200821672 P51950021TW 21577twf.doc/e 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種投射式顯示技術,且特別是有關 於一種高效率液晶顯示投射系統。 【先前技術】 投射式的液晶顯不技術已是普遍的技術。傳統的液 晶顯示投射系統主要是利用反射式的單晶砍面板(Liquid Crystal On Silicon,LCOS),做為影像晝素的彩色與灰階度 處理。所謂的反射式的單晶矽面板其主要特徵之一在於將 大部分的驅動元件形成於下基板上,而液晶層是在下基板 與上基板之間。光源是從上基板進入到下基板,由下基板 的反射層將光反射。如此,反射光不會被驅動元件等擋住, 光的使用率可以提升。 圖1繪示傳統的液晶顯示投射系統示意圖。參閱圖卜 一光源100產生一白光束102。白光束1〇2經過一分色鏡 (Dichroic Mirror)104,例如分成藍光束1()8與一紅綠混光束 106。紅綠混光束106又入射到另一分色鏡114,被分成紅光 束116與綠光束ns。先描述藍光束1〇8的路徑與機制。沒有 被偏極化的藍光束刚包含有p偏極態與s偏極態成分。藍 光束108進入到一偏極分光(p〇larized价咖s卿沉,pBs)元件 腕。偏極分光元件的作關如會將s偏極態的光反射 ,而允 許p偏極態穿過。因此’偏極分光元件馳將藍光束1〇8中 Ϊ S偏極態的部分光反射,進人到反射式單㈣面板112a。 早曰a石夕面板收上有一晝素陣列。藉由控制對應畫素的液 5 200821672 P51950021TW 21577twf.doc/e 曰曰分子的旋轉,原本為s偏極態的藍光會偏轉,因此得到新 的一偏極態,包括一部份s偏極態以及一部份p偏極態。p偏 極態的量會對應所要的灰階度而有不同,其會配合偏極分光元 件110a而產生色的灰階。 被單晶矽面板112a反射回到偏極分光元件11〇a的藍 光,依晝影像素的f求會有P偏極態的成分。此p偏極態成 分的藍光可以通過偏極分光元件110a,而入射到一合光鏡 ( I20。P偏極態成分是依影像所需要的藍光灰階來決定。如果 不需要藍光的話,則例如P偏極態成分為零,則沒有藍光會穿 過偏極分光元件ll〇a。藍光灰階度愈高,則p偏極態成分就 愈大。 依相同的機制,紅光束116經過一反射鏡進入一偏極分光 元件110b,再由單晶矽面板112b反射回到偏極分光元件 110b ’其中p偏極態成分的紅光會進入合光鏡12〇。 依相同的機制,綠光束118經過一反射鏡進入一偏極分光 元件110c,再由單晶石夕面板ii2c反射回到偏極分光元件 1/ 110c ’其中P偏極態成分的紅光會進入合光鏡120。 合光鏡120接收三個顏色的影像光而組成一影像122。此 影像122可以被投射到一螢幕。此種液晶顯示投射系統,需 要紅綠藍分別處理,因此體積較大,成本高,且光的使用 效率較差。 圖2繪示傳統二片式的液晶顯示投射系統示意圖。參閲 圖2 ,當紅綠藍的三種光源2〇〇,依照一時序分別進入一偏 極分光元件202。由於人的眼鏡有視覺暫留的現象,因此如果 6 200821672 P51950021TW 21577twf.doc/e 紅綠藍的三種光源200在視覺暫留範圍内進入人眼,也可以 產生紅綠藍光的重疊,因此產生顏色的效果。 口口:匕,2的技射系統只需要一個偏極分光元件2犯’ 但是有二個單晶石夕面板2〇4a、。當紅綠藍的光源綱, 例如光進入偏極分光元件2〇2後,其p _態的紅光2〇6穿 過偏極分光元件202後,在單晶梦面板綱b被反射且偏極 齡隨灰階的需求被轉換成s偏極態,接著被反射出偏極 Γ 分光兀件202成為一紅光的光束210。其他對於綠光與藍光 的產生機制於前述相同,不再描述。另外,被偏極分光元 件202反射的s偏極態的紅光2〇8,也進入另一單晶矽面板 2〇4a ’而被轉換成有p偏極態的紅光22〇。此p偏極態的紅 ,220與S偏極態的紅光21〇組合成—紅光影像。由於有二片 單晶矽面板204,因此光的使用率較大。另外由於三種光 源是一時序被發出,因此僅需要一偏極分光元件2〇2。 另外,傳統所使用的光源,其發光面的亮度較不均勻。光 源也會影響到顯示的效果。 ^ 雖然液晶顯示投射系統在傳統技術中已有不同的設 計,但是液晶顯示投射系統仍需要繼續研發。 【發明内容】 本發明提供一種液晶顯示投射系統,可以有較均勻的 平面光源。 本發明&供一種液晶顯示投射系統,是利用穿透式的 單晶矽面板,而適合於直接利用三原色的濾色片,或是以 時序的方式產生三原色光。 7 200821672 P51950021TW 21577twf.doc/e 本發明提出-種液晶顯示投射系統,包括面光 源。此平©絲包括由乡·光單元所組成的 立 Γ Ο 中每-該些發料元包括:—錐形反射面,其中該錐形反射 面的-光出射面的-邊緣與周圍相鄰的另_錐形反射面的 二光出射面的—邊緣是共_(_f_aD。-組點狀發光 體’依照控制發出-平面光源,其中該平面光源是一白光 束;或是依照—時序,循環地發出紅/綠/藍的三個光束。一 第-偏㈣衫接_平面舰,且賴平 成為有-第-偏極態的-第—偏極態光束。穿透^^液 晶光,接收該第-偏極態光束,依照—灰階度的需要以轉 ,該第-偏極態’使具有對應該灰階度的—第二偏極態。 第二偏極濾光片接收該液晶光閥的一光輸出,得到該^二 偏極恶的一第二偏極態光束。一投射單元,將該第二偏極 悲光束投射到一顯示面。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中該平面光源的該組點狀發光體,包括對應紅、綠、 藍的三個發光二極體,其中該三個發光二極體同時發光以 產生該白光束,或是依照該時序以發出紅/綠/藍的該三個 光束。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中當該平面光源發出該自光束時,該液晶光闕的每 一個晝素包含對應紅/綠/藍的三個次晝素。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中當該平面光源是依照該時序發出紅/綠/藍的該三 8 200821672 P51950021TW 21577twf.doc/e 個光束時,該液晶光閥的每一個晝素依照該時序而共用於 該三個光束。 ' 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中該錐形反射面包括一初階錐形反射面,有一縮口 與一開口端,其中該點狀發光體位於該縮口端。一末階 錐形反射面,有一縮口端與一開口端,其中該末階錐形反 射面的該縮口端與該初階錐形反射面的該開口端耦合。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中每一該些發光單元的該錐形反射面的該光出射面 是正方或是長方形。 本發明提出另一種液晶顯示投射系統,包括一平面光 源,包括由多個發光單元所組成的一陣列,其中每一該些 發光單兀包括一錐形反射面,其中該錐形反射面的一光出 射面的一邊緣與周圍相鄰的另一錐形反射面的一光出射面 的一邊緣是共形的(conformal)。一組點狀發光體,依照控 制發出-平面光源,其巾該平面光源是―白光束;或是依照 一時序,循環地發出紅/綠/藍的三個光束。—偏極分光元 =、,接收該平面光源’讓具有—第_偏極態的—第一光束 牙透’而同日^讓具有—第二偏極態的—第二光束反射。反 ,式的-第-液晶光閥’接收該第—光束與該第二光束之 做為-第三光束,且反射出—第—反射光回到該偏極 二m該第二光束的—偏極態,是藉由該第一液晶光 ,依照:灰階度的需要被轉換成該第—反射光的—第一反 子偏極悲’再藉由該偏極分光元件從該第-反射偏極態中 9 200821672 P51950021TW 21577twf.doc/e 分離出一第一影像光 到一顯示面。 -投射單元’將該第—影像光投射 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中該第三光束的該偏極態是一P偏極態,而二第二 影像光是一 S偏極態。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中該第三光束的該偏極態是一s偏極態,而該第二 影像光是一 P偏極態。 ~ 依照本發明的較佳實施例所述之液晶顯示投射系 統,更包括反射式的一第二液晶光閥,接收該第一光束與 邊第二光束之另其一做為一第四光束,且反射出一第二反 射光回到該偏極分光元件。該第四光束的一偏極態,是藉 由該第二液晶光閥依照該灰階度的需要被轉換成該第二2 射光的一第二反射偏極態。接著再藉由該偏極分光元件從 該第二反射偏極態中分離出一第二影像光,該第二影像光 再藉由該投射單元,與該第一影像光一起投射到該顯示面。 依本發明的較佳實施例所述之液晶顯示投射系 統,其中該第四光束的該偏極態是一P偏極態,而該第二 影像光是一 S偏極態。 依照本發明的較佳實施例所述之液晶顯示投射系 統,其中該第四光束的該偏極態是一 S偏極態,而該第二 影像光是一 P偏極態。 依照本發明的較佳實施例所述之液晶顯示投射系 、、先其中該平面光源的該組點狀發光體,包括對應紅、綠、 200821672 P51950021TW 21577twf.doc/e 藍的二個發光二極體,其中該三個發光二極體同時發光以 產生該白光束,或是依照該時序以發出紅/綠/藍的該三個 光束。 依照本發明的較佳實施例所述之液晶顯示投射系 統三其中當該平面光源發出該白光束時,該第一液晶光閥 的每一個晝素包含對應紅/綠/藍的三個次晝素。aa 依照本發明的較佳實施例所述之液晶顯示投射系 p 統,其中當該平面光源是依照該時序發出紅/綠/藍的該三 個光束時,該第一液晶光閥的每一個晝素依照該5序二: 用於該二個光束。 依照本發明的較佳實施例所述之液晶顯示投射系 ,,其中該錐形反射面包括一初階錐形反射面,有一縮口 端與一開口端,其中該點狀發光體位於該縮口端;以及一 末階錐形反射面,有一縮口端與一開口端,其中該末階錐 形反射面的該縮口端與該初階錐形反射面的該開口端耦 合0 G ▲為讓本發明之上述和其他目的、特徵和優點能更明顯 易1ϊ,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 、 首先本發明針對使用於液晶顯示投射系統的光源做 進一步新穎設計,以能得到較佳的發光效率,且提升平面 j源的均勻度,使影像色彩亮度有較佳的均勻度。以下舉 些實施例做為說明,但是本發明不受限於所舉的實施例。 200821672 P51950021TW 21577twf.doc/e -立,3 ί依^本發明—實施例,繪示—照明光源的剖面 不。“疋依據本發明對應圖3的實施例,緣示一昭 的上,意圖。於圖3與圖4,照明光源的陣列: ”仙例如疋由四個照明單元所構成。—個照明單元包括 二=(rin碰e)發光體,例如是LED,包括—基底電極 口 P 130與-封裝發光部132。點狀發光體,是以一中心點, Γ ο 在-立體角耗_輻射地發出光。於此點狀發光體,是以 發出白光的發光二極體為例,但是例如也可以利用紅 綠監二個發光二極體做為—組,其可依實際需要做變化。 其中在應用上以紅賴三個發光二極體做為—組的效果較 佳(參見圖、5)。由於紅綠藍的發光二極體,其個別的顏色光 的頻段,為不互相干擾,因此會雜佳的色域(⑸細)。 、接著,點狀發光體發出的光,其沿著主要投射方向被 定義出一發光軸。在點狀發光體的周圍,根據此實施例如 圖^與圖4,例如設置有二階的反射面13如、13如。藉由 一階的反射面134a、136a的角度安排,由點狀發光體發出 的大部份光,沿著所示的光路138,會被反射面134a、136a 做一次或多次反射,因此被導正大部分沿著光軸射出,成 為準直光,同時也因一次或多次反射而產生混光均勻。又, 如果需要的話,依照相同設計方式,其可以由三階或以上 的錐狀反射面所組成。 二階的錐狀反射面134a、136a,其各階例如可以是四 面角錐狀(four-face pyramid-like),有一縮口端(convergent opening end)與一開口端(divergent opening end),其中該點 12 200821672 P51950021TW 21577twf.doc/e 狀發光體位於該縮口端,且該發光軸朝向該開口端以發散 射出光。一般而言’錐狀面可由多面所構成的角錐狀面, 較佳地更例如是在水平截面的形狀是正四方形或是長方 形。為了有密合的效果,另外三角形或是由幾種邊形混合 也可以。然而,如果不考慮密合,錐狀面也可以是圓形、 橢圓形、或光滑曲線形的錐狀結構。一些變化設計將於後 述0 P 本發明以配合四方形LED晶粒,設計多層四面錐形反 射面,例如是反射鏡,除了將侧向光多次反射逐級導正光 為準直’且混光均勻,兩兩相鄰光出口的間隔縮減為零, 而獲得無接缝陣列光源,提供高密度準直且均勻的光源, 適合於高指向性用的燈源,如投射機用光源 、scanner 用光 源、舞台用投射燈、探照燈等,其體積小、重量輕、沒有 高溫危險等應用。 反射面134a、136a的設置可以藉由多種不同方式達 成。然而為了將多個點狀發光體有效地且堅固地組合成所 ◎ 要的面狀發光源,較佳的是其反射面134a、136a分別可藉 由二材料層134、136提供。在材料層134上在預定的位置, 形成可提供角錐狀反射面134a、136a的開口。發光體可以 穩固設置在材料層134上,且藉由開口發出光線。另外, 第二階的材料層136,設置於第一階的材料層134上,其 上下階的開口相互耦合。在如此的設計,不同發光單元的 發光體不是以密集的方式組合。然而,如果必要,對於一 個發光單元的點狀發光體,其數量也可以是多個。 13 200821672 P51950021TW 21577twf.doc/e 要注意的是,如果是以角錐狀反射面的設計,因為是 有規則且可密合的形狀,因此第二階的角錐狀反射面136a 的開口端’是相互緊密連接。如此也可進一步減少不發光 的間隔區域。這也是依據本發明設計,可以達到的另一功 效。 ,發明提出改進的平面光源,其可以應用在液晶顯示 投射系統。® 5緣示依據本發明實關,穿透式的液晶顯 ( 不投,系統的結構示意圖。參閱圖5,穿透式的液晶顯示 投射系統所使用的平面光源150,其設計如前述,但是光 源例如是由紅綠藍的三個發光二體162(r,g,b)所組成的一 組點狀發光體,其例如藉由二階的錐形反射面160a、160b 轉換成較均勻的面光源。紅綠藍的三個發光二體162(r,g, b) ’其可以同時發光產生一白光,或是依照一時序個別發 出色光。光源的部分不再繼續描述。 以下描述顯不的機制。穿透式的液晶顯示投射系統還 ^括一第一偏極濾光片152、穿透式的一液晶光閥154、一 G 第一偏極濾光片156、一投射單元158。另外,光源也例如 可以更配合一透鏡164 —起使用,但不是絕對必要。 首先,如果光源是紅綠藍依照一時序分別發出色光的 設計時,其成像是利用視覺暫留的現象達成。以下紅光為 例,但是綠光與藍光是相同的顯示機制。紅光會先通過第 /偏極濾光片152,例如是p偏極態的濾光片。通過的紅 光源成為p偏極態。p偏極態的紅光會進入液晶光閥154 而穿過。液晶光_ 154例如是穿透式的單晶石夕面板。對於 200821672 P51950021TW 21577twf.doc/e 每一晝素而言可以對應所需要的灰階度,以控制其液晶的 旋轉角度。由於液晶的旋轉角度,造成通過p偏極態的入 射光會偏轉。以灰階度不是零的狀況,其結果會有部分的 紅光會被轉換成S偏極態。依照設計的方式,$偏極態的 置會對應灰階度的需求。然而,也可以用p偏極態的成分 來對應灰階度的需求。以下取S偏極態對應灰階度的需求 為例做說明。當紅光通過液晶光閥154後,會有一部分是 S偏極態。接著第二偏極濾光片156是s偏極態的濾光片, 因此只有s偏極態的紅光會穿過第二偏極濾光片156。不 同的畫素會有不同的通過量,其對應晝素所要的灰階度而 定。於是一個紅光影像被達成。此紅光影像透過投射單元 158被射到一顯不面’例如是一顯示螢幕。 接著綠光與藍光依照相同機制產生綠光影像以及藍 光影像。由於視覺暫留現象,三個顏色光的影像重疊,成 為色彩的影像。 圖6纟會示液晶光閥154的晝素分佈示意圖。參閱圖6, 液晶光閥154上的多個晝素170,是由紅綠藍光共用,因 此不必有紅綠藍的彩色濾光片。 又根據另一機制的實施例,如果平面光源15〇是發出 白光’則液晶光閥154上需要有對應的紅綠藍的彩色濾光 片。圖7繪示液晶光閥154的另一晝素分佈示意圖。參閱 圖7 ’對於一個晝素172而言’其包括有三個次畫素174, 對應紅(r)、綠(g)、藍(b)的次畫素174。每一個次晝素174 會有對應的彩色濾光片。如此、每一個畫素會直接產生所 15 200821672 P51950021TW 21577twf.doc/e 要的顏色。這裡,繪示的次畫素174的位置安排是示意圖, 其實際上可以有不同的組合。 接著’又參閱圖5,由平面光源150發出的白光也具 有P偏極態與S偏極態的成。當白光通過第一偏極濾光片 152後例如成為p偏極態的光。p偏極態的白光會進入液 晶光閥154而穿過。如圖7的安排,個別的次晝素依照其 色彩濾除其他色光。接著以相同機制,根據每一次晝素所 為要的灰階度’以控制其液晶的旋轉角度。由於液晶的旋 轉角度,造成通過P偏極態的入射光會偏轉而產生S偏極 悲。此S偏極悲的光再由第二偏極滤光片156濾出來,即 成為彩色影像光。 又’圖5的液晶顯示投射系統也不是唯一的設計。圖 8繪示依據本發明實施例,是反射式液晶顯示投射系統示 思圖。參閱圖8 ’前實施例所述的本發明的平面光源1, 做為此液晶顯示投射系統的光源。 接著,依需要而決定可以配合透鏡164 —起使用,得 Ο 到所要的光源。本實施例僅使用一個偏極分光元件18〇。 先以平面光源150是依時序產生紅、綠、藍的三種原色光 的情形為實施例,其中以紅光為例做描述。例如,p偏極 態的紅光會穿過偏極分光元件180而到達反射式的液晶光 閥184,例如是反射式的單晶石夕面板,其會依照灰階度的 需求轉換一對應量的S偏極態。此s偏極態會被偏極分光 元件180反射到一投射單元158。200821672 P51950021TW 21577twf.doc/e IX. Description of the Invention: [Technical Field] The present invention relates to a projection display technology, and more particularly to a high efficiency liquid crystal display projection system. [Prior Art] Projected liquid crystal display technology has become a common technology. The traditional liquid crystal display projection system mainly uses reflective liquid crystal on silicon (LCOS) as the color and gray scale processing of image pixels. One of the main features of the so-called reflective single crystal germanium panel is that most of the driving elements are formed on the lower substrate, and the liquid crystal layer is between the lower substrate and the upper substrate. The light source enters from the upper substrate to the lower substrate, and the light is reflected by the reflective layer of the lower substrate. In this way, the reflected light is not blocked by the driving element or the like, and the use rate of light can be improved. FIG. 1 is a schematic diagram of a conventional liquid crystal display projection system. Referring to Figure a light source 100 produces a white light beam 102. The white light beam 1 〇 2 passes through a dichroic mirror 104, for example, divided into a blue light beam 1 () 8 and a red-green mixed light beam 106. The red-green mixed beam 106 is again incident on the other dichroic mirror 114 and is divided into a red beam 116 and a green beam ns. First, the path and mechanism of the blue beam 1〇8 will be described. The blue beam that is not polarized just contains the p-polarized state and the s-polarized component. The blue beam 108 enters a polarized beam (p〇larized price, pBs) component wrist. The polarization of the polarizing element will reflect the light of the s-polar state and allow the p-polar state to pass through. Therefore, the polarized light splitting element reflects the partial light of the Ϊ S partial polar state in the blue light beam 1 〇 8 and enters the reflective single (four) panel 112a. As early as a stone eve panel received a pixel array. By controlling the rotation of the corresponding pixel of the liquid 5 200821672 P51950021TW 21577twf.doc/e, the blue light that was originally s-polarized will be deflected, thus obtaining a new partial polar state, including a part of the s-polar state. And a part of the p-polar state. The amount of p-polarity will vary depending on the desired grayscale, which will produce a grayscale of color in conjunction with the polarizing element 110a. The blue light that is reflected back to the polarization beam splitting element 11a by the single crystal germanium panel 112a is a component having a P-polar state depending on the image of the image. The blue light of the p-polar component can pass through the polarizing element 110a and is incident on a combined mirror (I20. The P-polar component is determined by the blue-scale gray level required by the image. If blue light is not required, For example, if the P-polar component is zero, then no blue light will pass through the polarizing element lla. The higher the gray gradation, the larger the p-polar component. According to the same mechanism, the red beam 116 passes through a The mirror enters a polarizing beam splitting element 110b, and is reflected by the single crystal germanium panel 112b back to the polarizing beam splitting element 110b. The red light of the p-polar component enters the light combining mirror 12A. According to the same mechanism, the green light beam 118 passes through a mirror and enters a polarizing beam splitting element 110c, and is reflected back to the polarizing beam splitting element 1/110c' by the single crystal stone panel ii2c. The red light of the P-polarized component enters the light combining mirror 120. The mirror 120 receives three colors of image light to form an image 122. The image 122 can be projected onto a screen. The liquid crystal display projection system needs to be processed separately by red, green and blue, so that the volume is large, the cost is high, and the light is The use efficiency is poor. Figure 2 A schematic diagram of a conventional two-piece liquid crystal display projection system is shown. Referring to FIG. 2, when the three light sources of red, green and blue are respectively turned into a polarizing beam splitting element 202 according to a time sequence, since the human glasses have a visual persistence phenomenon, Therefore, if 6 200821672 P51950021TW 21577twf.doc/e red, green and blue light sources 200 enter the human eye within the visual persistence range, it can also produce the overlap of red, green and blue light, thus producing a color effect. Mouth: 匕, 2 techniques The shooting system only needs one polarizing element 2 to make a 'but there are two single crystal slabs 2〇4a. When the red, green and blue light source, for example, the light enters the polarizing element 2〇2, its p _ state After the red light 2〇6 passes through the polarizing element 202, it is reflected in the single crystal panel b and the polar age is converted into the s-polar state with the requirement of the gray level, and then reflected out of the polarizing element. 202 becomes a red light beam 210. Other generation mechanisms for green light and blue light are the same as described above, and will not be described. In addition, the s-polar red light 2 〇 8 reflected by the polarized light splitting element 202 also enters another A single crystal 矽 panel 2〇4a' was turned The red light of the p-polarized state is 22〇. This p-polar red, 220 and the S-polar red 21〇 combine to form a red light image. Since there are two single crystal germanium panels 204, the light The use rate is large. In addition, since the three light sources are emitted at a time, only one polarizing element 2 〇 2 is required. In addition, the light source used in the conventional light source has a relatively uneven brightness, and the light source also affects the light source. The effect of the display. ^ Although the liquid crystal display projection system has different designs in the conventional technology, the liquid crystal display projection system still needs to be further developed. [Invention] The present invention provides a liquid crystal display projection system, which can have a relatively uniform planar light source. . The present invention is directed to a liquid crystal display projection system which utilizes a transmissive single crystal germanium panel and is suitable for directly utilizing color filters of three primary colors or for generating three primary colors of light in a time series manner. 7 200821672 P51950021TW 21577twf.doc/e The present invention proposes a liquid crystal display projection system comprising a surface light source. The flat wire comprises a vertical 组成 组成 composed of a town light unit. Each of the hair elements comprises: a conical reflecting surface, wherein the edge of the light reflecting surface of the conical reflecting surface is adjacent to the periphery The edge of the dioptric exit surface of the other _conical reflecting surface is a total of _ (_f_aD. - group of point illuminants ' according to the control - planar light source, wherein the planar light source is a white light beam; or according to - timing, Three beams of red/green/blue are cyclically emitted. A first-biased (four) shirt is connected to the plane ship, and the Lai Ping becomes a -first-polarized-state-polarized beam. Receiving the first-polarized-state beam, in accordance with the requirement of the gray scale, the first-polarized state is made to have the second polarized state corresponding to the gray scale. The second polarized filter is received. a light output of the liquid crystal light valve obtains a second polarized light beam of the second polarized light. A projection unit projects the second polarized light beam onto a display surface. According to a preferred embodiment of the present invention The liquid crystal display projection system of the example, wherein the set of point illuminants of the planar light source comprises three corresponding to red, green and blue a light diode, wherein the three light emitting diodes simultaneously emit light to generate the white light beam, or the three light beams emitting red/green/blue according to the timing. The liquid crystal according to the preferred embodiment of the present invention A projection display system, wherein each of the pixels of the liquid crystal stop comprises three sub-halogens corresponding to red/green/blue when the planar light source emits the self-beam. The liquid crystal according to the preferred embodiment of the present invention Displaying a projection system, wherein when the planar light source is the red, green/blue light emitting red/green/blue light according to the timing, each pixel of the liquid crystal light valve is commonly used according to the timing A liquid crystal display projection system according to a preferred embodiment of the present invention, wherein the tapered reflecting surface comprises a first-order tapered reflecting surface having a constriction and an open end, wherein the spot-shaped illuminator Located at the constricted end, a final conical reflecting surface has a constricted end and an open end, wherein the constricted end of the end conical reflecting surface is coupled to the open end of the first conical reflecting surface. In accordance with the present invention The liquid crystal display projection system of the preferred embodiment, wherein the light exit surface of the tapered reflecting surface of each of the light emitting units is square or rectangular. The present invention provides another liquid crystal display projection system including a planar light source. An array comprising a plurality of light emitting units, wherein each of the light emitting units comprises a tapered reflecting surface, wherein an edge of a light emitting surface of the tapered reflecting surface is adjacent to another circumference An edge of a light exit surface of the reflective surface is conformal. A set of point illuminators, according to a control-emitting planar light source, the planar light source is a "white light beam"; or cyclically according to a timing Three beams of red/green/blue are emitted. - Polarized splitting element =, receiving the planar light source 'Let the first beam of the first to be oscillated' and the second beam is the same State - the second beam is reflected. a reverse-type liquid crystal light valve' receives the first light beam and the second light beam as a third light beam, and reflects - the first reflected light returns to the polarized electrode two m of the second light beam - The partial polar state is converted into the first reflected light by the first liquid crystal light according to the requirement of the gray scale, and the first counter-sub-polarity is further erroneously Reflective Polarity 9 200821672 P51950021TW 21577twf.doc/e Separate a first image light onto a display surface. a projection unit 'projecting the first image light according to the liquid crystal display projection system according to the preferred embodiment of the present invention, wherein the polarization state of the third light beam is a P-polarized state and the second second image light It is a S-polar state. In a liquid crystal display projection system according to a preferred embodiment of the present invention, the polarization state of the third light beam is a s-polar state and the second image light is a P-polar state. The liquid crystal display projection system according to the preferred embodiment of the present invention further includes a reflective second liquid crystal light valve that receives the first light beam and the second light beam as a fourth light beam. And reflecting a second reflected light back to the polarizing beam splitting element. A polarization state of the fourth light beam is converted into a second reflection polarization state of the second 2 light by the second liquid crystal light valve according to the gray scale. Then, the second image light is separated from the second reflective polarization state by the polarization beam splitting element, and the second image light is projected onto the display surface together with the first image light by the projection unit. . In a liquid crystal display projection system according to a preferred embodiment of the present invention, the polarized state of the fourth light beam is a P-polarized state, and the second image light is a S-polarized state. According to a preferred embodiment of the present invention, in the liquid crystal display projection system, the polarized state of the fourth light beam is an S-polarized state, and the second image light is a P-polarized state. The liquid crystal display projection system according to the preferred embodiment of the present invention, the set of point light emitters of the planar light source, including two light-emitting diodes corresponding to red, green, and 200821672 P51950021TW 21577twf.doc/e blue a body, wherein the three light emitting diodes emit light simultaneously to generate the white light beam, or the three light beams emitting red/green/blue according to the timing. According to a preferred embodiment of the present invention, a liquid crystal display projection system 3, wherein when the planar light source emits the white light beam, each element of the first liquid crystal light valve includes three times corresponding to red/green/blue. Prime. Aa according to a preferred embodiment of the present invention, the liquid crystal display projection system, wherein when the planar light source emits the three beams of red/green/blue according to the timing, each of the first liquid crystal light valves The halogen is in accordance with the 5th sequence: for the two beams. A liquid crystal display projection system according to the preferred embodiment of the present invention, wherein the tapered reflective surface comprises a first-order tapered reflective surface having a constricted end and an open end, wherein the spot-shaped illuminator is located at the contraction And a distal end tapered reflective surface having a constricted end and an open end, wherein the constricted end of the end conical reflecting surface is coupled to the open end of the first conical reflecting surface 0 G ▲ The above and other objects, features, and advantages of the present invention will become more apparent. [Embodiment] Firstly, the present invention further designs a light source for a liquid crystal display projection system, so as to obtain better luminous efficiency, and improve the uniformity of the plane j source, so that the image color brightness has better uniformity. . The following examples are given for illustration, but the invention is not limited to the examples. 200821672 P51950021TW 21577twf.doc/e - 立, 3 ί according to the invention - an embodiment, showing - the profile of the illumination source is not. "In accordance with the embodiment of the present invention, which corresponds to the embodiment of Fig. 3, the description is directed to Fig. 3 and Fig. 4, an array of illumination sources: "Shen, for example, is composed of four illumination units. A lighting unit comprises a radix, such as an LED, comprising a substrate electrode port P 130 and a package light emitting portion 132. The point-like illuminator emits light at a central point, Γ ο at the stereo angle. The dot-shaped illuminator is exemplified by a light-emitting diode that emits white light. For example, it is also possible to use two-light-emitting diodes of red and green as a group, which can be changed according to actual needs. Among them, the effect of using the three light-emitting diodes as the group is better (see Fig. 5). Due to the red, green and blue light-emitting diodes, the frequency bands of their individual color lights do not interfere with each other, so they have a good color gamut ((5) fine). Then, the light emitted by the spot illuminator is defined as an illuminating axis along the main projection direction. Around the point-like illuminator, according to this embodiment, for example, Fig. 4 and Fig. 4, for example, a second-order reflecting surface 13 such as 13 is provided. By the angular arrangement of the first-order reflecting surfaces 134a, 136a, most of the light emitted by the point-like illuminators, along the optical path 138 shown, is reflected one or more times by the reflecting surfaces 134a, 136a, thereby being Most of the conduction is emitted along the optical axis, which becomes collimated light, and also produces uniform light mixing due to one or more reflections. Also, if desired, it can be composed of a third or more tapered reflecting surface according to the same design. The second-order tapered reflecting surfaces 134a, 136a may be, for example, four-face pyramid-like, having a convergent opening end and a divergent opening end, wherein the point 12 200821672 P51950021TW 21577twf.doc/e The illuminator is located at the constricted end, and the illuminating axis is directed toward the open end to scatter light. In general, the tapered surface may be a pyramidal surface composed of a plurality of faces, and more preferably, for example, the shape of the horizontal cross section is square or rectangular. In order to have a close effect, a triangle or a mixture of several sides may be used. However, if the adhesion is not considered, the tapered surface may also be a circular, elliptical, or smooth curved tapered structure. Some variations will be described later. The present invention is designed to fit a square LED die, and a multi-layered four-sided conical reflecting surface, such as a mirror, is used, except that the lateral light is reflected multiple times to align the collimated light. Uniform, the spacing between two adjacent optical exits is reduced to zero, and a seamless array light source is obtained, providing a high-density collimated and uniform light source, suitable for high directivity light sources, such as projector light source, scanner Light source, stage projection lamp, searchlight, etc., which are small in size, light in weight, and free from high temperature danger. The arrangement of the reflective surfaces 134a, 136a can be achieved in a number of different ways. However, in order to effectively and firmly combine a plurality of point illuminants into the desired planar illuminating source, it is preferred that the reflecting surfaces 134a, 136a are respectively provided by the two material layers 134, 136. At a predetermined position on the material layer 134, an opening is provided which provides the pyramidal reflecting surfaces 134a, 136a. The illuminator can be stably disposed on the material layer 134 and emit light through the opening. Further, the second-order material layer 136 is disposed on the first-order material layer 134, and the upper and lower stages of the openings are coupled to each other. In such a design, the illuminants of the different illuminating units are not combined in a dense manner. However, if necessary, the number of dot-shaped illuminators for one illuminating unit may be plural. 13 200821672 P51950021TW 21577twf.doc/e It should be noted that if the design of the pyramidal reflecting surface is a regular and closeable shape, the open ends of the second-order pyramidal reflecting surfaces 136a are mutually tight connection. This also further reduces the interval area where no light is emitted. This is another effect that can be achieved in accordance with the design of the present invention. The invention proposes an improved planar light source that can be applied to a liquid crystal display projection system. ® 5 is shown in accordance with the present invention, transmissive liquid crystal display (no projection, system structure diagram. Referring to Figure 5, the transmissive liquid crystal display projection system used in the planar light source 150, the design is as described above, but The light source is, for example, a set of point illuminants composed of three illuminating two bodies 162 (r, g, b) of red, green and blue, which are converted into a more uniform surface by, for example, a second-order tapered reflecting surface 160a, 160b. Light source. Red, green and blue three light-emitting two bodies 162 (r, g, b) 'can emit light at the same time to produce a white light, or emit light according to a sequence. The part of the light source will not continue to describe. The following description shows The transmissive liquid crystal display projection system further includes a first polarizing filter 152, a transmissive liquid crystal light valve 154, a G first polarizing filter 156, and a projection unit 158. For example, the light source can be used together with a lens 164, but it is not absolutely necessary. First, if the light source is a design in which red, green and blue respectively emit color light according to a time series, the imaging is achieved by the phenomenon of persistence of vision. Light as an example, but green The display mechanism is the same as the blue light. The red light first passes through the /polarizing filter 152, for example, a p-polarized filter. The passing red light source becomes a p-polarized state. It will enter the liquid crystal light valve 154 and pass through. The liquid crystal light _ 154 is, for example, a transmissive single crystal stone slab. For 200821672 P51950021TW 21577twf.doc/e, each element can correspond to the required gray scale, Controlling the rotation angle of the liquid crystal. Due to the rotation angle of the liquid crystal, the incident light passing through the p-polar state is deflected. In the case where the gray scale is not zero, part of the red light is converted into the S-polar state. According to the design method, the setting of the $polar state corresponds to the grayscale requirement. However, the component of the p-polar state can also be used to correspond to the grayscale requirement. The following takes the S-polarity state corresponding to the grayscale. The demand is taken as an example. When the red light passes through the liquid crystal light valve 154, a part of it is a S-polar state. Then the second polarizing filter 156 is a s-polar filter, so only the s-polar state The red light will pass through the second polarizing filter 156. Different pixels will have different passes. The amount depends on the gray level desired by the element. Then a red light image is achieved. The red light image is projected through the projection unit 158 to a display surface, for example, a display screen. Then the green light and the blue light are followed. The same mechanism produces a green light image and a blue light image. Due to the persistence of vision, the images of the three color lights overlap to form a color image. Figure 6A shows a schematic diagram of the pixel distribution of the liquid crystal light valve 154. Referring to Figure 6, the liquid crystal light The plurality of halogens 170 on the valve 154 are shared by red, green and blue light, so that there is no need to have red, green and blue color filters. According to another embodiment of the mechanism, if the planar light source 15 is emitting white light, the liquid crystal light A corresponding red, green, and blue color filter is required on the valve 154. FIG. 7 is a schematic diagram showing another pixel distribution of the liquid crystal light valve 154. Referring to Figure 7 'for a halogen 172', it includes three sub-pixels 174 corresponding to red (r), green (g), and blue (b) sub-pixels 174. Each secondary 174 has a corresponding color filter. In this way, each pixel will directly produce the color of the 15 200821672 P51950021TW 21577twf.doc/e. Here, the positional arrangement of the sub-pixels 174 shown is a schematic diagram, which may actually have different combinations. Next, referring again to Fig. 5, the white light emitted by the planar light source 150 also has a P-polarized state and an S-polarized state. When the white light passes through the first polarizing filter 152, it becomes, for example, a light of a p-polar state. The white light of the p-polar state enters the liquid crystal light valve 154 and passes through. As in the arrangement of Figure 7, individual sub-sputum filters out other shades according to their color. Then, with the same mechanism, the gray scale of each pixel is used to control the rotation angle of the liquid crystal. Due to the rotation angle of the liquid crystal, the incident light passing through the P-polarized state is deflected to cause S-polarity. The S-polar light is then filtered out by the second polarizing filter 156 to become a color image light. Further, the liquid crystal display projection system of Fig. 5 is not the only design. FIG. 8 is a schematic diagram of a reflective liquid crystal display projection system according to an embodiment of the invention. Referring to Fig. 8 'the planar light source 1 of the present invention as described in the previous embodiment, as a light source for the liquid crystal display projection system. Next, it is determined that it can be used in conjunction with the lens 164 as needed to obtain the desired light source. This embodiment uses only one polarization splitting element 18 〇. First, the case where the planar light source 150 generates three primary color lights of red, green, and blue according to time series is taken as an example, and red light is taken as an example for description. For example, the red light of the p-polar state passes through the polarizing beam splitting element 180 and reaches the reflective liquid crystal light valve 184, such as a reflective single crystal stone panel, which converts a corresponding amount according to the demand of the gray scale. S partial polar state. This s-polar state is reflected by the polarization splitting element 180 to a projection unit 158.
顯示的另一種方式,是由取自平面光源15〇產生的S 200821672 ^lyDuuzlTW 21577twf.doc/e 偏極t的。卩伤做為顯示用的光源。s偏極態的紅光會被偏 極分光元件180反射到反射式的液晶光閥182。於此,依 照灰階度的需要,將一對應量的S偏極態紅光轉換成卩偏 極態的紅光。此被反射回到偏極分光元件18〇的p偏極態 紅光可以穿過偏極分光元件180,成為一紅色影像。這是 採用另一光路所得到。 又,上述的二種方式在光的使用率上會有較大的損 失。這疋由於僅使用到平面光源150產生的s偏極態或是 P偏極態的光。這也就是說由平面光源15〇所產生的光, 大致上僅有一半的使用率。雖然本發明的平面光源的 效率已有提升,然而其仍可以再進一步提升。於是,將上 述二個光路的光組合在一起,共同形成影像。 換句話說,偏極分光元件180會將入射光分成第一光 束與第二光束。就使用單片方式的單一光路設計而言,可 以取反射式的液晶光閥182與184之任其一,做為反射式 的第一液晶光閥,用以接收S偏極態或是p偏極態的光 (J 束。這裡為了易於區分與描述,第一液晶光閥所接收的光 束可以稱為第三光束。又,如果需要使用雙片方式的雙光 路設計時,則反射式的液晶光閥182與184之另其一,就 稱為第二液晶光閥,而其所接收的光束可以稱為第四光 束。換句話說,就圖8的實施例而言,單一光路設計可以 單獨取液晶光閥182或是液晶光閥184所對應的光路。如 果必要,則同時使用液晶光閥182與液晶光閥184。 依相同的機制,綠光與藍光的影像可以被獲得。利用 17 200821672 P511TW 21577twfdoc/e 視覺暫留的現象,以適當的頻率分別產生紅光、綠光與藍 光的影像以組成-實際彩色的影像。於此實施例,液晶光 闕182、184可以採用如圖6的安排,無須配置遽光片。 义另外,如果平面光源15〇產生的光是白光的安排,與 先鈾描述的偏極的機制相同,然而液晶光閥丨82、184可以 採用如圖7的安排,以分別控制三原色的次晝素的灰階 值’以同B寸組成所要的彩色晝素。當然,圖7的安排僅是 〇 一實施例。至於顯示的機制於前述相同,不再詳述。 >本發明提ώ有效社高均自度的絲,配合使用於多 種汉5十的液晶顯示投射系統,因此可以提升影像的亮度與 均勻度。 對於圖5與圖8的設計而言,其原理相近,但是各有 f特點。對於單片穿透式的設計(圖〇相較於雙片反射式的 設計(圖8)而言,成本較低與體積小,然而光的使用率較低。 至於,採用紅綠藍的光依照時序發出的設計 少 功率消耗,易散熱。 ^ 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本i明之精神 ί範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 、° 【圖式簡單說明】 圖1纟會示傳統的液晶顯示投射系統示意圖。 圖2%示傳統二片式的液晶顯示投射系統示意圖。 圖3繪示依據本發明一實施例,一照明光源的剖面示 18 200821672 P51950021TW 21577twf.doc/e 意圖。 圖4繪示依據本發明對應圖3的實施例,一照明光源 的上視示意圖。 圖5緣示依據本發明實施例,穿透式的液晶顯示投射 系統的結構示意圖。 圖6繪示液晶光閥154的晝素分佈示意圖。 圖7繪示液晶光閥154的另一晝素分佈示意圖。 圖8繪示依據本發明實施例,是反射式液晶顯示投射 糸統不意圖。 【主要元件符號說明】 100、200 102 104 、 114 106 108 116 Ο 118 110a 〜110c 112a 〜112c 120 122 130 132 134 光源 白光束 分色鏡 紅綠混光束 藍光束 紅光束 綠光束 偏極分光元件 反射式單晶石夕面板 合光鏡 影像 基底電極部 封裝發光部 材料層 200821672 Ο P51950021TW 21577twf.doc/e 134a 錐形反射面 136 材料層 136a 錐形反射面 138 光路徑 140 光源陣列 150 平面光源 152 偏極滤、光片 154 液晶光閥 156 偏極濾光片 158 投射單元 160a、160b :錐形反射罩 162(r,g,b) :發光二極體 164 :透鏡 202 :偏極分光元件 204a、204b : 早晶梦面板 206、208、210、220:光束 170 、 172 晝素 174 次晝素 180 偏極分光元件 182 > 184 早晶發面板 20Another way of display is by S 200821672 ^lyDuuzlTW 21577twf.doc/e which is derived from the planar light source 15〇. The bruise is used as a light source for display. The red light of the s-polar state is reflected by the polarizing element 180 to the reflective liquid crystal light valve 182. Here, a corresponding amount of S-polarized red light is converted into a red light of a 卩-polar state according to the necessity of gray scale. This p-polarized red light, which is reflected back to the polarizing element 18 〇, can pass through the polarizing element 180 to become a red image. This is obtained by using another light path. Moreover, the above two methods have a large loss in the use rate of light. This is because only the s-polar or P-polarized light generated by the planar light source 150 is used. This means that the light produced by the planar light source 15 is substantially only half of the usage. Although the efficiency of the planar light source of the present invention has been improved, it can be further improved. Thus, the light of the above two optical paths is combined to form an image. In other words, the polarization splitting element 180 splits the incident light into a first beam and a second beam. For a single optical path design using a single-chip method, any one of the reflective liquid crystal light valves 182 and 184 can be taken as a reflective first liquid crystal light valve for receiving S-polar or p-bias. Polar light (J beam. Here, for easy distinction and description, the light beam received by the first liquid crystal light valve can be called the third light beam. Also, if a dual-mode double light path design is required, the reflective liquid crystal The other of the light valves 182 and 184 is referred to as a second liquid crystal light valve, and the received light beam may be referred to as a fourth light beam. In other words, with the embodiment of Fig. 8, the single light path design may be separate. The liquid crystal light valve 182 or the optical path corresponding to the liquid crystal light valve 184 is taken. If necessary, the liquid crystal light valve 182 and the liquid crystal light valve 184 are used at the same time. According to the same mechanism, images of green light and blue light can be obtained. 17 200821672 P511TW 21577twfdoc/e The phenomenon of persistence of vision, respectively generating images of red, green and blue light at appropriate frequencies to form an image of actual color. In this embodiment, liquid crystal apertures 182, 184 may be as shown in FIG. Arrange, no In addition, if the light generated by the planar light source 15 is a white light arrangement, the mechanism of the polarization described by the uranium is the same, but the liquid crystal light valves 82, 184 can be arranged as shown in FIG. The gray scale value of the secondary color of the three primary colors is respectively controlled to form the desired color element with the same size. Of course, the arrangement of Fig. 7 is only the first embodiment. The mechanism of the display is the same as the above, and will not be described in detail. The invention improves the brightness and uniformity of the image by using the liquid crystal display projection system which is effective for the high self-satisfaction of the society, and thus can improve the brightness and uniformity of the image. For the design of FIG. 5 and FIG. 8, the principle is Similar, but each has the characteristics of f. For the single-piece transmissive design (Fig. 8), the cost is lower and the volume is smaller than the two-piece reflective design (Fig. 8), but the light usage is low. As a matter of fact, the red, green and blue light is designed to have less power consumption in accordance with the timing, and is easy to dissipate heat. Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the present invention, and anyone skilled in the art is not Out of this essence Within the scope of God's stipulation, the scope of protection of the present invention is subject to the definition of the scope of the appended patent application. ° [Simple description of the drawing] Figure 1纟 shows the traditional liquid crystal Figure 2 is a schematic view showing a conventional two-piece liquid crystal display projection system. Figure 3 is a cross-sectional view showing an illumination source according to an embodiment of the invention. 18 200821672 P51950021TW 21577twf.doc/e. Figure 1 is a schematic view showing the structure of a penetrating liquid crystal display projection system according to an embodiment of the present invention. Figure 6 is a schematic view showing the structure of a liquid crystal light valve 154 according to an embodiment of the present invention. Schematic diagram of the distribution of alfalfa. FIG. 7 is a schematic diagram showing another pixel distribution of the liquid crystal light valve 154. FIG. 8 illustrates a reflective liquid crystal display projection system according to an embodiment of the invention. [Main component symbol description] 100, 200 102 104, 114 106 108 116 Ο 118 110a to 110c 112a to 112c 120 122 130 132 134 Light source white beam dichroic mirror red and green mixed beam blue beam red beam green beam polarized beam splitting element reflection Single crystal stone glazing mirror image base electrode portion package light emitting portion material layer 200821672 Ο P51950021TW 21577twf.doc/e 134a tapered reflecting surface 136 material layer 136a tapered reflecting surface 138 light path 140 light source array 150 planar light source 152 partial Polar filter, light sheet 154 Liquid crystal light valve 156 Polarizing filter 158 Projection unit 160a, 160b: Conical reflector 162 (r, g, b): Light-emitting diode 164: Lens 202: Polarizing element 204a, 204b: Early crystal dream panel 206, 208, 210, 220: light beam 170, 172 halogen 174 secondary halogen 180 polarizing element 182 > 184 early crystal panel 20