TW200820456A - Light emitting diode device and fabrication method thereof - Google Patents

Light emitting diode device and fabrication method thereof Download PDF

Info

Publication number
TW200820456A
TW200820456A TW95138746A TW95138746A TW200820456A TW 200820456 A TW200820456 A TW 200820456A TW 95138746 A TW95138746 A TW 95138746A TW 95138746 A TW95138746 A TW 95138746A TW 200820456 A TW200820456 A TW 200820456A
Authority
TW
Taiwan
Prior art keywords
emitting diode
light
layer
single crystal
substrate
Prior art date
Application number
TW95138746A
Other languages
Chinese (zh)
Inventor
Cheng-Hong Lee
Chang-Cheng Chuo
Jenq-Dar Tsay
Chih-Ming Lai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95138746A priority Critical patent/TW200820456A/en
Publication of TW200820456A publication Critical patent/TW200820456A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode device and fabrication method thereof. A GaN light emitting diode is formed on a single crystal alumina substrate. The single crystal alumina substrate is wet-etched to form a plurality of V-typed grooves. Then the single crystal alumina substrate is divided along the V-typed grooves into a light emitting diode device with slant substrate sidewalls. The slant sidewalls of the substrate can reduce total internal reflection, thereby enhancing the luminance efficiency of the light emitting diode device.

Description

200820456 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種發光二極體元件及其製法,特別 有關於一種利用濕式触刻製作具傾斜側面的單晶氧化紹基 底之發光二極體元件。 【先前技#f】 發光二極體(Light Emitting Diode,LED)的發光原理 是利用半導體固有特性,不同於白熾燈發熱的發光原理, 所以發光二極體被稱為冷光源(cold light)。發光二極體 具有高耐久性、壽命長、輕巧、耗電量低等優點,且不含 水銀等有害物質,因此現今之照明市場對於發光二極體照 明寄予極大厚望。 一般來說,發光二極體常由磷化鎵(GaP)、氮化鎵(GaN) 等HI-V族混晶化合物經磊晶而成。由於發光二極體的折射 率大於外部的折射率,並且習知的發光二極體主要為四方 形對稱之立方體,因此,當發光二極體所產生的光線到達 二極體晶粒和空氣的界面時,大於臨界角之光線將產生全 反射回到二極體晶粒内部。而四方形對稱之二極體晶粒的 四個界面係互相平行,使得内部大於臨界角之光線只能一 直在内部全反射,導致發光二極體對外部的發光效率遠低 於内部的量子效率,所以,改變發光二極體的晶粒形狀即 成為可有效提昇發光效率的方法。 以現階段的半導體加工技術而言,最先成功使用此法 0949-A21776TWF(N2);P51950082TW;Kelly 5 200820456 的為美國第5779924與6229160號專利所提出之截頭式倒 至子塔型啦光一極脰(Truncated Inverted Pyramid LED,TIP LED) ’其係將磷化紹鎵銦/磷化鎵(A1GaInp/Gap)發光二極 體晶粒侧面加工為倒金字塔形狀,晶粒的四個界面並非互 相平行,可使光有效的引出晶粒之外,提昇發光效率達2 倍左右。然而,於此專利中所提出之倒金字塔型發光二極 體係以直接機械加工的方式形成,其僅能應用於磷化鋁鎵 銦/鱗化鎵(AlGalnP/GaP)紅光二極體上,利用其材料機械加 工容易之特性,以直接切割方式製成倒金字塔型發光二極 體。 然而對氮化鎵發光二極體而言,其大部分係蟲晶於藍 寶石(Sapphire)基板上,由於藍寶石非常堅硬,要對其進行 機械加工相當困難,至今商業化生產依然無法突破。 另外,美國的Cree公司運用類似的技術(美國專利 6740906, 6747298, 6791119, 6995032, 7008861),使用機械 加工法將碳化矽基板作成倒金字塔型,如此即可產生倒金 字塔型的氮化鎵發光二極體,並可明顯的增加發光效率, 也已經有商用產品在市場上銷售。然而,碳化矽基板會吸 收紫外光’這缺點在白光照明的應用上會有相當大的影 響’對於未來的應用性將大大地被偈限。 另一方面,亦有其他技術將InGaN/GaN材料蠢晶成長 於氮化鎵基板,後續再以機械加工方式來製造出具有斜面 之發光二極體,但是其斜面上會有殘留加工應力之表層, 其容易吸光又不易去除,並且降低發光二極體元件之發光 0949-A21776TWF(N2);P51950082TW;Kelly 6 200820456 效率。此外=於氮化鎵基板製作良率過低,成本很高, 因此,市仙格遠遠高於碳切基板和藍f石基板,目前 難以使用於商用產品。 在工研院電光所提出的專利案件中(美國專利第 6969627號)毅供-㈣光二姉元件及其製造方法,請 爹閱第1® *係利用氮化鎵蟲晶的特性自然形成蠢晶斜 面,^一基板1G表面形成具有斜面之氮化鎵混成厚膜14, 再於氮化鎵混成厚膜上成長發光二極體結構15,進而將其 製作成發力二極體晶,粒。如此,纟須機械加I即可製作具 有斜面的發光二極體結構,使得光的外部發光效率可以大 大地提升,然而其缺點是磊晶過程比較繁雜。 上述習知的機械加工或磊晶成長方式皆有其缺點,並 且對於製作單晶氧化鋁(亦即藍寶石)基底之斜面亦有其困 難度,因此,業界亟需一種製作具傾斜侧面基底之發光二 極體元件的方法,其可以應用在單晶氧化鋁基底上,達到 長:咼發光二極體元件之發光效率,並且同時可節省其掣迫 成本及縮短製造時間。 【發明内容】 本發明之目的在於利用濕式|虫刻製作出具傾斜侧面基 底之發光二極體元件,藉此節省製造成本及時間,並可應 用於單晶氧化鋁基底,提高發光二極體元件的發光效率。 為達上述目的,本發明提供一種發光二極體元件,包括 單曰曰氧化銘基底’其具有上表面、下表面和至少一對傾斜 侧面;以及發光二極體設置於單晶氧化鋁基底之上表面上。 0949-A21776TWF(N2) ;P51950082TW;Kelly 7 200820456 • 為達上述目的,本發明更提供一種發光二極體元件的 製造方法,包括··提供具有上表面及下表面之單晶氧化鋁基 底,形成發光二極體於單晶氧化鋁基底之上表面上;將發 光二極體圖案化,並形成保護層覆蓋於圖案化的發光二極 體表面上,暴露出單晶氧化鋁基底;利用圖案化且被保護 層保護的發光二極體作為遮罩,使用蝕刻法將單晶氧化鋁 基底蝕刻出複數個v型溝槽;以及沿著v型溝槽將單晶氧 化鋁基底分割,形成複數個發光二極體元件,其中發光二 極體兀件的單晶氧化鋁基底具有至少一對傾斜侧面。 此外,本發明又提供一種發光二極體元件的製造方法, 包括·提供具有上表面及下表面之單晶氧化鋁基底;形成 極體於單晶氧化鋁基底之上表面上;形成保護層於 單晶氧化鋁基底之下表面上;將保護層圖案化,暴露出單 晶氧化鋁基底,·利用圖案化的保護層作為遮罩,使用蝕刻 法將單晶氧化鋁基底蝕刻出複數個倒V型溝槽;將圖案化 的保護層移除;以及沿著倒V型溝槽將單晶氧化鋁基底分 吾1J,形成複數個發光二極體元件,其中該發光二極體元件 的單晶氧化銘基底具有至少一對傾斜側面。 為了讓本發明之上述目的、特徵、及優點能更明顯易 懂’以下配合所附圖式,作詳細說明如下: 【實施方式】 本發明係以比較簡單的微影蝕刻方式,將一具有氮化 叙^^光一極體結構的氧化铭單晶基板利用姓刻方式形成ν 型屢槽’该敍刻方式可為乾式姓刻或濕式钱刻,較佳者為 0949-A21776TWF(N2);P51950082TW;Kelly 200820456 濕式蝕刻,並藉由該v型溝槽將氮化鎵發光二極體晶粒 化,如此,可獲得具有傾斜侧面的單晶氧化铭基板之氮化 鎵發光二極體晶粒。 【實施例1】 本發明實施例1之製造流程的剖面圖如第2A至2F圖 所示。請參閱第2A圖,首先準備基底20例如為單晶氧化 鋁基材晶片,並於基底上成長發光二極體結構22,在第2A 〜2D圖中僅以一簡單層狀代表發光二極體結構,其詳細構 造將如後述第2E、2F圖中所示。 請參閱第2B圖,利用微影蝕刻技術將發光二極體結構 圖案化,形成多個大小約略相同的發光二極體區塊23,每 個發光二極體區塊被暴露出基底表面的通道21區隔開 來。然後,請參閱第2C圖,將保護層24覆蓋於發光二極 體區塊23的整個表面上,並暴露出基底表面,保護層例如 為Si〇2,其在後續的蝕刻過程中可保護發光二極體區塊23 避免被侵蝕。除了 Si02之外,其他可用來保護發光二極體 區塊23的材質尚可包括SiNx、Pt、Pd、Cr或Ni等。 接著,請參閱第2D圖,本發明之重要技術特徵為藉由 被保護層保護之發光二極體區塊23作為蝕刻遮罩,在上述 之通道21的位置,利用濕式蝕刻將基底20蝕刻出V型溝 槽25,其中所使用的蝕刻液可為磷酸加上硫酸之混合溶 液,其較佳的混合比例約為1:1。於V型溝槽25蝕刻完成 後,可將保護層24以濕式蝕刻方式移除。所形成的V型 溝槽25其斜面與基底下表面的夾角A約為42至60度。 0949-A21776TWF(N2);P51950082TW;Kelly 9 200820456 請參閱第4圖’其為單晶氧化銘被化學溶液I虫刻出v型溝 槽的電子顯微鏡(SEM)照片,其中v型溝槽的深度約為1.3 //m,並且V型溝槽的斜面與平行於基板表面之平面的夾 角為45度。V型溝槽的深度及夾角可視基底厚度及需求而 定,藉由触刻時間或姓刻液濃度的調整,可钱刻出大於1 // m的溝槽。 保護層24移除後的情況如第2E圖所示,其中發光二 極體區塊23為發出發光的發光二極體,其詳細結構包括: η型氮化鎵系列三五族化合物層26設置於基底20之上表 面上;η型電極28設置於η型氮化鎵系列三五族化合物層 26上,與η型氮化鎵系列三五族化合物層26形成歐姆接 觸;活性層30設置於η型氮化鎵系列三五族化合物層上作 為發光區;Ρ型氮化鎵系列三五族化合物層32設置於活性 層30之上;以及ρ型電極34設置於ρ型氮化鎵系列三五 族化合物層32上,與Ρ型氮化鎵系列三五族化合物層32 形成歐姆接觸以輸入順向偏壓。其中活性層的結構可為雙 異質接面(DH)、單量子井(SQW)或多量子井(MQW)結構。 最後,沿著V型溝槽25使用物理方式將基底2ϋ劈裂 分割,可將上述氮化鎵發光二極體晶粒化,其所使用的分 割方式可為雷射切割或機械切割,所完成的發光二極體元 件200如第2F圖中所示,其中的基底20至少具有一對傾 斜侧面202及204,上述的V型溝槽25是以基底在某一方 向(例如X方向)的剖面圖為例,此技術領域中具有通常知 識者當可瞭解,在其他方向(例如Υ方向或與X、Υ方向夾 0949-A21776TWF(N2);P51950082TW;Kelly 10 200820456 角45的方向等)也可以有V型溝槽存在,因此晶粒化後的 發光二極體元件200其基底之底部形狀可為多邊形或圓 形。此外,如第2F圖所示,以實施例1的方法所形成的發 光二極體元件200,其基底的縱向剖面(垂直於基底之上、 下表面)為一梯型形狀。 【實施例2】 本發明實施例2之製造流程的剖面圖如第3A至3E圖 所示,其與實施例1之差別在於V型溝槽是從基底的下表 面形成。首先請參閱第3A圖,在基底20的上表面201上 成長發光二極體結構22,並在基底20的下表面203上形 成保護層24,基底20例如為單晶氧化鋁基材晶片,保護 層的材料可為Si02、SiNx、Pt、Pd、Cr或Ni等,在第3A 〜3C圖中僅以一簡單層狀22代表發光二極體結構,其詳 細構造將如後述第3D及3E圖所示。 接著,請參閱第3B圖,利用微影蝕刻技術將保護層圖 案化,形成多個大小約略相同的保護層區塊24,每個保護 層區塊被暴露出基底下表面的通道21區隔開來。 請參閱第3C圖,本發明之重要技術特徵為藉由保護層 區塊24為蝕刻遮罩,在上述之通道21的位置,利用濕式 蝕刻將基底20蝕刻出倒V型溝槽25,其中使用的蝕刻液 可為磷酸加上硫酸之混合溶液,其較佳的混合比例約為 1:1。於倒V型溝槽25蝕刻完成後,可將保護層24以濕式 蝕刻方式移除。此外,在蝕刻出倒V型溝槽25之前,也 可在發光二極體結構22上覆蓋保護層(未圖示),其材料可 0949-A21776TWF(N2);P51950082TW;Kelly 11 200820456 與保護層24之材料相同,以在蝕刻過程中保護發光二極體 結構,並於倒V型溝槽完成後將其移除。所形成的倒V型 溝槽之斜面與基底上表面的爽角B約為42至60度。 接著請參閱第3D圖,在保護層區塊24移除後,將發 光二極體22以微影蝕刻技術圖案化成多個發光二極體區 塊23,其大小約與保護層區塊24相同。發光二極體區塊 23為發出發光的發光二極體,其詳細結構與實施例1相 同,在此不再複述。 最後,沿著倒V型溝槽25利用雷射切割或機械切割方 式將氮化鎵發光二極體晶粒化,所完成的發光二極體元件 200如第3E圖所示,其中的單晶氧化鋁基底20至少具有 一對傾斜側面202及204,晶粒化後的發光二極體元件200 其基底之底部形狀可為多邊形或圓形。此外,如第3E圖所 示,以實施例2的方法所形成的發光二極體元件200,其 基底的縱向剖面為一倒梯型形狀。 本發明之優點為製程較為簡單,無須藉由機械加工或 磊晶成長的方法即可製作出具有傾斜侧面基底的發光二極 體元件,因此,不會有機械加工殘留應力的問題或磊晶成 長方式較為繁複的問題。另外,針對應用在發光二極體上 比較不會有吸光問題的單晶氧化鋁基板,由於其為剛性材 料,機械加工不易,本發明可克服此問題,製作出具有傾 斜側面的單晶氧化鋁基底之發光二極體元件。 此外,本發明所使用的蝕刻方式其製作效率較高,可 一次完成多個發光二極體晶粒,與傳統的機械加工方式需 0949-A21776TWF(N2);P51950082TW;Kelly 12 200820456 個別研磨比較,可節省製造時間及成本。 雖然本發明已揭露較佳實施例如上,然其並非用以限 定本發明,任何熟悉此項技藝者,在不脫離本發明之精神 和範圍内,當可做些許更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定為準。 0949-A21776TWF(N2);P51950082TW;Kelly 200820456 【圖式簡單說明】 第1圖為習知利用磊晶方式形成具有斜面之氮化鎵厚 膜的發光二極體元件。 第2A至2F圖為依據本發明實施例1之發光二極體元 件晶粒化製造程序的剖面圖。 第3A至3E圖為依據本發明實施例2之發光二極體元 件晶粒化製造程序的剖面圖。 第4圖為依據本發明實施例1之V型溝槽的SEM照片。 【主要元件符號說明】 10、20〜基底; 11〜藍寶石基底; 12〜GaN基底; 13〜圖案化的GaN ; 14〜具傾斜側面的GaN厚膜; 15、22、23〜發光二極體; 24〜保護層; 21〜通道; 25〜V型溝槽; 26〜η型氮化鎵系列三五族化合物層; 28〜η型電極; 30〜活性層; 32〜ρ型氮化鎵系列三五族化合物層; 34〜ρ型電極; 0949-A21776TWF(N2);P51950082TW;Kelly 14 200820456 200 202 201 203 晶粒化的發光二極體元件; 204〜傾斜侧面; 上表面; 下表面。 0949-A21 776TWF(N2);P51950082TW;Kelly 15200820456 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode element and a method for fabricating the same, and more particularly to a method for producing a single-crystal oxidized substrate with a slanted side by wet-touching Polar body component. [Previous Technique #f] The principle of illumination of a Light Emitting Diode (LED) is to use the inherent characteristics of a semiconductor, which is different from the principle of illumination of an incandescent lamp. Therefore, a light-emitting diode is called a cold light. Light-emitting diodes have the advantages of high durability, long life, light weight, low power consumption, and no harmful substances such as mercury. Therefore, the lighting market today has great expectations for light-emitting diode lighting. In general, a light-emitting diode is often formed by epitaxy of a HI-V mixed crystal compound such as gallium phosphide (GaP) or gallium nitride (GaN). Since the refractive index of the light-emitting diode is larger than the external refractive index, and the conventional light-emitting diode is mainly a square-symmetric cube, when the light generated by the light-emitting diode reaches the diode grain and the air At the interface, light larger than the critical angle will produce total reflection back into the interior of the diode grains. The four interfaces of the square symmetrical diode grains are parallel to each other, so that the light having a larger internal angle than the critical angle can only be totally internally reflected, resulting in the luminous efficiency of the light-emitting diode to the outside being much lower than the internal quantum efficiency. Therefore, changing the crystal grain shape of the light-emitting diode becomes a method for effectively improving the light-emitting efficiency. In the current stage of semiconductor processing technology, the first successful use of this method 0949-A21776TWF (N2); P51950082TW; Kelly 5 200820456 is the US-based 5,779,924 and 6,229,160 patents proposed by the truncated-to-sub-column type Truncated Inverted Pyramid LED (TIP LED) 'The granulated indium gallium indium/gallium phosphide (A1GaInp/Gap) light-emitting diode grain is processed into an inverted pyramid shape, and the four interfaces of the crystal grains are not mutually Parallel, the light can be effectively extracted outside the grain, and the luminous efficiency is improved by about 2 times. However, the inverted pyramid type light emitting diode system proposed in this patent is formed by direct machining, and can be applied only to an aluminum gallium indium phosphide/gallium gallium (AlGalnP/GaP) red light diode. The inverted pyramid type light-emitting diode is formed by direct cutting by utilizing the characteristics that the material is easily machined. However, for GaN light-emitting diodes, most of them are crystallized on sapphire substrates. Since sapphire is very hard, it is difficult to mechanically process it, and commercial production still cannot be broken. In addition, Cree Corporation of the United States uses a similar technology (US Patent Nos. 6,740,906, 6,747,298, 6,791,119, 69,950,032, 700,886,1) to use a mechanical processing method to make a tantalum carbide substrate into an inverted pyramid type, so that an inverted pyramid type GaN light emitting diode can be produced. Polar body, and can significantly increase the luminous efficiency, there are already commercial products on the market. However, the disadvantage of the silicon carbide substrate absorbing ultraviolet light's will have a considerable impact on the application of white light illumination' will be greatly limited for future applications. On the other hand, there are other technologies to grow InGaN/GaN materials on a gallium nitride substrate, and then mechanically process the light-emitting diode with a bevel, but the surface of the slope has residual processing stress. It is easy to absorb light and is not easy to remove, and reduces the luminous efficiency of the light-emitting diode element 0949-A21776TWF (N2); P51950082TW; Kelly 6 200820456 efficiency. In addition, the production rate of the gallium nitride substrate is too low and the cost is high. Therefore, the city is far superior to the carbon-cut substrate and the blue f-stone substrate, and it is currently difficult to use in commercial products. In the patent case filed by the Institute of Electro-Technology (U.S. Patent No. 6,969,627), the source-- (four) optical diode element and its manufacturing method, please refer to the 1® * system to form a stupid crystal using the characteristics of gallium nitride crystal On the inclined surface, a gallium nitride mixed thick film 14 having a slope is formed on the surface of the substrate 1G, and the light-emitting diode structure 15 is grown on the thick film of the gallium nitride mixed film, and further formed into a force-generating diode crystal and particles. Thus, it is not necessary to mechanically add I to fabricate a light-emitting diode structure having a bevel, so that the external luminous efficiency of light can be greatly improved, but the disadvantage is that the epitaxial process is complicated. The above-mentioned conventional machining or epitaxial growth methods have their disadvantages, and it is also difficult to produce a bevel of a single crystal alumina (ie, sapphire) substrate. Therefore, there is a need in the industry for a light having a slanted side substrate. A method of a diode element which can be applied to a single crystal alumina substrate to achieve a long luminous efficiency of the luminescent diode component, and at the same time saves its cost and shortens the manufacturing time. SUMMARY OF THE INVENTION The object of the present invention is to produce a light-emitting diode element with a slanted side substrate by wet etching, thereby saving manufacturing cost and time, and can be applied to a single crystal alumina substrate to improve a light-emitting diode. The luminous efficiency of the component. To achieve the above object, the present invention provides a light emitting diode element comprising a single germanium oxide substrate having an upper surface, a lower surface and at least one pair of inclined sides; and a light emitting diode disposed on the single crystal alumina substrate On the upper surface. 0949-A21776TWF(N2); P51950082TW; Kelly 7 200820456 • To achieve the above object, the present invention further provides a method for manufacturing a light-emitting diode element, comprising: providing a single crystal alumina substrate having an upper surface and a lower surface, forming The light-emitting diode is on the upper surface of the single crystal alumina substrate; the light-emitting diode is patterned, and a protective layer is formed on the surface of the patterned light-emitting diode to expose the single crystal alumina substrate; And the light-emitting diode protected by the protective layer is used as a mask, the single crystal alumina substrate is etched out of the plurality of v-type trenches by etching; and the single crystal alumina substrate is divided along the v-type trench to form a plurality of A light emitting diode element, wherein the single crystal alumina substrate of the light emitting diode element has at least one pair of inclined sides. In addition, the present invention further provides a method for fabricating a light-emitting diode element, comprising: providing a single crystal alumina substrate having an upper surface and a lower surface; forming a polar body on a surface of the single crystal alumina substrate; forming a protective layer on the surface On the lower surface of the single crystal alumina substrate; patterning the protective layer to expose the single crystal alumina substrate, using the patterned protective layer as a mask, etching the single crystal alumina substrate by etching to form a plurality of inverted V a trench; removing the patterned protective layer; and dividing the single crystal alumina substrate along the inverted V-shaped trench to form a plurality of light emitting diode elements, wherein the single crystal of the light emitting diode element The oxidized substrate has at least one pair of inclined sides. The above-mentioned objects, features, and advantages of the present invention will become more apparent and understood. The following description of the accompanying drawings will be described in detail as follows: [Embodiment] The present invention uses a relatively simple lithography etching method to have a nitrogen The oxidized Ming single crystal substrate of the photo-polar body structure is formed by the surname engraving method to form the ν-type repeating groove. The narration method can be a dry type or a wet type engraving, preferably 0949-A21776TWF (N2); P51950082TW; Kelly 200820456 wet etching, and graining the gallium nitride light-emitting diode by the v-type trench, so that a gallium nitride light-emitting diode crystal having a single-crystal oxide substrate with an inclined side surface can be obtained grain. [Embodiment 1] A cross-sectional view of a manufacturing flow of Embodiment 1 of the present invention is shown in Figs. 2A to 2F. Referring to FIG. 2A, the substrate 20 is first prepared, for example, as a single crystal alumina substrate wafer, and the light emitting diode structure 22 is grown on the substrate, and the light emitting diode is represented by only a simple layer in the 2A to 2D drawings. The detailed structure of the structure will be as shown in Figs. 2E and 2F described later. Referring to FIG. 2B, the light-emitting diode structure is patterned by using a lithography technique to form a plurality of light-emitting diode blocks 23 of approximately the same size, and each of the light-emitting diode blocks is exposed to the surface of the substrate surface. Zone 21 is separated. Then, referring to FIG. 2C, the protective layer 24 is covered on the entire surface of the light-emitting diode block 23, and the surface of the substrate is exposed. The protective layer is, for example, Si〇2, which can protect the light during the subsequent etching process. The diode block 23 is protected from erosion. In addition to SiO2, other materials that can be used to protect the LED block 23 may include SiNx, Pt, Pd, Cr, or Ni. Next, referring to FIG. 2D, an important technical feature of the present invention is that the light-emitting diode block 23 protected by the protective layer is used as an etch mask, and the substrate 20 is etched by wet etching at the position of the above-mentioned channel 21. The V-shaped groove 25 is formed, and the etching liquid used therein may be a mixed solution of phosphoric acid and sulfuric acid, and a preferred mixing ratio thereof is about 1:1. After the V-groove 25 is etched, the protective layer 24 can be removed by wet etching. The V-shaped groove 25 is formed such that the angle A between the slope of the V-shaped groove 25 and the lower surface of the substrate is about 42 to 60 degrees. 0949-A21776TWF(N2);P51950082TW;Kelly 9 200820456 Please refer to Fig. 4', which is an electron microscopy (SEM) photograph of a single crystal oxide inscribed by a chemical solution I insect, in which the depth of the v-groove It is about 1.3 //m, and the angle between the slope of the V-shaped groove and the plane parallel to the surface of the substrate is 45 degrees. The depth and angle of the V-shaped groove can be determined by the thickness of the substrate and the demand. The groove of more than 1 // m can be engraved by adjusting the etching time or the concentration of the surname. The state after the removal of the protective layer 24 is as shown in FIG. 2E, wherein the light-emitting diode block 23 is a light-emitting diode emitting light, and the detailed structure thereof includes: n-type gallium nitride series three-five compound layer 26 setting On the upper surface of the substrate 20, the n-type electrode 28 is disposed on the n-type gallium nitride series tri-five compound layer 26, forming an ohmic contact with the n-type gallium nitride series tri-five compound layer 26; the active layer 30 is disposed on The n-type gallium nitride series tri-five compound layer is used as a light-emitting region; the germanium-type gallium nitride series tri-five compound layer 32 is disposed on the active layer 30; and the p-type electrode 34 is disposed on the p-type gallium nitride series three On the group of five compound layer 32, an ohmic contact is formed with the gallium nitride gallium series tri-five compound layer 32 to input a forward bias. The structure of the active layer may be a double heterojunction (DH), a single quantum well (SQW) or a multiple quantum well (MQW) structure. Finally, the GaN gallium luminescent diode can be grained along the V-shaped trench 25 by physically splitting the substrate 2, and the segmentation method can be laser cutting or mechanical cutting. The light-emitting diode element 200 is as shown in FIG. 2F, wherein the substrate 20 has at least one pair of inclined side faces 202 and 204, and the V-shaped groove 25 is a cross section of the substrate in a certain direction (for example, the X direction). For example, those of ordinary skill in the art can understand that in other directions (for example, the direction of the 或 or the X, 与, 21, 21, 21, 21, 519, 519, 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 There is a V-shaped groove, so that the bottom shape of the grained LED component 200 can be polygonal or circular. Further, as shown in Fig. 2F, the light-emitting diode element 200 formed by the method of the first embodiment has a longitudinal cross section (perpendicular to the upper and lower surfaces of the substrate) having a trapezoidal shape. [Embodiment 2] A cross-sectional view of a manufacturing flow of Embodiment 2 of the present invention is shown in Figs. 3A to 3E, which differs from Embodiment 1 in that a V-shaped groove is formed from the lower surface of the substrate. Referring first to FIG. 3A, a light-emitting diode structure 22 is grown on the upper surface 201 of the substrate 20, and a protective layer 24 is formed on the lower surface 203 of the substrate 20. The substrate 20 is, for example, a single crystal alumina substrate wafer, and is protected. The material of the layer may be SiO 2 , SiN x , Pt, Pd, Cr or Ni. In the 3A to 3C drawings, only a simple layer 22 represents a light-emitting diode structure, and the detailed structure thereof will be as shown in the following 3D and 3E. Shown. Next, referring to FIG. 3B, the protective layer is patterned by photolithography to form a plurality of protective layer blocks 24 of approximately the same size, each of which is separated by a channel 21 that exposes the lower surface of the substrate. Come. Referring to FIG. 3C, an important technical feature of the present invention is that the protective layer block 24 is an etch mask, and the substrate 20 is etched out of the inverted V-shaped trench 25 by wet etching at the position of the above-mentioned channel 21. The etching solution used may be a mixed solution of phosphoric acid and sulfuric acid, and a preferred mixing ratio thereof is about 1:1. After the etching of the inverted V-shaped trench 25 is completed, the protective layer 24 can be removed by wet etching. In addition, before the inverted V-shaped trench 25 is etched, the protective diode layer (not shown) may be covered on the light-emitting diode structure 22, and the material thereof may be 0949-A21776TWF(N2); P51950082TW; Kelly 11 200820456 and the protective layer. The material of 24 is the same to protect the light-emitting diode structure during the etching process and to remove the inverted V-shaped trench after it is completed. The slope of the formed inverted V-shaped groove and the upper surface B of the substrate are about 42 to 60 degrees. Next, referring to FIG. 3D, after the protective layer block 24 is removed, the light emitting diode 22 is patterned into a plurality of light emitting diode blocks 23 by the lithography technique, and the size is about the same as the protective layer block 24. . The light-emitting diode block 23 is a light-emitting diode that emits light, and its detailed structure is the same as that of the first embodiment, and will not be repeated here. Finally, the gallium nitride light-emitting diode is grained by laser cutting or mechanical cutting along the inverted V-shaped trench 25, and the completed light-emitting diode element 200 is as shown in FIG. 3E, wherein the single crystal The alumina substrate 20 has at least a pair of inclined sides 202 and 204, and the bottomed shape of the grained LED component 200 may be polygonal or circular. Further, as shown in Fig. 3E, the light-emitting diode element 200 formed by the method of the second embodiment has a longitudinal section of the substrate which is an inverted trapezoidal shape. The invention has the advantages that the process is relatively simple, and the light-emitting diode element having the inclined side substrate can be fabricated without mechanical processing or epitaxial growth, so that there is no problem of mechanical residual stress or epitaxial growth. More complicated methods. In addition, for a single crystal alumina substrate which does not have a light absorption problem on a light-emitting diode, since it is a rigid material, mechanical processing is not easy, and the present invention can overcome this problem, and a single crystal alumina having an inclined side surface can be produced. A light-emitting diode element of the substrate. In addition, the etching method used in the present invention has high fabrication efficiency, and can complete a plurality of light-emitting diode crystal grains at one time, which is compared with the conventional mechanical processing method: 0949-A21776TWF (N2); P51950082TW; Kelly 12 200820456 individual grinding. It saves manufacturing time and costs. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. [0091] A. 2A to 2F are cross-sectional views showing a process of manufacturing a grain-emitting diode element according to Embodiment 1 of the present invention. 3A to 3E are cross-sectional views showing a process of manufacturing a grain-emitting diode element according to Embodiment 2 of the present invention. Fig. 4 is a SEM photograph of a V-shaped groove according to Embodiment 1 of the present invention. [Major component symbol description] 10, 20~ substrate; 11~ sapphire substrate; 12~GaN substrate; 13~ patterned GaN; 14~ GaN thick film with inclined sides; 15, 22, 23~ light emitting diode; 24~protective layer; 21~channel; 25~V-type trench; 26~n-type gallium nitride series tri-five compound layer; 28~n-type electrode; 30~active layer; 32~p-type gallium nitride series three Group of five compounds; 34~ρ-type electrode; 0949-A21776TWF(N2); P51950082TW; Kelly 14 200820456 200 202 201 203 grained light-emitting diode element; 204~ inclined side; upper surface; lower surface. 0949-A21 776TWF(N2); P51950082TW; Kelly 15

Claims (1)

200820456 十、申請專利範圍: 1. 一種發光二極體元件,包括: 一單晶氧化鋁基底,其具有一上表面、一下表面和至 少一對傾斜侧面;以及 一發光二極體,設置於該單晶氧化鋁基底之上表面上。 2. 如申請專利範圍第1項所述之發光二極體元件,其 中該發光二極體包括: 一 η型氮化鎵系列三五族化合物層,設置於該單晶氧 化IS基底上; 一 η型電極,設置於該η型氮化鎵系列三五族化合物 層上,且與該η型氮化鎵系列三五族化合物層形成歐姆接 觸; 一活性層設置於該η型氮化鎵系列三五族化合物層上 以作為發光區; 一 ρ型氮化鎵系列三五族化合物層,設置於該活性層 上;以及 一 ρ型電極,設置於該ρ型氮化鎵系列三五族化合物 層上,且與該ρ型氮化鎵系列三五族化合物層形成歐姆接 觸以輸入順向偏壓。 3. 如申請專利範圍第2項所述之發光二極體元件,其 中該活性層包括雙異質接面(DH)、單量子井(SQW)或多量 子井(MQW)結構。 4. 如申請專利範圍第1項所述之發光二極體元件,其 中該單晶氧化鋁基底之縱剖面為一梯型。 0949-A21776TWF(N2);P51950082TW;Kelly 16 200820456 t如申請專利範圍第4項所述之發光二極體元件,其 中該早晶氧化鋁基底之傾斜側面與下表面的夾角為42至 60度。 t如申請專利範圍第1項所述之發光二極體元件,其 中δ玄單Βθ氧化鋁基底之縱剖面為一倒梯型。 7·。如申請專利範圍第6項所述之發光二極體元件,其 中a玄單曰曰氧化鋁基底之傾斜侧面與上表面的夾角為至 60度。 8·如申請專利範圍第i項所述之發光二極體元件,其 中4單晶氧化紹基底之下表面的形狀包括多邊形或圓形。 9·一種發光二極體元件的製造方法,包括·· 提供一單晶氧化鋁基底,其具有一上表面及一下表面; 形成一發光二極體於該上表面上; 將该發光二極體圖案化,並形成一保護層覆蓋於該圖 案化的發光二極體表面上,暴露出該單晶氧化鋁基底; 利用该圖案化且被該保護層保護的發光二極體作為遮 罩,使用一蝕刻法將該單晶氧化鋁基底蝕刻出複數個v型 溝槽;以及 沿著該V型溝槽將該單晶氧化鋁基底分割,形成複數 個發光二極體元件’其中該發光二極體元件的單晶氧化鋁 基底具有至少一對傾斜侧面。 10.如申請專利範圍第9項所述之發光二極體元件的製 造方法,其中該發光二極體包括: 一 η型氮化鎵系列三五族化合物層,設置於該第一表 0949-A21776TWF(N2);P51950082TW;Kelly 17 200820456 面上; 極’ &置於該n錢域㈣三五族化人物 層上,且與該η型氮化备 化。物 觸; ㈣、列二五族化合物層形成歐姆接 一活性層設置於該^型_,锆# μ 以作為發光區; 以化♦糸列三五族化合物層上 一 Ρ型氮化鎵系列二 上;以及 —*化s物層,設置於該活性層 一 p型電極,設置於 層上,且與該?型氮化:H糸列三五族化合物 觸以輸入順向偏壓。Ί二五域合物層形成歐姆接 制、:申範圍*10項所述之發光二極體元件的 二)戈二、::活性層包括雙異質接面_、單量子井 (SQW)或夕1子井(MQW)結構。 ::如申:專利範圍第9項所述之發光二極體 仏方法’其中該侧法為濕式钱刻。 、二如::專利範圍第9項所述之發光二極體元件的製 ==該V型溝槽之斜面與該單晶氧化紹基底之下 表面的夹角為42至60度。 迭:.如:=Γ第9項所述之發光二極體元件的製 面為梯型务光二極體元件的單晶氧化銘基底之縱剖 、告方、去:I:專利觀圍第9項所述之發光二極體元件的製 ’、孩毛光一極體元件的基底之底部形狀包括多 0949-A21776TWF(N2);P51950082TW;Kelly 200820456 邊形或圓形。 、16.如中請專利範圍第9項所述之發光二極體元件的製 造方法,更包括在餘刻形成該V型溝槽之後,將該保護層 移除。 曰 17·—種發光二極體元件的製造方法,包括·· 提供一單晶氧化鋁基底,其具有—上表面及—下表面; 形成一發光二極體於該上表面上; 形成一第一保護層於該下表面上; 將該第一保護層圖案化,暴露出該單晶氧化鋁基底; 」用_案化的第—保護層作為遮罩,使用—钱刻法 將忒單晶氧化鋁基底蝕刻出複數個倒v型溝槽; 將忒圖案化的第一保護層移除;以及 &著及倒V型溝槽將該單晶氧偏g基底分割,形成複 鋁基底具有至少一對傾斜侧面。 制二利觸17項所述之發光二極體元件的 衣k方法,其中該蝕刻法為濕式蝕刻。 制、二ΓΓΓ利範圍f 17項所述之發光二極體元件的 中_ v型溝槽之斜面與該單晶氧化銘基底 制:ΓΓ利範圍*17項所述之發光二極體元件的 =為倒梯型中該發光二極心件的單晶氧化縣底之縱 21.如申請專利範圍第17項所述之發光二極體元件的 Kelly 〇949-A21776TWF(N2);P5195〇〇82TW; 19 200820456 衣""方法,其巾該發光二極體元件的單晶氧化銘基底之底 部形狀包括多邊形或圓形。 一 22.如申請專利範圍第17項所述之發光二極體元件的 衣造方法,其中該發光二極體包括: 一 η型氮化鎵系列三五族化合物層,設置於 面上; :η尘電極,设置於該η型氮化鎵系列三五族化合物 ^上且4 η型氮化鎵系列三五族化合物層形成歐姆接 觸; 、活J1層设置於該η型氮化鎵系列三五族化合物層上 以作為發光區; Ρ型氮化鎵系列三五族化合物層,設置於該活性声 上;以及 9 :一 ρ型電極,設置於該Ρ型氮化鎵系列三五族化合物 層上且與该Ρ型氮化鎵系列三五族化合物層形成歐姆接 觸以輸入順向偏壓。 ♦ 23·如申叫專利範圍第22項所述之發光二極體元件的 製造方法,其中該活性層包括雙異質接面(DH)、單量子井 (SQW)或多量子井(mqw)結構。 制生24.如申凊專利範圍第17項所述之發光二極體元件的 製造方法,尚包括在蝕刻出該倒V型溝槽之前,將一第二 保濩層覆蓋於該發光二極體上。 制止25·如申請專利範圍第24項所述之發光二極體元件的 製造方法,尚包括在蝕刻出該倒ν型溝槽之後,移除該第 0949-A21776TWF(N2);P51950082TW;Kelly 200820456 " 二保護層。 0949-A21776TWF(N2);P51950082TW;Kelly 21200820456 X. Patent Application Range: 1. A light-emitting diode component comprising: a single crystal alumina substrate having an upper surface, a lower surface and at least one pair of inclined sides; and a light emitting diode disposed on the The surface of the single crystal alumina substrate is on the upper surface. 2. The light-emitting diode component according to claim 1, wherein the light-emitting diode comprises: an n-type gallium nitride series tri-five compound layer disposed on the single crystal oxide IS substrate; An n-type electrode is disposed on the n-type gallium nitride series tri-five compound layer and forms an ohmic contact with the n-type gallium nitride series tri-five compound layer; an active layer is disposed on the n-type gallium nitride series a layer of a tri-five compound is used as a light-emitting region; a layer of a p-type gallium nitride triple tri-five compound is disposed on the active layer; and a p-type electrode is disposed on the p-type gallium nitride series tri-five compound On the layer, and forming an ohmic contact with the p-type gallium nitride series tri-five compound layer to input a forward bias. 3. The light-emitting diode component of claim 2, wherein the active layer comprises a double heterojunction (DH), a single quantum well (SQW) or a multi-quantity well (MQW) structure. 4. The light-emitting diode element according to claim 1, wherein the single crystal alumina substrate has a longitudinal profile of a ladder shape. The light-emitting diode element of claim 4, wherein the angle between the inclined side surface of the early-crystalline alumina substrate and the lower surface is 42 to 60 degrees. The light-emitting diode element according to claim 1, wherein the longitudinal section of the δ Β Β Β θ alumina substrate is an inverted ladder type. 7·. The light-emitting diode element according to claim 6, wherein the angle between the inclined side surface of the a-single alumina substrate and the upper surface is 60 degrees. 8. The light-emitting diode element according to claim i, wherein the shape of the surface of the underlying substrate of the single crystal is included in a polygonal shape or a circular shape. 9. A method of fabricating a light emitting diode device, comprising: providing a single crystal alumina substrate having an upper surface and a lower surface; forming a light emitting diode on the upper surface; the light emitting diode Patterning, and forming a protective layer covering the surface of the patterned light-emitting diode to expose the single crystal alumina substrate; using the patterned LED and protected by the protective layer as a mask, using Etching an amorphous silicon substrate to a plurality of v-type trenches; and dividing the single crystal alumina substrate along the V-type trench to form a plurality of light emitting diode elements, wherein the light emitting diode The single crystal alumina substrate of the bulk element has at least one pair of inclined sides. 10. The method of fabricating a light-emitting diode device according to claim 9, wherein the light-emitting diode comprises: an n-type gallium nitride series tri-five compound layer, which is disposed in the first table 0949- A21776TWF (N2); P51950082TW; Kelly 17 200820456 face; the pole ' & is placed on the n-character (four) three-five-type character layer, and is prepared with the n-type nitride. (4), the formation of the bismuth compound layer is formed in the ohmic layer, the active layer is disposed on the __, zirconium #μ as the illuminating region; And a layer of the p-type electrode disposed on the active layer, disposed on the layer, and Type Nitriding: H 糸 三 三 三 触 触 触 触 触 触 触 输入 输入 输入The bismuth five-layer layer forms an ohmic junction, and the second embodiment of the luminescent diode component described in the scope of the invention is: bis, : the active layer includes a double heterojunction _, a single quantum well (SQW) or Xi 1 well (MQW) structure. The invention relates to the method of illuminating diodes according to claim 9 wherein the side method is wet money engraving. 2. The following: The system of the light-emitting diode element described in claim 9 == The angle between the slope of the V-shaped groove and the surface of the single crystal oxide substrate is 42 to 60 degrees.叠:. Such as: = Γ Γ Γ 之 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光The bottom shape of the base of the light-emitting diode element of the nine-piece light-emitting diode element includes a plurality of 0949-A21776TWF (N2); P51950082TW; and Kelly 200820456 are round or round. 16. The method of fabricating a light-emitting diode element according to claim 9, further comprising removing the protective layer after forming the V-shaped trench.曰17· A method for fabricating a light-emitting diode element, comprising: providing a single crystal alumina substrate having an upper surface and a lower surface; forming a light emitting diode on the upper surface; forming a first a protective layer on the lower surface; the first protective layer is patterned to expose the single crystal alumina substrate; and the first protective layer is used as a mask, and the germanium single crystal is used A plurality of inverted v-type trenches are etched from the aluminum oxide substrate; the first protective layer patterned by the germanium is removed; and the inverted and V-shaped trenches are used to split the single crystal oxygen to form a composite aluminum substrate At least one pair of inclined sides. The method of fabricating a light-emitting diode element according to item 17, wherein the etching method is wet etching. The slanting surface of the medium-v-type groove of the light-emitting diode element described in the item 17 of the second dimension, and the single crystal oxide base substrate: the light-emitting diode element of the invention item *17 = is the longitudinal direction of the single crystal oxidation of the light-emitting diode in the inverted ladder type. 21. Kelly 〇 949-A21776TWF (N2) of the light-emitting diode element described in claim 17; P5195〇〇 82TW; 19 200820456 衣"" method, the base shape of the single crystal oxide substrate of the light-emitting diode element includes a polygonal shape or a circular shape. The method of fabricating a light-emitting diode element according to claim 17, wherein the light-emitting diode comprises: an n-type gallium nitride series of a tri-five compound layer disposed on the surface; The η dust electrode is disposed on the n-type gallium nitride series tri-five compound ^ and the 4 η-type gallium nitride series tri-five compound layer forms an ohmic contact; and the live J1 layer is disposed in the n-type gallium nitride series III a group of five-group compound is used as a light-emitting region; a layer of a gallium nitride-type gallium nitride compound is disposed on the active sound; and a layer of 9: a p-type electrode is disposed on the gallium-type gallium nitride series of three or five compounds An ohmic contact is formed on the layer and with the germanium gallium nitride series tri-five compound layer to input a forward bias. The method for manufacturing a light-emitting diode element according to claim 22, wherein the active layer comprises a double heterojunction (DH), a single quantum well (SQW) or a multiple quantum well (mqw) structure. . The method for manufacturing a light-emitting diode element according to claim 17, further comprising covering a light-emitting diode with a second protective layer before etching the inverted V-shaped trench Physically. The method of manufacturing the light-emitting diode element according to claim 24, further comprising removing the 0949-A21776TWF (N2) after etching the inverted-v groove; P51950082TW; Kelly 200820456 " Two protective layers. 0949-A21776TWF(N2); P51950082TW; Kelly 21
TW95138746A 2006-10-20 2006-10-20 Light emitting diode device and fabrication method thereof TW200820456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138746A TW200820456A (en) 2006-10-20 2006-10-20 Light emitting diode device and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138746A TW200820456A (en) 2006-10-20 2006-10-20 Light emitting diode device and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW200820456A true TW200820456A (en) 2008-05-01

Family

ID=44770167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138746A TW200820456A (en) 2006-10-20 2006-10-20 Light emitting diode device and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW200820456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464899B (en) * 2008-05-09 2014-12-11 Advanced Optoelectronic Tech A method for manufacturing a semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464899B (en) * 2008-05-09 2014-12-11 Advanced Optoelectronic Tech A method for manufacturing a semiconductor element

Similar Documents

Publication Publication Date Title
US11677044B2 (en) Highly efficient gallium nitride based light emitting diodes via surface roughening
US8629534B2 (en) Semiconductor structure having low thermal stress
JP2007311784A (en) Semiconductor light-emitting device having multi-pattern structure
TW201324860A (en) Light emitting diode and methods of manufacturing same
US20140048830A1 (en) Light emitting device and manufacturing method thereof
JP2005136106A (en) Single crystal sapphire substrate and its manufacturing method, and semiconductor light emitting device
JP2005064492A (en) Single-crystal sapphire substrate, manufacturing method therefor, and semiconductor light-emitting element
JP4148846B2 (en) Light emitting diode device manufacturing method and light emitting diode device
TWI774759B (en) Light-emitting device and manufacturing method thereof
JP5794963B2 (en) Light emitting diode
JP4872753B2 (en) Manufacturing method of nitride LED element
JP6321013B2 (en) Light emitting device comprising a molded substrate
KR20070040260A (en) Nitride based semiconductor light emitting devices and manufacturing methods
CN107591463B (en) Light emitting module and method for manufacturing light emitting module
TW200820456A (en) Light emitting diode device and fabrication method thereof
JP2011238884A (en) Substrate for epitaxial growth, growth method of gan-based semiconductor crystal, semiconductor structure, and gan-based led element
JP2009070991A (en) Light emitting device
TWI838792B (en) Light-emitting device
TWI407594B (en) Method for making light emitting diode chip
JP2013038208A (en) Light-emitting device and manufacturing method of the same
KR101598845B1 (en) manufacturing method of complex pattern with GaN light emitting doide using wet etching and GaN light emitting doide thereby
TWI550900B (en) Semiconductor device layer and fabricating method thereof
KR20150033318A (en) manufacturing method of complex pattern with InGaAlP light emitting doide using wet etching and InGaAlP light emitting doide thereby
TW202243273A (en) Light-emitting device