200824165 九、發明說明: 【發明所屬之技術領域】 發明是有關於一種平面顯示器的晝素電路, ΐ路種主動式有機電激發光平面顯示器的單元畫素 【先前技術】 ▲、何將面板大型化-直是平面顯示器的重要課題。一 又’曰况,主動式有機電激發光平面顯示器的單一晝素之電 路是由一個第一電晶體、一個存—二飞 叙一„ 似储存電合、一個弟二電晶體 與一個有機電激發光二極體所構成。 傳統平面顯示器的第一電晶體與第二電晶體_般使用 薄膜場效電晶體。薄膜場效電晶體之通道的導通方向與基 板平行、姑且稱其為橫式薄膜場效電晶體,其通道層之材 =可分為非晶碎與多晶秒。若橫式薄膜場效電晶體使用非 晶矽為通道材質,由於其低電子遷移率以及小通道截面積 之故’會導致橫式薄臈場效電晶體電流不足,無法提供足 夠的電流給有機電激發光二極體。 由於多晶矽的電子遷移率為非晶矽的1〇〇倍,若以多 晶石夕取代非晶矽作為薄膜場效電晶體的通道材質,可以改 善上述電流不足的缺點。但是由於多晶矽的電性均勻性以 及良率等問題,將使得有機電激發光平面顯示器無法大型 化0 【發明内容】 5 200824165 因此本發明的目的之一 θ 面顯示器、的單元疋提供一種有機電激發光平 丨電路,其第一電晶體之寄生電容值 小,f皆减得以在特定時間週期内正確寫入。值 二目的是在提供-種有機電激發光平面顯 不态的早兀畫素電路,第一 弟—電日日體通道截面積大、長度短, 4供足夠的導通電流予有機電激發光二極體。 本發明的再一目的就是 顯示哭的1;金主& 種有機電激發光平面 才、\ I素電路,其第二電晶體寄生電容大,可以 在弟一電晶體關閉時維掊帝 7. . u …… 使有機電激發光二極體持 "貝蚤A或關閉,不需要再增設電容。 根據本發明之上述目的,提出一種有機電激發光平面 顯示器的單元畫素電路,包含第一電晶體、第二電晶體、 =及有機電激發光二極體,其第一電晶體具有小的電阻電 容?滯效應’使灰階資料能在特定週期時間内正確寫入; 其第二電晶體具有大的導通電流以及大的寄生電容,能提 供足夠的電流予有機電激發光二極體,並且在第一電晶體 關閉時仍能維持之前由資料線寫入的灰階電位,不需要再 增設電容。200824165 IX. Description of the invention: [Technical field of the invention] The invention relates to a pixel circuit for a flat panel display, and a unit pixel of an active organic electroluminescence light-emitting flat panel display [Prior Art] ▲, a large panel It is an important issue for flat panel displays. A further situation, the single-element circuit of the active organic electro-optic light-emitting flat panel display is composed of a first transistor, a memory-two-flying-like storage, a second transistor and an organic battery. The first transistor and the second transistor of the conventional flat panel display generally use a thin film field effect transistor. The conduction direction of the channel of the thin film field effect transistor is parallel to the substrate, which is called a horizontal film. The field effect transistor, the channel layer material = can be divided into amorphous and polycrystalline seconds. If the horizontal film field effect transistor uses amorphous germanium as the channel material, due to its low electron mobility and small channel cross-sectional area Therefore, it will lead to insufficient current in the horizontal thin-field field effect transistor, and it will not be able to supply enough current to the organic electroluminescence excitation diode. Since the electron mobility of polycrystalline germanium is 1 times that of amorphous germanium, if polycrystalline spine is used Substituting amorphous germanium as the channel material of the thin film field effect transistor can improve the shortcomings of the above current shortage. However, due to the electrical uniformity and yield of the polycrystalline germanium, the organic electroluminescent light will be made. The flat panel display cannot be enlarged. [Invention] 5 200824165 Therefore, the θ-surface display and the unit 之一 of the present invention provide an organic electroluminescence light-emitting circuit in which the parasitic capacitance of the first transistor is small, and f is reduced. It is correctly written in a specific time period. The purpose of the second value is to provide an early-pixel pixel circuit with an organic electroluminescence excitation plane. The first brother-electrical Japanese-Japanese channel has a large cross-sectional area and a short length. Sufficient on-current is applied to the organic electro-optic excitation diode. A further object of the present invention is to display a crying 1; a gold main & an organic electroluminescent light plane, and a second transistor having a large parasitic capacitance; It can be used when the transistor is turned off. 掊 掊 7 . 使 使 使 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机The unit pixel circuit of the excitation light plane display comprises a first transistor, a second transistor, and an organic electroluminescence diode, the first transistor having a small resistance and capacitance, a hysteresis effect The order data can be correctly written in a specific period of time; the second transistor has a large on current and a large parasitic capacitance, and can supply sufficient current to the organic electroluminescence diode, and still remains when the first transistor is turned off. It can maintain the gray level potential written by the data line before, and no need to add a capacitor.
直式有機場效電晶體(VOFET)其係由閘極、閘介電 層、源極、有機通道層與汲極依序堆疊在基板之上而成。 由於結構的關係,直式有機場效電晶體的有機通道層具有 截面積大與通道長度短等特點,使其導通電流大,但其寄 生電容值亦大。 在本發明之較佳實施例中,單元畫素電路的第一電晶 體係採用橫式薄膜場效電晶體,電阻、電容遲滯效應小;第 6 200824165 二電晶體係採用直式有機場效電晶體,導通電流大,且立 閘極與源極間的寄生電容大。 八 的單:f用本發明之有機電激發光平面顯示器 虛—’、电,第一電晶體具有較小的電阻電容遲滯六丈 應,能夠在特定時間週期中,使灰階資料正確寫入第 以體具有大的導通電流,能提供Μ的電流給有機= 發光二極體,使其發光品質良好。㈣若第二電晶體之閉A direct-type airport effect transistor (VOFET) is formed by stacking a gate, a gate dielectric layer, a source, an organic channel layer, and a drain on a substrate. Due to the structural relationship, the organic channel layer of the straight-type airport effect transistor has the characteristics of large cross-sectional area and short channel length, so that its conduction current is large, but its parasitic capacitance value is also large. In a preferred embodiment of the present invention, the first electro-crystal system of the unit pixel circuit adopts a horizontal thin film field effect transistor, and the resistance and capacitance hysteresis effect are small; and the sixth 200824165 two electro-crystal system adopts a straight type airport electric power system. The crystal has a large on-current and a large parasitic capacitance between the vertical gate and the source. Eight single: f with the organic electro-exposure light plane display of the present invention virtual - ', electricity, the first transistor has a small resistance and capacitance hysteresis should be able to correctly write gray scale data in a specific time period The first body has a large on-current, and can provide a current of Μ to the organic=light-emitting diode, so that the light-emitting quality is good. (4) If the second transistor is closed
極與源極間的寄生雪t I 祕4+ *一 电谷夠大,此夠在第一電晶體關閉之時 捕先前由資料線所寫人的„,則可以進—步在電路佈 局時省略儲存電容’以節省電路佈局的空間,增加面板的 開口率。 【實施方式】 二如上所述,本發明提供_種有機電激發光平面顯示器 的單元晝素電路,使其所顯示之畫面具有高亮度與高畫質 的優點。以下將以圖示及詳細說明清楚說明本發明之精 神,如熟悉此技術之人員在瞭解本發明之較佳實施例後, 當可由本發明所教示之技術,加以改變及修飾,其並不脫 離本發明之精神與範圍。 睛參閱第1圖,其係繪示依照本發明較佳實施例之單 兀畫素電路中,使用直式有機場效電晶體結構剖面圖。由 下至上依序為基板1 〇 1、閘極1⑽、閘介電層1仍、第一源/ 汲極層107、有機通道層109與第二源/汲極層ln。由於第 二源/汲極層111、有機通道層1〇9與第一源/汲極層1〇7係 在垂直方向堆疊在一起,因此與傳統之橫式薄膜場效電晶 7 200824165 體比起來,其通道長度113較短且通道截面積(通道寬度115 乘以通道厚度117)較大’使其導通電流遠大於傳統之橫式 薄膜場效電晶體。此外,其閘極103與第一源/汲極層1〇7 以及閘極103與第二源/汲極層1Π之間的寄生電容同時也 遠大於傳統之橫式薄膜場效電晶體。 實施例一 請參閱第2A圖,其係繪示依照本發明一實施例之單元 藝晝素電路。此單元晝素電路包括第一電晶體2〇7、第二電晶 體、有機電激發光二極體211以及第一電容215。其中 第一電晶體207為橫式薄膜場效電晶體,而第二電晶體2〇9 為直式有機場效電晶體。由於第二電晶體2〇9採用直式有 機場效電晶體,因此能提供足夠電流予有機電激發光二極 體211,使其具有足夠的亮度。 在此第2A圖的單元晝素電路中,第一掃描線2〇1與資 料線203分別連接至第一電晶體2〇7的閘極以及第一源/汲 • 極。第一電晶體207之第二源/汲極與第二電晶體209的閘 極以及第一電容215之第一端相接。有機電激發光二極體 211之第一端連至工作電壓源217,第二端接至第二電晶體 ,之第-源/;:及極。第-電容215之第二端以及第二電晶 ‘體209之第二源/汲極則接至地線219。 ^ 在第2A圖的單元晝素電路中,當第一掃描線2〇1上傳 送致能電位將第-電晶體207開啟時,灰階電位可由資料 線撕傳輸以寫入第-電容215,並依灰階電位之大小來決 定第二電晶體209能感應出的通道載子多冑,使有機電激 8 200824165 發光二極體211處於不同之灰階狀態或關閉狀態。之後, 除非第一電晶體207再次被開啟,第一電容215之電位可 維持在一定之灰階電位,使有機電激發光二極體211維持 在一定的灰階或關閉的狀態。 貫施例二 請參閱第2B圖,其係繪示依照本發明另一較佳實施例 之單元晝素電路。由於第二電晶體209採用直式有機場效 電曰a體,因此當其閘極與接地之第二源/汲極之間的寄生電 容夠大時,則可省略第2A圖中之第一電容215,而構成第 2B圖之單元晝素電路。其係因為第一電容之第一端與 第一電晶體209之閘極等電位,而第一電容215之第二端 與第二電晶體209之第二源/汲極皆為接地,因此第二電晶 體209白勺閘極與第二源/汲極之間的寄生電容可以取代第: 電容215。 1施例二_ ^奢參閱第m其鱗示錢本發明又—較佳實施例 之Γ70晝!電路。第3A圖與第^圖之單元晝素電路不同 之处在於第3A圖將第2八圖之有機電激發光二極體叫的 位置由介於第二電晶體2〇 、 一 ” ^电壓源217之間移至第 圖之弟一電晶體309與地線319之PI b ^ 二極體扣處,而第—電容=,間P有機電激發光 n315的弟一端同樣是連接於第 =;ν=7Γ但第一電容315… 其他有關於第-掃描線3〇1、資料線303、 200824165 第一電晶體307、篦-帝a触,Λη /jU _ 弟一%日日體309、工作電壓源317以及地 4 319之連接方式皆與第2A圖之單元晝素電路相同,操作 方式亦相似,因此不再贅述之。 實施例四 曰類似地由於第二電晶體3〇9係採用直式有機場效電 體口此田第一電晶體309的閘極與第一源/汲極之間的 寄生電容夠大時’其亦可以取代第3A圖之第—電容315, 進而將第-電容315省略之而構成第3B圖之單元晝素電 路。 實施例五 請參閱第4A圖,其係緣示依照本發明另—實施例之單 元畫素電路(4T2C)。此單元晝素電路能夠補償第二電晶體 之臨界電壓。此單元畫素電路包括第—電晶體衛、第二電 晶體415、有機電激發光二極體42卜 彻、第四電晶體4Π以及第二電容彻。第—電晶體4〇5 與第四電晶體417為橫式薄膜場效電晶體,而第二電晶體 415以及第三電晶體419為直式有機場效電晶體。由於第二 電晶體415以及第三電晶豸419採用直式有機場效電晶 體,因此能提供足夠電流予有機電激發光二極體421,使其 具有足夠的亮度。 在此第4A圖的單元晝素電路中,第一掃描線4〇1與資 料線403分別連接至第-電晶體4〇5的閘極以及第一源/及 10 200824165 極“第电日日體405之第二源/¾極透過第二電容407與第 =電晶體415的閘極、第四電晶體417之第-源/及極以及 第私谷413之第一端連接,第四電晶體417之第二源/汲 極連接電晶冑415之第二源/沒極以及第三電晶禮 419之f源、/沒極,第二電晶體419之第二源/没極連接至 #機電激發光二極體421之第一端,有機電激發光二極體 421之第二端則接地,第一電容413之第二端則連接工作電 壓源422以及第二電晶體415之第一源/汲極,此外第三電 • ^體419之閘極以及第四電晶體417之閘極則分別連接至 第一控制線409以及第二控制線411。 请參閱第4B圖,其係繪式第4A圖的單元晝素電路之 驅動波形,包括資料線403驅動波形423、第二控制線411 驅動波形425、第一控制線4〇9驅動波形427以及第一掃描 線401驅動波形429。驅動時序可分為自動歸零狀態43 i、 寫2資料狀態433以及發光狀態435。在自動歸零狀態431 之月il,第一電晶體405以及第四電晶體417關閉,第三電 # 甜體419導通,此時流過有機電激發光二極體421的電流 為前一個晝面(Frame)之電流,由第一電容413兩端之電壓 差控制。 接下來進入自動歸零狀態431之後,先導通第一電晶 ^ 體405,接著導通第四電晶體417,使第二電晶體415之第 ^ 一源/汲極與閘極相連接,形成一個二極體的接法,然後將 第三電晶體419截止,此時第二電晶體415閘極端之電壓 會上升至工作電壓源422之電壓值減去第二電晶體415之 臨界電壓(vj,亦即第一電容413兩端之電壓差為第二電 11 200824165 晶體415之臨界電壓。之後再將第四電晶體4〗7關閉,即 可使第二電晶體415之臨界電壓儲存在第一電容413上, 稱之為第一儲存電壓,至此完成自動歸零狀態々Μ。 接著進入寫入資料狀態433。資料線403上的電壓變化 437,係先經過第一電晶體4〇5,再由第二電容4们以及第 一電容413進行分壓,之後會耦合至第二電晶體415之閘 極端。由於原本儲存於第一電容413上之第一儲存電壓2 銷了第二電晶體415之臨界電壓,故第二電晶體415輸出 之電流僅與資料線403上電壓變化437相關,不再受第Parasitic snow between the pole and the source t I Secret 4+ * One electric valley is large enough to capture the person previously written by the data line when the first transistor is turned off, then it can be stepped in the circuit layout The storage capacitor is omitted to save the space of the circuit layout, and the aperture ratio of the panel is increased. [Embodiment] As described above, the present invention provides a unit pixel circuit of an organic electroluminescence surface display, so that the displayed picture has The advantages of the present invention will be apparent from the following description of the preferred embodiments of the invention. The invention is not limited to the spirit and scope of the present invention. Referring to Figure 1, there is shown a straight-type organic field effect transistor structure in a single-pixel pixel circuit in accordance with a preferred embodiment of the present invention. The cross-sectional view is sequentially from bottom to top for the substrate 1 〇1, the gate 1 (10), the gate dielectric layer 1 , the first source/drain layer 107, the organic channel layer 109 and the second source/drain layer ln. Two source / bungee layer 111, organic pass The channel layer 1〇9 is stacked in the vertical direction with the first source/drain layer 1〇7, so that the channel length 113 is shorter and the channel section is shorter than the conventional horizontal film field effect transistor 7 200824165 body. The area (channel width 115 times the channel thickness 117) is larger 'its its conduction current is much larger than that of the conventional horizontal thin film field effect transistor. In addition, its gate 103 and the first source/drain layer 1〇7 and the gate The parasitic capacitance between the 103 and the second source/drain layer 1 is also much larger than that of the conventional horizontal thin film field effect transistor. Embodiment 1 Please refer to FIG. 2A, which illustrates a unit according to an embodiment of the present invention. The eutectic circuit includes a first transistor 2〇7, a second transistor, an organic electroluminescent diode 211, and a first capacitor 215. The first transistor 207 is a horizontal film field effect battery. The crystal, and the second transistor 2〇9 is a straight-type organic field effect transistor. Since the second transistor 2〇9 adopts a straight organic field effect transistor, it can supply sufficient current to the organic electroluminescent diode 211, Make it have sufficient brightness. The unit element in Figure 2A In the circuit, the first scan line 2〇1 and the data line 203 are respectively connected to the gate of the first transistor 2〇7 and the first source/pole. The second source/drain of the first transistor 207 and the first The gate of the second transistor 209 is connected to the first end of the first capacitor 215. The first end of the organic electroluminescent diode 211 is connected to the working voltage source 217, and the second end is connected to the second transistor. The source/;: and the second terminal of the first capacitor 215 and the second source/drain of the second transistor '209 are connected to the ground line 219. ^ In the unit pixel circuit of FIG. 2A, when When the first transistor 207 is turned on and the first transistor 207 is turned on, the gray scale potential can be transmitted by the data line to be written to the first capacitor 215, and the second transistor 209 is determined according to the magnitude of the gray level potential. The channel carriers that can be induced are multi-turned, so that the organic electro-excitation 8 200824165 LEDs 211 are in different gray-scale states or closed states. Thereafter, unless the first transistor 207 is turned on again, the potential of the first capacitor 215 can be maintained at a certain gray level potential, so that the organic electroluminescent diode 211 is maintained at a certain gray scale or off state. Embodiment 2 Referring to Figure 2B, a unit pixel circuit in accordance with another preferred embodiment of the present invention is shown. Since the second transistor 209 is a straight-type organic power source, when the parasitic capacitance between the gate and the second source/drain of the ground is large enough, the first one in FIG. 2A can be omitted. The capacitor 215 constitutes a unit pixel circuit of FIG. 2B. Because the first end of the first capacitor is equipotential to the gate of the first transistor 209, the second end of the first capacitor 215 and the second source/drain of the second transistor 209 are grounded, so The parasitic capacitance between the gate of the second transistor 209 and the second source/drain can be substituted for the first: capacitor 215. 1 Example 2 _ ^Luxury refer to the mth scale of the present invention - the preferred embodiment of the 昼 70 昼! circuit. The difference between the 3A and the unit pixel circuits is that the position of the organic electroluminescent diode of the second figure is represented by the second transistor 2〇, a “voltage source 217”. Moved to the PI b ^ diode buckle of the transistor 309 and the ground line 319 of the figure, and the first capacitance of the first capacitance of the inter-P organic electroluminescence light n315 is also connected to the first =; ν = 7Γ but the first capacitor 315... Others related to the first-scan line 3〇1, data line 303, 200824165 first transistor 307, 篦-di a touch, Λη /jU _ brother-% Japanese body 309, working voltage source The connection mode of 317 and ground 4 319 is the same as that of the unit pixel circuit of FIG. 2A, and the operation mode is similar, so it will not be described again. Embodiment 4 is similarly because the second transistor 3〇9 system adopts a straight type. When the parasitic capacitance between the gate of the first transistor 309 and the first source/drain is sufficiently large, it can also replace the capacitor 315, and then the capacitor 315. Omitted to form the unit cell circuit of FIG. 3B. Embodiment 5 Please refer to FIG. 4A, which is shown in accordance with the present invention. a unit pixel circuit (4T2C) of the embodiment. The unit pixel circuit is capable of compensating for a threshold voltage of the second transistor. The unit pixel circuit includes a first transistor, a second transistor 415, and an organic electroluminescent diode. 42 Bucher, fourth transistor 4 Π and second capacitor. The first transistor 4 〇 5 and the fourth transistor 417 are horizontal thin film field effect transistors, and the second transistor 415 and the third transistor 419 are Straight type airport effect transistor. Since the second transistor 415 and the third transistor 419 adopt a straight organic field effect transistor, sufficient current can be supplied to the organic electroluminescent diode 421 to have sufficient brightness. In the unit cell circuit of FIG. 4A, the first scan line 4〇1 and the data line 403 are respectively connected to the gate of the first transistor 4〇5 and the first source/and 10 200824165 pole “Electric day” The second source/3⁄4 pole of the body 405 is connected to the gate of the first transistor 415, the first source and the source of the fourth transistor 417, and the first end of the valley 413 through the second capacitor 407. The second source/drain of the transistor 417 is connected to the second source/no pole of the transistor 415 and the third The second source/no pole of the second transistor 419 is connected to the first end of the electromechanical excitation photodiode 421, and the second end of the organic electroluminescence diode 421 is Grounding, the second end of the first capacitor 413 is connected to the working voltage source 422 and the first source/drain of the second transistor 415, and the gate of the third body 419 and the gate of the fourth transistor 417 Then connected to the first control line 409 and the second control line 411, respectively. Please refer to FIG. 4B, which is a driving waveform of the unit cell circuit of FIG. 4A, including a data line 403 driving waveform 423, a second control line 411 driving waveform 425, a first control line 4〇9 driving waveform 427, and The first scan line 401 drives the waveform 429. The driving timing can be divided into an auto-zero state 43 i, a write 2 data state 433, and a lighting state 435. In the month il of the auto-zero state 431, the first transistor 405 and the fourth transistor 417 are turned off, and the third transistor #419 is turned on, at which time the current flowing through the organic electro-excitation diode 421 is the previous face ( The current of the frame is controlled by the voltage difference across the first capacitor 413. After entering the auto-zero state 431, the first transistor 405 is turned on, and then the fourth transistor 417 is turned on, so that the first source/drain of the second transistor 415 is connected to the gate to form a The diode is connected, and then the third transistor 419 is turned off. At this time, the voltage of the gate terminal of the second transistor 415 rises to the voltage value of the working voltage source 422 minus the threshold voltage of the second transistor 415 (vj, That is, the voltage difference across the first capacitor 413 is the threshold voltage of the second transistor 11 200824165 crystal 415. After the fourth transistor 4 7 is turned off, the threshold voltage of the second transistor 415 is stored in the first The capacitor 413 is referred to as a first storage voltage, and thus the auto-zero state is completed. Then, the write data state 433 is entered. The voltage change 437 on the data line 403 passes through the first transistor 4〇5, and then The second capacitor 4 and the first capacitor 413 are divided, and then coupled to the gate terminal of the second transistor 415. Since the first storage voltage 2 originally stored on the first capacitor 413 is pinned to the second transistor 415 The threshold voltage, so the second transistor 415 loses The current is only 437 related to the change in voltage on the data line 403, no longer subject to the first
電晶體415之臨界電壓變化的影響。 最後再進入發光狀態435。在此發光狀態435中,第一 掃描線401上的電壓會關閉第一電晶體4〇5,第一控制線 409上的電壓則會導通第三電晶體419,此時第二電晶體 415會輸出目前晝面(Frame)之電流流過有機電激發光二極 體421使其發亮。 實施例六 请苓閱第5圖,其係繪示依照本發明另一實施例之單 元晝素電路(3T1C),包含第一掃描線5〇1、資料線5〇3、第 一電晶體505、有機電激發光二極體5〇7、第二電晶體5〇9、 第一電容515以及第一補償電路5〇〇,其中第一補償電路 500包括第二掃描線5U、第三電晶體513。第一電晶體 為k式薄膜場效電晶體,而第二電晶體5〇9為直式有機場 效電晶體。第一電晶體505之閘極電性連接於第一掃描線 501 ’第一源/汲極則電性連接資料線5〇3 ;有機電激發光二 12 200824165 極體507之第-端電性連接一工作電壓源5i7;第三電晶體 513之严極電性連接於第二掃描線511,第一源/汲極則電性 連接第t a曰體505之第二源"及極、第二電晶體5〇9之第 一源/汲極以及有機電激發光二極體507之第二端,此第三 電晶體513之第二源/汲極電性連接於第一電容。 此一實施例之單元畫素電路與實施例五之單元晝素電 路之工作原理大致相同,亦是利用第三電晶體513先將第 二電晶體5G9之臨界電壓儲存於第—電容515之上以抵銷 臨界電壓對於第二電晶體5〇9電流大小之影響,再進入寫 入資料狀態,故第二電晶體509輸出之電流僅與資料線5〇3 上電壓變化相關,而不受臨界電壓變化的影響。 ---或·有機~ 效電晶體與有機電激發籴二極體之單开愈 代表丰導體钴辦 前述第2B圖之單元晝素電路相對應的電路佈局之剖 面不意圖如第6A圖所示。首先在基板6〇〇之上形成閘極層 602,並定義出第一電晶體區域620以及第二電晶體區域 622,接著在閘極層602上形成閘介電層6〇4,然後利用蝕 刻技術如微影蝕刻法在閘介電層604上形成第一開口 624之後單獨在弟二電晶體區域622之閘介電層604上形 成第一源/汲極層606以及有機通道層608a。 3後’在弟一電晶體區域620的閘介電層604上依序 形成非晶矽層608b、η型重摻雜非晶矽層609,並同時於第 一電晶體區域620以及第二電晶體區域622之上形成一源/ ;及極層’再利用蝕刻技術如微影蝕刻法蝕刻此源/汲極層, 13 200824165 以區隔第一電晶體區域620及第二電晶體區域622。在第二 電晶體區域622上的源/汲極層即為第二電晶體區域622的 弟一源/>及極層61 〇a,而在姓刻源/汲極層的製程中,在第 一電晶體區域620的部分,係蝕刻源/汲極層、n型重摻雜 非晶矽層609、以及非晶矽層608b,以形成第二開口 626。 在第一電晶體區域620上,藉由第二開口 626區隔源/ 汲極層成兩區域,此兩區域分別為第一電晶體區域62〇的 第一源/汲極層610b以及第二源/汲極層61〇c,此第二源/ 汲極610c層填滿第一開口 624並接觸位於第二電晶體區域 622上之閑極層602。 别述之第一電晶體區域620上之閘極層602、閘介電層 604、非晶矽層608b、η型重摻雜非晶矽層6〇9、第一源/ 汲極層610b以及第二源/汲極層61〇c組成的第一電晶體 207係為一橫式薄膜場效電晶體,第二電晶體區域622上之 閘極層602、閘介電層604、第一源/汲極層6〇6、有機通道 層608a以及第二源/汲極層61〇a組成的第二電晶體2〇9係 為一直式有機場效電晶體。 為了使第一電晶體區域620的第一電晶體207與第二 電晶體區域622的第二電晶體2〇9高度相等,故需於第一 電曰曰體區域620之第一源/汲極層61〇b及第二源/汲極層 610c上形成一平坦層612,此平坦層612填滿第二開口 626 ’接著繼縯於此平坦層6 i 2及第二電晶體2〇9的第二源 /汲極層610a之上依序形成有機電激發光二極體下電極層 614、有機發光層616與有機電激發光二極體上電極層 618其中有機電激發光二極體下電極層614、有機發光層 200824165 616:有機電激發光二極體上電極層6i8構成有機電激發 2極體川的結構。前述之第一電晶體2〇7與有機電激 -一-極體211之間藉由平坦層612來絕緣隔離,而有機 電,發光二極體211的下電極層614則與第二電晶體2〇9 之第二源/沒極層61〇a相接。有機發光層616係包含電洞注 入層、電洞傳輸層、發光層、電子傳輸層、電子注入層等 之組合。The effect of the threshold voltage change of transistor 415. Finally, the illumination state 435 is entered. In this light-emitting state 435, the voltage on the first scan line 401 turns off the first transistor 4〇5, and the voltage on the first control line 409 turns on the third transistor 419. At this time, the second transistor 415 will The current outputting the current frame current flows through the organic electroluminescence excitation diode 421 to make it bright. Embodiment 6 Please refer to FIG. 5, which illustrates a unit cell circuit (3T1C) according to another embodiment of the present invention, including a first scan line 5〇1, a data line 5〇3, and a first transistor 505. An organic electroluminescence excitation diode 5〇7, a second transistor 5〇9, a first capacitor 515, and a first compensation circuit 5〇〇, wherein the first compensation circuit 500 includes a second scan line 5U and a third transistor 513. . The first transistor is a k-type thin film field effect transistor, and the second transistor 5〇9 is a straight type organic field effect transistor. The gate of the first transistor 505 is electrically connected to the first scan line 501 'The first source/drain is electrically connected to the data line 5〇3; the organic electric excitation 212 200824165 the first end of the polar body 507 is electrically connected An operating voltage source 5i7; the third transistor 513 is electrically connected to the second scan line 511, and the first source/drain is electrically connected to the second source of the ta body 505. The first source/drain of the transistor 5〇9 and the second end of the organic electroluminescent diode 507, the second source/drain of the third transistor 513 is electrically connected to the first capacitor. The unit pixel circuit of this embodiment is substantially the same as the unit pixel circuit of the fifth embodiment, and the threshold voltage of the second transistor 5G9 is first stored on the first capacitor 515 by using the third transistor 513. In order to offset the influence of the threshold voltage on the current of the second transistor 5〇9, and then enter the write data state, the current outputted by the second transistor 509 is only related to the voltage change on the data line 5〇3, and is not subject to the criticality. The effect of voltage changes. --- or · organic ~ effect transistor and the organic electro-excited 籴 diode of the single opening of the representative of the conductive conductor cobalt to the above-mentioned 2B figure of the unit circuit circuit profile is not intended to be as shown in Figure 6A Show. First, a gate layer 602 is formed over the substrate 6?, and a first transistor region 620 and a second transistor region 622 are defined. Then, a gate dielectric layer 6?4 is formed on the gate layer 602, and then etched. A first source/drain layer 606 and an organic channel layer 608a are formed on the gate dielectric layer 604 of the second transistor region 622 by a technique such as photolithography after forming the first opening 624 on the gate dielectric layer 604. 3, an amorphous germanium layer 608b, an n-type heavily doped amorphous germanium layer 609 are sequentially formed on the gate dielectric layer 604 of the transistor region 620, and simultaneously in the first transistor region 620 and the second A source/drain layer is formed over the crystal region 622 and the source/drain layer is etched by a etch technique such as photolithography to discard the first transistor region 620 and the second transistor region 622. The source/drain layer on the second transistor region 622 is the source of the second transistor region 622 and the electrode layer 61 〇a, and in the process of surname source/drain layer, Portions of the first transistor region 620 are an etch source/drain layer, an n-type heavily doped amorphous germanium layer 609, and an amorphous germanium layer 608b to form a second opening 626. On the first transistor region 620, the source/drain layer is divided into two regions by the second opening 626, which are the first source/drain layer 610b and the second of the first transistor region 62〇, respectively. The source/drain layer 61〇c, the second source/drain 610c layer fills the first opening 624 and contacts the idler layer 602 on the second transistor region 622. a gate layer 602, a gate dielectric layer 604, an amorphous germanium layer 608b, an n-type heavily doped amorphous germanium layer 6〇9, a first source/drain layer 610b, and a first transistor region 620, The first transistor 207 composed of the second source/drain layer 61〇c is a horizontal thin film field effect transistor, the gate layer 602 on the second transistor region 622, the gate dielectric layer 604, and the first source The second transistor 2〇9 composed of the /pole layer 6〇6, the organic channel layer 608a, and the second source/drain layer 61〇a is a continuous island-effect transistor. In order to make the first transistor 207 of the first transistor region 620 and the second transistor 2〇9 of the second transistor region 622 have the same height, the first source/drain of the first electrode region 620 is required. A flat layer 612 is formed on the layer 61〇b and the second source/drain layer 610c, and the flat layer 612 fills the second opening 626' and then continues to the flat layer 6 i 2 and the second transistor 2〇9. An organic electroluminescent diode lower electrode layer 614, an organic light emitting layer 616 and an organic electroluminescent diode upper electrode layer 618 are sequentially formed on the second source/drain layer 610a, wherein the organic electroluminescent diode lower electrode layer 614 Organic light-emitting layer 200824165 616: The organic electroluminescent diode upper electrode layer 6i8 constitutes a structure of an organic electro-excited diode. The first transistor 2〇7 and the organic electro-exciter-pole 211 are insulated and isolated by the flat layer 612, and the organic electrode, the lower electrode layer 614 of the LED 211 is connected to the second transistor. The second source/no-pole layer 61〇a of 2〇9 is connected. The organic light-emitting layer 616 includes a combination of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like.
類似地,前述之第3B圖之單元畫素電路相對應的半導 縣構剖面示意圖如第6B圖所示,其結構與形成方法大致 與第6A圖相同,其中,第一電晶體307係為-橫式薄膜場 效電晶體’第二電晶體3G9係為—直式有機場效電晶體。 第6A圖與第6B圖結構與形成方法的不同之處在於第一電 晶體307財機電激發光二極冑311之間以及第二電晶體 309與有機電激發光二極體3丨丨之間均以平坦層6a絕緣隔 離,有機電激發光二極體311的下電極層614則與第二電 晶體309之第一源/汲極層606相接。 如上所述,本發明提供一種有機電激發光平面顯示的 單元畫素電路,具有以下優點: (1) 每一單元畫素的第一電晶體皆採用橫式薄膜場效電 晶體,故電阻電容遲滯效應小,使灰階資料能在特定週期 時間内正確寫入。 (2) 每一單元晝素的第二電晶體皆採用直式有機場效電 晶體,導通電流大,使得有機電激發光二極體發光品質良 好。 (3)每一單元畫素的第二電晶體皆採用直式有機場效 15 200824165 電晶體’寄i電容大,能夠在第一電晶體關閉時維持—定 的灰階電壓,不再需要外加儲存電容。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限=本發明,任何熟習此技藝者,在不脫離本發明之精神 2範圍内,當可作各種之更動與潤飾,因此本發明之保護 乾圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】Similarly, the schematic diagram of the semi-conductor structure corresponding to the unit pixel circuit of the foregoing FIG. 3B is as shown in FIG. 6B, and the structure and the forming method are substantially the same as that of FIG. 6A, wherein the first transistor 307 is - Horizontal film field effect transistor 'Second transistor 3G9 is a straight type airport effect transistor. The structures of the 6A and 6B are different from the method of forming in that the first transistor 307 is between the electroluminescence excitation photodiode 311 and between the second transistor 309 and the organic electroluminescence diode 3? The flat layer 6a is insulated and the lower electrode layer 614 of the organic electroluminescent diode 311 is in contact with the first source/drain layer 606 of the second transistor 309. As described above, the present invention provides a unit pixel circuit for organic electroluminescence light plane display, which has the following advantages: (1) The first transistor of each unit pixel adopts a horizontal thin film field effect transistor, so the resistance and capacitance The hysteresis effect is small, enabling grayscale data to be correctly written in a specific cycle time. (2) The second transistor of each unit is a straight-type organic field effect transistor, and the conduction current is large, so that the organic electroluminescence excitation diode has good illumination quality. (3) The second transistor of each unit pixel adopts a straight-type airport effect. 15 200824165 The transistor 'sends a large capacitance, which can maintain the fixed gray-scale voltage when the first transistor is turned off, no need to add Storage capacitors. While the present invention has been described above in terms of the preferred embodiments, it is not intended to be limited to the present invention, and it is to be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit of the invention. The protection of the invention is defined by the scope of the patent application attached to it. [Simple description of the map]
為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本發明一實施例所使用的直式 場效電晶體結構剖面圖; 第2A圖係繪示依照本發明一實施 激發光平面顯W之單元畫素電路; Λ有機電 電激ΪΓ/係繪示依照本發明另—實施例的主動式有機 電激::先平面顯示器之單元畫素電路; 弟3Α圖係繪示依照本發明又施 電《光平面顯㈣'之單元晝素電路; 動式有機 電激:光=繪示依照本發明再一實施例的主動式有機 # 面〃、、員不态之單元晝素電路; 電激本::又-實施例的主動式有機 ^ 叫.、、、貝不為之早晝素電路; 第4Β圖係繪示依照本發明又一 電激發光平而如- 貝土勒式有機 # ·"、不盗單元畫素電路之驅動波形; 弟5圖係繪示依照本發明又一實施例的主動式有機電 16 200824165 激發,平,示器之單元畫素電路 第6A圖係繪示依照本發明一 之剖面結構示意圖;以及 第6B圖係繪示依照本發明另 路之剖面結構示意圖。 實施例的單元晝素電路 一實施例的單元晝素電The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; FIG. 2A is a diagram showing a unit pixel circuit for exciting a light plane display according to an embodiment of the present invention; Λ organic electro-electric excitation/depicting an active organic galvanic according to another embodiment of the present invention: The unit pixel circuit of the front panel display; the third diagram shows the unit pixel circuit of the light plane display (four)' according to the invention; the dynamic organic electromagnetism: light=illustration according to another embodiment of the invention Examples of active organic # 〃 〃, 员 之 之 昼 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; A driving waveform of a further electro-acoustic light flat according to the present invention, such as a -Beltler organic organic image, and a non-invasive pixel pixel circuit; Organic electricity 16 200824165 excitation, flat, unit cell of the display Circuit FIG. 6A is a schematic cross-sectional view showing a structure according to the present invention; and FIG. 6B is a schematic cross-sectional view showing another embodiment of the present invention. Unit 昼 电路 circuit of an embodiment
[主 要元件符號說明】 101 :基板 103 : 105 :閘介電層 107 : 109 •有機通道層 111 : 113 :通道長度 115 : 117 :通道厚度 201 : 203 :資料線 207 : 209 :第二電晶體 211 ; 215 :第一電容 217 : 219 :地線 301 : 303 :資料線 307 : 309 :第二電晶體 311 : 315 :第一電容 317 : 319 :地線 400 : 401 :第一掃描線 403 : 405 .第一電晶體 407 : 409 :第一控制線 411 : 413 :第一電容 415 : 417 :第四電晶體 419 : 閘極 第一源/汲極層 第二源/汲極層 通道寬度 第一掃描線 弟一電晶體 有機電激發光二極體 工作電壓源 弟一掃描線 第一電晶體 有機電激發光二極體 工作電壓源 第一補償電路 資料線 第二電容 第二控制線 第二電晶體 弟二電晶體 17 200824165 421 :有機電激發光二極體 422 :工作電壓源 423 :資料線403驅動波形 425 :第二控制線411驅動波形 427 :第一控制線409驅動波形 429:第一掃描線401驅動波形 431 :自動歸零狀態 435 :發光狀態 500 :第一補償電路 503 :資料線 509 :第二電晶體 513 :第三電晶體 517 :工作電壓源 6 0 2 :閘極層 606 :第一源/沒極層 608b :非晶矽層 433 :寫入資料狀態 437 :電壓變化 501 :第一掃描線 507 :有機電激發光二極體 511 :第二掃描線 515 :第一電容 600 :基板 604 :閘介電層 608a:有機通道層 609 : η型重摻雜非晶矽層 610a ··第二源/汲極層 610b:第一源/汲極層 610c :第二源/汲極層 612 :平坦層 614:有機電激發光二極體下電極層 616:有機發光層 618 :有機電激發光二極體上電極層 620 :第一電晶體區域 622 :第二電晶體區域 624 :第一開口 626 :第二開口 18[Main component symbol description] 101: Substrate 103: 105: Gate dielectric layer 107: 109 • Organic channel layer 111: 113: Channel length 115: 117: Channel thickness 201: 203: Data line 207: 209: Second transistor 211; 215: first capacitor 217: 219: ground 301: 303: data line 307: 309: second transistor 311: 315: first capacitor 317: 319: ground line 400: 401: first scan line 403: 405. First transistor 407: 409: first control line 411: 413: first capacitor 415: 417: fourth transistor 419: gate first source/drain layer second source/drain layer channel width A scanning line brother, a transistor, an organic electroluminescent diode, a working voltage source, a scanning line, a first transistor, an organic electroluminescent diode, a working voltage source, a first compensation circuit, a data line, a second capacitor, a second control line, a second transistor. 2nd transistor 17 200824165 421 : organic electroluminescent diode 422: operating voltage source 423: data line 403 driving waveform 425: second control line 411 driving waveform 427: first control line 409 driving waveform 429: first sweep Trace line 401 drives waveform 431: auto-zero state 435: illumination state 500: first compensation circuit 503: data line 509: second transistor 513: third transistor 517: operating voltage source 6 0 2: gate layer 606: First source/dipole layer 608b: amorphous germanium layer 433: write data state 437: voltage change 501: first scan line 507: organic electroluminescent diode 511: second scan line 515: first capacitor 600: Substrate 604: gate dielectric layer 608a: organic channel layer 609: n-type heavily doped amorphous germanium layer 610a · second source/drain layer 610b: first source/drain layer 610c: second source/drain Layer 612: flat layer 614: organic electroluminescent diode lower electrode layer 616: organic light-emitting layer 618: organic electroluminescent diode upper electrode layer 620: first transistor region 622: second transistor region 624: first Opening 626: second opening 18