TW200819112A - noninvasive method to evaluate the new normalized arterial stiffness - Google Patents

noninvasive method to evaluate the new normalized arterial stiffness Download PDF

Info

Publication number
TW200819112A
TW200819112A TW95139855A TW95139855A TW200819112A TW 200819112 A TW200819112 A TW 200819112A TW 95139855 A TW95139855 A TW 95139855A TW 95139855 A TW95139855 A TW 95139855A TW 200819112 A TW200819112 A TW 200819112A
Authority
TW
Taiwan
Prior art keywords
arterial
hardness
image
artery
intima
Prior art date
Application number
TW95139855A
Other languages
Chinese (zh)
Other versions
TWI317631B (en
Inventor
Yio-Hua Shau
Sun-Hua Pao
Jeou-Jong Shyu
Chung-Li Wang
Original Assignee
Sun-Hua Pao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun-Hua Pao filed Critical Sun-Hua Pao
Priority to TW95139855A priority Critical patent/TW200819112A/en
Publication of TW200819112A publication Critical patent/TW200819112A/en
Application granted granted Critical
Publication of TWI317631B publication Critical patent/TWI317631B/zh

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The present invention discloses a noninvasive method to evaluate the new normalized arterial stiffness from its longitudinal scanning and the real time blood pressure during cardiac cycles. Both the normalized arterial stiffness and intima-media thickness are capable of determining by the present invention, which comprises the fast arterial strain detection and the statistical application. Because of the high Repeatability and Reproducibility, the present invention is suitable for screening the coronary artery disease (CAD) or the disorder of metabolism.

Description

200819112 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種非侵入性血管材料硬度之檢測方法。一 種安全、快速運算且重複性高之非侵入性方法,動態 檢測人體動脈、内膜-中層厚度與硬度指標。 【先前技術】 目前最直接、最廣泛的動脈硬度指標為壓力脈波速度 (Pulsed wave Velocity,PWV )、增量硬度(incremental StlffneSS )與硬度沒(stiffness /5 ),當動脈整體順應性 (Compliance )減少時,pwv會增快、增量硬度與硬度冷都會 增高。 PWV的測量簡易、設備價廉,但是測量的假設條件很多, 而且無法針對特定的動脈進行硬化評估,增量硬度與硬度冷則 必須透過昂貴的非侵人儀器(如超音波系統)取得動脈形變, 該形變十分細微,因此量測技術的優劣成為關鍵。此外,有研 究者提出f用的增量硬度與硬度/3無法反應動脈材質的硬化。 利用連續動脈縱切影像裝置測量動脈受到血壓的形變,根 據Hooks Law間接推估血管硬度是最簡易的方式,但是還存 在許多不易解決的問題,首先是如何正確地追蹤血管的形變, 八人疋如何疋義有黏彈特性的動脈硬度,針對血管形變最廣泛 的測量方式是採用回波的相位追蹤(Phase Treking),例如: 5 200819112200819112 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for detecting the hardness of a non-invasive vascular material. A non-invasive method that is safe, fast, and reproducible, dynamically detecting human arterial, intima-media thickness and stiffness. [Prior Art] The most direct and extensive arterial stiffness indexes at present are Pulsed Wave Velocity (PWV), incremental stiffness (incremental StlffneSS) and hardness (stiffness /5), when the overall compliance of the artery (Compliance) When it is reduced, pwv will increase, and the hardness and hardness will increase. PWV is easy to measure and inexpensive, but there are many assumptions for measurement, and it is not possible to perform hardening evaluation for specific arteries. Incremental hardness and hardness must be achieved through expensive non-invasive instruments (such as ultrasound systems). The deformation is very subtle, so the pros and cons of measurement technology become the key. In addition, some researchers have suggested that the incremental hardness and hardness/3 used for f cannot reflect the hardening of the arterial material. Using continuous arterial longitudinal imaging device to measure the deformation of arteries by blood pressure, it is the easiest way to estimate blood vessel hardness indirectly according to Hooks Law, but there are still many problems that are difficult to solve. The first is how to correctly track the deformation of blood vessels. How to deny the arterial stiffness with viscoelastic properties, the most widely measured method for vascular deformation is the use of echo phase tracking (Phase Treking), for example: 5 200819112

Hokes (Ultrasound Med & Biol. 1 9 8 5;11:51-59)的 RFRF of Hokes (Ultrasound Med & Biol. 1 9 8 5; 11: 51-59)

Cross Correlation,或是 Kanai et al· (IEEE Trans. On Ultrasonics, Ferroelectrics,And Frequency Control, 1 99 6 ; 43 : 79 1 _ 8 1 0) , Hasegawa 與 Kanai ( IEEECross Correlation, or Kanai et al. (IEEE Trans. On Ultrasonics, Ferroelectrics, And Frequency Control, 1 99 6 ; 43 : 79 1 _ 8 1 0) , Hasegawa and Kanai ( IEEE

Transactions on Ultrasonics, Ferroelectrics, andTransactions on Ultrasonics, Ferroelectrics, and

Frequency Control,2004;5 1 ( 1 ):93 - 1 08 )提出 cost function優化的相位追蹤,另外 Rabben et al.(UlUasound • Med· & Bi〇l· 2002; 28(4): 5 07-5 1 7)還特別考慮回波的 Doppler shift修正的相位追蹤,以增加此工具的精確性。另外 也有使用間易回波追3從(Echo Tracking ),例如s h au,Y. W (Ultrasound Med&Biol. 1 9 9 9 ; 2 5 (9): 1 3 7 7 - 8 8 )。對於 人體總頭動脈(CCA )等明顯不過的形變,經驗告訴我們,動 脈周遭受到包覆肌肉的束缚造成測量極大變異,為此,本發明 提出了 一種非侵入性血管材料硬度之檢測方法,其具有簡易、 _重複H同之4寸性,且為了搭配此檢測技術,本發明同時發展動 脈邊緣追5從技術。 叉限於測量技術,複雜的動脈硬度也僅 能以指標表現。對Frequency Control, 2004; 5 1 (1): 93 - 1 08) Proposed phase tracking with cost function optimization, in addition to Rabben et al. (UlUasound • Med· & Bi〇l· 2002; 28(4): 5 07- 5 1 7) Specially consider the phase tracking of the Doppler shift correction of the echo to increase the accuracy of the tool. There are also Echo Tracking, such as s h au, Y. W (Ultrasound Med & Biol. 1 9 9 9 ; 2 5 (9): 1 3 7 7 - 8 8 ). For obvious deformations such as the common head artery (CCA) of the human body, experience has taught us that the arterial circumference is subjected to the binding of the coated muscle to cause great variation in measurement. For this reason, the present invention proposes a method for detecting the hardness of a non-invasive vascular material. It has a simple, _ repeat H and 4 inch, and in order to match this detection technology, the present invention simultaneously develops an arterial edge chasing technology. The fork is limited to measurement techniques and complex arterial stiffness can only be expressed as an indicator. Correct

匕疋將動脈在膨脹過程與放鬆過程過程都視為獨立的彈性材 料,它的翁學餞S Α Π B U _ 立的彈性材The arteries are regarded as independent elastic materials during the expansion process and the relaxation process. Its Weng Xue 饯 S Α Π B U _ vertical elastic material

拉伸實驗, 膨騰過程的上升曲線近似 exp函數,因此才定義 200819112 硬度沒,若是忽略這個現象則可採用更簡易的增量硬度,^In the tensile test, the rising curve of the swelling process approximates the exp function, so it is defined that the hardness of 200819112 is not. If this phenomenon is ignored, the simpler incremental hardness can be used. ^

使用增量硬度或是硬度石都可 痒 B 一 十估血官硬度的趨勢’且由於 這兩個指標都沒對於血管厚度進扞 古— 仃払準化,所以不算是動脈的 真貫硬度,除非每個受測者的動脈 & 7予戾與官徑比例差異不 大時’才能正確反映出血管材f的機械特性。The use of incremental hardness or hardness stone can be itchy B to estimate the trend of blood hardness. 'Because these two indicators are not for the thickness of the blood vessels - 仃払 quasi-chemical, so it is not the true hardness of the artery, Unless the arterial & 7 ratio of each subject is not significantly different from the official diameter, the mechanical properties of the vascular material f can be correctly reflected.

整體動脈硬化的物理機制主要來自於動脈壁的增厚或是 材質的硬化,Taniwaki et al.( Athe_eie_is 咖ww)研究指出在糖尿病第二期的病人裡,股 動脈的血管硬度與内膜-中層厚度呈現正相關,van P寧lee. 2 0 0 1 ; 3 2 : 4 5 4 )從PWV間接測量動脈硬度與血 官的内膜-中層厚度(Inti跡Media几他⑸,請)有顯著相 關,scuteri(Cardiology,2004; 43(8) 1 3 88 1 395)從々η 名又測者的長期研究裡,利用超音波二維灰階影像 刀析右頭動脈的内膜-中層厚度與血管的形變,他們的研究顯 不如果有新陳代謝相關疾病,例如高血壓、肥胖等,其血管硬 度均有明顯增加的趨勢,Jan(Ultras()und in Med. & Biol.,The physical mechanism of global arteriosclerosis mainly comes from the thickening of the arterial wall or the hardening of the material. Tanifaki et al. (Athe_eie_is coffee ww) study pointed out that in the second stage of diabetes patients, the femoral artery blood vessel hardness and intima-media The thickness is positively correlated, van P Ning lee. 2 0 0 1 ; 3 2 : 4 5 4 ) Indirect measurement of arterial stiffness from PWV is significantly associated with the intima-media thickness of the blood striatum (Inti trace Media (5), please) , scuteri (Cardiology, 2004; 43(8) 1 3 88 1 395) from the long-term study of 々η名 测者, using the ultrasonic two-dimensional gray-scale image to analyze the intima-media thickness and blood vessels of the right cephalic artery The deformation, their research shows that if there are metabolic related diseases, such as high blood pressure, obesity, etc., the blood vessel hardness has a significant increase trend, Jan (Ultras () und in Med. & Biol.,

Vq1· 30’ Ν〇· 2, ρρ· 1 47-1 54, 2004 )利用 2-D的超音波測 里CCA的圓切面積,研究提出年齡與cca的硬度指標呈一階的 線性關係(R=〇76),另從過去的研究經驗亦指出,Cca的硬 度指標會隨著年齡增加,若是具有新陳代謝方面或是心血管疾 病很明顯的動脈硬度與頸部IMT都明顯變大,Angelo Scuteri 200819112 (American College 〇f Cardiology V〇L 43? No. 8? 2 0 04 )測畺頸與股(carotid an(j fem〇rai )之間的 pwv與(2c;a 的IMT提到,在新卩東代謝異常的病患裡建議,IMT與硬度沒應 該視為兩個不同的獨立指標較為合適,另外,士 200 1;38:1181)經過長期的觀察高血壓的病 人的研究,提出主動脈的硬度對於冠狀動脈的疾病是一個獨立 的指標,雖然動脈硬度可以反應血管材質的順應性,但是對於 血官結構上的改變,特別是血管硬度與粥狀硬化的關係時,這 些疑問勢必藉由彈性力學來回答,因此整體動脈硬化是因為材 質本身硬化或是動脈壁增厚的原因,這是過去增量硬度或是硬 度/5都無法回答。 【發明内容】 有鑑於習知技術之缺失,本發明之目的係在提供一種非侵 入性血管材料硬度之檢測方法,以安全、可快速運算且重 複性高之非侵入性方法,動態檢測人體動脈血管硬度 與内膜-中層厚度。 本發明利用二維連續動脈縱切影像裝置(以二維超音波為 例)與連續動脈血壓訊號擷取裝置,透過快速的動脈影像邊緣 提取技術以及統計原理,取得活體動脈内膜_中層厚度與硬 度,其量測結果有很好的重複性,可以應用於心血管相關疾病 與新陳代謝異常之檢測與藥物療效的佐證,尤其本創作所提出 200819112 有動脈厚度修正之動脈硬度,可以更直接反應動脈管壁材質硬 化。 為達成上述目的,本發明提供一種非侵入性血管材料硬 度的檢測方法,其步驟包含:(a)測量手臂血管的收縮壓與舒 張壓替代人體總頸動脈(CCA)的血壓;(b)—動脈縱切影像 裝置及電腦分析平台,並以適當的接觸力測量人體總頸動脈, 或其它欲測量之動脈;(c)將血管的動脈直徑脈動之二維影像 顯示於螢幕,並調整動脈影像掃瞄方向提供動脈縱切面影像; ⑷確認動脈縱切面影像的正確性,確定超音波確實掃目苗到動 脈最大直徑的中心位置;⑷將數個心跳週期的動脈縱切影 像傳輸至—電腦平台;(f)㈣脈縱崎描影像的刻度轉換影 像像素的真實比例尺度;(g)根據動脈璧硬度變化梯度最大 處m始第-張影像之動脈⑽與外膜的邊緣門捏;⑻ 處理連續的動脈管徑資料,計算動脈内膜·中層厚度分佈圖 (IMT),以及動脈管徑的時間變化曲線;及⑴以統計原理 估算最佳IMT與及計算動脈硬度的新參數。 在部分實施態樣中,本發明之非侵入性血管材料硬度之檢 測方法,其巾㈣(b)之動驗切影㈣置包含適當接觸力, 其中該接觸力應小於舒張壓。 在某些實施態樣中’本發明之非侵人性血f材料硬度之檢測 方法,其中步驟⑷之動脈縱切面必須包含動脈外膜(场加㈣ 200819112 與内膜·中層(Intima_Media;)。 本發明之非侵入性血管材料硬度之檢測方法,進一步包含 -動脈影像邊緣_方法,其中係㈣影像邊緣的快速相位追 蹤(faStphasetracking)技巧及回波追蹤(ech〇track_)修 正;其中,該動脈影像邊緣制方法係以影像梯度或強度資料 進行離散傅力葉轉換(DFT),取數個低頻的相位角差,經由 快速相位追_助之下的回波追縱修正,提取動脈壁實際的位Vq1· 30' Ν〇· 2, ρρ· 1 47-1 54, 2004 ) Using the 2-D ultrasonic measurement of the circular cut area of CCA, the study proposes a first-order linear relationship between the age and the hardness index of cca (R =〇76), and from past research experience, it is pointed out that Cca's hardness index will increase with age. If there is metabolic or cardiovascular disease, the arterial stiffness and neck IMT are obviously enlarged, Angelo Scuteri 200819112 (American College 〇f Cardiology V〇L 43? No. 8? 2 0 04) Measure the pwv between the neck and the stock (carotid an (j fem〇rai) and (2c; a IMT mentioned in the new 卩Patients with abnormal metabolism in the east suggest that IMT and hardness should not be considered as two different independent indicators. In addition, Shi 200 1; 38:1181) After long-term observation of patients with hypertension, the aorta was proposed. Hardness is an independent indicator of coronary artery disease. Although arterial stiffness can reflect the compliance of vascular materials, these changes must be made by the elasticity of changes in blood structure, especially the relationship between vascular hardness and atherosclerosis. Mechanics to answer, The overall arteriosclerosis is caused by the hardening of the material itself or the thickening of the arterial wall, which is in the past, the incremental hardness or the hardness of 5 can not be answered. [Invention] In view of the lack of the prior art, the object of the present invention is The invention provides a non-invasive method for detecting the hardness of a vascular material, and dynamically detects the arterial stiffness and the intima-media thickness of the human body in a safe, fast-calculating and highly reproducible non-invasive method. The present invention utilizes a two-dimensional continuous artery longitudinal The imaging device (taking 2D ultrasound as an example) and the continuous arterial blood pressure signal acquisition device, through the rapid arterial image edge extraction technology and statistical principle, obtain the intima-media thickness and hardness of the living artery, and the measurement results are very high. Good reproducibility can be applied to the detection of cardiovascular related diseases and metabolic abnormalities and the efficacy of drugs. In particular, the arterial hardness of arterial thickness correction proposed in 200819112 can directly reflect the hardening of arterial wall material. Purpose, the present invention provides a method for detecting the hardness of a non-invasive vascular material, The steps include: (a) measuring the systolic and diastolic blood pressure of the arm blood vessel to replace the blood pressure of the total carotid artery (CCA); (b) the arterial longitudinal imaging device and the computer analysis platform, and measuring the total body with appropriate contact force Carotid artery, or other artery to be measured; (c) Display a two-dimensional image of the arterial diameter of the blood vessel on the screen, and adjust the direction of the arterial image to provide an image of the longitudinal section of the artery; (4) Confirm the correctness of the image of the longitudinal section of the artery, Determining that the ultrasonic wave actually sweeps the center of the eye to the maximum diameter of the artery; (4) transmits the longitudinal longitudinal image of several heartbeat cycles to the computer platform; (f) (four) the true scale of the scale-converted image pixel of the longitudinal image of the pulse (g) According to the arterial sputum hardness gradient, the maximal m-first image of the artery (10) and the edge of the adventitia; (8) processing the continuous arterial diameter data, calculate the arterial intima-media thickness map (IMT) And the time-varying curve of the arterial diameter; and (1) the new parameters for estimating the optimal IMT and calculating the arterial stiffness by statistical principle. In some embodiments, the method for detecting the hardness of the non-invasive vascular material of the present invention, the surgical cut (4) of the towel (4) (b) includes a suitable contact force, wherein the contact force should be less than the diastolic pressure. In certain embodiments, the method for detecting the hardness of a non-invasive blood material of the present invention, wherein the longitudinal section of the artery of step (4) must comprise an adventitia of the artery (field plus (4) 200819112 and intima/media (Intima_Media;). The invention discloses a method for detecting the hardness of a non-invasive vascular material, further comprising an -arterial image edge method, wherein the faStphasetracking technique and the echo tracking (ech〇track_) correction are performed on the image edge; wherein the artery image The edge method is based on image gradient or intensity data for discrete Fourier transform (DFT), taking several low-frequency phase angle differences, and extracting the actual position of the arterial wall via echo correction under fast phase chasing.

移。 T 本發明之非侵入性血管材料硬度之檢測方法,其中進一步 包含動脈影像縱切面積的時間移動,並利用其面積變化來估算 動脈的形變。 本發明之非侵入性血管内膜_中層厚度定量方法採用大量 連績影像或資料進行統計評估,考慮整個心、跳週期之下的平均 厚度。 、本1日月之較佳實施態樣,其中動脈硬度(⑽心! sUffness) 必須付合揚氏係數,包含_ΙΜτ替代整體動脈壁厚度計算該 動脈硬度。 本t明之非侵入性血管材料硬度之檢測方法,其中ΙΜτ 厚度又化可用於計#該層的材質硬度,包+刚了揚氏模量 (Y_g s Modulus )與切變模量(shear M〇dulus)。 【實施方式】 200819112 第圖係為本發明之非侵入性血管硬度檢測方法之示音 圖’其中由於無法測得人體總頸動脈(CCA )的血壓,量測手 臂血管的收縮壓與舒張壓替代6。 提供超音波探頭4(線性探頭為最佳)及電腦分析平台Μ ; 並以適當的接觸力(小於舒張壓)測量於人體總頸動脈(CCA) 2,或其它欲測量之動脈(建議動脈直徑大於0.2mm以上)。 將血笞的動脈直徑脈動二維影像(B_m〇de)顯示於螢幕,調 整超音波探頭掃瞄方向為動脈縱切面,縱切面長度可能會礙於 探頭的掃瞄範圍而異(長度至少lcm以上)。 確認動脈縱切面影像8的正確性,數公分長度的縱切面必 須包含上下邊緣的動脈内膜與外膜,以此確定超音波確實掃瞄 到動脈最大直徑的中心位置。 將數個心跳週期的動脈縱切影像8經介面丨2傳輪至電腦平 台16,影像幅速率(FrameRate)至少⑽以上,使用動脈硬 度分析軟體18,由超音波掃描影像的刻度轉換影像像素的真實 比例尺度’設定初㉟(第—張影像)動脈内膜與外膜的邊緣門 檻,處理連續的動脈管徑資料,計算動脈内膜_中層厚度分佈 圖Untima-medla thlckness; IMT),以及動脈管徑的時間 變化曲線。 最後以統計原理估算最佳IMT與及計算動脈硬度的新 參數。 200819112 實施例一:動脈測量方法改進 通常測量血管脈動最常想到的方式是以時間軸為基準,根 據相同位置進行echo tracking的M-Mode,或者採用更複雜的 2-D景彡像進行動脈圓切斷面積的形變作為動脈硬度計算的依 據,很可惜地,他們都隨著動脈的位置差異頗大,為此我們採 用動脈的縱切面的動脈面積來做一些測量方法上的調整,測量 動脈縱切面。由於内膜_中層(Intima — media)必須在超音波垂 直入射的狀態才能夠清晰浮現,為了確認影像的縱切掃瞄面為 最大的動脈直徑之處,縱切面必須包含血管的内膜-中層 (inuma - media)才能保證掃瞄經過動脈中心,同時這是一個評 估影像擷取正確與否的重要依據’如第二圖A所示。 一般超音波探頭與掃瞄深度可以涵蓋血管的長度約數 cm’因此不同於Μ_Μ_或是2D的動脈斷面積的測量,動脈應 變解析度會隨著縱切長度而明顯增高。應變解析度的提高是完 全經由測量所獲得的資料如第二_所示。通常動脈運動的變 形僅有數個影像點(pixeIs),為此得採用數值内插增加解析 度’如第二圖C所示,數值内插的形式’其實不會增加測量最 後的正確性。 透k動脈Y方向(縱軸)掃瞒回波強度(影像亮度)的 動脈壁局部梯度最大卢曰 下 又瑕大處取為起始值,沿著X軸(橫 快速邊緣追蹤(夂者t 平、七'罕由J進仃 /丨 考貫施例二之說明)並著色,同理將偵測韌 脈外膜的技術用於內胺扁、1 』竹俏劂動 Μ偵測,可以同時採甩面積方式定義 it 200819112 IMT與冑脈的應變⑽叫,如第三圖所示。 如第一圖所不,其中在某個t時刻,動脈縱切面的中心軸 長度Lc⑴,動脈縱切面積(不含下層内膜)蝴,動脈縱切面 積(含下層内膜)Ao⑴,動脈縱切最小面積(含下層内膜) Amin ° 口 此平均官牷 _· Di_r(t)= Ai(t) / Lc⑴ outer (t)=Ao(t) / Lc(t) 平均mT計算如下備⑴=m⑴;動脈的應 變計算如下:strain⑴=A。⑴/Amu 0 經過以上分析之後,可以輸出ΙΜΤ分佈圖,如第四圖 斤丁與動脈官徑隨時間變化圖,如第四圖β所示,做為動 脈健康與否的評估,尤其是ΙΜΤ與動脈硬度,其中,第四圖A 為1MT分佈圖,長條圖分佈越集中代表測量越正^第四圖$ 為:脈縱切面積與時間的關係圖,在沒有任何數值内插,亦 有高解析的波形曲線。 比較表 複性 正確性 動脈代表性shift. The method for detecting the hardness of a non-invasive vascular material according to the present invention further comprises temporal movement of the longitudinal section area of the artery image, and uses the change in area to estimate the deformation of the artery. The non-invasive endocardial _ intermediate layer thickness quantification method of the present invention uses a large number of consecutive images or data for statistical evaluation, taking into account the average thickness under the entire heart and hop period. The preferred embodiment of this month, in which the arterial stiffness ((10) heart! sUffness) must be combined with the Young's coefficient, including _ΙΜτ instead of the overall arterial wall thickness to calculate the arterial stiffness. The method for detecting the hardness of non-invasive vascular materials, wherein the thickness of ΙΜτ can be used to calculate the hardness of the material of the layer, including the Young's modulus (Y_g s Modulus) and the shear modulus (shear M〇) Dulus). [Embodiment] 200819112 The figure is a sound diagram of the non-invasive blood vessel hardness detecting method of the present invention. In which the blood pressure of the human common carotid artery (CCA) cannot be measured, and the systolic blood pressure and diastolic blood pressure of the arm blood vessel are measured instead. 6. Provide ultrasonic probe 4 (linear probe is the best) and computer analysis platform Μ; and measure the total carotid artery (CCA) 2 with appropriate contact force (less than diastolic pressure), or other arteries to be measured (recommended arterial diameter) More than 0.2mm or more). The bloody artery diameter pulsation 2D image (B_m〇de) is displayed on the screen, and the scanning direction of the ultrasonic probe is adjusted to be the longitudinal section of the artery. The length of the longitudinal section may vary depending on the scanning range of the probe (the length is at least 1 cm or more). ). To confirm the correctness of the longitudinal longitudinal image 8, the longitudinal section of several centimeters must contain the intima and adventitia of the superior and inferior margins to determine that the ultrasound actually scans to the center of the largest diameter of the artery. The arterial longitudinal image 8 of several heartbeat cycles is transmitted to the computer platform 16 via the interface 丨2, and the image frame rate (FrameRate) is at least (10) or more. The arterial stiffness analysis software 18 is used to convert the image pixels from the scale of the ultrasonic scanned image. The true scale scale 'sets the edge threshold of the intima and adventitia of the initial 35 (first image), treats the continuous arterial diameter data, calculates the intima-medla thickness of the arterial intima-medla thlckness; IMT), and the arteries The time curve of the pipe diameter. Finally, the optimal IMT and new parameters for calculating arterial stiffness are estimated by statistical principles. 200819112 Example 1: Improvement of arterial measurement method The most common way to measure vascular pulsation is to use the time axis as the reference, perform M-Mode of echo tracking according to the same position, or use a more complicated 2-D image to perform arterial circle. The deformation of the cut-off area is used as the basis for the calculation of arterial stiffness. Unfortunately, they all vary greatly with the position of the arteries. For this reason, we use the arterial area of the longitudinal section of the artery to make some measurement adjustments. section. Since the intima-media must be clearly visible in the state of vertical incidence of ultrasound, in order to confirm that the longitudinal scanning plane of the image is the largest artery diameter, the longitudinal section must contain the intima-media of the blood vessel. (inuma - media) can ensure that the scan passes through the center of the artery, and this is an important basis for assessing the correctness of image capture, as shown in Figure A below. In general, the ultrasonic probe and the scanning depth can cover the length of the blood vessel by about several cm'. Therefore, unlike the measurement of the arterial sectional area of Μ_Μ_ or 2D, the resolution of the arterial strain is significantly increased with the length of the slit. The improvement in strain resolution is the data obtained by measurement completely as shown in the second _. Usually, the deformation of the arterial motion has only a few image points (pixeIs). To do this, numerical interpolation is used to increase the resolution. As shown in Figure C, the numerical interpolation form does not increase the correctness of the measurement. Through the k-axis Y-direction (vertical axis) broom echo intensity (image brightness), the local gradient of the arterial wall is the maximum value of the maximum and the maximum value is taken along the X-axis (horizontal fast edge tracking) Ping, seven 'rare by J Jinyu / 丨 test the second example of the description) and coloring, the same principle will be used to detect the outer membrane of the tough membrane for the internal amine flat, 1 』 bamboo 劂 劂 Μ detection, can At the same time, the area of the picking area defines it 200819112 IMT and the strain of the vein (10) is called, as shown in the third figure. As shown in the first figure, at a certain time t, the central axis length of the longitudinal section of the artery is Lc(1), and the longitudinal section of the artery is cut. Area (excluding the underlying intima), the longitudinal section of the artery (including the underlying intima) Ao (1), the smallest area of the longitudinal section of the artery (including the underlying intima) Amin ° The average bureaucratic _· Di_r(t) = Ai(t / Lc(1) outer (t)=Ao(t) / Lc(t) The average mT is calculated as follows: (1)=m(1); the strain of the artery is calculated as follows: strain(1)=A. (1)/Amu 0 After the above analysis, the ΙΜΤ distribution map can be output. For example, as shown in the fourth figure, as shown in the fourth figure, as the arteries are healthy or not, as shown in the fourth figure. Estimate, especially the hardness of the ankle and arteries, wherein the fourth figure A is the 1MT distribution map, the more concentrated the distribution of the bar graph represents the more positive the measurement ^ the fourth figure $ is: the relationship between the longitudinal section of the pulse and the time, in no Numerical interpolation, also has a high-resolution waveform. Comparison of renaturation correct arterial representation

可增加解析度? /3 200819112 實施例二:動脈内膜-中層厚度(IMT)計算方法改進 採用2D的動脈斷面積的測量解析㈣實較佳,甚至連驗 在舒張麼與I·其間的厚度變化都可測得,雖然贿隨時間 變化的波形不是很平滑,但是有明顯的負相關性(r=_G 〜在 收縮壓時,驗較薄,舒張屡時,賭較厚,如第五圖A所示,Can increase the resolution? /3 200819112 Example 2: Intra-arterial-media thickness (IMT) calculation method improvement 2D arterial sectional area measurement analysis (4) is better, even the thickness variation of diastolic and I can be measured Although the waveform of bribes changing with time is not very smooth, there is a significant negative correlation (r=_G~ in systolic blood pressure, thinner, diastolic, and thicker, as shown in Figure A,

k種IMT的變化是過去M〇ti〇n_M〇de的相位追縱⑽_ trackmg)無法辦到的,如第五圖B所示,其中第五圖a為數公分 CCA縱切面積運算解析 動脈管徑成反比,另第五圖B為在一維影像 解析,謝與血壓或是動脈管徑完全無法測 由圖可以明顯發現IMT與血壓或是The change of k kinds of IMT is impossible in the past M〇ti〇n_M〇de phase tracking (10)_trackmg), as shown in the fifth figure B, wherein the fifth figure a is the centimeter CCA slitting area operation to resolve the arterial diameter In inverse proportion, the other fifth picture B is a one-dimensional image analysis, Xie and blood pressure or arterial diameter is completely undetectable. The figure can clearly detect IMT and blood pressure or

Motion-Mode 運算 量0 傳統IMT #算是採用動脈縱切面進行回波追縱(Ech〇 真king) $疋相位追縱(ph獄㈣來提取動脈内膜Motion-Mode operation quantity 0 Traditional IMT # calculation is to use the longitudinal section of the artery for echo tracking (Ech〇 true king) $疋 phase chasing (ph prison (four) to extract the endarterial artery

=界’並進^計算厚度,回波追縱在動脈壁影像品質較差時, :有破點或斷點發生,導致追縱失敗,雖然採用相位追縱較少 ^生上述問題’但是相位追縱結果並不合理,為此,本發明採 用大里的回波追縱連續影像,獲得謝分佈,並由常態分佈的 條件來估算平始τλΛΤ - ’如此不但可避免特殊狀況之下的干擾、 J女呼吸、文測者晃動等因素,也會增加測量正確性。 其中相位追縱( 的動脈壁運動偵=Boundary 'and enter ^ to calculate the thickness, echo tracking in the arterial wall image quality is poor, : breakpoints or breakpoints occur, resulting in failure to trace, although the use of phase tracking is less ^ the above problem 'but the phase tracking The result is unreasonable. For this reason, the present invention uses the echo of the Dali to trace the continuous image, obtains the Xie distribution, and estimates the normal τλΛΤ - ' from the condition of the normal distribution. Thus, not only can the interference under special conditions be avoided, J female Factors such as breathing and shaking of the tester will also increase the accuracy of the measurement. Arterial wall motion detection

Phase Tracking)是最廣為使用 測技術。它運用在一維的 200819112Phase Tracking) is the most widely used measurement technology. It is used in one dimension of 200819112

Motion-Mode影像是可行且穩定,但在二維的縱切影 像則完全不適當,它也常被誤用在IMT的測量。既然 縱切的動脈影像是由多個超音波探頭所測得的獨立 影像,相位追蹤是根據動脈壁的相似性質來推估動脈壁的可 能運動,如使用相似性的條件,就失去了每筆測量的獨立性。 本發明係改良傳統的相位追縱,讓其運算加速,稱為快速相位 追蹤(Fast Phase Tracking)作為初步的動脈壁運動粗估,然後在 經由回波追蹤(Ech0 Tracing)作為修正,因此該方法有傳統 相位追縱的敎性、以及改良後的快速度,同時具有測量的獨 立性等優點,如第六圖所示。其中第六圖A,制動脈邊緣回 波(Echo)梯度最大處,取得座標γ〇與回波強度b〇作為所有動脈 璧參考基$,第六圖B為快速相為追縱(FastphaseT⑽㈣, 從Υ〇取得L長度的資料進行DFT運算,其中僅取得低頻^ 2Hz)的相位差Δφ,進行初步動脈璧邊緣提取口 疋f),另第六圖c為回波強度追蹤修訂(Ech〇 丁^咖吨 Correction),從Yi附近搜尋相同的B〇的位置為動脈璧邊緣w。 實施例三:動脈硬度計算方法改進 既然有了物理模型,剩下來的工作就是如何定義動脈的應 力與應變’動脈應變的定義h = (D_D。)/D。,D。是動脈 在不又任何外壓的原始管徑’由於動脈為多層非等向材料, 本身P有内應力存在,況且活體實驗亦無法取得原始管徑,因Motion-Mode images are feasible and stable, but they are completely inappropriate in two-dimensional slit images, and they are often misused in IMT measurements. Since the longitudinal arterial image is an independent image measured by multiple ultrasound probes, phase tracking is based on the similar properties of the arterial wall to estimate the possible motion of the arterial wall. If the condition of similarity is used, each pen is lost. The independence of the measurement. The invention improves the traditional phase tracking and accelerates its operation, which is called Fast Phase Tracking as a preliminary rough estimation of arterial wall motion, and then is corrected by echo tracking (Ech0 Tracing), so the method has The traditional phase tracking and the improved speed, as well as the independence of measurement, etc., as shown in the sixth figure. In the sixth picture A, the maximum Echo gradient is obtained, and the coordinates γ〇 and echo intensity b〇 are obtained as reference bases for all arterial ridges. The sixth figure B is fast phase tracking (FastphaseT(10)(d), from Υ〇 Obtain L-length data for DFT operation, in which only the phase difference Δφ of low frequency ^ 2 Hz) is obtained, and the initial arterial edge extraction port f) is performed, and the sixth figure c is the echo intensity tracking revision (Ech〇丁^咖吨Correction), searching for the same B〇 position from Yi near the edge of the artery w w. Example 3: Improvement of arterial stiffness calculation method Now that there is a physical model, the remaining work is how to define the stress and strain of the artery. The definition of arterial strain is h = (D_D.)/D. , D. It is the original diameter of the artery without any external pressure. Because the artery is a multi-layer non-isotropic material, there is internal stress in the P itself, and the original tube diameter cannot be obtained in the living experiment.

1S 200819112 此傳統應變最簡單的疋義ε = ( D — Dsys) /Dsys,Dsys即是收 縮期的動脈管徑。 在超音波的影像底下,動脈的包含内膜(intima and media) 與外膜(adventitia)與動脈外的肌肉與脂肪等,由於intima 只是很薄的一層細胞,超音波是無法偵測到,但是media含有 豐富的coUagen造成硬度較大,尤其是在總頸動脈的成像明 • 顯,至於外膜則是較鬆軟的組織,厚度約為爪以“的1/3〜1/2 左右,若是假設每一個人的都Dsys/t差距不大,常用的增量 硬度(Incremental stiffness)與硬度(stiffness 厶)表示如下: Incremental Stiffness = S sys 一 ε dia stiffness β = 4^^)一^(匕。) S sya - S dia PSyS與Pdia,分別是氣袋式血壓計測量動脈的收縮壓與舒張 廢。 ^ • ^ 脈的夕層材質造成内部應力分佈不均,動脈内側的血壓 與動脈外側組織的壓力很難在活體狀態且無干擾之下正確測 1: ’所以實際的動脈應力的线確實困難重重,若是把動脈簡 化成薄的均質材料,而且忽略動脈外側組織的影響,應力的定 義P就十分容易了,如此一來,理論上動脈的硬度的正確計 算如下: 200819112 ^sys ^ ^dia t1S 200819112 This traditional strain is the simplest ε = ε = ( D - Dsys) / Dsys, Dsys is the arterial diameter of the contraction period. Under the ultrasound image, the arteries contain intima and media and adventitia and muscles and fat outside the arteries. Because intima is only a thin layer of cells, ultrasound is undetectable, but Media is rich in coUagen, which results in higher hardness, especially in the imaging of the common carotid artery. As for the outer membrane, it is a soft tissue, and the thickness is about 1/3~1/2 of the claw. If it is hypothetical Everyone has a small Dsys/t gap. The commonly used Incremental stiffness and stiffness 表示 are expressed as follows: Incremental Stiffness = S sys - ε dia stiffness β = 4^^) One ^ (匕.) S sya - S dia PSyS and Pdia, respectively, are sphygmomanometer and diastolic waste measured by an air bag sphygmomanometer. ^ • ^ The nucleus of the vein causes uneven internal stress distribution, blood pressure inside the artery and pressure on the lateral tissue of the artery It is difficult to measure correctly in the living state without interference: 'So the actual line of arterial stress is really difficult, if the artery is simplified into a thin homogeneous material, and the lateral tissue of the artery is ignored. The effect, the definition of stress P is very easy, so the theoretical calculation of the hardness of the arteries is as follows: 200819112 ^sys ^ ^dia t

Dsys ^sys £dia ’ 很可惜地因為動脈外膜與周邊包覆組織難以在超音波影 像之下正確區別,因此雖有正確的物理理論,卻難以正確計 算,不過根據Fimg的體外生醫材料拉伸實驗裡證實,動脈 内膜的材貝硬度約為外膜的5〜丨〇倍,因此我們將動脈硬度 φ 计异方式進行合理的改良,經過改進的動脈硬度計算方式,更 能凸顯動脈材質的變化,除此之外也較符合材料力學理的薄管 硬度計算的理論。這値現象可以在我們的臨床測試中證實其重 要性。 ' μ ^ _ ^sys - Pdia Dsyjs Ssys-^dlQ IMT E Jn(Psys)-HPdia) DSysDsys ^sys £dia ' It is a pity that because the adventitia and surrounding tissue are difficult to distinguish correctly under ultrasound images, it is difficult to calculate correctly because of the correct physical theory, but according to the in vitro biomedical materials of Fimg In the extension experiment, it was confirmed that the hardness of the intima of the artery is about 5 to 丨〇 times that of the outer membrane. Therefore, we can reasonably improve the arterial stiffness φ. The improved arterial stiffness calculation method can highlight the arterial material. The change, in addition to this, is more in line with the theory of thin tube hardness calculation of material mechanics. This paradox can be confirmed in our clinical tests. ' μ ^ _ ^sys - Pdia Dsyjs Ssys-^dlQ IMT E Jn(Psys)-HPdia) DSys

β €sys ' ^dia IMT 第五圖A顯示由於測量技術的提升,可以發現在收縮壓時imt 鲁被壓縮。IMT被壓縮最大的時間比血壓最高時提前^發生, 這是由於血流沖刷血管壁的流體剪應力造成的結果。透過彈性 力學的理論,可以透過血壓、IMT形變與At計算IMT的楊氏 - 模量(Y〇img,s Modulus )與切變模量(处咖M〇dulus)。 實驗結果 1 ·採用動脈縱切面比斷切面有更高的測量重複性· 採用了 2-D的CCA斷切面與本文採用的縱切面的分析結 果相比較,在相近的時間,採用抑丨]!_111)15000的5〜i2mh°z 200819112 的線性探頭量測CCA的2 辦《μ二a 由门一… θ 2七斷切面與縱切面各十次,掃瞄深 度固疋在4.8cm,使用超音诚凡 友預5又的冰度補償設定,每次量測 均操取連續的9G fmeS經由網路下載為無壓縮的d咖格式進 ㈣端分:,每次測量完後,探頭必須離開皮膚表面,之後再 -人根據之别的大略位置進行下一 _ & :目旦 , 仃卜认測里,十次的結果,顯示採 用断切面的結果略高於縱切面 管 囬所^ #的血官硬度指標。不過縱 切面的分析結果較佳(CV= 1 〇〇/〇 ) ,5於後 〇; 至於傳統圓切斷面的分析 結果明顯較不穩定(CV = 19% ),▲ 曰^ ^ 19/。),因此,我們認為縱切面的測 置方式有較南的重複性。 2·是否不同的操作者會造成相異的分析結果: 徵求Η)位自願且無任何心血管疾病的受測者進行CM硬 ,檢測的重複性驗證,自願受測者兩次測量均間隔—週以上, 每次測量分析分別由2位操作者獨立蒐集資料,測量处果後的 統計發現’雖然不同的操作人員有會略微不同的結果,但是並 無統計上的差異(!><0·0_),兩者之間的測量結果高度正相 關,選取6次結果計算intra reIiabimy的結果㈣〜22% 均為 12.8%。 ^β €sys ' ^dia IMT Figure 5A shows that due to the improvement of measurement technology, it can be found that imt Lu is compressed at systolic pressure. The maximum time for IMT to be compressed occurs earlier than the highest blood pressure, which is the result of fluid shear stress on the blood vessel wall. Through the theory of elastic mechanics, the Young's modulus (Y〇img, s Modulus) and the shear modulus (M〇dulus) of IMT can be calculated by blood pressure, IMT deformation and At. EXPERIMENTAL RESULTS 1 • The longitudinal section of the artery has a higher measurement repeatability than the section of the section. The 2-D CCA section is compared with the analysis of the longitudinal section used in this paper. At similar time, the suppression is used! _111) 15000 5~i2mh°z 200819112 Linear probe measurement CCA 2 "μ2a by the door one... θ 2 seven-cut and longitudinal sections each ten times, the scanning depth is fixed at 4.8cm, using super The sound compensation setting of the 5th and 15th fmeS is downloaded through the network as the uncompressed d coffee format. (4) End points: After each measurement, the probe must leave. The surface of the skin, and then - the person according to the other general position to carry out the next _ &: the target, the results of the test, ten times, showing that the result of using the cut surface is slightly higher than the longitudinal section of the tube back ^ # Blood hardness index. However, the analysis results of the longitudinal section are better (CV = 1 〇〇 / 〇), 5 is later 〇; the analysis results of the traditional circular cut surface are significantly unstable (CV = 19%), ▲ 曰 ^ ^ 19 /. Therefore, we believe that the longitudinal section is measured in a more repeatable manner. 2. Whether different operators will result in different analysis results: Solicitation of CM 自愿 voluntarily and without any cardiovascular disease, the CM is hard, the test is repetitive, and the voluntary test is measured twice. Over the week, each measurement analysis was collected by two operators independently, and the statistical results after the measurement were found. 'Although different operators have slightly different results, there is no statistical difference (!>< 0·0_), the measurement results between the two are highly positively correlated, and the results of the calculation of intra reIiabimy are selected 6 times (4) ~22% are 12.8%. ^

Member Mean Stiffness β K P "~ A 0.067 Mpa 0.955 -—--- ———. <0.0001 _ B ------ 0.074 Mpa ——-------- 為了減少測量上的誤差,最後我們針對DM第― (n= 8)與少部分CAD病患(n=7)進行CCA硬度指標檢測,另外 我們同時也針對無此疾病的正常受測者進行測量作為节研办 200819112 測量的項目除了 CCA的硬度指標之外,軟體同時 也什异母一位受測者的][mt。 3 · 6¾床測試 取樣 平均年齡39 正常受測者(Normal)年齡分佈(2〇〜73) ±14 (n=36) 〇Member Mean Stiffness β KP "~ A 0.067 Mpa 0.955 -—--- ———. <0.0001 _ B ------ 0.074 Mpa ———————— In order to reduce the measurement error Finally, we tested the CCA hardness index for DM-(n=8) and a small number of CAD patients (n=7), and we also measured the normal subjects without this disease as the syllabus 200819112. In addition to the hardness index of the CCA, the software also has a different subject of the tester][mt. 3 · 63⁄4 bed test Sampling Average age 39 Normal subject (Normal) age distribution (2〇~73) ±14 (n=36) 〇

糖尿病患者(DM)年齡分佈(56〜82 ) (n=28) 〇 平均年齡62 ±8 心血官疾病患者(CAD)年齡分佈為56〜82,平均為64 5 + 9 (n=7) 〇 '、、、 · _ 結果 a·健康族群年齡與動脈硬度成正比,為中度相關μ)。 b. CAD(15.3±6.3MPa)比 N〇rmal(8.3±3.3MPa)族群的動脈硬 度高(P< 2xl0·6)。 c. CAD(0.93±0.28 mm)比 N〇rmal(〇.33±0.1 mm)族群的 IMT 大(P< lxl(T12) 〇 d. DM(15±5.9 MPa)比 Normal(8.3±3.3 MPa)族群的動脈硬度 高(P<3xl(T7)。 又 e. DM(0.52±0.18mm)比 N0rmal(〇.33±0.lmm)族群的 ΙΜτ 大 (Ρ< 9χ10·ν f·若是考慮傳統的動脈硬度stiffness/?,CAD與DM族群是分 不開的(P二0.9),採用本專利提出的經過動脈壁標準化的動脈材 質硬度指標,DM(3.1±0.5)的材質硬化比CAD(L9±〇.25)來的嚴 重(Ρ=0·001) 〇 1¾ 200819112 【圖式簡單說明】 第一圖係本發明之非侵入性血管材料硬度之檢測方法之示意 圖。 第二圖A係本發明之CCA超音波原始圖。 ® 第二圖B係本發明之CCA縱切面積圖。 第二圖C係本發明之CCA縱切面積隨時間變化之波形圖。 第二圖係本發明之之CCA縱切面積圖應用於動脈内膜偵測。 第四圖A係本發明之IMT分佈圖。 第四圖B係本發明之動脈縱切面積與時間的關係圖。 第五圖A係本發明之CCA縱切面積運算解析圖。 弟五圖B係本發明之一維影像Motion-Mode運算解析。 第六圖A係利用動脈邊緣回波(Echo)梯度最大處,取得座標與 φ 回波強度。 第六圖B係快速相位追縱(Fast Phase Tracking)圖。 第六圖C係回波強度追蹤修正(Echo Tracking Correction)圖。 200819112 【主要元件符號說明】 2 人體總頸動脈(CCA) 4 動脈縱切影像裝置 6 血壓計氣袋 8 動脈連續影像組成器 10 具有輸出收縮壓與舒張壓之血壓計 1 2 影像傳輸介面 14 無線訊號傳輸輸入介面(藍芽或USB) 1 6 PC平台 18 動脈硬度分析軟體Diabetes (DM) age distribution (56~82) (n=28) 〇 Mean age 62 ±8 Cardiac disease patients (CAD) age distribution is 56~82, average 64 5 + 9 (n=7) 〇' 、,·· _ Result a· The healthy ethnic group is proportional to the arterial stiffness and is moderately correlated μ). b. CAD (15.3 ± 6.3 MPa) is higher than the arterial stiffness of the N〇rmal (8.3 ± 3.3 MPa) group (P < 2xl0·6). c. CAD (0.93±0.28 mm) is larger than IMT of N〇rmal (〇.33±0.1 mm) group (P< lxl(T12) 〇d. DM(15±5.9 MPa) than Normal(8.3±3.3 MPa) The arterial stiffness of the ethnic group is high (P<3xl(T7). And e. DM(0.52±0.18mm) is larger than the ΙΜτ of the N0rmal (〇.33±0.lmm) group (Ρ<9χ10·ν f·if considering the traditional The stiffness of the arterial stiffness/?, CAD and DM group are inseparable (P 0.9), using the arterial material hardness index standardized by the arterial wall proposed in this patent, DM (3.1 ± 0.5) material hardening ratio CAD (L9 ± 〇.25) Seriousness (Ρ=0·001) 〇13⁄4 200819112 [Simplified illustration] The first figure is a schematic diagram of the method for detecting the hardness of the non-invasive vascular material of the present invention. CCA Ultrasonic Original Image ® Second Figure B is a CCA slitting area map of the present invention. Second Figure C is a waveform diagram of the CCA slitting area of the present invention as a function of time. The second figure is the CCA vertical of the present invention. The cut-area map is applied to the detection of arterial intima. The fourth panel A is the IMT profile of the present invention. The fourth panel B is the relationship between the longitudinal section area of the artery and the time of the present invention. A is an analytical analysis of the CCA slitting area calculation of the present invention. The fifth drawing B is an analysis of the one-dimensional image Motion-Mode calculation of the present invention. The sixth figure A uses the maximum edge of the echo of the arterial edge echo (Echo) to obtain the coordinates and φ Echo intensity. Figure 6 is a Fast Phase Tracking diagram. Figure 6 is an Echo Tracking Correction diagram. 200819112 [Main component symbol description] 2 Human total carotid artery (CCA) 4 Artery longitudinal imaging device 6 Sphygmomanometer air bag 8 Arterial continuous image composer 10 Sphygmomanometer with output systolic and diastolic pressures 1 2 Image transmission interface 14 Wireless signal transmission input interface (Bluetooth or USB) 1 6 PC platform 18 arterial stiffness analysis software

21twenty one

Claims (1)

200819112 十、申請專利範圍: 1.-種非侵人性血管材料硬度之檢測方法,其步驟包含: ⑷測量手臂血管的1_與舒張塵替代人體總頸 動脈(CCA )的血壓; ⑻提供-連續動脈縱切影像裝置及電腦分析平 台,並以適當的接觸力測量人體總頸動脈,或其它欲測量之動 脈; ()將血|之一維景彡像顯示於螢幕,並調整掃瞄方向 為血管縱切面; (d) 確涊血官縱切面影像的正確性,確定連續動脈縱 切影像裝置確實掃瞄到動脈最大直徑的中心位置; (e) 將數個心跳週期的血管縱切影像傳輸至一電腦 平台; 泰 (f)由影像或資料的刻度轉換影像像素的真實比例 尺度; (g) 根據血管壁内硬度變化梯度最大處,設定初始 第一張影像之血管内膜與外膜的邊緣門檻; (h) 處理連續的血管管徑資料,計算血管内膜_中層 厚度分佈圖(intima_mediathickness;mT),以及動脈管徑的 時間變化曲線;及 (i) 以統計原理估算最佳IMT與及計算血管硬度 21 200819112 的新參數。 二如申請專利範項所述之非侵入性血管材料硬度 之仏測方法’其中前述步驟⑻之適當接觸力小於舒張麗。 二如申請專利範圍第1項所述之非侵入性血管材料硬度 =檢測方法,其中前述步驟⑷之動脈縱切面必須包含動脈外 膜(AdVentltia)與内膜-中層(Intima-Media)。 鲁 ^4·如中請專利範圍第1項所述之非侵人性血管材料硬度 、、方去進步包含一動脈影像邊緣偵測方法,其中係採 用影像邊緣的快速相位追縱(Μ沖咖如出吨)技巧及回波 追縱(echo tracking)修正。 如中請專利範圍第4項所述之非侵人性血管材料硬度 之才双測方法’其中該動脈影像邊緣债測方法係以影像梯度或強 度貢料進行離散傅力葉轉換(DFT),取數個低頻的相位角差, #經由快速相位追縱輔助之下的回波追縱修正,提取動脈壁實際 的位移。 6. 如申請專利範圍第1項所述之非侵人性血管材料硬度 之檢測方法’其中進-步包含利用動脈影像縱切面積的時間移 動,利用該面積變化來估算動脈的形變。 7. 如申請專利範圍第丨項所述之非侵入性血管材料硬度 之檢測方法,其中該動脈硬度(anedal爾卿)必須符合揚 氏係數’包含採用IMT替代整體動脈壁厚度計算該動脈硬度。 200819112 8.如申請專利範圍第1項所述之非侵入性血管材料硬度 之檢測方法,其中ΙΜΤ厚度變化可用於計算該層的材質硬度, 包含ΙΜΤ楊氏模量(Young’s Modulus)與切變模量(Shear Modulus)。 200819112 七、指定代表圖: (一) 本案指定代表圖為:第一圖。 (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 2 人體總頸動脈(CCA) 4 動脈縱切影像裝置 6 血壓計氣袋 8 動脈連續影像組成器 10 具有輸出收縮壓與舒張壓之血壓計 1 2 影像傳輸介面 14 無線訊號傳輸輸入介面(藍芽或USB) 16 PC平台 18 動脈硬度分析軟體200819112 X. Patent application scope: 1. A method for detecting the hardness of non-invasive vascular materials, the steps of which include: (4) measuring the blood pressure of the arm blood vessels 1_ and diastolic dust instead of the total carotid artery (CCA); (8) providing-continuous An arterial longitudinal imaging device and a computer analysis platform, and measure the total carotid artery of the human body or other arteries to be measured with appropriate contact force; () display the blood|one image of the image on the screen and adjust the scanning direction to Longitudinal section of the vessel; (d) Confirmation of the correctness of the longitudinal section of the blood section, and determine that the continuous artery longitudinal imaging device does scan the center of the largest diameter of the artery; (e) Transmitting the longitudinal longitudinal image of several heartbeat cycles To a computer platform; Thai (f) converts the true scale of the image pixels from the scale of the image or data; (g) sets the endocardial and adventitial of the initial first image according to the maximum gradient of the hardness change in the vessel wall Edge threshold; (h) Processing of continuous vessel diameter data, calculation of intima-media thickness distribution (intima_mediathickness; mT), and time of arterial diameter Curve; and (i) to estimate the optimal Statistical Theory and Calculation of blood vessel hardness IMT new parameters of 21,200,819,112. 2. The method for measuring the hardness of a non-invasive vascular material as described in the patent application' wherein the appropriate contact force of the aforementioned step (8) is less than that of the diarrhea. 2. The non-invasive vascular material hardness = detection method according to claim 1, wherein the longitudinal section of the artery of the aforementioned step (4) must include an adventitia (AdVentltia) and an intima-media (Intima-Media). Lu ^4·If the hardness of the non-invasive vascular material mentioned in item 1 of the patent scope is included, the method of edge detection of an artery image is included in the method, which uses the fast phase tracking of the edge of the image. Out tons) tips and echo tracking corrections. For example, the double-measurement method for the hardness of non-invasive vascular materials described in item 4 of the patent scope is as follows: the image of the edge of the arterial image is subjected to discrete Fourier transform (DFT) by image gradient or intensity tribute, and several are taken. The phase angle difference of the low frequency, # is corrected by the echo tracking of the fast phase tracking aid, and the actual displacement of the artery wall is extracted. 6. The method for detecting the hardness of a non-invasive vascular material as described in claim 1 wherein the step further comprises utilizing the time shift of the longitudinal section of the arterial image, and using the change in area to estimate the deformation of the artery. 7. A method of detecting the hardness of a non-invasive vascular material as described in the scope of the patent application, wherein the arterial stiffness (anedal) must conform to the Young's coefficient' comprising calculating the arterial stiffness using IMT instead of the overall arterial wall thickness. 200819112 8. The method for detecting the hardness of a non-invasive vascular material according to claim 1, wherein the thickness variation of the ruthenium can be used to calculate the hardness of the material of the layer, including Young's Modulus and shear mode. Quantity (Shear Modulus). 200819112 VII. Designation of representative representatives: (1) The representative representative of the case is: the first picture. (2) A brief description of the symbol of the representative figure: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 2 Total carotid artery (CCA) 4 Arterial longitudinal imaging device 6 Sphygmomanometer air bag 8 Arterial continuous image composer 10 sphygmomanometer with output systolic and diastolic pressures 1 2 image transmission interface 14 wireless signal transmission input interface (blue or USB) 16 PC platform 18 arterial hardness analysis software
TW95139855A 2006-10-27 2006-10-27 noninvasive method to evaluate the new normalized arterial stiffness TW200819112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139855A TW200819112A (en) 2006-10-27 2006-10-27 noninvasive method to evaluate the new normalized arterial stiffness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139855A TW200819112A (en) 2006-10-27 2006-10-27 noninvasive method to evaluate the new normalized arterial stiffness

Publications (2)

Publication Number Publication Date
TW200819112A true TW200819112A (en) 2008-05-01
TWI317631B TWI317631B (en) 2009-12-01

Family

ID=44769667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139855A TW200819112A (en) 2006-10-27 2006-10-27 noninvasive method to evaluate the new normalized arterial stiffness

Country Status (1)

Country Link
TW (1) TW200819112A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039897A1 (en) 2007-09-26 2009-04-02 Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Apparatus and method for extracting an ambient signal in an apparatus and method for obtaining weighting coefficients for extracting an ambient signal and computer program

Also Published As

Publication number Publication date
TWI317631B (en) 2009-12-01

Similar Documents

Publication Publication Date Title
US20200146654A1 (en) Methods and apparatuses for measuring tissue stiffness changes using ultrasound elasticity imaging
EP2221632B1 (en) Apparatus for cardiac elastography
Tat et al. Reduced common carotid artery longitudinal wall motion and intramural shear strain in individuals with elevated cardiovascular disease risk using speckle tracking
US20150374343A1 (en) Ultrasound imaging system and method
JP5726081B2 (en) Ultrasonic diagnostic apparatus and elasticity image classification program
EP1786332A2 (en) Method and apparatus for improved ultrasonic strain measurements of soft tissue
CN102469987A (en) Ultrasonic diagnostic device, and method for measuring intima-media complex thickness
Rizi et al. Carotid wall longitudinal motion in ultrasound imaging: an expert consensus review
Zahnd et al. Progressive attenuation of the longitudinal kinetics in the common carotid artery: preliminary in vivo assessment
Yoo et al. Prospective validation of repeatability of shear wave dispersion imaging for evaluation of non-alcoholic fatty liver disease
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
US20240138810A1 (en) Method and apparatus for evaluating contact state of ultrasound probe on basis of soft tissue morphology
Park et al. Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking
Joseph et al. ARTSENS® Pen: A portable, image-free device for automated evaluation of vascular stiffness
Magnussen et al. Evaluating the use of a portable ultrasound machine to quantify intima-media thickness and flow-mediated dilation: agreement between measurements from two ultrasound machines
EP3914161B1 (en) Methods and systems for investigating blood vessel characteristics
TW200819112A (en) noninvasive method to evaluate the new normalized arterial stiffness
Arab-Baferani et al. Extraction of left-ventricular torsion angle from the long-axis view by block-matching algorithm: Comparison with the short-axis view
Hanekom et al. Optimisation of strain rate imaging for application to stress echocardiography
Haluska et al. Noninvasive tests for arterial structure, function, and compliance: do they identify risk or diagnose disease?
Ariff et al. Comparison of the effects of antihypertensive treatment with angiotensin II blockade and beta-blockade on carotid wall structure and haemodynamics: protocol and baseline demographics
Xu et al. Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound
Joseph et al. Carotid Stiffness Variations in the Presence of Established Risk Factors: Observations from a Clinical Study Using ARTSENS
Stroz et al. Measuring flow-mediated dilation through transverse and longitudinal imaging: comparison and validation of methods
Nabeel et al. Measurement of Arterial Young's Elastic Modulus using ARTSENS Pen

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees