TW200825503A - Micro lens - Google Patents

Micro lens Download PDF

Info

Publication number
TW200825503A
TW200825503A TW95144765A TW95144765A TW200825503A TW 200825503 A TW200825503 A TW 200825503A TW 95144765 A TW95144765 A TW 95144765A TW 95144765 A TW95144765 A TW 95144765A TW 200825503 A TW200825503 A TW 200825503A
Authority
TW
Taiwan
Prior art keywords
lens
micro
object side
curvature
refracting power
Prior art date
Application number
TW95144765A
Other languages
Chinese (zh)
Other versions
TWI320107B (en
Inventor
Chen-Cheng Liao
Shing-Ya Liu
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW95144765A priority Critical patent/TW200825503A/en
Publication of TW200825503A publication Critical patent/TW200825503A/en
Application granted granted Critical
Publication of TWI320107B publication Critical patent/TWI320107B/zh

Links

Abstract

A micro lens module is provided. The sequence of components from object side to image side is as following: a first lens is crescent positive lens which convex is toward the object side and is used to capture image and balance aberration; a diaphragm; a second lens is a negative lens and is used to compensate chromatism and correct off-axis aberration; a third lens is a positive lens and is used to provide major refraction power of the lens optical system and influences the total focal length of the optical system and a forth lens is a crescent negative lens which concave is toward the object side. The curvature of two surfaces of the forth lens is larger, so the shape is quite curved. This feature shortens the effective optical path, so not only total optical length is short but also the size is small. The curvature of two surfaces of the forth lens has a special relation with overall optical system.

Description

200825503 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於-種微小型鏡頭,特別是有關於—種適用於攜帶型 電子裝置上的微小型鏡頭。 【先前技術】 隨著科技的不斷發展,攜帶型電子裝置,如筆記型電腦、行動電話 或個人齡棘H (PDA)等與光電技術相整合已絲當今科技發展 的趨勢之一,可拍照手機係此技術潮流中的典型代表。可拍照手機的 取像鏡頭不僅需要具有良好的成像品質,還需要有較小的體積及較低 的成本。 早期的鏡頭設計採用的是球面透鏡,但因球面透鏡不可避免會産生 像差,如球面像差、軸上色散等絲缺陷,導致影像模糊失焦,而爲 克服該些像差,鏡頭設計者必須在鏡頭中使用很多片透鏡來補償。故, 在成像品質提高的同時,鏡頭的長度、外徑、重量及成本均相應增加, 從而使得鏡頭變得又大又沈重。惟,近年來各種數位影像産品均朝向 微型化的方向發展,而與之相匹配的可拍攝鏡頭也就必須越來越小, 即鏡頭的總長要進一步縮短,因此上述設計理念已經無法再被採用。 爲了減小鏡頭體積及製造成本,目前鏡頭設計中有採用非球面透 鏡’非球面透鏡可以避免因採用球面透鏡所産生的球面像差,而且一 片非球面透鏡可以替代好幾片球面透鏡補償像差,能夠非常明顯地簡 化鏡頭的光學設計,減小它的體積和重量。 5 200825503 無論是球面鏡還是非球面鏡,其製作材質主要有玻璃與塑膠。在傳 統設計理念中,若作爲取像用之鏡頭採用玻璃材質,因玻璃透鏡的透 光係數較大,成像效果好,但價格較高,故主要應用於高階産品;若 採用塑膠材質,則因塑膠透鏡的透光係數較小,價格低廉,故主要應 用於低階産品。但因塑膠材質輕便,而玻璃材質卻比較厚重,所以在 鏡頭設計時會採用塑膠透鏡與玻璃透鏡相組合的方式,藉此取長補 短,從而設計出所需要的鏡頭。 目前市場上的手機鏡頭大多採用玻璃與塑膠透鏡的混合,如 (Glass ’玻璃)2P (Plastic,塑膠)或1G3p的型式,其中1G2p的鏡 頭汉什型式可參照細補第6,441,971號賴示之鏡頭,其從物方至 像方’依次包括有-第_透鏡、—第二透鏡及_第三透鏡組成,該第 -透鏡採用球面玻璃鏡片,第二、第三透鏡採賴膠非球面鏡片,該 鏡頭雖然體輸小,但僅_於640*480畫素以下_縣測器,故 無法滿足胃7日益增長的較高晝素要求。的知之的綱設計型 式雖可以達顺高階的晝素要求,重量、成本仍顯偏高。 \ 心仏$提供—種成本低、敏献低且成像品質 高的微小型鏡頭。 【發明内容】 本發月之主要目的在於提供_種具有低成本、低公差敏感度及高解 像度特點的微小型鏡頭。 其從物方至 依據本發明之上述目的’本發明提供—健小型鏡頭, 6 200825503 像方依次包括有:—具有正屈光度之第—透鏡、-細、—具有負屈 光度之第二透鏡、-具有正屈光度之第三透鏡及—具有負屈光度之第 四透鏡,其中第三透鏡與第四透鏡各具有至少_非球面之表面,該微 小型鏡頭滿足下列條件: 0.2<ί?<ι.3 F 0) 在式子⑴中,f3係表示第三透鏡之有效焦距,F係表示系統整 體之有效焦距。 本發明微小型鏡頭之上述第—至第四透鏡均可馳膠透鏡,且第— 至第四透鏡均可以採用雙面非球面的設計。 曲率較大 上述第二透鏡係-雙凹負透鏡;第一透鏡係一新月型透鏡,其凸面 朝向物方;第四透鏡係一新月型透鏡,其凹面朝向物方,且其兩面之 上述微小型鏡頭還需滿足下列條件·· 0.02 <^N< 〇.4 (2) 在式子⑵中,R8係第四透鏡之靠近於物方之一表面的曲率半徑, R9係第四魏之靠近於像方之—表面的曲轉徑,F絲示系統整體 之有效焦距。 在上述第四透鏡之像方侧另設有一平板玻璃及一位於成像位置處 之影像感測元件。 依據本發明之上述目的’本發明還提供—種微小型鏡頭,其從物方 7 200825503 至像方依次包括有:一具有正屈光度之第一透鏡、一光圈、一具有負 屈光度之第二透鏡、一具有正屈光度之第三透鏡及一具有負屈光度之 第四透鏡,其中第三透鏡與第四透鏡各具有至少一非球面之表面,並 且第二透鏡係一雙凹負透鏡。 與本發明之先前技術相比較,本發明微小型鏡頭之第三透鏡滿足了 一設計條件,使得微小型鏡頭之總長變短、公差敏感度低、製造成本 低而本發明第四透鏡又滿足了另一設計條件,從而使得本發明微小 型鏡頭能夠得到較好的光學品質。本發明第二透鏡係一雙凹負透鏡, 其對於整個鏡頭系統之色差補償及軸外像差之矯正提供了主要作用。 此外,本發明之四個透鏡還可以全部採用塑膠材質,不但成本大幅度 降低、重畺減輕,同時還可滿足高解析度之要求,移動整群可以得到 遠近拍攝都很清楚的成像品質。 【實施方式】 請參照第一圖所示,本發明微小型鏡頭1從物方到像方依次包括·· 一第一透鏡10、一光圈ST、一第二透鏡20、一第三透鏡30、一第四 透鏡40平行板50及一成像面60,其中第一透鏡1〇係一新月型正 透鏡,其凸面朝向物方,主要用於截取影像並且平衡像差,使得整個 光學系統處於低公差敏感度;光圈ST係放置於第一透鏡1〇與第二透 鏡20之間,從而可以使得出瞳位置朝向物端移動;第二透鏡2〇係一 雙凹負透鏡,其對於整個鏡頭系統之色差補償及軸外像差之矯正提供 了主要作用;第三透鏡30係一正透鏡,其具有至少一個非球面,其可 8 200825503 以提供鏡頭光H駐要的折射力,並影響著該光學祕之總焦距, 兩者之間的關係容後詳述;第四透鏡4〇係一新月型負透鏡,其具有至 ^個非球面,藉此可以使得光線準確聚集於成像面上,並用於矯正 軸外像差(像散與畸變等)。該第四透鏡4〇之凹面朝向物方,其兩面 之曲率較大’形狀相當、彎曲,此特性使得光學有效徑變小,因此不但 整體光學總長健,尺寸也可以變小,該第四透鏡⑽之折射力與微小 型鏡頭1之整個光學系統並無很明顯的關係,惟其兩面之曲率卻與整 個光學系統呈現特殊關係,其關係容後詳述;平行板5〇係一平板玻璃, 其至少有_表面鍍覆_層具有—定功效(例如··抗反碱紅外線過遽) 的薄膜’從而提高成像品質;成像面60係一影像感測元件之表面,其 位於像方位置上,該影像感測元件通常爲一電荷耦合裝置(〇1肛辟 Coupled Device,簡稱CCD)或者互補式金氧半導體(c〇mple_taiy Metal-Oxide Semiconductor簡稱CMOS),一般而言,在行動電話中因 成本考慮,通常會採用CMOS元件。 爲達到短小總長、低公差敏感度且高解像度之目的,本發明微小型 鏡頭1需滿足以下條件: f3 〇.2<7<L3 (1) 在上述式子(1)中,β係表示第三透鏡30之有效焦距,F係表示 系統整體之有效焦距。在該式子(1)中,當第三透鏡3〇之有效焦距 與系統整體之有效焦距的比值大於上限(〇)時,微小型鏡頭1總長 變長,故不符合微小型鏡頭的要求;當該比值小於下限(0·2)時,第 9 200825503 三透鏡30將承受祕之大部分的綠力,導致其概度场增加,同 時其邊厚亦有不足,不易生産。 爲付到更好的成像品質’本發明微小型鏡頭1 0.02 <BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro-miniature lens, and more particularly to a micro-miniature lens suitable for use in a portable electronic device. [Prior Art] With the continuous development of technology, portable electronic devices, such as notebook computers, mobile phones or personal age-hopping H (PDA), have been integrated with optoelectronic technology. It is a typical representative of this technology trend. The image taking lens of a camera phone not only needs to have good image quality, but also requires a small volume and a low cost. The early lens design used a spherical lens, but the spherical lens inevitably produced aberrations such as spherical aberration, axial dispersion and other silk defects, resulting in image blur and out of focus, and to overcome these aberrations, the lens designer Many lenses must be used in the lens to compensate. Therefore, as the image quality is improved, the length, outer diameter, weight, and cost of the lens are correspondingly increased, thereby making the lens large and heavy. However, in recent years, various digital imaging products have been moving toward miniaturization, and the matching lens that can be matched must be smaller and smaller, that is, the total length of the lens should be further shortened, so the above design concept can no longer be adopted. . In order to reduce the lens volume and manufacturing cost, the current lens design uses an aspherical lens. The aspherical lens can avoid the spherical aberration caused by the spherical lens, and an aspherical lens can replace several spherical lenses to compensate for the aberration. The optical design of the lens can be significantly simplified, reducing its size and weight. 5 200825503 Whether it is a spherical mirror or an aspherical mirror, its materials are mainly glass and plastic. In the traditional design concept, if the lens used as the image is made of glass, the glass lens has a large light transmission coefficient and good imaging effect, but the price is high, so it is mainly used in high-order products; if plastic material is used, Plastic lenses have low light transmission coefficient and low price, so they are mainly used in low-end products. However, because the plastic material is light and the glass material is relatively heavy, the lens is designed with a combination of a plastic lens and a glass lens to shorten the length of the lens to design the desired lens. At present, most of the mobile phone lenses on the market use a mixture of glass and plastic lenses, such as (Glass 'glass) 2P (Plastic, plastic) or 1G3p type, of which the 1G2p lens Hans type can refer to the fine complement No. 6,441,971 The lens, which includes the -th lens, the second lens and the third lens from the object side to the image side, the first lens adopts a spherical glass lens, and the second and third lenses adopt a rubber aspheric surface. Lens, although the lens loses a small body, but only _ 640 * 480 pixels below the county detector, it can not meet the growing demand for higher growth of the stomach 7 . Although the design of the knowing model can meet the requirements of high-order quality, the weight and cost are still high. \ 仏 仏 $ provides a small size lens with low cost, low sensitivity and high image quality. SUMMARY OF THE INVENTION The main purpose of this month is to provide a miniature lens with low cost, low tolerance sensitivity and high resolution. From the object side to the above object according to the present invention, the present invention provides a small compact lens, 6 200825503, and the image side includes, in order, a first lens having a positive refractive power, a thin lens, a second lens having a negative refracting power, and a third lens having positive refracting power and a fourth lens having negative refracting power, wherein the third lens and the fourth lens each have at least an aspheric surface, the micro lens satisfies the following condition: 0.2<ί?< .3 F 0) In equation (1), f3 represents the effective focal length of the third lens, and F represents the effective focal length of the system as a whole. The above-mentioned first to fourth lenses of the micro lens of the present invention can be used as a rubber lens, and the first to fourth lenses can each adopt a double-sided aspherical design. The second lens is a double concave negative lens; the first lens is a crescent lens whose convex surface faces the object side; and the fourth lens is a crescent lens whose concave surface faces the object side and both sides thereof The above micro-sized lens also needs to satisfy the following conditions: 0.02 <^N< 〇.4 (2) In the formula (2), R8 is the fourth lens having a radius of curvature close to one surface of the object side, R9 is the fourth Wei Zhi is close to the curved path of the surface of the image, and the F wire shows the effective focal length of the whole system. A flat glass and an image sensing element at the imaging position are further disposed on the image side of the fourth lens. According to the above object of the present invention, the present invention further provides a micro-small lens comprising, from the object side 7 200825503 to the image side, a first lens having a positive refracting power, an aperture, and a second lens having a negative refracting power. a third lens having positive refracting power and a fourth lens having negative refracting power, wherein the third lens and the fourth lens each have at least one aspherical surface, and the second lens is a double concave negative lens. Compared with the prior art of the present invention, the third lens of the micro lens of the present invention satisfies a design condition, so that the total length of the micro lens is shortened, the tolerance sensitivity is low, and the manufacturing cost is low, and the fourth lens of the present invention satisfies Another design condition allows the micro-lens of the present invention to achieve better optical quality. The second lens of the present invention is a double concave negative lens that provides a primary effect on chromatic aberration compensation and correction of off-axis aberrations throughout the lens system. In addition, the four lenses of the present invention can also be entirely made of plastic material, which not only greatly reduces the cost, but also reduces the weight, and can also meet the requirements of high resolution. The moving group can obtain the imaging quality which is clear in far and near shooting. [Embodiment] Referring to the first figure, the micro lens 1 of the present invention includes, in order from the object side to the image side, a first lens 10, a diaphragm ST, a second lens 20, and a third lens 30, A fourth lens 40 is parallel plate 50 and an imaging surface 60, wherein the first lens 1 is a crescent-shaped positive lens with a convex surface facing the object side, mainly for intercepting images and balancing aberrations, so that the entire optical system is low. Tolerance sensitivity; the aperture ST is placed between the first lens 1 〇 and the second lens 20 so that the exit pupil position is moved toward the object end; the second lens 2 is a double concave negative lens for the entire lens system The chromatic aberration compensation and the correction of the off-axis aberration provide a main function; the third lens 30 is a positive lens having at least one aspherical surface, which can be 8 200825503 to provide the refractive power of the lens light H, and affect the The total focal length of the optical secret, the relationship between the two is detailed later; the fourth lens 4 is a crescent-type negative lens having aspherical surface, so that the light can be accurately collected on the imaging surface. And used to correct off-axis aberrations (astigmatism and distortion, etc.). The concave surface of the fourth lens 4 is facing the object side, and the curvature of both sides is large. The shape is equivalent and curved. This characteristic makes the optical effective diameter smaller, so that the overall optical length is longer and the size can be smaller. The fourth lens (10) The refractive power has no obvious relationship with the entire optical system of the micro lens 1 , but the curvature of the two sides has a special relationship with the entire optical system, and the relationship is detailed later; the parallel plate 5 is a flat glass, At least _ surface plating _ layer has a certain effect (for example, anti-alkali infrared ray) film to improve image quality; imaging surface 60 is the surface of an image sensing element, which is located at the image side position, The image sensing component is usually a charge coupled device (〇1, CCD for short) or a complementary CMOS (c〇mple_taiy Metal-Oxide Semiconductor for short), in general, in the mobile phone due to cost Consider, CMOS components are usually used. In order to achieve short total length, low tolerance sensitivity, and high resolution, the micro lens 1 of the present invention satisfies the following conditions: f3 〇.2 <7<L3 (1) In the above formula (1), the β system indicates The effective focal length of the three lenses 30, F is the effective focal length of the system as a whole. In the formula (1), when the ratio of the effective focal length of the third lens 3 to the effective focal length of the system is greater than the upper limit (〇), the total length of the micro lens 1 becomes longer, and thus does not meet the requirements of the micro lens; When the ratio is less than the lower limit (0·2), the ninth 200825503 three-lens 30 will bear most of the green power of the secret, resulting in an increase in the probability field, and the edge thickness is also insufficient, and it is difficult to produce. In order to pay for better image quality, the micro lens 1 of the present invention is 0.02 <

|R9|-|R8 丨 F <0.4 還需滿足以下條件: (2) 在上述式子(2)中’F係表示系統整體之有效焦距,則係第四透 鏡40之靠近於物方之-表面的曲率半徑,則係第四透鏡*之靠近於 像方之-表面的曲率半徑。在該式子⑵巾,當第四透鏡⑼之兩表 面的曲率半徑差與系統整體之有效焦距的比值大於上限(〇4)時,微 小型鏡頭1之軸外像差將不易矯正,尤其是崎變太大;當該比值小於 下限時,第四透鏡40之彎曲程度將會太A,而不易生產。 總之,本發明微小型綱i具有大視角(約爲6〇度)、大孔徑數值 (約1·2·8)、低製造敏感度及低成本的特點。本發明微小型鏡頭1係由 上述四個透鏡組成,該些透鏡還可以全部採用塑膠材質,不但成本大 幅度降低、重量減輕,同時還可滿足高解析度之要求,移動整群可以 得到遠近拍攝都很清楚的成像品質。 本發明微小型鏡頭1之第三透鏡3〇與第四透鏡4〇均至少具有一非 球面之表面’其滿足下列非球面公式: _ ch2 zM4 邊6+Ch8+Dhl° 邊12 其中· z爲沿光軸方向在高度爲h的位置以表面頂點作參考距光軸 的位移值;k爲錐度常量;e=1/r,Γ表示曲率半徑;h表示鏡片高度;a 200825503 表示四次的非球面係數(4 th Order Aspherical Coefficient) ; B表示六次 的非球面係數(6 th Order Aspherical Coefficient) ; C表示八次的非球面 係數(8 th Order Aspherical Coefficient) ; D表示十次的非球面係數(i〇 th Order Aspherical Coefficient);E 表示十二次的非球面係數(12 th Order Aspherical Coefficient) 〇 下面將舉例說明本發明微小型鏡頭丨在具體實施過程中的數值實 施例’其中所引用之表面序號卜2、3、4、5、6、7、8、9、10將分 別代表第一透鏡1〇之靠近於物方之表面、第一透鏡1〇之靠近於像方 之表面、光圈ST、第二透鏡20之靠近於物方之表面、第二透鏡2〇之 罪近於像方之表面、第二透鏡3〇之靠近於物方之表面、第三透鏡如 之靠近於像方之表面、第四透鏡4()之#近於物方之表面、第四透鏡4〇 之靠近於像方之表面及平行板5()之#近於物方之平面。 本發明微小型鏡頭1在具體實施過程巾的第—數值實施例如下表 一所示: 表一|R9|-|R8 丨F <0.4 The following conditions are also required: (2) In the above formula (2), the 'F system indicates the effective focal length of the entire system, and the fourth lens 40 is close to the object side. The radius of curvature of the surface is the radius of curvature of the surface of the fourth lens* close to the image side. In the formula (2) towel, when the ratio of the difference in the radius of curvature of the two surfaces of the fourth lens (9) to the effective focal length of the system as a whole is greater than the upper limit (〇4), the off-axis aberration of the micro lens 1 is not easily corrected, especially The roughness becomes too large; when the ratio is less than the lower limit, the degree of bending of the fourth lens 40 will be too A, which is not easy to produce. In summary, the micro-miniature i of the present invention has a large viewing angle (about 6 degrees), a large aperture value (about 1.2.8), low manufacturing sensitivity, and low cost. The micro-miniature lens 1 of the present invention is composed of the above four lenses, and all of the lenses can also be made of plastic materials, which not only greatly reduces the cost, but also reduces the weight, and can also meet the requirements of high resolution, and can move the whole group to obtain far and near shooting. Very clear image quality. The third lens 3 〇 and the fourth lens 4 微 of the micro lens 1 of the present invention each have at least one aspherical surface 'which satisfies the following aspherical formula: _ ch2 zM4 side 6 + Ch8 + Dhl ° side 12 where · z is In the direction of the optical axis at the position of height h, the surface apex is used as the reference displacement value from the optical axis; k is the taper constant; e=1/r, Γ represents the radius of curvature; h represents the height of the lens; a 200825503 represents the non-four times 4 th Order Aspherical Coefficient; B represents 6th Order Aspherical Coefficient; C represents 8th Order Aspherical Coefficient; D represents ten aspheric coefficients (i〇th Order Aspherical Coefficient); E denotes 12th Order Aspherical Coefficient 〇 The following will exemplify the numerical embodiment of the micro-miniature lens of the present invention in the specific implementation process The surface numbers 2, 3, 4, 5, 6, 7, 8, 9, 10 will respectively represent the surface of the first lens 1 靠近 close to the object side, the surface of the first lens 1 靠近 close to the image side, and the aperture ST, the first The surface of the lens 20 is close to the surface of the object, the second lens 2 is close to the surface of the image side, the surface of the second lens 3 is close to the object side, and the third lens is close to the surface of the image side, The surface of the four lens 4 () is close to the surface of the object side, the surface of the fourth lens 4 is close to the surface of the image side, and the surface of the parallel plate 5 () is close to the plane of the object side. The first numerical implementation of the micro-lens 1 of the present invention in the specific implementation process is as shown in the following Table 1: Table 1

在該第-數值實施射,喃魏均_魏面設計,其非球面係 200825503 數的具體數值爲: 表面序號1 (第一透鏡10之物方側): k=0.7208890793746 A=-0.0162170839274 B=0.01492023335 C=-0.0308691156272 D=0.0199342861188 E=-0.005286344405 表面序號2 (第一透鏡10之像方側): k=-38.8289156103687 A=0.1348445356663 B=-0.1119284881658 C=0.2539583122095 D=0 E=0 表面序號4 (第二透鏡20之物方側): k=15.1662100079089 A=-0.0127740232788 B=-0.0380927089023 C=0.102338957832 D=0 E=0 表面序號5 (第二透鏡20之像方側): k=19.6667392959543 A=-0.0381407658363 B=0.066858744529 C=-0.056035722863 D=-0.0105458334847 E=0 表面序號6 (第三透鏡30之物方側): k= 106.5689754206271 A= -0.0580598937846 B= 0.0612451022458 C=-0.0921876702607 D= 0.0997090013496 E=-0.0614782904 表面序號7 (第三透鏡30之像方側): k=0.2773997046302 A=0.0077766586785 B=0.027067498253 C=-0.0252545246416 D=0.0275244707512 E=-0.0084848671412 表面序號8 (第四透鏡40之物方側): k=-1.0 A=-0.0846451939962 B=0.1305499071261 C=-0.0530030308202 D=0.0121621691829 E=-0.0037141184818 表面序號9 (第四透鏡40之像方側): 12 200825503 k=-1.0 A=-0.0261266578478 B=0.0226267374401 C=0.0011900696081 D=-0.0026104228328 E=0.0002444934435 依照上述表一設計,可得到下列各參數值: 系統的有效焦距(F) 4.7 mm 視角(F.O.V) 62.5 度 系統總長(TotalLength) 6.2 mm 孔徑值(F-number) 2.86 f3/F 0.59 |R9|-|R8|/F 0.06 依照該第一數值例進行設計,本發明微小型鏡頭1之縱向球差、像 場凹陷及橫向色差均可以得到有效校正,其光學表現如第二A至二c 圖所示。 本發明微小型鏡頭1在具體實施過程中的第二數值實施例如下表 表二 表面序 曲率半徑(mm) (Radius) 厚度(mm) (Thickness) 折射率 (Nd) 阿貝係數~ (Vd) 1 1.4785 0.872 1.5247 56.21 〜 __2 3.709 0.14 3 00 0.1665 ____4 -5.402 0.4 1.5855 29L9~ 5 4.982 0.32 6 9.6021 1.073 1.5247 56.21 ^' __7 -1.8053 0.9 8 -0.7645 0.6608 1.6074 28.97 ^’ __9 -1.0404 L2 10 00 0.3 1.5168 64.17 s -------- 在該第二數值實施例中,四個透鏡均採用非球面設計,其非球面係 數的具體數值爲: 表面序號1 (第一透鏡10之物方侧): 13 200825503 k=0.7009181735917 A=-0.0170231768259 B=0.0127314496109 C=-0.0332635198087 D=0.0273869703056 E=-0.0108725258542 表面序號2 (第一透鏡10之像方側)·· k=-94.5952021995947 A=0.2446161356042 B=-0.3286676970061 00.4163132161899 D=0 E=0 表面序號4 (第二透鏡20之物方側): k=14.7294919277834 Α=·0·0007163477527 Β=-0.0342319716817 00.0951401603632 D=0 E=0 表面序號5 (第二透鏡20之像方側): k=17.7129919891044 A=-0.0034585186132 B=0.037882875996 C=-0.0228896924796 D=-0.0009122530641 E=0 表面序號6 (第三透鏡30之物方側): k=59.9331204189686 A=-0.0517716484757 B=0.044055269749 C=-0.0795528662745 D=0.0785186344995 E=-0.0348610378733 表面序號7 (第三透鏡30之像方侧): k=0.62725 80987026 A=-0.0006995902127 B=0.0216895214376 C=-0.0216378264554 D=0.0204890051535 E=-0.0052971909755 表面序號8 (第四透鏡40之物方側): k=-l A=-0.0868641243537 B=0.1273745820457 C=-0.0583325836995 D=0.0180288577003 E=-0.0042745702609 表面序號9 (第四透鏡40之像方側): k=-1.0 A=-0.0171872759778 B=0.0169286146538 C=0.003160749626 D=-0.00280828688 Ε=0·0002854608383 依照上述表二設計,可得到下列各參數值: 14 200825503 系統的有效焦距(F) 4.75 mm 視角(F.O.V) 62度 系統總長(TotalLength) 6.0 mm 孔徑值(F-number) 2.84 β/F 0.63 |R9|-|R8|/F 0.058 依照該第二數值例進行設計,本發明微小型鏡頭丨之縱向球差、像 場凹陷及橫向色差均可以得到有效校正,其光學表現如第三A至三c 圖所示。 綜上所述,本發明確已符合發明專利之要件,爰依法提出專利申 請。惟,以上所述者僅爲本發明之較佳實施方式,舉凡熟習本案技術 之人士援依本發明之精神所作之等效修飾或變化,皆涵蓋於後附之申 請專利範圍内。 【圖式簡單說明】 第一圖係本發明微小型鏡頭於其較佳實施例中之結構示意圖。 第一 A至二C ®係本發明微小型鏡頭依據第-數值實施顺形成的縱 向球差、像場凹陷及橫向色差之曲線示意圖。 第一 A至二C圖係本發明微小型鏡頭依據第二數值實施例所形成的縱 向球差、像場凹陷及橫向色差之曲線示意圖。 【主要元件符號說明】 微小型鏡頭 1 第一透鏡 10 光圈 ST 第二透鏡 20 第三透鏡 30 第四透鏡 40 15 200825503 平行板 50 成像面 60 16In the first-value implementation, the specific values of the aspherical system 200825503 are: surface number 1 (object side of the first lens 10): k=0.7208890793746 A=-0.0162170839274 B= 0.01492023335 C=-0.0308691156272 D=0.0199342861188 E=-0.005286344405 Surface number 2 (image side of first lens 10): k=-38.8289156103687 A=0.1348445356663 B=-0.1119284881658 C=0.2539583122095 D=0 E=0 Surface number 4 ( The object side of the second lens 20): k=15.1662100079089 A=-0.0127740232788 B=-0.0380927089023 C=0.102338957832 D=0 E=0 Surface number 5 (image side of the second lens 20): k=19.6667392959543 A=- 0.0381407658363 B=0.066858744529 C=-0.056035722863 D=-0.0105458334847 E=0 Surface number 6 (object side of the third lens 30): k= 106.5689754206271 A= -0.0580598937846 B= 0.0612451022458 C=-0.0921876702607 D= 0.0997090013496 E=-0.0614782904 Surface No. 7 (image side of the third lens 30): k=0.2773997046302 A=0.0077766586785 B=0.027067498253 C=-0.0252545246416 D=0.0275244707512 E=-0.0084848671412 Surface number 8 ( The object side of the four lens 40): k=-1.0 A=-0.0846451939962 B=0.1305499071261 C=-0.0530030308202 D=0.0121621691829 E=-0.0037141184818 Surface number 9 (image side of the fourth lens 40): 12 200825503 k=- 1.0 A=-0.0261266578478 B=0.0226267374401 C=0.0011900696081 D=-0.0026104228328 E=0.0002444934435 According to the above Table 1 design, the following parameters can be obtained: Effective focal length of the system (F) 4.7 mm Viewing angle (FOV) 62.5 degrees Total system length (TotalLength 6.2 mm aperture value (F-number) 2.86 f3/F 0.59 |R9|-|R8|/F 0.06 Designed according to the first numerical example, the longitudinal spherical aberration, image field depression and lateral direction of the micro lens 1 of the present invention are designed. The chromatic aberration can be effectively corrected, and its optical performance is as shown in the second to second c diagrams. The second numerical implementation of the micro-miniature lens 1 of the present invention in the specific implementation process is as shown in Table 2 below. Surface curvature radius (mm) (Radius) Thickness (mm) (Thickness) Refractive index (Nd) Abbe's coefficient ~ (Vd) 1 1.4785 0.872 1.5247 56.21 ~ __2 3.709 0.14 3 00 0.1665 ____4 -5.402 0.4 1.5855 29L9~ 5 4.982 0.32 6 9.6021 1.073 1.5247 56.21 ^' __7 -1.8053 0.9 8 -0.7645 0.6608 1.6074 28.97 ^' __9 -1.0404 L2 10 00 0.3 1.5168 64.17 s -------- In the second numerical embodiment, the four lenses are all aspherical design, and the specific values of the aspherical coefficients are: surface number 1 (the object side of the first lens 10): 13 200825503 k=0.7009181735917 A=-0.0170231768259 B=0.0127314496109 C=-0.0332635198087 D=0.0273869703056 E=-0.0108725258542 Surface number 2 (image side of first lens 10)·· k=-94.5952021995947 A=0.2446161356042 B=-0.3286676970061 00.4163132161899 D=0 E=0 Surface number 4 (object side of the second lens 20): k=14.7294919277834 Α=·0·0007163477527 Β=-0.0342319716817 00.0951401603632 D=0 E=0 Surface number 5 (image side of second lens 20): k=17.7129919891044 A=-0.0034585186132 B=0.037882875996 C=-0.0228896924796 D=-0.0009122530641 E=0 Surface number 6 (object side of third lens 30): k=59.9331204189686 A =-0.0517716484757 B=0.044055269749 C=-0.0795528662745 D=0.0785186344995 E=-0.0348610378733 Surface number 7 (image side of third lens 30): k=0.62725 80987026 A=-0.0006995902127 B=0.0216895214376 C=-0.0216378264554 D=0.0204890051535 E =-0.0052971909755 Surface No. 8 (object side of the fourth lens 40): k=-l A=-0.0868641243537 B=0.1273745820457 C=-0.0583325836995 D=0.0180288577003 E=-0.0042745702609 Surface number 9 (image of the fourth lens 40) Side): k=-1.0 A=-0.0171872759778 B=0.0169286146538 C=0.003160749626 D=-0.00280828688 Ε=0·0002854608383 According to the above Table 2 design, the following parameter values are available: 14 200825503 Effective focal length of the system (F) 4.75 mm Viewing angle (FOV) 62 degree total length (TotalLength) 6.0 mm aperture value (F-number) 2.84 β/F 0.63 |R9|-|R8|/F 0.058 According to the second numerical example , The present invention is the micro lens Shu longitudinal spherical aberration, lateral chromatic aberration and image field recesses can be effectively corrected, the optical performance as in the third A-III c shown in FIG. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a schematic view of the structure of the micro-miniature lens of the present invention in its preferred embodiment. The first A to the second C ® are schematic diagrams showing the longitudinal spherical aberration, the image field depression, and the lateral chromatic aberration of the micro-miniature lens of the present invention according to the first value. The first to second C drawings are schematic diagrams of the longitudinal spherical aberration, the image field depression, and the lateral chromatic aberration formed by the micro-sized lens of the present invention according to the second numerical embodiment. [Main component symbol description] Micro lens 1 First lens 10 Aperture ST Second lens 20 Third lens 30 Fourth lens 40 15 200825503 Parallel plate 50 Imaging surface 60 16

Claims (1)

200825503 拾、申請專利範圍: -種微小型鏡頭,其從物方至像方依次包括有:一具有正屈光 度之第一透鏡、一光圈、一具有負屈光度之第二透鏡、一具有 正屈光度之第三透鏡及一具有負屈光度之第四透鏡,其中第三 透鏡各具有至少_非球面之表面’該微小型鏡頭滿 足下列條件: f3 〇〜&lt;1.3 (1) 其中β係表示第三透鏡之有效焦距,F係表示系統整體之有效 焦距。 2·如申請專利範圍第i項所述之微小型鏡頭,其中第一至第四透 鏡均爲塑膠透鏡。 \ 3·如申請專利範圍第2項所述之微小型鏡頭,其中第一至第四透 鏡均採用雙面非球面的設計。 4·如申請專利範圍第!或3項所述之微小型鏡頭,其中第二透鏡 係一雙凹負透鏡。 5·如申請專利範圍第4項所述之微小型鏡頭,其中該微小型鏡頭 還需滿足下列條件: 0.02 〇.4 ⑵ 其中F係表示系統整體之有效焦距,R8係第四透鏡之靠近於 17 200825503 物方之-表面的曲率半徑,R9係第四透鏡之靠近於像方之一 表面的曲率半徑。 6·如申請專利範圍第5項所述之微小型鏡頭,其中第-透鏡係一 新月型透鏡,其凸面朝向物方。 7·如申請專利範圍第6項所述之微小型鏡頭,其中第四透鏡係一 新月型透鏡,其凹面朝向物方,且其兩面之曲率較大。 8·如申請專利範圍第3項所述之微小型鏡頭,其中在第四透鏡之 像方侧另設有一平板玻璃。 9·如申請專利範圍第8項所述之微小型鏡頭,其中在鏡頭之成像 位置處設置有一影像感測元件。 10 · —種微小型鏡頭,其從物方至像方依次包括有:一具有正屈光 度之第一透鏡、一光圈、一具有負屈光度之第二透鏡、一具有 正屈光度之第三透鏡及一具有負屈光度之第四透鏡,其中第三 透鏡與第四透鏡各具有至少一非球面之表面,並且第二透鏡係 一雙凹負透鏡。 11如申请專利範圍第ίο項所述之微小型鏡頭,其中該微小型鏡 頭需滿足下列條件: f3 0·2&lt;~&lt;1·3 ⑴ 其中β係表示第三透鏡之有效焦距,F係表示系統整體之有效 焦距。 12 ·如申請專利範圍第11項所述之微小型鏡頭,其中該微小型鏡 18 200825503 頭還需滿足下列條件: 0·02〈㈣ F &lt;0.4200825503 Pick-up, patent application scope: - a micro-small lens, which includes, in order from the object side to the image side, a first lens having a positive refracting power, an aperture, a second lens having a negative refracting power, and a positive refracting power a third lens and a fourth lens having a negative refracting power, wherein the third lens each has at least an aspheric surface. The micro lens satisfies the following condition: f3 〇~&lt;1.3 (1) wherein the β system represents the third lens The effective focal length, F is the effective focal length of the system as a whole. 2. The micro lens according to item i of the patent application, wherein the first to fourth lenses are plastic lenses. 3. The micro lens according to item 2 of the patent application, wherein the first to fourth lenses are both designed with a double-sided aspherical surface. 4. If you apply for a patent scope! Or the micro lens according to item 3, wherein the second lens is a double concave negative lens. 5. The micro lens according to item 4 of the patent application scope, wherein the micro lens needs to satisfy the following conditions: 0.02 〇.4 (2) wherein F is the effective focal length of the system as a whole, and the R8 is close to the fourth lens. 17 200825503 The radius of curvature of the object-surface, R9 is the radius of curvature of the fourth lens close to one of the image sides. 6. The micro lens according to claim 5, wherein the first lens is a crescent lens whose convex surface faces the object side. 7. The micro lens according to claim 6, wherein the fourth lens is a crescent lens having a concave surface facing the object side and having a larger curvature on both sides. 8. The micro lens according to claim 3, wherein a flat glass is further provided on the image side of the fourth lens. 9. The micro lens according to claim 8, wherein an image sensing element is disposed at an imaging position of the lens. 10 - a miniature lens comprising, in order from the object side to the image side, a first lens having a positive refracting power, an aperture, a second lens having a negative refracting power, a third lens having a positive refracting power, and a A fourth lens having a negative refracting power, wherein the third lens and the fourth lens each have at least one aspherical surface, and the second lens is a double concave negative lens. [11] The micro lens according to the patent application scope ίο, wherein the micro lens needs to satisfy the following conditions: f3 0·2 &lt;~&lt;1·3 (1) wherein β is the effective focal length of the third lens, F system Indicates the effective focal length of the system as a whole. 12. The micro-miniature lens of claim 11, wherein the micro-mirror 18 200825503 head must also satisfy the following conditions: 0·02 <(4) F &lt; 0.4 其中F係表示系祕體之有聽距,R8係細透鏡之靠近於 物方之-表面的曲率半徑,R9係第_鏡之靠近於像方之一 表面的曲率半徑。 13 •如申請專利範圍第ω或l2項所述之微小型鏡頭,其中第一透 鏡係-新月型透鏡,其凸面朝向物方。 14 如申睛專利範’ l3項所述之微小型鏡頭,財第四透鏡係 新月型透鏡,其凹面朝向物方,且其兩面之曲率較大。 15 如申明專利細^ 14項所述之微小型綱,其巾第—至第四 透鏡均爲塑膠透鏡。 如申叫專利範圍第l5項所述之微小型綱,其中第—至第四 透鏡均採用雙轉球面的設計。 16The F system indicates the hearing distance of the secret body, the radius of curvature of the surface of the R8-based fine lens close to the object side, and the radius of curvature of the R9 system mirror surface close to one of the image sides. 13 • A micro lens as described in claim ω or l2, wherein the first lens-crescent lens has a convex surface facing the object side. 14 For example, the micro-lens lens described in the patent specification “3”, the fourth lens of the fiscal lens is a concave lens facing the object side, and the curvature of both sides is large. 15 For the micro-miniature described in the patent specification, the first to fourth lenses of the towel are plastic lenses. For example, the micro-miniature program described in item l5 of the patent scope, wherein the first to fourth lenses are designed with double-spherical surfaces. 16
TW95144765A 2006-12-01 2006-12-01 Micro lens TW200825503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95144765A TW200825503A (en) 2006-12-01 2006-12-01 Micro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95144765A TW200825503A (en) 2006-12-01 2006-12-01 Micro lens

Publications (2)

Publication Number Publication Date
TW200825503A true TW200825503A (en) 2008-06-16
TWI320107B TWI320107B (en) 2010-02-01

Family

ID=44771946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95144765A TW200825503A (en) 2006-12-01 2006-12-01 Micro lens

Country Status (1)

Country Link
TW (1) TW200825503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395992B (en) * 2008-07-25 2013-05-11 Largan Precision Co Four-piece optical lens system for taking image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498592B (en) 2014-11-06 2015-09-01 玉晶光電股份有限公司 Imaging lens and electronic apparatus utilizing the imaging lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395992B (en) * 2008-07-25 2013-05-11 Largan Precision Co Four-piece optical lens system for taking image

Also Published As

Publication number Publication date
TWI320107B (en) 2010-02-01

Similar Documents

Publication Publication Date Title
TWI435135B (en) Optical lens system
TWI434096B (en) Optical imaging lens system
TWI437257B (en) Optical lens assembly for imaging pickup
TWI432822B (en) Optical lens assembly for image photographing
TWI406027B (en) Imaging lens assembly
TWI361903B (en) Optical lens system for taking image
TWI435137B (en) Image pick-up optical system
TWI361914B (en) Optical lens system for taking image
TWI395992B (en) Four-piece optical lens system for taking image
TWI437312B (en) Image capturing lens system
TWI400506B (en) Photographing optical lens assembly
TWI401467B (en) Image-capturing lens assembly
TWI361913B (en) Optical lens system for taking image
TWI431352B (en) Optical imaging lens assembly
TWI408409B (en) Imaging lens assembly
TWI274179B (en) Micro imaging camera lens
TWM471592U (en) Imaging lenses and imaging device including the same
TWM364864U (en) Camera lens and camera device with a 3-set structure
TW201305651A (en) Optical system for imaging pickup
TW201115180A (en) Photographing optical lens assembly
TWI417595B (en) Thin optical lens assembly
TWI435105B (en) Optical lens assembly for image pickup
TW201346373A (en) Image pick-up lens with five-piece structure and image pick-up device
TWI422857B (en) Photographing optical lens assembly
WO2020140788A1 (en) Telephoto lens and mobile terminal