasma cleaning process, for example, in U.S. Patent No. 62,3,637, to Dommarm et al., "A cleaning method, a pouring method, a connection method, and a work." Hydrogen process of the use of a cleaning process (a |eaning pr〇cess, a connection process and a workpiece pajr), which may be used in certain embodiments of the invention. Other implementations of the invention In the example, the lye > month depth method comprises backfilling with a process gas of argon or oxygen. In still other embodiments of the invention, the plasma cleaning process comprises producing a low pressure direct current plasma by a hot wire, a plasma Low energy ion The atomic group will react with the surface of the substrate to form a reactive compound. In still other embodiments of the invention of WO 200825579, a plasma physical cleaning method such as money plating can also be used in the plasma cleaning method. The plasma cleaning method and vapor deposition method are combined into one instrument, the substrate can be plasma treated before vapor deposition, and it is not exposed because it is not exposed to the atmosphere and does not need to be transferred to different instruments. To gases that may contaminate the substrate (such as gases in the environment). In addition to plasma cleaning, the method (300b) may also be plasma assisted vapor deposition, in particular, the first vapor deposition step (316a) may be subjected to a first electrode-assisted vapor deposition step (31 6b) Alternatively, in one embodiment of the invention, the plasma is used in the first plasma assisted vapor deposition step (316b), in particular the generation of the plasma excites the chemical and allows the chemical to be more reactively associated with Substrate reaction. In some embodiments of the invention, the plasma assisted vapor deposition process further comprises depressurizing to less than 100 millitorr (mTorr) followed by backfilling the process gas. In addition, in some embodiments of the present invention, the excitation of the processing gas can be achieved by a plasma source outside the vapor deposition coating, and the plasma assisted vapor deposition is very suitable for hexafluoropropylene (HFP). The gas, therefore, embodiments of the present invention are capable of maintaining the low cost of the vapor deposition process as well as the substrate size process under the plasma assisted chemical vapor deposition (PECVD) coating process. The second plasma-assisted vapor deposition step (324b) is similar to the first plasma-assisted vapor deposition step (31 6b) described above, and may be substituted for the second vapor deposition step (324a), although the method (300b) includes plasma Cleaning and plasma assisted vapor deposition, but other embodiments of the invention may utilize plasma cleaning without plasma assisted vapor deposition, and in other embodiments may be utilized without plasma cleaning 17 200825579 Plasma assisted vapor deposition. In this & month, using plasma-assisted vapor deposition, it can be used to include, for example, four gas (CF4), polychao (CFX), and polytetrafluoroethylene (Cf2_cF2_CF2.) (ie (CF2-)n). Fluoropolymer deposition, these materials are very suitable for use in upright liquid crystal alignment layers, are non-toxic, and do not have residual ions or charges, and various starting materials can be used in the present invention, for example, an embodiment of the present invention The second embodiment is applied to hexafluoropropene (hexaflU〇r〇P "〇Pyiene, C3F6 (HFp)), and in another embodiment of the invention, the reaction can be accompanied by a small amount of hydrogen. Fluorine or HFp is reinforced. Other embodiments of the present invention may be used as a fluoropolymer membrane, such as a fluoroalkyl hydrofluoroalkyl group, a fluoroalkyl group, a fluorobenzene, and an unsaturated fluorine-containing fluorine-containing polymer film. Therefore, the novelty and method of this month and month can be used to manufacture the alignment layer by means of less-used devices and labor or automation equipment (such as loading/unloading substrate devices). The cost of the device is only estimated to be the only cost of the lamp. 20% of the cost of the device required for the conventional method can be formed in the liquid crystal display In addition, due to the large reduction of chemical waste and waste water, the cost is reduced. In addition, because of the small number of machines, the required space for the factory is also greatly reduced. One advantage is that the substrate can be added in batches. As mentioned above, many parts of the conventional polyimine alignment layer formation method are to treat the substrate in a continuous manner (eg, at the same time), so the present invention has a conventional method. Better productivity, this high yield can reduce the manufacturing cost of the alignment layer, and this batch processing method can reduce manufacturing costs and material costs. 18 200825579
800〜3000埃(A) ’這種非常薄的配向層相較於較厚的聚亞800~3000 angstroms (A) ’ this very thin alignment layer compared to thicker poly
例如在配向層中所形成的電壓降 在缚的配向層中會明顯的降低。除此之外,薄配向層不需 _ I非常Φ貴的聚S酿胺對準遮罩(mask),而且利用氣相沉 積法的汙染機會比液態塗抹的汙染機會少报多。 忒基板的表面清潔在塗佈膜於基板表面的黏著強度方 面扮演了相當重要的角色,用於TFT LCD產業中的習用 電漿清¥方法以及習用基板清潔方法可在開始進行方法 (300a)前清洗基板,電漿的清潔可在承載基板至氣相沉積 系統(如承載基板至卡匣步驟(302))前於一分離式電漿清潔 系統中被執行,電漿清潔可選擇性地結合於氣相沉積系統 • 作為一内部(in_site)系統,使電漿清潔步驟可在氣相沉積 法(如第一氣相沉積步驟(316a))前執行。 該基板的材料也在塗佈膜於基板表面的黏著強度方面 扮演了相當重要的角色,一般而言,如二氧化矽(smc〇n dioxide, Si〇2),一氧化矽(Si|jC0n m〇n〇xide,Si〇)以及氧矽 化物(silicon Oxide,Si〇x)、氮化矽(Si3N4)、氮矽化物 (silicon nitride, SiNx),and 氮氧化矽物(si|ic〇n 〇xynitride,For example, the voltage drop formed in the alignment layer is significantly reduced in the bound alignment layer. In addition, the thin alignment layer does not require _I very Φ expensive polystyrene to align with the mask, and the chance of contamination by vapor deposition is less than that of liquid smearing. The surface cleaning of the ruthenium substrate plays a very important role in the adhesion strength of the coating film on the surface of the substrate. The conventional plasma cleaning method for the TFT LCD industry and the conventional substrate cleaning method can be started at the method (300a). Before cleaning the substrate, the cleaning of the plasma can be performed in a separate plasma cleaning system before the carrier substrate to the vapor deposition system (such as the carrier substrate to the cassette step (302)), and the plasma cleaning can be selectively combined. In a vapor deposition system • As an in-site system, the plasma cleaning step can be performed prior to vapor deposition (eg, first vapor deposition step (316a)). The material of the substrate also plays a very important role in the adhesion strength of the coated film on the surface of the substrate, in general, such as cerium oxide (smc〇n dioxide, Si〇2), cerium oxide (Si|jC0n m 〇n〇xide,Si〇) and silicon oxide (SiOx), tantalum nitride (Si3N4), silicon nitride (SiNx), and oxynitride (si|ic〇n 〇 Xynitride,
SiOxNy)等矽基材對於矽烷材料而言皆為具有良好的黏性 19 200825579 &度’所以這些材料的薄膜皆適合 下马本發明之實施例的 土板表面材料’例如本發明之—實施例中,—薄的黏著層 係塗佈於-塗有丨T0層的基板以促進錢材料塗佈於⑽ 基板表面’該薄的黏著層可為任何一種以上所 材。The SiOxNy) isomer substrate has good adhesion to the decane material 19 200825579 & degrees, so the films of these materials are suitable for the soil surface material of the embodiment of the invention. For example, the present invention - examples The thin adhesive layer is applied to the substrate coated with the T0 layer to promote the application of the money material to the surface of the substrate (10). The thin adhesive layer may be any one or more of the materials.
當使用上述特別的真空烘烤/氣相塗佈機提供了許多優 點’在本發明之實施例可用較少複雜的裝置即可完成,例 如在習用光阻製程中被用於沉積六甲基二矽氮 (hexamethyldisHazane,HMDS,如同光阻黏著增強劑)的 習用裝置可被用於執行本發明一些實施例。該LpcvD(低 壓化學氣相沉積法)或簡單的氣相沉積法可用於hmds的 沉積,然而,HMDS並非用作為MVALCD的LC配向層, 因為HMDS所製造的是一個平行、非直立的配向層, 另外HMDS並不會黏著於|丁〇層上,但用於沉積HMDS 的方法可在對應的壓力、溫度及時間調整下被用於沉積其 他矽烷材料。 請參看第四A圖所示,其係製造本發明一實施例的 MVA LCD之液晶配向層的新穎方法(4〇〇a)流程圖,該新穎 方法(400a)可利用習用裝置來執行,例如日本東京的T〇ky〇The use of the particular vacuum bake/gas phase coater described above provides a number of advantages 'in embodiments of the invention, which can be accomplished with less complex devices, such as in the conventional photoresist process for depositing hexamethyldiene. Conventional devices for hexamethyldisHazane (HMDS, like a photoresist adhesion enhancer) can be used to carry out some embodiments of the invention. The LpcvD (Low Pressure Chemical Vapor Deposition) or simple vapor deposition can be used for the deposition of hmds. However, HMDS is not used as the LC alignment layer of MVALCD because HMDS produces a parallel, non-erected alignment layer. In addition, HMDS does not adhere to the butyl layer, but the method used to deposit HMDS can be used to deposit other decane materials under the corresponding pressure, temperature and time adjustments. Referring to FIG. 4A, which is a flow chart of a novel method (4A) for fabricating a liquid crystal alignment layer of an MVA LCD according to an embodiment of the present invention, the novel method (400a) can be performed by using a conventional device, for example, T〇ky〇, Tokyo, Japan
Ohka Kogy〇 c〇_、日本東京的 Active CO.,LTD of Sakitama、日本東京的Electron of Tokyo以及美國加州 曰孟山的 Aviza Technology 〇f San Francisco 的^41\/103 >儿積系統。一般而言,HMDS沉積系統係連續式地加工基 板,因此HMDS沉積系統是執行一連串的矽烷氣相沉積, 20 200825579 額外的裝置係被用於執行批次的硬化步驟。 此一新穎的方法(400a)與方法(300a)相似,然而,由 於‘用t置額外的步驟限制而必需適當地硬化配向層,在 承載基板於卡匣步驟(4〇2>中,該基板最初先被承載至卡匣 内,接著在卸除基板至輸送帶步驟(4〇4)中,基板被卸下而 依序放置在輸送帶上,使其將基板依序送往真空室中。在 真空室淨化步驟(408)中,其係完全地將可能出現於真空室 • 或基板上的水蒸氣移除,特別的是該真空室先被排氣至如 * 10-30毫托耳(mmitorrs)的低壓,再填充預熱至8〇〜2〇(rc 的惰性氣體,如氮氣,其中排氣/再填充氮氣的步驟可以重 複數次’以確保水蒸氣完全從真空室被移除。另外由於預 先加熱的惰性氣體以及真空室中的加熱元件,該基板會達 到可幫助氣相沉積的溫度(如下所述)。 接著在第一低壓穩定步驟(41 2}中,該真空室係保持在 低壓(約1托耳)下大約10分鐘,第一低壓穩定步驟(412> 可讓整個基板被加熱到設定的溫度,因此,較厚的基板在 這個低壓過程的時間會比較薄的基板長。 而實際上配向層係形成於第一氣相沉積步驟(41 6a)以 及一個選擇性的第二氣相沉積步驟(424a)中,特別的矽烷 化學物會直接從原料瓶抽至氣相反應室中,而在將矽烷轉 移至氣相反應室前,該原料瓶可將内部氣體排空並填充如 氮氣的惰性氣體以減少化學物的降解(chernica| degradation)。而用於第一氣相沉積步驟(416a)的各參數 會根據使用的化學物不同而有所改變,然而,基本上時間 21 .200825579 是5〜10分鐘,溫度為150 °C。在第一氣相沉積步縣(41 6a} 進行時,一測定量的化學物先被引入蒸氣量瓶中,再直接 導入氣相反應室中。如同第三A圖中,各種矽烷物質可被 使用,例如氨基矽烷(amino silanes)、矽烷環氧樹酯(epoxy silanes)以及硫醇基石夕烧(mercapt〇 silanes)。 在第一氣相沉積步琢(416a)之後,該氣相反應室中的 化學物被第一化學淨化步驟(420)所淨化,特別的是該氣相 反應室被排空再被如氮氣之惰性氣體所充滿,重複多次後 鲁 移除化學物,在真空排放管線中的一氣體排放管可被用來 防止石夕烧化學物質進入真空泵内。若一第二氣相沉積的流 程(例如前述第二氣相沉積步驟(424a})未被使用,則若有 需要,該真空室可在增壓與冷卻步驟(428)中被正常增壓以 及被冷卻,之後基板可在承载基板至卡匣步驟(43〇)中藉由 載/卸機被承載至卡g中。 然而,若想進行第二氣相沉積步驟,則在第二低壓穩 定步驟(422)中該真空室則會被排空以維持在低壓(如巧托 _ 耳)大約10分鐘,該第二低壓穩定步驟(422>可讓全部的基 板都被加熱到一樣的溫度。在第二氣相沉積步称(424a)中, 化學物質會如同前述第一氣相沉積步驟(41 6a) 一樣直接從 原料瓶抽至氣相反應室中。 在第二氣相沉積步驟(424a)之後的第二化學淨化步驟 (426)中,該真空室會排除化學物質,特別的是該真空室會 先排空,再重新灌入如氮氣的惰性氣體,重複多次後以移 除化學物,若需要,在增壓與冷卻步驟(428)中該真空室會 22 200825579 被正常增壓並且可被冷卻,接著該基板可在承載基板至卡 S步驟(430)中错由載/卸機被承載至卡g中。 在承載卡ϋ至硬化烘烤機步驟(434)中,該具有基板的 卡匣接者被承載至硬化烘烤機中,而在硬化步驟(438)中, 位於硬化烘烤機内的配向層會被硬化,特別的是該硬化步 驟是在硬化爐中執行的,而溫度是在80〜2〇〇 °c下操作 30〜120分鐘,該硬化爐是日本東京的ESpEc c〇rp,Osaka, Japan、Yamato Scientific Co,, Ltd、台灣台北的 CSUN • Manufacturing Ltd_ 以及台灣台南的 Contrel Corporation 所提供,最後,在卸除卡匣步驟(442>中,於卡匣中已完成 的基板會被卸下。 如同方法(300a),電漿清潔或其他基板清潔步驟也可 以被使用在方法(400a)。本發明之一些實施例在開始方法 (400a)前會先執行清潔步驟,而本發明其他實施例會在第 一氣相沉積步驟(41 6a)前執行電漿或基板清潔。例如第四 B圖所示的方法(4〇〇b),其係包括電漿清潔以及電漿辅助 _ 氣相沉積,因為方法(400b)與第四A圖的方法(400a)相似, 其不同之處如下所述,其中特別的是在真空室淨化步驟 (4〇8)之後的電漿低壓穩定步驟(409),該真空室會維持在 低壓(例如1 〇〇毫托耳至300毫托耳)約1 〇〜20分鐘以準備 進行電漿清潔,之後在電漿清潔步驟(41〇)的一個如上所述 的電漿清潔法會被執行以清潔基板,再者,方法(400b)中, 第一氣相沉積步驟(41 6a)被第一電漿輔助氣相沉積步驟 (416b)取代,而第二氣相沉積步驟(424a)被第二電漿辅助 23 200825579 氣相沉積步驟(424b)取代,該電漿輔助氣相沉積步驟如同 之前所述。 本發明也可以用於需要平行配向液晶的L C D ’例如當 沒有電壓施加於液晶時具有與基板表面平行方向之液晶的 配向層,這種平行液晶配向層的適當材料包括六甲基二矽 氮(hexamethyldisilazane C6H19Si2N)、各種二氯石夕院衍生 物(dichlorosilanes derivatives)(例如二甲基二氯石夕烧 (dimethyl dichlorosilanes)、二苯基二氯矽烧(diphenyl ❿ dichlorosilanes))、各種三氯矽烷衍生物(trichlorosilanes derivatives)( 例如 甲基三 氣矽烷 (Methyl trichlorosilanes)、乙基三氯矽烷(Ethyl trichlorosilanes)、 苯基三氯石夕烧(Pheny丨trich丨orosilanes)、乙烯基三氯石夕烧 (Vinyl trichlorosilanes)、硬月旨三氯矽烷(stearyl trichlorosilanes))、二曱基二乙基矽烷(Dirnethyl DES)、 各種三曱氧基矽烷衍生物(trimeth oxy si lane derivative)(例 如曱基二甲氧基石夕燒(M ethyl trim ethoxy si lane)、乙稀基三 ⑩ 曱氧基石夕烧(V|nyl trimethoxysilane)、3_胺丙基三甲氧基 矽烷(3-Aminopropy| trimethoxysilane)、N-3-胺乙基-3-胺 丙基一曱氧基石夕燒(N-3-Amlnoethy卜3-Aminoproply tnmethoxysilane))。一般而言,該形成的液晶配向層係和 LC材料、配向層材料以及沉積條件有關。在本發明之一實 施例中’二基板表面皆加工有此平行配向層,這種型態的 表面處理是可實施於使用賓-主型(Guest-Host)LC材料、 膽固醇液晶材料或膽固醇高分子液晶材料的LCd。於本發 24 200825579 明另一實施例中,混雜型(hybrid)配向層的LCD的製作係 一基板為直立式LC配向層,而另一個基板為平行式LC配 向層,這種型態的混雜型表面處理可實施於向列型 (nematic)LC材料或賓-主型LC材料的LCD。Ohka Kogy〇 c〇_, Active CO., LTD of Sakitama, Tokyo, Japan, Electron of Tokyo, Tokyo, Japan, and Aviza Technology 〇f San Francisco, California, Montenegro, ^41\/103 > In general, the HMDS deposition system processes the substrate continuously, so the HMDS deposition system performs a series of decane vapor deposition, 20 200825579 Additional equipment is used to perform the batch hardening step. This novel method (400a) is similar to the method (300a), however, since the alignment layer must be properly hardened by the additional step limitation of t, in the carrier substrate in the cassette step (4〇2), the substrate Initially carried into the cassette, and then in the step of removing the substrate to the conveyor belt (4〇4), the substrate is removed and placed on the conveyor belt in sequence, so that the substrate is sequentially sent to the vacuum chamber. In the vacuum chamber purification step (408), it completely removes water vapor that may appear on the vacuum chamber or the substrate, in particular, the vacuum chamber is first vented to, for example, *10-30 mTorr ( The low pressure of the mmitorrs) is refilled to 8 Torr to 2 Torr (rc inert gas, such as nitrogen, where the vent/refill nitrogen step can be repeated several times) to ensure that the water vapor is completely removed from the vacuum chamber. In addition, due to the preheated inert gas and the heating elements in the vacuum chamber, the substrate will reach a temperature that facilitates vapor deposition (described below). Next, in the first low pressure stabilizing step (41 2}, the vacuum chamber is maintained About 10 at low pressure (about 1 Torr) The first low-voltage stabilization step (412> allows the entire substrate to be heated to a set temperature, so that the thicker substrate will be thinner than the thin substrate during this low-pressure process. In fact, the alignment layer is formed first. In the vapor deposition step (41 6a) and a selective second vapor deposition step (424a), the particular decane chemistry is pumped directly from the stock bottle to the gas phase reaction chamber, while the decane is transferred to the gas phase. Before the reaction chamber, the raw material bottle can evacuate the internal gas and fill an inert gas such as nitrogen to reduce the degradation of the chemical (chernica| degradation). The parameters for the first vapor deposition step (416a) are used according to the use. The chemicals vary, however, basically the time 21 .200825579 is 5 to 10 minutes and the temperature is 150 ° C. In the first vapor deposition step (41 6a}, a measured amount of chemicals It is first introduced into a vapor measuring flask and directly introduced into the gas phase reaction chamber. As in Figure A, various decane materials can be used, such as amino silanes and epoxy silanes. Mercapt〇 silanes. After the first vapor deposition step (416a), the chemical in the gas phase reaction chamber is purified by the first chemical purification step (420), in particular the gas The phase reaction chamber is evacuated and then filled with an inert gas such as nitrogen. After repeated repetitions, the chemical is removed, and a gas discharge pipe in the vacuum discharge line can be used to prevent the stone gas from entering the vacuum pump. If a second vapor deposition process (eg, the aforementioned second vapor deposition step (424a)) is not used, the vacuum chamber can be normally boosted in the boost and cool step (428) if desired After being cooled, the substrate can then be carried into the card g by the loader/unloader in the carrier substrate to the cassette step (43〇). However, if a second vapor deposition step is desired, the vacuum chamber will be evacuated in the second low pressure stabilizing step (422) to maintain a low pressure (e.g., the ear) for about 10 minutes, the second low pressure. The stabilizing step (422) allows all of the substrate to be heated to the same temperature. In the second vapor deposition step (424a), the chemical is directly from the raw material as in the first vapor deposition step (41 6a) described above. The bottle is pumped into the gas phase reaction chamber. In the second chemical purification step (426) after the second vapor deposition step (424a), the vacuum chamber will exclude chemicals, in particular, the vacuum chamber will be evacuated first. Refilling with an inert gas such as nitrogen, repeated several times to remove the chemical, if necessary, the vacuum chamber 22 200825579 is normally pressurized and can be cooled in the pressurization and cooling step (428), then The substrate may be misloaded by the loader/unloader into the card g in the carrier substrate to card S step (430). In the carrier card to hardening oven step (434), the card splicer with the substrate is Carrying into the hardening oven while in the hardening step (43 8), the alignment layer located in the hardening and baking machine will be hardened, in particular, the hardening step is performed in a hardening furnace, and the temperature is operated at 80 to 2 ° C for 30 to 120 minutes, the hardening The furnace is provided by ESpEc c〇rp of Tokyo, Japan, Osaka, Japan, Yamato Scientific Co,, Ltd., CSUN • Manufacturing Ltd_ of Taipei, Taiwan, and Contrel Corporation of Tainan, Taiwan. Finally, in the step of removing the cassette (442 > The completed substrate in the cassette will be removed. As with method (300a), plasma cleaning or other substrate cleaning steps can also be used in method (400a). Some embodiments of the invention prior to starting method (400a) The cleaning step will be performed first, while other embodiments of the present invention perform plasma or substrate cleaning prior to the first vapor deposition step (41 6a), such as the method shown in Figure 4B (4〇〇b), which includes Plasma cleaning and plasma assisting_vapor deposition, because the method (400b) is similar to the method (400a) of the fourth A diagram, the difference is as follows, in particular in the vacuum chamber purification step (4〇8) After the plasma In the low pressure stabilizing step (409), the vacuum chamber is maintained at a low pressure (e.g., 1 Torr to 300 mTorr) for about 1 Torr to 20 minutes to prepare for plasma cleaning, followed by a plasma cleaning step (41 〇). A plasma cleaning method as described above is performed to clean the substrate. Further, in the method (400b), the first vapor deposition step (41 6a) is subjected to the first plasma assisted vapor deposition step (416b). Instead, the second vapor deposition step (424a) is replaced by a second plasma assist 23 200825579 vapor deposition step (424b), which is as previously described. The present invention can also be applied to an LCD which requires parallel alignment of liquid crystals, for example, an alignment layer having liquid crystals in a direction parallel to the surface of the substrate when no voltage is applied to the liquid crystal, and a suitable material of such a parallel liquid crystal alignment layer includes hexamethyldiazepine ( Hexamethyldisilazane C6H19Si2N), various dichlorosilanes derivatives (eg dimethyl dichlorosilanes, diphenyl ❿ dichlorosilanes), various trichlorodecane derivatives Trichlorosilanes derivatives (eg, methyl trichlorosilanes, Ethyl trichlorosilanes, Pheny丨trich丨orosilanes, vinyl triclosan) Vinyl trichlorosilanes), stearyl trichlorosilanes, Dirnethyl DES, various trimeth oxy si lane derivatives (eg thiol dimethoxy) M ethyl trim ethoxy si lane, Ethyl 3- 10 曱 石 ( (V|nyl trimetho Xysilane), 3-aminopropytrimethoxysilane, N-3-aminoethyl-3-aminopropyl-methoxy-xanthine (N-3-Amlnoethy 3-Aminoproply tnmethoxysilane )). In general, the formed liquid crystal alignment layer is related to the LC material, the alignment layer material, and the deposition conditions. In one embodiment of the present invention, the surface of the two substrates is processed with the parallel alignment layer. The surface treatment of this type can be implemented by using a guest-host LC material, a cholesteric liquid crystal material or a high cholesterol. LCd of molecular liquid crystal material. In another embodiment of the present invention, the hybrid alignment layer LCD is fabricated by a substrate having an upright LC alignment layer and the other substrate being a parallel LC alignment layer. The type surface treatment can be implemented on a nematic LC material or an LCD of a guest-host type LC material.
其他可由本發明所得知的優點有:改善Lc配向層的 錨定能強度(anchoring strength),特別是在平行配向層材 料上,雖然該塗佈材料的厚度非常薄,但所得到的配 向層之附著強度卻非常強,因此,該材料可被用於全面塗 佈於其他LC配向層上以維持一樣的Lc配向角同時改善lc 配向層之附著強度。關於直立式配向層材料,所塗佈°之材 料的厚度也非常薄,而且所得到的Lc配向層之附著強度 亦非常5金,因&直立式配向層材料也可被用來全面塗佈^ 其他LC配向層上’以改善具有良好LC配向角度之配 向層的附著強度省之外’很多用於實施例中的材料對 ,水及水蒸氣有低的可參透性,因此配向層也可以作為溼 氣屏障層,本發明之方法也可選擇性地用於形成溼氣 層。 本發明也可用於需要有液晶預傾角的LCD,例如即 沒有施加電壓於液晶亦可維持液晶在稍微傾斜狀態的配 層。在本發明之一實施例+,光敏感材料以及光配 (ph〇t〇-aHgnment)法係被用以製造具有傾斜配向層以及 句平面(homogenous plane「w Lc配向層,這些π配 層可被用來製作單—象限和多象限扭轉向列型(twis[ —tic,TN)、電力誘導雙折射型(e|ect「ica丨丨yinduc 25 200825579 _de,KB)、共平面切換型(|n p|ane switching,丨PS)以及多象限垂直配向液晶顯示器(mva LCDs)。本發明也可以用來製作混雜型LCD的上下兩配向 層,一側基板為垂直配向,另一側為平行配向或是傾斜平 行配向。本發明除了可用來製作液晶配向層,也可用來製 作用在| 人1± (可撓式)基板液晶顯示器的防水氣隔離層。Other advantages which may be known by the present invention are: improving the anchoring strength of the Lc alignment layer, particularly on the parallel alignment layer material, although the thickness of the coating material is very thin, the resulting alignment layer The adhesion strength is very strong, so the material can be used to fully coat other LC alignment layers to maintain the same Lc alignment angle while improving the adhesion strength of the lc alignment layer. Regarding the material of the vertical alignment layer, the thickness of the material to be coated is also very thin, and the adhesion strength of the obtained Lc alignment layer is also very high, since the & upright alignment layer material can also be used for overall coating. ^ Other LC alignment layer 'to improve the adhesion strength of the alignment layer with a good LC alignment angle. 'Many pairs of materials used in the examples, water and water vapor have low permeability, so the alignment layer can also As a moisture barrier layer, the method of the invention can also be selectively used to form a moisture layer. The present invention is also applicable to an LCD which requires a liquid crystal pretilt angle, for example, a layer which does not apply a voltage to the liquid crystal and which maintains the liquid crystal in a slightly inclined state. In an embodiment of the present invention, a light-sensitive material and a light-matching (ph〇t〇-aHgnment) method are used to fabricate a tilted alignment layer and a homogenous plane "w Lc alignment layer, which can be Used to make single-quadrant and multi-quadrant torsional nematic (twis[-tic,TN), power-induced birefringence type (e|ect"ica丨丨yinduc 25 200825579 _de, KB), coplanar switching type (| Np|ane switching, 丨PS) and multi-quadrant vertical alignment liquid crystal displays (mva LCDs). The invention can also be used to fabricate the upper and lower alignment layers of a hybrid LCD, with one side substrate being vertically aligned and the other side being parallel aligned or It is a tilted parallel alignment. In addition to being used to fabricate a liquid crystal alignment layer, the present invention can also be used to fabricate a water-repellent gas barrier for a liquid crystal display of a 1± (flexible) substrate.
在本發明各種實施例中,上述揭露用以製作液晶顯示 器之配向層的新穎結構及方法,上述本發明各種結構與方 法=實施例僅用於說明本發明的原則,並非有意將本發明 的範圍限制在所述的特別實施例,例如,於 常㈣者可鑑於上述的揭露而界定其它真空室淨 低昼%定步驟、氣相沉積步驟、化學淨化步驟、化學物質、 爐、真空室、真空烘烤/氣相塗佈機等,並且根據本發明的 原則選擇性地使用這些特徵去設計一個方法,因此本發明 僅侷限於下述的申請專利範圍。 【圖式簡單說明】 第A及B圖係習用之多象限垂直配向Lcd(MvALcD) 一像素的示意圖。 f —圖係習用製造MVA LCD配向層的方法流程圖。 第三A及B圖係本發明製造MVA液晶顯示器配向層 之方法的兩流程實施例流程圖。 弟四A及B圖係本發明製造MVA液晶顯示器配向層 之方法的兩流程實施例流程圖。 【主要元件符號說明】 26 200825579 (100)多象限垂直配向液晶顯示器(MVA LCD) (105)第一偏光板 (110)第一基板 (120)第一電極 (125)第一配向層 (1 35 ) ( 1 37 )液晶(1 40 )第二配向層 (145)第二電極 (150)第二基板 (155)第二偏光板 (160)突出物 ( 2 00)形成配向層之傳統方法 (204)承載基板步驟 鲁 (206 )卸下基板至輸送帶步驟 (208 )清洗及乾燥基板步驟 (21 2 )承載基板步驟 (214)卸下基板至輸送帶步驟 (21 6 )聚亞醯胺薄膜塗佈步驟 (2 2 0 )聚亞酿胺預烘烤步驟 (224 )聚亞醮胺薄膜檢驗步驟 (2 2 6 )承載基板步驟 鲁 (228 )卸下基板至輪送帶步驟 (230 )聚亞醯胺薄膜硬化步驟 (232 )承載基板步驟 ( 234)卸下基板至輸送帶步驟 (2 3 6 )超音波清洗步驟 (240 )基板乾燥步驟 (244 )承載基板步驟 ( 300a) ( 300b)MVALCD之液晶配向層的製造方 27 200825579 ( 302)將基板承載至卡匣步驟 (304 )承載卡匣至真空室步驟 (308) 真空室淨化步驟 (309) 電漿低壓穩定步驟 (31 0 )電漿清潔步驟 (31 2 )第一低壓穩定步驟 (316a)第一氣相沉積步驟 • ( 316b)第一電漿輔助氣相沉積步驟 (320)第一化學淨化步驟 (322)第二低壓穩定步驟 (324a)第二氣相沉積步驟 (324b ).第二電漿輔助氣相沉積步驟 (326)第二化學淨化步驟 (328)增壓與冷卻步驟 (330)卸除卡匣步驟 鲁 (400a) ( 400b) MVA LCD之液晶配向層的製造方 法 (402)承載基板於卡匣步驟 ( 404)卸除基板至輸送帶步驟 (408) 真空室淨化步驟 (409) 電漿低壓穩定步驟 (4 1 0 )電漿清潔步驟 (4 1 2 )第一低壓穩定步驟 28 200825579 (416a)第一氣相沉積步驟 (416b)第一電漿輔助氣相沉積步驟 (420)第一化學淨化步驟 (422)第二低壓穩定步驟 (424a)第二氣相沉積步驟 (424b )第二電漿辅助氣相沉積步驟 (426)第二化學淨化步驟 (428)增壓與冷卻步驟 • ( 430)承載基板至卡匣步驟 (434)承載卡匣至硬化烘烤機步驟 (438)硬化步驟 (442)卸除卡匣步驟 29In various embodiments of the present invention, the above disclosure discloses a novel structure and method for fabricating an alignment layer of a liquid crystal display. The above various structures and methods of the present invention are merely illustrative of the principles of the present invention and are not intended to limit the scope of the present invention. Restricted to the particular embodiment described, for example, in the ordinary (four), other vacuum chambers may be defined in view of the above disclosure, the vapor deposition step, the chemical purification step, the chemical, the furnace, the vacuum chamber, the vacuum A baking/gas phase coater or the like, and selectively using these features to design a method in accordance with the principles of the present invention, the present invention is therefore limited only to the scope of the following claims. [Simple diagram of the diagram] Figures A and B are schematic diagrams of a multi-quadrant vertical alignment Lcd (MvALcD) of one pixel. f - A flow chart of a method for manufacturing an MVA LCD alignment layer. Third A and B are flow diagrams of two process embodiments of the method of the present invention for fabricating an alignment layer of an MVA liquid crystal display. The fourth and fourth diagrams of the present invention are flow diagrams of two process embodiments of the method for fabricating an alignment layer of an MVA liquid crystal display of the present invention. [Main component symbol description] 26 200825579 (100) Multi-quadrant vertical alignment liquid crystal display (MVA LCD) (105) First polarizing plate (110) First substrate (120) First electrode (125) First alignment layer (1 35 (1 37) liquid crystal (1 40 ) second alignment layer (145) second electrode (150) second substrate (155) second polarizing plate (160) protrusion (200) conventional method of forming an alignment layer (204) Carrying substrate step ru (206) removing the substrate to the conveyor belt step (208) cleaning and drying the substrate step (21 2) carrying the substrate step (214) removing the substrate to the conveyor belt step (21 6) polyimide film coating Cloth Step (2 2 0) Poly-Butamine Pre-baking Step (224) Polyimide Film Inspection Step (2 2 6) Carrying Substrate Step Lu (228) Removing the Substrate to the Round Tape Step (230) Poly Melamine film hardening step (232) carrying substrate step (234) removing substrate to conveyor belt step (2 3 6) ultrasonic cleaning step (240) substrate drying step (244) carrying substrate step (300a) (300b) MVALCD Manufacturer of Liquid Crystal Alignment Layer 27 200825579 (302) Carrying the substrate to the cassette step (304) carrying the cassette to the vacuum chamber step (308) Vacuum chamber purification step (309) Plasma low pressure stabilization step (31 0) Plasma cleaning step (31 2) First low pressure stabilization step (316a) First vapor deposition step • (316b) First plasma assist Vapor deposition step (320) first chemical purification step (322) second low pressure stabilization step (324a) second vapor deposition step (324b). second plasma assisted vapor deposition step (326) second chemical purification step (328) Pressurization and cooling step (330) Removing the cassette step Lu (400a) (400b) MVA LCD liquid crystal alignment layer manufacturing method (402) carrying the substrate in the cassette step (404) to remove the substrate to the conveyor belt Step (408) Vacuum chamber purification step (409) Plasma low pressure stabilization step (4 1 0) Plasma cleaning step (4 1 2) First low pressure stabilization step 28 200825579 (416a) First vapor deposition step (416b) a plasma assisted vapor deposition step (420) a first chemical purification step (422) a second low pressure stabilization step (424a) a second vapor deposition step (424b) a second plasma assisted vapor deposition step (426) second Chemical purification step (428) pressurization and cooling step • (430) carrying substrate to cassette step (434) carrying cassette (438) bake hardening step of hardening machine step (442) the step of unloading the cassette 29
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/607,246 US8075953B2 (en) | 2005-09-15 | 2006-12-01 | Thin organic alignment layers with a batch process for liquid crystal displays |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200825579A true TW200825579A (en) | 2008-06-16 |
TWI362540B TWI362540B (en) | 2012-04-21 |
Family
ID=39486397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96118459A TWI362540B (en) | 2006-12-01 | 2007-05-24 | A method to form alignment layers on a substrate of an lcd |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101191198B (en) |
TW (1) | TWI362540B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI585495B (en) * | 2015-12-25 | 2017-06-01 | 晶典有限公司 | Methods for unit level liquid crystal assembly process for liquid crystal on silicon |
CN110596958A (en) * | 2018-06-13 | 2019-12-20 | 夏普株式会社 | Method for manufacturing liquid crystal substrate and apparatus for processing liquid crystal substrate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI477866B (en) * | 2010-03-10 | 2015-03-21 | Kyoritsu Optronics Co Ltd | Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays |
CN102078854A (en) * | 2010-11-18 | 2011-06-01 | 深圳市华星光电技术有限公司 | Film drying method, alignment film drying method and assembling and manufacturing methods of display panel |
-
2007
- 2007-05-24 TW TW96118459A patent/TWI362540B/en active
- 2007-11-06 CN CN2007101657330A patent/CN101191198B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI585495B (en) * | 2015-12-25 | 2017-06-01 | 晶典有限公司 | Methods for unit level liquid crystal assembly process for liquid crystal on silicon |
CN110596958A (en) * | 2018-06-13 | 2019-12-20 | 夏普株式会社 | Method for manufacturing liquid crystal substrate and apparatus for processing liquid crystal substrate |
CN110596958B (en) * | 2018-06-13 | 2022-03-08 | 夏普株式会社 | Method for manufacturing liquid crystal substrate and apparatus for processing liquid crystal substrate |
Also Published As
Publication number | Publication date |
---|---|
CN101191198B (en) | 2011-07-13 |
TWI362540B (en) | 2012-04-21 |
CN101191198A (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8075953B2 (en) | Thin organic alignment layers with a batch process for liquid crystal displays | |
CN107644946A (en) | The method for packing and encapsulating structure of OLED display panel | |
TW200841096A (en) | Liquid crystal display device and method of fabricating the same | |
TW200905002A (en) | Method of forming inorganic insulating layer and method of fabricating array substrate for display device using the same | |
JP2008541172A5 (en) | ||
JP2009223139A (en) | Liquid crystal device and method of manufacturing the same, and electronic apparatus | |
TW200825579A (en) | A method to form alignment layers on a substrate of an LCD | |
TW200903114A (en) | Liquid crystal display panel and manufacturing method thereof | |
JP2006286711A (en) | Method of forming silicon oxide film | |
TWI306590B (en) | Liquid crystal display device, substrate bonding apparatus, and method for fabricating liquid crystal display device using the same | |
US20090239002A1 (en) | Liquid crystal display device, method for manufacturing the same, and electronic apparatus | |
US20150346557A1 (en) | Liquid crystal display devices and methods of manufacturing the same | |
US7955648B2 (en) | Thin alignment layers for liquid crystal displays | |
US20080218676A1 (en) | Liquid crystal display device and manufacturing method of the same | |
US8233130B2 (en) | Display panel and fabricating method thereof | |
EP1507163A2 (en) | A liquid crystal display | |
JP2006251765A (en) | Method of forming alignment layer for liquid crystal display and liquid crystal display equipped with alignment layer fabricated using the method | |
JP3471082B2 (en) | Coating method for reaction chamber of CVD apparatus | |
CN108336024B (en) | Manufacturing method of thin film transistor, manufacturing method of display substrate and display device | |
JP2008203712A (en) | Manufacturing method of liquid crystal device and manufacturing equipment of liquid crystal device | |
JP3406681B2 (en) | Method for manufacturing thin film transistor | |
JP2000314887A (en) | Liquid crystal device and its production | |
JP2004302316A (en) | Method for manufacturing liquid crystal display panel | |
JP6191293B2 (en) | Surface treatment method and electro-optical device manufacturing method | |
JPH0713147A (en) | Color filter substrate and liquid crystal display element |