TW200822102A - A system and method of controlling the power of a radiation source - Google Patents

A system and method of controlling the power of a radiation source Download PDF

Info

Publication number
TW200822102A
TW200822102A TW95141965A TW95141965A TW200822102A TW 200822102 A TW200822102 A TW 200822102A TW 95141965 A TW95141965 A TW 95141965A TW 95141965 A TW95141965 A TW 95141965A TW 200822102 A TW200822102 A TW 200822102A
Authority
TW
Taiwan
Prior art keywords
signal
radiation source
module
digital
source power
Prior art date
Application number
TW95141965A
Other languages
Chinese (zh)
Inventor
xin-yan Wu
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200822102A publication Critical patent/TW200822102A/en

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

A system for controlling the power of a radiation source comprises a sensor FS, a feedback network FN and a radiation source power control circuit LPCC. The sensor receives a portion of a radiation beam LBP generated by a radiation source LS and provides an analogue signal AFS representative of a radiation source power. The feedback network FN is connected to the sensor FS. The radiation source power control circuit LPCC is connected to the feedback network FN and to the radiation source LS. The feedback network FN comprises a runlength compensating module RCM comprising: - a sampling module SM providing a digital signal DFS based on the analogue signal AFS, - at least one error controlling signal generator ECSG performing an amplitude compensation and providing at least one digital error controlling signal ECS to the radiation source power control circuit LPCC in order to control the power of the radiation source LS.

Description

200822102 九、發明說明: 【發明所屬之技術領域】 本發明之一態樣係關於一種資料記錄裝置。特定而+ 本發明係關於一種用以控制在資料記錄裝置中使用之輻射 源功率之系統。本發明之特定應用係關於一種使用雷射以 在光學兄錄載體上讀取及寫入資料之光學資料記錄裝置。 本發明之另一態樣係關於一種控制在資料記錄裝置中使 用之輕射源功率之方法。 (} 【先前技術】 文獻US2〇〇2/016798〇揭示具有用於光學儲存應用之雜訊 降低回饋之雷射驅動器。為提供低雜訊雷射束,提供建立 雜訊降低信號且將該信號提供至雷射自身之雜訊降低回饋 網路。為產生雜訊降低信號,監控雷射之操作且回饋信號 為此監控之直接結果。監控由自操作雷射之雷射束之一部^ 分接收的快速正向感測偵測器來實現。將來自此快速正向 I ,感測偵測器之輸出提供至反相並放大信號之放大器。接著 ^雜訊降低回饋網路接收經放大之信號、適當過濾此信號且 將其提供至雷射自身,以便降低對自光學媒體讀取所記錄 之資料重要的頻帶之雷射束中的雜訊。雜訊降低回饋信號 、乂 /、有足夠回的阻抗,以便不干擾雷射之傳統的連續 波操作且避免雷射之傳統射頻調變之干擾。 '、 “然而,此雷射控制系統之雜訊降低回饋信號之振幅隨著 光學載體磁軌上之標記或空間之長度(亦被稱為掃描長度) 文文特定而g,此振幅改變在資料之記錄期間(例如 H6295.doc 200822102 在標記之寫入期間)發生。此導致 雜訊的不良增加。 ““射功率之信號之 【發明内容】 本發明之一目標為提出一種 用於控制在資料記錄裝置中 使用之輻射源的功率之系統,苴 "、兄服先別技術之缺陷中之 至少-者’尤其是其改良雷射功率控制。 根據本發明之一態樣,輻射 J原功率控制系統包含:一咸 測器,其接收由輻射源產生的輕 " ^ Μ π 1 ?射束之一部分且提供表示 輻射源功率之類比信號;一回 u ώ 貝、、,罔路,其連接至感測器; 及一 #§射源功率控制電路,爱逵 /、連接至回饋網路且連接至輻 射源。回饋網路包含一掃描長 食度補秘杈組,掃描長度補償 杈、、且包3 · —取樣模組,其基 不‘射源功率之類比信 號而k供數位信號;及至少 主乂决差控制信號產生器,苴執 行振幅補償且將至少一數位4 、 ^ ^ 數位無差控制信號提供至輻射源功 率控制電路以便控制輻射源之功率。 取樣模組可肖合—_ +猫+ m 匕3類比預處理模組及一類比數位轉換 益'’取樣模組提供表示輕射源功率之數位信號。 誤差控制信號產生器可包含一 Λ ^ 正口及劃分模組、一計數 模組、-查找表模組及一倍增器。整合及劃分模組以及計 數梹組接收表示輻射源功率之數位信號及至少一時抑 號。在基於至少一時序信號之持續時間期間,整合及劃: 模_由累積表示㈣源功率之數位信號之複數個樣本而 ^定一總和’而計數模組藉由計數表示輕射源功率之數位 仏谠之複數個樣本而判定掃描長度。整合及劃分模組藉由 116295.doc 200822102 用掃描長度除總和而計算複數個樣本之平均值。耦接至計 數杈組之查找表模組基於掃描長度而判定換算因數。耦接 至查找表模組以及整合及劃分模組之倍增器藉由用換算因 數乘複數個樣本之平均值而計算複數個樣本的換算值。 視需要,誤差控制信號產生器可進一步包含至少一數位 後處理模組,其連接至倍增器且將後處理之數位誤差控制 4吕號提供至輻射源功率控制電路。200822102 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION One aspect of the present invention relates to a data recording apparatus. Specific and + The present invention relates to a system for controlling the power of a radiation source used in a data recording device. A particular application of the invention relates to an optical data recording device that uses a laser to read and write data on an optical brother carrier. Another aspect of the invention is directed to a method of controlling the power of a light source used in a data recording device. (Previous technique) Document US Pat. No. 2/016798 discloses a laser driver having a noise reduction feedback for optical storage applications. To provide a low noise laser beam, a noise reduction signal is provided and the signal is provided. Providing a laser to the laser's own noise reduction feedback network. To generate a noise reduction signal, monitor the operation of the laser and feedback the signal as a direct result of this monitoring. Monitor the laser beam from the self-operated laser The fast forward sensing detector is implemented to provide an amplifier from the fast forward I, the output of the sensing detector to the amplifier that inverts and amplifies the signal. Then, the noise reduction feedback network receives the amplified Signal, properly filter this signal and provide it to the laser itself to reduce noise in the laser beam in the frequency band important to the recorded data from the optical media. The noise reduction feedback signal, 乂 /, is sufficient Back impedance so as not to interfere with the traditional continuous wave operation of the laser and avoid the interference of conventional RF modulation of the laser. ', "However, the noise of this laser control system reduces the amplitude of the feedback signal with the light The length of the mark or space on the carrier track (also known as the scan length) is specific to the text, and this amplitude change occurs during the recording of the data (eg H6295.doc 200822102 during the writing of the mark). A bad increase in noise. "The signal of the radiation power" [Invention] It is an object of the present invention to provide a system for controlling the power of a radiation source used in a data recording device, 苴" At least one of the technical drawbacks is, in particular, its improved laser power control. According to one aspect of the invention, the radiated J raw power control system comprises: a salt detector that receives the light generated by the radiation source " Μ π 1 ? a portion of the beam and providing an analog signal indicative of the power of the radiation source; a U-turn, a loop, connected to the sensor; and a #§ source power control circuit, Connected to the feedback network and connected to the radiation source. The feedback network includes a scanning long-food supplement group, scanning length compensation 杈, and package 3 · sampling module, the base is not 'source power analog signal And k for the digital signal; and at least the main decision control signal generator, 苴 performing amplitude compensation and providing at least one digit 4, ^^ digital no difference control signal to the radiation source power control circuit for controlling the power of the radiation source. The module can be combined with a _ + cat + m 匕 3 analog pre-processing module and a analog-to-digital conversion s sampling module to provide a digital signal representing the power of the light source. The error control signal generator can include a positive And a partitioning module, a counting module, a lookup table module and a multiplier. The integrating and dividing module and the counting group receive a digital signal representing the power of the radiation source and at least one time suppression. Based on at least one timing signal During the duration of the integration, the modulo_ is cumulatively represented by (four) a plurality of samples of the digital signal of the source power and the sum is determined by a count of the plurality of samples representing the digits of the light source power by counting And determine the scan length. The integration and partitioning module calculates the average of the plurality of samples by dividing the sum of the scan lengths by 116295.doc 200822102. A lookup table module coupled to the counting group determines the scaling factor based on the length of the scan. The multiplier coupled to the lookup table module and the integration and division module calculates the converted value of the plurality of samples by multiplying the average of the plurality of samples by the conversion factor. Optionally, the error control signal generator can further include at least one digit post processing module coupled to the multiplier and providing the post processed digital error control to the radiation source power control circuit.

視需要,在倍增器與至少一後處理模組之間連接一時間 多工器,言亥時間多工器接收德耳塔(delta)時序信號及臨限 時序信號且將數位德耳塔信號或臨限信號提供至輕射源功 率控制電路。 在特定應用中,輕射源為產生雷射束之雷射二極體,且 感測器為光學感測器。光學感測器為正向感測谓測器,1 提供表示輻射源功率之正向感測類比信號。 / ==明之另一態樣’資料記錄褒置包含一輕射源, ;;破導向可插入至資料記錄裝置中之記錄載體之輕射 束。為料圮錄裝置包含輕接至牵墓勒 源功率控制系統。 、、艮據本發明之輻射 下=本發明之又—態樣’控制輕射源功率之方法包含以 部分且提供表示輻射 -感測由輻射源產生之輻射束的一 源功率之類比信號, -取樣表不輕射源功率之類 率之數位信號, l唬且提供表示輻射源功 116295.doc 200822102 -執行表示㈣源㈣之數位信號之複固樣 補償且將至少一數位^差 勺振幅 ♦ 、 ^數位决差控制信號提供至輻射源功率扣制 電路以便控制輻射源之功率。 工 振幅補償可包含以下步驟: ,二於至少—時序信號之持續時間射01,藉由累積表 丁田、源功率之數位信號的複數個樣本而她、 /在基於至少-時序信號之持續時間期間,藉由;數表示 &射源功率之數位信號的複數個樣本而判^ —掃描長戶1 -稭由用掃描長度除總和而計算複數個樣本之平^值, -基於掃描長度而判定換算因數, -藉由用換算因數乘複數個樣本之平均值而計算複數個 7之換异值,及產生至輻射源功率控制電路之至少一數 位誤差控制信號以便控制輻射源之功率。 視需要,該方法可進一步包含以下步驟:放大表示輕射Optionally, a time multiplexer is connected between the multiplier and the at least one post-processing module, and the multiplexer receives the delta timing signal and the threshold timing signal and the digital delta signal or The threshold signal is provided to the light source power control circuit. In a particular application, the light source is a laser diode that produces a laser beam, and the sensor is an optical sensor. The optical sensor is a forward sensing predator, 1 providing a forward sensing analog signal representative of the power of the radiation source. / == Another aspect of the 'data recording device' includes a light source, ;; a light beam that can be inserted into the record carrier in the data recording device. The material recording device includes a light connection to the tomb source power control system. The method of controlling the power of a light source according to the radiation of the present invention = the aspect of the present invention comprises, for example, providing an analog signal representative of a source of power indicative of radiation-sensing of the radiation beam produced by the radiation source, - the sampling table does not light the source power rate and the like digital signal, l 提供 provides a representation of the radiation source work 116295.doc 200822102 - performs a re-compensation of the digital signal representing the (four) source (four) and will have at least one digit ♦ , ^ Digital discrete control signal is provided to the radiation source power clamping circuit to control the power of the radiation source. The amplitude compensation may comprise the following steps: - at least - the duration of the timing signal is shot 01, by accumulating a plurality of samples of the digital signal of the field, source power, and / during the duration based on the at least - timing signal By counting a plurality of samples representing the digital signal of the source power and determining the length of the plurality of samples by dividing the scan length by the sum of the scan lengths, - determining based on the scan length The conversion factor, - calculating a plurality of 7 different values by multiplying the average of the plurality of samples by a scaling factor, and generating at least one digital error control signal to the radiation source power control circuit to control the power of the radiation source. The method may further comprise the following steps as needed: zooming in to indicate a light shot

U 源功率之類比信號並取消經放大類比信號之偏移,及提供 經修改之類比信號。 視需要,該方法可進一步包含以下步驟:後處理至少一 數位誤差控制信號。 在與將雷射用於在光學記錄載體上讀取及寫入資料之光 學資料記錄裝置相關的本發明之特定應用中,時序作號可 在於德而塔時序信號及臨限時序信號,而數位誤差控難 號可在於數位德而塔信號及數位臨限信號。 根據又-態樣,本發明係關於—種電腦程式產品,其用 於輻射源控制系統’該電腦程式產品包含一組指令,當將 116295.doc 200822102 該組指令載入至輻射源功率控制系統中時,其導致輕射源 控制糸統執行根據本發明之方法。 本發明絲在數位實施例中之經換算之正向感測樣本而 允許德耳塔及臨限信號之簡單且有效之處理。特定而言, 本發明允許產生用於柝也丨帝&丄、亡、λ ° 、工田射功率〉示移(例如關於溫度)之 數位臨限及德耳塔作缺。Α 丄4 °因此’本發明允許在光學記錄载 f磁執μ標記之寫人階段_降低臨限及德耳塔信號之 4準偏差或雜訊。 根據本發明之雷射控制系統之掃描長度補償模組允許執 幅補償機制以便降低不同掃描長度之振幅差。因此, 使用本發明,改良 口所 尤子貝枓5己錄裝置之記錄效能及記錄 口口貝。 之:二:發明之數位實施例允許降低雷射功率控制電路 …體製程/幾何形狀敏感性、功率消耗及石夕區域。 Ο 領之該等及其他態樣由於下文中描述之實施例將為 _且4考下文中描述之實施例而對其加以闡述。 【實施方式】 4The analog signal of the U source power cancels the offset of the amplified analog signal and provides a modified analog signal. The method may further comprise the step of post processing at least one digital error control signal, as desired. In a particular application of the invention associated with an optical data recording device for using a laser for reading and writing data on an optical record carrier, the timing can be in the Delta time series signal and the threshold timing signal, and the digits The error control difficulty number can be in the digital de tower signal and the digital threshold signal. According to yet another aspect, the present invention relates to a computer program product for use in a radiation source control system. The computer program product includes a set of instructions when the 116295.doc 200822102 set of instructions is loaded into the radiation source power control system. In the meantime, it causes the light source control system to perform the method according to the invention. The converted filament sense sensing sample in the digital embodiment of the present invention allows simple and efficient processing of the delta and threshold signals. In particular, the present invention allows the generation of digital thresholds for the 柝 丨 & amp amp 亡 亡 λ λ λ λ λ 工 工 工 ( ( ( ( ( ( ( ( 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Α 丄 4 ° Therefore, the present invention allows for the quasi-deviation or noise of the threshold and the delta signal in the writing phase of the optical recording. The scan length compensation module of the laser control system according to the present invention allows the amplitude compensation mechanism to reduce the amplitude difference between different scan lengths. Therefore, the use of the present invention improves the recording performance and recording of the mouth of the device. Second: The digital embodiment of the invention allows for a reduction in the laser power control circuit, the process range/geometry sensitivity, the power consumption, and the Shi Xi area. These and other aspects of the present invention will be set forth in the following description of the embodiments described below. [Embodiment] 4

Lc;的1〜14地说明包含本發明之-雷射功率控制系統 Lcs广育料記錄裝置之方塊圖。 資料記錄# w t 1 資… 置執行與在光學記錄載體OM上讀取及寫入 貝枓相關之操作。 資料記錄I w h A , — "匕έ 一機械配置μα、一光學頭〇H及一電 千早凡(部分圖示)。 展示摘入;^ # μ 、%凌置中之光學記錄載體ΟΜ。光學記錄 116295.doc 200822102 載體ΟΜ可具有磁碟形狀。 途茱之表面可包含自磁碟内邻 至磁碟外部而環繞之一單一 邻 系線 5己錄於磁執上之二亓次 光學可偵測部分(即,標記與空間)表示。標記與空f: =於其不同的光學特性(例如㈣束之反射的變 可偵測的。 為 在圖1中示意性地且部分地表示之機械配置MA包含—你 磁碟根據恆定線速度模式或恆定角速度模式而旋轉之馬 ( Ο 達。機械配置MA進一步肖冬 田认技,5 、 ^包3 —用於使光學頭〇H相對於磁 而正確定位之磁軌掃描伺服控制系統(未圖示) 路可進一步包含一載入單元(未圖示)。 光學頭_含產生輕射束LB(例如雷射束)之輕射源 LS(例如雷射二極體)。光學頭〇H亦包含用於在光學記錄載 體OM之磁軌上導引並聚焦輻射束或輕射束之一部分之各 種光學元件〇E。光學頭0H進一步包含一用於偵測並量測 由在光學記錄載體OM磁軌上之光學可偵測部分反射之雷 射束的偵測器DE(例如四象限二極體)。 通常,電子單元包含經由匯流排(例如Pc匯流排)連接在 一起之一資料編碼器、一控制單元、一介面電路(為了清 楚起見,已在圖中省略該等元件)及一雷射功率控制系統 LCS。資料編碼器功能為根據預定記錄袼式編碼並解碼資 料。資料編碼器提供用以在光學記錄載體〇M 、 丄*馬入;f示記 之k號且亦提供時序信號。控制單元基於來自消費型電子 裝置(音訊裝置、視訊裝置、電腦、電視等)的命令而控制 光學記錄載體OM之磁執之掃描及資訊之讀取。介面電路 116295.doc -10- 200822102 允許資料記錄裝置與包含於消費型電子裝置中之其他電子 電路連接。雷射功率控制系統LCS將一雷射功率控制信號 PCS提供至光學頭〇H以便設定雷射源LS之寫入功率。通 带,雷射功率控制電路依賴三個輸入信號而操作以便控制 雷射功率。該等輸入信號稱為德耳塔(delta)信號、臨限信 號及阿伐(aipha)信號。阿伐信號為由偵測器de提供之數位 信號。 ζ\ 田射功率控制系統LCS包含一光學感測器FS、一回饋網 路FN及一雷射功率控制電路[pee。 光學感測器FS接收由輻射源LS產生之輻射束之部分 LBP,例如由雷射二極體產生之雷射束之一部分。輻射束 之部分LBP由光學元件〇E之光束分光器來提供。光學感測 器FS可為正向感測變換器FS。正向感測變換器Fs提供表 示雷射功率之類比信號AFS(即,類比正向感測信號)。 光學感測器F S連接至回饋網路fn。回饋網路FN之一輸 出連接至雷射功率控制電路LPCC。 回饋網路FN包含一掃描長度補償模組rcm。掃描長度 補償模組RCM包含一取樣模組sm及一誤差控制信號產生 為ECSG。取樣模組SM根據表示雷射功率之類比信號afs 而提供數位信號DFS。誤差控制信號產生器ecSG執行將在 下文中更#細解釋之振幅補償之操作。誤差控制信號產生 器ECSG將至少一數位誤差信號£(:8提供至雷射功率控制電 路LPCC以便控制雷射源LS之功率。 回饋網路FN可進一步包含連接於光學感測器fs與掃描 116295.doc 200822102 長度補償模組RCM之間的一放大模組AMP。 雷射功率控制電路LPCC之輸出連接至雷射源LS。雷射 功率控制電路LPCC提供一雷射功率控制信號PCS。特定而 言,雷射功率控制信號PCS可用以設定雷射源LS之寫入功 率。 圖2為示意性地表示根據本發明之第一實施例之雷射控 制系統LCS之掃描長度補償模組RCM的詳細方塊圖。 掃描長度補償模組RCM包含一取樣模組SM及一誤差控 Γ 一 '制信號產生器ECSG。 取樣模組SM包含一類比預處理模組APRO及一正向感測 類比數位轉換器FSADC。數位預處理模組APRO放大由正 向感測變換器FS提供之類比正向感測信號AFS1。其亦可 執行類比正向感測信號之偏移取消。經修改之類比正向感 測信號AFS2由正向感測類比數位轉換器FSADC來數位 化。類比數位轉換器FSADC可為六位元或八位元高頻類比 / , 數位轉換器。取樣模組SM將數位正向感測信號DFS提供至 誤差控制信號產生器ECSG。 誤差控制信號產生器ECSG包含一德耳塔信號產生器 ECSG1及一臨限信號產生器ECSG2 〇德耳塔信號產生器 ECSG1包含一第一整合及畫J分模組ID1、一第一計數模組 RNC1、一第一查找表模組LKT1及一第一倍增器MU1。德 耳塔信號產生器進一步可包含一第一後處理模組PPR01。 臨限信號產生器ECSG2包含一第二整合及劃分模組ID2、 一第二計數模組RNC2、一第二查找表模組LKT2及一第二 116295.doc 12 200822102 倍增器MU2。臨限信號產生器可進一步包含一第二後處理 模組PPR02 〇 圖3自上而下分別說明數位正向感測信號(電流強度 IfS)、與德耳塔信號相關之時序信號Tdel及與臨限信號相關 之時序信號Tthr。 通常,德耳塔時序信號及臨限時序信號並非同時處於 π高”狀態(即,二進制1)或相反同時處於”低”狀態(即,二 進制0)。 f ' 1 在圖2中展示之德耳塔信號產生器ECSG1執行用於產生 數位德耳塔信號DSdel之操作。 第一整合及劃分模組ID1以及第一計數模組RNC1連接在 一起。兩者皆接收來自取樣模組SM之數位正向感測信號 DFS及時序信號丁del、丁如。第一查找表模組LKT1之輸入連 接至第一計數模組RNC1之輸出。第一倍增器MU1之輸入 連接至第整合及劃分模組ID 1以及第一查找表模組lkt 1 〇 之輸出。第一後處理模組PPR01連接至第一倍增器mui之 輸出。 當德耳塔時序信號處於高狀態時,數位正向感測信 號DSF之複數個樣本由第一整合及劃分模組1〇1來累積。 當德耳塔時序信號Tw改變至低狀態時,第一計數模組 RNC1判定掃描長度。1 to 14 of Lc; a block diagram of the LCS broadcast material recording apparatus including the laser power control system of the present invention. Data record # w t 1 The operation associated with reading and writing the cassette on the optical record carrier OM is performed. Data record I w h A , — "匕έ A mechanical configuration μα, an optical head 〇H and an electric charge (partial illustration). Display the excerpt; ^ # μ, % 凌置 in the optical record carrier ΟΜ. Optical Recording 116295.doc 200822102 The carrier can have a disk shape. The surface of the path may include a second optically detectable portion (i.e., mark and space) represented by a single adjacent line from the inside of the disk to the outside of the disk. The mark and the empty f: = are different in their optical properties (for example (4) the reflection of the beam is detectable. The mechanical configuration MA is schematically and partially represented in Figure 1 - your disk is based on a constant linear velocity Mode or constant angular velocity mode and rotating horse (Ο达. Mechanical configuration MA further Xiao Dongtian recognition, 5, ^ package 3 - magnetic track scanning servo control system for optical head 〇 H relative to magnetic positioning (not shown) The circuit may further include a loading unit (not shown). The optical head _ includes a light source LS (for example, a laser diode) that generates a light beam LB (for example, a laser beam). A plurality of optical elements 〇E for guiding and focusing a portion of the radiation beam or the light beam on the track of the optical record carrier OM. The optical head 0H further comprises a means for detecting and measuring by the optical record carrier OM An optical detector on the track that detects a partially reflected laser beam detector DE (eg, a four-quadrant diode). Typically, an electronic unit includes a data encoder connected via a bus bar (eg, a Pc bus bar) , a control unit, a dielectric The circuit (for clarity, the elements have been omitted from the figure) and a laser power control system LCS. The data encoder function is to encode and decode data according to a predetermined record. The data encoder is provided for use in the optical record carrier. 〇M, 丄*马入;f indicates k and also provides timing signals. The control unit controls the magnetic record carrier OM based on commands from consumer electronic devices (audio devices, video devices, computers, televisions, etc.) Scanning and reading of information. Interface circuit 116295.doc -10- 200822102 allows the data recording device to be connected to other electronic circuits included in the consumer electronic device. The laser power control system LCS provides a laser power control signal PCS To the optical head 〇H to set the write power of the laser source LS. The pass band, the laser power control circuit operates on three input signals to control the laser power. These input signals are called delta signals. , the threshold signal and the aipha signal. The Aval signal is the digital signal provided by the detector. ζ\ The field power control system LCS contains a light a sensor FS, a feedback network FN and a laser power control circuit [pee. The optical sensor FS receives a portion of the LBP of the radiation beam generated by the radiation source LS, such as a laser beam generated by a laser diode A portion of the radiation beam is provided by a beam splitter of the optical element 〇 E. The optical sensor FS can be a forward sense transducer FS. The forward sense transducer Fs provides an analog signal representative of the laser power AFS (ie, analog forward sensing signal) The optical sensor FS is connected to the feedback network fn. One of the feedback networks FN is connected to the laser power control circuit LPCC. The feedback network FN includes a scan length compensation mode. The group rcm. The scan length compensation module RCM includes a sampling module sm and an error control signal generated as an ECSG. The sampling module SM provides a digital signal DFS based on the analog signal afs representing the laser power. The error control signal generator ecSG performs an operation of amplitude compensation which will be explained later in detail. The error control signal generator ECSG provides at least one digital error signal £(:8 to the laser power control circuit LPCC to control the power of the laser source LS. The feedback network FN may further comprise a connection to the optical sensor fs and the scan 116295 .doc 200822102 An amplification module AMP between the length compensation modules RCM. The output of the laser power control circuit LPCC is connected to the laser source LS. The laser power control circuit LPCC provides a laser power control signal PCS. The laser power control signal PCS can be used to set the write power of the laser source LS. Fig. 2 is a block diagram schematically showing the scan length compensation module RCM of the laser control system LCS according to the first embodiment of the present invention. The scan length compensation module RCM includes a sampling module SM and an error control signal generator ECSG. The sampling module SM includes an analog preprocessing module APRO and a forward sensing analog digital converter FSADC. The digital pre-processing module APRO amplifies the analog forward sense signal AFS1 provided by the forward sense converter FS. It can also perform the offset cancellation of the analog forward sense signal. The analog forward sense signal AFS2 is digitized by a forward sense analog digital converter FSADC. The analog digital converter FSADC can be a six-bit or octet high-frequency analog / digital converter. The sampling module SM will be digital. The forward sensing signal DFS is supplied to the error control signal generator ECSG. The error control signal generator ECSG includes a delta signal generator ECSG1 and a threshold signal generator ECSG2. The delta signal generator ECSG1 includes a first Integrating and drawing a J-module ID1, a first counting module RNC1, a first look-up table module LKT1, and a first multiplier MU1. The delta signal generator further includes a first post-processing module PPR01 The threshold signal generator ECSG2 includes a second integration and division module ID2, a second counting module RNC2, a second lookup table module LKT2, and a second 116295.doc 12 200822102 multiplier MU2. The generator may further include a second post-processing module PPR02. FIG. 3 illustrates the digital forward sensing signal (current intensity IfS), the timing signal Tdel related to the delta signal, and the threshold signal respectively from top to bottom. It The sequence signal Tthr. Typically, the delta timing signal and the threshold timing signal are not in the π high state (ie, binary 1) or vice versa (ie, binary 0). f ' 1 in Figure 2 The delta signal generator ECSG1 shown in the figure performs the operation for generating the digital delta signal DSdel. The first integration and division module ID1 and the first counting module RNC1 are connected together. Both receive from the sampling module. The digital positive sense signal DFS of SM and the timing signal Ding del and Ding Ru. The input of the first lookup table module LKT1 is connected to the output of the first counting module RNC1. The input of the first multiplier MU1 is connected to the integration and division module ID 1 and the output of the first lookup table module lkt 1 。. The first post-processing module PPR01 is connected to the output of the first multiplier mui. When the delta timing signal is in a high state, a plurality of samples of the digital forward sensing signal DSF are accumulated by the first integration and division module 1〇1. When the delta timing signal Tw changes to a low state, the first counting module RNC1 determines the scanning length.

度之總和。 。接著,第一 〜%匕田雷射束掃描之光學記錄載體〇M磁 。第一整合及劃分模組ID1判定對應於掃描長 對應之總和儲存於總和暫存器中。接著,第一 116295.doc -13 - 200822102 整合及劃分模組⑴丨計算數位正向感測信號DFS之樣本的 平均值。此計算在於用掃描長度除總和。同時,第一查找 表模組LKT1判定與對應掃描長度匹配之第一換算因數。 接著,第-倍增器Mim十算數位正向感測信號之樣本的換 算值。此計算在於用第一換算因數乘數位正向感測信號之 樣本的平均值。 隨後,第一後處理模組PPR01可進一步後處理換算值以 r 便產生數位德耳塔信號DSdel。第一後處理模組PPR〇1可包 含一低通過濾模組及增益級模組。 最後,傾卸第一整合及劃分模組ID1,尤其是重設總和 暫存器以便等待下一德耳塔信號處理。 在圖2中展示之臨限信號產生器ECSG2執行用於產生數 位臨限信號DSthr之操作。可根據類似於前文中所解釋之德 耳塔仏5虎计异之一系列步驟而計算數位臨限信號DSthr。 第一整合及劃分模組ID2以及第二計數模組rNC2連接在 〇 一起。兩者皆接收來自取樣模組SM之數位正向感測信號 DFS及時序信號丁⑽、丁心。第二查找表模組lkt22輸入連 接至第二計數模組RNC2之輸出。第二倍增器mu2之輸入 連接至第二整合及劃分模組m2以及第二查找表模組[〖η 之輸出。第二後處理模組PPR02連接至第二倍增器MU2之 輸出。 田^限時序信號Tthr處於高狀態時,數位正向感測信號 DSF之複數個樣本由第二整合及劃分模組ID2來累積。 田I限日寸序信號Tthr變為低狀態時,第二計數模組RNC2 116295.doc -14- 200822102 判疋對應於經掃#之#記之掃描&纟。帛〕整合及劃分模 組ID2判㈣應於掃#長度之總矛口。對應的總和儲存於總 和暫存器中。接著,第二整合及劃分模組ID2計算數位正 向感測U之樣本的平均i。此言十算在於用掃描長度除總 和。同時,第二查找表模組LKT2判定與對應掃描長度匹 配之第二換算因數。接著,第二倍增器MU2計算數位正向 感測信號之樣本的換算值。此計算在於用第二換算因數乘 f, 數位正向感測信號之樣本的平均值。 隨後,第二後處理模組ppR〇2可進一步後處理換算值以 便產生數位臨限信號DSthr。第二後處理模組ppR〇2可包含 一低通過濾' 模組及增益級模組。 最後,傾卸第二整合及劃分模組ID2,尤其是重設總和 暫存為以便等待下一臨限信號處理。 有利地,第一PPR01及第二PPR〇2後處理模組之低通過 濾模組為經設計以使低於截斷頻率之所有頻率通過之調諧 ϋ 模組,該截斷頻率經判定並最佳化而用於特定雷射功率控 制糸統L C S。 有利地,儲存於查找表模組(第一LKT1或第二LKT2查找 表模組)中之換算因數由回饋網路FN之類比頻寬及記錄速 度來判定。為資料記錄裝置之特定雷射功率控制系統而校 準查找表模組一次。 圖4為示意性地表示根據本發明之第二實施例之雷射控 制系統LCS之掃描長度補償模組rcM的方塊圖。 第二實施例考慮德耳塔時序信號Tdel及臨限時序信號 116295.doc 15 200822102 並未同時處於高狀態,或相反地同時處於低狀態(參見圖 3)。第二實施例與第一實施例不同之處在於德耳塔信號 D S de 1及6品限#號D S thr之知描長度補償模組RC Μ共用同' 硬體,尤其是同一誤差控制信號產生器ECSG。 誤差控制信號產生器ECSG包含一整合及劃分模組id、 一計數模組RNC、一查找表模組LKT、一倍增器MU及一 多工器MT。 整合及劃分模組ID以及計數模組RNC連接在一起。兩者 皆接收來自取樣模組SM之數位正向感測信號DFS及德耳塔 時序信號Tdel及臨限時序信號Tthr。查找表模組lkt之輸入 連接至計數模組RNC之輸出。倍增器MU之輸入連接至整 合及劃分模組ID以及查找表模組LKT之輸出。多工器MT 為時間多工器。多工器MT連接至倍增器MU之輸出且接收 時序信號Tdel、Tthr。多工器mt考慮德耳塔時序信號Tdel及 臨限時序信號Tthr以分別將數位德耳塔信號DSdel或數位臨 限信號DSthr提供至雷射功率控制電路LPCC。 誤差控制信號產生器ECSG可進一步包含連接至多工器 MT之一德耳塔後處理模組ppR〇1及一臨限後處理模組 PPR〇2 °或者’誤差控制信號產生器ECSG可進一步包含 一連接於倍增器Mu與多工器MT2間的單一後處理模組(未 圖示)。 决差控制信號產生器ECSG根據類似於關於第一實施例 而在刖文中解釋之德耳塔信號及臨限信號計算/產生的一 系列步驟而分別執行用於產生數位德耳塔信號DSdel或數位 116295.doc -16- 200822102 臨限信號DSthr之操作。因&,將不再進—步描述該等操 作。The sum of degrees. . Next, the first ~% Putian laser beam scanning optical record carrier 〇M magnetic. The first integration and division module ID1 determines that the sum corresponding to the scan length is stored in the sum register. Next, the first 116295.doc -13 - 200822102 integration and division module (1) 丨 calculates the average of the samples of the digital forward sensing signal DFS. This calculation consists in dividing the sum by the scan length. At the same time, the first lookup table module LKT1 determines the first scaling factor that matches the corresponding scan length. Next, the first multiplier Mim is the calculated value of the sample of the positive sense signal. This calculation consists in multiplying the average of the samples of the forward sensed signal by the first scaling factor. Subsequently, the first post-processing module PPR01 may further post-process the converted value to generate a digital delta signal DSdel. The first post-processing module PPR〇1 may include a low pass filter module and a gain stage module. Finally, the first integration and partitioning module ID1 is dumped, in particular the sum register is reset to wait for the next delta signal processing. The threshold signal generator ECSG2 shown in Fig. 2 performs an operation for generating the digital threshold signal DSthr. The digital threshold signal DSthr can be calculated according to a series of steps similar to the one described in the foregoing. The first integration and division module ID2 and the second counting module rNC2 are connected together. Both receive the digital forward sense signal DFS and the timing signal D10 (10) and Dingxin from the sampling module SM. The second lookup table module lkt22 inputs the output connected to the second counting module RNC2. The input of the second multiplier mu2 is connected to the output of the second integration and division module m2 and the second lookup table module [[η]. The second post-processing module PPR02 is coupled to the output of the second multiplier MU2. When the field timing signal Tthr is in a high state, a plurality of samples of the digital forward sensing signal DSF are accumulated by the second integration and division module ID2. When the field I limit time signal Tthr becomes low state, the second counting module RNC2 116295.doc -14- 200822102 determines the scan corresponding to the scan ##.帛] Integration and division model ID2 judgment (4) should be the total length of the sweep ##. The corresponding sum is stored in the sum register. Next, the second integration and division module ID2 calculates the average i of the samples of the digital forward sense U. The tenth argument is to divide the sum by the scan length. At the same time, the second lookup table module LKT2 determines a second scaling factor that matches the corresponding scan length. Next, the second multiplier MU2 calculates a scaled value of the sample of the digital forward sense signal. This calculation consists in multiplying the second scaling factor by f, the average of the samples of the digital forward sensed signal. Subsequently, the second post-processing module ppR〇2 can further post-process the converted value to generate the digital threshold signal DSthr. The second post-processing module ppR〇2 can include a low pass filter module and a gain stage module. Finally, the second integration and partitioning module ID2 is dumped, in particular the reset sum is temporarily stored in order to wait for the next threshold signal processing. Advantageously, the low pass filter modules of the first PPR01 and the second PPR〇2 post-processing module are tuned 模组 modules designed to pass all frequencies below the cutoff frequency, the cutoff frequency being determined and optimized It is used for a specific laser power control system LCS. Advantageously, the scaling factor stored in the lookup table module (the first LKT1 or the second LKT2 lookup table module) is determined by the analog bandwidth of the feedback network FN and the recording speed. The lookup table module is calibrated once for a particular laser power control system of the data recording device. Fig. 4 is a block diagram schematically showing a scan length compensation module rcM of a laser control system LCS according to a second embodiment of the present invention. The second embodiment considers the delta timing signal Tdel and the threshold timing signal 116295.doc 15 200822102 not at the same time in the high state, or conversely at the same time in the low state (see Fig. 3). The second embodiment is different from the first embodiment in that the delta signals DS de 1 and 6 are limited to the number DS thr, and the known length compensation module RC Μ shares the same 'hard body, especially the same error control signal generation. ECSG. The error control signal generator ECSG includes an integration and division module id, a counting module RNC, a lookup table module LKT, a multiplier MU and a multiplexer MT. The integration and division module ID and the counting module RNC are connected together. Both receive the digital forward sense signal DFS and the delta timing signal Tdel and the threshold timing signal Tthr from the sampling module SM. The input of the lookup table module lkt is connected to the output of the counting module RNC. The input of the multiplier MU is connected to the integration and division module ID and the output of the lookup table module LKT. The multiplexer MT is a time multiplexer. The multiplexer MT is connected to the output of the multiplier MU and receives timing signals Tdel, Tthr. The multiplexer mt considers the delta timing signal Tdel and the threshold timing signal Tthr to supply the digital delta signal DSdel or the digital threshold signal DSthr to the laser power control circuit LPCC, respectively. The error control signal generator ECSG may further comprise a delta post-processing module ppR〇1 connected to the multiplexer MT and a post-processing module PPR〇2° or the error control signal generator ECSG may further comprise a A single post-processing module (not shown) connected between the multiplier Mu and the multiplexer MT2. The decision control signal generator ECSG performs the generation of the digital delta signal DSdel or digital, respectively, according to a series of steps similar to the calculation and generation of the delta signal and the threshold signal explained in the text with respect to the first embodiment. 116295.doc -16- 200822102 Operation of the threshold signal DSthr. Because &, no further steps will be described.

舉出貝例,當溫度升高時,雷射源LS之雷射效率或功 率電流特徵將降低。通常,資料寫入操作需要大量雷射功 率口此,在資料寫入操作期間,光學記錄載體〇Μ上之 功率耗散增大。此導致雷射源1^區域之周圍溫度較大之變 化。由於雷射功率控制系統LCS之頻寬限制,類比正向感 測信號AFS之振幅將隨著標記或空間之長度而改變。掃描 長度補償模組RCM將會將補償類比正向感測信號AFS之較 大變化且將數位德耳塔信號队】及數位臨限信號仍士提供 至雷射功率控制電路。雷射功率控制電路將會將根據該等 數位德耳塔信號DSdel及數位臨限信號仍*之功率控制信號 PCS提i、至田射源。特定而g ’雷射功率控制電路[pec將 增大提供至雷射源LS之功率控制信號pcs之電流以便補償 功率損耗。如此將可保持大體上恆定的雷射功率及恆定的 記錄效能。 熟習此項技術者將明暸誤差控制信號產生器ecsg、 ECSG1、ECSG2可為儲存於雷射功率控制電路Lpcc之程 式記憶體+的系、、统軟體程式。該系統軟體包含界定學 差控制信號產生器ECSG、ECSG1、ECSG2之一或多個= 能之-組指令’其由雷射功率控制電路Lpcc來執行。或 者’誤差控制信號產生器ECSG、ECSG1、ecsg2可為執 行由硬體界定而非由軟體界^之—或多個功能的電子電路 之形式。在此實施例中,電路之各別元件及該等元件之間 116295.doc -17- 200822102 的各別連接界定誤差控制信號產生器eCSG、ECSG1、 ECSG2執行之一或多個功能。此外,掃描長度補償模組 RCM可實施於單一積體電路中,例如可實施於雷射功率控 制電路LPCC中。 熟習此項技術者將明暸光學記錄載體〇%表示(例如)任一 緊密光碟CD或任一數位化通用光碟DVD或支援廣泛範圍 的可忑錄及可重寫光學格式之任一未來的記錄光碟(例如 CD-R、CD.RW、DVD+R八R、dvd + RW/ rw、dvr、寫入 :次型DVD等)。此外,可將任何資訊(例如音訊、視訊或 貝料育訊)記錄於此光學記錄載體上。另外,雷射源可發 出頻率適用於且符合於光學記錄載體之雷射束。 前文中之附圖及其描述說明本發明而非限制本發明。請 求項中之任一參考符號不應理解為限制該請求項。詞,,包 _並不排斥存在除一請求項中列出之元件之外的其他元 件。凡件前之詞”一 ”並不排斥存在複數個此等元件。 【圖式簡單說明】 圖1為不意性地及部分地說明包含一根據本發明之雷射 控制系統的記錄裝置之方塊圖, 圖2為不意性地表示根據本發明之第一實施例之雷射控 制系、、先之掃描長度補償模組的詳細方塊圖, 二圖3說明數位正向感測信號、與德耳塔信號相關之時序 L唬及與臨限信號相關之時序信號, /圖4為不意性表示根據本發明之第二實施例之雷射控制 系、、先之掃描長度補償模組的詳細方塊圖。 U6295.doc 200822102 【主要元件符號說明】 AFS 類比信號 AFS1 類比正向感測信號 AFS2 類比正向感測信號 AMP 放大模組 APRO 類比預處理模組 DE 偵測器 DFS f ' 數位正向感測信號 [ DSdel 數位德耳塔信號 DSthr 數位臨限信號 ECS 數位誤差控制信號 ECSG1 德耳塔信號產生器 ECSG2 臨限信號產生器 ECSG 誤差控制信號產生器 FN回 饋網路 ( FS V/ 光學感測器 FSADC 正向感測類比數位轉換器 ID1 第一整合及劃分模組 ID2 第二整合及劃分模組 Ifs 電流強度 LB 幸畐射束 LBP 輻射束 LCS 輻射源功率控制系統 LKT1 第一查找表模組 116295.doc -19- 200822102 LKT2 第二查找表模組 LKT 查找表模組 LPCC 輻射源功率控制電路 LS 輻射源 MA 機械配置 MT 時間多工器 MU 倍增器模組 MU1 第一倍增器 MU2 第二倍增器 OE 光學元件 OH 光學頭 OM 光學記錄載體 PCS 功率控制信號 PPROl 第一後處理模組/德耳塔後處理模組 PPR02 第二後處理模組/臨限後處理模組 RCM 掃描長度補償模組 RNC 計數模組 RNC1 第一計數模組 RNC2 第二計數模組 SM 取樣模組 Tdel/Tthr 德耳塔時序信號/臨限時序信號 116295.doc -20-For example, when the temperature rises, the laser efficiency or power current characteristics of the laser source LS will decrease. In general, data write operations require a large amount of laser power, and the power dissipation on the optical record carrier is increased during data write operations. This causes a large temperature change around the laser source 1^ region. Due to the bandwidth limitations of the laser power control system LCS, the amplitude of the analog forward sense signal AFS will vary with the length of the mark or space. The scan length compensation module RCM will provide a larger variation of the compensation analog forward sense signal AFS and provide the digital delta signal team and the digital threshold signal to the laser power control circuit. The laser power control circuit will send the power control signal PCS according to the digital delta signal DSdel and the digital threshold signal to the field source. The specific g' laser power control circuit [pec will increase the current supplied to the power control signal pcs of the laser source LS to compensate for the power loss. This will maintain a substantially constant laser power and constant recording performance. Those skilled in the art will appreciate that the error control signal generators ecsg, ECSG1, and ECSG2 can be stored in the program memory + of the laser power control circuit Lpcc. The system software includes one or more of the defined difference control signal generators ECSG, ECSG1, ECSG2, which can be executed by the laser power control circuit Lpcc. Alternatively, the error control signal generators ECSG, ECSG1, ecsg2 may be in the form of electronic circuits that are defined by hardware rather than by software. In this embodiment, the individual components of the circuit and the respective connections between the components 116295.doc -17-200822102 define one or more of the functions of the error control signal generators eCSG, ECSG1, ECSG2. In addition, the scan length compensation module RCM can be implemented in a single integrated circuit, for example, in a laser power control circuit LPCC. Those skilled in the art will appreciate that optical record carriers 〇% represent, for example, any compact disc CD or any digital versatile disc DVD or any future recording disc that supports a wide range of recordable and rewritable optical formats. (eg CD-R, CD.RW, DVD+R eight R, dvd + RW/rw, dvr, write: secondary DVD, etc.). In addition, any information (such as audio, video or information) can be recorded on this optical record carrier. In addition, the laser source can emit a laser beam of a frequency suitable for and conforming to the optical record carrier. The drawings and the description thereof are illustrative of the invention and are not intended to limit the invention. Any reference symbol in the request should not be construed as limiting the claim. The word, the package _ does not exclude the existence of elements other than those listed in a request item. The word "a" in the preceding paragraph does not exclude the existence of a plurality of such elements. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram schematically showing, in part and in part, a recording apparatus including a laser control system according to the present invention, and FIG. 2 is a schematic representation of a mine according to a first embodiment of the present invention. The detailed control block diagram of the radiation control system and the first scan length compensation module, and the second figure 3 illustrate the digital forward sensing signal, the timing associated with the delta signal, and the timing signal associated with the threshold signal, 4 is a detailed block diagram showing the laser control system and the first scan length compensation module according to the second embodiment of the present invention. U6295.doc 200822102 [Main component symbol description] AFS analog signal AFS1 analog forward sensing signal AFS2 analog forward sensing signal AMP amplification module APRO analog preprocessing module DE detector DFS f ' digital positive sensing signal [ DSdel digital delta signal DSthr digital threshold signal ECS digital error control signal ECSG1 delta signal generator ECSG2 threshold signal generator ECSG error control signal generator FN feedback network (FS V / optical sensor FSADC positive To analog analog digital converter ID1 First integration and division module ID2 Second integration and division module Ifs Current intensity LB Lucky beam LBP Radiation beam LCS Radiation source power control system LKT1 First lookup table module 116295.doc -19- 200822102 LKT2 second look-up table module LKT look-up table module LPCC radiation source power control circuit LS radiation source MA mechanical configuration MT time multiplexer MU multiplier module MU1 first multiplier MU2 second multiplier OE optics Component OH Optical head OM Optical record carrier PCS Power control signal PPROl First post-processing module / German Tower Post Processing Module PPR02 Second Post Processing Module / Threshold Post Processing Module RCM Scan Length Compensation Module RNC Counting Module RNC1 First Counting Module RNC2 Second Counting Module SM Sampling Module Tdel/Tthr Deer Tower timing signal / threshold timing signal 116295.doc -20-

Claims (1)

200822102 十、申請專利範圍: 1 · 一種輻射源功率控制系統,其包含: 一感測器(FS),其接收由一輕射源(LS)產生之一輕射 束的σ卩刀(LBP)且提供一表示一輻射源功率之類比俨 號(AFS), σ -一回饋網路(FN),其連接至該感測器(Fs), 一輻射源功率控制電路(Lpcc),其連接至該回饋網 路(FN)且連接至該輻射源(LS), 其中該回饋網路(FN)包含一掃描長度補償模組 (RCM),其包含: -一取樣模組(SM),其根據表示該輻射源功率之該類 比^號(AFS)而提供一數位信號(DFS), •至少一誤差控制信號產生器(ECSG、ECSG1、 ECSG2),其執行一振幅補償且將至少一數位誤差控制 仏號(ECS)提供至該輻射源功率控制電路(Lpcc)以便 控制該輕射源(LS)之該功率。 2·如清求項1之輻射源功率控制系統,其中該取樣模組 (SM)包含一類比預處理模組(ApR〇)及一類比數位轉換器 (FSADC) ’該取樣模組(SM)提供一表示該輻射源功率之 數位信號(DFS)。 3 ·如請求項1之輻射源功率控制系統,其中該誤差控制信 號產生器(ECSG、ECSG1、ECSG2)包含: -一整合及劃分模組(ID、ID1、ID2), -一計數模組(RNC、RNC1、RNC2), 116295.doc 200822102 -一查找表模組(LKT、LKTl、LKT2), -一倍增器(MU、MU1、MU2), 其中: -該整合及劃分模組(ID、ID1、ID2)以及該計數模組 (RNC、RNC1、RNC2)接收表示該輻射源功率之該數 位信號DFS及至少一時序信號(Tdel、Tthr),在一基於 該至少一時序信號(Tdel、Tthr)之持續時間期間,該整 合及劃分模組(ID、ID1、ID2)藉由累積表示該輻射源 功率之該數位信號DFS的複數個樣本而判定一總和, 且該計數模組(RNC、RNC1、RNC2)藉由計數表示該 輕射源功率之該數位信號(DFS)的該複數個樣本而判 定一掃描長度,該整合及劃分模組(ID、IDi、m2)藉 由用該掃描長度除該總和而計算該複數個樣本之一平 均值, -耦接至該計數模組(RNC、RNC1、RNC2)之該查找 〇 表模組(LKT、LKTl、LKT2)根據該掃描長度而判定一 換异因數, 搞接至该查找表模組(LKT、LKTl、LKT2)以及該 正口及劃分模組(ID、ID1、ID2)之該倍增器(MU、 MU1、MU2)藉由用該換算因數乘該複數個樣本之該平 均值而計算該複數個樣本的一換算值。 4. 士月长項3之幸s射源功率控制系統,其中該誤差控制$ 唬產生器(ECSG、ECSG1、ECSG2)進一步包含至少一 _ 位後處理I组(PPR⑴、PPR〇2),其連接至該倍增著 116295.doc 200822102 (mu、Mm、MU2)且將—經後處理之數位誤差控制信號 (DSdel、DSthr)提供至該輻射源功率控制電路(LpcC)。 5. 如請求項3或4之輻射源功率控制系統,其中一時間多工 器(MT)連接於該倍增器(则、MU2)與至少—後處理模 組(PPROl、PPR02)之間,該時間多工器⑽τ)接收—德 耳塔時序信號(Tdel)及-臨限時序信號(Tthr)且將一數位德 耳塔信號(DSdel)或-數位臨限信號(DSthr)提供至該輕射 $ 源功率控制電路(LPCC)。 6. 如請求们之輻射源功率控制系統,其中該輕射源㈣為 產生雷射束(LB)之雷射二極體,且該感測器(FS)為 一光學感測器。 7·如請求則之輕射源功率控制系統,其中該感測器(fs)為 、正向感測纟交換益,其提供一表示該輻射源功率之正向 感測類比信號(AFS)。 種ί工制輻射源功率之方法,其包含以下步驟: Ο /感測由一輻射源(LS)產生之一輻射束(LB)的一部分且 提i、表示一輻射源功率之類比信號(AFS), 取樣表不該輻射源功率之該類比信號(AFS)且提供一 表示該輻射源功率之數位信號(DFS), -執行表示該輻射源功率之該數位信號的複數個樣本之 仍振巾田η補償且將至少—數位誤差控制信號(ECS、DSdel、 thr)提供至一輕射源功率控制電路(LPCC)以便控制該 輻射源(LS)之該功率。 9 · 如請求項8夕古、么 ^ 、 力’其中執行一振幅補償之該步驟包含 116295.doc 200822102 以下步驟: -在一基於至少一時序信號(Tdel、Tthr)之持續時間期 間’藉由累積表示該輻射源功率之該數位信號的該複數 個樣本而判定一總和, -在一基於該至少一時序信號(Tdel、Tthr)之持續時間期 間’藉由計數表示該輻射源功率之該數位信號的該複數 個樣本而判定一掃描長度, -藉由用該掃描長度除該總和而計算該複數個樣本之一 平均值, -根據該掃描長度而判定一換算因數, -藉由用該換算因數乘該複數個樣本之該平均值而計算 該複數個樣本之一換算值,且產生至一輻射源功率控制 電路(LPCC)之至少一數位誤差控制信號(ECS、Ds&i、 DSthr)以便控制該輻射源(Lg)之該功率。 Ο 10·如請求項8或9之方法,其中該方法進一步包含以下步 驟: -放大表示該輻射源功率之該類比信號(afsi),以取消 該經放大之類比信號之一偏移, -提供一經修改之類比信號(AFS2)。 11·如請求項8中任一項之方法,其中該方法進一步包含後 處理該至少一數位誤差控制信號之步驟。 12·如請求項8中任—項之方法,其中該至少_時序信號由 一德耳塔時序信號(Tdel)及一臨限時序信號心)組成,且 該至少一數位誤差控制信號(ECS)由一數位德耳塔信號 116295.doc 200822102 (DSdel)及—數位臨限信號(DSthr)組成。 13. 一種資料記錄裝置,其包含產生導引至可嵌入該資料記 錄裝置中的_資料記錄载體_)之—輻射束⑽)之一輕 射源(LS) ’其中該資料記錄裝置包含根據請求項1相接至 »亥幸田射源(LS)之-_射源力率控制系統(LCS)。 1 .種電月匈私式產品,其用於一輕射源控制系統,該電腦 程式產品包含一組指令’當將該組指令載入至該輻射源200822102 X. Patent application scope: 1 · A radiation source power control system, comprising: a sensor (FS), which receives a light beam δ 卩 knife (LBP) generated by a light source (LS) And providing an analog nickname (AFS) representing a radiation source power, a σ-one feedback network (FN) coupled to the sensor (Fs), a radiation source power control circuit (Lpcc) connected to The feedback network (FN) is connected to the radiation source (LS), wherein the feedback network (FN) comprises a scan length compensation module (RCM), which comprises: - a sampling module (SM), which is Representing the analog source (AFS) of the source power to provide a digital signal (DFS), at least one error control signal generator (ECSG, ECSG1, ECSG2) that performs an amplitude compensation and controls at least one bit error An nickname (ECS) is provided to the radiation source power control circuit (Lpcc) to control the power of the light source (LS). 2. The radiation source power control system of claim 1, wherein the sampling module (SM) comprises an analog pre-processing module (ApR〇) and an analog-to-digital converter (FSADC) 'the sampling module (SM) A digital signal (DFS) representative of the power of the radiation source is provided. 3. The radiation source power control system of claim 1, wherein the error control signal generator (ECSG, ECSG1, ECSG2) comprises: - an integration and division module (ID, ID1, ID2), - a counting module ( RNC, RNC1, RNC2), 116295.doc 200822102 - a lookup table module (LKT, LKTl, LKT2), - a multiplier (MU, MU1, MU2), where: - the integration and partition module (ID, ID1 And the counting module (RNC, RNC1, RNC2) receives the digital signal DFS indicating the radiation source power and at least one timing signal (Tdel, Tthr) based on the at least one timing signal (Tdel, Tthr) During the duration, the integration and partitioning module (ID, ID1, ID2) determines a sum by accumulating a plurality of samples of the digital signal DFS representing the radiation source power, and the counting module (RNC, RNC1) RNC2) determining a scan length by counting the plurality of samples representing the digital signal (DFS) of the light source power, the integration and partitioning module (ID, IDi, m2) dividing by the scan length Calculating one of the plurality of samples - the lookup table module (LKT, LKT1, LKT2) coupled to the counting module (RNC, RNC1, RNC2) determines a different factor according to the scan length, and connects to the lookup table module ( LKT, LKT1, LKT2) and the multiplier (MU, MU1, MU2) of the positive port and division module (ID, ID1, ID2) are calculated by multiplying the average of the plurality of samples by the conversion factor A converted value of a plurality of samples. 4. The lucky source s source power control system, wherein the error control $ 唬 generator (ECSG, ECSG1, ECSG2) further comprises at least one _ bit post-processing group I (PPR (1), PPR 〇 2), Connected to the multiplying 116295.doc 200822102 (mu, Mm, MU2) and the post-processed digital error control signal (DSdel, DSthr) is provided to the radiation source power control circuit (LpcC). 5. The radiation source power control system of claim 3 or 4, wherein a time multiplexer (MT) is connected between the multiplier (then, MU2) and at least a post-processing module (PPRO1, PPR02), The time multiplexer (10) τ) receives the delta timing signal (Tdel) and the -th timing signal (Tthr) and provides a digital delta signal (DSdel) or a digital threshold signal (DSthr) to the light shot $ Source Power Control Circuit (LPCC). 6. The source power control system of the request, wherein the light source (4) is a laser diode that produces a laser beam (LB), and the sensor (FS) is an optical sensor. 7. A light source power control system as claimed, wherein the sensor (fs) is a forward sensed exchange benefit providing a positive sense analog signal (AFS) indicative of the source power. A method for producing a radiation source power, comprising the steps of: Ο sensing a part of a radiation beam (LB) generated by a radiation source (LS) and expressing an analog signal of a radiation source power (AFS) a sampling table that does not have the analog signal (AFS) of the source power and provides a digital signal (DFS) indicative of the power of the source, - a plurality of samples of the digital signal representing the power of the source The field η compensates and provides at least a digital error control signal (ECS, DSdel, thr) to a light source power control circuit (LPCC) to control the power of the radiation source (LS). 9 · If the request item 8 夕古, 么^, force', the step of performing an amplitude compensation comprises 116295.doc 200822102 The following steps: - during a duration based on at least one timing signal (Tdel, Tthr) Generating a plurality of samples representing the digital signal of the source power to determine a sum, - during a duration based on the at least one timing signal (Tdel, Tthr), by counting the digit representing the source power Determining a scan length by the plurality of samples of the signal, - calculating an average of the plurality of samples by dividing the sum by the scan length, - determining a conversion factor based on the scan length, - using the conversion A factor multiplied by the average of the plurality of samples to calculate a converted value of the plurality of samples, and generating at least one digital error control signal (ECS, Ds & i, DSthr) to a radiation source power control circuit (LPCC) This power of the radiation source (Lg) is controlled. The method of claim 8 or 9, wherein the method further comprises the steps of: - amplifying the analog signal (afsi) representing the power of the radiation source to cancel an offset of the amplified analog signal, - providing A modified analog signal (AFS2). The method of any of claims 8 wherein the method further comprises the step of post processing the at least one digit error control signal. 12. The method of any of clause 8, wherein the at least _ timing signal is comprised of a delta timing signal (Tdel) and a threshold timing signal heart, and the at least one digital error control signal (ECS) It consists of a number of delta signals 116295.doc 200822102 (DSdel) and a digital threshold signal (DSthr). 13. A data recording device comprising a light source (LS) for generating a radiation beam (10) guided to a data record carrier () that can be embedded in the data recording device, wherein the data recording device comprises Request item 1 is connected to the »Hai Xingtian source (LS)-_Source Force Rate Control System (LCS). 1 . An electric monthly Hungarian private product for use in a light source control system, the computer program product comprising a set of instructions 'When the set of instructions is loaded to the radiation source C 功率控制系統(LCS)中日寺’其導致該輻射源控制系統 (LCS)執行以下各種步驟: -感測由一輻射源(LS)產生之一輻射束(LB)的一部分且 提供一表示一輻射源功率之類比信號(AFS), -取樣表不該輻射源功率之該類比信號(AFS)且提供一 表示該輻射源功率之數位信號(DFS), -執行表示該輻射源功率之該數位信號的複數個樣本之 振巾田補彳員’且將至少一數位誤差控制信號(Ecs、 DSdei、DSthr)提供至一輻射源功率控制電路仏%。以便 控制該韓射源(LS)之該功率。 116295.docC Power Control System (LCS) Zhongri Temple's which causes the radiation source control system (LCS) to perform the following steps: - sensing a portion of a radiation beam (LB) generated by a radiation source (LS) and providing a representation An analog signal (AFS) of the source power, - the sampling table does not have the analog signal (AFS) of the source power and provides a digital signal (DFS) indicative of the power of the source, - performing the representation of the source power A plurality of samples of the digital signal of the vibrating field complementer's and providing at least one digit error control signal (Ecs, DSdei, DSthr) to a radiation source power control circuit 仏%. In order to control the power of the Korean source (LS). 116295.doc
TW95141965A 2005-11-14 2006-11-13 A system and method of controlling the power of a radiation source TW200822102A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN124721 2005-11-14

Publications (1)

Publication Number Publication Date
TW200822102A true TW200822102A (en) 2008-05-16

Family

ID=44802525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141965A TW200822102A (en) 2005-11-14 2006-11-13 A system and method of controlling the power of a radiation source

Country Status (1)

Country Link
TW (1) TW200822102A (en)

Similar Documents

Publication Publication Date Title
US7733588B1 (en) Repetitive feed-forward algorithm for self-servo-write PLL
US7978572B2 (en) Device and method for reproducing digital signal and device and method for recording digital signal
JP2007102996A (en) Asymmetry cancellation component and storage drive
US6906986B2 (en) Apparatus and method of measuring vibration quantity and method of designing loop
US7274640B2 (en) Apparatus and method for determining disc type
JP2005222689A (en) Servo-timing jitter compensating method and servo-timing jitter compensator
JP2003168225A (en) Recording/reproducing device and control method thereof
JPH11273097A (en) Focus servo circuit and optical disk recording and reproducing device
TW200822102A (en) A system and method of controlling the power of a radiation source
JP2006048913A (en) Repeatable run out compensating method, recording and reproducing apparatus, recording and reproducing method, and recording medium
US20020080692A1 (en) Optical disk apparatus, method for calculation of amount of lens shift, program and medium
US6735029B2 (en) Equalized response extraction from a read channel
JP2007200463A (en) Magnetic disk device
JP2009516320A (en) System and method for controlling the power of a radiation source
JPH11273078A (en) Jitter amount measuring device for optical disk, and optical disk recording and reproducing device
WO1998015956A1 (en) Clock generating apparatus and disk driving apparatus
JP4609735B2 (en) Information processing apparatus and method, program, and recording / reproducing apparatus
TW588344B (en) Determination of recording power of radiation beam for recording information onto recording medium
JP2009521070A (en) Method for operating a data recording device
JP2008135098A (en) Head controller, storage device and upper limit power determination method
JP2007317350A (en) Apparatus and method of detecting error symbol and disk drive using the same
NL1008698C2 (en) Method of automatically controlling the bandwidth of a waveform equalizer.
JP2002298375A (en) Light receiving signal processor
USRE42235E1 (en) Compensation method and device for tracking operation of optical storage system
JP2006351170A (en) Device, reading channel, magnetic tape drive and method (reduction of mr reading head distortion)