TW200825135A - Light-diffusing resin composition, molded article and light guide comprising the same - Google Patents

Light-diffusing resin composition, molded article and light guide comprising the same Download PDF

Info

Publication number
TW200825135A
TW200825135A TW096133561A TW96133561A TW200825135A TW 200825135 A TW200825135 A TW 200825135A TW 096133561 A TW096133561 A TW 096133561A TW 96133561 A TW96133561 A TW 96133561A TW 200825135 A TW200825135 A TW 200825135A
Authority
TW
Taiwan
Prior art keywords
light
particles
resin composition
cyclic olefin
particle
Prior art date
Application number
TW096133561A
Other languages
Chinese (zh)
Other versions
TWI424022B (en
Inventor
Yoshihisa Mizuno
Kazuhiro Nakamura
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200825135A publication Critical patent/TW200825135A/en
Application granted granted Critical
Publication of TWI424022B publication Critical patent/TWI424022B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a molded article (especially a light guide) excellent in balance of brightness (high brightness), light-diffusing performance and hue uniformity, and a light-diffusing resin composition for producing the molded article (light guide). The light-diffusing resin composition comprises (A) a cyclic olefin-based resin and (B) particles, and the content of the particles (B) is 10-10,000 ppm, based on 100 wt.% total weight of components (A) and (B). The particles (B) has at least one maximum value in each of a region having < 4.0 μm particle diameter and a region having ≥ 4.0 μm particle diameter, in particle size distribution based on the volume of particles (B).

Description

200825135 九、發明說明 【發明所屬之技術領域】 本發明係關於含有環狀烯烴系樹脂及粒度分佈的特定 的2個區域中各自具有至少1個極大値的粒子之光擴散性 樹脂組成物,以及將此光擴散性樹脂組成物成形而成的光 &quot; 擴散性成形品及使用於液晶顯示裝置的側光型背光之導光 : 體。 【先前技術】 先前技術之作爲側光型背光的光源,一直以來爲使用 冷陰極管或線狀的導光等之線光源。惟,最近針對背光的 亮度提高或低消耗電力化的要求,使用一個或複數個LED 等點光源之光源持續成爲主流。此時,使用令光源的光均 勻地擴散於液晶顯示裝置的畫面整體之導光體。 使用點光源的背光用導光體作爲液晶顯示裝置的照明 • 裝置使用時,於光源附近有亮線產生,而有局部的亮度不 . 均產生之問題。此問題之解決方法,係採取將光散射性的 粒子分散於導光體中,而使光源附近的亮度均勻化之手法 (例如,參考特開平6-624330號公報(專利文獻1 ))。 先前技術之用於賦予此等光擴散機能之粒子,係使用 玻璃、二氧化矽、碳酸鈣、氧化鉻、矽樹脂等之無機粒子 ,或者以丙烯基單體或苯乙烯單體等作爲主成份經聚合、 交聯之有機聚合物粒子。 惟,近年來隨著顯示器的高亮度化而使用高亮度的 -4- 200825135 LED作爲光源,特別是要求兼具光擴散性與光穿透性之相 反的性能,先前技術之分散有無機粒子或有機粒子之光擴 散性樹脂組成物,很難兼具如此的性能。 [專利文獻1]特開平6-624330號公報 【發明內容】 [發明所欲解決之課題] 本發明的目的在於解決如上述之伴隨先前技術所產生 的問題,提供明亮度(高亮度)與光擴散性能與色調均勻 性的平衡性優異之成形品,特別是導光體,以及提供用於 製造其成形品之光擴散性樹脂組成物。 [用以解決課題之手段] 本發明者等爲了解決上述問題點而精心硏究的結果, 發現由環狀烯烴系樹脂中混合分散有粒度分佈的特定的2 個區域中各自具有一個極大値之粒子,更佳爲平均粒徑在 特定的範圍之2種粒子之樹脂組成物,可得到明亮度(高 亮度)與光擴散性能與色調均勻性的平衡性優異之板狀成 形品,而且發現此板狀成形品適合作爲液晶顯示裝置用彻j 光型背光的導光體,而達成本發明。 亦即,本發明該相關的光擴散性樹脂組成物,其胃徵 係含有環狀烯烴系樹脂(A )與粒子(B ),相對於此等@ 合計100重量%,粒子(B)的含有率以重量基準而言爲 10〜1 0,000ppm,前述粒子(B)係於其體積基準的粒度分 200825135 佈中,粒徑低於4.0μιη的區域與4·0μιη以上的區域各自 有至少一個極大値。 前述粒子(Β )可藉由混合其體積基準的平均粒徑 4.0μπι以上的粒子(Β1 )與平均粒徑爲低於4.0μηι之粒 (Β2)而輕易地得到。 於前述粒子(Β1)的體積基準的粒度分佈中,波峰 積爲最大的波峰以對數正態分佈表示時之其幾何標準偏 〇gB1爲10以上2.0以下較佳,前述粒子(Β2)的體積 準的粒度分佈中,波峰面積爲最大的波峰以對數正態分 表示時之其幾何標準偏差agB2爲1.0以上2.0以下較佳 前述環狀烯烴系樹脂(A )的折射率nA與前述粒子 B1)的折射率nB1之差的絶對値|nB1-nA|爲0.04以上較 ,前述環狀烯烴系樹脂(A)的折射率nA與前述粒子( )的折射率nB2之差的絶對値|nB2-nA丨爲0.04以上較佳。 前述粒子(B )中的至少一部份爲空心粒子較佳, 述粒子(B )中的至少一部份爲有機交聯粒子較佳。 本發明該相關的成形品及液晶顯示裝置的側光型背 用導光體,係將上述光擴散性樹脂組成物射出成形而成 [發明的效果] 依據本發明,可得到能夠製造具有優異的成形加工 及高溫安定性,同時明亮度與光擴散性能與色調均勻性 平衡性優異的成形品之樹脂組成物及其成形品,此成形 係適合作爲液晶顯示裝置的側光型背光用導光體。 具 爲 子 面 差 基 佈 佳 B2 刖 光 性 的 品 -6- 200825135 [實施發明的最佳形態] 本發明該相關的光擴散性樹脂組成物係含有環狀烯烴 系樹脂(A )及粒子(b ),首先,說明關於此等的成分。 (A)環狀烯烴系樹脂: 本發明所使用的環狀烯烴系樹脂(A ),可列舉下記 式(Π所表示的環狀烯烴(以下亦稱爲「環狀烯烴(I ) 」)之(共)聚合物。 化1】[Technical Field] The present invention relates to a light diffusing resin composition containing at least one extremely large particle in each of two specific regions containing a cyclic olefin resin and a particle size distribution, and A light-diffusing molded article obtained by molding the light-diffusing resin composition and a light-guide type light-emitting body used for a liquid crystal display device. [Prior Art] A light source used as a sidelight type backlight in the prior art has been a line source using a cold cathode tube or a linear light guide or the like. However, recently, for the improvement of the brightness of the backlight or the low power consumption, the use of one or a plurality of light sources such as LEDs has continued to become the mainstream. At this time, a light guide that spreads the light of the light source uniformly over the entire screen of the liquid crystal display device is used. A backlight light guide using a point light source is used as illumination of a liquid crystal display device. • When the device is used, there is a problem that a bright line is generated in the vicinity of the light source and partial brightness is not generated. The method of solving this problem is a method of dispersing the light-scattering particles in the light guide and uniformizing the brightness in the vicinity of the light source (see, for example, Japanese Laid-Open Patent Publication No. Hei 6-624330 (Patent Document 1)). The particles used in the prior art for imparting such a light diffusing function are inorganic particles such as glass, ceria, calcium carbonate, chromium oxide, cerium resin, or the like, or a propylene monomer or a styrene monomer as a main component. Polymerized, crosslinked organic polymer particles. However, in recent years, with the high brightness of the display, the high-brightness -4-200825135 LED is used as the light source, and in particular, the performance opposite to the light diffusibility and the light transmittance is required, and the prior art is dispersed with inorganic particles or The light diffusing resin composition of organic particles is difficult to achieve such a performance. [Problem to be Solved by the Invention] An object of the present invention is to solve the problems associated with the prior art as described above, and to provide brightness (high brightness) and light. A molded article excellent in balance between diffusing performance and color tone uniformity, particularly a light guide, and a light diffusing resin composition for producing a molded article thereof. [Means for Solving the Problem] The inventors of the present invention have found that the specific two regions in which the particle size distribution is mixed and dispersed in the cyclic olefin resin have a maximum in order to solve the above problems. Further, the particles are more preferably a resin composition of two kinds of particles having an average particle diameter in a specific range, and a plate-shaped molded article excellent in brightness (high brightness) and excellent in light diffusing property and color tone uniformity can be obtained, and this is also known. The plate-shaped molded article is suitable as a light guide for a backlight of a liquid crystal display device, and the present invention has been achieved. In other words, the light-diffusing resin composition according to the present invention contains the cyclic olefin resin (A) and the particles (B) in the stomach sign, and the total content of the particles (B) is 100% by weight or more. The ratio is 10 to 10,000 ppm on a weight basis, and the particles (B) are in a volume-based particle size distribution of 200825135, and a region having a particle diameter of less than 4.0 μm and a region having a particle diameter of 4·0 μm or more each have at least one maximum. value. The particles (Β) can be easily obtained by mixing particles (Β1) having a volume-based average particle diameter of 4.0 μm or more and particles having an average particle diameter of less than 4.0 μm (Β2). In the volume-based particle size distribution of the particle (Β1), the peak with the highest peak product is represented by a logarithmic normal distribution, and the geometric standard deviation gB1 is preferably 10 or more and 2.0 or less, and the volume of the particle (Β2) is preferably In the particle size distribution, when the peak having the largest peak area is represented by a logarithmic normal part, the geometric standard deviation agB2 is 1.0 or more and 2.0 or less, preferably the refractive index nA of the cyclic olefin-based resin (A) and the particle B1) The absolute 値|nB1-nA| of the difference of the refractive index nB1 is 0.04 or more, and the absolute 値|nB2-nA of the difference between the refractive index nA of the cyclic olefin resin (A) and the refractive index nB2 of the particle ( ) It is preferably 0.04 or more. At least a part of the particles (B) is preferably a hollow particle, and at least a part of the particles (B) is preferably an organic crosslinked particle. In the molded article of the present invention and the side light type rear light guide of the liquid crystal display device, the light diffusing resin composition is formed by injection molding. [Effects of the Invention] According to the present invention, it is possible to obtain an excellent manufacturing method. A resin composition of a molded article having excellent brightness and light diffusing performance and uniformity of color tone uniformity, and a molded article thereof, which is suitable for use as a side light type backlight for a liquid crystal display device. . [Best </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; b) First, explain the ingredients for these. (A) Cyclic olefin-based resin: The cyclic olefin-based resin (A) used in the present invention is a cyclic olefin (hereinafter also referred to as "cyclic olefin (I)") (total) polymer.

(I) 式(I)中,R1〜R4各自獨立地爲氫原子、鹵素原子或i 價的有機基,R1與R2、或r3與r4亦可整體化而形成2 價的有機基,R1或R2、與R3或R4亦可互相地鍵結而形 成單環結構或多環結構;m爲〇或正的整數,p爲〇或正 的整數。 更具體的環狀烯烴系樹脂(A ),可列舉 (1 )環狀燦烴(I )的開環聚合物(以下亦稱爲「聚 合物(1 )」) (2 )環狀嫌煙(I )與共聚性單體之開環共聚物(以 下亦稱爲「聚合物(2 )」) (3 )聚合ti ( 1 )或聚合物(2 )的氫化(共)聚合 200825135 物(以下亦稱爲「聚合物(3 )」) (4)聚合物(1)或聚合物(2)藉由弗里德爾_克拉 夫茨反應環化後’經氫化的(共)聚合物(以下亦稱爲「 聚合物(4 )」) (5 )環狀儀經(I )與含不飽和雙鍵之化合物之飽和 共聚物(以下亦稱爲「聚合物(5 )」) (6 )環狀燦烴(I )、與1種以上選自乙烯系環狀烴 系單體及環戊二烯系單體之單體之加成型(共)聚合物及 其氫化(共)聚合物(以下亦稱爲「聚合物(6 )」) (7)環狀烯烴(I)與丙烯酸酯之交互共聚物(以下 亦稱爲「聚合物(7 )」) ’此等中由透明性等優異之觀點而言,特別佳爲使用聚合 物(3 )。 &lt;環狀烯烴(I) &gt; # 上述式(I)中之1價的有機基,可列舉碳數1〜30 • 的烴基、烴基以外的1價的極性基。上述1價的極性基, , 可列舉羧基、羥基、烷氧基羰基、烯丙氧基羰基、胺基、 醯胺基、氰基等,此等極性基亦可介由伸甲基等之連結基 而結合,此外,亦可列舉介由羰基、醚基、矽烷基醚基、 硫醚基、亞胺基等具有極性之2價的有機基所成的連結基 而鍵結之烴基等作爲極性基。此等極性基中,以羧基、羥 基、烷氧基羰基及烯丙氧基羰基爲佳,以烷氧基羰基及烯 丙氧基羰基爲特別佳。 -8- 200825135 上述式(I)所表示的環狀烯烴可使用單獨1種,或 合倂2種以上使用。 上述式(I )表示的環狀燏烴,例如可列舉以下的化 合物,但不限定於此等的化合物。 雙環[2.2.1]庚-2-烯、 三環[4.3,0.12,5]-8-癸烯、 三環[4.4·0.12,5]-3-十一碳烯、 四環[HO.!2,5」7’10]-」-十二碳烯、 五環[6·5.1 ·13’6.02’7』9’13]-4-十五碳烯、 5-甲基雙環[2.2.1]庚-2-烯、 5-乙基雙環[2.2.1]庚-2-烯、 5-甲氧基羰基雙環[2·2·1]庚-2-烯、 5-甲基-5-甲氧基羰基雙環[2.2.1]庚-2-烯、 5-氰基雙環[2·2·1]庚-2-烯、 8-甲氧基羰基四環[4.4.0.12’5.17’1()]-3·十二碳烯、 8-乙氧基羰基四環[4.4·0.12’5·17’1()]-3-十二碳烯、 8-η-丙氧基羰基四環[4.4.0. I2’5.〗7’1 G]-3-十二碳烯、 8-異丙氧基羰基四環[4.4.0. I2’5.17,1G]-3-十二碳烯、 8-11-丁 氧基羰基四環[4·4 ·0·12’5.17’10]-3-十二碳烯' 8_甲基-8·甲氧基羰基四環[4·4·0.12,5.Γ’1()]-3·十二碳 烯、 8 -甲基-8·乙氧基鑛基四ί哀[4.4.0.12’5.17’1()]-3-十一*碳 烯、 8 -甲基- 8-η-丙氧基羰基四環[4.4.0.12,5·17’1()]-3-十二 -9- 200825135 碳烯、 8-甲基-8-異丙氧基羰基四環[4.4.0.12’5.17,1()]-3-十二 碳烯、 8·甲基- 8-η·丁氧基羰基四環[4.4.0.:^ 碳烯、 &quot; 5-亞乙基雙環[2.2.1]庚-2_烯、 : 8-亞乙基四環[4.4.0.12’5·17’1()]-3-十二碳烯、 φ 5-苯基雙環[2.2.1]庚-2-烯、 8-苯基四環[4.4.0,12’5.17’1()]-3-十二碳烯、 5-氟雙環[2.2.1]庚-2-烯、 5-氟曱基雙環[2·2·1]庚-2-烯、 5-三氟甲基雙環[2.2.1]庚-2-烯、 5-五氟乙基雙環[2.2.1]庚-2-烯、 5.5- 二氟雙環[2·2·1]庚-2-烯、 5.6- 二氟雙環[2.2.1]庚-2-烯、 • 5,5-雙(三氟甲基)雙環[2 ·2·1]庚-2-烯、 . 5,6-雙(三氟甲基)雙環[2.2.1]庚-2-烯、 5-甲基-5-三氟甲基雙環[2.2.1]庚-2-烯、 5,556-三氟雙環[2.2.1]庚-2-烯、 5.5.6- 參(氟甲基)雙環[2·2·1]庚-2-烯、 5.5.6.6- 四氟雙環[2.2.1]庚-2-烯、 5.5.6.6- 肆(三氟甲基)雙環[2.2.1]庚-2-烯、 5,5-二氟- 6,6-雙(三氟甲基)雙環[2.2.1]庚-2-烯、 5.6- 二氟-5,6-雙(三氟甲基)雙環[2.2.1]庚-2-烯、 -10- 200825135 5.5.6- 三氟-5·三氟甲基雙環[2.2.1]庚-2-烯、 烯 2 -烯 5-氟五氟乙基-6,6·雙(三氟甲基)雙環[2.2.1]庚-、 5.6- 二氟-5-七氟-iso-丙基-6-三氟甲基雙環[2· 2.1]庚- 5-氯-5,6,6-三氟雙環[2.2.1]庚-2-烯、 5,6-二氯-5,6-雙(三氟甲基)雙環[2.2.1]庚-2-烯、 5.5.6- 三氟-6-三氟甲氧基雙環[2·2·1]庚-2-烯、 5,5,6-三氟-6-七氟丙氧基雙環[2.2.1]庚-2-烯、 8 -氟四環[4.4.0.1 W.l7,1 G]-3-十二碳烯、 8-氟甲基四環[4.4.0.12’5.17’1()]-3-十二碳烯、 8-二氟甲基四環[4.4.0.I2’5·:!7’1 G]-3-十二碳烯、 8-三氟甲基四環[4.4.〇.12,5.17,1()]-3-十二碳烯、 8-五氟乙基四環[4·4·0·12’5·17’1()]-3-十二碳烯、 8.8- 二氟四環[4.4.0.12’5.17’1()]-3-十二碳烯、 8,9·二氟四環[4.4.0.12’5.17’1()]-3-十二碳烯、 8.8- 雙(三氟甲基)四環[4.4.0.12,5.17’1()]-3-十二碳烯 8,9-雙 氟甲基)四環[4·4.0·12’5.Γ’1()]-3-十二碳烯 -甲基 8.8.9- 三氟四環[4.4.0.12,5.17,1{)]-3-十二碳烯、 8.8.9- 參(三氟甲基)四環[4·4·0·12,5·Γ,1()]-3-十二碳 -11 - 200825135 烯、 8.8.9.9- 四氟四環[4.4.0.12,5.17,1()]-3-十二碳烯、 8.8.9.9- 肆(三氟甲基)四環[4.4.0.12,5.17,1()]-3-十二 碳烯、 8.8- 二氟-9,9-雙(三氟甲基)四環[4·4.0·l2,5·Γ,1()]-3-十二碳烯、(I) In the formula (I), R1 to R4 are each independently a hydrogen atom, a halogen atom or an i-valent organic group, and R1 and R2, or r3 and r4 may be integrated to form a divalent organic group, R1 or R2, and R3 or R4 may also be bonded to each other to form a monocyclic structure or a polycyclic structure; m is 〇 or a positive integer, and p is 〇 or a positive integer. More specifically, the cyclic olefin-based resin (A) may, for example, be a ring-opening polymer of a cyclic hydrocarbon (I) (hereinafter also referred to as "polymer (1)") (2) a ring-shaped smog (I) a ring-opening copolymer with a copolymerizable monomer (hereinafter also referred to as "polymer (2)") (3) a hydrogenation (co)polymerization of ti (1) or polymer (2) 200825135 (hereinafter also referred to as "Polymer (3)") (4) Polymer (1) or polymer (2) cyclized by Friedel-Crafts reaction after hydrogenated (co)polymer (hereinafter also referred to as "Polymer (4)") (5) a saturated copolymer of (I) and a compound containing an unsaturated double bond (hereinafter also referred to as "polymer (5)") (6) a cyclic hydrocarbon (I), an addition (co)polymer of one or more monomers selected from the group consisting of a vinyl cyclic hydrocarbon monomer and a cyclopentadiene monomer, and a hydrogenated (co)polymer thereof (hereinafter also referred to as "Polymer (6)") (7) a cross-copolymer of a cyclic olefin (I) and an acrylate (hereinafter also referred to as "polymer (7)")" In terms of excellent transparency, etc. Especially good A polymer (3). &lt;Cyclic olefin (I) &gt;# The monovalent organic group in the above formula (I) may, for example, be a hydrocarbon group having 1 to 30 carbon atoms or a monovalent polar group other than a hydrocarbon group. Examples of the monovalent polar group include a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amine group, a decylamino group, and a cyano group. These polar groups may also be bonded via a methyl group or the like. Further, as a polar group, a hydrocarbon group bonded by a linking group formed by a polar valent organic group such as a carbonyl group, an ether group, a decyl ether group, a thioether group or an imine group may be mentioned. . Among these polar groups, a carboxyl group, a hydroxyl group, an alkoxycarbonyl group and an allyloxycarbonyl group are preferred, and an alkoxycarbonyl group and an allyloxycarbonyl group are particularly preferred. -8- 200825135 The cyclic olefin represented by the above formula (I) may be used alone or in combination of two or more. The cyclic anthracene hydrocarbon represented by the above formula (I) is exemplified by the following compounds, but is not limited thereto. Bicyclo[2.2.1]hept-2-ene, tricyclo[4.3,0.12,5]-8-decene, tricyclo[4.4.0.12,5]-3-undecene, tetracycline [HO.! 2,5"7'10]-"-Dodecene, pentacyclo[6·5.1 ·13'6.02'7"9'13]-4-pentadecene, 5-methylbicyclo[2.2.1 Hept-2-ene, 5-ethylbicyclo[2.2.1]hept-2-ene, 5-methoxycarbonylbicyclo[2·2·1]hept-2-ene, 5-methyl-5- Methoxycarbonylbicyclo[2.2.1]hept-2-ene, 5-cyanobicyclo[2·2·1]hept-2-ene, 8-methoxycarbonyltetracyclo[4.4.0.12'5.17'1 ()]-3-dodecene, 8-ethoxycarbonyltetracyclo[4.4.0.12'5·17'1()]-3-dodecene, 8-η-propoxycarbonyltetracyclic [4.4.0. I2'5.] 7'1 G]-3-dodecene, 8-isopropoxycarbonyltetracyclo[4.4.0. I2'5.17,1G]-3-dodecene , 8-11-Butoxycarbonyltetracyclo[4·4 ·0·12'5.17'10]-3-dodecene-8-methyl-8·methoxycarbonyltetracyclo[4·4· 0.12,5.Γ'1()]-3·Dodecene, 8-methyl-8·ethoxylated base four 哀[4.4.0.12'5.17'1()]-3-11* Carbene, 8-methyl- 8-η-propoxycarbonyltetracyclo[4.4.0.12,5·17'1()]-3-12-9-200825135 Carbene, 8-methyl-8- Isopropoxycarbonyltetracyclo[4.4.0.12'5.17,1()]-3-dodecene, 8·methyl-8-η·butoxycarbonyltetracyclo[4.4.0.:^ carbene , &quot; 5-Ethylene bicyclo[2.2.1]hept-2-ene, : 8-ethylenetetracyclo[4.4.0.12'5·17'1()]-3-dodecene, φ 5-phenylbicyclo[2.2.1]hept-2-ene, 8-phenyltetracyclo[4.4.0,12'5.17'1()]-3-dodecene, 5-fluorobicyclo[2.2. 1]hept-2-ene, 5-fluoroindolylbicyclo[2·2·1]hept-2-ene, 5-trifluoromethylbicyclo[2.2.1]hept-2-ene, 5-pentafluoroethyl Bicyclo[2.2.1]hept-2-ene, 5.5-difluorobicyclo[2·2·1]hept-2-ene, 5.6-difluorobicyclo[2.2.1]hept-2-ene, • 5, 5-bis(trifluoromethyl)bicyclo[2 ·2·1]hept-2-ene, .5,6-bis(trifluoromethyl)bicyclo[2.2.1]hept-2-ene, 5-methyl 5--5-trifluoromethylbicyclo[2.2.1]hept-2-ene, 5,556-trifluorobicyclo[2.2.1]hept-2-ene, 5.5.6- cis (fluoromethyl)bicyclo[2· 2·1]hept-2-ene, 5.5.6.6-tetrafluorobicyclo[2.2.1]hept-2-ene, 5.5.6.6-肆(trifluoromethyl)bicyclo[2.2.1]hept-2-ene , 5,5-difluoro-6,6-bis(trifluoromethyl)bicyclo[2.2.1]hept-2-ene, 5.6-difluoro-5,6-bis(trifluoromethyl) Bicyclo[2.2.1]hept-2-ene,-10-200825135 5.5.6-trifluoro-5·trifluoromethylbicyclo[2.2.1]hept-2-ene, alkene-2-ene 5-fluoropentafluoro Ethyl-6,6·bis(trifluoromethyl)bicyclo[2.2.1]heptane-, 5.6-difluoro-5-heptafluoro-iso-propyl-6-trifluoromethylbicyclo[2·2.1] Hept-5-chloro-5,6,6-trifluorobicyclo[2.2.1]hept-2-ene, 5,6-dichloro-5,6-bis(trifluoromethyl)bicyclo[2.2.1] Hept-2-ene, 5.5.6-trifluoro-6-trifluoromethoxybicyclo[2·2·1]hept-2-ene, 5,5,6-trifluoro-6-heptafluoropropoxy Bicyclo[2.2.1]hept-2-ene, 8-fluorotetracyclo[4.4.0.1 W.l7,1 G]-3-dodecene, 8-fluoromethyltetracyclo[4.4.0.12'5.17' 1()]-3-dodecene, 8-difluoromethyltetracyclo[4.4.0.I2'5·:!7'1 G]-3-dodecene, 8-trifluoromethyl Tetracyclo[4.4.〇.12,5.17,1()]-3-dodecene, 8-pentafluoroethyltetracyclo[4·4·0·12'5·17'1()]-3 - dodecene, 8.8-difluorotetracyclo[4.4.0.12'5.17'1()]-3-dodecene, 8,9.difluorotetracycline [4.4.0.12'5.17'1()] -3-dodecene, 8.8-bis(trifluoromethyl)tetracyclo[4.4.0.12,5.17'1()]-3-dodecene 8,9-bisfluoromethyl)tetracycline [4 ·4.0·12'5.Γ 1()]-3-dodecene-methyl 8.8.9-trifluorotetracyclo[4.4.0.12,5.17,1{)]-3-dodecene, 8.8.9-parafic (trifluoromethyl) Base) tetracyclo[4·4·0·12,5·Γ,1()]-3-dodeca-11 - 200825135 ene, 8.8.9.9-tetrafluorotetracycline [4.4.0.12, 5.17, 1 ( )]-3-dodecene, 8.8.9.9-肆(trifluoromethyl)tetracyclo[4.4.0.12,5.17,1()]-3-dodecene, 8.8-difluoro-9,9 - bis(trifluoromethyl)tetracyclo[4·4.0·l2,5·Γ,1()]-3-dodecene,

8.9- 二氟-8,9-雙(三氟甲基)四環[4·4·0·12,5·Γ,1()]-3-十二碳燃、 8.8.9- 三氟-9-三氟甲基四環[4.4.0.12,5.17,1()]-3-十二碳 烯、 8.8.9- 三氟-9-三氟甲氧基四環[4.4.0.12,5.l7,1G]-3-十二 碳烯、 8.8.9- 三氟-9-五氟丙氧基四環[4.4.0.12,5.17,1()]-3-十二 碳儲、 8-氟-8-五氟乙基-9,9-雙(三氟甲基)四環 [4·4·0.12’5·Γ’1()]-3-十二碳烯、 8,9-二氟-8-七氟 iso-丙基-9-三氟甲基四環 [4.4·0.12’5·Γ’1()]-3-十二碳烯、 8-氯-8,9,9-三氟四環[4.4.0.12,5.17,1()]-3-十二碳烯、 8.9- 二氯-8,9-雙(三氟甲基)四環[4·4·0·12,5·Γ,1()]-3-十二碳烯、 8- ( 2,2,2-三氟乙氧基羰基)四環[4.4·0·l2,5·l7,lί)]-3· 十二碳烯、 8-甲基 -8- ( 2,2,2-三氟乙氧基羰基)四環 -12- 200825135 [4·4·0·12,5.17’1()]-3-十二碳烯等。 如此的環狀烯烴中,於上述式(I ) ,R1及R3各自獨 立地爲氫原子或碳數較佳爲1〜10、更佳爲1〜4、特別佳 爲1或2的烴基,較佳爲烷基,特別佳爲甲基,R2及R4 各自獨立地爲氫原子或1價的有機基,而且R2及R4中的 * 至少1個爲氫原子或上述1價的極性基;m爲0〜3的整 ’ 數較佳,P爲〇〜3的整數較佳,m + p爲0〜4更佳,m + p 0 爲0〜2特別佳,最佳爲m = 1、p = 0之環狀嫌烴。m = 1、 p = 〇之環狀烯烴,由可得到玻璃轉化溫度高、且機械性強 度亦優異的環狀烯烴系樹脂之觀點而言最佳。 而且,R2及R4中的至少1個爲下記式(II )所表示 的極性基之環狀烯烴,由可得到具有高的玻璃轉化溫度與 低吸濕性、與各種材料的優異密著性之環狀烯烴系樹脂之 觀點而言較佳。 馨 -(CH2) nCOOR ( II) , 上述式(π)中,R係碳數較佳爲1〜12、更佳爲1〜 4、特別佳爲1或2的烴基,較佳爲烷基。此外,η通常爲 0〜5,η的値愈小的環狀烯烴,因爲可得到玻璃轉化溫度 筒的環狀烯烴系樹脂而較佳,η爲〇的環狀烯烴,由合成 容易之觀點而言特別佳。 特別是上述式(II )所表示的極性基,鍵結於烷基之 R1或R3所鍵結的碳原子這一點,由可得到吸濕性低的環 -13- 200825135 狀烯煙系樹脂之觀點而言較佳。 聚合物(1 )及聚合物(2): 上述聚合物(1 )及聚合物(2),係可藉由在置換觸 ~ 媒的存在下,使上述環狀烯烴開環聚合,或使上述環狀烯 烴與共聚性單體開環共聚而得到。 φ 〈共聚性單體&gt; 聚合物(2 )所使用的共聚性單體,可列舉環烯烴, 碳數較佳爲4〜20,更佳爲5〜12的環烯烴,更具體而言 可列舉環丁烯、環戊烯、環庚烯、環辛烯、二環戊二烯等 ’此等的環烯烴可使用單獨1種,亦可合倂2種以上使用 〇 上述環狀烯烴與上述共聚性單體的使用比例,以重量 比(環狀烯烴/共聚性單體)而言100/0〜5 0/5 0爲佳, Φ 100/0〜60/40更佳。再者,「環狀烯烴/共聚性單體=100/0 • 」之意,係指於環狀烯烴的單獨聚合之使用比例。 螫 &lt;開環聚合用觸媒&gt; 開環(共)聚合反應所使用的置換觸媒,係由下記的 化合物(a )與化合物(b )之組合所成的觸媒。 (a) 含有至少一個選自W、Mo及Re的元素之化合 物。 (b) 係含有至少一個選自載明(deming )的周期表 -14- 200825135 ΙΑ族元素(例如Li、Na、K等)、ΙΙΑ族元素(例如Mg 、Ca等)、IIB族元素(例如Zn、Cd、Hg等)、ΠΙΑ族 元素(例如Β、A1等)、IV Α族元素(例如S i、S η、Ρ b 等)及IVB族元素(例如Ti、Zr等)的元素之化合物, 具有至少1個前述元素與碳的鍵結或前述元素與氫的鍵結 之化合物所選出的至少1種之化合物。 此外,上述置換觸媒爲了提高此活性,亦可含有後述 的添加劑(C )。 上述化合物(a )的具體例子,可列舉WC16、MoC16 、ReOCh等特開平1 - 1 32626號公報的第8頁左上欄倒數 第6行〜第8頁右上欄第1 7行所記載之化合物。 上述化合物(b)的具體例子,可列舉n-C4H9Li、( C2H5) 3AI &gt; (C2H5) 2AICI &gt; (C2H5) KsAlCh.s ' ( C2H5 )A1C12、甲基鋁四氫喃、LiH等特開平1 - 1 32626號公報 的第8頁右上欄第1 8行〜第8頁右下欄第3行所記載的 化合物。 上述添加劑(c ),較佳可使用醇類、醛類、酮類、 胺類等,而且亦可使用特開平1 - 1 32626號公報的第8頁 右下欄第1 6行〜第9頁左上欄第1 7行所記載的化合物。 上述化合物(a )與化合物(b )之比例,以金屬原子 比〔(a ) : ( b )〕而言,通常爲1 ·· 1〜1 : 5 0,較佳爲 1 : 2 〜1 : 3 0。 上述添加劑(c )與化合物(a )之比例,以莫耳比〔 (c ) : (a)〕而言,通常爲0.005:1〜15:1,較佳爲 -15- 200825135 0.05 : 1〜7 : 1 〇 置換觸媒的使用量,通常爲使上述化合物(a )與環 狀儲煙之莫耳比〔(〇 :環狀烯烴〕成爲1 : 5 00〜i : 50,000’較佳係成爲1: 1,〇〇〇〜&quot;〇〇〇之量。 • &lt;聚合反應用溶劑&gt; : 於開環(共)聚合反應,溶劑係作爲構成後述的分子 φ 量調節劑溶液之溶劑、或環狀烯烴及/或置換觸媒的溶劑 使用。如此的溶劑可列舉例如戊烷、己烷、庚烷、辛院、 壬烷、癸烷等鏈烷類;環己烷、環庚烷、環辛烷、萘烷、 降冰片院等環鏈院類;苯、甲苯、二甲苯 '乙苯、枯烧等 芳香族烴;氯丁烷、溴己烷、二氯甲烷、二氯乙烷、二溴 六伸甲基、氯仿、四氯乙烯等鹵化鏈烷;氯苯等鹵化芳基 ;乙酸乙酯、乙酸η· 丁酯、乙酸iso-丁酯、丙酸甲酯等飽 和羧酸酯類、二丁醚、四氫呋喃、二甲氧基乙烷等醚類。 φ 此等溶劑可單獨使用或混合使用,此等中以芳香族烴較佳 〇 溶劑的使用量,通常爲使溶劑與環狀烯烴的重量比( 導 溶劑:環狀烯烴)成爲1:1〜10:1,較佳爲成爲1:1〜 5 : 1之量。 &lt;分子量調節劑&gt; 所得到的開環(共)聚合物的分子量,可藉由聚合溫 度、觸媒的種類、溶劑的種類而調節’但亦可藉由使分子 -16- 200825135 量調節劑共存於反應系而調節。 較適合的分子量調節劑,可列舉例如乙烯、丙烯、1β 丁烯、1-戊烯、1-己烯、1-庚烯、丨·辛烯、丨-壬烯、〗·癸 烯等嫌烴類及苯乙烯,此等中以b丁烯、b己烯爲特別 佳。此外,此等的分子量調節劑可單獨使用或混合2種以 : 上使用。 ' 分子量調節劑的使用量,係相對於供給於開環聚合反 φ 應的環狀烯烴1莫耳,通常爲0.005〜0.6莫耳,較佳爲 0.01〜0.5莫耳。 上述開環共聚物可使環狀烯烴與共聚性單體開環共聚 而得到’而且,亦可在在聚丁二烯、聚異丁烯等共軛二烯 化合物、苯乙烯-丁二烯共聚物、乙烯-非共軛二烯共聚物 、聚降冰片烯等之主鎖上含有2個以上的碳-碳間雙鍵之 不飽和烴系聚合物等的存在下,使環狀烯烴開環共聚。 • ( 3 )氫化(共)聚合物: . 上述開環(共)聚合物,可直接使用,但進一步將其 ^ 氫化後所得到的氫化(共)聚合物(3 ),適合作爲耐衝 撃性優異的樹脂使用。 氫化反應,可藉由通常的方法進行,亦即可藉由於含 有開環(共)聚合物的溶液中添加氫化觸媒,使在常壓〜 300氣壓、較佳爲3〜200氣壓的氫氣,用0〜200。(:、較 佳爲20〜180°C作用而進行。 -17- 200825135 &lt;氫化觸媒&gt; 上述氫化觸媒,可使用被用於一 氫化反應之觸媒。此氫化觸媒,可列 勻系觸媒。 不均勻系觸媒,可列舉例如將鈀 : 貴金屬觸媒物質,載置於碳、二氧化 鈦等載體之固體觸媒。均勻系觸媒= Φ 乙基鋁、鎳乙醯丙酮/三乙基鋁、辛; 氯二茂鈦/二乙基氯化鋁、乙酸鍺、 、二氯參(三苯基膦)釕、氯氫羰基 二氯羰基參(三苯基膦)釕等。此等 ,亦可爲粒狀。 此等氫化觸媒,其使用量係使開 化觸媒的重量比(開環(共)聚合物 :1χ10_6〜1 : 2之比例較佳。 • 上述氫化(共)聚合物(3)具 . 即使成形加工時或作爲製品使用際之 ^ 劣化。 氣化(共)聚合物(3)的氯化; 條件藉由1H-NMR所測量之値,通常 70%以上,更佳爲90%以上,特別佳 9 9%以上。氫化率愈高,可得到對於 異,以及經過長期使用亦具有安定的 品0 般的烯烴性化合物的 舉不均勻系觸媒及均 、鉑、鎳、铑、釕等 矽、氧化鋁、二氧化 &gt;可列舉環烷酸鎳/三 〖希酸鈷/η-丁基鋰、二 氯參(三苯基膦)鍺 參(三苯基膦)釕、 觸媒的形態可爲粉末 環(共)聚合物與氫 :氫化觸媒)成爲1 有優異的熱安定性, 加熱,此特性亦不會 率,係以 500MHz的 爲50%以上,較佳爲 爲98%以上,最佳爲 熱或光的安定性愈優 特性之導光體等成形 •18- 200825135 此外,上述氫化(共)聚合物(3 ),係凝膠含量爲5 重量%以下較佳,特別佳爲1重量%以下。 (4 )氫化(共)聚合物·· 上述氫化(共)聚合物(4),可將上述(1)或(2 )的開環(共)聚合物藉由弗里德爾-拉夫茨反應而環化 後,經由氫化而得到。 將上述開環(共)聚合物藉由弗里德爾-拉夫茨反應 而環化之方法’並沒有特別的限制,可採用例如使用特開 昭5 0- 1 5 4399號公報所記載的酸性化合物之習知的方法。 上述酸性化合物的具體例子,可列舉 A1C13、BF3、 FeCl3、Al2〇3、HC1、CH3ClCOOH、沸石、活性白 土等路 易斯酸、布朗斯台德酸。 經環化的開環(共)聚合物,可與上述開環(共)聚 合物的氫化反應同樣地氫化。 (5 )飽和共聚物: 上述飽和共聚物(5)可藉由在加成聚合觸媒的存在 下,使上述環狀烯烴加成聚合含不飽和雙鍵之化合物而得 到。加成聚合法可使用先前技術的方法。 &lt;含不飽和雙鍵之化合物&gt; 含不飽和雙鍵之化合物,可列舉例如乙烯、丙烯、丁 烯等烯烴系化合物,此等中,較希望其爲碳數較佳爲2〜 -19- 200825135 1 2,更佳爲2〜8的烯烴系化合物。 含不飽和雙鍵之化合物的使用量,以環狀烯烴與含不 飽和雙鍵之化合物的重量比(環狀烯烴/含不飽和雙鍵之 化合物)而言,90/10〜40/60爲佳,85/1 5〜50/50更佳。 惟,環狀烯烴與含不飽和雙鍵之化合物的合計重量定爲 100 〇 φ &lt;加成聚合觸媒&gt; 加成聚合觸媒,可列舉由鈦化合物、錐化合物及釩化 合物所選出的至少一種的化合物、與作爲輔助觸媒之有機 鋁化合物的組合。 上述鈦化合物,可列舉四氯化鈦、三氯化鈦等;锆化 合物,可列舉雙(環戊二烯基)氯化鉻、雙(環戊二烯基 )二氯化鉻等;釩化合物,可列舉下述式 • VO ( OR) aXb、或 V ( OR) cxd [惟,R爲烴基,X爲鹵素原子,0SaS3、0SbS3、2S ( a + b) S3、OSd 0$dS4、3$ (c + d) $4。] 所表示的釩化合物、或此等的電子給與加成物。 上述電子給與體,可列舉醇、酚類、酮、醛、羧酸、 有機酸或無機酸的酯、醚、酸醯胺(acid amide )、酸酐 、烷氧基矽烷等含氧電子給與體,氨、胺、腈、異氰酸酯 等含氮電子給與體等。 -20- 200825135 上述有機鋁化合物,可列舉具有至少一個鋁-碳鍵或 鋁-氫鍵之化合物。此有機鋁化合物可單獨使用’亦可合 倂2種以上使用。 選自鈦化合物、鉻化合物及釩化合物之化合物的使用 量(合倂2種以上使用時爲此等的合計量)與有機鋁化合 物的使用量之割合,以鋁原子相對於鈦原子等之比(Al/Ti 等)而言,通常爲2以上,較佳爲2〜50,特別佳爲3〜 20° 於上述加成聚合反應所使用的溶劑,可列舉於上述開 環(共)聚合反應所舉例的溶劑。 此外,飽和共聚物(5 )的分子量的調節,通常可使 用氫進行。 (6 )加成型(共)聚合物及其氫化(共)聚合物·· 上述加成型(共)聚合物(6),係可藉由使上述環 狀烯烴,加成聚合由乙烯系環狀烴系單體及環戊二烯系單 體所選出的1種以上的單體而得到。 &lt;乙烯系環狀烴系單體&gt; 上述乙烯系環狀烴系單體,可列舉例如4_乙烯基環戊 烯、2-甲基-4-異丙烯基環戊烯等乙烯基環戊烯系單體,4-乙燒基環戊烷、4 -異丙烯基環戊烷等乙烯基環戊烷系單體 等之乙烯基化5員環烴系單體,4-乙烯基環己烯、‘異丙 烯基環己烯、1-甲基-4-異丙烯基環己烯、2-甲基-4-乙烯 -21 - 200825135 基環己烯、2-甲基-4-異丙烯基環己烯等乙烯基環己烯系單 體,4-乙烯基環己烷、2_甲基異丙烯基環己烷等乙烯基 環己烷系單體,本乙烯、α_甲基苯乙烯、2_甲基苯乙烯、 3-甲基苯乙烯、4-甲基苯乙烯、^乙烯基萘、2-乙烯基萘 、4-苯基苯乙烯、ρ-甲氧基苯乙烯等苯乙烯系單體,^萜 烯、1-萜烯、二萜烯、d_檸檬烯、卜檸檬烯、雙戊烯等萜 ' 烯系單體,4-乙烯基環庚烯、4-異丙烯基環庚烯等乙烯基 φ 環庚烯系單體’ 4 -乙烯基環庚烷、4 -異丙烯基環庚烷等乙 烯基環庚院系單體等。此等單體中,以苯乙烯、α_甲基苯 乙烯爲佳。此外’此等的單體可使用單獨1種,亦可合倂 2種以上使用。 &lt;環戊二烯系單體&gt; 上述環戊一烯系單體,可列舉例如環戊二烯、丨_甲基 環戊二烯、2-甲基環戊二烯、2_乙基環戊二烯、5_甲基環 戊二烯、5,5 -甲基環戊二烯等。此等單體中,以環戊二烯 爲佳。此外,此等的單體可使用單獨1種,亦可合倂2種 以上使用。 上述加成聚合反應,可與飽和共聚物(5 )中之加成 聚合反應同樣作法實施。 上述加成型(共)聚合物(6 )的氫化(共)聚合物 ,可藉由使上述加成型(共)聚合物(6 )使用與上述氫 化(共)聚合物(3 )同樣的方法氫化而得到。 -22- 200825135 (7 )交互共聚物: 上述交互共聚物(7),可藉由在路易斯酸等存 ,使上述環狀烯烴與丙烯酸酯自由基聚合而得到。 &lt;丙烯酸酯&gt; 上述丙烯酸酯,可列舉例如甲基丙烯酸酯、2-乙 基丙烯酸酯、環己基丙烯酸酯等碳數1〜20的直鏈狀 支狀或環狀烷基丙烯酸酯;縮水甘油基丙烯酸酯、2-糠基丙烯酸酯等碳原子數2〜20的含有雜環基之丙烯 :苄基丙烯酸酯等碳原子數6〜20的含有芳香族環基 烯酸酯;異冰片基丙烯酸酯、二環戊基丙烯酸酯等碳 〜3 0的具有多環結構之丙烯酸酯。 上述環狀烯烴與丙烯酸酯的比例,使此等的合 1〇〇莫耳,通常環狀烯烴爲30〜70莫耳,丙烯酸酯f 〜30莫耳,較佳係環狀烯烴爲40〜60莫耳,丙烯酸 60〜40莫耳,特別佳係環狀烯烴爲45〜55莫耳,丙 酯爲55〜45莫耳。 上述路易斯酸的使用量,係相對於丙烯酸酯100 爲0.001〜1莫耳較佳。 此外,可使用產生自由基之習知的有機過氧化物 氮二系的自由基聚合起始劑。 聚合反應溫度通常爲-2 0 °C〜8 0 °C,較佳爲 5 °C〜 。此外,聚合反應用溶劑,可列舉於上述開環(共) 反應中所舉例的溶劑。 在下 基己 、分 四氫 酸酯 之丙 數1 δ十爲 I 70 酯爲 烯酸 莫耳 或偶 60°C 聚合 -23- 200825135 再者,本發明中的「交互共聚物」之意,係指來自環 狀嫌煙的結構單位彼此不鄰接的共聚物,亦即,來自環狀 烯烴的結構單位的旁邊一定鍵結來自丙烯酸酯的結構單位 之共聚物。但來自丙烯酸酯的結構單位彼此可鄰接而存在 〇 本發明所使用的環狀烯烴系樹脂的固有黏度〔Tlinh〕 ,以 0.2 〜5dl/g 爲佳,0.3 〜3dl/g 更佳,〇·4 〜1.5dl/g 特 別佳。此外,四氫呋喃作爲溶劑,用滲透色譜法(GPC, 柱:東曹(股)製 TSKgel G7000HXLx 1 、TSKgel GMHXLx2及TSKgel G2 000HXLxl的4支直歹1J )所測量的 聚苯乙烯換算的分子量,數平均分子量(Μη )較佳爲 8,000〜100, 〇〇〇,更佳爲 10,000〜80,000,特別佳爲 1 2,000〜50,000,重量平均分子量(Mw)較佳爲20,000〜 300,000,更佳爲 30,000 〜250,000,特別佳爲 40,000 〜 200,000 ° 固有黏度〔lnh〕、數平均分子量(Μη)及重量平均 分子量(Mw )位於上述範圍之環狀烯烴系樹脂,可得到 成形加工性優異,而且耐熱性、耐水性、耐藥品性、機械 性特性優異的成形品。 此外,上述環狀烯烴系樹脂的玻璃轉化溫度(Tg ), 通常爲130°C以上,較佳爲130〜3 5 0°C,更佳爲130〜 2 5 0 °C,特別佳爲1 4 0〜2 0 0 °C。T g位於上述範圍之樹脂, 即使在高溫條件下使用或伴隨著塗佈及印刷等的加熱之二 次加工中亦不易變形,此外成形加工性優異,亦不易因爲 -24- 200825135 成形加工時的熱而引起樹脂的劣化。 樹脂的折射率nA,可藉由所使用的單體的種類、聚合 比而適當調整,例如 8-甲基-8_甲氧基羰基四環 [4.4.0.12’5.17’1()]-3-十二碳烯0開環單獨聚合物的氫加成 物爲ί·51 ’ 8 -甲基-8-甲氧基簾基四環[4·4.0.12,5.l7,10]-3-十一碳細與雙fe[2·2·l]庚-2-嫌的開環共聚物(組成重量比 =9: 1)的氫化物爲 1.5 1,8-亞乙基四環[4.4.0.12,5.17,10]-3 -十二碳烯的開環單獨聚合物的氫加成物於2 5 °C爲1 . 5 2。 (B)粒子: 本發明所使用的粒子(B )若爲由粒子的表面爲無機 或有機的聚合物成分所成的粒子,可爲由1成分所成者, 例如可爲由如芯殼型粒子之2成分以上所成的複合粒子。 粒子的外形狀並沒有特別限制,但實質上表面不具有角部 的球狀的粒子,由所得到的光擴散性成形品的光擴散性與 明亮度的平衡性優異的觀點而言較佳。如此的粒子中,又 以内部具有1個或複數的空洞之空心粒子,因爲光擴散性 與明亮度的平衡性更增大而較佳。 本發明所使用的粒子(B ),於其體積基準的粒度分 佈中,粒徑低於4·〇 μπι的區域與4.0 μιη以上的區域各自具 有至少一個的極大値。使用具有如此的粒度分佈之粒子, 則可得到光擴散性優異、導光方向不易產生色分散之成形 品。 具有上述粒度分佈之粒子(Β ),可藉由混合平均粒 -25- 200825135 徑爲4·0μιη以上的粒子(B1)與低於4.0μιη的粒子(B2 )而得到,此粒子(Β1 )的平均粒徑,較佳爲4·0μιη以上 ΙΟ.Ομχη以下,更佳爲5·0μπι以上8.0μιη以下,特別佳爲 5·0μιη以上7.0μπι以下。粒子(Β2)的平均粒徑,較佳爲 0·2μπι以上而低於4.0μπι,更佳爲0.3μιη以上3.0μπι以下 ,特別佳爲0.7μηι以上2·0μπι以下。粒子(Β1 )及(Β2 )的平均粒徑位於上述範圍,則可輕易地得到具有上述粒 度分佈之粒子(Β )。再者,於本說明書中,粒子的平均 粒徑之意,係指於體積基準的粒度分佈,頻率的累積値表 示5 0%之粒徑(參考化學工學便覽改訂5版221頁)。 此外,於上述粒子(Β 1 )的體積基準的粒徑分佈中, 波峰面積最大的波峰以對數正態分佈表示時(參考化學工 學便覽改訂5版221頁)中之其幾何標準偏差agB1,較佳 爲1 · 〇以上2 · 0以下,更佳爲1 . 1以上1 · 5以下,於上述 粒子(B2 )的體積基準的粒徑分佈中,波峰面積最大的波 峰以對數正態分佈表示時其幾何標準偏差(JgB2,較佳爲 1·〇以上2.0以下,更佳爲1.1以上1.5以下。藉由使用幾 何標準偏差位於上述範圍的粒子(Β),可得到光擴散性 優異、導光方向不易產生色分散之成形品。 上述粒子(Β1)及(Β2)的折射率ηΒ1&amp; ηΒ2,可藉 由改變後述之交聯性單體或其他的聚合性單體的種類或聚 合比而適當調整。本發明係折射率nBi及ηΒ2,在與上述 環狀烯烴系樹脂(A )的折射率ηΑ之間,符合折射率差的 絶對値|ηΒ1-ηΑ|、|ηΒ2·ηΑ|,各自爲0.04以上較佳,更佳爲 -26- 200825135 〇·〇4〜〇·9,再更佳爲〇·〇5〜0.85,特別佳爲〇.〇6〜0.80的 關係。再者,折射率nA、nB1及nB2係於25°C所測量的d 線的折射率。|nB1-nA|、|nB2-nA|位於上述範圍,則可得到 光擴散性優異、光反射亦小的成形品。 此外,上述粒子(B )中至少一部份爲空心粒子時, 空心粒子的空洞率,以0.01〜60體積%爲佳,0.015〜55 體積%更佳,0.02〜50體積%爲特別佳。空洞率位於上述 範圍之空心粒子係光擴散性能優異,此外,於環狀烯烴系 樹脂中的分散性亦優異。再者,上述空洞率係將空心粒子 分散於環狀烯烴系樹脂(A )中前之値。 上述粒子(B ),只要是具有上述特性之粒子即可, 可使用習知的無機粒子、無機空心粒子、有機粒子或有機 空心粒子。無機粒子及無機空心粒子,可列舉例如玻璃、 Si02、CaC03、及聚有機矽氧烷系化合物等無機粒子。有 機粒子及有機空心粒子,可列舉丙烯基系或苯乙烯系等有 機交聯粒子等。此等的粒子中,若考量與環狀烯烴系樹脂 (A )的親和性或成形加工性等,則以有機交聯粒子爲佳 〇 上述有機交聯粒子的具體例子,可列舉特開昭62-1 2733 6號公報、特開平 0 1 -3 1 5454號公報、特開平04· 1 26771號公報、特開2002-24 1 448號公報所揭示的有機空 心粒子。 此外,上述有機交聯粒子,可藉由使如下述的交聯性 單體與其他的聚合性單體聚合而得到。 -27- 200825135 上述交聯性單體,較佳係二乙烯基苯等非共軛二乙烯 基化合物;三羥甲基丙烷三甲基丙烯酸酯、三羥甲基丙烷 三丙烯酸酯等多價丙烯酸酯化合物等之具有2個以上、較 佳爲2個的共聚性雙鍵之化合物。 上述多元丙烯酸酯化合物,可列舉聚乙二醇二丙烯酸 酯、〗,3 -丁二醇二丙烯酸酯、1,6 -己二醇二丙烯酸酯、新 戊二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、2,2-雙(4-丙 烯氧基丙氧基苯基)丙烷、2,2-雙(4-丙烯氧基二$乙氧基 苯基)丙烷等二丙烯酸酯化合物;三羥甲基丙烷三丙烯酸 酯、三羥甲基乙烷三丙烯酸酯、四羥甲基甲烷三丙烯酸酯 等三丙烯酸酯化合物、乙二醇二甲基丙烯酸酯、二乙二醇 二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚乙二醇二 甲基丙烯酸酯、1,3 -丁二醇二甲基丙烯酸酯、ι,4 -丁二醇 二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、新戊二醇 二甲基丙烯酸酯、二丙二醇二甲基丙烯酸酯、聚丙二醇二 甲基丙烯酸酯、2,2-雙(4-甲基丙烯氧基二乙氧基苯基) 丙烷等二甲基丙烯酸酯化合物;三羥甲基丙烷三甲基丙烯 酸酯、三羥甲基乙烷三甲基丙烯酸酯等三甲基丙烯酸酯化 合物。 上述交聯性單體中,以二乙烯基苯、乙二醇二甲基丙 烯酸酯及三羥甲基丙烷三甲基丙烯酸酯爲佳,特別佳爲二 乙烯基苯。此外,上述交聯性單體可單獨使用或混合2種 以上使用。 其他的聚合性單體,可列舉苯乙烯、α -甲基苯乙烯、 -28 - 200825135 氟苯乙烯、乙烯基吡啶等芳香族乙烯基化合物;丙烯腈' 甲基丙燏腈等氰化乙嫌基化合物;丁基(甲基)丙纟希酸酯 、2 -乙基己基(甲基)丙烯酸酯、甲基(甲基)丙烯酸酯 、2 -經基乙基(甲基)丙烯酸酯、縮水甘油基(甲基)丙 烯酸酯等(甲基)丙烯酸酯;丙烯酸、甲基丙烯酸、馬來 酸、衣康酸等不飽和脂肪酸;丙烯醯胺、甲基丙烯驢胺等 醯胺系單體等。 使上述交聯性單體與其他的聚合性單體聚合後所得到 的有機交聯粒子的内部形成空洞之方法,可採用習知的方 法。具體而言,可列舉 (1 )調製含有發泡劑之有機交聯粒子,然後使此發 泡劑發泡之方法 (2 )調製封入丁烷等揮發性物質的有機交聯粒子, 然後,使此揮發性物質氣化膨漲之方法 (3 )溶解交聯性單體與其他的聚合性單體之聚合物 ’於其中灌入空氣等氣體噴注,於聚合物中封入氣泡後, 將此聚合物粒子化之方法 (4 )調製含有鹼膨漲性的物質之有機交聯粒子,然 後使鹼性液體滲透入此有機交聯粒子後使鹼性膨漲性的物 質膨漲之方法 (5 )使用聚甲基丙烯酸酯的微粒子作爲種粒子,在 此種粒子的存在下使苯乙烯乳化聚合之方法 (6 )使其他的聚合性單體微分散於水中後製作水中 油滴乳膠,於其中添加交聯性單體後聚合之方法 -29- 200825135 (7 )使用有機交聯粒子作爲種粒子,於此種粒子上 聚合、交聯非相溶性的交聯性聚合物之二階段交聯方法 (8 )藉由交聯性單體與其他的聚合性單體的聚合物 的聚合收縮而製造之方法 (9 )噴霧乾燥有機交聯粒子之方法 等,此等中較佳爲使用(4)〜(9)所表示的各方法。 由不會過度損及由本發明的樹脂組成物所得到成形品 的耐熱性之觀點而言,希望上述有機空心粒子的玻璃轉化 溫度(Tg )爲1 〇(TC以上。特別是將本發明的樹脂組成物 以射出成形或擠壓成形等之加熱熔融環狀烯烴系樹脂的溫 度成形時’希望上述有機空心粒子不被環狀烯烴系樹脂的 加熱熔融溫度所熔融。此外,使用有機溶劑調製本發明的 樹脂組成物時,不溶於此有機溶劑較佳。 〔光擴散性樹脂組成物〕 本發明該相關的光擴散性樹脂組成物,含有環狀烯烴 系樹脂(A )與粒子(b ),相對於此等的合計1 〇〇重量% ’粒子(B)的含有率以重量基準而言爲1〇〜1〇,〇〇〇ppm ’較佳爲1〇〜2,000ppm。以上述範圍摻合粒子(B ),則 可得到光擴散性與光穿透性的平衡性優異的成形品。而且 ’前述粒子(B )係於其體積基準的粒度分佈中,粒徑低 於4.0μπι的區域的頻率的累積値(bl )與4 〇μπι以上的區 域的頻率的累積値(b2 )之比例,b 1與b2 〇合計定爲 1 〇 〇體積%時,b 1較佳爲1 〇〜9 0體積%,2 0〜7 0體積%更 -30- 200825135 佳。藉由使用b 1位於上述範圍的粒子(B ),可得到光擴 散性優異、導光方向不易產生色分散的成形品。 具有上述粒度分佈之粒子(B ),粒子(B1 )與(B2 )的合計爲100重量%時,藉由使粒子(B1 )較佳爲以20 〜90重量%,更佳爲以30〜80重量%,特別佳爲以40〜 75重量%的範圍進行混合而可輕易得到。 而且於上述光擴散性樹脂組成物中,使用空心粒子作 爲粒子(B )時,内部可爲空心的狀態(保持空洞的狀態 ),亦可爲環狀烯烴系樹脂浸入狀態,並沒特別的限制。 此外,上述光擴散性樹脂組成物中,在不損及本發明 的效果的範圍,可摻合例如特開平9-22 1 577號公報、特 開平1 0-28 7732號公報所記載的特定的烴系樹脂、或習知 的熱可塑性樹脂、熱塑性彈性體、橡膠質聚合物、有機微 粒子、無機微粒子等。此外,亦可藉由添加2,6-二-t-丁 基-4-甲基酚、2,2,-二羥基-3,3,-二-t-丁基-5,5,_ 二甲基二 苯基甲院、肆[伸甲基- 3-( 3,5 -二-t -丁基·4 -經基苯基)丙 酸酯]甲烷等習知的抗氧化劑;2,4-二羥基二苯甲酮、2_經 基-4-甲氧基二苯甲酮、或苄基丙二酸酯系化合物等紫外線 吸收劑,而使上述光擴散性樹脂組成物安定化。而且,亦 可爲了提局加工性之目的而添加滑劑等添加劑。 上述光擴散性樹脂組成物的調製方法,亦即上述環狀 烯烴系樹脂(A )與粒子(Β )的摻合方法,並沒有特別的 限制,可用習知的方法摻合。可列舉例如 (1 )於環狀烯烴系樹脂(A )溶解於可溶的溶劑中之 -31 - 200825135 狀態下使粒子(B )分散,用習知的方法去除溶劑後得到 上述樹脂組成物之方法 (2 )使環狀烯烴系樹脂(a )熔融的狀態下使粒子( B)分散之方法等。 於上述(1 )的調製方法中,含有環狀烯烴系樹脂(A )的溶液’可使用聚合後的溶液、氫化後的溶液、觸媒去 除後的溶液、經濃縮的溶液、溶解有顆粒狀的環狀烯烴系 樹脂(A )的溶液等。 此外’摻合方法並沒有特別的限制,可列舉例如使用 習知的攪拌機混合之方法、或將含有環狀烯烴系樹脂(A )的溶液與粒子(B )同時供給至習知的擠壓機,而且同 時進行脫溶劑與分散之方法。 另一方面,上述(2 )的調製方法,可列舉例如使用 習知的單軸或二軸的擠壓機之方法。擠壓機的汽缸徑通常 爲1 0〜1 00mm。螺桿亦可使用習知者,例如單軸時可列舉 組合全程、副程(subflight )者、組入達魯記(Dulmage )者、螺桿間距或溝槽深於同一螺桿中變化者。爲二軸時 ,若可自由組合2條或3條的螺桿、異方向或同方向旋轉 的螺桿、螺桿零件之螺桿時,螺桿零件的形狀可從螺桿、 逆送螺桿、漿式螺桿、螺旋漿式螺桿等自由選擇後組入。 擠壓機可僅使用1台,亦可使用連結2台以上者、與 連續式及分批式的捏合機者,可藉由複數的送料器供給原 料至擠壓機。此外,亦可於擠壓機的途中供給粒子(B ) -32- 200825135 此外’可將環狀烯烴系樹脂(A)與粒子(B),使用 習知的轉鼓式或旋轉式等摻合機、或亨雪莉混合機、行星 混合機等混合機預先以固體的狀態混合後,供給至擠壓機 後使粒子(B )分散於環狀烯烴系樹脂(a )中。 將上述環狀烯烴系樹脂(A)、或環狀烯烴系樹脂( A )與粒子(B )雙方,預先用習知的方法乾燥較佳。乾燥 方法可列舉熱風乾燥、除濕乾燥、真空乾燥、氮乾燥等。 乾燥溫度或乾燥時間並無特別的限制,通常可於(Tg-100°c )〜(Tg-20°c )的範圍內任意設定,乾燥時間通常 於2〜6小時的範圍內設定。 將擠壓機的給料斗、投入口、通風口、模具面等,於 氮或氬等惰性氣體中密封(封入)亦較佳。 本發明該相關的光擴散性樹脂組成物,成形光擴散性 的成形品時,儘可能不存在用目視可判別的大小,較佳爲 儘可能不存在50μιη以上的大小的異物。希望如此的異物 的含量爲5個/ 1 0g以下,較佳爲3個/ 1 0g以下,更佳爲0 個 /1 〇g。 異物的含量,可藉由上述樹脂組成物溶解於甲苯、環 己烷等具有樹脂溶解性的溶劑中,用過濾器過濾後,藉由 顯微鏡觀察,計算其大小及個數而測量。此外,亦可環狀 烯烴系樹脂溶解於上述溶劑,用過濾器過濾後’使用以光 散射爲原理之市售的微粒子計數器計數。 此外,本發明該相關的光擴散性樹脂組成物’在供給 至後述的成形加工前,預先用習知的方法去存溶存的水分 -33- 200825135 或氧成分較佳。即使光擴散性樹脂組成物爲粒子或顆粒等 固體形狀時,亦可用習知的方法進行乾燥。乾燥裝置可使 用熱風乾燥機、除濕乾燥機、氮循環式乾燥機、除濕氮循 環式乾燥機、真空乾燥機等習知的乾燥裝置。此等的乾燥 裝置中’由易得到具有色調均勻性的成型品之觀點而言, 使用減壓乾燥機或藉由氮等惰性氣體的循環之乾燥機較佳 〇 乾燥溫度或乾燥時間並沒特別的限制,但通常可於 Tg_l〇〇°C〜Tg-20°C的範圍內任意設定,乾燥時間通常設定 於2〜6小時的範圍內。 〔成形品及導光體〕 (成形品) 本發明該相關的成形品,可藉由使上述光擴散性樹脂 組成物用習知的方法成形而製造。此成形品的形狀並沒有 特別的限制,但由可充分地發揮光學特性之觀點而言,平 板狀爲佳,可依其用途適當設定爲厚度均勻者、厚度連續 變化之楔形狀者、附有圖案者等。 平板狀成形品的厚度,通常爲 0.2mm〜5.0mm,較佳 爲0.8mm〜2.2mm;大小並沒有特別的限制,可任意使用 習知的液晶顯示裝置、穿透篩等所採用的大小,例如可廣 範圍地使用1英寸至4 0英寸。 此外,上述成形品的表面上,可形成目的在於防反射 、聚光、入射光的效率化等之棱鏡、溝、紋理等習知的圖 -34- 200825135 型等。此等圖型可藉由於成形加工時使其轉印之方法、成 形後藉由燙印等而熱轉印之方法、成形後切削表面之方法 、或成形品表面印刷熱硬化或紫外線硬化性樹脂等印刷之 方法等習知的方法而形成。 如此的成形品適合作爲明亮度與光擴散性能與色調均 勻性的平衡性優異之光學零件使用。特別適合使用於液晶 顯示裝置的側光型背光導光體。此導光體即使在使用LED 等點光源時,亦可製作不會因爲光源附近的亮線的產生而 造成局部的亮度不均勻、面内的亮度平衡性佳的背光。 上述成形品的成形方法並沒有特別的限制,但以射出 成形法或擠壓成形法較佳。 (1 )射出成形: 射出成形所使用的射出成形機並沒有特別的規定,可 列舉例如汽缸方式之並列方式、預塑方式;驅動方式之油 壓式、電動式、混合式;合模方式之直壓式、肘節式;射 出方向之横型、縱型等。此外,合模方式亦可爲可用射出 壓縮完成者。汽缸徑及合模力量依目標的成形品的形狀決 定,但一般而言成形品的投影面積愈大合模力量愈大,成 形品的容量愈大時選擇汽缸徑大者較佳。 汽缸爲並列式時,壓縮比、長度/直徑的比、是否有 副程(subflight)等螺桿形狀可適當選擇,螺桿表面上可 施以鉻系、鈦系、氮化物系、碳系等習知的塗佈。此外, 亦可設置目的在於計量或射出動作的安定性之螺桿的旋轉 -35- 200825135 或壓力控制等機構。此外,使汽缸内或貯藏樹脂組成物的 料斗内減壓,於氮等惰性氣體中密封汽缸及料斗,由可穩 定地得到成形品之觀點而言較佳。 本發明的成形品,可使用具有習知的材質或結_的模 具製造。挨具的較佳材質,可列舉一般的碳鋼、不鏽鋼、 或以此寺爲基底之習知的合金類,亦可施以彳竿煉表面之處 理,藉由鉻、鈦、金剛石等之習知的塗佈處理,或藉由鎳 系金屬、銅合金等圖型加工用的金屬鍍敷。 此外’爲了聚光或防反射等目的而於成形品表面形成 圖型時,模具的金屬塗佈面或金屬鍍敷面、或壓模板表面 ’可使用放電加工機、切削加工機等習知的加工機形成直 接圖型,或亦可用電鑄等方法形成圖型。 射出成形時爲了降低成形品的翹曲或安定地連續成形 ’適當使用令模穴減壓之方法或射出壓縮方法較佳。 使模穴内減壓後射出成形時,減壓度以表壓而言較佳 爲-0.08MPa以下,更佳爲-0.09MPa以下,特別佳爲-0.1 MPa以下。超過上述範圍之減壓度,會因爲減壓度不 足,而無法得到光穿透性及光擴散性優異的成形品。 上述範圍的減壓度,可藉由習知方法,例如藉由使用 真空泵而達成,於模穴周圍或噴射器機構部等,使用〇型 圈等習知的密封材較佳,在不會發生雜質混入成形品等的 範圍內,亦可使用真空用的潤滑脂等。此外,用於連接真 空泵等的減壓裝置之吸入口,可設置在模具内的任何地方 ,但通常被設置在噴射器機構部、注入口及流道的端部、 -36- 200825135 套管結構部等。又,真空吸入順序,可配合模具的開關藉 由電磁閥等控制,亦可經常運轉,只要是可在熔融樹脂塡 充時使模穴内達到所望的減壓度之方法即可,並沒有特別 的限制。 使模穴内減壓後射出成形時,爲了在關閉模穴成爲減 壓的狀態下射出熔融樹脂,通常設定射出遲延時間。射出 遲延時間雖然與所使用的真空泵的能力與模穴大小有關, 但通吊爲0 · 5〜3秒左右。 另一方面,射出壓縮成形,可使用將模穴間隔設定爲 成形品的厚度的1 .5〜20倍,於此空隙間射出熔融樹脂, 一邊將汽缸側所測量的樹脂的壓力保持在 200〜 2,000kgf/cm2的範圍,一邊壓縮模具内的成形品面,縮小 模穴的間隔之方法。 此外,亦可使用將模具的芯設定爲成形品的厚度的 1 · 1倍〜1 0倍,爲可動狀態,於其中射出熔融樹脂,從射 出開始或射出結束後,使可動側芯用平均速度0.01 mm/sec 〜lmm/sec進行壓縮之方法。 此等的射出壓縮方法,可使用習知的成形機進行。 射出成形之其他條件,並沒有特別的限制,但通常汽 缸溫度爲260°C〜3 50°C,模具溫度基於環狀烯烴系樹脂的 玻璃轉化溫度Tg,通常爲Tg-l°C〜Tg-40°C,較佳爲Tg-〜-2 5 °C的範圍。此外,射出速度依本發明的成形品的 大小或成形機的汽缸大小而不同,但例如汽缸徑爲2 8mm 時,通常爲80mm/sec以上,較佳爲90〜250mm/sec的高 -37- 200825135 速。保壓係在適當調整成形品的形狀可保持: 、時間後施加較佳。 (2 )擠壓成形: 擠壓成形本發明的成形品之方法,可列: 壓機中使光擴散性樹脂組成物熔融後,將其 的計量,通過具有狹縫狀的出口的模頭而擠 拉伸爲薄片狀或薄膜狀的樹脂組成物,藉由 狀等(以下總稱爲「滾輪等」)的鏡面或刻 樣的表面,在薄片或薄膜(以下總稱爲「薄 面上轉印鏡面或特定的圖案形狀,使此薄片 裁斷機裁斷,用捲繞機捲繞,以標準尺寸得 薄片等之方法。 擠壓成形所使用的較佳擠壓機,可列舉 徑(D )的比(L/D )爲28以上40以下,螺 來決定,但通常爲30mm〜125mm的擠壓機 述範圍,可得到適合的滯留時間,可充分地 樹脂組成物。此外,螺桿徑低於3 0mm,計 生產性變低而較不佳。此外,超過125mm, 原料易滯留而較不佳。 爲了得到薄片等的膜厚安定性等,使用 。齒輪泵可使用習知產品,但特別是使用排 樹脂之方式的外潤式較佳。 用於將本發明的樹脂組成物拉伸爲膜狀 度的最小壓 舉於一般的擠 用齒輪泵定量 壓出來,將被 接解滾輪或帶 有圖案性的模 片等」)的表 等冷却後,用 到所定尺寸的 長度(L )與 桿徑由擠壓量 。L/D位於上 熔融本發明的 量不安定,又 則因爲計量後 齒輪泵亦較佳 出用於潤滑的 之模頭,使用 -38- 200825135 T模頭較佳’其形狀可列舉衣架型模頭、魚尾式模頭等, 衣架型模頭特別佳。分歧管的形狀並沒有特別的限制,以 滯留小者爲佳。此外,Τ模頭的尖端爲銳角邊緣較佳,邊 緣有損傷時,因爲成爲模頭線的原因而較不佳。特別是藉 由火焰噴塗等手法施以鎢-碳化物等超硬塗佈之邊緣處理 ,對於防止模頭線而言極佳。 從Τ模頭轉印至滾輪等時,儘可能使Τ模頭與滾輪等 接近下轉印較佳,其距離爲50mm以下較佳。 轉印所使用的滾輪等,製作平滑的薄片等時,被硏磨 成鏡面狀較佳,表面硏磨狀態以表面粗度而言,最大粗度 爲0·1μιη ( 0.1s )以下較佳。最大粗度超過上述範圍,則 因爲滾輪等的表面的粗度被轉印至薄片等的表面,會成爲 薄片等的外觀上的缺點而較不佳。所使用的滾輪等材質, 以鐵、不鏽鋼、施以硬鉻鍍敷的鐵等較佳。此外,爲了改 良離型性,藉由火焰噴塗等,用氧化鋁或氧化鉻等金屬氧 化物或鎢或鎢碳化物等超硬金屬等,對鐵或不鏽鋼施以處 理。 此外,本發明亦可於滾輪等形成立體模樣,而將此立 體模樣轉印至薄片等的至少單面。 上述立體模樣,並沒有特別的限制,可列舉例如棱鏡 形狀、半圓狀、楕圓形狀、矩形形狀、V字型形狀的溝或 角狀、半球狀、半楕圓狀、圓錐狀、多角錐狀、圓錐梯狀 、多角錐梯狀等凸或凹形狀、不規則凸凹形狀、格子形狀 、分歧溝形狀、其他任意的圖型形狀等。此等的機能亦無 -39- 200825135 特別的限制,但使用可賦予聚光、散射、繞射、偏光等光 學的機能者較佳。 於滾輪等形成立體模樣之方法並沒有特別的限制,可 使用習知的方法。可列舉例如切削之方法、藉由放電加工 之方法、藉由雷射之加工、藉由電鑄之方法、藉由飩刻之 方法、印刷硬化性樹脂之方法、藉由噴砂處理之方法等。 上述立體模樣可直接加工滾輪等基材而形成;此外亦 可將滾輪等基材,用習知的鎳或銅等金屬或其化合物進行 鍍敷,進一步塗佈光硬化性或熱硬化性的有機化合物後, 加工此等。而且,亦可製作壓模板,與金屬環狀帶或金屬 滾輪層合爲複層。 將所得到薄片等從滾輪等剝離時,一邊用張力計等控 制剝離力,一邊拉下薄膜。剝離力係小至不會使薄膜彎曲 、斷裂的程度較佳。 具體的轉印方法,有單面使用滾輪,從與滾輪相反側 之面,用空氣、氮等的氣壓使薄片等壓著於滾輪等之氣刀 方式;外加靜電氣等,用電氣的力量使薄片等附著於滾輪 等之方法;機械式地接觸於鎭壓輪之方法等。此等的轉印 方法中,藉由鎭壓輪之方法,由防止滾輪與薄片等之間進 入空氣而可去除皺褶等發生的危險性之觀點而言較佳。 (導光體) 如上述,本發明的成形品,適合作爲液晶顯示裝置的 背光或前光等光源裝置使用之導光體,特別是適合作爲側 -40- 200825135 光型背光的導光體。本發明的成形品,例如導光體可製作 使用LED等點光源從端面入光時,不會發生因爲光源附 近的亮線的產生所造成的局部的亮度的偏差、面内的亮度 平衡性佳的液晶顯示裝置的光源裝置,例如背光。 此外,本發明的導光體亦可與以亮度提高或亮度均句 &quot; 化爲目的之習知的薄膜進行層合,此外,亦可在導光體表 ' 面實施以防反射、防靜電、防擦傷等爲目的之濕式或乾式 的塗佈。 【實施方式】 [實施例] 以下藉由實施例說明本發明,但本發明並非限定於此 實施例之發明。再者,以下的「份」及「%」,在未特別 規定下,爲「重量份」及「重量%」。 此外,各種物性由以下的方法測量。 ^ (固有黏度:riinh ) 氯仿作爲溶劑,調製聚合物濃度〇· 5 g/dl的試料,在 30°C的條件下用Ubbelohde黏度計測量。 (分子量) 使用東曹股份有限公司製HLC-8020凝膠滲透色譜法 (GPC、柱:東曹(股)製 TSKgel G7000HXLxl、TSKgel GMHXL&gt;&lt;2 及 TSKgel G20〇〇HXLxl 的 4 支直歹ij ),用四氫 -41 - 200825135 重量平均分 Μη表示聚 呋喃(THF )溶劑測量,計算聚苯乙烯換算的 子量(Mw)及分子量分佈(Mw/Mn)。再者, 苯乙烯換算的數平均分子量。 (玻璃轉化溫度:Tg) 在昇温速度 使用 Seiko Instruments 公司製 DSC6200, 2 0 °C /分鐘、氮氣流下測量。 (折射率) 環狀烯烴系樹脂時: 的平板( 分鐘退火, 1週後,以 ;Jena 公司 藉由射出成形製作環狀烯烴系樹脂 40mmx60mmx3.2mm ),以(Tg + 5) 〇C 進行 30 然後,進一步在25°C、50RH%的環境下放置 2 5°C、5 0RH%的條件使用折射率計(Carl Zeis! 製 PR-2)測量d線的折射率。 交聯粒子時: 渣中滴入折 學顯微鏡觀 射率,作爲 將交聯粒子用60網目的金網過濾,於濾 射率標準液(Cargille公司製)混合後,用光 察,將看不見粒子的輪廓的標準液的d線的折 交聯粒子的折射率値。測量係以25 t實施。 (粒度分佈成爲極大値的粒徑) 使用粒度分佈測量裝置(日機裝公司製 -42 - 2008251358.9-Difluoro-8,9-bis(trifluoromethyl)tetracyclo[4·4·0·12,5·Γ,1()]-3-dodecan, 8.8.9-trifluoro- 9-trifluoromethyltetracyclo[4.4.0.12, 5.17,1()]-3-dodecene, 8.8.9-trifluoro-9-trifluoromethoxytetracyclo[4.4.0.12,5. L7,1G]-3-dodecene, 8.8.9-trifluoro-9-pentafluoropropoxytetracyclo[4.4.0.12, 5.17,1()]-3-dodecyl storage, 8-fluoro -8-pentafluoroethyl-9,9-bis(trifluoromethyl)tetracyclo[4·4·0.12'5·Γ'1()]-3-dodecene, 8,9-difluoro -8-heptafluoroiso-propyl-9-trifluoromethyltetracyclo[4.4.0.12'5·Γ'1()]-3-dodecene, 8-chloro-8,9,9-three Fluorotetracyclo [4.4.0.12, 5.17,1()]-3-dodecene, 8.9-dichloro-8,9-bis(trifluoromethyl)tetracyclo[4·4·0·12,5 ·Γ,1()]-3-dodecene, 8-(2,2,2-trifluoroethoxycarbonyl)tetracyclo[4.4·0·l2,5·l7,lί)]-3· Dodecene, 8-methyl-8-(2,2,2-trifluoroethoxycarbonyl)tetracyclo-12- 200825135 [4·4·0·12,5.17'1()]-3- Dodecene and the like. In the cyclic olefin, the above formula (I), R1 and R3 are each independently a hydrogen atom or a hydrocarbon group having a carbon number of preferably from 1 to 10, more preferably from 1 to 4, particularly preferably 1 or 2. Preferably, it is an alkyl group, particularly preferably a methyl group, and R2 and R4 are each independently a hydrogen atom or a monovalent organic group, and at least one of R2 and R4 is a hydrogen atom or the above-mentioned monovalent polar group; m is The integer number of 0 to 3 is preferred, P is preferably an integer of 〇~3, m + p is preferably 0 to 4, and m + p 0 is particularly preferably 0 to 2, and most preferably m = 1, p = 0 ring of suspected hydrocarbons. The cyclic olefin having m = 1 and p = 〇 is most preferable from the viewpoint of obtaining a cyclic olefin-based resin having a high glass transition temperature and excellent mechanical strength. Further, at least one of R2 and R4 is a cyclic olefin having a polar group represented by the following formula (II), and has excellent glass transition temperature, low hygroscopicity, and excellent adhesion to various materials. From the viewpoint of a cyclic olefin resin, it is preferred. Xin-(CH2) nCOOR (II) In the above formula (π), R is preferably a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 or 2 carbon atoms, and more preferably an alkyl group. Further, η is usually 0 to 5, and a cyclic olefin having a small recovery of η is preferable because a cyclic olefin resin having a glass transition temperature cylinder can be obtained, and η is a cyclic olefin of ruthenium, and it is easy to synthesize. The words are particularly good. In particular, the polar group represented by the above formula (II) is bonded to the carbon atom to which the R1 or R3 of the alkyl group is bonded, and the ring-13-200825135-like olefin-based resin having low hygroscopicity can be obtained. It is preferable from the viewpoint. Polymer (1) and polymer (2): The above polymer (1) and polymer (2) may be subjected to ring-opening polymerization of the above cyclic olefin in the presence of a substitution catalyst or The cyclic olefin is obtained by ring-opening copolymerization of a copolymerizable monomer. φ <Copolymerizable monomer> The copolymerizable monomer used in the polymer (2) may, for example, be a cyclic olefin, preferably having a carbon number of 4 to 20, more preferably 5 to 12, more specifically The cyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene may be used singly or in combination of two or more kinds thereof. The ratio of use of the copolymerizable monomer is preferably 100/0 to 5 0/5 0 by weight ratio (cyclic olefin/copolymerizable monomer), and more preferably Φ 100/0 to 60/40. In addition, "a cyclic olefin / copolymerizable monomer = 100 / 0 • ” means the ratio of use of a single polymerization of a cyclic olefin.螫 &lt;Catalyst for ring-opening polymerization&gt; The replacement catalyst used in the ring-opening (co)polymerization reaction is a catalyst composed of a combination of the compound (a) and the compound (b) described below. (a) A compound containing at least one element selected from the group consisting of W, Mo and Re. (b) containing at least one of the periodic table-14-200825135 lanthanum elements (such as Li, Na, K, etc.), lanthanum elements (such as Mg, Ca, etc.), group IIB elements (for example) Compounds of Zn, Cd, Hg, etc., elements of lanthanum elements (such as lanthanum, A1, etc.), IV lanthanum elements (such as S i, S η, Ρ b, etc.) and elements of group IVB (such as Ti, Zr, etc.) A compound having at least one of the foregoing elements and a bond of carbon or a bond of the aforementioned element to hydrogen. Further, in order to increase the activity, the above-mentioned replacement catalyst may further contain an additive (C) to be described later. Specific examples of the compound (a) include compounds described in WC16, MoC16, ReOCh, etc., in the upper left column of the eighth page of the first page of the first page of the eighth page, and the seventh column of the upper right column of the eighth page. Specific examples of the above compound (b) include n-C4H9Li, (C2H5) 3AI &gt; (C2H5) 2AICI &gt; (C2H5) KsAlCh.s '(C2H5)A1C12, methylaluminum tetrahydrofuran, LiH, etc. The compound described in the third column of the right upper column on the eighth page of the first page of the 1st to 1st 32,626 to the third row of the lower right column of the eighth page. As the above-mentioned additive (c), alcohols, aldehydes, ketones, amines and the like are preferably used, and it is also possible to use the eighth column of the lower right column of the first page of the Japanese Patent Publication No. 1 - 1 32626. The compound described in the first column of the upper left column. The ratio of the above compound (a) to the compound (b), in terms of the metal atomic ratio [(a) : (b)], is usually 1··1 to 1:50, preferably 1:2 to 1: 3 0. The ratio of the above additive (c) to the compound (a) is usually 0.005:1 to 15:1, preferably -15-200825135 0.05 :1 in terms of molar ratio [(c): (a)]. 7 : 1 The amount of the ruthenium-substituted catalyst is usually such that the molar ratio of the above compound (a) to the cyclic storage smog [(〇: cyclic olefin) becomes 1: 50,000 〜 ii: 50,000' 1: 1, 〇〇〇 ~ &quot; 〇〇〇 quantity. &lt;Solvent for polymerization reaction&gt;: In the ring-opening (co)polymerization reaction, the solvent is used as a solvent constituting a molecular φ amount adjuster solution to be described later, or a solvent for a cyclic olefin and/or a substitution catalyst. Examples of such a solvent include alkanes such as pentane, hexane, heptane, xinyuan, decane, and decane; and cyclohexanes such as cyclohexane, cycloheptane, cyclooctane, decalin, and norbornene. Class; aromatic hydrocarbons such as benzene, toluene, xylene 'ethylbenzene, and halogen; halogenated chlorobutane, bromohexane, dichloromethane, dichloroethane, dibromohexamethylene, chloroform, tetrachloroethylene, etc. Halogenated aryl group such as chlorobenzene; saturated carboxylic acid ester such as ethyl acetate, η·butyl acetate, iso-butyl acetate, methyl propionate, dibutyl ether, tetrahydrofuran, dimethoxyethane, etc. Ethers. φ These solvents may be used singly or in combination. In these, the amount of the aromatic hydrocarbon is preferably used, and the weight ratio of the solvent to the cyclic olefin (conducting solvent: cyclic olefin) is usually 1:1. 10:1, preferably 1:1 to 5:1. &lt;Molecular weight modifier&gt; The molecular weight of the obtained ring-opened (co)polymer can be adjusted by the polymerization temperature, the type of the catalyst, and the kind of the solvent, but can also be adjusted by adjusting the amount of the molecule-16-200825135. The agent is coexisted in the reaction system and adjusted. Suitable molecular weight modifiers include, for example, ethylene, propylene, 1β butene, 1-pentene, 1-hexene, 1-heptene, decyl octene, decene-decene, decene, and the like. And styrene, in which b butene and b hexene are particularly preferred. Further, these molecular weight modifiers may be used singly or in combination of two types for use. The amount of the molecular weight modifier used is usually from 0.005 to 0.6 mol, preferably from 0.01 to 0.5 mol, based on 1 mol of the cyclic olefin to be supplied to the ring-opening polymerization inverse φ. The above-mentioned ring-opening copolymer can be obtained by ring-opening copolymerization of a cyclic olefin and a copolymerizable monomer to obtain a conjugated diene compound such as polybutadiene or polyisobutylene, a styrene-butadiene copolymer, or the like. The cyclic olefin is subjected to ring-opening copolymerization in the presence of an unsaturated hydrocarbon polymer containing two or more carbon-carbon double bonds, such as an ethylene-non-conjugated diene copolymer or polynorbornene. • (3) Hydrogenated (co)polymer: The above-mentioned ring-opening (co)polymer can be used as it is, but the hydrogenated (co)polymer (3) obtained by hydrogenation is further suitable as the impact resistance. Excellent resin use. The hydrogenation reaction can be carried out by a usual method, that is, hydrogen gas at a pressure of from 300 to 300 atmospheres, preferably from 3 to 200 atmospheres, can be obtained by adding a hydrogenation catalyst to a solution containing a ring-opening (co)polymer. Use 0~200. (:, preferably carried out at a temperature of 20 to 180 ° C. -17- 200825135 &lt;Hydrogenation Catalyst&gt; As the above hydrogenation catalyst, a catalyst used for a hydrogenation reaction can be used. This hydrogenation catalyst can be used as a catalyst. The heterogeneous catalyst may, for example, be a solid catalyst in which a palladium: noble metal catalyst is placed on a carrier such as carbon or titanium dioxide. Uniform catalyst = Φ ethyl aluminum, nickel acetonitrile acetone / triethyl aluminum, octane; chlorotitanium dichloride / diethyl aluminum chloride, cerium acetate, dichloro ginseng (triphenyl phosphine) hydrazine, chlorine Hydrogen carbonyl dichlorocarbonyl ginseng (triphenylphosphine) ruthenium and the like. These can also be granular. These hydrogenation catalysts are used in an amount such that the ratio of the open catalyst (open-cell (co)polymer: 1 χ 10_6 to 1: 2 is preferred. • The above hydrogenated (co) polymer (3) has. Even Deterioration during molding or as a product. Gasification of (co)polymer (3); conditions: 値 measured by 1H-NMR, usually 70% or more, more preferably 90% or more, especially It is better than 9 9%. The higher the hydrogenation rate, the more uniform catalysts and the average, platinum, nickel, ruthenium, osmium, etc., which are similar to those of the olefinic compounds which have been stabilized for a long period of time. , Alumina, and Dioxide&gt; may be exemplified by nickel naphthenate/three-cobalt cobalt/η-butyllithium, dichlorostilbene (triphenylphosphine) ruthenium (triphenylphosphine) ruthenium, and catalyst form. It can be a powder ring (co)polymer and a hydrogen:hydrogenation catalyst. It has excellent thermal stability and heating, and this characteristic is also not high. It is 50% or more, preferably 98% or more at 500 MHz. , the best light guide for better thermal or light stability, etc. 18-200825135 In addition, the above hydrogenation (total Polymer (3), based gel content is preferably 5 wt% or less, particularly preferred is 1 wt% or less. (4) Hydrogenated (co)polymer·· The above hydrogenated (co)polymer (4), the ring-opening (co)polymer of the above (1) or (2) can be reacted by Friedel-Rafts reaction After cyclization, it is obtained by hydrogenation. The method of cyclizing the above-mentioned ring-opening (co)polymer by the Friedel-Rafts reaction is not particularly limited, and for example, an acidic compound described in JP-A-2005-145494 can be used. The known method. Specific examples of the acidic compound include Lewis acid such as A1C13, BF3, FeCl3, Al2〇3, HCl, CH3ClCOOH, zeolite, and activated clay, and Bronsted acid. The cyclized ring-opened (co)polymer can be hydrogenated in the same manner as the hydrogenation reaction of the above ring-opened (co)polymer. (5) Saturated copolymer: The above saturated copolymer (5) can be obtained by subjecting a cyclic olefin to a compound containing an unsaturated double bond in the presence of an addition polymerization catalyst. The addition polymerization method can use the method of the prior art. &lt;Compound containing unsaturated double bond&gt; The compound containing an unsaturated double bond may, for example, be an olefin-based compound such as ethylene, propylene or butylene. Among them, it is preferred that the carbon number is preferably from 2 to -19. - 200825135 1 2, more preferably an olefinic compound of 2 to 8. The compound containing an unsaturated double bond is used in a weight ratio of a cyclic olefin to a compound containing an unsaturated double bond (a cyclic olefin/a compound containing an unsaturated double bond), 90/10 to 40/60. Good, 85/1 5~50/50 is better. However, the total weight of the cyclic olefin and the compound containing an unsaturated double bond is set to 100 〇 φ &lt;Addition polymerization catalyst&gt; The addition polymerization catalyst may, for example, be a combination of at least one compound selected from a titanium compound, a cone compound and a vanadium compound, and an organoaluminum compound as an auxiliary catalyst. Examples of the titanium compound include titanium tetrachloride and titanium trichloride; and the zirconium compound may, for example, be bis(cyclopentadienyl) chromium chloride or bis(cyclopentadienyl) chromium dichloride; , which may be exemplified by the following formula: VO ( OR) aXb, or V ( OR) cxd [only, R is a hydrocarbon group, X is a halogen atom, 0SaS3, 0SbS3, 2S ( a + b) S3, OSd 0$dS4, 3$ (c + d) $4. The vanadium compound or the electrons represented by the above are added to the adduct. The electron donor may be an oxygen-containing electron such as an alcohol, a phenol, a ketone, an aldehyde, a carboxylic acid, an ester of an organic acid or an inorganic acid, an ether, an acid amide, an acid anhydride or an alkoxysilane. A nitrogen-containing electron donor such as ammonia, amine, nitrile or isocyanate. -20- 200825135 The above organoaluminum compound may, for example, be a compound having at least one aluminum-carbon bond or aluminum-hydrogen bond. These organoaluminum compounds may be used singly or in combination of two or more. The amount of the compound selected from the group consisting of a titanium compound, a chromium compound, and a vanadium compound (the total amount of the two or more types used in combination) and the amount of the organoaluminum compound used, and the ratio of the aluminum atom to the titanium atom or the like (Al/Ti or the like) is usually 2 or more, preferably 2 to 50, particularly preferably 3 to 20 °. The solvent used in the above-mentioned addition polymerization reaction may be mentioned in the above ring-opening (co)polymerization reaction. The solvent exemplified. Further, the adjustment of the molecular weight of the saturated copolymer (5) can usually be carried out using hydrogen. (6) Addition (co)polymer and its hydrogenated (co)polymer·· The above-mentioned addition (co)polymer (6) can be formed by addition polymerization of the above cyclic olefin from ethylene It is obtained by using one or more types of monomers selected from hydrocarbon monomers and cyclopentadiene monomers. &lt;Ethylene-based cyclic hydrocarbon-based monomer&gt; The vinyl-based cyclic hydrocarbon-based monomer may, for example, be a vinyl ring such as 4-vinylcyclopentene or 2-methyl-4-isopropenylcyclopentene. a vinylated 5-membered cyclic hydrocarbon monomer such as a pentene monomer, a vinylcyclopentane monomer such as 4-ethenylcyclopentane or 4-isopropenylcyclopentane, or a 4-vinyl ring Hexene, 'isopropenylcyclohexene, 1-methyl-4-isopropenylcyclohexene, 2-methyl-4-ethene-21 - 200825135 cyclohexene, 2-methyl-4-iso Vinylcyclohexene monomer such as propylene cyclohexene, vinyl cyclohexane monomer such as 4-vinylcyclohexane or 2-methylisopropenylcyclohexane, and ethylene, α-methyl Styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, vinyl naphthalene, 2-vinylnaphthalene, 4-phenylstyrene, ρ-methoxystyrene, etc. Styrene monomer, terpene, 1-decene, diterpene, d_limonene, dialene, dipentene, etc., olefinic monomers, 4-vinylcycloheptene, 4-isopropenyl Vinyl φ cycloheptene monomer such as cycloheptene, '4-vinylcycloheptane, 4-isopropenylcycloheptane And other vinyl monomers cycloheptyl faculty. Among these monomers, styrene and α-methylstyrene are preferred. Further, these monomers may be used alone or in combination of two or more. &lt;Cyclopentadiene-based monomer&gt; Examples of the cyclopentene-based monomer include cyclopentadiene, fluorene-methylcyclopentadiene, 2-methylcyclopentadiene, and 2-ethyl group. Cyclopentadiene, 5-methylcyclopentadiene, 5,5-methylcyclopentadiene, and the like. Among these monomers, cyclopentadiene is preferred. Further, these monomers may be used alone or in combination of two or more. The above-mentioned addition polymerization reaction can be carried out in the same manner as the addition polymerization reaction in the saturated copolymer (5). The hydrogenated (co)polymer of the above-mentioned addition (co)polymer (6) can be hydrogenated by the same method as the above hydrogenated (co)polymer (3) by the above-mentioned addition (co)polymer (6) And get it. -22- 200825135 (7) Cross-copolymer: The above-mentioned cross-copolymer (7) can be obtained by radically polymerizing the above cyclic olefin and acrylate by a Lewis acid or the like. &lt;Acrylate&gt; The acrylate may, for example, be a linear branched or cyclic alkyl acrylate having 1 to 20 carbon atoms such as methacrylate, 2-ethyl acrylate or cyclohexyl acrylate; a heterocyclic group-containing propylene having 2 to 20 carbon atoms such as glyceryl acrylate or 2-mercapto acrylate; an aromatic cyclic olefinic acid ester having 6 to 20 carbon atoms such as a benzyl acrylate; an isobornyl group An acrylate having a polycyclic structure of carbon to 30 such as acrylate or dicyclopentyl acrylate. The ratio of the above cyclic olefin to acrylate is such that the total amount of the cyclic olefin is 30 to 70 moles, and the acrylate is f 30 to 30 moles, preferably the cyclic olefin is 40 to 60. Mohr, acrylic 60 to 40 moles, particularly preferred cyclic olefins are 45 to 55 moles, and propyl esters are 55 to 45 moles. The Lewis acid is preferably used in an amount of 0.001 to 1 mol based on the acrylate 100. Further, a conventional organic peroxide nitrogen-based radical polymerization initiator which generates a radical can be used. The polymerization temperature is usually -2 0 ° C to 80 ° C, preferably 5 ° C ~. Further, the solvent for the polymerization reaction may, for example, be a solvent exemplified in the above ring-opening (co) reaction. In the lower base, the tetrahydrogenate has a C number of 1 δ, and the I 70 ester is an oleic acid molar or an even 60 ° C polymerization. -23- 200825135 Further, the meaning of the "interactive copolymer" in the present invention is A copolymer derived from a structural unit of a ring-shaped smog that is not adjacent to each other, that is, a copolymer derived from a structural unit of an acrylate bonded to a structural unit derived from a cyclic olefin. However, the structural unit derived from the acrylate may be adjacent to each other and may have the intrinsic viscosity [Tlinh] of the cyclic olefin-based resin used in the present invention, preferably 0.2 to 5 dl/g, more preferably 0.3 to 3 dl/g, 〇·4 ~1.5dl/g is especially good. In addition, tetrahydrofuran was used as a solvent, and the polystyrene-converted molecular weight, number average, measured by permeation chromatography (GPC, column: TSKgel G7000HXLx 1 , TSKgel GMHXLx2, and TSKgel G2 000HXLxl, 4 歹1J) The molecular weight (?η) is preferably 8,000 to 100, 〇〇〇, more preferably 10,000 to 80,000, particularly preferably 1 2,000 to 50,000, and the weight average molecular weight (Mw) is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000 ° Intrinsic viscosity [lnh], number average molecular weight (??), and a cyclic olefin resin having a weight average molecular weight (Mw) in the above range, and excellent formability and heat resistance. A molded article excellent in water resistance, chemical resistance, and mechanical properties. Further, the glass transition temperature (Tg) of the above cyclic olefin-based resin is usually 130 ° C or higher, preferably 130 to 350 ° C, more preferably 130 to 250 ° C, particularly preferably 1 4 0~2 0 0 °C. A resin having a T g in the above range is not easily deformed even under high-temperature conditions or secondary processing by heating such as coating and printing, and is excellent in moldability and is also difficult to be formed by molding from -24 to 200825135. Heat causes deterioration of the resin. The refractive index nA of the resin can be appropriately adjusted by the kind of the monomer to be used and the polymerization ratio, for example, 8-methyl-8-methoxycarbonyltetracyclo[4.4.0.12'5.17'1()]-3 - The hydrogen addition product of the dodecene oxide 0 ring-opening individual polymer is ί·51 '8-methyl-8-methoxy pentyltetracycline [4·4.0.12, 5.l7, 10]-3 - The hydride of the eleven carbon fine and the double fe[2·2·l]heptan-2-discriminating ring copolymer (composition weight ratio = 9:1) is 1.5 1,8-ethylenetetracyclo[4.4 The hydrogen addition product of the 0.12, 5.17, 10]-3 - dodecene ring-opening polymer alone at 1.5 ° C is 1.52. (B) Particles: The particles (B) used in the present invention are particles formed of a polymer component having an inorganic or organic surface, and may be composed of one component, and may be, for example, a core-shell type. Composite particles composed of two or more particles. The outer shape of the particles is not particularly limited, but a spherical particle having no corner portion on the surface is preferable, and the light diffusing property of the obtained light-diffusing molded article is excellent in the balance between light diffusibility and brightness. Among such particles, hollow particles having one or a plurality of voids inside are preferable because the balance between light diffusibility and brightness is further increased. The particles (B) used in the present invention have a particle size distribution of less than 4·〇 μπι and a region of 4.0 μm or more each having at least one maximum enthalpy in the volume-based particle size distribution. When particles having such a particle size distribution are used, a molded article which is excellent in light diffusibility and which is less likely to cause color dispersion in the light guiding direction can be obtained. The particles (Β) having the above particle size distribution can be obtained by mixing particles (B1) having an average particle size of -25 to 200825135 of 4·0 μm or more and particles (B2) of less than 4.0 μm, and the particles (Β1) The average particle diameter is preferably 4·0 μm or more and Ο.Ομχη or less, more preferably 5·0 μπι or more and 8.0 μηη or less, and particularly preferably 5·0 μιη or more and 7.0 μπι or less. The average particle diameter of the particles (Β2) is preferably 0·2 μm or more and less than 4.0 μm, more preferably 0.3 μm or more and 3.0 μm or less, and particularly preferably 0.7 μm or more and 2·0 μm or less. When the average particle diameter of the particles (?1) and (?2) is in the above range, particles (?) having the above particle size distribution can be easily obtained. Further, in the present specification, the meaning of the average particle diameter of the particles means the particle size distribution on a volume basis, and the cumulative value of the frequency indicates a particle diameter of 50% (refer to the Chemical Engineering Handbook, Revision 5, page 221). Further, in the volume-based particle size distribution of the above-mentioned particles (Β 1 ), when the peak having the largest peak area is represented by a log-normal distribution (refer to the Chemical Engineering Handbook Rev. 5, p. 221), the geometric standard deviation ag1, Preferably, the peak of the peak area is represented by a logarithmic normal distribution in a volume-based particle size distribution of the particle (B2). The geometric standard deviation (JgB2, preferably 1 〇 or more and 2.0 or less, more preferably 1.1 or more and 1.5 or less). By using particles (Β) having a geometric standard deviation within the above range, excellent light diffusibility and light guiding can be obtained. The refractive index ηΒ1 &amp; ηΒ2 of the particles (Β1) and (Β2) can be appropriately changed by changing the kind or polymerization ratio of a crosslinkable monomer or another polymerizable monomer to be described later. The present invention is characterized in that the refractive indices nBi and ηΒ2 are in agreement with the refractive index η of the cyclic olefin-based resin (A), and the absolute 値|ηΒ1-ηΑ|, |ηΒ2·ηΑ| More preferably 0.04 or more,佳 -26- 200825135 〇·〇4~〇·9, and even better 〇·〇5~0.85, especially good 〇.〇6~0.80. Furthermore, the refractive indices nA, nB1 and nB2 are The refractive index of the d-line measured at 25 ° C. |nB1-nA| and |nB2-nA| are in the above range, and a molded article having excellent light diffusibility and low light reflection can be obtained. Further, the above particles (B) When at least a part of the hollow particles are hollow particles, the void ratio of the hollow particles is preferably 0.01 to 60% by volume, more preferably 0.015 to 55 % by volume, and particularly preferably 0.02 to 50% by volume. The hollow particles having a void ratio in the above range It is excellent in the light-diffusion property, and is excellent in the dispersibility in the cyclic olefin-type resin. Moreover, the said cavity ratio is the thing which the hollow particle|grains are the dispersion of the cyclic olefin-type resin (A). Any conventional particles, inorganic hollow particles, organic particles or organic hollow particles may be used as long as they have the above characteristics. Examples of the inorganic particles and the inorganic hollow particles include glass, SiO 2 , CaC03, and polyorganisms. Inorganic particles such as a siloxane compound. Organic Examples of the organic hollow particles such as acryl-based or styrene-based organic cross-linking particles, etc., in consideration of affinity or moldability with the cyclic olefin-based resin (A), etc. The organic cross-linking particle is a specific example of the above-mentioned organic cross-linking particle, and it is exemplified by JP-A-62-1, 2,733, JP-A-H05-31454, and JP-A-2004-216771. The organic hollow particles disclosed in JP-A-2002-24 No. 448. Further, the organic crosslinked particles can be obtained by polymerizing a crosslinkable monomer as described below with another polymerizable monomer. -27- 200825135 The above crosslinkable monomer is preferably a non-conjugated divinyl compound such as divinylbenzene; a polyvalent acrylic acid such as trimethylolpropane trimethacrylate or trimethylolpropane triacrylate. A compound having two or more, preferably two, copolymerizable double bonds, such as an ester compound. Examples of the above polyvalent acrylate compound include polyethylene glycol diacrylate, 3-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and polypropylene glycol diacrylic acid. a diacrylate compound such as an ester, 2,2-bis(4-propenyloxypropoxyphenyl)propane or 2,2-bis(4-propenyloxydi-ethoxyphenyl)propane; Triacrylate compound such as propane triacrylate, trimethylolethane triacrylate, tetramethylol methane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, three Ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, iota, 4-butanediol dimethacrylate, 1,6-hexyl Diol dimethacrylate, neopentyl glycol dimethacrylate, dipropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2-bis(4-methylpropenyloxydiethoxylate) Diphenyl acrylate compound such as propane; trimethylolpropane trimethacrylate, trishydroxyl Trimethylethane methacrylate acrylate compound. Among the above crosslinkable monomers, divinylbenzene, ethylene glycol dimethyl acrylate and trimethylolpropane trimethacrylate are preferred, and divinylbenzene is particularly preferred. Further, the above crosslinkable monomers may be used singly or in combination of two or more. Examples of the other polymerizable monomer include aromatic vinyl compounds such as styrene, α-methylstyrene, -28-200825135 fluorostyrene, and vinylpyridine; and acrylonitrile-methyl acetonitrile and the like. Base compound; butyl (meth) propionate, 2-ethylhexyl (meth) acrylate, methyl (meth) acrylate, 2- phenylethyl (meth) acrylate, shrinkage (meth) acrylate such as glyceryl (meth) acrylate; unsaturated fatty acid such as acrylic acid, methacrylic acid, maleic acid or itaconic acid; guanamine monomer such as acrylamide or methacrylamide; . A method of forming voids in the inside of the organic crosslinked particles obtained by polymerizing the crosslinkable monomer and another polymerizable monomer can be carried out by a conventional method. Specifically, (1) preparing an organic crosslinked particle containing a foaming agent, and then foaming the foaming agent (2) to prepare an organic crosslinked particle sealed with a volatile substance such as butane, and then a method for vaporizing and expanding the volatile substance (3) dissolving a polymer of a crosslinkable monomer and another polymerizable monomer, in which a gas such as air is injected, and after the bubble is sealed in the polymer, Method for polymerizing particles (4) A method of preparing an organic crosslinked particle containing a substance of an alkali swelling, and then allowing an alkaline liquid to permeate into the organic crosslinked particle to expand an alkali-expanding substance (5) a method in which styrene is emulsion-polymerized by using fine particles of polymethacrylate as seed particles in the presence of such particles (6), and other polymerizable monomers are finely dispersed in water to prepare an oil-in-water emulsion in which water is used. Method for adding post-crosslinking monomer and then polymerizing -29- 200825135 (7) Two-stage cross-linking method for polymerizing and cross-linking incompatible cross-linkable polymer using organic cross-linking particles as seed particles (8) by crosslinkable monomers and A method of producing a polymerizable polymer of a polymerizable monomer by shrinkage (9) a method of spray-drying organic crosslinked particles, etc., wherein each of the methods represented by (4) to (9) is preferably used. The glass transition temperature (Tg) of the organic hollow particles is desirably 1 〇 (TC or more) from the viewpoint of not excessively damaging the heat resistance of the molded article obtained from the resin composition of the present invention. In particular, the resin of the present invention is used. When the composition is molded at a temperature of a hot-melt cyclic olefin-based resin such as injection molding or extrusion molding, it is desirable that the organic hollow particles are not melted by the heating and melting temperature of the cyclic olefin resin. Further, the present invention is prepared by using an organic solvent. In the case of the resin composition, it is preferably insoluble in the organic solvent. [Light-diffusing resin composition] The light-diffusing resin composition according to the present invention contains the cyclic olefin resin (A) and the particles (b). The total content of the 1% by weight of the particles (B) is 1 〇 to 1 重量 by weight, and 〇〇〇 ppm ' is preferably 1 〇 to 2,000 ppm. The particles are blended in the above range. (B), a molded article excellent in balance between light diffusibility and light transmittance can be obtained. Further, the particle (B) is in a volume-based particle size distribution, and a particle diameter of less than 4.0 μm is in a region. The ratio of the cumulative enthalpy (b1) of the rate to the cumulative enthalpy (b2) of the frequency of the region above 4 〇μπι, and b 1 and b2 are determined to be 1 〇〇 vol%, and b 1 is preferably 1 〇 to 9 0 5% by volume, more preferably 20 to 70% by volume, more preferably -30-200825135. By using the particles (B) having b 1 in the above range, a molded article having excellent light diffusibility and being less likely to cause color dispersion in the light guiding direction can be obtained. When the particle size distribution particle (B) and the total of the particles (B1) and (B2) are 100% by weight, the particle (B1) is preferably 20 to 90% by weight, more preferably 30 to 80% by weight. %, particularly preferably in the range of 40 to 75 wt%, can be easily obtained. Further, when the hollow particles are used as the particles (B) in the above light-diffusing resin composition, the inside can be in a hollow state (maintaining voids) In the state in which the cyclic olefin resin is immersed, it is not particularly limited. Further, the light-diffusing resin composition may be blended, for example, in a range that does not impair the effects of the present invention. -22 1 577, and JP-A-10-28-7732 Specific hydrocarbon-based resin, or a conventional thermoplastic resin, thermoplastic elastomer, rubbery polymer, organic fine particles, inorganic fine particles, etc. Further, 2,6-di-t-butyl-4 may be added by adding -methylphenol, 2,2,-dihydroxy-3,3,-di-t-butyl-5,5,_dimethyldiphenylmethyl, 肆[methyl- 3-(3, a conventional antioxidant such as 5-di-t-butyl-4-pyridylphenyl)propionate] methane; 2,4-dihydroxybenzophenone, 2-carbamic-4-methoxy 2 An ultraviolet absorber such as benzophenone or a benzylmalonate-based compound stabilizes the light-diffusing resin composition. Further, additives such as a slip agent may be added for the purpose of improving workability. The method for preparing the light-diffusing resin composition, that is, the method for blending the cyclic olefin-based resin (A) and the particles (Β), is not particularly limited, and may be blended by a conventional method. For example, (1) the particles (B) are dispersed in the state of -31 - 200825135 in which the cyclic olefin-based resin (A) is dissolved in a soluble solvent, and the solvent is removed by a conventional method to obtain the resin composition. (2) A method of dispersing the particles (B) in a state in which the cyclic olefin-based resin (a) is melted. In the preparation method of the above (1), the solution containing the cyclic olefin resin (A) can be a solution after polymerization, a solution after hydrogenation, a solution after catalyst removal, a concentrated solution, and dissolved in a granular form. A solution of the cyclic olefin resin (A) or the like. Further, the 'mixing method is not particularly limited, and for example, a method of mixing using a conventional agitator or a solution containing a cyclic olefin-based resin (A) and particles (B) can be simultaneously supplied to a conventional extruder. And at the same time, the method of solvent removal and dispersion is carried out. On the other hand, the preparation method of the above (2) may, for example, be a method using a conventional uniaxial or biaxial extruder. The cylinder diameter of the extruder is usually 10 to 00 mm. The screw can also be used by a conventional person, for example, a single shaft, a combination of a full range, a subflight, a group of Dulmage, a screw pitch or a groove deeper than the same in the screw. For the two-axis, if you can freely combine two or three screws, screws in different directions or in the same direction, and screws in the screw parts, the shape of the screw parts can be from the screw, the reverse screw, the slurry screw, the propeller The screw or the like is freely selected and then incorporated. The extruder can be used only in one unit, or two or more units, and continuous and batch type kneading machines can be used, and the raw materials can be supplied to the extruder by a plurality of feeders. In addition, the particles (B) can be supplied in the middle of the extruder. -32- 200825135 In addition, the cyclic olefin resin (A) and the particles (B) can be blended using a conventional drum type or rotary type. A mixer such as a machine or a Henschel mixer or a planetary mixer is mixed in advance in a solid state, and then supplied to an extruder to disperse the particles (B) in the cyclic olefin resin (a). Both the above cyclic olefin-based resin (A) or the cyclic olefin-based resin (A) and the particles (B) are preferably dried by a conventional method. Examples of the drying method include hot air drying, dehumidifying drying, vacuum drying, and nitrogen drying. The drying temperature or the drying time is not particularly limited, and can usually be arbitrarily set within the range of (Tg - 100 ° C ) to (Tg - 20 ° C ), and the drying time is usually set within the range of 2 to 6 hours. It is also preferable to seal (enclose) the hopper, the inlet port, the vent, the die face, and the like of the extruder in an inert gas such as nitrogen or argon. In the light-diffusing resin composition according to the present invention, when forming a light-diffusing molded article, there is no visually discriminable size as much as possible, and it is preferable that foreign matter having a size of 50 μm or more is not present as much as possible. The content of such foreign matter is desirably 5 / 10 g or less, preferably 3 / 10 g or less, more preferably 0 / 1 〇 g. The content of the foreign matter can be measured by dissolving the resin composition in a resin-soluble solvent such as toluene or cyclohexane, filtering it with a filter, and measuring the size and number thereof by a microscope. Further, the cyclic olefin resin may be dissolved in the solvent and filtered through a filter, and then counted using a commercially available microparticle counter based on the principle of light scattering. In addition, the light-diffusing resin composition of the present invention is preferably stored in a conventional manner by a conventional method before the forming process described later is carried out by using a conventional method. When the light-diffusing resin composition is in the form of a solid such as particles or granules, it can be dried by a known method. The drying device can be a conventional drying device such as a hot air dryer, a dehumidifying dryer, a nitrogen circulating dryer, a dehumidifying nitrogen circulating dryer, or a vacuum dryer. In such a drying apparatus, from the viewpoint of easily obtaining a molded article having a uniformity of color tone, it is preferable to use a vacuum dryer or a dryer which circulates an inert gas such as nitrogen, and the drying temperature or drying time is not particularly The limitation is usually arbitrarily set within the range of Tg_l 〇〇 ° C to Tg -20 ° C, and the drying time is usually set in the range of 2 to 6 hours. [Molded product and light guide] (Molded product) The molded article according to the present invention can be produced by molding the light diffusing resin composition by a known method. The shape of the molded article is not particularly limited, but a flat plate shape is preferable from the viewpoint of sufficiently exhibiting optical characteristics, and a wedge shape having a uniform thickness and a continuously varying thickness can be appropriately set depending on the application, and Patterns, etc. The thickness of the flat molded article is usually 0.2 mm to 5.0 mm, preferably 0.8 mm to 2.2 mm, and the size is not particularly limited, and the size of a conventional liquid crystal display device, a penetrating screen, or the like can be arbitrarily used. For example, 1 inch to 40 inches can be used in a wide range. Further, on the surface of the above-mentioned molded article, a conventionally-formed type of the prism, the groove, the texture, and the like, which are intended to prevent reflection, condensing, and efficiency of incident light, can be formed, and the like, and the like. These patterns can be obtained by a method of transferring the film during forming, a method of thermally transferring by hot stamping after molding, a method of cutting the surface after molding, or a surface of the molded article by heat hardening or ultraviolet curable resin. It is formed by a conventional method such as a printing method. Such a molded article is suitable for use as an optical component excellent in brightness and light balance performance and color tone uniformity. It is particularly suitable for use in edge-lit backlights for liquid crystal displays. Even when a light source such as an LED is used, the light guide body can produce a backlight that does not cause local unevenness in brightness due to generation of bright lines in the vicinity of the light source, and has excellent brightness balance in the plane. The molding method of the above-mentioned molded article is not particularly limited, but it is preferably an injection molding method or an extrusion molding method. (1) Injection molding: The injection molding machine used for injection molding is not particularly limited, and examples thereof include a parallel method of a cylinder type, a pre-molding method, a hydraulic type of a driving method, an electric type, a hybrid type, and a mold clamping method. Straight pressure type, toggle type; horizontal and vertical directions of injection direction. In addition, the mold clamping method can also be used for the output injection compression. The cylinder diameter and the clamping force are determined according to the shape of the target molded article, but generally, the larger the projected area of the molded article, the larger the clamping force, and the larger the capacity of the molded product, the better the cylinder diameter is selected. When the cylinder is a parallel type, the compression ratio, the ratio of the length to the diameter, and the shape of the screw such as a subflight can be appropriately selected, and the surface of the screw can be applied with a chromium-based, titanium-based, nitride-based, or carbon-based system. Coating. In addition, it is also possible to provide a mechanism for rotating the screw of the stability of the metering or injection operation -35-200825135 or pressure control. Further, it is preferable to decompress the inside of the cylinder or the hopper in which the resin composition is stored, and to seal the cylinder and the hopper in an inert gas such as nitrogen, from the viewpoint of stably obtaining a molded article. The molded article of the present invention can be produced by using a mold having a conventional material or a knot. The preferred material of the cookware may be a general carbon steel, stainless steel, or a conventional alloy based on the temple, or may be subjected to a treatment of a smelting surface by means of chrome, titanium, diamond, or the like. The known coating treatment or metal plating for pattern processing such as nickel-based metal or copper alloy. In addition, when a pattern is formed on the surface of a molded article for the purpose of condensing or anti-reflection, a metal coated surface, a metal plating surface, or a stamper surface of the mold may be known by using an electric discharge machine or a cutting machine. The processing machine forms a direct pattern, or may be formed by electroforming or the like. In order to reduce the warpage or stability of the molded article during injection molding, it is preferable to use a method of appropriately reducing the pressure of the cavity or an injection compression method. When the inside of the cavity is reduced in pressure and then injection molded, the degree of pressure reduction is preferably -0.08 MPa or less, more preferably -0.09 MPa or less, and particularly preferably -0.1 MPa or less in terms of gauge pressure. When the degree of pressure reduction exceeding the above range is insufficient, the molded article having excellent light transmittance and light diffusibility cannot be obtained because the degree of pressure reduction is insufficient. The degree of pressure reduction in the above range can be achieved by a conventional method, for example, by using a vacuum pump, and it is preferable to use a conventional sealing material such as a 〇-ring around the cavity or the ejector mechanism. The impurities may be mixed into the molded article or the like, and a grease for vacuum or the like may be used. Further, the suction port of the pressure reducing device for connecting a vacuum pump or the like may be disposed anywhere in the mold, but is usually disposed at the end of the injector mechanism portion, the injection port, and the flow path, -36-200825135 Casing structure Department and so on. Moreover, the vacuum suction sequence can be controlled by a solenoid valve or the like in conjunction with the switch of the mold, and can be operated frequently, as long as it is a method capable of achieving a desired degree of decompression in the cavity when the molten resin is filled, and there is no particular limit. When the inside of the cavity is depressurized and injection-molded, the injection delay time is usually set in order to eject the molten resin in a state where the closed cavity is depressurized. Although the delay time of the injection is related to the capacity of the vacuum pump used and the cavity size, the hanging is about 0.5 to 3 seconds. On the other hand, in the injection compression molding, the cavity interval can be set to 1.5 to 20 times the thickness of the molded article, and the molten resin is injected between the gaps while maintaining the pressure of the resin measured on the cylinder side at 200~. In the range of 2,000 kgf/cm2, the method of reducing the interval between the cavities while compressing the molded surface in the mold. Further, the core of the mold may be set to be 1 to 1 times to 10 times the thickness of the molded article, and the molten resin may be emitted therein, and the average speed of the movable side core may be set from the start of the injection or the end of the injection. 0.01 mm/sec to 1 mm/sec for compression. These injection compression methods can be carried out using a conventional molding machine. The other conditions for injection molding are not particularly limited, but usually the cylinder temperature is 260 ° C to 3 50 ° C, and the mold temperature is based on the glass transition temperature Tg of the cyclic olefin resin, usually Tg - 1 ° C ~ Tg - 40 ° C, preferably in the range of Tg - 〜 -2 5 °C. Further, the injection speed differs depending on the size of the molded article of the present invention or the cylinder size of the molding machine. However, for example, when the cylinder diameter is 28 mm, it is usually 80 mm/sec or more, preferably 90 to 250 mm/sec. 200825135 speed. The pressure holding system can maintain the shape of the molded article appropriately: It is preferable to apply it after time. (2) Extrusion: The method of extruding the molded article of the present invention may be as follows: after the light diffusing resin composition is melted in a press, the metering thereof is passed through a die having a slit-like outlet. a resin composition which is extruded into a sheet shape or a film shape, by a mirror or a surface of a shape or the like (hereinafter collectively referred to as "roller or the like"), in a sheet or a film (hereinafter collectively referred to as a "thin transfer mirror or The specific pattern shape is such that the sheet cutting machine is cut, wound by a winder, and obtained by a standard size, etc. The preferred extruder used for extrusion molding may be a ratio of diameter (D) (L). /D) is 28 or more and 40 or less, and is determined by a screw. However, the range of the extruder is usually 30 mm to 125 mm, and a suitable residence time can be obtained, and the resin composition can be sufficiently obtained. Further, the screw diameter is less than 30 mm. In addition, it is less than 125 mm, and the raw material is liable to be retained and is inferior. In order to obtain the film thickness stability of a sheet, etc., the gear pump can use a conventional product, but in particular, a resin is used. The external type of the method is preferred. The resin composition of the present invention is stretched to a minimum degree of filminess, and is cooled by a general extrusion gear pump, and is cooled by a watch or the like, or a patterned die or the like. The length (L) and the rod diameter of the specified size are used. L/D is located on the upper part of the invention. The amount of the invention is unstable, and since the gear pump is also preferably used for lubrication, the -38-200825135 T die is preferably used. Head, fishtail die, etc., hanger type die is particularly good. The shape of the branch pipe is not particularly limited, and it is preferable to stay small. Further, the tip end of the boring die is preferably an acute-angled edge, and when the edge is damaged, it is less preferable because it is a die line. In particular, the edge treatment of an ultra-hard coating such as tungsten-carbide by means of flame spraying or the like is excellent for preventing the die line. When transferring from the boring die to the roller or the like, it is preferable to transfer the boring die to the roller or the like as much as possible, and the distance is preferably 50 mm or less. When a smooth roll or the like is produced for the transfer of the roller or the like, it is preferably honed into a mirror shape, and the surface honed state is preferably 0. 1 μm (0.1 s) or less in terms of surface roughness. When the maximum thickness is more than the above range, the thickness of the surface of the roller or the like is transferred to the surface of the sheet or the like, which is disadvantageous in appearance of the sheet or the like. The material such as the roller to be used is preferably iron, stainless steel, iron plated with hard chrome plating, or the like. Further, in order to improve the release property, iron or stainless steel is treated by flame spraying or the like using a metal oxide such as alumina or chromium oxide or a superhard metal such as tungsten or tungsten carbide. Further, the present invention can also form a three-dimensional pattern on a roller or the like, and transfer the stereoscopic pattern to at least one side of a sheet or the like. The stereoscopic shape is not particularly limited, and examples thereof include a prism shape, a semicircular shape, a rounded shape, a rectangular shape, a V-shaped groove or an angular shape, a hemispherical shape, a semi-circular shape, a conical shape, and a polygonal pyramid shape. A convex or concave shape such as a conical ladder shape or a polygonal pyramid shape, an irregular convex and concave shape, a lattice shape, a bifurcated groove shape, and any other pattern shape. These functions are not particularly limited to -39- 200825135, but it is better to use optical functions that impart concentration, scattering, diffraction, and polarization. The method of forming a three-dimensional pattern on a roller or the like is not particularly limited, and a conventional method can be used. For example, a method of cutting, a method of electrical discharge machining, a process by laser, a method of electroforming, a method of engraving, a method of printing a curable resin, a method of sandblasting, and the like can be mentioned. The above-mentioned three-dimensional pattern can be formed by directly processing a substrate such as a roller, or a substrate such as a roller can be plated with a metal such as nickel or copper or a compound thereof to further coat a photocurable or thermosetting organic compound. After the compound, this is processed. Further, a press plate can be produced and laminated with a metal endless belt or a metal roller as a composite layer. When the obtained sheet or the like is peeled off from a roller or the like, the film is pulled down while controlling the peeling force with a tensiometer or the like. The peeling force is so small that the film is not bent or broken. For the specific transfer method, the roller is used on one side, and the air knife method such as the roller is pressed against the surface on the opposite side of the roller by air pressure such as air or nitrogen; and electrostatic gas or the like is applied, and electrical force is used. A method of attaching a sheet or the like to a roller or the like; a method of mechanically contacting the rolling wheel, or the like. In such a transfer method, it is preferable from the viewpoint of preventing the risk of occurrence of wrinkles or the like by preventing air from entering between the roller and the sheet by the method of rolling the wheel. (Light Guide) As described above, the molded article of the present invention is suitable as a light guide used for a light source device such as a backlight or a front light of a liquid crystal display device, and is particularly suitable as a light guide for a side-40-200825135 light type backlight. In the molded article of the present invention, for example, when a light source is used to input light from an end surface using a point light source such as an LED, local brightness variation due to generation of a bright line in the vicinity of the light source does not occur, and in-plane brightness balance is good. A light source device of a liquid crystal display device, such as a backlight. In addition, the light guide of the present invention may be laminated with a conventional film for the purpose of brightness enhancement or brightness uniformity, and may also be implemented on the surface of the light guide to prevent reflection and antistatic. Wet or dry coating for the purpose of anti-scratch, etc. [Embodiment] [Examples] Hereinafter, the present invention will be described by way of examples, but the invention is not limited to the invention of the examples. In addition, the following "parts" and "%" are "parts by weight" and "% by weight" unless otherwise specified. Further, various physical properties were measured by the following methods. ^ (Intrinsic viscosity: riinh) Chloroform was used as a solvent to prepare a sample having a polymer concentration of 〇·5 g/dl, which was measured at 30 ° C using an Ubbelohde viscometer. (Molecular weight) Using HLC-8020 gel permeation chromatography manufactured by Tosoh Corporation (GPC, column: TSKgel G7000HXLxl, TSKgel GMHXL) manufactured by Tosoh Corporation &lt;2 and 4 straight 歹 ij of TSKgel G20〇〇HXLxl, using tetrahydro-41 - 200825135 weight average Μη to represent the measurement of polyfuran (THF) solvent, calculate the polystyrene-converted amount (Mw) and molecular weight Distribution (Mw/Mn). Further, the number average molecular weight in terms of styrene. (Glass transition temperature: Tg) Measured at a temperature increase rate using a DSC 6200 manufactured by Seiko Instruments Co., Ltd. at 20 ° C /min under a nitrogen stream. (refractive index) in the case of a cyclic olefin resin: a plate (minute annealing, one week later, Jena Corporation, 40 mm x 60 mm x 3.2 mm by injection molding), and (Tg + 5) 〇C Then, the refractive index of the d-line was measured using a refractometer (Carl Zeis® PR-2) under conditions of 25 ° C and 50 RH % in an environment of 25 ° C and 50 RH %. When cross-linking particles: The spectroscopy is dropped into the observation microscope microscopic observation rate, and the cross-linked particles are filtered with a gold mesh of 60 mesh, and mixed with a filter solution standard solution (manufactured by Cargille), and the particles are invisible by light. The contour of the standard liquid of the d-line is the refractive index of the cross-linked particles. The measurement system was implemented at 25 t. (Particle size distribution becomes extremely large particle size) Using a particle size distribution measuring device (Nikkiso Co., Ltd. -42 - 200825135

MicrotracUAPlSO)藉由光散射法測量粒度分佈。計算得 到於所得到的粒度分佈曲線中頻率成爲極大的粒徑。 (平均粒徑) 粒度分佈測定裝置(日機裝社製 MicrotracUAP150) 藉由光散射法測量粒度分佈。將所得到的粒度分佈標繪於 對數確率紙,將以體積基準而言累積成爲50%的粒徑,作 爲平均粒徑。 (空洞率) 空洞率,係藉由用掃描型電子顯微鏡觀察粒子的橫切 面,且處理此影像而計算出。 (A )爲由單一的空洞所成的空心粒子時 粒子的外徑定爲d 1,空心部的外徑定爲d 2,由下述 式計算出空洞率。 空洞率=(d2/dl) 3χ1〇〇 (Β )爲由複數的空洞所成的空心粒子時 進行粒子的橫切面的影像解析,算出空心部所佔的面 積A,用下式算出將複數的空洞當作單一的空洞時的對應 粒徑d3。 -43- 200825135 d3 = ( 4 Α/π ) 1/2 由對應粒徑d3與外徑d 1用下述式算出空洞率。 空洞率=(d3/dl) 3χ100 &lt;環狀烯烴系樹脂的合成&gt; [合成例1] 將作爲環狀烯烴之 8-甲基-8-甲氧基羰基四環 [4·4·0·12’5·17’1()]-3-十二碳烯250份、與作爲分子量調節 劑之1 -己烯4 1份、與作爲開環聚合反應用溶劑之甲苯 7 5 0份,裝入經氮置換的反應容器内,將此溶液加熱至 6 0 °C。接著,於反應容器内的溶液中,添加三乙基鋁的甲 苯溶液(濃度1 ·5莫耳/L ) 0.62份、與用t-丁醇/甲醇改性 的六氯化鎢(t-丁醇:甲醇:鎢=0.35莫耳:0.3莫耳:1 莫耳)的甲苯溶液(濃度〇.〇5莫耳/L) 3.7份,藉由將此 溶液用80 °C加熱攪拌3小時,使其開環聚合反應而得到含 開環聚合物的溶液。 此聚合反應中之聚合轉化率爲9 7%。 將如此作法所得到的開環聚合物溶液4,000份裝入高 壓鍋中,於此開環聚合物溶液中,添加0.48份的RuHCl (CO ) [P ( C6H5 ) 3]3,藉由在氫氣壓100kg/cm2、反應溫 度1 6 5 °C的條件下加熱攪拌3小時使其氫化反應。使所得 到的反應溶液(含氫化聚合物之溶液)冷卻後,使氫氣釋 -44- 200825135 壓。 接著,將此反應溶液注入於多量的甲醇中後使氫化聚 合物凝固、回收。 然後,將回收的氫化聚合物溶解於甲苯而調製濃度 20%的溶液,用孔徑Ιμπι的過濾器過濾後,再次注入於多 量的甲醇後使氫化聚合物凝固、回收。此再溶解/析出·回 收操作重複3次,將最後所得到的氫化聚合物,在減壓下 以1 0(TC乾燥1 2小時後,使用熔融擠壓機造粒而調製顆粒 〇 如此作法所得到的氫化聚合物(以下亦稱爲「環狀烯 烴系樹脂A1」)的氫化率,以400MHz的條件藉由1H-NMR測量的結果,實質上爲100%。MicrotracUAPlSO) measures the particle size distribution by light scattering. The particle size obtained in the obtained particle size distribution curve became extremely large. (Average particle diameter) Particle size distribution measuring apparatus (Microtrac UAP150, manufactured by Nikkiso Co., Ltd.) The particle size distribution was measured by a light scattering method. The obtained particle size distribution was plotted on a logarithmicity-determining paper, and a particle diameter of 50% was accumulated on a volume basis as an average particle diameter. (Colity ratio) The void ratio was calculated by observing the cross section of the particles with a scanning electron microscope and processing the image. (A) In the case of hollow particles formed of a single cavity, the outer diameter of the particles is set to d 1, and the outer diameter of the hollow portion is set to d 2 , and the void ratio is calculated by the following formula. Cavity ratio = (d2/dl) 3χ1〇〇(Β) is a hollow particle formed by a plurality of voids. The image of the cross section of the particle is analyzed, and the area A occupied by the hollow portion is calculated, and the complex equation is calculated by the following equation. The corresponding particle size d3 when the hole is treated as a single cavity. -43- 200825135 d3 = ( 4 Α / π ) 1/2 The void ratio is calculated from the corresponding particle diameter d3 and the outer diameter d 1 by the following formula. Cavitation ratio = (d3/dl) 3χ100 &lt;Synthesis of cyclic olefin resin&gt; [Synthesis Example 1] 8-methyl-8-methoxycarbonyltetracyclohexane as a cyclic olefin [4·4·0 12 parts of 12'5·17'1()]-3-dodecene, and 4 parts of 1-hexene as a molecular weight modifier, and 75 parts of toluene as a solvent for ring-opening polymerization reaction, The reaction vessel was replaced with nitrogen and the solution was heated to 60 °C. Next, in the solution in the reaction vessel, 0.62 parts of a toluene solution of triethylaluminum (concentration of 1 ·5 mol/L) and tungsten hexachloride modified with t-butanol/methanol (t-butyl) were added. Alcohol: methanol: tungsten = 0.35 mol: 0.3 mol: 1 mol) toluene solution (concentration 〇 〇 5 mol / L) 3.7 parts, by heating the solution at 80 ° C for 3 hours, so that The ring-opening polymerization reaction gives a solution containing a ring-opening polymer. The polymerization conversion ratio in this polymerization reaction was 9 7%. 4,000 parts of the ring-opening polymer solution obtained in this way was placed in an autoclave, and 0.48 parts of RuHCl(CO) [P(C6H5)3]3 was added to the ring-opening polymer solution by a pressure of 100 kg under hydrogen. /cm2, the reaction temperature was 165 ° C, and the mixture was heated and stirred for 3 hours to cause hydrogenation. After the obtained reaction solution (solution containing a hydrogenated polymer) was cooled, the hydrogen gas was released at -44 to 200825135. Next, this reaction solution was poured into a large amount of methanol, and the hydrogenated polymer was solidified and recovered. Then, the recovered hydrogenated polymer was dissolved in toluene to prepare a solution having a concentration of 20%, and the mixture was filtered through a filter having a pore size of Ιμπι, and then injected into a large amount of methanol to solidify and recover the hydrogenated polymer. This redissolution/precipitation/recovery operation was repeated three times, and the finally obtained hydrogenated polymer was subjected to 10 ° drying under reduced pressure for 12 hours, and then granulated by a melt extruder to prepare pellets. The hydrogenation ratio of the obtained hydrogenated polymer (hereinafter also referred to as "cyclic olefin resin A1") was substantially 100% as a result of 1H-NMR measurement under conditions of 400 MHz.

此外,環狀烯烴系樹脂A 1於2 8 °C的折射率爲1 . 5 1, riinh 爲 0.52 ’ Mw 爲 7 5,0 00,M w/Mn 爲 3 · 5,Tg 爲 1 64 °C ^ [合成例2] 除了使用作爲環狀烯烴之8 -甲基-8 -甲氧基鑛基四環 泰 [4·4·0·12’5.17’1()]-3-十二碳烯 225 份與雙環[2.2.1]庚-2-烯 2 5份,使用作爲分子量調節劑之1 -己烯4 3份以外,其餘 與合成例1同樣作法而得到氫化聚合物。將所得到的氫化 聚合物(以下稱爲「環狀烯烴系樹脂Α2」)的氫化率, 實質上爲100%。 環狀烯烴系樹脂Α2於28°C的折射率爲,ηιη1ι爲 -45- 200825135 0.50,Mw 爲 62,000,Mw/Mn 爲 3·5,Tg 爲 141°C。 [合成例3] 除了使用作爲環狀烯烴之 8·亞乙基四環 [4·4·0·12’5·17’1()]-3·十二碳烯250份、作爲開環聚合反應 用溶劑之環己烷7 5 0份以外,與合成例1同樣作法而得到 氫化聚合物。所得到的氫化聚合物(以下稱爲「環狀烯烴 系樹脂A3」)的氫化率,實質上爲1〇〇%。 環狀烯烴系樹脂A3於28°C的折射率爲1.52,iiinh爲 0·50,Mw 爲 65,000,Mw/Mn 爲 3.0,Tg 爲 145°C。 &lt;交聯粒子的調製&gt; [調製例1] 將苯乙烯98份、甲基丙烯酸2份、t-十二烷基硫醇 10份、十二烷基苯磺酸鈉0· 05份、過氧化鉀0.4份、及 水2 00份加進2升的燒瓶中,一邊攪拌一邊在氮氣中昇溫 至7 0 °C進行6小時聚合。藉此得到聚合收率9 8 %且平均粒 徑0.3 1 μ m的種聚合物粒子。 接著,將所得到的種聚合物粒子3份、聚乙烯基醇1 〇 份、氫醌〇.〇5份、水500份、過氧化苯醯基1份、二乙 燏基苯(純度55% ) 50份、及環己醇5份放進反應器中攪 拌3 0分鐘後昇溫至70°C進行4小時聚合,得到交聯粒子 。然後,於此交聯粒子的分散體中加入1 %的硫酸鋁水溶 液後過濾,充分水洗而去除環己醇後,減壓乾燥後得到粉 -46- 200825135 體狀的交聯粒子B2-1。 將此交聯粒子B2_ 1的粒徑分佈標繪於對數正態槪率 紙上,確認其爲遵從對數正態分佈。平均粒徑(以體積基 準而言頻率的累積値顯示出50%之粒徑)爲3·3 μπι、幾何 標準偏差爲1 · 2、空洞率4 8 %的空心粒子。此外,此交聯 : 粒子Β2-1於25°C的折射率爲1.59。 黪 φ [調製例2] 除了種聚合物粒子的添加量變更爲7份以外,其餘與 調製例1同樣作法而得到粉體狀的交聯粒子B2_2。將此交 聯粒子B2-2的粒徑分佈標繪於對數正態槪率紙上,確認 其爲遵從對數正態分佈。平均粒徑(以體積基準而言頻率 的累積値顯示出50%之粒徑)爲0.8μπι、幾何標準偏差爲 1.2、空洞率47%的空心粒子。此外,此交聯粒子Β2-2於 2 5 °C的折射率爲1 . 5 9。 . [調製例3] 除了使用二乙烯基苯5份與苯乙烯45份,取代二乙 烯基苯50份以外,其餘與調製例1同樣作法而得到交聯 粒子B2-3。將此交聯粒子B2-3的粒徑分佈標繪於對數正 態槪率紙上,確認其爲遵從對數正態分佈。平均粒徑(以 體積基準而言頻率的累積値顯示50%之粒徑)爲3.3 μπι、 幾何標準偏差爲1.2,但空洞不被承認(空洞率0% )。此 外,此交聯粒子Β2-3於25°C的折射率爲1.59。 -47- 200825135 [調製例4] 除了使用二乙烯基苯5份與苯乙烯45份,取代二乙 烯基苯5 0份以外,其餘與調製例2同樣作法而得到交聯 粒子B2-4。將此交聯粒子B2-4的粒徑分佈標繪於對數正 態槪率紙上,確認爲遵從對數正態分佈。平均粒徑(以體 積基準而言頻率的累積値顯示出50%之粒徑)爲〇.8 μχη、 幾何標準偏差爲1 ·2,但空洞不被承認(空洞率〇% )。此 外,此交聯粒子Β2-4於25°C的折射率爲1.59。 〔交聯粒子B 1〕 交聯粒子B1-1使用Rohm and Haas公司製粒子(商 品名:PERLOID EXL-5136)。此交聯粒子Β1·1的粒徑分 佈標繪於對數正態槪率紙上,確認其爲遵從對數正態分佈 。平均粒徑(以體積基準而言頻率的累積値顯示出50%之 粒徑)爲5·0μιη,幾何標準偏差爲1.2,於25艺的折射率 爲 1.46 ° [實施例1〜7、比較例1〜9] &lt;樹脂組成物的製造&gt; 混合表1中所表示的組合的粒子,測量混合後的粒子 的粒度分佈,計算頻率成爲極大的粒徑。接著,將環狀烯 烴系樹脂事先以1 〇〇 °C真空乾燥4小時。然後,以表1所 表示的比例用轉鼓型摻合機預備混合環狀烯烴系樹脂與粒 -48- 200825135 子。 將二軸擠壓機(TEM-37BS、東芝機械(股)製)加 熱至290 °C〜300 °C的範圍的溫度,使料斗與汽缸内用氮氣 充滿。溫度穩定後,使螺桿以lOOrpm旋轉,一邊使氮流 至料斗部,一邊使環狀烯烴系樹脂與交聯粒子的預備混合 物以20kg/hr的速度供給後進行熔融混合,得到光擴散性 的樹脂組成物。 將所得到的光擴散性樹脂組成物以1 〇 〇 °c真空乾燥4 小時後,保管於封入氮的鋁袋中。 &lt;射出成形1&gt; 使用模穴(1 ) ( 80mmx60mm、厚度imnl的兩鏡面平 板),用射出成形機(住友重機械工業(股)製SG75M-S 、汽缸徑28mm、合模75噸)射出成形。將射出成形速度 定爲 100mm/sec,汽缸溫度定爲樹脂的 Tg+140°C〜 Tg + 160°C範圍的溫度,模具溫度定爲樹脂的Tg-20°C〜Tg-1 〇 °C範圍的溫度,以下,將此處所製作的射出成形品稱爲 「成形體」。 &lt;射出成形2&gt; 除了使用 60mmx40mm、厚度 0.8mm,而單面爲鏡面 '另一側的面具有間距2 5 0 μ m、深度1 0 μ m的圖型之模穴 (2 ),取代模穴(1 )以外,其餘與上述射出成形1同樣 作法射出成形。以下,將此處所製作的射出成形品稱爲「 -49- 200825135 導光體」。 將所得到的成形體及導光體依下述方法評^ (全光線穿透率及霧度) 關於成形體,使用村上色彩技術硏究所襲 : 率計HM-150,全光線穿透率依據JIS K736 1 -1 ' JIS K7136 測量。 (光穿透率的波長依賴性) 關於成形體,使用分光光度計(日立製 3 3 1 0 ),依波長別測量光穿透率。藉由下式 400nm的光穿透率對於波長700nm的光穿透率 估光穿透率的波長依賴性。此値愈接近1.〇〇, 透率的波長依賴性愈低。 φ 光穿透率的波長依賴性=(40〇nm的光g , 700nm的光穿透率) 鑪 (起因於光源的亮線) 導光體的入光面用以8mm間距並排的3房 (日亞化學製NSSW008B)入光至導光體,: 2.8mm用光線不穿透性的薄膜覆蓋,使其發光 察於此狀態的導光體發光面内之起因於光源的 述的基準評估。在此評價爲A者最佳。 霧度·穿透 ,霧度依據 作所製U-’算出波長 的比例,評 顯示出光穿 ^透率)/ ( I LED光源 楚入光面至 。用目視觀 亮線,依下 -50- 200825135 A未觀察到亮線。 B觀察到微弱的亮線。 C觀察到明確的亮線。 (色調均勻性) &quot; 導光體的入光面用以8 m m間距並排的3處L E D光源 ' (日亞化學製NSSW008B )入光至導光體,從入光面至 H 2· 8mm用光線不穿透性的薄膜覆蓋,使其發光。而且關於 將發光面以矩形面積在縱橫均等爲7份之合計49區域的 色度x,y,使用色彩色差計(LC-100、KONICA MINOLTA 製)測量,從所得到的色度x,y計算黃色度YI,計算出所 得到的49處的YI値的標準偏差,藉由此値評估色調均勻 性,顯示出此標準偏差愈小發光面的色相更均勻。 (亮度均勻性) # 導光體的入光面用以8mm間距並排的3處LED光源 . (日亞化學製NSSW008B)入光至導光體,從入光面至 w 2.8mm用光線不穿透性的薄膜覆蓋,使其發光。沿著入光 面的中心線,測量從端部至20mm的亮度〔L ( 20 )〕、 與從端部至50mm的亮度〔L( 50)〕,算出此等亮度的 比=L ( 50 ) /L ( 20 )。此値愈接近1,表示導光體内部的 光的衰減少、發光面内的亮度更均勻。 結果表不於表1。 -51 - 200825135Further, the refractive index of the cyclic olefin resin A 1 at 28 ° C is 1.51, riinh is 0.52 'Mw is 7 5, 00, M w/Mn is 3 · 5, and Tg is 1 64 ° C. ^ [Synthesis Example 2] In addition to the use of 8-methyl-8-methoxy mineral-based tetracycline [4·4·0·12'5.17'1()]-3-dodecene as a cyclic olefin A hydrogenated polymer was obtained in the same manner as in Synthesis Example 1 except that 225 parts of a bicyclo[2.2.1]hept-2-ene was used in the form of a mixture of 4 parts of 1-hexene as a molecular weight modifier. The hydrogenation ratio of the obtained hydrogenated polymer (hereinafter referred to as "cyclic olefin resin ruthenium 2") was substantially 100%. The refractive index of the cyclic olefin resin ruthenium 2 at 28 ° C was ηιη1 i -45 - 200825135 0.50, Mw was 62,000, Mw / Mn was 3·5, and Tg was 141 °C. [Synthesis Example 3] As a ring-opening polymerization, 250 parts of 8 ethylene tetracyclo[4·4·0·12'5·17'1()]-3·dodecene was used as a cyclic olefin. A hydrogenated polymer was obtained in the same manner as in Synthesis Example 1, except that the solvent for the reaction was 750 parts of cyclohexane. The hydrogenation ratio of the obtained hydrogenated polymer (hereinafter referred to as "cyclic olefin resin A3") was substantially 1% by mole. The cyclic olefin resin A3 had a refractive index of 1.52 at 28 ° C, a iiinh of 0·50, a Mw of 65,000, a Mw/Mn of 3.0, and a Tg of 145 °C. &lt;Preparation of Crosslinked Particles&gt; [Preparation Example 1] 98 parts of styrene, 2 parts of methacrylic acid, 10 parts of t-dodecylmercaptan, and 0.05 parts of sodium dodecylbenzenesulfonate, 0.4 parts of potassium peroxide and 200 parts of water were placed in a 2-liter flask, and the mixture was heated to 70 ° C under nitrogen for 6 hours while stirring. Thus, seed polymer particles having a polymerization yield of 98% and an average particle diameter of 0.31 μm were obtained. Next, 3 parts of the obtained seed polymer particles, 1 part of polyvinyl alcohol, 5 parts of hydroquinone, 5 parts of water, 1 part of benzoyl peroxide, and diethyl benzene (purity of 55%) 50 parts and 5 parts of cyclohexanol were placed in a reactor and stirred for 30 minutes, and then heated to 70 ° C for 4 hours to obtain crosslinked particles. Then, a 1% aqueous solution of aluminum sulfate was added to the dispersion of the crosslinked particles, followed by filtration, followed by thorough washing with water to remove cyclohexanol, followed by drying under reduced pressure to obtain crosslinked particles B2-1 in the form of powder -46-200825135. The particle size distribution of this crosslinked particle B2_1 was plotted on a log-normal rate paper to confirm that it was a log-normal distribution. The average particle diameter (the cumulative enthalpy of the frequency in terms of volume basis shows 50% of the particle diameter) is 3·3 μπι, the geometric standard deviation is 1 · 2, and the hollow particle having a void ratio of 48%. Further, this cross-linking: The particle Β2-1 had a refractive index of 1.59 at 25 °C. φ φ [Preparation Example 2] Powder-like crosslinked particles B2_2 were obtained in the same manner as in Preparation Example 1 except that the amount of the polymer particles added was changed to 7 parts. The particle size distribution of this crosslinked particle B2-2 was plotted on a lognormal normal rate paper, and it was confirmed that it was a lognormal distribution. The average particle diameter (the cumulative enthalpy of the frequency on a volume basis shows 50% of the particle diameter) was 0.8 μm, the geometric standard deviation was 1.2, and the void ratio was 47%. Further, the crosslinked particle Β2-2 has a refractive index of 1.59 at 25 °C. [Preparation Example 3] The crosslinked particles B2-3 were obtained in the same manner as in Preparation Example 1 except that 5 parts of divinylbenzene and 45 parts of styrene were used instead of 50 parts of divinylbenzene. The particle size distribution of this crosslinked particle B2-3 was plotted on a logarithmic normal rate paper, and it was confirmed that it was a lognormal distribution. The average particle diameter (the cumulative 値 of the frequency on a volume basis shows 50% of the particle diameter) was 3.3 μπι, and the geometric standard deviation was 1.2, but the void was not recognized (void ratio 0%). Further, the crosslinked particle Β2-3 had a refractive index of 1.59 at 25 °C. -47-200825135 [Preparation Example 4] Crosslinking particles B2-4 were obtained in the same manner as in Preparation Example 2, except that 5 parts of divinylbenzene, 45 parts of styrene, and 50 parts of divinylbenzene were used instead. The particle size distribution of this crosslinked particle B2-4 was plotted on a logarithmic normal rate paper, and it was confirmed that the logarithmic normal distribution was followed. The average particle diameter (the cumulative enthalpy of the frequency on a volume basis shows 50% of the particle diameter) is 〇.8 μχη, and the geometric standard deviation is 1.2, but the void is not recognized (void ratio 〇%). Further, the crosslinked particle Β2-4 had a refractive index of 1.59 at 25 °C. [Crosslinked Particles B 1] The crosslinked particles B1-1 were obtained from particles of Rohm and Haas Co., Ltd. (trade name: PERLOID EXL-5136). The particle size distribution of this crosslinked particle Β1·1 was plotted on a lognormal normal rate paper, confirming that it follows a lognormal distribution. The average particle diameter (the cumulative enthalpy of the frequency on a volume basis shows 50% of the particle diameter) is 5.00 μm, the geometric standard deviation is 1.2, and the refractive index at 25 art is 1.46 ° [Examples 1 to 7, Comparative Examples 1 to 9] &lt;Production of Resin Composition&gt; The particles of the combination shown in Table 1 were mixed, and the particle size distribution of the particles after mixing was measured, and the particle diameter at which the frequency became extremely large was calculated. Next, the cyclic olefinic resin was previously dried under vacuum at 1 ° C for 4 hours. Then, the cyclic olefin resin and the pellet -48-200825135 were prepared by a drum type blender at a ratio shown in Table 1. A two-axis extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.) was heated to a temperature in the range of 290 ° C to 300 ° C to fill the hopper and the cylinder with nitrogen. After the temperature was stabilized, the screw was rotated at 100 rpm, and nitrogen was supplied to the hopper portion, and the preliminary mixture of the cyclic olefin resin and the crosslinked particles was supplied at a rate of 20 kg/hr, followed by melt-mixing to obtain a light diffusing resin. Composition. The obtained light-diffusing resin composition was vacuum dried at 1 〇 ° C for 4 hours, and then stored in an aluminum bag sealed with nitrogen. &lt;Injection molding 1&gt; Using a cavity (1) (two mirror plates of 80 mm x 60 mm and thickness imnl), an injection molding machine (SG75M-S manufactured by Sumitomo Heavy Industries Co., Ltd., a cylinder diameter of 28 mm, and a mold clamping of 75 tons) was used. Forming. The injection molding speed was set to 100 mm/sec, and the cylinder temperature was set to a temperature in the range of Tg + 140 ° C to Tg + 160 ° C of the resin, and the mold temperature was set to be in the range of Tg - 20 ° C to Tg - 1 ° ° C of the resin. The temperature of the injection molded product produced here is hereinafter referred to as a "molded body". &lt;Injection molding 2&gt; In addition to the use of 60 mm x 40 mm and a thickness of 0.8 mm, the one side is a mirror surface, and the other side has a pattern (2) having a pitch of 2 50 μm and a depth of 10 μm, instead of the mold Except for the hole (1), the rest is injection molded in the same manner as the above-described injection molding 1. Hereinafter, the injection-molded article produced here is referred to as "-49-200825135 light guide". The obtained molded body and light guide were evaluated by the following method (total light transmittance and haze). About the molded body, Murakami color technique was used: rate meter HM-150, total light transmittance Measured according to JIS K736 1 -1 ' JIS K7136. (Wavelength dependence of light transmittance) With respect to the molded body, a light transmittance was measured by a spectrophotometer (Hitachi 3 3 1 0). The wavelength dependence of the light transmittance is estimated by the light transmittance of 400 nm by the light transmittance at a wavelength of 700 nm. This recovery is close to 1. 〇〇, the wavelength dependence of the transmittance is lower.波长 The wavelength dependence of the light transmittance = (light gamma of 40 〇 nm, light transmittance of 700 nm) Furnace (light line due to the light source) The light-incident surface of the light guide is arranged in a 3 room side by side at 8 mm intervals ( Nissan Chemical NSSW008B) is incorporated into the light guide body: 2.8mm is covered with a light-impermeable film, so that the light-emitting surface of the light guide body in which the light is observed in this state is evaluated by the reference of the light source. It is best to evaluate A here. Haze, penetration, haze according to the ratio of U-' calculated wavelength, the evaluation shows the light penetration rate / (I LED light source into the light surface to. With the visual bright line, according to the next -50 200825135 A no bright line was observed. B observed a weak bright line. C observed a clear bright line. (Hue uniformity) &quot; Light-integrating surface of the light guide body with 3 LED light sources side by side at 8 mm pitch' (Nissan Chemical NSSW008B) Light is incident on the light guide body, and it is covered with a light-impermeable film from the light-incident surface to H 2·8mm, and the light-emitting surface is equalized in a rectangular area of 7 The chromaticity x, y of the total 49 region is measured by a color difference meter (LC-100, manufactured by KONICA MINOLTA), and the yellowness YI is calculated from the obtained chromaticity x, y, and the obtained YI at 49 is calculated. The standard deviation, by which the hue uniformity is evaluated, shows that the smaller the standard deviation is, the more uniform the hue of the illuminating surface is. (Brightness uniformity) # The light incident surface of the light guide is used to arrange 3 LED light sources side by side at 8 mm intervals. (Nissan Chemical NSSW008B) enters the light guide, from the light entrance surface to w 2.8mm without light The transparent film is covered to emit light. The brightness [L ( 20 )] from the end to 20 mm and the brightness [L ( 50) from the end to 50 mm are measured along the center line of the incident surface. The ratio of these brightnesses is = L ( 50 ) / L ( 20 ). The closer to 1, the light decays inside the light guide and the brightness in the light-emitting surface is more uniform. The results are shown in Table 1. -51 - 200825135

I嗽 tf 〇&gt; 3 B1»1 20000 5.0 0,05 Β2-1 20000 3,3 0.08 〇卜 to CO 00 89.7 0.75 &lt; 60.0 g 〇 GO 3 1 1 1 1 Β2-4 150 0.8 0/07 CO oo CO o 04 〇&gt; CO V— 0.88 &lt; σ&gt; LO 0.32 7 〇 § a亡η d 卜 I 1 f 1 V g «&gt; S a - 〇 CO ΌΟ c6 o CV| 〇&gt; CM f— 0.89 -&lt; OO iri 0.36 τ s - § s ^ ο* CO B1-1 300 5.0 0. 05 III} o in CM cn 卜 lo CO σ&gt; o ο CO CO 厂 〇 ]S&gt; 3 III) Β2-4 300 0.8 0.08 oo o CM G) oo 〇· T~ CNJ 〇〇 o c CM 〇 兮 3 lilt Β2-3 300 3·3 0.08 CO CO CNJ σ&gt; a&gt; a&gt; o CD ir&gt; 一 〇 c〇 S fill Β2-2 300 0.8 0·08 CO o CM a&gt; o csi CsJ OO o &lt; O c*y c=&gt; CM 3 1 1 1 1 ΒΖ-1 300 3.3 0.08 CO CO CM CT&gt; 10.7 σ&gt; 〇&gt; 〇 CO CO 一 s ο W 3 till ! 1 1 f 1 CN| a&gt; CM 〇 〇&gt; C5&gt; 〇 ◦ Csi 勺: ρ; ο 實施例 — - - - —- .1 P— 3 丁 o o g * L〇 . σ CQ , 10 O· Β2_4 150 0.8 0.08 O CO to o CNI σ&gt; OO xr &lt;〇 〇&gt; 〇 -&lt; LO CO ο CO 3 BH 150 5.0 0.05 Β2,3 150 3.3 0.08 〇卜 Lf&gt; CO CV| σ&gt; 卜 0.96 &lt;c o &lt;〇 ο tr&gt; s B1-1 150 5·0 0.05 Β2-1 150 3.3 0.08 o 卜 ΙΛ CO CVI σ&gt; OO O 〇&gt; CO CO c&gt; 寸 s B1 -1 200 5.0 0.05 Β2 - 2 100 0.8 0.08 O OO ixi o CM a&gt; o &lt;c o Ρ: ο CO 3 BH 150 5.0 0,06 Β2-2 150 0.8 0.07 O CO L«· 6 - LO Si o &lt;c CO S ο CNJ 3 Β2-2 150 0.8 0.08 o oo ix&gt; o cv| σ&gt; CO s o &lt; ο 5 B1-1 150 5.0 0.05 Β2_2 150 0,8 0.08 O OO LO O CM a&gt; s o &lt;c ο ο 環狀烯烴系樹脂(A) e | ^ a ® &quot;&lt; β _趑? 1 1 — a Β ϋ ^ © _鍅1 起腾Kh — S1 銨起 s叔 # m in U m ^ 全光線穿透率(%) 霧度 光穿透率的波長依賴性 :亮線的有無 •色調均勻性 ,亮度均勻性 -52- 200825135 實施例1〜7的成形體及導光體,與 例1的成形體及導光體比較,得知光穿透 、色調均勻性及亮度均勻性爲同等,但在 源的亮線這一點較爲優異。 此外,實施例1〜7的成形體及導光 粒徑爲3 .3 μιη的粒子之比較例2及4的成 較,得知雖然光穿透率的波長依賴性及色 ,但亮度均勻性優異,而且可更充分的消 亮線。此外,與僅含有平均粒徑爲0.8 μιη 3及5的成形體及導光體比較,得知雖然 因於光源的亮線這一點爲同等,但光穿透 、色調均勻性及亮度均勻性優異。而且, 徑爲6.Ομπι的粒子之比較例6的成形體及 知雖然光穿透率的波長依賴性及色調均勻 爲同等,但在可更充分的消除起因於光源 爲優異。 而且,實施例1〜7的成形體及導光 種平均粒徑低於4. Ομπι的粒子之比較例7 導光體,得知雖然在可充分消除起因於光 爲同等,但光穿透率的波長依賴性、色調 勻性優異。 此外,實施例1〜7與比較例9比較 平均粒徑低於4. Ομπι的粒子與平均粒徑爲 子時,此等的添加量明顯的較多時(比較 不含粒子的比較 率的波長依賴性 可消除起因於光 體,與僅含平均 形體及導光體比 調均勻性爲同等 除起因於光源的 的粒子之比較例 在可充分消除起 率的波長依賴性 與僅含有平均粒 導光體比較,得 性及高度均勻性 的売線這一點較 體,與僅含有2 及8的成形體及 源的亮線這一點 均勻性及亮度均 ,得知即使組合 4·0μιη以上的粒 例9 ),雖然可 -53- 200825135 消除起因於光源的亮線,但光穿透率的波長依賴性、色調 均勻性及亮度均勻性降低。 如上述,藉由組合2種平均粒徑位於特定的範圍的粒 子,在不會因爲粒子所造成的光散射,而使光穿透率隨著 波長而降低、或色調或亮度的均勻性降低的情況下,可充 分地消除起因於光源的亮線。 [產業上的可利用性] 由本發明的光擴散性樹脂組成物所製作的成形品’適 合作爲液晶顯示裝置的側光型背光用導光體。 -54-I嗽tf 〇&gt; 3 B1»1 20000 5.0 0,05 Β2-1 20000 3,3 0.08 tob to CO 00 89.7 0.75 &lt; 60.0 g 〇GO 3 1 1 1 1 Β2-4 150 0.8 0/07 CO Oo CO o 04 〇&gt; CO V— 0.88 &lt;σ&gt; LO 0.32 7 〇§ a η d 卜 I 1 f 1 V g «&gt; S a - 〇CO ΌΟ c6 o CV| 〇&gt; CM f— 0.89 -&lt; OO iri 0.36 τ s - § s ^ ο* CO B1-1 300 5.0 0. 05 III} o in CM cn 卜 lo CO σ&gt; o ο CO CO Factory S]S&gt; 3 III) Β2-4 300 0.8 0.08 oo o CM G) oo 〇· T~ CNJ 〇〇oc CM 〇兮3 lilt Β2-3 300 3·3 0.08 CO CO CNJ σ&gt;a&gt;a&gt; o CD ir&gt; One 〇c〇S fill Β2 -2 300 0.8 0·08 CO o CM a&gt; o csi CsJ OO o &lt; O c*yc=&gt; CM 3 1 1 1 1 ΒΖ-1 300 3.3 0.08 CO CO CM CT> 10.7 σ&gt;〇&gt; 〇 CO CO s ο W 3 till ! 1 1 f 1 CN| a&gt; CM 〇〇&gt;C5&gt; 〇◦ Csi spoon: ρ; ο Example - - - - - - .1 P - 3 oooog * L〇 σ CQ , 10 O· Β 2_4 150 0.8 0.08 O CO to o CNI σ&gt; OO xr &lt;〇〇&gt;〇-&lt; LO CO ο CO 3 BH 150 5.0 0.05 Β2,3 150 3.3 0. 08 Lb Lf&gt; CO CV| σ&gt; 卜0.96 &lt;co &lt;〇ο tr&gt; s B1-1 150 5·0 0.05 Β2-1 150 3.3 0.08 o ΙΛ CO CVI σ&gt; OO O 〇&gt; CO CO c&gt; inch s B1 -1 200 5.0 0.05 Β2 - 2 100 0.8 0.08 O OO ixi o CM a&gt; o &lt;co Ρ: ο CO 3 BH 150 5.0 0,06 Β2-2 150 0.8 0.07 O CO L«· 6 - LO Si o &lt;c CO S ο CNJ 3 Β2-2 150 0.8 0.08 o oo ix&gt; o cv| σ&gt; CO so &lt; ο 5 B1-1 150 5.0 0.05 Β2_2 150 0,8 0.08 O OO LO O CM a&gt; so &lt;c ο ο Cyclic olefin resin (A) e | ^ a ® &quot;&lt;β _趑? 1 1 — a Β ϋ ^ © _鍅1 From Kh — S1 Ammonium s un# # in in U m ^ Total light transmittance (%) Wavelength dependence of haze light transmittance: presence or absence of bright lines • Color tone uniformity, brightness uniformity-52-200825135 The molded body and the light guide of Examples 1 to 7 were compared with the molded body and the light guide of Example 1, and it was found that light penetration, color tone uniformity, and brightness uniformity were The same, but the bright line of the source is more excellent. Further, in the molded articles of Examples 1 to 7 and Comparative Examples 2 and 4 in which the particles having a light guiding particle diameter of 3.3 μm were formed, the luminance uniformity was observed in terms of wavelength dependence and color of light transmittance. Excellent, but more complete line of brightness. Further, compared with the molded body and the light guide body which only contain the average particle diameters of 0.8 μm 3 and 5, it is found that the light line, the color tone uniformity, and the brightness uniformity are excellent because they are equivalent to the bright line of the light source. . Further, the molded article of Comparative Example 6 having a particle diameter of 6. Ομπι is known to have the same wavelength dependence and uniform color tone as the light transmittance, but is more excellent in eliminating the cause of light source. Further, in the examples 1 to 7, the average particle diameter of the molded article and the light guide species was less than 4. 比较μπι of the particles of Comparative Example 7 The light guide was found to be capable of sufficiently eliminating the cause of light, but the light transmittance was It has excellent wavelength dependence and uniformity of color tone. Further, in Examples 1 to 7 and Comparative Example 9, the average particle diameter was less than 4. When the particles of Ομπι and the average particle diameter were sub-mass, when the addition amount was significantly increased (compared with the wavelength of the comparison ratio of the particles) The dependence can be eliminated from the light body, and the comparative example in which the uniformity of the average shape and the light guide is equal to the uniformity of the light source is sufficient to eliminate the wavelength dependence of the onset and only the average particle guide. Compared with the light body, the uniformity and the high uniformity of the ridge line, and the uniformity and brightness of the bright line containing only the 2 and 8 shaped bodies and the source, it is known that even if the combination is more than 4·0μιη Example 9), although -45-200825135 can eliminate the bright line caused by the light source, the wavelength dependence of the light transmittance, the uniformity of the hue, and the uniformity of the brightness are lowered. As described above, by combining two kinds of particles having an average particle diameter in a specific range, the light transmittance does not decrease with wavelength, or the uniformity of hue or brightness is lowered without light scattering by the particles. In this case, the bright line caused by the light source can be sufficiently eliminated. [Industrial Applicability] The molded article produced by the light-diffusing resin composition of the present invention is suitable as an edge-light type light guide for a liquid crystal display device. -54-

Claims (1)

200825135 十、申請專利範圍 i 一種光擴散性樹脂組成物,其特徵係含有環狀烯 煙系樹脂(A )與粒子(b ),相對於此等的合計1 0 〇重量 % ’粒子(B)的含有率以重量基準而言爲10〜i〇,000ppm ’該粒子(B )係於其體積基準的粒度分佈中,粒徑低於 ξ 的區域與4·〇μπι以上的區域各自具有至少一個極大 ^ 値。 α) 2 ·如申請專利範圍第1項之光擴散性樹脂組成物, 其中該粒子(Β )係混合其體積基準的平均粒徑爲4.0μπι 以上的粒子(Β1 )與平均粒徑爲低於4·0μιη之粒子(Β2 ) 而得到。 3 ·如申請專利範圍第2項之光擴散性樹脂組成物, 其中該粒子(Β 1 )的體積基準的粒度分佈中,波峰面積爲 最大的波峰以對數正態分佈表示時之其幾何標準偏差ogB1 爲1·〇以上2.0以下,該粒子(B2) 的體積基準的粒度 § 分佈中,波峰面積爲最大的波峰以對數正態分佈表示時之 於 其幾何標準偏差〇gB2爲1 .〇以上2.0以下。 1 4·如申請專利範圍第2項之光擴散性樹脂組成物, 其中該環狀烯烴系樹脂(A)的折射率nA與該粒子(B1 ) 的折射率nB1之差的絶對値|nB1_nA|爲〇.〇4以上,該環狀 烯烴系樹脂(A )的折射率n a與該粒子(B 2 )的折射率 HB2之差的絶對値|nB2-nA|爲0.04以上。 5 .如申請專利範圍第1項之光擴散性樹脂組成物, 其中該粒子(B )中的至少一部份爲空心粒子。 -55- 200825135 6. 如申請專利範圍第1項之光擴散性樹脂組成物, 其中該粒子(B)中的至少一部份爲有機交聯粒子。 7. —種成形品,其特徵係將申請專利範圍第1至6 項中任一項之光擴散性樹脂組成物射出成形所成。 8 · —種液晶顯示裝置的側光型背光用導光體,其特 徵係將申請專利範圍第1至6項中任一項之光擴散性樹脂 組成物射出成形而成。200825135 X. Patent application scope i A light diffusing resin composition characterized by containing a cyclic olefinic resin (A) and particles (b), and a total of 10% by weight of the particles (B) The content ratio is 10 〜 〇, 000 ppm on a weight basis. The particle (B) is in a volume-based particle size distribution, and each of the regions having a particle diameter lower than ξ and at least one region of 4·〇μπι or more Great ^ 値. The light-diffusing resin composition of the first aspect of the invention, wherein the particles (Β) are mixed with a volume-based average particle diameter of 4.0 μm or more (Β1) and an average particle diameter is lower than It is obtained by using 4·0μιη particles (Β2). 3. The light diffusing resin composition of claim 2, wherein in the volume-based particle size distribution of the particle (Β 1 ), the geometric standard deviation of the peak whose peak area is the largest is represented by a lognormal distribution ogB1 is 1·〇 or more and 2.0 or less. In the particle size § distribution of the volume (B2) of the particle (B2), the peak with the largest peak area is represented by a lognormal distribution, and its geometric standard deviation 〇gB2 is 1. 〇 above 2.0 the following. The light diffusing resin composition of the second aspect of the invention, wherein the absolute value of the difference between the refractive index nA of the cyclic olefin resin (A) and the refractive index nB1 of the particle (B1) is 値|nB1_nA| In the case of 〇4 or more, the absolute 値|nB2-nA| of the difference between the refractive index na of the cyclic olefin-based resin (A) and the refractive index HB2 of the particles (B 2 ) is 0.04 or more. 5. The light diffusing resin composition of claim 1, wherein at least a portion of the particles (B) is a hollow particle. The light diffusing resin composition of claim 1, wherein at least a part of the particles (B) is an organic crosslinked particle. A molded article obtained by injection molding a light-diffusing resin composition according to any one of claims 1 to 6. In the light-emitting type light-receiving resin composition of any one of the first to sixth aspects of the invention, the light-diffusing resin composition of any one of the first to sixth aspects of the invention is produced by injection molding. -56- 200825135 指表 :案代 圖本本 表' , 代//-N 定一二 指c C 七-56- 200825135 Refers to the table: the case of the book, the table, '//--N, one or two, c C seven 為代 圖件 表元 無 明 說 單 簡 號 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無 -3-For the generation of the picture, the element is unclear. Single No. 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: None -3-
TW096133561A 2006-09-07 2007-09-07 A light-diffusing resin composition, a molded article thereof, and a light guide body TWI424022B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242862A JP4984762B2 (en) 2006-09-07 2006-09-07 Light diffusing resin composition, molded product thereof and light guide

Publications (2)

Publication Number Publication Date
TW200825135A true TW200825135A (en) 2008-06-16
TWI424022B TWI424022B (en) 2014-01-21

Family

ID=39192358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133561A TWI424022B (en) 2006-09-07 2007-09-07 A light-diffusing resin composition, a molded article thereof, and a light guide body

Country Status (4)

Country Link
JP (1) JP4984762B2 (en)
KR (1) KR101404283B1 (en)
CN (1) CN101140336B (en)
TW (1) TWI424022B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723090B2 (en) * 2009-09-15 2015-05-27 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article comprising the same
WO2013116193A1 (en) * 2012-01-31 2013-08-08 3M Innovative Properties Company Display with nonwoven diffuser
BR112016029602B1 (en) * 2014-06-19 2021-08-24 Dow Global Technologies Llc GREENHOUSE FILM
JP7377725B2 (en) * 2019-01-25 2023-11-10 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition and molded body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138232A (en) * 1997-07-14 1999-02-12 Bridgestone Corp Flat light-emitting panel
JPH1160966A (en) * 1997-08-08 1999-03-05 Kuraray Co Ltd Light diffusing resin composition
JP5054872B2 (en) * 2001-02-22 2012-10-24 恵和株式会社 Light diffusion sheet and backlight unit using the same
JP4074847B2 (en) * 2003-09-30 2008-04-16 恵和株式会社 Optical sheet and backlight unit using the same
JP4586965B2 (en) * 2004-06-17 2010-11-24 Jsr株式会社 Light diffusing resin composition and diffusion plate
JP2005010813A (en) * 2004-09-28 2005-01-13 Mitsui Chemicals Inc Light diffusion plate
JP2006169542A (en) * 2006-03-10 2006-06-29 Jsr Corp Molding for light diffusion

Also Published As

Publication number Publication date
KR101404283B1 (en) 2014-06-05
JP4984762B2 (en) 2012-07-25
CN101140336B (en) 2010-12-08
TWI424022B (en) 2014-01-21
JP2008063447A (en) 2008-03-21
CN101140336A (en) 2008-03-12
KR20080023152A (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP5221531B2 (en) Optical member made of acrylic block copolymer
JP2007112935A (en) Light diffusing resin composition, molding and light guide body
TWI767924B (en) Methacrylate resin composite, method of producing the same, molding, film, laminated film, and laminated molding
TW201213128A (en) Laminate and process for preparing the same
TW200825135A (en) Light-diffusing resin composition, molded article and light guide comprising the same
JP6072754B2 (en) Reflective material
TWI482706B (en) Reflective material
TW200819874A (en) Optical film, manufacturing method of optical film, retardation film, polarizing plate and liquid crystal panel
JP2008064951A (en) Diffusion board for projector translucent screen and its manufacturing method and use
TWI548917B (en) Reflective material
JP2009020485A (en) Polarizing plate
WO2005046964A1 (en) Method for producing film or sheet having three-dimensional pattern on surface, and film or sheet having three-dimensional pattern on surface
TW200817166A (en) Process for producing an optical film
JP4586965B2 (en) Light diffusing resin composition and diffusion plate
JP2012189678A (en) Light reflector
TWI453120B (en) A raw film of a raw ice sheet having a hard coat layer and a method for producing a raw ethylidene resin film having a hard coat layer
TW200936671A (en) Injection molded body and polymer composition
TW200837393A (en) Optical diffuser plate and manufacturing method thereof
TWI533015B (en) An optical component formed by injection molding and an optical component forming resin composition formed by injection molding
TW201003151A (en) ND filter and manufacturing method thereof
JP2007233206A (en) Polarizing plate
JP2004149610A (en) Light-diffusing resin composition and light-diffusing molded article
JP2013148607A (en) Reflector
CN113631967A (en) Reflective material
JP2020011430A (en) Reflector