TW200822576A - Method and apparatus for encoding and decoding high speed shared control channel - Google Patents

Method and apparatus for encoding and decoding high speed shared control channel Download PDF

Info

Publication number
TW200822576A
TW200822576A TW096140881A TW96140881A TW200822576A TW 200822576 A TW200822576 A TW 200822576A TW 096140881 A TW096140881 A TW 096140881A TW 96140881 A TW96140881 A TW 96140881A TW 200822576 A TW200822576 A TW 200822576A
Authority
TW
Taiwan
Prior art keywords
data
wtru
mask
crc
rate
Prior art date
Application number
TW096140881A
Other languages
Chinese (zh)
Other versions
TWI474626B (en
Inventor
Philip J Pietraski
Yong-Wen Yang
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200822576A publication Critical patent/TW200822576A/en
Application granted granted Critical
Publication of TWI474626B publication Critical patent/TWI474626B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1004Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's to protect a block of data words, e.g. CRC or checksum
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for encoding and decoding high speed shared control channel (HS-SCCH) data are disclosed. For part 1 data encoding, a mask may be generated using a wireless transmit/receive unit (WTRU) identity (ID) and a generator matrix with a maximum minimum Hamming distance. For part 2 data encoding, cyclic redundancy check (CRC) bits are generated based on part 1 data and part 2 data. The number of CRC bits is less than the WTRU ID. The CRC bits and/or the part 2 data are masked with a mask. The mask may be a WTRU ID or a punctured WTRU ID of length equal to the CRC bits. The mask may be generated using the WTRU ID and a generator matrix with a maximum minimum Hamming distance. The masking may be performed after encoding or rate matching.

Description

200822576 九、發明說明: 【發明所屬之技術領域】 本發明關於無線通訊。 【先前技術】 在第三代合作伙伴計晝(3GPP)的高速下行鍵結封包存 取(HSPDA)中,解碼高速下行鏈結共用通道㈣必卿所 必而的控制為§孔經由咼速共用控制通道被傳 輸。多個HS_SCCH可以被傳輸到一組與特定社區相關聯的 無線傳輸/接收單元(WTRU)。HS_SCCH攜帶兩(2)部分資 料:部分1資料和部分2資料。部分i資料包括通道化碼 设置貧訊、調製方案資訊等等。部分2資料包括傳送塊大 小為汛、混合自動重複請求(HARQ)處理資訊、冗餘和星座 版本資訊、WTRU標識(ID)等等。HS_SCCH幀包括三個時 隙。部分1資料在第一時隙中被傳輸,而部分2資料在第 二和第三時隙中被傳輸。 第1圖示出了傳統的HS-SCCH編碼。對於編碼部分1 資料來說,通道化碼設置資訊Xees和調製方案資訊Xms被多 工以生成位元序列X!。速率1/3的迴旋編碼被應用於位元 序列X〗以生成位元序列Zi。位元序列Z!針對速率匹配被 删餘以生成位元序列。被速率匹配的位元使用WTRU ID以WTRU特定方式被掩蔽以產生位元序列s〗。這裏的掩 蔽意指每個位元都取決於掩蔽位元值而被有條件地翻轉。 對於WTRU特定掩蔽,藉由用速率1/2的迴旋編碼來編碼 WTRUID而生成中間碼字位元。 6 200822576 對於編碼部分2資料,傳送塊大小資訊Xtbs、HARQ進 程資訊Xhap、冗餘版本資訊Xw以及新資料指示符Xnd被多 工以生成位元序列X2。循環冗餘檢查(CRC)位元從位元序 列X!和X2中被計算。CRC位元用WTRU ID (Xue)掩蔽, 然後被附加到位元序列X2以形成位元序列Y。速率1/3的 迴旋編碼被應用到位元序列Y以生成位元序列Z2。位元序 列Z2針對速率匹配被刪餘以生成位元序列r2。位元序列 Si和R2被結合並且映射到實體通道以用於傳輸。 部分1資料檢測的性能受用於多個HS-SCCH的遮罩之 間的漢明距離的影響。習用方法用最短距離八(8)產生一組 遮罩。當使用這些最小距離碼時,HS-SCCH檢測性能不是 最佳的。另外,在對於HSDPA實施多輸入多輸出(ΜΙΜΟ) 的情況下,HS-SCCH需要攜帶更多資料。因此,必須為與 HS-SCCH中的ΜΙΜΟ實施相關的資料傳輸製造更多空間。 【發明内容】 本案公開了一種用於對HS-SCCH的資料進行編碼和 解碼的方法和設備。對於部分1資料編碼,可以使用WTRU ID和具有最大的最小漢明距離的生成矩陣來生成遮罩。對 於部分2資料編碼,基於部分1資料和部分2資料生成cRC 位兀。CRC位元的數量可以小於WTRU ID。CRC位元和/ 或。卩分2資料用遮罩來進行掩蔽。該遮罩可以是WTRu仍 或長度等於CRC位元的被刪餘的WTRU ID。可以使用 WTRU ID和具有最大的最小漢0離的生成矩陣來生成該 遮罩。该掩蔽可以在編碼或速率匹配之後進行。 7 200822576 【實施方式】 下文中提到的"WTRU”包括但不局限於使用者設 邮)、移動站、固定或行動使用者單元、傳呼器、行動電 話、個人數位助理(PDA)、電腦或能夠在無線環境中操作的 任何其他類型的使用者設備。下文中提到的”節點B”包括但 =祕基地台、賴控制器、存取點(AP)或能夠在無線 環★兄中操作的任何其他類型的界面設備。 第2圖是用於編碼HS_SCCH的資料的節點B 2〇〇的示 例區塊圖。節點B 200包括編碼器2〇2、速率匹配單元2⑽、 掩蔽單元206、多工器210、CRC單元212、掩蔽單元214、 編碼器218、速率匹配單元22〇以及收發器224<3HS_scch 的貧料包括部分1資料和部分2資料。部分i資料被發送 到編碼器202。編碼器搬對部分丨資料加執行通道編碼。 然後,速率匹配單元204刪餘被通道編碼的部分1資料2〇3 以便速率匹配。然後,掩蔽單元206用遮罩對被速率匹配 的。卩分1資料205進行掩蔽。該遮罩可以基於WTRUID 2〇8 來生成。 代碼通常針對它們的性能以及解碼器的簡易性而被選 擇。迴旋碼是性能優良並且解碼器複雜度低的代碼的好示 例。當然,性能和解碼器複雜度之間存在某些折衷。然而, 因為對應的解碼器不需要存在於WTRU中,當選擇代碼以 ,於掩蔽時,解碼器複雜度不是一種因素。所有需要的只 疋可以藉由簡單得多的編碼器所創建的遮罩本身。200822576 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to wireless communication. [Prior Art] In the 3rd Generation Partnership Project (3GPP) High Speed Downlink Packet Access (HSPDA), the decoding of the high speed downlink link shared channel (4) must be controlled by the § hole via idle speed sharing The control channel is transmitted. Multiple HS_SCCHs may be transmitted to a group of wireless transmit/receive units (WTRUs) associated with a particular community. HS_SCCH carries two (2) parts of information: Part 1 data and Part 2 data. Part of the i data includes channelization code settings, information on the modulation scheme, and so on. Part 2 data includes transport block size 汛, hybrid automatic repeat request (HARQ) processing information, redundancy and constellation version information, WTRU identification (ID), and so on. The HS_SCCH frame includes three time slots. Part 1 data is transmitted in the first time slot and part 2 data is transmitted in the second and third time slots. Figure 1 shows the conventional HS-SCCH coding. For the encoding portion 1 data, the channelization code setting information Xees and the modulation scheme information Xms are multiplexed to generate the bit sequence X!. A rate 1/3 of the whirling code is applied to the bit sequence X to generate a bit sequence Zi. The bit sequence Z! is punctured for rate matching to generate a sequence of bits. The rate matched bits are masked in a WTRU-specific manner using the WTRU ID to generate a sequence of bits. Masking here means that each bit is conditionally flipped depending on the value of the mask bit. For WTRU-specific masking, intermediate codeword bits are generated by encoding the WTRUID with a rate 1/2 cyclotron encoding. 6 200822576 For the encoding part 2 data, the transport block size information Xtbs, the HARQ process information Xhap, the redundancy version information Xw and the new data indicator Xnd are multiplexed to generate the bit sequence X2. Cyclic Redundancy Check (CRC) bits are computed from the bit sequence X! and X2. The CRC bit is masked with the WTRU ID (Xue) and then appended to the bit sequence X2 to form the bit sequence Y. A rate 1/3 of the whirling code is applied to the bit sequence Y to generate a bit sequence Z2. The bit sequence Z2 is punctured for rate matching to generate a bit sequence r2. The bit sequences Si and R2 are combined and mapped to the physical channel for transmission. The performance of Part 1 data detection is affected by the Hamming distance between masks used for multiple HS-SCCHs. The conventional method produces a set of masks with a minimum distance of eight (8). When these minimum distance codes are used, the HS-SCCH detection performance is not optimal. In addition, in the case of implementing multiple input multiple output (ΜΙΜΟ) for HSDPA, the HS-SCCH needs to carry more data. Therefore, more space must be created for data transfer related to the implementation of ΜΙΜΟ in the HS-SCCH. SUMMARY OF THE INVENTION The present invention discloses a method and apparatus for encoding and decoding data of an HS-SCCH. For Part 1 data encoding, a mask can be generated using the WTRU ID and the generator matrix with the largest minimum Hamming distance. For Part 2 data encoding, the cRC bit is generated based on the Part 1 data and the Part 2 data. The number of CRC bits may be less than the WTRU ID. CRC bit and / or. Divide 2 data with a mask to mask. The mask may be a punctured WTRU ID that is still WTRu or equal in length to the CRC bit. The mask can be generated using the WTRU ID and the generator matrix with the largest minimum. This masking can be done after encoding or rate matching. 7 200822576 [Embodiment] The "WTRU" mentioned below includes but not limited to user mailing, mobile station, fixed or mobile user unit, pager, mobile phone, personal digital assistant (PDA), computer Or any other type of user device capable of operating in a wireless environment. The "Node B" mentioned below includes but = a secret base station, a controller, an access point (AP) or can be in the wireless ring ★ brother Any other type of interface device that operates. Figure 2 is an example block diagram of a Node B 2〇〇 for encoding data for HS_SCCH. Node B 200 includes an encoder 2〇2, a rate matching unit 2(10), a masking unit 206, The multiplexer 210, the CRC unit 212, the masking unit 214, the encoder 218, the rate matching unit 22, and the transceiver 224 < 3HS_scch include the Part 1 data and the Part 2 data. The Part i data is sent to the encoder 202. The encoder moves the partial data and performs channel coding. Then, the rate matching unit 204 punctured the channel-encoded portion 1 data 2〇3 for rate matching. Then, the masking unit 206 is masked by the mask. The rate is matched by masking 1 data 205. The mask can be generated based on WTRUID 2 〇 8. The codes are typically chosen for their performance and the simplicity of the decoder. The whirling code is excellent in performance and decoder complexity. A good example of low code. Of course, there is some trade-off between performance and decoder complexity. However, because the corresponding decoder does not need to be present in the WTRU, when the code is chosen, the mask complexity is not One factor. All that is needed is the mask itself created by a much simpler encoder.

掩蔽單元206藉由用生成矩陣以區塊編碼WTRU ID 8 200822576 208來生成遮罩,生成矩陣產生具有最大的最小漢明距離的 遮罩。遮罩藉由WTRUID和生成矩陣的向量矩陣乘積而生 成。結果遮罩是生成矩陣各行的線性組合。用於(4〇,π) 代碼的示例生成矩陣被給出如下。應當指出,如下所示的 生成矩陣被長:供為一個不例,而不是作為一種限制,並且 可以替換地使用任何其他生成矩陣。在這個示例中,遮罩 疋40位元遮罩’而WTRU ID的長度是16位元。這個示例 使用具有特定生成矩陣的區塊碼,該生成矩陣產生具有十 二(12)的最短距離的遮罩。這在最短距離處使用多個 HS-SCCH傳輸時提供了好得多的性能。 [10G00000D0000000D01010100100111Q01001110] [0 1000000000000001 0 0110 〇1〇1〇1〇〇〇111〇〇1〇〇1j [0 01000000000000001001 1 00101010001 1 1 0 0101] [00010000000000000010011Q0101010001110011] [0 000100000000000 1 0011111 ο 101110011010110] [0 0000100000000 0 0 110000 11 1 101 100010000101] [0 00000100000000001 10 0 0011 11011000100001 1] [0000000100000000101111001000000011001110] [0 00 0 0 000100 0 000011010010001 101 1 0 10001001] [0000000001000000011010010001101101000101] [0000000000100000001101001000110110100011] [0 0000000000100001 0 0 1 01 10001 100000011 1 110] [0000000000001000110001110110111011110001] [0000000000000100011000111011011101111001] [0000000000000010001100011101101110111101] [Ο 00000000 Ο Ο 000 Ο 10001100 ο 111011011.1011 111] 傳統地,藉由用速率1/2的迴旋編碼來編碼WTRU ID 208而生成遮罩。傳統遮罩的最小漢明距離是八(8)。本發 明生成的遮罩的改進漢明距離而導致了 WTRU處的部分1 9 200822576 HS-SCCH解碼器的性能改善。第4圖顯示了比較兩個 HS-SCCH掩蔽方法(先前技術和本發明)對於部分1資料的 選擇差錯概率ν·信噪比(SNR)的性能的模擬結果,其中, 兩個HS-SCCH代碼用對應方法規定的不同遮罩距離來傳 輸。相較於具有八(8)漢明距離的遮罩,第4圖示出了使用 具有十二(12)漢明距離的遮罩時的性能改善。 再次參考第2圖,部分1資料201和部分2資料211 被發送到CRC單元212以計算CRC位元。CRC位元被附 加到部分2資料211。CRC位元的數量可能小於WTRU ID 的長度,使得更多資料(例如,用於ΜΙΜΟ的資料)可以被 包含而作為部分2資料。被結合的部分2資料和CRC位元 213被發送到掩蔽單元214。掩蔽單元214對CRC位元或 CRC位元加上一部分或全部具有遮罩的部分2資料執行掩 敝這將在下文中被詳細描述。編碼器218對被掩蔽的部 刀2負料和CRC位元217進行編碼。速率匹配單元220對 被編碼的部分2資料和CRC位元219進行删餘。被速率匹 =的部分2資料和CRC位元221以及被速率匹配的部分1 資料209由多工器210進行多工並且被發送到收發器224 以用於傳輸。 、根據一種實施方式,掩蔽單元214可以生成大小等於 或小於CRC位元加上部分2資料的大小的遮罩。一部分遮 罩被提取並且應用於CRC位元,而遮罩的剩餘部分被應用 於所有或部分的部分2資料。如同在上文所述,部分j資 料掩蔽以最大化最小漢明距離的遮罩,遮罩可以使用 200822576 WTRU ID 216和生成矩陣來生成。 根據另一種實施方式,WTRU ID可以被用作遮罩。 WTRU ID的長度可能長於CRC位元。因此,WTRU ID的 一部分被用來掩蔽CRC位元,而WTRU ID的剩餘被用來 掩蔽部分2資料。根據又一種實施方式,WTRU ID被刪餘 成與CRC位元相同的長度並且被刪餘的WTRu ID被用來 掩蔽CRC位元。 仍然根據另一種實施方式,可以在編碼器和速率匹配 單元之間移動掩蔽單元214。掩蔽單元214生成長度等於被 速率匹配的部分2資料和CRC位元221的遮罩。然後,掩 蔽單元214把該遮罩應用到被編碼的部分2資料和CRC位 元219。或者,可以在速率匹配單元22〇和多工器21〇之間 移動掩蔽單元214,並且把遮罩應用到被速率匹配的部分2 資料和CRC位元221。遮罩長度可以是80位元。關於掩蔽 以最大化遮罩的最小漢明距離的部分丨資料,如上所公開 的,可以使用WTRU ID 216和生成矩陣來生成遮罩。 第3圖是用於對HS-SCCH的資料進行解碼的示例 WTRU 300的區塊圖。WTRU3〇〇包括收發器3〇2、去多工 器304、去掩蔽單元306、速率去匹配單元31〇、解碼器312、 速率去匹配單元314、解碼n 316、去掩蔽單元318以及 CRC單元322。收發器302接收HS-SCCH傳輸3(Π,該 HS-SCCH傳輸301包括HS-SCCH巾貞的第-時隙上對應於 部分1資料的第一部分和HS-SCCH巾貞的第二和第三時隙上 對應於部分2資料的第二部分。第一部分咖和第二部分 200822576 3〇5b藉由去多工器3〇4被去複用。 第一部分3GSa由去掩蔽單元鳥去掩蔽。去掩蔽單元 3〇6以同樣的方朗WTRUID細生成在節點β處使用的 相同遮罩。該遮罩可以如上所述用WTRUID3〇8和生成矩 陣,生成。速率去匹配單元31G在被去掩蔽的第一部分猶 上逛原在祕B處執行酬餘。然後,被速率去匹配的第 一部分311由解碼器312解碼以輸出部分〗資料3〗3。部分 1資料還被發送到CRC單元322。 第二部分30513由速率去匹配單元314被速率去匹配以 還原在節點B處執行_餘。錢,解碼器、316解瑪被速 率去=配的第二部分315以輸出部分2資料(可能或可能沒 有在節點B處被掩蔽)和被掩蔽的CRC位元317。去掩蔽單 =318去掩蔽被掩蔽的CRC位元並且選擇性地去掩蔽被掩 敝的部分2資料3Π。去掩蔽單元318使用在節點B處使 用的相同遮罩來進行去掩蔽。遮罩可以是WTRUID細、 被刪餘的WTRU ID或使用WTRU ID 320和生成矩陣生成 的遮罩。去掩蔽單元318向CRC單元322輸出被去掩蔽的 部分2資料和CRC位元321。然後,CRC單元322用部分 1資料313、部分2資料和CRC位元來執行CRC檢驗。 取決於在節點B處執行的掩蔽方案,去掩蔽單元318 可以在解碼器316和速率去匹配單元314之間,或者在速 率去匹配單元314和去多工器304之間被移動。在這種情 况下,遮罩長度可以是8〇位元,並且可以如上所述地用 WTRUID 216和生成矩陣來生成遮罩以最大化遮罩的最小 12 200822576 漢明距離。 實施例 1·一種用於對HS-SCCH的部分2資料進行編碼的節點 B。 ” 2·根據實施例1的節點B,包括用於基於部分1資料和 部分2資料來生成CRC位元的CRC單元,CRC位元被附 加到部分2資料,CRC位元的數量小於WTRU標識(ID)。 34艮據實施例2的節點B,包括掩蔽單元,用於用遮罩 對部分2資料和CRC位元中的至少其中之一執行WTRU 特定的掩蔽。 4·根據實施例3的節點B,包括傳輸器,用於在進行 WTRU特定掩蔽之後傳輸部分1資料和帶有附加CRC位元 的部分2資料。 5·根據實施例3-4中任一實施例的節點B,其中,遮罩 是長度等於CRC位元的被删餘的WTRUID。 6·根據實施例3-5中任一實施例的節點B,其中,遮罩 是WTRU ID,並且WTRU ID的一部分被用來掩蔽CRC位 元’而WTRU ID的剩餘部分被用來掩蔽部分2資料。 7·根據實施例3-6中任一實施例的節點B,其中,掩蔽 單元使用WTRU ID和生成矩陣來生成最大的最小漢明距 離的遮罩。 8·根據實施例3-7中任一實施例的節點B,還包括用於 對部分2資料和CRC位元執行通道編碼的通道編碼器。 9·根據實施例8的節點B,包括用於對被編碼的部分2 13 200822576 資料和CRC位元執行速率匹配的速率匹配單元,其中,掩 蔽單元生成長度等於被速率匹配的被編碼的部分2資料和 CRC位元的遮罩,且在通道編碼和速率匹配中的其中之 之後執行WTRU特定的掩蔽。 ^ 10.-種用於對HS-SCCH的部分2資料進行解 WTRU 〇Masking unit 206 generates a mask by block encoding WTRU ID 8 200822576 208 with a generator matrix that produces a mask with the largest minimum Hamming distance. The mask is generated by the product matrix product of the WTRUID and the generator matrix. The resulting mask is a linear combination of the rows of the generator matrix. An example generation matrix for the (4〇, π) code is given below. It should be noted that the generator matrix shown below is long: it is provided as an example, not as a limitation, and any other generator matrix can be used instead. In this example, the mask 疋 40-bit mask 'and the WTRU ID is 16 bits long. This example uses a block code with a particular generator matrix that produces a mask with the shortest distance of twelve (12). This provides much better performance when using multiple HS-SCCH transmissions at the shortest distance. [10G00000D0000000D01010100100111Q01001110] [0 1000000000000001 0 0110 〇1〇1〇1〇〇〇111〇〇1〇〇1j [0 01000000000000001001 1 00101010001 1 1 0 0101] [00010000000000000010011Q0101010001110011] [0 000100000000000 1 0011111 ο 101110011010110] [0 0000100000000 0 0 110000 11 1 101 100010000101] [0 00000100000000001 10 0 0011 11011000100001 1] [0000000100000000101111001000000011001110] [0 00 0 0 000100 0 000011010010001 101 1 0 10001001] [000000000100000001101001000110110100011] [0000000000100000001101001000110110100011] [0 0000000000100001 0 0 1 01 10001 100000011 1 110] [ 0000000000001000110001110110111011110001] [0000000000000100011000111011011101111001] [0000000000000010001100011101101110111101] [Ο 00000000 Ο Ο 000 Ο 10001100 ο 111011011.1011 111] Traditionally, a mask is generated by encoding the WTRU ID 208 with a rate 1/2 wrap coding. The minimum Hamming distance for a conventional mask is eight (8). The improved Hamming distance of the mask generated by the present invention results in improved performance of the portion 1 9 200822576 HS-SCCH decoder at the WTRU. Figure 4 shows the simulation results comparing the performance of the two HS-SCCH masking methods (prior art and the present invention) for the selection error probability ν·signal-to-noise ratio (SNR) of the partial 1 data, where two HS-SCCH codes Transfer by different mask distances specified by the corresponding method. Compared to a mask having an eight (8) Hamming distance, Fig. 4 shows the performance improvement when a mask having a twelve (12) Hamming distance is used. Referring again to Figure 2, Part 1 Data 201 and Part 2 Data 211 are sent to CRC unit 212 to calculate the CRC bits. The CRC bit is appended to the Part 2 data 211. The number of CRC bits may be less than the length of the WTRU ID, such that more data (e.g., data for ΜΙΜΟ) may be included as part 2 data. The combined portion 2 data and CRC bits 213 are sent to the masking unit 214. The masking unit 214 performs masking on the CRC bit or CRC bit plus part or all of the masked portion 2 data, which will be described in detail below. Encoder 218 encodes masked knife 2 and CRC bits 217. Rate matching unit 220 punctured the encoded portion 2 data and CRC bits 219. The portion 2 data and CRC bits 221 that are rate matched = and the rate matched portion 1 data 209 are multiplexed by multiplexer 210 and sent to transceiver 224 for transmission. According to one embodiment, the masking unit 214 can generate a mask having a size equal to or smaller than the size of the CRC bit plus the portion 2 data. A portion of the mask is extracted and applied to the CRC bits, while the remainder of the mask is applied to all or part of the Part 2 data. As described above, some of the j data is masked to maximize the mask of the minimum Hamming distance, and the mask can be generated using the 200822576 WTRU ID 216 and the generator matrix. According to another embodiment, the WTRU ID may be used as a mask. The length of the WTRU ID may be longer than the CRC bit. Therefore, a portion of the WTRU ID is used to mask the CRC bits, while the remainder of the WTRU ID is used to mask part 2 data. According to yet another embodiment, the WTRU ID is punctured to the same length as the CRC bit and the punctured WTRu ID is used to mask the CRC bits. Still according to another embodiment, the masking unit 214 can be moved between the encoder and the rate matching unit. Masking unit 214 generates a mask having a length equal to the rate matched portion 2 data and CRC bits 221 . Masking unit 214 then applies the mask to the encoded portion 2 data and CRC bits 219. Alternatively, the masking unit 214 can be moved between the rate matching unit 22A and the multiplexer 21A, and the mask is applied to the rate-matched portion 2 data and the CRC bit 221. The mask length can be 80 bits. Regarding the masking to maximize the minimum Hamming distance of the mask, as disclosed above, the WTRU ID 216 and the generator matrix can be used to generate the mask. Figure 3 is a block diagram of an example WTRU 300 for decoding HS-SCCH data. The WTRU 3 includes a transceiver 〇2, a multiplexer 304, a demasking unit 306, a rate dematching unit 31, a decoder 312, a rate dematching unit 314, a decoding n 316, a demasking unit 318, and a CRC unit 322. . The transceiver 302 receives the HS-SCCH transmission 3 (Π, the HS-SCCH transmission 301 includes the first portion of the HS-SCCH frame corresponding to the first portion of the Part 1 data and the second and third portions of the HS-SCCH frame The second portion of the time slot corresponds to the portion 2 data. The first portion of the coffee and the second portion 200822576 3〇5b are demultiplexed by the demultiplexer 3〇4. The first part of the 3GSa is masked by the demasking unit bird. The masking unit 3〇6 generates the same mask used at the node β with the same square WTRUID. The mask can be generated with the WTRUID3〇8 and the generator matrix as described above. The rate dematching unit 31G is demasked. The first part continues to perform the remuneration at the secret B. Then, the first portion 311 that is rate matched to be decoded by the decoder 312 to output the partial data 3 〗 3. The portion 1 data is also sent to the CRC unit 322. The two parts 30513 are rate-matched by the rate de-matching unit 314 to restore the execution at the Node B. The money, the decoder, the 316 demema is the rate = the second part 315 of the distribution to output the part 2 data (possibly or possibly No masked at node B) and masked CRC bits 317. Demasking single = 318 to mask the masked CRC bits and selectively masking the masked portion 2 data. The demasking unit 318 uses the same mask used at node B for masking. The hood may be a WTRU ID fine, punctured WTRU ID or a mask generated using the WTRU ID 320 and the generator matrix. The demasking unit 318 outputs the demasked partial 2 data and CRC bits 321 to the CRC unit 322. Then, the CRC Unit 322 performs a CRC check with Part 1 Data 313, Part 2 Data, and CRC Bits. Depending on the masking scheme performed at Node B, demasking unit 318 may be between decoder 316 and rate dematching unit 314, or Moved between the rate dematching unit 314 and the demultiplexer 304. In this case, the mask length can be 8 〇 bits, and the WTRU ID 216 and the generator matrix can be used to generate a mask as described above. Maximizing the minimum of the mask 12 200822576 Hamming distance. Embodiment 1 · A Node B for encoding the Part 2 data of the HS-SCCH. "2. Node B according to Embodiment 1, including for Part 1 based Information and department 2 data to generate a CRC unit of the CRC bit, the CRC bit is appended to the part 2 data, the number of CRC bits is smaller than the WTRU identification (ID). 34. According to the Node B of Embodiment 2, including a masking unit, for use The mask performs WTRU-specific masking on at least one of the Part 2 data and the CRC bits. 4. The Node B according to Embodiment 3, comprising a transmitter for transmitting Part 1 data and bands after performing WTRU-specific masking There is part 2 data with additional CRC bits. 5. The Node B of any of embodiments 3-4, wherein the mask is a punctured WTRUID having a length equal to a CRC bit. 6. The Node B of any of embodiments 3-5, wherein the mask is a WTRU ID and a portion of the WTRU ID is used to mask the CRC bit and the remainder of the WTRU ID is used to mask the portion 2 data. The Node B of any of embodiments 3-6 wherein the masking unit uses the WTRU ID and the generator matrix to generate a mask of the largest minimum Hamming distance. 8. The Node B of any of embodiments 3-7, further comprising a channel encoder for performing channel coding on the portion 2 data and the CRC bits. 9. The Node B according to embodiment 8, comprising a rate matching unit for performing rate matching on the encoded portion 2 13 200822576 data and CRC bits, wherein the masking unit generates the encoded portion 2 having a length equal to the rate matching Masking of data and CRC bits, and performing WTRU-specific masking after one of channel coding and rate matching. ^ 10.- Used to solve part 2 data of HS-SCCH WTRU 〇

11.根據實施例10的WTRU,包括用於在HS_SCCH上 接收部分1資料和具有附加CRC位元的部分2資料的接收 器,CRC位元的數量小於WTRU ID,部分2資料和cRc 位元中的至少其中之一用遮罩來掩蔽。 12·根據實施例11的WTRU,包括用於用遮罩對所接 收的部分2資料和所接收的CRC位元中的至少其中之一執 行去掩蔽的去掩蔽單元。 13.根據實施例12的WTRU,包括用於用去掩蔽後的 CRC位元、部分丨資料和部分2資料來執行CRC檢查的 CRC單元。 14·根據實施例12-13中任一實施例的WTRU,其中, 所接收的部分2資料和所接收的CRC位元中的至少其中之 一被用長度等於CRC位元的被删餘的WTRUID來去掩蔽。 15·根據實施例12-14中任一實施例的WTRU,其中, 所接收的CRC位元用WTRU ID的一部分去掩蔽,而所接 收的部分2資料使用WTRUID的剩餘部分來去掩蔽。 16.根據實施例12-15中任一實施例的WTRU,其中, 去掩蔽單元用WTRU ID和生成矩陣來生成最大的最小漢 14 200822576 明距離遮罩。 17·根據實施例12-16中任一實施例的WTRU,還包括 用於對所接收的部分2資料和所接收的CRC位元執行速率 去匹配的速率去匹配單元。 18·根據實施例17的WTRU,包括用於在速率去匹配 之後對所接收的部分2資料和所接收的CRC位元執行通道 解碼的通道解碼器,其中,輕長度等於被速率匹配的編 碼部分2資料和CRC位元,而去掩蔽單元在通道解碼和速 率去匹配中的其中之一之前執行去掩蔽。 19·-種用於對HS_SCCH的部分2資料進行編碼的方 法。 20·根據實施例19的方法,包括基於部分丨資料和部分 2資料生成CRC位元,CRC位元被附加到部分2資料,CRC 位元的數量小於WTRU ID。 21·根據實施例20的方法,包括用遮罩對部分2資料和 CRC位元中的至少其中之一執行WTRU特定的掩蔽。 22.根據實施例21的方法,包括在WTRU特定掩蔽之 後傳輸部分1資料和具有附加CRC位元的部分2資料。 23·根據實施例21_22中任一實施例的方法,其中,遮 罩是長度等於CRC位元的被刪餘的WTRU];D。 24·根據實施例21_23中任一實施例方法,其申,遮罩 是WTRU ID,並且WTRU ID的一部分被用來掩蔽CRC位 元,而WTRU ID的剩餘部分被用來掩蔽部分2資料。 25·根據實施例21_24中任一實施例的方法,還包括用 15 200822576 WTRIHD和生成矩陣來生成最大的最小漢明距離遮罩。 26·根據實施例21_25中任一實施例的方法,還包括對 部分2資料和CRC位元執行通道編碼。 27·根據實施例26的方法,包括對被編瑪的部分2資料 和CRC位元執行速率匹配。11. The WTRU of embodiment 10 comprising a receiver for receiving Part 1 data and Part 2 data with an additional CRC bit on the HS_SCCH, the number of CRC bits being less than the WTRU ID, Part 2 data and cRc bits At least one of them is masked with a mask. 12. The WTRU of embodiment 11 comprising a demasking unit for performing a masking on at least one of the received portion 2 data and the received CRC bits with a mask. 13. The WTRU of embodiment 12, comprising a CRC unit for performing CRC checking with the demasked CRC bit, partial data, and partial 2 data. The WTRU of any one of embodiments 12-13, wherein at least one of the received Part 2 data and the received CRC bit is used by a punctured WTRU ID having a length equal to a CRC bit Come and cover up. The WTRU of any of embodiments 12-14 wherein the received CRC bit is masked with a portion of the WTRU ID and the received portion 2 data is masked using the remainder of the WTRU ID. 16. The WTRU of any one of embodiments 12-15 wherein the demasking unit uses the WTRU ID and the generator matrix to generate a maximum min. 14 200822576 clear distance mask. 17. The WTRU of any of embodiments 12-16, further comprising a rate de-matching unit for performing rate de-matching on the received portion 2 data and the received CRC bits. 18. The WTRU according to embodiment 17 comprising a channel decoder for performing channel decoding on the received Part 2 data and the received CRC bits after rate dematching, wherein the light length is equal to the rate matched encoding portion 2 data and CRC bits, and the demasking unit performs demasking before one of channel decoding and rate de-matching. 19. A method for encoding the Part 2 data of HS_SCCH. 20. The method of embodiment 19, comprising generating a CRC bit based on the partial data and the portion 2 data, the CRC bit being appended to the portion 2 data, the number of CRC bits being less than the WTRU ID. 21. The method of embodiment 20, comprising performing WTRU-specific masking on at least one of the portion 2 data and the CRC bits with a mask. 22. The method of embodiment 21, comprising transmitting the portion 1 data and the portion 2 data with the additional CRC bits after the WTRU-specific masking. The method of any one of embodiments 21-22 wherein the mask is a punctured WTRU having a length equal to a CRC bit; D. 24. The method of any of embodiments 21-23, wherein the mask is a WTRU ID and a portion of the WTRU ID is used to mask the CRC bits, and the remainder of the WTRU ID is used to mask the portion 2 data. The method of any one of embodiments 21 to 24, further comprising generating a maximum minimum Hamming distance mask with 15 200822576 WTRIHD and a generator matrix. The method of any one of embodiments 21-25, further comprising performing channel coding on the portion 2 data and the CRC bits. 27. The method of embodiment 26, comprising performing rate matching on the marshalled portion 2 data and CRC bits.

28·根據實施例27的方法,包括生成遮罩,遮罩長度等 於被速率匹配的編碼部分2資料和CRC位元,其中,WTRU 特定掩蔽在通道編碼和速率匹配中的其中之一之後被執 行0 29· —種用於對高速共用控制通道(HS-SCCH)的部分2 資料進行解碼的方法。 30·根據實施例29的方法,包括在hs-SCCH上接收部 分1資料和具有附加CRC位元的部分2資料,CRC位元的 數量小於WTRU ID,部分2資料和CRC位元中的至少其 中之一用遮罩來掩蔽。 31·根據實施例30的方法,包括用遮罩對所接收的部分 2資料和所接收的CRC位元中的至少其中之一執行去掩蔽。 32·根據實施例31的方法,包括用被去掩蔽後的CRC 位元、部分1資料和部分2資料來執行crc檢查。 33·根據實施例31_32中任一實施例的方法,其中,所 接收的部分2資料和所接收的CRC位元中的至少其中之一 用長度等於CRC位元的被删餘的WTRUID來去掩蔽。 34·根據實施例31-33中任一實施例的方法,其中,所 接收的CRC位元用WTRU ID的一部分去掩蔽,而所接收 16 200822576 的部分2資料用WTRUID的剩餘部分去掩蔽。 35·根據實施例31-34中任一實施例的方法,還包括使 用WTRU ID和生成矩陣來生成最大的最小漢明距離遮罩。 36根據實施例31-35中任一實施例的方法,還包括生 成遮罩。28. The method of embodiment 27, comprising generating a mask having a mask length equal to the rate matched encoding portion 2 data and CRC bits, wherein the WTRU specific masking is performed after one of channel encoding and rate matching 0 29 · A method for decoding part 2 data of the High Speed Shared Control Channel (HS-SCCH). 30. The method of embodiment 29, comprising receiving partial 1 data and partial 2 data with additional CRC bits on the hs-SCCH, the number of CRC bits being less than at least one of the WTRU ID, the partial 2 data, and the CRC bits. One is masked with a mask. 31. The method of embodiment 30, comprising performing masking on at least one of the received portion 2 material and the received CRC bits with a mask. 32. The method of embodiment 31, comprising performing the crc check with the demasked CRC bit, the Part 1 data, and the Part 2 data. The method of any one of embodiments 31-32, wherein at least one of the received portion 2 data and the received CRC bits is masked with a punctured WTRU ID equal in length to the CRC bit. The method of any one of embodiments 31-33, wherein the received CRC bit is masked with a portion of the WTRU ID, and the portion 2 data of the received 16 200822576 is masked with the remainder of the WTRU ID. The method of any one of embodiments 31-34, further comprising generating a maximum minimum Hamming distance mask using the WTRU ID and the generator matrix. The method of any of embodiments 31-35, further comprising generating a mask.

37·根據實施例35的方法,包括對所接收的部分2資料 和所接收的CRC位元執行速率去匹配。 、 38·根據實施例37的方法,包括在速率去匹配之後對所 接收的部分2資料和所接收的CRC位元執行通道解碼,其 中,遮罩長度等於被速率匹配的編碼部分2資料和CRC位 凡,而去掩蔽單元在通道解碼和速率去匹配中的其中之一 之前執行去掩蔽。 ' 39.-種用於對HS_SCCH的部分丨f料進行編碼的節 40.根據實施例39的節點b,包括用於對部分丨資料執 行通道編碼的通道編碼器。 、" 一礼根據實關40的節點B,包括用於對被編石馬的部分 1資料執行速率匹配的速率匹配單元。 42.根據實施例41的節點B,包括掩蔽單元, 元用於使用WTRU ID和生成矩陣來生成最大的 距離遮罩並且用料對被速輕配的編碼的部分1資料執 竹掩蔽。 、 包括用於傳輪被掩蔽的鄯 43·根據實施例42的節點b, 分1資料的傳輸器。 17 200822576 44·根據實施例42-43中任一實施例的節點B,其中, 藉由對十六(16)位元WTRU ID的(40,16)編碼來生成遮罩 並且该遮罩具有十二(12)的最小距離。 45·—種用於對HS_SCCH的部分丨資料進行解碼的 WTRU 〇 46·根據實施例45的WTRU,包括用於接收部分1資 料的接收器。 ' 47·根據實施例46的WTRU,包括去掩蔽單元,該去 掩蔽單元使用WTRU ID和生成矩陣來生成最大的最小漢 明距離遮罩並且用該遮罩對所接收的部分丨資料執行去掩 蔽。 48·根據實施例47的WTRU,包括用於對被去掩蔽的 部分1資料執行速率去匹配的速率去匹配單元。 49·根據實施例48的WTRU,包括用於對被速率去匹 配的部分1資料執行通道解碼的通道解碼器。 5〇·根據實施例47-49中任一實施例的WTRU,其中, 藉由對十六(16)位元WTRU ID的(40,16)編碼來生成遮罩 並且該遮罩具有十二(12)的最小距離。 51·-種用於對HS_SCCH的部分!資料進行編竭 法。 52·根據實施例51的方法,包括對部分丨資料執行通道 編碼。 53·根據實施例52的方法,包括對被編碼的部分j資料 執行速率匹配。 ' 200822576 54·根據實施例53的方法,包括使用WTRXJID和生成 矩陣來生成最大的最小漢明距離遮罩。 55·根據實施例54的方法,包括用遮罩執行被速率匹配 的編碼部分1資料的掩蔽。 56·根據實施例55的方法,包括傳輸被掩蔽的部分j資 料。37. The method of embodiment 35, comprising performing rate de-matching on the received portion 2 data and the received CRC bits. 38. The method of embodiment 37, comprising performing channel decoding on the received portion 2 data and the received CRC bits after rate dematching, wherein the mask length is equal to the rate matched encoding portion 2 data and CRC The demasking unit performs demasking before one of channel decoding and rate de-matching. A section for encoding a portion of the HS_SCCH. The node b according to embodiment 39 includes a channel encoder for performing channel coding on a portion of the data. , " a gift according to the node B of the real 40, including a rate matching unit for performing rate matching on the part 1 of the stone. 42. The Node B of embodiment 41, comprising a masking unit, the element for generating a maximum distance mask using the WTRU ID and the generator matrix and for masking the encoded portion of the data that is speed-matched. Included in the transmission of the wheel is masked 43. According to the node b of the embodiment 42, the transmitter of the data is divided. The node B of any one of embodiments 42-43, wherein the mask is generated by (40, 16) encoding of a sixteen (16)-bit WTRU ID and the mask has ten The minimum distance of two (12). A WTRU for decoding a portion of the HS_SCCH data. The WTRU according to Embodiment 45 includes a receiver for receiving Part 1 data. 47. The WTRU of embodiment 46, comprising a demasking unit that uses a WTRU ID and a generator matrix to generate a maximum minimum Hamming distance mask and performs masking on the received partial data using the mask . 48. The WTRU of embodiment 47, comprising a rate dematching unit for performing rate dematching on the demasked portion 1 data. 49. The WTRU of embodiment 48, comprising a channel decoder for performing channel decoding on the rate-matched portion 1 data. The WTRU of any one of embodiments 47-49, wherein the mask is generated by (40, 16) encoding of a sixteen (16)-bit WTRU ID and the mask has twelve ( 12) The minimum distance. 51·- kind of part used for HS_SCCH! The data is compiled. 52. The method of embodiment 51, comprising performing channel coding on the portion of the data. 53. The method of embodiment 52, comprising performing rate matching on the encoded portion j data. The method of embodiment 53 includes generating a maximum minimum Hamming distance mask using the WTRXJID and the generator matrix. 55. The method of embodiment 54, comprising performing masking of the rate matched encoded portion 1 material with a mask. 56. The method of embodiment 55, comprising transmitting the masked portion j material.

57·根據實施例54_56中任一實施例的方法,其中,藉 由對十六(16)位元WTRU ID的(40,16)編碼來生成遮罩並 且該遮罩具有十二(12)的最小距離。 58·-種用於對HS_SCCH的部分1資料進行解碼的方 法0 59·根據實施例58的方法,包括接收部分丨資料。 6〇·根據實施例59的方法,包括使用WTRUID和生成 矩陣來生成最大的最小漢明距離遮罩。 61·根據實施例60的方法,包括用遮靴行所接收的部 分1資料的去掩蔽。 处根據實施例61的方法,包括對被去掩蔽的部分工資 料執行速率去匹配。 、 .根據實施例62的方法,包括對被速率去匹配的部分 1貝料執行通道解碼。 64·根據實施例6〇_63中任—實施例的方法,其中,藉 3 :六⑽位元WTRUID _,16)編碼來生成遮罩並 "遮畢具有十二(12)的最小距離。 雖然本發明的特徵和元件在較佳的實施方式中以特定 19 200822576 的、σ 口進行了4田述’但每個特徵或元件可以在沒有所述較 佳實把方式的其他特徵和元件的情況下單獨使用,或在與 或不與本發明的其他特徵和元件結合的各種情況下使用。 本發明提供的方法或流賴可以在由顧電腦或處理器所 執行的電腦程式、軟體_體中實施,其中所述電腦程式、 軟體或㈣是以有形的方式包含在電腦可讀存儲媒體中 的。關於電腦可讀存儲介質的實例包括唯讀記憶體 ⑽Μ)、隨赫取記鐘(RAM)、寄存器、_記憶體、 半導體存儲設備、内部鄕和可歸則之_磁媒體、 磁光媒體以及CD-R0M碟片和數位多功能光碟(dvd)之 類的光媒體。 口舉例來說,恰當的處理器包括··_處理器、專用處 理器、習用處理器、數位訊號處理器(Dsp)、多個微處理 器、與DSP核心相關聯的一個或多個微處理器、控制器、 微控制器、專用積體電路(ASIC)、現場可編程閉陣列 (FPGA)電路、任何一種積體電路(IC)和/或狀態機。 與軟體相關聯的處理器可以用於實現—個射頻收發 機,以便在無線傳輸接收單元(WTRU)、使用者設備⑽)、 終端、基地台、無線網路控制器(RNC)或是任何主機電 腦中加以使用。WTRU可以與採用硬體和/或軟體形式實施 的模組結合使用,例如相機、攝影機模組、影像電話、揚 聲器電話、振動設備、揚聲器、擴音器、電視收發機、免 提耳機、鍵盤、藍牙⑧模組、調頻(FM)無線單元、液晶 顯不器(LCD)顯示單元、有機發光二極體(〇LED)顯示 20 200822576 單元、數位音樂播放器、媒體播放器、視頻遊戲機模組、 網際網路流覽器和/或任何無線區域網路(WLAN)模組。 21 200822576 【圖式簡單說明】 、從μ下的描述中可以更詳細地瞭解本發明, 以實施例的方式給&並可結合關被理解,其巾\—田以疋 第1圖顯示了傳統的HS-SCCH編碼; =2圖是用於編碼HS_SCCH的資料的示例節點b的區 塊圃, 第3圖是用於解碼HS_SCCH的資料的示例wtru的區 塊圖;以及 第4圖顯示了比較兩個HS_SCCH掩蔽方法(先前技術和 本發明)的倾的部分1資料的選擇差錯概率 V.信噪比 (SNR)的模擬結果,其中,兩個hs_scch代碼用對應方法 規定的不同遮罩距離來傳輸。 22 200822576 【主要元件符號說明】 CRC 循環冗餘檢查 UE 使用者設備 HS-SCCH 高速共用控制通道 R、S、X、Y、Z 位元序列 MUX 多工複用 Xccs 通道化碼設置資訊 Xms 調製方案資訊 Xtbs 傳送塊大小資訊 Xhap HARQ進程資訊 Xnd 新貧料指不符 Xrv 冗餘版本資訊 Xue CRC位元用WTRUID WTRU 無線傳輸/接收單元 ID 標識 SNR 信噪比 23The method of any one of embodiments 54-56, wherein the mask is generated by (40, 16) encoding of a sixteen (16)-bit WTRU ID and the mask has twelve (12) shortest distance. 58. A method for decoding part 1 data of HS_SCCH. 59. The method of embodiment 58, comprising receiving partial data. The method of embodiment 59, comprising using the WTRU ID and the generator matrix to generate a maximum minimum Hamming distance mask. 61. The method of embodiment 60, comprising masking the portion 1 of the data received with the boot line. The method of embodiment 61 includes performing rate dematching on the portion of the wages that are unmasked. The method of embodiment 62, comprising performing channel decoding on the portion 1 of the rate de-matched. The method of any of embodiments 6-6, wherein the 3:6 (10)-bit WTRUID _, 16) encoding generates a mask and " covers a minimum distance of twelve (12) . Although the features and elements of the present invention have been described in the preferred embodiment with the σ port of the specific 19 200822576 ', each feature or element may be in other features and elements without the preferred embodiment. It is used alone or in various cases with or without other features and elements of the invention. The method or reliance provided by the present invention can be implemented in a computer program or a software body executed by a computer or a processor, wherein the computer program, software or (4) is tangibly included in a computer readable storage medium. of. Examples of computer readable storage media include read only memory (10), random access memory (RAM), registers, memory, semiconductor memory devices, internal memory, and removable magnetic media, magneto-optical media, and Optical media such as CD-R0M discs and digital versatile discs (dvd). For example, a suitable processor includes a processor, a dedicated processor, a conventional processor, a digital signal processor (Dsp), a plurality of microprocessors, and one or more microprocessors associated with the DSP core. , controller, microcontroller, dedicated integrated circuit (ASIC), field programmable closed array (FPGA) circuit, any integrated circuit (IC) and/or state machine. The processor associated with the software can be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (10), terminal, base station, radio network controller (RNC), or any host Use it in your computer. The WTRU may be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibration devices, speakers, loudspeakers, television transceivers, hands-free headsets, keyboards, Bluetooth 8 module, FM wireless unit, liquid crystal display (LCD) display unit, organic light emitting diode (〇LED) display 20 200822576 unit, digital music player, media player, video game machine module , Internet browser and / or any wireless local area network (WLAN) module. 21 200822576 [Simple description of the drawings] The present invention can be understood in more detail from the description of μ, and can be understood by way of example and can be understood by the combination, and the towel is shown in Fig. 1 The conventional HS-SCCH coding; the =2 picture is the block 示例 of the example node b for encoding the material of the HS_SCCH, the third picture is the block diagram of the example wtru for decoding the material of the HS_SCCH; and the 4th figure shows Comparison of the selection error probability V. signal-to-noise ratio (SNR) simulation results of the tilted portion 1 data of the two HS_SCCH masking methods (prior art and the present invention), wherein the two hs_scch codes use different mask distances specified by the corresponding method To transfer. 22 200822576 [Description of main component symbols] CRC cyclic redundancy check UE user equipment HS-SCCH high-speed shared control channel R, S, X, Y, Z bit sequence MUX multiplex multiplexing Xccs channelization code setting information Xms modulation scheme Information Xtbs transport block size information Xhap HARQ process information Xnd new poor material refers to Xrv redundancy version information Xue CRC bit with WTRUID WTRU wireless transmission / receiving unit ID identification SNR signal to noise ratio 23

Claims (1)

200822576 、申請專利範圍: L種用於對高速共用控制通道(HS-SCCH)的部分2資 料進行編碼的節點B,該節點B包括: 貝 #環冗餘檢查(CRC)單元,該CRC單元用於基於部 分1資料和部分2資料來生成CRC位元,其中所述 CRC位元被附加到部分2資料,CRC位元的數量小 於無線傳輸/接收單元(WTRU)標識(ID); 掩蔽單元,該掩蔽單元用於用遮罩對所述部分2資料 和CRC位元中的至少其中之一執行WTRU特定掩 蔽;以及 傳輸器,该傳輸器用於在所述WTRU特定掩蔽之後 傳輸所述部分1資料和具有附加CRC位元的部分2 資料。 2·如申請專利範圍第1項所述的節點b,其中,所述遮 罩是長度等於CRC位元的被刪餘的WTRUID。 3·如申凊專利範圍第1項所述的節點B,其中,所述遮 罩是該WTRU ID,並且該WTRU ID的一部分被用來 掩蔽所述CRC位元,而該WTRU ID的剩餘部分被用 來掩蔽所述部分2資料。 4.如申請專利範圍第1項所述的節點B,其中,所述掩 蔽單元使用該WTRU ID和生成矩陣來生成最大的最 小漢明距離遮罩。 5·如申請專利範圍第1項所述的節點B,該節點B還包 括: 24 200822576 通道編碼器,該通道編碼器用於對所述部分2次 CRC位元執行通道編碼;以及 H和 速率匹配單元,該速輕配單元用鱗被編竭八 2資料和CRC位元執行速率匹配,其中,所述掩^ 單元生成長度等於被速率匹配的被編碼的部分2次 料和CRC位元的鮮,並在通道編碼和速率匹配中 的其中之一之後執行所述WTRU特定掩蔽。 6· 一種用於對高速共用控制通道(HS_SCCH)的部分2資 料進行解碼的無線傳輸/接收單元(WTRU),該 包括: X200822576, the scope of patent application: L node B for encoding part 2 data of the high speed shared control channel (HS-SCCH), the node B includes: a ##ring redundancy check (CRC) unit, the CRC unit Generating a CRC bit based on the Part 1 data and the Part 2 data, wherein the CRC bit is appended to the Part 2 data, the number of CRC bits being less than a WTRU identification (ID); a masking unit, The masking unit is configured to perform WTRU-specific masking on at least one of the portion 2 data and CRC bits with a mask; and a transmitter for transmitting the portion 1 data after the WTRU-specific masking And part 2 data with additional CRC bits. 2. Node b as claimed in claim 1, wherein the mask is a punctured WTRU ID having a length equal to a CRC bit. 3. The Node B of claim 1, wherein the mask is the WTRU ID, and a portion of the WTRU ID is used to mask the CRC bit, and the remainder of the WTRU ID Used to mask the part 2 data. 4. The Node B of claim 1, wherein the masking unit uses the WTRU ID and the generator matrix to generate a maximum minimum Hamming distance mask. 5. The Node B as described in claim 1, the Node B further comprising: 24 200822576 channel encoder for performing channel coding on the partial 2 CRC bits; and H and rate matching a unit that performs rate matching with a scaled octet data and a CRC bit, wherein the mask unit generates a length equal to the rate matched portion of the encoded second and CRC bits. And performing the WTRU-specific masking after one of channel coding and rate matching. 6. A wireless transmit/receive unit (WTRU) for decoding part 2 of a high speed shared control channel (HS_SCCH), the method comprising: X 接收器,該接收器用於在HS-SCCH上接收部分J資 料和具有附加循環冗餘檢查(CRC)位元的部分2資 料’ CRC位元的數量小於WTRU標識(ID),部分2 資料和CRC位元中的至少其中之一用遮罩來掩蔽。 去掩蔽單元,該去掩蔽單元用於用所述遮罩對所接收 的部分2資和所接收的CRC位元中的至少其中之 一執行去掩蔽;以及 CRC單元,該CRC單元用於用被去掩蔽後的crc 位元、部分1資料和部分2資料來執行CRC檢查。 7·如申請專利範圍第6項所述的WTRU,其中,所接收 的部分2資料和所接收的CRC位元中的至少其中之一 被用長度等於CRC位元的被删餘的WTRU ID來去掩 蔽。 8·如申請專利範圍第6項所述的WTRU,其中,所接收 25 200822576 的CRC位元使用該WTRUID的一部分來去掩蔽,並 且所接收的部分2資料使用該WTRUID的剩餘部分來 去掩蔽。 9·如申請專利範圍第6項所述的WTRU,其中,所述去 掩蔽單元使用该WTRU ID和生成矩陣來生成最大的 最小漢明距離遮罩。 1〇·如申睛專利範圍第6項所述的WTRU,該WTRU還包 括: 速率去匹配單元,該速率去匹配單元用於對所接收的 部分2資料和所接收的CRC位元執行速率去匹配; 以及 通道解碼器’該通道解碼器用於在所述速率去匹配之 後對所接收的部分2資料和所接收的CRC位元執行 通道解碼; 其中,所述遮罩的長度等於被速率匹配的編碼的部分 2為料和CRC位元,並且所述去掩蔽單元在通道解 碼和速率去匹配中的其中之一之前執行去掩蔽。 U· —種用於對高速共用控制通道(11^8(:(::11)的部分2資 料進行編碼的方法,該方法包括·· 、 基於部分1資料和部分2資料生成循環冗餘檢查 (CRC)位元’所述CRC位元被附加到部分2資料, CRC位元的數量小於無線傳輸/接收單元(WTRU)標 識⑽); 75 用遮罩對部分2資料和CRC位元中的至少其中之一 26 200822576 執行WTRU特定掩蔽;以及 在所述WTRU特定掩蔽之後傳輸所述部分丨資料和 具有附加CRC位元的部分2資料。 12. 如申請專利範圍第U項所述的方法,其中,所述遮罩 是長度等於CRC位元的被刪餘的WTRU ID。 13. 如申請專利範圍第u項所述的方法,其中,所述遮罩 是該WTRU ID,並且該WTRU ID的一部分被用來掩 蔽所述CRC位元,而該WTRU ID的剩餘部分被用來 掩蔽所述部分2資料。 14·如申請專利範圍第u項所述的方法,該方法還包括: 使用該WTRU ID和生成矩陣來生成最大的最小漢明 距離遮罩。 Ϊ5·如申請專利範圍第n項所述的方法,該方法還包括: 對所述部分2資料和CRC位元執行通道編碼; 對被編碼的部分2資料和CRC位元執行速率匹配; 以及 生成遮罩,所述遮罩的長度等於被速率匹配的編碼的 部分2資料和CRC位元,其中,所述WTRU特定掩 蔽在所述通道編碼和速率匹配中的其中之一之後被 執行。 16· 一種用於對高速共用控制通道(HS-SCCH)的部分2資 料進行解碼的方法,該方法包括: 在HS_SCCH上接收部分i資料和具有附加的循環冗 餘檢查(CRC)位元的部分2資料,CRC位元的數量小 27 W0822576 於無線傳輸/接收單元(WTRU)標識(ID),所述部分2 資料和CRC位元中的至少其中之一用遮罩來掩蔽。 用所述遮罩對所接收的部分2資料和所接收的CRC 位元中的至少其中之一執行去掩蔽 ;以及 用被去掩蔽後的CRC位元、部分丨資料和部分2資 料來執行CRC檢查。 17· 18. 如申凊專利範圍第16項所述的方法,其中,所接收的 部分2資料和所接收的c Rc位元中的至少其中之一被 用長度等於CRC位元的被删餘的WTRUID來去掩蔽。 如申凊專利範圍第16項所述的方法,其中,所接收的 CRC位元用該WTRU ID的一部分來去掩蔽,並且所 接收的部分2資料用該WTRU ID的剩餘部分來去掩 蔽。 19. 如申請專利範圍第16項所述的方法,該方法還包括·· 使用該WTRUID和生成矩陣來生成最大的最小漢明 距離遮罩。 20. 如申請專利範圍第16項所述的方法,該方法還包括: 生成所述遮罩; 對所接收的部分2資料和所接收的CRC位元執行速 率去匹配;以及 在所述速率去匹配之後對所接收的部分2資料和所 接收的CRC位元執行通道解碼; 其中,所述遮罩的長度等於被速率匹配的編碼的部分 2資料和CRC位元,並且所述去掩蔽單元在通道解 28 200822576 u —i#速率去匹配中的其中之一之前執行所述去掩蔽。 •、,種用於對高速共用控制通道(HS-SCCH)的部分1資 料進行編碼的節點β,該節點β包括·· 通道編碼器,該通道編碼器用於對部分1資料執行通 道編碼; 速率匹配單元,該速率匹配單元驗職編碼的部分 f 1資料執行速率匹配; 掩蔽單7〇,該掩蔽單元用於使用無線傳輸/接收單元 (WTRU)標識(ID)和生成矩陣來生成最大的最小漢明 距離遮罩,並且用所述遮罩對被速率匹配的編碼的部 分1資料執行掩蔽;以及 傳輸器,該傳輸器用於傳輸被掩蔽的部分丨資料。 •如申凊專利範圍第21項所述的節點β,其中,藉由對 十^(16)位元WTRU Π3的(40,16)編碼來生成遮罩並 ^ 且該遮罩具有十二(12)的最小距離。 23·—種用於對高速共用控制通道(HS-SCCH)的部分1資 料進行解碼的無線傳輸/接收單元(WTRU),該WTRU 包括: 接收器,該接收器用於接收部分1資料; 去掩蔽單元,該去掩蔽單元用於使用WTRU標識(ID) 和生成矩陣來生成最大的最小漢明距離遮罩,並且用 該遮罩對所接收的部分1資料執行去掩蔽; 速率去匹配單元,該速率去匹配單元用於對被去掩蔽 的部分1資料執行速率去匹配;以及 29 通道解碼器,該通道解碼器用於對被速率去匹配的部 分1資料執行通道解碼。 4·如申凊專利範圍第23項所述的WTRU,其中,藉由對 十二(16)位元WTRU 1〇的(4〇,16)編碼來生成遮罩並 且該遮罩具有忙⑽的最小距離。 25· 一種用於對高速共用控制通道(HS-SCCH)的部分1資 料進行編碼的方法,該方法包括: 對部分1資料執行通道編碼; 對被編喝的部分1資料執行速率匹配; 使用無線傳輸/接收單元(WTRU)標識(ID)和生成矩陣 來生成最大的最小漢明距離遮罩; 用所述遮罩來執行被速率匹配的編碼的部分1資料 的掩蔽;以及 傳輸被掩蔽的部分1資料。 26·如申請專利範圍第25項所述的方法,其中,藉由對十 六⑽位元WTRU π)的(40,16)編碼來生成遮罩並且 該遮罩具有十二(12)的最小距離。 27· —種用於對高速共用控制通道(HS-SCCH)的部分j資 料進行解碼的方法,該方法包括: 接收部分1資料; 使用WTRU標識(1〇)和生成矩陣來生成最大的最小 漢明距離遮罩; 用所述遮罩對所接收的部分1資料執行去掩蔽; 對被去掩蔽的部分1資料執行速率去匹配;以及 200822576 對被速率去匹配的部分1資料執行通道解碼。 28·如申請專利範圍第27項所述的方法,其中,藉由對十 六(16)位元WTRU ID的(40,16)編碼來生成遮罩並且 該遮罩具有十二(12)的最小距離。a receiver for receiving partial J data on the HS-SCCH and part 2 data with additional cyclic redundancy check (CRC) bits. The number of CRC bits is less than the WTRU identity (ID), part 2 data and CRC At least one of the bits is masked with a mask. Demasking unit for performing demasking on at least one of the received portion 2 and the received CRC bit with the mask; and a CRC unit for using the CRC unit The CRC check is performed by masking the crc bit, part 1 data, and part 2 data. 7. The WTRU as claimed in claim 6, wherein at least one of the received Part 2 data and the received CRC bit is used by a punctured WTRU ID having a length equal to a CRC bit. masking. 8. The WTRU as claimed in claim 6, wherein the CRC bit of the received 25 200822576 is masked using a portion of the WTRU ID, and the received portion 2 data is masked using the remainder of the WTRU ID. 9. The WTRU as claimed in claim 6, wherein the demasking unit uses the WTRU ID and the generator matrix to generate a maximum minimum Hamming distance mask. 1. The WTRU as claimed in claim 6, wherein the WTRU further comprises: a rate dematching unit, configured to perform rate on the received Part 2 data and the received CRC bits. Matching; and a channel decoder 'the channel decoder for performing channel decoding on the received portion 2 data and the received CRC bits after the rate dematching; wherein the mask is equal in length to be rate matched The encoded portion 2 is the material and the CRC bit, and the demasking unit performs demasking before one of channel decoding and rate de-matching. U·- a method for encoding the part 2 data of the high-speed shared control channel (11^8(:::11), the method includes ··, generating a cyclic redundancy check based on the part 1 data and the part 2 data (CRC) bit 'The CRC bit is appended to Part 2 data, the number of CRC bits is less than the WTRU identity (10)); 75 is used in the mask 2 part of the data and CRC bits At least one of 26 200822576 performs WTRU-specific masking; and transmits the partial data and the portion 2 data with additional CRC bits after the WTRU-specific masking. 12. The method of claim U, Wherein the mask is a punctured WTRU ID having a length equal to a CRC bit. 13. The method of claim 5, wherein the mask is the WTRU ID and the WTRU ID A portion is used to mask the CRC bit, and the remainder of the WTRU ID is used to mask the portion 2 data. 14. The method of claim 5, the method further comprising: using the WTRU ID and generator matrix to generate the largest The minimum Hamming distance mask. Ϊ5. The method of claim n, wherein the method further comprises: performing channel coding on the portion 2 data and CRC bits; and encoding the portion 2 data and CRC bits Performing rate matching; and generating a mask having a length equal to the rate matched encoded Part 2 data and CRC bits, wherein the WTRU is specifically masked in the channel coding and rate matching A method is then performed. 16. A method for decoding part 2 data of a high speed shared control channel (HS-SCCH), the method comprising: receiving partial i data on the HS_SCCH and having an additional cyclic redundancy check (CRC) Part 2 data of the bit, the number of CRC bits is small 27 W0822576 in the WTRU identification (ID), at least one of the part 2 data and the CRC bit is masked by a mask Demasking at least one of the received portion 2 data and the received CRC bit with the mask; and using the demasked CRC bit, partial data, and part 2 data The method of claim 16, wherein the method of claim 16 wherein at least one of the received portion 2 data and the received c Rc bit is used equal to the CRC bit length The method of claim 16, wherein the received CRC bit is masked with a portion of the WTRU ID, and the received portion 2 data is used with the WTRU ID The rest of the time comes to cover up. 19. The method of claim 16, wherein the method further comprises: using the WTRU ID and the generator matrix to generate a maximum minimum Hamming distance mask. 20. The method of claim 16, the method further comprising: generating the mask; performing rate de-matching on the received portion 2 data and the received CRC bits; and going at the rate Performing channel decoding on the received partial 2 data and the received CRC bits after matching; wherein the length of the mask is equal to the rate matched encoded partial 2 data and CRC bits, and the demasking unit is The de-masking is performed before the channel solution 28 200822576 u - i # rate de-matching. • , a node β for encoding the Part 1 data of the High Speed Shared Control Channel (HS-SCCH), the node β comprising a channel encoder for performing channel coding on the Part 1 data; a matching unit, the rate matching unit part code f 1 data performs rate matching; a masking unit 7 is used to generate a maximum minimum using a WTRU identification (ID) and a generation matrix Hamming distance masking, and masking the rate matched encoded portion 1 data with the mask; and a transmitter for transmitting the masked portion of the data. • The node β as recited in claim 21, wherein the mask is generated by encoding (40, 16) of the ten (16)-bit WTRU Π 3 and the mask has twelve ( 12) The minimum distance. a wireless transmission/reception unit (WTRU) for decoding part 1 data of a high speed shared control channel (HS-SCCH), the WTRU comprising: a receiver for receiving part 1 data; a unit for using a WTRU identity (ID) and a generator matrix to generate a maximum minimum Hamming distance mask, and performing masking on the received portion 1 data with the mask; a rate dematching unit, the The rate de-matching unit is configured to perform rate de-matching on the demasked portion 1 data; and a 29-channel decoder for performing channel decoding on the rate-matched portion 1 data. 4. The WTRU as claimed in claim 23, wherein the mask is generated by encoding (12 〇, 16) of the twelve (16)-bit WTRU 1 并且 and the mask is busy (10) shortest distance. 25· A method for encoding part 1 data of a high speed shared control channel (HS-SCCH), the method comprising: performing channel coding on part 1 data; performing rate matching on part 1 data being edited; using wireless a transmit/receive unit (WTRU) identification (ID) and a generator matrix to generate a maximum minimum Hamming distance mask; using the mask to perform masking of the rate matched encoded portion 1 data; and transmitting the masked portion 1 information. The method of claim 25, wherein the mask is generated by (40, 16) encoding a sixteen (10)-bit WTRU π) and the mask has a minimum of twelve (12) distance. 27. A method for decoding part j data of a high speed shared control channel (HS-SCCH), the method comprising: receiving part 1 data; using a WTRU identity (1〇) and a generator matrix to generate a largest minimum han Bright distance mask; demasking the received portion 1 data with the mask; performing rate de-matching on the portion 1 material to be masked; and 200822576 performing channel decoding on the portion 1 data being rate-matched. The method of claim 27, wherein the mask is generated by (40, 16) encoding a sixteen (16)-bit WTRU ID and the mask has twelve (12) shortest distance. 3131
TW96140881A 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel TWI474626B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86342806P 2006-10-30 2006-10-30
US86347306P 2006-10-30 2006-10-30

Publications (2)

Publication Number Publication Date
TW200822576A true TW200822576A (en) 2008-05-16
TWI474626B TWI474626B (en) 2015-02-21

Family

ID=39217941

Family Applications (3)

Application Number Title Priority Date Filing Date
TW96140881A TWI474626B (en) 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel
TW103100730A TW201440453A (en) 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel
TW097112083A TW200922189A (en) 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW103100730A TW201440453A (en) 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel
TW097112083A TW200922189A (en) 2006-10-30 2007-10-30 Method and apparatus for encoding and decoding high speed shared control channel

Country Status (15)

Country Link
US (6) US8028217B2 (en)
EP (2) EP2528260A3 (en)
JP (2) JP2010508764A (en)
KR (5) KR101520242B1 (en)
CN (3) CN101536387B (en)
AU (1) AU2007314375A1 (en)
BR (1) BRPI0716339A2 (en)
CA (1) CA2668232C (en)
HK (1) HK1133345A1 (en)
IL (1) IL198495A (en)
MX (1) MX2009004653A (en)
MY (1) MY157244A (en)
RU (1) RU2009120469A (en)
TW (3) TWI474626B (en)
WO (1) WO2008054735A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474626B (en) * 2006-10-30 2015-02-21 Interdigital Tech Corp Method and apparatus for encoding and decoding high speed shared control channel
US8290088B2 (en) 2007-08-07 2012-10-16 Research In Motion Limited Detecting the number of transmit antennas in a base station
RU2467477C2 (en) 2008-02-04 2012-11-20 Нокиа Корпорейшн Method and apparatus for conveying antenna configuration information via masking
KR100925444B1 (en) * 2008-05-27 2009-11-06 엘지전자 주식회사 A method for transmitting uplink siganl including data and control inforamtion via uplink channel
CN101902228B (en) * 2009-05-25 2012-11-28 中兴通讯股份有限公司 Rapid cyclic redundancy check encoding method and device
US20110194511A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Multi-user control channel assignment
US8599794B2 (en) * 2010-09-08 2013-12-03 Intel Corporation Enhanced base station and method for communicating through an enhanced distributed antenna system (eDAS)
US8793563B2 (en) * 2011-02-08 2014-07-29 Institute For Information Industry Wireless apparatus and method for de-masking a packet
US8483215B2 (en) * 2011-11-08 2013-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for identifying other user equipment operating in a wireless communication network
US8995545B2 (en) 2012-07-30 2015-03-31 Telefonaktiebolaget L M Ericsson (Publ) Base station and method for transmitting control information to a user equipment (UE)
CN108494536A (en) 2012-10-30 2018-09-04 华为技术有限公司 Enhance processing method, network side equipment and the user equipment of Physical Downlink Control Channel
US9379739B2 (en) 2014-08-11 2016-06-28 Qualcomm Incorporated Devices and methods for data recovery of control channels in wireless communications
US20160286534A1 (en) * 2015-03-23 2016-09-29 Qualcomm Incorporated Early determination in high-speed shared control channel decoding
US20160352783A1 (en) * 2015-05-27 2016-12-01 Microsoft Technology Licensing, Llc Partitioning Media Data
US10361717B2 (en) * 2016-06-17 2019-07-23 Huawei Technologies Co., Ltd. Apparatus and methods for error detection coding
US10778366B2 (en) * 2017-03-31 2020-09-15 Qualcomm Incorporated Techniques for rate matching and interleaving in wireless communications
US20180375696A1 (en) * 2017-06-26 2018-12-27 Qualcomm Incorporated Apparatus and method for codeword-based scrambling of data
CN108649964B (en) 2017-09-30 2019-06-11 华为技术有限公司 Ploar coding method and code device, interpretation method and code translator
WO2019095279A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated User-specific scrambling for polar codes
WO2019153232A1 (en) * 2018-02-09 2019-08-15 Qualcomm Incorporated Polar coded harq-ir scheme
CN108882467B (en) * 2018-09-03 2020-11-20 深圳市汇德科技有限公司 Anti-interference decoding device based on LED control system and LED control system
CN109495213A (en) * 2018-11-23 2019-03-19 辽宁工程技术大学 A kind of broadcast repeating method and system based on Hamming weight coding
CN111490858B (en) * 2019-01-29 2021-11-19 华为技术有限公司 Adaptive transmission method, device and system for satellite communication
KR20210128240A (en) * 2020-04-16 2021-10-26 에스케이하이닉스 주식회사 Controller and operating method thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196070A (en) 1997-12-27 1999-07-21 Sony Corp Transmitter, receiver, communication system and communication method
US6201811B1 (en) * 1998-03-24 2001-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Transferring Identifier information in a telecommunications system
FR2802735B1 (en) 1999-12-20 2002-03-29 Canon Kk ENCODING METHOD AND DEVICE, DECODING METHOD AND DEVICE, AND SYSTEMS USING THE SAME
US6915473B2 (en) 2001-05-14 2005-07-05 Interdigital Technology Corporation Method and system for implicit user equipment identification
BRPI0215108A2 (en) * 2001-12-05 2016-07-05 Lg Electronics Inc error detection code generating method and error detection code generator
KR100754552B1 (en) * 2001-12-28 2007-09-05 삼성전자주식회사 Apparatus for transmitting/receiving high speed-shared control channel in communication system using high speed downlink packet access scheme and method thereof
US7283508B2 (en) * 2002-02-07 2007-10-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving serving HS-SCCH set information in an HSDPA communication system
KR100605859B1 (en) * 2002-03-26 2006-07-31 삼성전자주식회사 Apparatus and method for coding and decoding of cqi information in communication system using high speed downlink packet access scheme
GB0207905D0 (en) * 2002-04-05 2002-05-15 Roke Manor Research Improvements in or relating to mobile terminal identification
US6871313B2 (en) * 2002-04-05 2005-03-22 Lucent Technologies Inc. Method for encoding a user identifier in a communication system
AU2003221542A1 (en) * 2002-04-05 2003-10-20 Roke Manor Research Generation of a block coded terminal identifier
US7158635B2 (en) * 2002-05-07 2007-01-02 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for the high speed shared control channel
US6973579B2 (en) * 2002-05-07 2005-12-06 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for the high speed shared control channel
US7003703B2 (en) 2002-06-21 2006-02-21 Sandbridge Technologies, Inc. Method of interleaving/deinterleaving in a communication system
GB2391431A (en) 2002-07-30 2004-02-04 Fujitsu Ltd Adaptive modulation and coding method
US7227854B2 (en) * 2002-09-06 2007-06-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting CQI information in a CDMA communication system employing an HSDPA scheme
KR100606008B1 (en) * 2003-01-04 2006-07-26 삼성전자주식회사 Apparatus for transmitting/receiving uplink data retransmission request in code division multiple access communication system and method thereof
US7406070B2 (en) * 2003-10-09 2008-07-29 Telefonaktiebolaget L M Ericsson (Publ) Adaptive threshold for HS-SCCH part 1 decoding
US20050100038A1 (en) * 2003-11-12 2005-05-12 Interdigital Technology Corporation Wireless communication method and apparatus for efficiently providing channel quality information to a Node-B downlink scheduler
US7200405B2 (en) 2003-11-18 2007-04-03 Interdigital Technology Corporation Method and system for providing channel assignment information used to support uplink and downlink channels
US7372859B2 (en) * 2003-11-19 2008-05-13 Honeywell International Inc. Self-checking pair on a braided ring network
US7054288B2 (en) * 2004-02-13 2006-05-30 Interdigital Technology Corporation Method and apparatus for providing fast detection of a high speed shared control channel
KR20050082333A (en) 2004-02-18 2005-08-23 삼성전자주식회사 Apparatus and method for transmission of on-demand cqi in communication system using high speed downlink packet access scheme
US7889755B2 (en) * 2005-03-31 2011-02-15 Qualcomm Incorporated HSDPA system with reduced inter-user interference
US7746961B2 (en) * 2006-04-11 2010-06-29 Telefonaktiebolaget L M Ericsson (Publ) Efficient detection of predetermined sequences
TWI474626B (en) * 2006-10-30 2015-02-21 Interdigital Tech Corp Method and apparatus for encoding and decoding high speed shared control channel
WO2008115029A2 (en) * 2007-03-21 2008-09-25 Lg Electronics Inc. Method of transmitting data in a wireless communication system
GB0715648D0 (en) * 2007-08-10 2007-09-19 Cambridge Silicon Radio Ltd Channel decoding using similarity matching

Also Published As

Publication number Publication date
EP2528260A2 (en) 2012-11-28
KR20090077023A (en) 2009-07-13
RU2009120469A (en) 2010-12-10
BRPI0716339A2 (en) 2014-10-07
TWI474626B (en) 2015-02-21
JP2010508764A (en) 2010-03-18
US20120188969A1 (en) 2012-07-26
KR20090083433A (en) 2009-08-03
KR20140047169A (en) 2014-04-21
US20110320922A1 (en) 2011-12-29
CN103036644A (en) 2013-04-10
US20140082462A1 (en) 2014-03-20
EP2528260A3 (en) 2014-07-30
KR101521067B1 (en) 2015-05-15
US20080104475A1 (en) 2008-05-01
KR20140096133A (en) 2014-08-04
WO2008054735A1 (en) 2008-05-08
IL198495A (en) 2014-04-30
MX2009004653A (en) 2009-06-15
EP2122885A1 (en) 2009-11-25
US8151164B2 (en) 2012-04-03
US8356229B2 (en) 2013-01-15
CA2668232C (en) 2015-06-23
US8914701B2 (en) 2014-12-16
CN103036645B (en) 2015-11-18
TW200922189A (en) 2009-05-16
US20150100863A1 (en) 2015-04-09
JP2013141315A (en) 2013-07-18
CA2668232A1 (en) 2008-05-08
US8028217B2 (en) 2011-09-27
CN101536387B (en) 2013-01-16
US20130166995A1 (en) 2013-06-27
CN101536387A (en) 2009-09-16
HK1133345A1 (en) 2010-03-19
KR20140133898A (en) 2014-11-20
AU2007314375A1 (en) 2008-05-08
MY157244A (en) 2016-05-13
IL198495A0 (en) 2010-02-17
CN103036645A (en) 2013-04-10
TW201440453A (en) 2014-10-16
KR101520242B1 (en) 2015-05-13
KR101494585B1 (en) 2015-02-23
US8589757B2 (en) 2013-11-19
KR101472148B1 (en) 2014-12-15

Similar Documents

Publication Publication Date Title
TW200822576A (en) Method and apparatus for encoding and decoding high speed shared control channel
TWI444020B (en) Method and wireless transmit/receive unit for decoding enhanced uplink absolute grant channel transmissions
EP2200392A1 (en) Semi-persistent resource release by wireless communication device
JP2008182710A (en) Method of enhancing information security in wireless communications system and related apparatus
TW201008208A (en) Method and apparatus for control channel operation in GERAN
US20090022079A1 (en) Method and apparatus for providing enhanced channel interleaving
WO2017179298A1 (en) Terminal device, base station device, communication method, and integrated circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees