TW200825160A - Planarization composition - Google Patents

Planarization composition Download PDF

Info

Publication number
TW200825160A
TW200825160A TW095145213A TW95145213A TW200825160A TW 200825160 A TW200825160 A TW 200825160A TW 095145213 A TW095145213 A TW 095145213A TW 95145213 A TW95145213 A TW 95145213A TW 200825160 A TW200825160 A TW 200825160A
Authority
TW
Taiwan
Prior art keywords
slurry
cmp
acid
layer
alumina
Prior art date
Application number
TW095145213A
Other languages
Chinese (zh)
Inventor
Ivan Petrovic
Sharad Mathur
Original Assignee
Basf Catalysts Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Catalysts Llc filed Critical Basf Catalysts Llc
Publication of TW200825160A publication Critical patent/TW200825160A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The present invention provides CMP abrasive slurry that is substantially free of aluminum oxide and comprises liquid and solids wherein the solids comprises: (a) in an amount of at least about 90 weight percent based on the solids, at least one non-spherical component having formula Al2O3 * xH2O where x ranges from 1 to 3; and (b) up to about one weight percent based on the solids portion of submicron alpha-alumina. The CMP abrasive slurry may be used to polish metallic or dielectric surfaces in computer wafers.

Description

200825160 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於一種用於化學機械平坦化(CMP)的新 穎淤漿。本發明可用於以高生產量製造具有次微米設計特 徵和高傳導係數的互連結構之高速積體電路。 【先前技術】 φ 在積體電路和其他電子裝置的製造中,要在基板表面 上沈積或從基板表面移除多層的傳導性、半導性、和介電 材料。薄層的傳導性、半導性、和介電材料可經由多種沈 積技術予以沈積。於現代加工中常用的沈積技術包括物理 氣相沈積(PVD ),也稱爲濺鍍,化學氣相沈積 (CVD ),電漿增強化學氣相沈積(PECVD ),和現在的 電化學電鍍(ECP )。 隨著材料層的依序沈積和移除,基板的最上表面可能 % 在跨其表面上變成非平面且需要平坦化。平坦化一表面, 或表面的”平坦化“,爲一種程序,其中從基板表面移除物 質以形成普遍均勻的平坦表面。平坦化係用來移除非所欲 的表面形態(topography)與表面缺陷,諸如粗糙表面、 黏聚材料、晶格損壞、刮痕、與污染的層或材料。平坦化 也用來經由移除過多的用來塡充特徵之沈積材料而在基板 上形成特徵及用來提供平坦表面以供後面的敷金屬和加工 階段所用。 化學機械平坦化,或化學機械拋光(CMP )爲一種常 200825160 (2) 用來平坦化基板之技術。CMP利用化學組成物,典型地爲 淤漿或其他流體介質,從基板選擇性地移除物質。對CMP 淤漿設計中的考量可見於 Rajiv K. Singh et al., “Fundamentals of Slurry Design for CMP of Metal and Dielectrics Materials”, MRS Bulletin, pages 752-760 (October 2002)中的討論。於慣用的CMP技術中,將基板 載具或平坦化頭安置在一載具組合件上且配置成與CMP φ 裝置中的平坦化墊接觸的位置。該載具組合件提供一可控 制的壓力到基板以迫使基板抵緊該平坦化墊。在外部驅動 力之下該墊相對於該基板移動。如此,CMP裝置進行基板 表面與平坦化墊之間的平坦化或磨擦移動,同時分散平坦 化組成物,或淤漿,以同時施以化學活性與機械活性。 CMP程序慣用的淤漿含有在反應性溶液中的磨飩劑粒 子。或者,該磨蝕物件可爲固定的磨蝕物件,諸如固定的 磨蝕性平坦化墊,此可與不含磨飩劑粒子的CMP組成物 φ 或淤漿一起使用。固定的磨蝕物件典型地包含一襯背片, 其上附著複數個幾何狀磨触性複合元件。 在半導體CMP程序中最廣泛用到的磨蝕劑爲氧化矽 (Si02 )、氧化鋁(A1203 )、氧化鈽(Ce02 )、氧化鉻 (Zr02 )、和氧化鈦(Ti02 ),彼等都可經由發煙法或溶 膠-凝膠法製成,如在美國專利第4,959,1 13 ; 5,3 54,490 ; 和5,5 1 6,3 46號及W0 97/40,030中所述者。最近有報導包 含氧化錳(Μη203 )(歐洲專利 8 1 6,457號)或氮化矽 (S i N )(歐洲專利第7 8 6,5 0 4號)之組成物或淤漿。 200825160 (3) US 6,508,952揭示一種CMP淤漿,其包含呈粒子形 式的任何市售磨蝕劑,諸如Si02、A1203、Zr02、Ce02、 SiC、Fe203、Ti02、Si3N4、或彼等的混合物。此等磨蝕劑 粒子通常具有高純度、高表面積、及窄粒子尺寸分佈,且 因而適用於磨蝕組成物中作爲磨蝕劑。 US 4,549,374揭示使用經由將榮脫土黏土分散在去離 子水中製成的磨触劑淤漿平坦化半導體晶圓。淤漿的pH φ 係經由添加鹼諸如NaOH和KOH予以調整。 對於電處理速度的需求已持續增加要求更高的電路密 度和性能。如今需要製造有8或更多層電路圖樣之晶片。 原則上,對於更多層的要求不會改變平坦化的本質,不過 確實需要來自平坦化方法的更嚴密規範。諸如刮痕和淺碟 化(dishing )等缺陷都必須減少或消除。進一步增加技術 需求的一項問題係朝向3 00毫米晶圓前進的趨勢。相對於 8”或2 00毫米的晶圓,愈大的晶圓愈難以在較大的長度規 φ 格內均勻性。 除了添加層數之外,增加的電路密度可經由減小個別 路徑之間的空間而達成。路徑不能太靠近,因爲可能發生 跨Si02介電質(晶圓氧化物)之電外溢而促使連接短 路。在積體電路上可製造出很小、高密度電路圖樣的近來 技術進展已對隔離結構賦予更高的需求。 美國專利申請公開案2003/0 1 29838 ( 1 999年十二月 28日申請)揭示下列非板狀磨蝕性材料:氧化鐵、鈦酸 緦、磷灰石、透視石(dioptase )、鐵、黃銅、螢石、水 -6- 200825160 (4) 合氧化鐵、與石青(azurite )。 美國專利5,693,23 9教示一種CMP平坦化組成物,其 包含水;1 - 5 0重量%的^ -氧化銘或^ -銘氧化物;其固體 的其餘部份爲具有實質較低磨触性之選自下列的組成物: 鋁的氫氧化物、Τ -氧化鋁、5 -氧化鋁、非晶態氧化鋁及 非晶態氧化矽。也請參閱美國專利4,956,15 ; 6,03 7,260 ; 和6,475,607。不過,吾人相信在CMP淤漿的固體部份 0 中,即使<5重量%的氧化鋁之存在也可能刮傷晶圓的金屬 表面。 曰本公開專利公報2000-246649教示一種含有5-50重 量%水鋁土磨飩劑粒子之平坦化墊。該參考資料教示若水 鋁土重量百分比超過5 0,則該墊的緩衝性質會下降。與該 平坦化墊一起使用的淤漿含有1 -1 5重量%的細粒子諸如水 鋁土。也請參閱日本公開專利公報2000-246620。 美國專利5,906,949教示一種CMP淤漿,其含有主要 φ 由水鋁土製成的磨蝕劑粒子,用於在pH鹼性條件下平坦 化介電質膜諸如Si〇2。吾人認爲此專利的實施例3會導致 經水鋁土表面塗覆的氧化鋁。 美國專利6,562,091教示球形水鋁土不會在CMP處理 中刮傷晶圓;該球狀粒子較佳地具有小於約5 0奈米的直 徑。此不同於教示有角氧化矽粒子可能在CMP加工期間 刮傷晶圓表面之先前技藝。 【發明內容】 200825160 (5) 本發明提供CMP磨蝕淤漿,其實質地不含無水氧化 鋁(通式ai2o3)且包含液體部分和固體部分’其中該固 體部份包含: (a) 以該固體部分計算其量爲至少約90重量%的至 少一種具有式ai2o3 · χΗ20 (其中X爲從1至3 )之非球 狀成分;及 (b) 以該固體部分計算可高達約1重量°/〇的次微米 ^ α -氧化鋁。 【實施方式】 發明詳細說明 本發明利用具有式 Α〗2〇3·χΗ2〇(其中 χ爲從 1至 3 )的成分。當前式中的X爲1時,所得產物稱爲透視石 且具有約6.5-7的莫氏硬度(Mohs’ hardness )。當X爲大 於 1 至 2,亦艮Ρ,1·1、1·2、1·3、1.4、1·5、1.6、1·7、 1.8、1.9或2時,所得產物稱爲水鋁土或假軟水鋁土且具 有約2.5-3的莫氏硬度。當前式中的X爲3時,所得產物 稱爲三水鋁石(gibbsite )、三斜三水鋁石(doyleite )、 諾三水鋁石(nordstrandite)(全部都具有約2.5-3的莫 氏硬度)、或三羥鋁石(bayerite )。較佳者,該成分爲 水鋁土或假軟水鋁土。 片語”至少一種具有式Α1203 ·χΗ20之非球狀成分“於 用於本文中時係包括但不限於下列諸相的混合物: ΑΙ2Ο3 * 1 2Η2〇 和 Αΐ2〇3·1· 6Η2〇、A12〇3 * 1.2Η2〇 和 200825160 (6) Α1203 ·2Η20、及 Α1203 ·1·6Η20 和 Α1203 ·2Η20、及 Αΐ2〇3·1·5Η2〇和Αΐ2〇3·3Η2〇。一種有用的市售混合物爲 約80重量%的水鋁土和20重量%的三水鋁石。 上式Α12〇3 · χΗ20中的X之値可方便地以市售熱分析 儀器(TGA、TGA/DTA、TGA/DSC )予以酒J 定。於圖 3-6中’係將未經任何特殊預處理(乾燥或潮濕化)的粉 末形式樣品以20 °C/分的速率在100毫升/分的無水空氣 φ 流中從室溫加熱到約1 2 〇 0 °C。於圖7中,一溶膠樣品置 於煙櫥內乾燥約兩天,然後如上述予以加熱。顯然地,於 某些情況中,以此等常用熱分析技術測定出的X,對於水 鋁土或假軟水鋁土可爲大於2或小於1,且對於三水鋁 石、三斜三水鋁石、諾三水鋁石或三羥鋁石,可爲大於或 小於3。鑑定此等氧化鋁水合物相的另一種有用技術爲粉 末X-射線繞射(XRD )。 水鋁土通常經由其中對三水鋁石或類似者施以在壓力 φ 及約250°C溫度下的水熱處理的方法而製得,或是經由將 通式爲Al(OR)3 (其中R爲烷基)之有機鋁化合物水解的 方法而製得。 術語”非球狀“於用在本文中時意指粒子所具形態中至 少一維(高、長、及/或寬)係實質地大於其他維。因 此,非球狀粒子形態可爲板狀、片狀、針狀、膠囊狀、層 狀、或多種具有至少一維實質大於另一維的任何其他形狀 者。此等形態有別於球狀粒子,後者在外觀上呈實質地圓 形且不具有可看出的伸長表面,如在美國專利6,5 62,091 200825160 (7) 號中所揭示者。 本發明非球狀粒子相較於美國專利6,562,091的球狀 粒子之優點如下。首先,對於淤漿中一個給定的磨鈾性固 體負載,非球狀粒子可提供遠較爲大的有效接觸,即,平 坦化表面。此可導致更高的物質移除速率。此點的理由爲 實質球狀粒子在末端係與要拋光的表面僅具點接觸。於明 顯對比之下,在平坦化過程中預期係呈扁平配置的本發明 0 非球狀粒子係有利地透過最大面與要拋光的表面接觸。此 外,從拋光器所來的施加壓力係透過表面而非透過點來轉 移到晶圓,因此可以預期改善拋光均勻度及整體平坦度。 此等改善包括減低的侵蝕、淺碟化、及區域氧化物損失 (field oxide loss)。第二,非球狀粒子的較大平坦化面 積容許在淤漿中使用較低的磨蝕劑含量。此對粒子相關性 缺陷諸如刮痕和粒子殘渣等提供正面影響。第三,非球狀 粒子可正面地促成經完全調配的淤漿之非-普列斯通(non-φ Prestonian )行爲,亦即,該淤漿不會顯示平坦化速率隨 施加壓力的線型增加。此對於低壓平坦化諸如低於2-3 psi 及對於平坦化壓力低到小於1 psi的下一代銅與低或超低 k電介質裝置之平坦化是很重要的。 圖3 -7顯示可用於本發明中的氧化鋁水合物之熱分析-熱重量分析(TGA)與差示熱分析(DTA)或差示掃描熱 量分析(DSC)圖表之例子。彼等係使用TA儀SDT Q600 分析儀經由以20 °C/分的加熱速率在100毫升/分的無水 空氣流中從室溫加熱到1 200 °C而得者。圖3-7中的結果 -10- (8) 200825160 顯示有明確的三階段重量損失(TGA曲線-左Y軸),對 應於DTA或DSC曲線(右Υ軸)所示伴隨水分逸失的吸 熱峰。第一次重量損失從1至25重量%不等且典型地伴隨 著在約60 °C與120 °C之間的DTA/DSC峰。第二次重量 損失較爲一致,從約12至16重量%,伴隨著在460 °C至 5 15 t範圍中非常尖細的 DTA/DSC峰。第三次重量損 失,於所有情況中都小於2%,爲非常漸進者,係在高於 φ 600 °C的溫度發生,於740 °C至約905 °C範圍內有非常 寬的吸熱峰。雖然在圖3-6中觀察到的在1 200 °C的整體 重量損失與上式A1203 · χΗ20中X在1_2範圍內相一致, 不過圖7則顯示對應於x>3的3 8.5 %之整體重量損失。此 證明以例常性熱分析測定的X値對於相似的樣品可能會明 顯地變異且對測量前的樣品處理具敏感性。 與美國專利5,906,949的實施例3之水鋁土表面塗層 不同者,本發明非球狀粒子從粒子核心至表面整體內都實 φ 質地包含水鋁土。 可用的水鋁土爲可得自S as 〇1之市售者。下面表1中 爲可用的DISPERAL®酸可分散性水鋁土氧化鋁系統的例 子。 -11 - 200825160 (9) 表1 典型化學和 物理性質 DISPERAL DISPERAL S DISPERAL HP14 DISPERAL 40 ai2o3(%) 77 75 77 80 Na2〇(%) 0.002 0.002 0.002 0.002 粒子尺寸 (d50)(微米) 25 15 35 50 微晶體尺寸 [120](奈米) 10 10 14 40 分散粒子尺寸 (奈米) 80 100 100 140 下面表2中爲可用的DISPERAL®和DISPAL⑧液體水 鋁土氧化鋁系統之例子。 表2200825160 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a novel slurry for chemical mechanical planarization (CMP). The present invention can be applied to a high speed integrated circuit of an interconnect structure having sub-micron design features and high conductivity with high throughput. [Prior Art] φ In the fabrication of integrated circuits and other electronic devices, a plurality of layers of conductive, semiconductive, and dielectric materials are deposited on or removed from the surface of the substrate. The conductivity, semiconductivity, and dielectric properties of the thin layer can be deposited via a variety of deposition techniques. Deposition techniques commonly used in modern processing include physical vapor deposition (PVD), also known as sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), and current electrochemical plating (ECP). ). As the layers of material are deposited and removed sequentially, the uppermost surface of the substrate may become non-planar across its surface and needs to be planarized. Flattening a surface, or "flattening" a surface, is a procedure in which matter is removed from the surface of the substrate to form a generally uniform flat surface. Flattening is used to remove undesired topography and surface defects such as rough surfaces, cohesive materials, lattice damage, scratches, and contaminated layers or materials. Planarization is also used to form features on the substrate by removing excess deposition material used to replenish features and to provide a flat surface for use in subsequent metallization and processing stages. Chemical mechanical planarization, or chemical mechanical polishing (CMP), is a technique commonly used to planarize substrates in 200825160 (2). CMP utilizes a chemical composition, typically a slurry or other fluid medium, to selectively remove material from the substrate. Considerations in the design of CMP slurries can be found in Rajiv K. Singh et al., "Fundamentals of Slurry Design for CMP of Metal and Dielectrics Materials", MRS Bulletin, pages 752-760 (October 2002). In conventional CMP techniques, a substrate carrier or planarization head is placed on a carrier assembly and configured to contact a planarization pad in a CMP φ device. The carrier assembly provides a controllable pressure to the substrate to force the substrate against the planarization pad. The pad moves relative to the substrate under external driving force. Thus, the CMP apparatus performs a planarization or rubbing movement between the substrate surface and the planarization pad while dispersing the planarization composition, or slurry, to simultaneously apply chemical and mechanical activity. The slurry conventionally used in CMP procedures contains abrasive particles in the reactive solution. Alternatively, the abrasive article can be a fixed abrasive article, such as a fixed abrasive planarizing pad, which can be used with a CMP composition φ or slurry that does not contain abrasive particles. The fixed abrasive article typically comprises a backing sheet to which a plurality of geometrically abrasive composite elements are attached. The most widely used abrasives in semiconductor CMP programs are cerium oxide (SiO 2 ), aluminum oxide (A1203), cerium oxide (Ce02), chromium oxide (Zr02), and titanium oxide (Ti02), all of which can be used. Tobacco or sol-gel processes are described in U.S. Patent Nos. 4,959,1, 3, 5, 3, 490, 490, and 5, 5, 6, 3, 46 and WO 97/40,030. It has recently been reported to contain a composition or slurry of manganese oxide (?n203) (European Patent No. 8,166,457) or tantalum nitride (S i N) (European Patent No. 7,026,050). 200825160 (3) US 6,508,952 discloses a CMP slurry comprising any commercially available abrasive in the form of particles, such as SiO 2 , A 1203, ZrO 2 , Ce 02, SiC, Fe 203, TiO 2 , Si 3 N 4 , or a mixture thereof. These abrasive particles typically have high purity, high surface area, and narrow particle size distribution and are therefore suitable for use as abrasives in abrasive compositions. U.S. Patent 4,549,374 discloses the use of a slurry of a polishing agent made by dispersing smelting clay in deionized water to planarize a semiconductor wafer. The pH of the slurry is adjusted by the addition of a base such as NaOH and KOH. The demand for electrical processing speed has continued to increase, requiring higher circuit density and performance. It is now necessary to fabricate wafers with 8 or more layers of circuit patterns. In principle, the requirements for more layers do not change the nature of flattening, but do require more rigorous specifications from the flattening approach. Defects such as scratches and dishing must be reduced or eliminated. One issue that further increases the demand for technology is the trend toward 300 mm wafers. Compared to 8" or 200 mm wafers, the larger the wafer, the more difficult it is to be uniform over a larger length gauge. In addition to the added number of layers, the increased circuit density can be reduced between individual paths. The space is achieved. The path cannot be too close, because the electrical overflow of the SiO2 dielectric (wafer oxide) may cause the connection to be short-circuited. Recently, a small, high-density circuit pattern can be fabricated on the integrated circuit. Progress has placed a higher demand on the isolation structure. US Patent Application Publication No. 2003/0 1 29838 (filed on December 28, 999) discloses the following non-plate-like abrasive materials: iron oxide, barium titanate, phosphoric acid Stone, dioptase, iron, brass, fluorite, water-6-200825160 (4) iron oxide, and azurite. US Patent 5,693,23 9 teaches a CMP planarization composition, Containing water; 1 - 50% by weight of ^-oxidized or ^-Ming oxide; the remainder of the solid is a composition having substantially lower frictional properties selected from the group consisting of: aluminum hydroxide, bismuth - alumina, 5-alumina, amorphous alumina and Amorphous cerium oxide. See also U.S. Patents 4,956,15; 6,03 7,260; and 6,475,607. However, we believe that in the solid portion 0 of the CMP slurry, even if <5 wt% alumina is present It is possible to scratch the metal surface of the wafer. A publication of a flattening pad containing 5 to 50% by weight of bauxite abrasive particles is taught by the publication of the Japanese Patent Publication No. 2000-246649. The reference teaches that if the weight percentage of the bauxite exceeds 50, Then, the cushioning property of the mat is lowered. The slurry used together with the flattening mat contains 1-15% by weight of fine particles such as bauxite. See also Japanese Laid-Open Patent Publication No. 2000-246620. U.S. Patent No. 5,906,949 teaches a a CMP slurry containing abrasive particles of predominantly φ from bauxite for planarizing a dielectric film such as Si〇2 under alkaline pH conditions. We believe that Example 3 of this patent results in a Alumina surface coated alumina. U.S. Patent No. 6,562,091 teaches that spherical alumina does not scratch the wafer during CMP processing; the spherical particles preferably have a diameter of less than about 50 nanometers. Angular cerium oxide The prior art may scratch the surface of the wafer during CMP processing. [Abstract] 200825160 (5) The present invention provides a CMP abrasion slurry substantially free of anhydrous alumina (formula ai2o3) and comprising a liquid portion and a solid portion Wherein the solid portion comprises: (a) at least about 90% by weight of the solid portion, at least one non-spherical component having the formula ai2o3 · χΗ20 (where X is from 1 to 3); and (b) The submicron ^ α -alumina which can be up to about 1 weight ° / 〇 is calculated from the solid portion. [Embodiment] DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a component having the formula Α 2 〇 3 · χΗ 2 〇 (where χ is from 1 to 3). When X in the present formula is 1, the resulting product is referred to as see-through stone and has a Mohs' hardness of about 6.5-7. When X is greater than 1 to 2, also 艮Ρ, 1·1, 1·2, 1·3, 1.4, 1. 5, 1.6, 1.7, 1.8, 1.9 or 2, the resulting product is called bauxite Or pseudo soft bauxite and have a Mohs hardness of about 2.5-3. When the X in the present formula is 3, the obtained product is called gibbsite, doyleite, nordstrandite (all have a Mohs of about 2.5-3) Hardness), or bayerite. Preferably, the component is bauxite or pseudo soft bauxite. The phrase "at least one non-spherical component having the formula Α1203 ·χΗ20", as used herein, includes but is not limited to a mixture of the following phases: ΑΙ2Ο3*1 2Η2〇 and Αΐ2〇3·1·6Η2〇, A12〇3 * 1.2Η2〇 and 200825160 (6) Α1203 ·2Η20, Α1203 ·1·6Η20 and Α1203 ·2Η20, and Αΐ2〇3·1·5Η2〇 and Αΐ2〇3·3Η2〇. A useful commercially available mixture is about 80% by weight bauxite and 20% by weight gibbsite. The above formula 〇12〇3 · The X in the χΗ20 can be easily determined by commercially available thermal analysis instruments (TGA, TGA/DTA, TGA/DSC). In Figure 3-6, the sample in powder form without any special pretreatment (dry or humidified) was heated from room temperature to about 100 °C/min in a flow of anhydrous air φ at 100 ml/min. 1 2 〇0 °C. In Fig. 7, a sol sample was dried in a fume hood for about two days and then heated as described above. Obviously, in some cases, the X determined by such conventional thermal analysis techniques may be greater than 2 or less than 1 for bauxite or pseudo soft bauxite, and for gibbsite, tri-striped aluminum Stone, smectite or bayerite may be greater than or less than 3. Another useful technique for identifying such alumina hydrate phases is powder X-ray diffraction (XRD). The bauxite is usually produced by hydrothermal treatment of gibbsite or the like at a pressure of φ and a temperature of about 250 ° C, or via a general formula of Al(OR) 3 (where R It is prepared by a method of hydrolyzing an organoaluminum compound of an alkyl group. The term "non-spherical" as used herein means that at least one dimension (height, length, and/or width) of the morphology of the particles is substantially greater than the other dimensions. Thus, the non-spherical particle morphology can be in the form of a plate, a sheet, a needle, a capsule, a layer, or any other shape having at least one dimension substantially greater than another dimension. These morphologies are distinguished from spheroidal particles which are substantially circular in appearance and do not have an extensible surface as can be seen, as disclosed in U.S. Patent No. 6,5,62,091, the disclosure of which is incorporated herein by reference. The advantages of the non-spherical particles of the present invention over the spherical particles of U.S. Patent No. 6,562,091 are as follows. First, for a given uranium solid load in the slurry, the non-spherical particles provide a much larger effective contact, i.e., a flat surface. This can result in a higher rate of material removal. The reason for this is that the substantially spherical particles are only in point contact with the surface to be polished at the end. In contrast, the 0 non-spherical particle system of the present invention which is expected to be in a flat configuration during planarization advantageously contacts the surface to be polished through the largest face. In addition, the applied pressure from the polisher is transferred to the wafer through the surface rather than the point of transmission, so improved polishing uniformity and overall flatness can be expected. These improvements include reduced erosion, shallow dishing, and field oxide loss. Second, the larger planarization area of the non-spherical particles allows for a lower abrasive content to be used in the slurry. This has a positive impact on particle-related defects such as scratches and particle residue. Third, the non-spherical particles can positively contribute to the non-φ Prestonian behavior of the fully formulated slurry, i.e., the slurry does not exhibit a flattening rate that increases with the applied line shape. . This is important for low voltage planarization such as lower than 2-3 psi and flattening of next generation copper and low or ultra low k dielectric devices for planarization pressures as low as less than 1 psi. Figures 3-7 show examples of thermal analysis-thermogravimetric analysis (TGA) and differential thermal analysis (DTA) or differential scanning calorimetry (DSC) charts of alumina hydrates useful in the present invention. They were heated from room temperature to 1 200 °C in a 100 ml/min dry air stream using a TA instrument SDT Q600 analyzer at a heating rate of 20 °C/min. The results in Figure 3-7 -10 (8) 200825160 show a clear three-stage weight loss (TGA curve - left Y-axis), corresponding to the endothermic peak associated with water loss as indicated by the DTA or DSC curve (right axis) . The first weight loss varies from 1 to 25% by weight and is typically accompanied by a DTA/DSC peak between about 60 °C and 120 °C. The second weight loss is more consistent, from about 12 to 16% by weight, with a very sharp DTA/DSC peak in the range of 460 °C to 5 15 t. The third weight loss, in all cases less than 2%, is very gradual, occurs at temperatures above φ 600 °C, and has a very broad endothermic peak from 740 °C to about 905 °C. Although the overall weight loss at 1 200 °C observed in Figures 3-6 is consistent with X in the range of 1_2 in the above formula A1203 · χΗ20, Figure 7 shows a total of 3 8.5 % corresponding to x > Weight loss. This demonstrates that X値, as determined by routine thermal analysis, may be significantly mutated for similar samples and sensitive to sample processing prior to measurement. Unlike the bauxite surface coating of Example 3 of U.S. Patent No. 5,906,949, the non-spherical particles of the present invention comprise bauxite from the core of the particle to the entire surface. Useful bauxite is commercially available from Sas 〇1. An example of a DISPERAL® acid dispersible alumina alumina system that is available in Table 1 below. -11 - 200825160 (9) Table 1 Typical chemical and physical properties DISPERAL DISPERAL S DISPERAL HP14 DISPERAL 40 ai2o3 (%) 77 75 77 80 Na2〇 (%) 0.002 0.002 0.002 0.002 Particle size (d50) (micron) 25 15 35 50 Microcrystal size [120] (nano) 10 10 14 40 Dispersed particle size (nano) 80 100 100 140 Table 2 below shows examples of the DISPERAL® and DISPAL8 liquid bauxite alumina systems available. Table 2

典型化學和 物理性質 DISPERAL Dispersion 20/30 DISPERAL AL 25 DISPAL 11N7-12 DISPAL 14N4-25 DISPAL 18N4-20 DISPAL 23N4-20 ai2o3(%) 30 25 12 25 20 20 N〇3(%) 0.006 ___ 0.015 0.240 0.300 0.380 nh3(%) — 2 一· ___ - ___ 分散液pH 4 10 7 4 4 4 分散粒子尺寸 (奈米) 200 200 180 140 120 100 下面表3中爲可用的DISPERAL®和DISPAL®7jc分散 性水鋁土氧化鋁系統之例子。 -12- 200825160 (10) 表3 典型化學和 物理性質 DISPERA LP2 DISPERAL HP 14/2 DISPAL 11N7-80 DISPAL 14N4-80 DISPAL 18N4-80 DISPAL 23N4-80 ai2o3(%) 72 75 80 80 80 80 Na20(%) 0.002 0.002 0.002 0.002 0.002 0.002 N03(%) 4.0 1.3 0.1 0.7 1.1 1.6 粒子尺寸 (d50)(微米) 45 35 40 50 50 50 微晶體尺寸 [120](奈米) … 13 35 25 15 10 分散粒子尺寸 (奈米) 25 100 160 120 110 90 可用的水鋁土也可在商業上得自 Sasol 的 CATPPALtm。CATAPAL A、B、C1或D爲經噴乾的氧化 鋁,具有從40埃至70埃的遞增微晶體尺寸。圖1顯示出 Sasol 水鋁土的 TEM。 圖2顯示本發明另一具體實例。於圖2中,非球狀磨 蝕劑粒子1 0包含至少部份經氫氧化鋁層1 4塗覆之核心 1 2。可用的核心材料‘ 1 2包括吾人申請中的美國專利申請 案序號1 0/79293 8 ( 2004年3月5日申請,其以引用方式 納入本文)中所揭示者。層狀黏土諸如高嶺土、蛭石和蒙 脫石(其可經剝蝕)及保存黏土形狀的此等黏土之改質體 諸如酸瀝濾高嶺土、雲母、滑石、石墨薄片、玻璃薄片、 及合成聚合物薄片都可以使用。 此等非球狀粒子在淤漿中是原粒子。因此,片語”非 球狀粒子“於用在本文中不涵蓋球狀粒子的非球狀黏聚 物。 -13- 200825160 (11) 除了具有非球狀形態之外,本發明磨蝕劑粒子較佳爲 比CMP典型用到的氧化矽、氧化鋁或氫化鈽較爲軟。因 此,該等非球狀磨蝕劑粒子具有約1-5至6的莫氏硬度。 下面表4列出數種金屬和磨蝕劑粒子作爲參考: 表4 材料 莫氏硬度 微硬度[kg mm-2] 銅 2.5-3.0 80 鉅 6.5 30 鶴 7.5-8.0 350 水合Si02 4-5 400-500 Si〇2 6-7 1200 氧化銅 3.5-4.0 一 高嶺土 (含水) 2-3 • 高嶺土 (煅燒) 4.0-6.0 α _氧化銘 9.0 2000 Zr02 6.5 鑽石 10.0 10000Typical Chemical and Physical Properties DISPERAL Dispersion 20/30 DISPERAL AL 25 DISPAL 11N7-12 DISPAL 14N4-25 DISPAL 18N4-20 DISPAL 23N4-20 ai2o3(%) 30 25 12 25 20 20 N〇3(%) 0.006 ___ 0.015 0.240 0.300 0.380 nh3(%) — 2·· ___ - ___ Dispersion pH 4 10 7 4 4 4 Dispersed particle size (nano) 200 200 180 140 120 100 DISPERAL® and DISPAL®7jc dispersible water available in Table 3 below An example of an alumina alumina system. -12- 200825160 (10) Table 3 Typical chemical and physical properties DISPERA LP2 DISPERAL HP 14/2 DISPAL 11N7-80 DISPAL 14N4-80 DISPAL 18N4-80 DISPAL 23N4-80 ai2o3 (%) 72 75 80 80 80 80 Na20 (%) 0.002 0.002 0.002 0.002 0.002 0.002 N03(%) 4.0 1.3 0.1 0.7 1.1 1.6 Particle size (d50) (micron) 45 35 40 50 50 50 Microcrystal size [120] (nano) ... 13 35 25 15 10 Dispersed particles Size (nano) 25 100 160 120 110 90 Useful bauxite is also commercially available from SAPOL's CATPPALtm. CATAPAL A, B, C1 or D is spray dried aluminum oxide having an increasing microcrystalline size from 40 angstroms to 70 angstroms. Figure 1 shows the TEM of Sasol alumina. Figure 2 shows another embodiment of the invention. In Figure 2, the non-spherical abrasive particles 10 comprise at least a portion of the core 12 coated with an aluminum hydroxide layer 14. The available core material '12' includes the U.S. Patent Application Serial No. 10/79,293, filed on March 5, 2004, which is incorporated herein by reference. Layered clays such as kaolin, vermiculite and montmorillonite (which can be ablated) and preserved clay-like modified bodies such as acid leaching kaolin, mica, talc, graphite flakes, glass flakes, and synthetic polymer flakes Can be used. These non-spherical particles are primary particles in the slurry. Thus, the phrase "aspherical particles" is used in non-spherical cohesives that do not encompass spherical particles herein. -13- 200825160 (11) In addition to having an aspherical morphology, the abrasive particles of the present invention are preferably softer than cerium oxide, aluminum oxide or hydrazine hydride typically used in CMP. Therefore, the non-spherical abrasive particles have a Mohs hardness of about 1-5 to 6. Table 4 below lists several metals and abrasive particles as a reference: Table 4 Material Mohs Hardness Microhardness [kg mm-2] Copper 2.5-3.0 80 Giant 6.5 30 Crane 7.5-8.0 350 Hydrate Si02 4-5 400-500 Si〇2 6-7 1200 Copper oxide 3.5-4.0 One kaolin (aqueous) 2-3 • Kaolin (calcined) 4.0-6.0 α _ Oxidation 9.0 2000 Zr02 6.5 Diamond 10.0 10000

咸信具有在約1 -6之間的莫氏硬度之非球狀磨鈾劑係 硬得足以提供CMP淤漿所需的機械作用者,又可同時避 免諸如刮痕、淺碟化、及過度平坦化等缺陷。 通常,非球狀粒子磨飩劑構成淤漿的高達20重量%, 不過也可製備出高達60重量%的磨蝕劑固體含量。更典型 地,可利用低於15重量%的量且更佳者,從0.5-8重量% 的磨飩劑含量。 對於核心材料1 2,較佳者爲高嶺土黏土粒子。雖然可 以用含水高嶺土,不過業經發現,若將高嶺土煅燒過,可 -14- 200825160 (12) 導致更佳的平坦化速率。不過,含水高嶺土的整體性能比 煅燒局領土好’因此’含水局嶺土較佳。高嶺土的锻燒會 進行伴隨脫羥基化的強吸熱反應導致偏高嶺土 (metakaolin )。在比轉化高嶺土成爲偏高嶺土所用者更 嚴厲的條件下煅燒的高嶺土黏土,亦即經煅燒以發生特性 向ΊΡ頁土放熱反應之问"P頁土 土,會導致尖晶石形式的鍛燒 高嶺土且若利用更極端的條件時導致富鋁紅柱石 φ ( mullite )。通常,在1 200 °F及更高的溫度下锻燒含水 高嶺土會導致含水高嶺土的脫羥基化成爲偏高嶺土。1400 -2200 °F的煅燒溫度可以用來製造經煅燒透過其特性放熱 線到尖晶石形式高嶺土的高嶺土黏土。於更高的溫度,如 高於1 900 °F之下,發生富鋁紅柱石之形成。此等形式的 高嶺土黏土之任何者及全部都可用爲本發明磨鈾劑。所有 此等材料都可在商業上得自本案受讓人,Engelhard Corporation, Iselin,New Jersey ° φ 含水高嶺土通常係透過改變粒子尺寸分布及從高嶺土 移除著色性雜質之單元操作的組合而製成。使用高嶺土在 水中的水性懸浮液有助於此等單元操作。改變粒子尺寸分 布的單元操作之例子爲離心、脫層或硏磨裝置及選擇性絮 凝。可導致著色性雜質移除的單元操作例子爲浮選 (flotation)和磁性分離。另外,可以使用還原性及/或氧 化性漂白使著色性雜質變成無色。此外,可以利用過濾從 高嶺土實質地移除水分,接著可將高固體含量的過濾產物 淤漿噴乾。噴乾部份可加回到高固體過濾產物淤漿中以進 -15- (13) (13)200825160 一步提高淤漿的固體含量。該過濾產物可不經分散且因而 可將濾餅乾燥及粉碎而得到在業界中所稱酸乾燥高嶺土產 物。此外,可用熱或化學處理來改質高嶺土。典型地,在 煅燒操作之前與之後將高嶺土粉碎。經處理的高嶺土可經 調漿以透過上述單元操作進一步進行對粒子尺寸分佈的改 〇 可用爲核心材料1 2的其他非球狀磨蝕劑粒子爲水鎂 石(氫氧化鎂)、水滑石、和奈米滑石。前述諸材料皆爲 商業上可取得者。其他可用的非球狀磨蝕劑粒子經揭示於 共同讓渡的美國專利6,187,710,其全文以引用方式納入 本文。此專利於一具體實例中教示由元素三層小板製成的 黏土礦物質,其包括八面體氧圍繞金屬離子的中央層(八 面體層),此層被兩層四面體圍繞-含砂原子層(四面體 層)所包圍,其特徵在於該黏土粒子的尺寸在0 · 1微米至 1微米間變化。於該八面體層中,有最多3 0原子%的金屬 離子被較低價的離子所置換且於該四面體層中,有最多15 原子%的砂離子被較低價的離子所置換。該專利於另一具 體實例中教示該四面體層中的矽(鍺)可爲三價離子所置 換。於該八面體層中,較佳地係含有鋁、鉻、鐵(ΠΙ )、 姑(I π )、锰(111 )、鎵、銳、鉬、鎢、銦、铑、及/或 銃作爲三價離子。作爲二價離子,在該八面體層中較佳爲 含有鎂、鋅、鎳、鈷(II)、鐵(II)、鍤(II)及/或 鈹。於該四面體層中,係含有矽及/或鍺作爲四價成分且 較佳爲含有鋁、硼、鎵、鉻、鐵(III )、鈷(m )、及/ -16- (14) (14)200825160 或錳(in )作爲三價成分。 氫氧化錫層材料14可爲上述者。該部份氫氧化鋁塗 層通常具有約高達0.5微米之厚度。任何已知的塗覆方法 都可用來將氫氧化鋁1 4塗覆到核心材料1 2之上。 一般而言’ CMP淤漿組成物包括機械作用所需的磨鈾 劑與下列中至少一者:氧化劑、酸、鹼、錯合劑、界面活 性劑、分散劑、和其他化學品,以提供在要拋光的表面上 之化學反應諸如氧化反應。 可用的鹼之非限制性例子包括 KOH、NH4OH、和 R4NOH °也可添力π酸,其例子可爲H3P04、CH3COOH、 HC1、HF等等。可用的補充氧化劑爲h202、ΚΙ03、 ΗΝ〇3 、 Η3Ρ〇4 、 K2Fe(CN)6 、 Na2Cr207 、 KOC1 、 Fe(N03)2、NH2OH和DMSO。可以使用二價酸諸如草酸、 丙二酸和丁二酸作爲本發明平坦化組成物中之添加劑。 可以添加到該淤漿組成物中的額外適當酸化合物包 括,例如,甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚 酸、辛酸、壬酸、乳酸、硝酸、硫酸、蘋果酸、酒石酸、 葡糖酸、檸檬酸、酞酸、焦兒茶酸、焦性沒食子羧酸、沒 食子酸、鞣酸、及彼等的混合物。 可以添加到該淤漿組成物中的適當腐蝕抑制劑包括, 例如,苯并三唑、6 -甲苯基三唑、1- (2,3 -二羧基丙基) 苯并三唑、及彼等的混合物。 若有添加時,羧酸也可賦予該淤漿組成物腐鈾抑制性 質。 -17- 200825160 (15) 爲了增加相對於二氧化矽的鉅和鉬化合物的選擇率, 可在淚漿組成物中添加含集化合物。適當的含氟化合物包 括例如,氟化氫、全氟酸、鹼金屬氟化物鹽、鹼土金屬氟 化物鹽、氟化銨、氟化四甲銨、雙氟化銨、二氟化伸乙二 銨、三氟化二伸乙二銨、和彼等的混合物。 可以添加到該淤漿組成物中的適當鉗合劑包括,例 如,伸乙二胺四乙酸(EDTA ) 、N·羥基伸乙二胺三乙酸 φ ( NHEDTA )、氮基三乙酸(NTA )、二伸乙三胺戊酸 (DPTA )、乙酸二甘胺酸酯、及彼等的混合物。鉗合劑 可幫助金屬表面的軟化或甚至於幫助保護低配置的特徵或 特別組成的表面。保護機制的槪念可導致明顯的改善。 可添加到該淤漿組成物中的適當胺類包括,例如,經 基胺、一乙醇胺、二乙醇胺、三乙醇胺、二乙二醇胺、N_ 羥基乙基哌畊、及彼等的混合物。 可添加到該淤漿組成物中的適當界面活性劑化合物包 φ 括’例如,諳於此技者習知之眾多種非離子、陰離子、陽 離子、或兩性界面活性劑中的任一者。 該淤漿的pH對所有淤漿成分的性能都具重要性。溶 液的酸度水平可控制表面的反應速率、金屬錯合劑的形成 常數、表面氧化速率、溶液離子強度、淤漿粒子的聚集尺 寸、及更多者。各種酸、鹼、和pH緩衝劑的探討都是 CMP發展的前瞻領域。 I鋁土淤漿可經由將水鋁土磨触劑分散在水中,且需 要時’添加酸或鹼調整pH而方便地製備。然後將此混合 -18- 200825160 (16) 物攪動一段時間以確保所欲固體分散及形成粒子淤漿。於 此粒子淤漿中添加活性CMP淤漿成分諸如氧化劑或其他 錯合劑、鉗合劑、鈍化劑、及界面活性劑。若需要也可添 加其他活性成分以確保經完全調配的CMP淤漿之最優性 能。之後可經由添加酸或鹼調整最後淤漿之pH。 從個別路徑之間愈來愈小的空間移除過剩的金屬或其 他雜質呈現出對CMP加工逐增的挑戰。銅金屬具有比現 φ 今用作傳導性介質的Cu/Al合金小的內在電阻和電容。所 以,只需要較低的電壓來傳送信號通過銅線,而減低了電 外溢之傾向。事實上,經由只使用 Cu,可將電路路徑更 靠近地配置在一起。 不過,Cu的使用也有缺點。銅對氧化物表面黏附不 佳。銅也易於發生主體氧化,不同於wo3或ai2o3者, CuO或Cu02表面層仍會讓02和H20穿透到主體金屬之 內。再者,Cu原子可移動且可滲移到 Si02晶圓材料之 φ 內,最後造成電路中的電晶體失效。所以,在晶圓氧化物 層與傳導性Cu層之間要配置-薄的低介電性材料層,其典 型地係由鉅、氮化鉅或氮化鈦所構成。此緩衝層可增進 Cu黏附,防止主體Cu金屬的氧化,防止主體氧化物受 Cu離子污染,及進一步降低電路之間的介電性(即,使 電路可更靠近地相隔)。 CMP技術的用途之一爲在半導體晶片或晶圓諸如矽之 上形成的積體電路中製造淺溝隔離(STI)結構。STI結構 的目的爲將離散的裝置元件(如,電晶體)隔離在一給定 -19- (17) (17)200825160 的圖樣層中以防止彼等之間發生電流漏洩。 STI結構通常經由在矽基板上熱生長一氧化物層後在 該熱長成的氧化物層上沈積氮化矽層而形成。在沈積氮化 砍層之後,使用例如任何熟知的光刻術遮罩和鈾刻程序’ 形成穿過氮化矽和熱長成氧化物層且部份穿過矽基板之淺 溝。然後使用化學氣相沈積法,典型地沈積-介電材料層 諸如二氧化矽,以完全塡充該溝及覆蓋氮化矽層。接著, 利用CMP程序移除覆蓋氮化矽層的二氧化矽層部份且將 該物件的整個表面平坦化。該氮化矽層係用作平坦化停止 層以保護底下的熱成長氧化物層和矽基板以免在CMP加 工期間暴露出來。於某些應用中,係於後來經由例如將物 件浸在HF酸溶液中,來移除該氮化矽層,只留下經二氧 化矽塡充的溝以用爲STI結構。然後通常實施附加的處理 以形成多晶矽閘極結構。The non-spherical uranium uranium with a Mohs hardness of between about 1 and 6 is hard enough to provide the mechanical action required for the CMP slurry, while avoiding such phenomena as scratches, shallow discs, and excessive Defects such as flattening. Typically, the non-spherical particle honing agent constitutes up to 20% by weight of the slurry, although up to 60% by weight of the abrasive solids content can also be prepared. More typically, an amount of less than 15% by weight and more preferably from 0.5 to 8% by weight of the abrasive content can be utilized. For the core material 12, kaolin clay particles are preferred. Although hydrous kaolin can be used, it has been found that if the kaolin is calcined, a flattening rate can be achieved by -14-200825160 (12). However, the overall performance of hydrous kaolin is better than that of the calcining bureau. The calcination of kaolin is carried out by a strong endothermic reaction accompanying dehydroxylation leading to metakaolin. Calcined kaolin clay under conditions that are more severe than those used to convert kaolin into metakaolin, that is, the calcination to produce an exothermic reaction to the shale soil, which causes the calcination in the form of spinel. Kaolin and the use of more extreme conditions lead to mullite φ (mullite). Generally, calcining hydrous kaolin at temperatures of 1 200 °F and higher results in dehydroxylation of hydrous kaolin into metakaolin. The calcination temperature of 1400 - 2200 °F can be used to produce kaolin clay that has been calcined through its characteristic exotherm to the spinel form of kaolin. At higher temperatures, such as above 1 900 °F, mullite formation occurs. Any and all of these forms of kaolin clay can be used as the uranium blasting agent of the present invention. All of these materials are commercially available from the assignee of the present application. Engelhard Corporation, Iselin, New Jersey ° φ Hydrous kaolin is typically made by a combination of unit operations that alter particle size distribution and removes coloring impurities from kaolin. . The use of an aqueous suspension of kaolin in water facilitates the operation of these units. Examples of unit operations that alter particle size distribution are centrifugation, delamination or honing devices and selective flocculation. Examples of unit operations that can result in the removal of coloring impurities are flotation and magnetic separation. Further, the reducing impurities and the oxidative bleaching can be used to make the coloring impurities colorless. In addition, the water can be substantially removed from the kaolin by filtration, and then the high solids filtered product slurry can be sprayed dry. The spray dried portion can be added back to the high solids filtration product slurry to further increase the solids content of the slurry in steps -15-(13)(13)200825160. The filtered product can be obtained without dispersing and thus the filter cake can be dried and pulverized to obtain an acid-dried kaolin product known in the art. In addition, the kaolin can be modified by thermal or chemical treatment. Typically, the kaolin is comminuted before and after the calcining operation. The treated kaolin can be pulverized to further improve the particle size distribution through the above unit operation. Other non-spherical abrasive particles which can be used as the core material 12 are brucite (magnesium hydroxide), hydrotalcite, and Nano talc. The foregoing materials are all commercially available. Other useful non-spherical abrasive particles are disclosed in commonly assigned U.S. Patent No. 6,187,710, the disclosure of which is incorporated herein in its entirety. This patent teaches in a specific example a clay mineral made of three layers of elemental plates comprising a central layer of octahedral oxygen around a metal ion (octahedral layer) surrounded by two layers of tetrahedrons - containing sand Surrounded by an atomic layer (tetrahedral layer), the size of the clay particles varies from 0.1 μm to 1 μm. In the octahedral layer, up to 30 atom% of metal ions are replaced by lower valence ions, and in the tetrahedral layer, up to 15 atom% of sand ions are replaced by lower valence ions. This patent teaches in another specific example that the ruthenium (锗) in the tetrahedral layer can be replaced by trivalent ions. Preferably, the octahedral layer contains aluminum, chromium, iron (ΠΙ), gu (I π ), manganese (111 ), gallium, sharp, molybdenum, tungsten, indium, yttrium, and/or yttrium as three Valence ion. As the divalent ion, magnesium, zinc, nickel, cobalt (II), iron (II), ruthenium (II) and/or ruthenium are preferably contained in the octahedral layer. In the tetrahedral layer, lanthanum and/or cerium is contained as a tetravalent component and preferably contains aluminum, boron, gallium, chromium, iron (III), cobalt (m), and / -16- (14) (14). ) 200825160 or manganese (in ) as a trivalent component. The tin hydroxide layer material 14 may be the one described above. The portion of the aluminum hydroxide coating typically has a thickness of up to about 0.5 microns. Any known coating method can be used to apply aluminum hydroxide 14 to the core material 12. In general, the 'CMP slurry composition includes the uranium granules required for mechanical action and at least one of the following: oxidizing agents, acids, bases, complexing agents, surfactants, dispersing agents, and other chemicals to provide A chemical reaction on the polished surface such as an oxidation reaction. Non-limiting examples of useful bases include KOH, NH4OH, and R4NOH ° which may also add π acid, examples of which may be H3P04, CH3COOH, HCl, HF, and the like. Useful supplemental oxidants are h202, ΚΙ03, ΗΝ〇3, Η3Ρ〇4, K2Fe(CN)6, Na2Cr207, KOC1, Fe(N03)2, NH2OH and DMSO. Divalent acids such as oxalic acid, malonic acid and succinic acid can be used as additives in the planarization composition of the present invention. Additional suitable acid compounds which may be added to the slurry composition include, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, lactic acid, nitric acid, sulfuric acid, malic acid. , tartaric acid, gluconic acid, citric acid, citric acid, pyrocatechinic acid, pyrogallic acid, gallic acid, citric acid, and mixtures thereof. Suitable corrosion inhibitors that can be added to the slurry composition include, for example, benzotriazole, 6-tolyltriazole, 1-(2,3-dicarboxypropyl)benzotriazole, and the like mixture. If added, the carboxylic acid can also impart sulphide inhibition properties to the slurry composition. -17- 200825160 (15) In order to increase the selectivity of the macro and molybdenum compound relative to cerium oxide, an additive compound may be added to the composition of the tear paste. Suitable fluorine-containing compounds include, for example, hydrogen fluoride, perfluoric acid, alkali metal fluoride salts, alkaline earth metal fluoride salts, ammonium fluoride, tetramethylammonium fluoride, ammonium difluoride, diammonium difluoride, and tris Fluorinated diamethylene diammonium, and mixtures thereof. Suitable chelating agents which may be added to the slurry composition include, for example, ethylenediaminetetraacetic acid (EDTA), N. hydroxyethylenediaminetriacetic acid φ (NHEDTA), nitrogen triacetic acid (NTA), Ethylene triamine valeric acid (DPTA), acetic acid diglycolate, and mixtures thereof. The tongs help to soften the metal surface or even help to protect low profile features or specially composed surfaces. The mourning of the protection mechanism can lead to significant improvements. Suitable amines which may be added to the slurry composition include, for example, transamines, monoethanolamine, diethanolamine, triethanolamine, diethylene glycol amine, N-hydroxyethylpiperidin, and mixtures thereof. Suitable surfactant compounds which may be added to the slurry composition include, for example, any of a wide variety of nonionic, anionic, cationic or amphoteric surfactants known to those skilled in the art. The pH of the slurry is important to the performance of all slurry components. The acidity level of the solution controls the reaction rate of the surface, the formation constant of the metal complex, the surface oxidation rate, the solution ionic strength, the aggregate size of the slurry particles, and more. The discussion of various acid, base, and pH buffers is a forward-looking area for CMP development. The alumina bauxite slurry can be conveniently prepared by dispersing the bauxite abrasive agent in water and adjusting the pH by adding an acid or a base as needed. This mixture of -18-200825160 (16) is then agitated for a period of time to ensure that the desired solids are dispersed and form a slurry of particles. An active CMP slurry component such as an oxidizing agent or other complexing agent, a chelating agent, a passivating agent, and a surfactant is added to the particle slurry. Additional active ingredients may be added if desired to ensure optimal performance of the fully formulated CMP slurry. The pH of the final slurry can then be adjusted via the addition of an acid or a base. The removal of excess metal or other impurities from the increasingly smaller space between individual paths presents an increasing challenge to CMP processing. Copper metal has a smaller intrinsic resistance and capacitance than the Cu/Al alloy used today as a conductive medium. Therefore, only a lower voltage is required to transmit the signal through the copper wire, which reduces the tendency of the electrical spill. In fact, the circuit paths can be placed closer together by using only Cu. However, the use of Cu also has disadvantages. Copper does not adhere well to oxide surfaces. Copper is also prone to host oxidation. Unlike wo3 or ai2o3, the CuO or Cu02 surface layer will still allow 02 and H20 to penetrate into the host metal. Furthermore, the Cu atoms are movable and can migrate into the φ of the SiO2 wafer material, eventually causing the transistor in the circuit to fail. Therefore, a thin layer of low dielectric material is disposed between the wafer oxide layer and the conductive Cu layer, which is typically composed of giant, nitrided or titanium nitride. This buffer layer enhances Cu adhesion, prevents oxidation of the bulk Cu metal, prevents bulk oxide from being contaminated by Cu ions, and further reduces dielectric between circuits (i.e., allows circuits to be spaced closer together). One of the uses of CMP technology is to fabricate shallow trench isolation (STI) structures in integrated circuits formed on semiconductor wafers or wafers such as germanium. The purpose of the STI structure is to isolate discrete device components (e.g., transistors) in a given pattern layer of -19-(17)(17)200825160 to prevent current leakage between them. The STI structure is typically formed by depositing a tantalum nitride layer on the thermally grown oxide layer after thermally growing an oxide layer on the tantalum substrate. After deposition of the nitrided chopped layer, shallow trenches are formed through the tantalum nitride and the thermally grown oxide layer and partially through the germanium substrate using, for example, any well known photolithographic masking and uranium etching process. A layer of dielectric material, such as hafnium oxide, is then typically deposited using chemical vapor deposition to completely fill the trench and cover the tantalum nitride layer. Next, the portion of the ceria layer covering the tantalum nitride layer is removed by a CMP process and the entire surface of the object is planarized. The tantalum nitride layer serves as a planarization stop layer to protect the underlying thermally grown oxide layer and the tantalum substrate from exposure during CMP processing. In some applications, the tantalum nitride layer is later removed by, for example, dipping the article in an HF acid solution, leaving only the ruthenium dioxide-filled trench for use as an STI structure. Additional processing is then typically performed to form a polysilicon gate structure.

Cu及伴隨的低介電性緩衝層的使用需要平坦化技術 的增進效能。新的技術稱爲Cu-CMP,但其在原理上與先 前的平坦化方法沒有明顯的差異。該CMP程序必須能夠 移除軟Cu金屬過載,但要限制Cu淺碟化、刮痕、及低介 性緩衝層的移除。同時,要有更嚴密的容限値,因爲有更 密切間隔的電路圖樣之故。製造薄、平,且無缺陷的層之 能力是極端重要的。 如也爲技藝中所知者,一種在半導體結構中形成互連 之方法爲所謂的雙鑲嵌法。雙鑲嵌法係從沈積介電質層 (典型者爲氧化物層)開始,其係沈積在一單晶體例如矽中 -20- (18) (18)200825160 所形成的電路上。該氧化物層經鈾刻形成溝,其具有一圖 樣對應於將電路所含諸元件互連所用的通孔和線路之圖 樣。通孔爲在氧化物中的開孔,通過此開孔可將結構所含 不同層予以電互連,且經由氧化物中的溝界定線路圖樣。 然後,沈積金屬以塡充氧化物層中的開孔。隨後,經由平 坦化移除過多的金屬。該程序可視形成所要的互連所需者 予以重複許多次。如此,一雙鑲嵌結構具有在介電質層的 上部份中之溝及終止於該溝底部且通過該介電質層下部份 之通孔。該結構在該溝的底部與該溝底部處的通孔側壁之 間具有一階部(step )。 本發明磨飩劑粒子可用於在邏輯裝置(諸如微處理 器)或記憶體裝置(諸如快閃記憶體)以外,於互連金屬 層中用到銅的應用中之銅CMP中。例如,要改善裝置封 裝的熱和電特性可包括使用需要平坦化的銅層。積體電路 裝置中的互連銅層及封裝中的銅層可能不同而導致對於要 移除的層厚度、平面性、淺碟化和缺陷率之不同要求。此 外,微電機系統(MEMS )可能具有需要使用CMP予以平 坦化之銅層。本發明磨蝕劑粒子也可用在此應用中所用的 CMP淤漿中。 在’’Advances in Chemical- Mechanical Planarization, “ Rajiv K. Singh and Rajiv Bajaj,MRS Bulletin,October 2002,pages 743-747中有提供CMP加工的評論。一般而 言,雖然CMP程序顯得頗爲簡單,但要達到細部了解則 仍受限於平坦化程序中極多的輸入變數。此等變數包括淤 -21 - (19) 200825160 漿變數諸如粒子和化學品、墊變數、工具變數諸如向下壓 力和線性速度,及基板變數諸如圖樣密度。該文章對於程 序變數及CMP技術的突出應用提供良好的評論且以引用 方式納入本文。 【圖式簡單說明】 圖1爲本發明一具體實例的TEM。 _ 圖2顯示本發明一具體實例。 圖3-7爲可用於本發明中的水鋁土之熱分析圖 (TGA/DTA 或 TGA/DSC )。 【主要元件符號說明】 1 0 :非球狀磨蝕劑粒子 12 :核心 1 4 :氫氧化鋁層 - 22-The use of Cu and the accompanying low dielectric buffer layer requires enhanced performance of the planarization technique. The new technology is called Cu-CMP, but it is not significantly different in principle from the previous planarization method. The CMP program must be able to remove the soft Cu metal overload, but limit the Cu dishing, scratches, and removal of the low dielectric buffer layer. At the same time, there must be tighter tolerances because of the more closely spaced circuit patterns. The ability to make thin, flat, and defect-free layers is extremely important. As is also known in the art, a method of forming interconnections in a semiconductor structure is the so-called dual damascene method. The dual damascene method begins with depositing a dielectric layer (typically an oxide layer) deposited on a single crystal such as 矽-20-(18) (18)200825160. The oxide layer is etched into a trench by uranium having a pattern corresponding to the vias and traces used to interconnect the components contained in the circuit. The via is an opening in the oxide through which the different layers of the structure are electrically interconnected and the line pattern is defined by the trenches in the oxide. A metal is then deposited to fill the openings in the oxide layer. Subsequently, excess metal is removed via flattening. The program can be repeated many times as needed to form the desired interconnection. Thus, a dual damascene structure has a trench in the upper portion of the dielectric layer and a via that terminates at the bottom of the trench and passes through the lower portion of the dielectric layer. The structure has a step between the bottom of the trench and the sidewall of the via at the bottom of the trench. The abrasive particles of the present invention can be used in copper CMP in applications where copper is used in interconnect metal layers, other than logic devices (such as microprocessors) or memory devices (such as flash memory). For example, improving the thermal and electrical characteristics of the device package can include the use of a copper layer that requires planarization. The interconnected copper layers in the integrated circuit device and the copper layers in the package may be different resulting in different requirements for layer thickness, planarity, shallow dishing, and defect rate to be removed. In addition, microelectromechanical systems (MEMS) may have copper layers that require CMP to be flattened. The abrasive particles of the present invention can also be used in the CMP slurry used in this application. A review of CMP processing is available in ''Advances in Chemical- Mechanical Planarization,' Rajiv K. Singh and Rajiv Bajaj, MRS Bulletin, October 2002, pages 743-747. In general, although the CMP procedure is rather simple, To achieve detailed understanding is still limited by the many input variables in the flattening process. These variables include silt-21 - (19) 200825160 slurry variables such as particles and chemicals, pad variables, tool variables such as downward pressure and linearity Speed, and substrate variations such as pattern density. This article provides a good review of the program variables and the outstanding application of CMP technology and is incorporated herein by reference. [FIG. 1 is a TEM of a specific example of the invention. 2 shows a specific example of the present invention. Fig. 3-7 is a thermal analysis diagram (TGA/DTA or TGA/DSC) of a bauxite which can be used in the present invention. [Explanation of main components] 1 0 : non-spherical abrasive Particle 12: Core 1 4: Aluminum Hydroxide Layer - 22-

Claims (1)

200825160 (1) ' 十、申請專利範圍 1.一種化學機械平坦化(CMP )磨蝕淤漿,其實質地 不含無水氧化鋁且包含液體和固體,其中該固體包含: (a)以該固體計算其量爲至少約90重量%的至少一 種具有式Al2〇3 · χΗ20 (其中X爲從1至3 )之非球狀成 分;及 (b )以該固體部分計算可高達約i重量%的次微米 0 α -氧化鋁。 2 ·如申請專利範圍第1項之CMP磨鈾淤漿,其基本上 係由該至少一種具有式Α1203 ·χΗ20(其中X爲從1至 3 )之非球狀成分所組成。 3. 如申請專利範圍第1項之CMP磨鈾淤漿,其中該非 球狀成分爲水錦土( boehmite)。 4. 如申請專利範圍第1項之CMP磨蝕淤漿,其中該非 球狀成分包含經水鋁土塗覆的高嶺土。 φ 5 . —種平坦化金屬之方法,其包括下述步驟: 利用申請專利範圍第1項之CMP磨蝕淤漿拋光該金 屬。 6. 如申請專利範圍第5項之方法,其中該平坦化係在 pH酸性條件下發生。 7. 如申請專利範圍第5項之方法,其中該淤漿係用於 拋光銅。 23-200825160 (1) 'X. Patent Application Area 1. A chemical mechanical planarization (CMP) abrading slurry substantially free of anhydrous alumina and comprising a liquid and a solid, wherein the solid comprises: (a) calculating the solid An amount of at least about 90% by weight of at least one non-spherical component having the formula Al2〇3·χΗ20 (wherein X is from 1 to 3); and (b) up to about i% by weight of the submicron calculated by the solid portion 0 α - Alumina. 2. A CMP milled uranium slurry according to claim 1, which consists essentially of the at least one non-spherical component having the formula Α1203·χΗ20 (wherein X is from 1 to 3). 3. The CMP uranium slurry as claimed in claim 1 wherein the non-spherical component is boehmite. 4. The CMP abrasion slurry of claim 1, wherein the non-spherical component comprises bauxite coated kaolin. φ 5 . A method of planarizing a metal comprising the steps of: polishing the metal using a CMP abrasion slurry of the scope of claim 1 of the patent. 6. The method of claim 5, wherein the planarization occurs under acidic pH conditions. 7. The method of claim 5, wherein the slurry is used to polish copper. twenty three-
TW095145213A 2005-06-15 2006-12-05 Planarization composition TW200825160A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/153,636 US20060283093A1 (en) 2005-06-15 2005-06-15 Planarization composition

Publications (1)

Publication Number Publication Date
TW200825160A true TW200825160A (en) 2008-06-16

Family

ID=37571957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095145213A TW200825160A (en) 2005-06-15 2006-12-05 Planarization composition

Country Status (2)

Country Link
US (1) US20060283093A1 (en)
TW (1) TW200825160A (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
ES2262639T3 (en) 2001-04-06 2006-12-01 Sherwood Services Ag SHUTTER AND DIVIDER OF GLASSES WITH BUMPER MEMBERS N OCONDUCTIVES.
AU2001249932B8 (en) 2001-04-06 2006-05-04 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
EP1617778A2 (en) 2003-05-01 2006-01-25 Sherwood Services AG Electrosurgical instrument which reduces thermal damage to adjacent tissue
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
CA2525785C (en) 2003-05-15 2013-03-12 Sherwood Services Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
JP2007098137A (en) 2005-09-30 2007-04-19 Sherwood Services Ag Insulating boots for electrosurgical forceps
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080029126A1 (en) * 2006-08-07 2008-02-07 Thomas Terence M Compositions and methods for improved planarization of copper utilizing inorganic oxide abrasive
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
EP2086438B1 (en) * 2006-10-05 2015-12-09 Covidien LP Flexible endoscopic stitching devices
WO2008045348A2 (en) 2006-10-06 2008-04-17 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US8475453B2 (en) * 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7837888B2 (en) * 2006-11-13 2010-11-23 Cabot Microelectronics Corporation Composition and method for damascene CMP
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8112871B2 (en) * 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8490713B2 (en) 2009-10-06 2013-07-23 Covidien Lp Handle assembly for endoscopic suturing device
US8207255B2 (en) * 2010-08-24 2012-06-26 Equistar Chemicals, Lp Polyethylene compositions and films having improved strength and optical properties
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8968340B2 (en) 2011-02-23 2015-03-03 Covidien Lp Single actuating jaw flexible endolumenal stitching device
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
CN105451670B (en) 2013-08-07 2018-09-04 柯惠有限合伙公司 Surgery forceps
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US11781039B2 (en) * 2016-12-26 2023-10-10 Fujimi Incorporated Polishing composition and polishing method
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
JP2024514473A (en) * 2021-03-29 2024-04-02 インテグリス・インコーポレーテッド Suspensions and methods of using them for chemical mechanical planarization (CMP)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549374A (en) * 1982-08-12 1985-10-29 International Business Machines Corporation Method for polishing semiconductor wafers with montmorillonite slurry
US4956015A (en) * 1988-01-19 1990-09-11 Mitsubishi Kasei Corporation Polishing composition
US4959113C1 (en) * 1989-07-31 2001-03-13 Rodel Inc Method and composition for polishing metal surfaces
US5225034A (en) * 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing
NL9401433A (en) * 1994-09-02 1996-04-01 Univ Utrecht Synthetic swellable clay minerals.
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
JPH09139368A (en) * 1995-11-14 1997-05-27 Sony Corp Chemically and mechanically polishing method
TW419518B (en) * 1998-02-20 2001-01-21 Ind Tech Res Inst Non-Newtonian-fluid-behaviored formulation
US6475407B2 (en) * 1998-05-19 2002-11-05 Showa Denko K.K. Composition for polishing metal on semiconductor wafer and method of using same
KR100324311B1 (en) * 1998-10-26 2002-05-13 김영환 Manufacturing method of slurry for chemical mechanical polishing process of semiconductor device
JP3709752B2 (en) * 1999-01-26 2005-10-26 株式会社村田製作所 Dielectric ceramic composition and ceramic multilayer substrate
TW486514B (en) * 1999-06-16 2002-05-11 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
US6413308B1 (en) * 1999-10-15 2002-07-02 J. M. Huber Corporation Structured boehmite pigment and method for making same
US6881674B2 (en) * 1999-12-28 2005-04-19 Intel Corporation Abrasives for chemical mechanical polishing
US6933046B1 (en) * 2002-06-12 2005-08-23 Tda Research, Inc. Releasable corrosion inhibitor compositions
US7300601B2 (en) * 2002-12-10 2007-11-27 Advanced Technology Materials, Inc. Passivative chemical mechanical polishing composition for copper film planarization
US20040216388A1 (en) * 2003-03-17 2004-11-04 Sharad Mathur Slurry compositions for use in a chemical-mechanical planarization process

Also Published As

Publication number Publication date
US20060283093A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
TW200825160A (en) Planarization composition
US20040216388A1 (en) Slurry compositions for use in a chemical-mechanical planarization process
RU2235747C2 (en) Method of chemicomechanical planarization and articles manufactured with the aid thereof
KR101546695B1 (en) Polishing slurry including zirconia particles and a method of using the polishing slurry
JP3616802B2 (en) Slurry composition and chemical mechanical polishing method using the same
US6440187B1 (en) Alumina powder, process for producing the same and polishing composition
US8557006B2 (en) Chemical mechanical polishing slurry, its preparation method and use for the same
KR101134827B1 (en) Abrasive particles for chemical mechanical polishing
TW505690B (en) Chemical mechanical polishing composition and slurry and application method thereof
TWI261063B (en) Polishing composition for metal CMP
America et al. Slurry additive effects on the suppression of silicon nitride removal during CMP
JP2010540759A (en) Improved silicon carbide particles and methods for making and using the same
KR101672809B1 (en) Method of chemical mechanical polishing a substrate with polishing composition adapted to enhance silicon oxide removal
KR20090087034A (en) Planarization composition for metal surfaces comprising an alumina hydrate abrasive
Seo et al. Preparation and characterization of slurry for chemical mechanical planarization (CMP)
TWI757349B (en) Silica-based particles for polishing and abrasives
EP3516002B1 (en) Chemical mechanical planarization slurry and method for forming same
TW201529770A (en) Manufacturing method of polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
TW201938749A (en) Polishing composition and method of polishing a substrate having enhanced defect inhibition
AU754328B2 (en) Improved CMP products
KR101279970B1 (en) CMP slurry composition for polishing metal wiring
JP2003213249A (en) Silica particle for polishing and polishing material
KR20220147525A (en) Polishing composition and method of polishing a substrate having enhanced defect inhibition
KR20220147526A (en) Polishing composition and method of polishing a substrate having enhanced defect reduction
TW589351B (en) Cerium oxide abrasive and method of polishing substrates