TW200818148A - High-speed optical recording - Google Patents

High-speed optical recording Download PDF

Info

Publication number
TW200818148A
TW200818148A TW096122096A TW96122096A TW200818148A TW 200818148 A TW200818148 A TW 200818148A TW 096122096 A TW096122096 A TW 096122096A TW 96122096 A TW96122096 A TW 96122096A TW 200818148 A TW200818148 A TW 200818148A
Authority
TW
Taiwan
Prior art keywords
level
laser
write
laser beam
individual
Prior art date
Application number
TW096122096A
Other languages
Chinese (zh)
Inventor
Johannes Cornelis Norbertus Rijpers
Johannes Hubertus Godefriedus Jaegers
Bart Michiel Boer
Johannes Joseph Hubertina Barbara Schleipen
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2006/053764 external-priority patent/WO2008001164A1/en
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Priority to TW096122096A priority Critical patent/TW200818148A/en
Publication of TW200818148A publication Critical patent/TW200818148A/en

Links

Abstract

An optical recorder comprises a laser driver for generating a laser drive signal in which level changes are aligned on a time grid with a given pitch (Tdr). The laser driver provides the laser drive signal with a pattern that comprises an intermediate level (Pi50%). The intermediate level (Pi50%) is chronologically arranged between a quiescent level (Pb) for leaving a space on an optical disk track and a write level (Pw) for writing a mark on the optical disk track. The intermediate level (Pi50%) is comprised between the quiescent level (Pb) and the write level (Pw).

Description

200818148 九、發明說明: 【發明所屬之技術領域】 本發明之一方面係關於光學記錄哭 射驅動信號之雷射驅動器。例如,/、包含用於產生雷 準(藍光碟片係藍光碟片協會的註:據所謂的藍光碟片標 用於高速記錄。本發明之其 / π)’光學記錄器可 形式之雷射驅動器、光學記錄方法一”積體電路 號之创样M 士、+ m &義用於雷射驅動_ Ο Ο 號之t樣的方法、用以定義用於雷射 ^ 腦程式產品、及用以驅動光 動^虎之型樣的電 【先前技術】 干錢㈣之雷射的信號。 光學記錄器通常藉由將雷射束投 ^ ^ ^ 、无予載體上在光學 ^ ? 錄态及數位通用磁碟(DVD) :錄嗔學載體採用磁碟形式之範例。雷射束在丄4) 體上產生沿給定磁軌移動的光點。雷射束具有 之資料信號變更的功率。當功率. σ錄 刀千田功羊處於寫入位準時,雷射吾 在磁執上形成標記。當功率處於靜止 一允呢止位早時,雷射束留下 工間。空間反射率可比標記大, #與哉挪— 及反之亦然,此取決於 先子载體之貫體特性。標記通常代表資料信號之—字串。 J i吊代表貝料信號之零字串。標記或空間在有關字串 内分別具有代表一或零數目之長度。200818148 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION One aspect of the invention relates to a laser driver for optically recording a crap drive signal. For example, /, contains a laser for the production of Raymond (Blu-ray Disc Blu-ray Disc Association: According to the so-called Blu-ray Disc for high-speed recording. The present invention / π) 'optical recorder can form a laser Driver, optical recording method 1 "Integrated circuit number of the creation of M, + m & for the laser drive _ Ο 之 t-like method, used to define laser products, and The signal used to drive the type of light-powered tiger [prior art] The signal of the laser of the dry money (4). The optical recorder usually casts the laser beam by ^ ^ ^, without the carrier on the optical recording state. And digital universal disk (DVD): The recording carrier is an example of a disk format. The laser beam produces a spot on the 丄4) body that moves along a given track. The laser beam has the power of the data signal change. When the power. σ knives 千田功羊 is at the writing level, the laser forms a mark on the magnetic slab. When the power is at a standstill, the laser beam leaves the work space. The spatial reflectivity is comparable. The mark is large, #和哉移—and vice versa, depending on the characteristics of the precursor carrier Generally represents data marker signals - J i string hanging string represents zero mark or shellfish feed signals respectively representative of a space or the number of zero length in the relevant string...

光學記錄器通常包含雷射驅動器,其產生調變雷射束之 :率的雷射驅動信號。雷射驅動器較佳的係應確保可在光 學載體上寫人的標記及空間精確地代表欲記錄之資料信 號。標記或空間分別可代表的一或零之每一個數目具有I 121922.doc 200818148 標稱長度。例如,若 已寫入之標記長度較大程度地超過桿 %長度,可發生靖" 學讀取…’取錯铁。標記可能過長。該情形下,光 D β取標記時可產生一或多個過多的一。相5, 若標記過短,也f + j ‘生頃取錯誤。光學讀取器可產生一式 多個過少的一。雷射 王 ^ 丨束之功率調變在較大程度上決定標年 長度。因此,庐々1 ύ π及工間之精確寫入可避免讀取錯誤,包 含精確雷射束功率調變。 匕 Ο Ο ▲ 2射㈣S可根據驅動器時脈信號提供精確雷射束功率 ^為標記可具有的各不同長度提供型樣定義。驅動 為日’脈彳"號具有給定週期,以下將其稱為㈣器時脈週 期。驅動器時脈信號定義時間格拇,其具有對應於驅動器 夺脈週d之間距。屬於給定間距之標記的型樣定義定義在 時間格柵上對準的特定雷射束功率調變。即,型樣定義定Optical recorders typically include a laser driver that produces a rate-dependent laser drive signal of the modulated laser beam. Preferably, the laser driver should ensure that the human mark and space can be accurately written on the optical carrier to represent the data signal to be recorded. Each number of one or zero, respectively, represented by a mark or space has a nominal length of I 121922.doc 200818148. For example, if the length of the written mark exceeds the length of the rod to a large extent, it can happen that Jing " Learn to read...'. The mark may be too long. In this case, one or more excessive ones may be generated when the light D β is marked. Phase 5, if the mark is too short, f + j ‘After taking the error. Optical readers can produce as many as one. The power modulation of the laser king ^ 丨 bundle determines the length of the standard year to a large extent. Therefore, 庐々1 ύ π and precise writing between the stations avoid reading errors and include precise laser beam power modulation.匕 Ο Ο ▲ 2 (4) S provides accurate laser beam power based on the driver clock signal. ^ Provides a definition of the different lengths that the mark can have. The drive is a given period of time, which is hereinafter referred to as the (four) clock cycle. The driver clock signal defines a time frame thumb that has a distance corresponding to the circumference of the driver. The pattern definition of the markers belonging to a given spacing defines the specific laser beam power modulation aligned on the time grid. That is, the type definition

義各種雷射束功率轉戀。久φ 0_L 4- I ^ 各雷射束功率轉變發生於驅動器 時脈信號定義的時間格栅内之特定格柵點。 ° 美國專利第6,674,702號揭示-種雷射駆動電路,其包括 根據輸入信號產生驅動波形信號之驅動波形產生單元。驅 動波形產生單元包括驅動波形儲存單元,其依據磁碟類型 健存記錄策略。雷射驅動電路進—步包括第一電流供應單 元,其向第一雷射二極體供應第—驅動電流丨以及第二電 流供應單元’其向第二雷射二極體供應第二驅動電流。切 換單元選擇性地向第-電流供應單元或第二電流供應單元 供應驅動波形信號。 【發明内容】 121922.doc 200818148 本2明之一目的係以適度成本提供光學記錄。 —申月專利靶圍獨立項定義本發明之各種方面。申喑專 範圍獨立項宏差、T明專利 、義用以有利地實施本發明之額外特徵。 月考慮以下幾點。高速高密度光記 驅動器時腑相、本 j J而要季父向 '頻率。例如,假定根據允許高密度光 播放m 式5己錄貧料。另外假定採用係標準 Ο Ο 下,、:Γ 0仑的§己錄速度以光學方式記錄資料。該情形 鱼欲記錄之資料信號將具有每秒660百萬位元(職): 速率。位7G週期對應於1S15奈秒(ns)。 η足_確之雷射束功率調變可需要比位元週期小數倍之 趣動:時脈週期。驅動器時脈週期甚至可需要比位元週期 一個數量級。前述範例中’驅動器時脈週期因而可 月匕而要小於數個⑽微微秒(ps),或者小於⑽ps。此h 雷射驅動器需要在數個千兆赫之驅動器時脈頻率下運作, 例如H) GHz。_般需要更多設計努力及特別製程來實現在 此-南驅動器時脈頻率下運作的實際雷射驅動器實施方 案。 根據本發明之一方面’在具有給定間距之時間格拇上對 準位準變化的雷射驅動信號具有包含中間位準之型樣。中 間位準係依時間先後配置於用以在光碟磁軌上留下—門 的靜止位準與用以在光碟磁執上寫人—標記的寫入位= 間。中間位準係包含於靜止位準與寫入位準之間。 在用於雷射驅動信號之型樣内引入中間位準可時間上偏 移有效雷射束功率轉變,其決定光學載體上發生空間與標 121922.doc 200818148 記間二之轉變。即,用於雷射驅動信號之型樣内的中間位準 可轉澤為有效雷身十φ Λ、玄,# 射束力率轉變之給定時間偏移。給定時間 偏料中間位準成-函數關係地變更。因此,藉由給中間 '龙適田值’可使有效雷射束功率轉變發生於特定瞬 間。 中間位準從而允許實現比驅動器時脈信號施加之時間格 柵更精細之時間解^^ g 解析度。因此,採用與傳統解決方案相比 Ο Ο 較低的驅動器時脈頻率, ^ 變。出於該等原因,…==之雷射束功率調 定言之係用於高密度心二=成本提供光學記錄’特 山度回速先學記錄。在此方面,應注咅太 發明允許數個微微秒等級〜 宰中幾半]解析度,其在傳統解決方 業中成手無法只現,即使可以實現也报困難。 本發明之實施方案有利地包含一或多個以下額外㈣, /、在對應於個別附屬項之分離段落中加以說明。 止=τ號之型樣較佳的係包含依時間先後配置於靜 人中間位準間的預脈衝位準。預脈衝位準低於斑麵 5以接收雷射驅動信號之雷射相關聯的臨界位準二 外特徵有助於中間位準與有效雷射束功率轉變門的=額 係。 刀午轉羡間的精確關 根據本發明提供雷射驅動信 含記憶體、位址產生器、及型樣產動=佳的係包 動信號儲存個別型樣定義Μ立 =肢為雷射驅 定義之-可根據輸入資料信號從記情體t地使個別型樣 根據從記憶體連續讀取之個別型:定體^取。型樣產生器 J i樣疋義產生雷射驅動信 121922.doc 200818148 號:由於可程式化雷射驅動器以提供用於不同類型 適画型樣’該等額外特徵提供了靈活性。 ’、 型樣產生器較佳的係包含個別暫存器 於雷射驅動信號可具有的個別位準之個別值。可=! ΟA variety of laser beam power reincarnation. Long φ 0_L 4- I ^ Each laser beam power transition occurs at a specific grid point within the time grid defined by the driver clock signal. A laser-pulsing circuit is disclosed in U.S. Patent No. 6,674,702, which includes a drive waveform generating unit that generates a drive waveform signal based on an input signal. The drive waveform generating unit includes a drive waveform storage unit that stores a recording strategy in accordance with the disk type. The laser driving circuit further includes a first current supply unit that supplies a first driving current 向 to the first laser diode and a second current supply unit that supplies a second driving current to the second laser diode . The switching unit selectively supplies the driving waveform signal to the first current supply unit or the second current supply unit. SUMMARY OF THE INVENTION One of the objects of the present invention is to provide optical recording at a moderate cost. - The Shenyue patent target enclosure defines various aspects of the invention. The application of the scope of the independent term macro, the T patent, is intended to advantageously implement the additional features of the present invention. Consider the following points in the month. High-speed, high-density optical recording, when the driver is in the phase, this j J is the parent's direction. For example, assume that a low-density material is allowed to play according to the high-density light. It is also assumed that the data is recorded optically using the standard Ο , 、, Γ 0 的 己 recorded speed. In this case, the data signal to be recorded by the fish will have a capacity of 660 million bits per second: The bit 7G period corresponds to 1S15 nanoseconds (ns). η foot _ true laser beam power modulation can take a few times more than the bit period of interest: clock cycle. The driver clock cycle can even be an order of magnitude longer than the bit period. In the foregoing example, the 'driver clock period may thus be less than a few (10) picoseconds (ps), or less than (10) ps. This h laser driver needs to operate at several gigahertz driver clock frequencies, such as H) GHz. More design efforts and special processes are needed to implement an actual laser driver implementation operating at this-South drive clock frequency. In accordance with one aspect of the invention, a laser drive signal having an alignment level change on a thumb having a given pitch has a pattern including an intermediate level. The intermediate level is chronologically placed between the static level used to leave the gate on the optical track and the write bit = used to write the human-mark on the optical disk. The intermediate level is included between the static level and the write level. The introduction of an intermediate level within the pattern for the laser drive signal can temporally shift the effective laser beam power transition, which determines the spatial and spatial transitions on the optical carrier. That is, the intermediate level used in the pattern of the laser driving signal can be converted into a given time offset of the effective lightning body ten φ Λ, 玄, # beam force rate transition. At a given time, the intermediate level is changed to a functional relationship. Therefore, an effective laser beam power transition can occur at a particular instant by giving the middle 'Longtian value'. The intermediate level thus allows for a finer time resolution than the time grid applied by the driver clock signal. Therefore, the driver's clock frequency is lower than that of the conventional solution. For these reasons, the laser beam power adjustment of ...== is used for high-density core=cost-providing optical recordings. In this respect, it should be noted that the invention allows for a few picosecond levels ~ a few halves of the slaughter] resolution, which can not be achieved in the traditional solution industry, even if it can be achieved. Embodiments of the invention advantageously include one or more of the following additional (four), /, as described in separate paragraphs corresponding to individual sub-items. Preferably, the pattern of the stop = τ number includes a pre-pulse level arranged in time between successive intermediate levels. The pre-pulse level is lower than the spot 5 to receive the laser drive signal. The associated critical level of the laser contributes to the intermediate level and the effective laser beam power transition gate. The precise relationship between the knife and the turn of the knives according to the present invention provides the laser drive letter containing the memory, the address generator, and the type of production = good system of the package signal storage individual definition Μ立 = limb for the laser drive By definition - the individual patterns can be individually read from the memory according to the input data signal from the body t: the body is taken. The pattern generator J i-like generates a laser drive letter 121922.doc 200818148: This additional feature provides flexibility due to the ability to program the laser driver to provide different types of suitable prints. Preferably, the pattern generator includes individual values of individual registers that the individual registers can have for the laser drive signal. Can =! Ο

二:獨指定個別暫存器。數位至類比轉換器對從記憶: 、’ή取之個別型樣定義作出回應’根據從個別暫存^ ::個=提供雷射驅動信號。該等額外特徵有助於二 之個別位準。 義内之^參考足以定義型樣内 ,佳的係’將對應於個別中間位準之個別值儲存於個別 暫存器内。該等額外特徵有助於高速記錄,因為各種不同 中間位準之可錄允許較精細之時間解析度。 型樣產生器較佳的係包含可藉由型樣定義程式化的時序 電路。時序電路提供一系列時序脈衝,其定義轉換個別值 期間之個別時間間隔。該等額外特徵有助於低成本及高速 度’因為型樣定義内之較短定義足以定義型樣内之個別時 間間隔。. 翏考圖式之實施方式說明以上總結的本發明以及額外特 徵。 【實施方式】 圖1說明從已在上面記錄資料之可重寫光碟讀取的程 ^ °圖1具有較高區段’其係可重寫光碟上磁執TR的一部 分之照片。照片顯示光碟磁軌⑶包含非晶性區域及結晶區 域。非晶性區域具有較均勻、淺灰色的陰影。非晶性區域 121922.doc 200818148 構成標記。結晶p· A 1蓉上、 相變材料形成域構成空間。該等區域係由特定類型之 圖:二有―較低區段,其說明從光碟磁執 序。較低部分包含一曲 之私 及代表反射率k垂直軸。水;水平袖 度讀取光碟磁軌_二!取。垂:格栅線代表以正確速 Ο Ο 相應地,光碟讀取定 貝取益在特疋辑間頃取光碟磁軌TRJl之特定 點,、白對應於水平軸上之特定點。 曲線圖包含一曲線,其 瞬間讀取之光磾上點…:心間指不在該給定 邱八… 的反射率。曲線代表沿光碟磁執TR之 部刀的反射率變更’其在圖工之較高區段加以說明。曲線 亦I:為:表光碟讀取器内光電介面之轉換器輸出信號。 秦包合對應於光碟磁軌TR上非晶性區域之負脈衝。 即’負脈衝代表標記。負脈衝具有下降邊緣, 與反射率臨界值响目交,以及上升邊緣,其在另一特定 ㈣反射率臨界值Rth相交。該等個別點相對於彼此具有 給疋距離,其代表有關標記之長度。 裙據該曲線產生一系列所謂的通道位元,其係在曲 線圖下方代表。該系列通道位元CHB構成從可重寫光碟讀 取之通道編碼資料。各通道時脈週期均有一通道位元。各 通道時脈週期中,根據通道時脈週期内之反射率及反 6™界值Rth作出決策。此決策決定用於該時脈週期之通道 位兀係一(1)還是零(〇)。光碟磁執tr上之標記產生一字 121922.doc 200818148 因此’該系列通道位元CHB交替 串。空間則產生零字串。 地包含一字串及零字串。 長度可按η·Τ表達,因此η係對應於標記代表之一數 目之自絲’而Τ對應於通道時脈週期Teh。空間長度可按 相似方式表^。圖1内戶斤說明之光碟磁軌TR地部分按出現 1貝序匕3 6T""間、2T標記、3了空間、3T標記、4T空間、 及4T標記。 Ο 可明白,若標記 可能被錯認為一, 取之通道編碼資料 具有不精確長度, 反之亦然。但是, 内出現位元錯誤, 可出現位元錯誤。零 即使從可重寫光碟讀 仍可正確地重製已記 錄於光碟上之資料。此係因為通道編碼資料係已記錄之資 料的錯誤校正編碼版本。將錯誤校正演算法應用於通道編 碼 > 料,其允許給定數量之位元錯誤的校正。 然而,若通道編碼資料内之位元錯誤數量超過關鍵限定 值可鲛損彳之光碟讀取之資料。寫入光碟之標記越精確, Ο 位元錯誤數量越低,其提供相對於關鍵限定值之較大限 度。因此以較大精確度寫入標記及空間允許光學方式記錄 資料之強固播放。 圖2說明在可重寫光碟上記錄之程序,其產生圖1内所說 明之光碟磁軌TR的部分。圖2具有與圖丨之上區段相同的上 區段’其係光碟磁軌TR之部分的照片。圖2亦重製位於圖1 内曲線圖下方的該系列通道位元CHB。藉由隨後在光碟磁 軌TR上寫入前述標記及空間以光學方式記錄該系列通道位 元CHB : 6T空間、2T標記、3丁空間、3ΊΓ標記、4T空間、 121922.doc -12- 200818148 及4T標記。 ^具有—下區段,其包含—曲線圖,該— 表時間了之切轴及代表雷射束功率垂直軸。垂二 栅線代表光碟記錄器内之通道時脈週期-。假定光碟在。 度下:轉。雷射束功率⑽特定瞬間撞擊光碟磁 之特疋點,其皆對應於水平軸上之特定點。 =包含一曲線,其針對任何給定瞬間指示在該給定 ”擊光碟上點的雷射束功率pw。曲線因此代表沿光 碟磁軌TR之部分的雷射束功率pw之調變,其在圖2之上區 段加以說明。曲線亦可視為代表驅動雷射之雷射電流,其 產生雷射束功率PW。 /、 雷射束功率PW可具有三個不同位準:偏塵位準扑、抹 除位準Pe、及寫入位準Pw。雷射束功率pw根據欲寫入光 碟上之該系列通道位元CHB在該等三個位準間切換。例 如,該系列通道位元CHB包含由零圍繞的兩個連續—之字 串,為此應將2Τ標記寫入光碟磁軌TR上。 藉由根據特定型樣切換雷射束功率15貿寫入標記。對於 標記可具有的各不同長度’均有特定雷射束功率型樣。圖 2中’用於2T標記之雷射束功率型樣包含兩個較短寫入脈 衝。用於3T標記及4T標記之個別雷射束功率型樣分別包含 三個及四個較短寫入脈衝。寫入脈衝加熱光碟磁軌tr。每 -個寫入脈衝後跟-時間間隔,其間雷射束功率pw位於 偏壓位準Pb。此對應於較短冷卻週期,其防止標記變得過 大0 121922.doc -13 - 200818148 Ο Ο 圖2内所說明之各雷射束功率型樣包含相似第一寫入脈 衝及相似最後寫入脈衝。個別第一寫入脈衝具有以下共同 點。在出現第一個一⑴的通道時脈週期前不久將雷射束功 率PW從抹除位準Pe切換至寫入位準?评。隨後在此通道時 脈週期之開始將雷射束功率PW從寫入位準Pw切換至偏麼 位準Pb °個別最後寫人脈衝各後跟較長時間間隔,其間雷 射束功軒W位於錢位準Pb。用於3TA4T標記之雷射: 功率型樣包含—或多個中間寫人脈衝。個別中間寫入脈衝 各具有從偏壓位準外至寫人位準〜之上升邊緣及從寫入 位準Pw至偏壓位準Pb之對應下降邊緣。 當標記之雷射束功率型樣不適用時,藉由將雷射束功率 、X疋於抹除位準pe寫人—空間。抹除位準卜將相變材 :力?至抹除先前記錄之標記(若有)的一程度。即,抹除 =Pe用以留下圖2内所說明之空間。相比之下,偏塵位 準Pb形成圖2内之標記寫入程序的部分。 二說明在唯寫一次型光碟上記錄之程序,例如,該光 :“Cu:Si合金作為記錄材料。圖3係類似於圖2内曲線 圖之曲線圖。水平軸代 pw ^ 代表時間T。垂直軸代表雷射束功率 pw。垂直格柵線代表 曲線圖下方代表?錄㈣之通道時脈週叫 cHB。 13錄於光碟上的一系列通道位元 雷射束功率PW可且+ 壓位準Pb,及m個不同位準:冷卻位準Pc、偏 -寫入位單p 寫入位準:第-寫入位準—第 ~罵入位準pW3。雷射束功率pw根 121922.doc -14- 200818148 據欲寫入光碟上之通道位元CHB在該等五個位準間切換。 例如,通道位元CHB包含由零圍繞的兩個一之字串,為此 應將2T標記寫入至唯寫一次型光碟上。通道位元包含 由零圍繞的五個一之字串,為此應將5T標記寫入至唯寫一 次型光碟上。 η Ο 關於雷射束功率調變,圖2及3内說明的程序間有顯著差 異。圖2中,其係關於可重寫光碟,#—個標記有各種寫 入脈衝。圖2說明一特定範例’其中按照通道時脈週期 加,寫入脈衝數目等於標記長度。圖3中,其係關於唯寫 一次型光碟,每一個標記僅有單一寫入脈衝。冷卻位準Pc 用以將較短冷卻週期引人緊接於寫人脈衝之後,如圖2。 :,冷卻位準Pc形成如圖2内之標記寫入程序的部分。略 尚於冷卻位準pc之偏壓位準Pb用以留下一空間。 圃j τ,用於2T標 q……w 〇 3·乐二:焉入位準 :2。相,之下,用於5T標記之單-寫入脈衝包含各種位 。此早-寫人脈衝隨較高的第三寫人位準pw3開始及姓 士。單一寫入脈衝在中間部分具有第-寫入位準Pwl。第° 一寫入位準Pwl略低於第二 方式特徵可為熱平衡寫入:寫::#PW3。此寫入標記之 i 一 在私5己之開始及結束將記錄 至二、:“程度。在標記之中間部分將記錄材料加熱 低程度。此可寫入具有較高精確度之較長標記。 圖2内所說明之雷射击 射束功率型樣形成用於特定類型之可 重寫先碟的寫入策略之邻八 型揭# + 邛刀。圖3内所說明之雷射束功率 支樣形成用於特定類型 1之唯寫一次型光碟的寫入策略之部 121922.doc -15- 200818148 分。寫入朿略定義雷射束功率型樣之個別位準以及需要將 雷射束功率從一位準切換 、 入笫略W & 1 、另位準的個別瞬間。寫 明且有用;、於記錄材料之類型。例如’如圖2内所說 型峨之各種寫入脈衝的寫入策略可用於唯寫 …何情形下,為了確保各標記具有適當長 =確時序是报重要的。過快或過遲地切換可能會導致 Ο 兩種情形。二 =;:\過長,或者可能移位,或 導致位元錯誤。&可在頃取光碟之光碟播放器内 ⑥圖4說明光碟記錄器瞻’例如其根據所謂的藍光碟片 仏準運作。光碟記錄器0DR能夠在光碟DSK上儲存輸入資 料,以便另一設備(其可根據相同標準運作)可重 於光碟DSK上之輸人資料。光碟職可係唯寫—錢型或 可重寫類型。 Ο μ光碟記錄器ODR包含各種功能實體:輸入介面、錯 决校正編碼器ERC、通道編碼器CHC、雷射驅動器LDR、 光電η面EOI,其包括雷射LA。該等功能實體構成記錄 路徑。光碟記錄器〇DR進一步包含讀取器11]〇尺。光電介面 EOI及碩取|gRDR構成重製路徑,其可重製存在於光碟上 之資料。光碟記錄器ODR進一步包含磁碟旋轉馬達DRM& 載入機構LDM,其均係電機實體。 光碟C錄器ODR進一步包含系統位準下之功能實體:時 脈產生器CKG、控制器CTRL·、及系統記憶體MEMS。時脈 產生器CKG提供通道時脈信號CCK,其定義圖2及3内說明 121922.doc -16- 200818148 的通道時脈週期Tch。控制器CTRL可與使用者介面互動 例如遙控裝置RCD。Two: Individually specify individual registers. The digital-to-analog converter responds from the memory: , 'the individual type definitions captured' to provide laser-driven signals based on individual temporary storage ^ ::. These additional features contribute to the individual level of the two. The reference within the meaning is sufficient to define the type, and the best system 'stores the individual values corresponding to the individual intermediate levels in the individual registers. These additional features facilitate high speed recording because the recording of various intermediate levels allows for finer time resolution. Preferably, the pattern generator includes a timing circuit that can be programmed by a pattern definition. The timing circuit provides a series of timing pulses that define individual time intervals during the conversion of individual values. These additional features contribute to low cost and high speed' because the shorter definitions within the definition of the pattern are sufficient to define individual time intervals within the pattern. The embodiments of the above summary and additional features are described in the context of the drawings. [Embodiment] Fig. 1 illustrates a process of reading from a rewritable optical disk on which data has been recorded. Fig. 1 has a higher section' which is a photograph of a portion of a magnetic susceptor TR on a rewritable optical disk. The photo shows that the optical disk track (3) contains an amorphous region and a crystalline region. The amorphous regions have a more uniform, light gray shade. Amorphous area 121922.doc 200818148 Constituent mark. Crystallization p· A 1 Rong, phase change material formation domain constitutes space. These areas are represented by a specific type: two have a lower section, which explains the magnetic interpretation from the disc. The lower part contains a private and a vertical axis representing the reflectance k. Water; horizontal sleeve reading disc track _ two! fetch. Vertical: The grid line represents the correct speed 相应 相应 Correspondingly, the disc reading order takes the specific point of the disc track TRJl between the special series, and the white corresponds to a specific point on the horizontal axis. The graph contains a curve whose instantaneous reading is on the light point...: The heart is not in the reflectivity of the given Qiu... The curve represents the change in reflectivity of the knife along the disc magnetic hold TR, which is illustrated in the upper section of the drawing. The curve is also I: is the converter output signal of the photoelectric interface in the optical disc reader. The Qin Baohe corresponds to a negative pulse of the amorphous region on the optical disk TR. That is, the 'negative pulse represents the mark. The negative pulse has a falling edge that oscillates with the reflectance threshold and a rising edge that intersects at another particular (four) reflectance threshold Rth. The individual points have a given distance relative to each other, which represents the length of the associated mark. The skirt produces a series of so-called channel bits from the curve, which are represented below the graph. The series of channel bits CHB constitute channel encoded data read from a rewritable optical disc. Each channel clock cycle has one channel bit. In each channel clock cycle, a decision is made based on the reflectivity in the channel clock cycle and the inverse 6TM threshold Rth. This decision determines whether the channel used for this clock cycle is one (1) or zero (〇). The mark on the disc magnetic stem tr produces a word. 121922.doc 200818148 Therefore, the series of channel bits CHB are alternately strings. The space produces a zero string. The ground contains a string and a zero string. The length can be expressed as η·Τ, so that the η corresponds to the mark representing one of the numbers from the filament ' and the Τ corresponds to the channel clock period Teh. The length of the space can be expressed in a similar manner. In Fig. 1, the part of the optical disk TR of the description of the disk is shown as 1 T 匕 3 6T"", 2T mark, 3 space, 3T mark, 4T space, and 4T mark. Ο It can be understood that if the mark may be mistaken for one, the channel coded data has an inaccurate length and vice versa. However, a bit error occurs within the bit, and a bit error can occur. Zero Even if you read from a rewritable disc, the data recorded on the disc can be correctly reproduced. This is because the channel-encoded data is an incorrectly corrected coded version of the material that has been recorded. The error correction algorithm is applied to the channel code > material, which allows for correction of a given number of bit errors. However, if the number of bit errors in the channel-encoded data exceeds the critical limit value, the data read by the disc can be lost. The more precise the mark being written to the disc, the lower the number of bit errors, which provides a greater limit relative to the critical limit. Therefore, writing marks and spaces with greater precision allows optical recording of strong data. Figure 2 illustrates a procedure for recording on a rewritable optical disk that produces portions of the optical disk track TR illustrated in Figure 1. Fig. 2 has a photograph of the upper section 'which is the same as the section above the figure, which is part of the optical disk track TR. Figure 2 also reproduces the series of channel bits CHB located below the graph in Figure 1. The series of channel bits CHB are optically recorded by subsequently writing the aforementioned marks and spaces on the optical disk track TR: 6T space, 2T mark, 3 bit space, 3 mark, 4T space, 121922.doc -12-200818148 and 4T mark. ^ has a lower section, which contains a graph, which is the time axis of the cut and represents the vertical axis of the laser beam power. The vertical grid line represents the channel clock period in the disc recorder. Assume that the disc is in. Degree: Turn. The laser beam power (10) strikes a particular point of the disk magnet at a specific moment, which corresponds to a specific point on the horizontal axis. = contains a curve indicating the laser beam power pw at a given point on the given disc for any given instant. The curve thus represents the modulation of the laser beam power pw along the portion of the disc track TR, which is The upper section of Figure 2 is illustrated. The curve can also be considered to represent the laser current that drives the laser, which produces the laser beam power PW. /, the laser beam power PW can have three different levels: the dust level And erasing the level Pe, and writing the level Pw. The laser beam power pw is switched between the three levels according to the series of channel bits CHB to be written on the optical disc. For example, the series of channel bits CHB Contains two consecutive-strings surrounded by zeros, for which 2 marks should be written to the disk track TR. By switching the laser beam power according to the specific pattern, the trade mark can be written. Different lengths have specific laser beam power patterns. The laser beam power pattern for 2T marking in Figure 2 contains two shorter write pulses. Individual laser beam power for 3T and 4T markers The patterns contain three and four shorter write pulses, respectively. Track tr. Each write pulse is followed by a time interval during which the laser beam power pw is at the bias level Pb. This corresponds to a shorter cooling period, which prevents the mark from becoming too large. 0 121922.doc -13 - 200818148 Ο 各 Each of the laser beam power patterns illustrated in Figure 2 contains similar first write pulses and similar last write pulses. The individual first write pulses have the following in common. The first one (1) channel appears. The laser beam power PW is switched from the erase level Pe to the write level before the clock cycle. The laser beam power PW is then switched from the write level Pw to the offset at the beginning of the channel clock period. The position of the Pb ° individual last written pulse is followed by a longer time interval, during which the laser beam is located at the money level Pb. For the 3TA4T mark laser: the power pattern contains - or multiple intermediate writers Pulses: Individual intermediate write pulses each have a rising edge from the bias level to the write level and a corresponding falling edge from the write level Pw to the bias level Pb. When the sample is not applicable, by using the laser beam power, X is used to erase the level pe Human-space. Erasing the level of the phase change material: force? to erase the extent of the previously recorded mark (if any). That is, erase = Pe to leave the space illustrated in Figure 2. In contrast, the dust level Pb forms part of the mark writing program in Fig. 2. Second, the procedure recorded on the write-once type disc is described, for example, the light: "Cu:Si alloy as a recording material. Figure 3 is a graph similar to the graph in Figure 2. The horizontal axis represents pw ^ for time T. The vertical axis represents the laser beam power pw. The vertical grid line represents the representative below the graph? The channel clock of the recording (4) is called cHB. 13 A series of channel bit laser beam power PW recorded on the disc can have + pressure level Pb, and m different levels: cooling level Pc, offset-write bit list p writing level: first - Write level - the first ~ in the position pW3. Laser beam power pw root 121922.doc -14- 200818148 The channel bit CHB on the disc to be written is switched between the five levels. For example, the channel bit CHB contains two one-strings surrounded by zeros, for which 2T marks should be written to a write-once optical disc. The channel bit contains a five-word string surrounded by zeros, for which a 5T mark should be written to a write-once type disc. η Ο Regarding the laser beam power modulation, there are significant differences between the procedures described in Figures 2 and 3. In Fig. 2, regarding the rewritable optical disc, ## is marked with various write pulses. Fig. 2 illustrates a specific example in which the number of write pulses is equal to the mark length in accordance with the channel clock period. In Fig. 3, it relates to a write-once type disc, and each mark has only a single write pulse. The cooling level Pc is used to introduce a shorter cooling period immediately after the write pulse, as shown in FIG. : The cooling level Pc forms part of the mark writing procedure as shown in FIG. 2. The bias level Pb of the cooling level PC is used to leave a space.圃j τ, for 2T standard q...w 〇 3·Lee 2: Intrusion level: 2. Phase, under, the single-write pulse for the 5T mark contains various bits. This early-write human pulse begins with the higher third-person position pw3 and the surname. The single write pulse has a first-write level Pwl in the middle portion. The first-one write level Pwl is slightly lower than the second mode feature and can be a thermal balance write: write::#PW3. The i of the write mark will be recorded to the beginning and end of the private 5: "degree. The recording material is heated to a low degree in the middle of the mark. This can be written to a longer mark with higher precision. The lightning shot beam power pattern illustrated in Figure 2 forms an adjacent eight-type stencil for a particular type of rewritable first-disc write strategy. The laser beam power sample illustrated in Figure 3. Forming a write strategy for a specific type 1 write-once optical disc 121922.doc -15- 200818148 points. The write strategy defines the individual levels of the laser beam power pattern and requires the laser beam power to be A quasi-switching, inward and wandering W & 1 , another level of individual moments. Write and useful;, in the type of recording material. For example, as shown in Figure 2, the writing of various types of write pulses The strategy can be used for write-only...when, in order to ensure that each tag has the appropriate length = the timing is important. Switching too fast or too late may result in two situations. Two =;: \ too long, or maybe Shift, or cause a bit error. & can take the light of the disc Figure 4 of the player shows that the disc recorder is operated, for example, according to the so-called Blu-ray disc. The disc recorder 0DR can store input data on the disc DSK so that another device (which can operate according to the same standard) can More important than the input data on the disc DSK. The disc job can be written only - money or rewritable type. Ο μ disc recorder ODR contains various functional entities: input interface, error correction encoder ERC, channel encoder CHC The laser driver LDR, the photoelectric η plane EOI, which includes the laser LA. The functional entities constitute a recording path. The optical disc recorder 〇DR further comprises a reader 11]. The photoelectric interface EOI and the master take|gRDR constitute a weight The path can reproduce the data stored on the optical disc. The optical disc recorder ODR further includes a disk rotating motor DRM& loading mechanism LDM, which are both motor entities. The optical disc C recorder ODR further includes the function of the system level Entity: clock generator CKG, controller CTRL·, and system memory MEMS. Clock generator CKG provides channel clock signal CCK, which is defined in Figures 2 and 3 121922.doc -16- 2008 The channel clock period Tch of 18148. The controller CTRL can interact with the user interface such as the remote control device RCD.

Ο 系統記憶體MEMS包含各種冑入策略之一般說明_、 WS2、WS3、.··以及寫入策略實施程式pws。一般寫入策 略說明按為方式指定_組適當的雷射束功率型樣,其廉 用以士特定類型之磁碟上寫入資料。特定類型之磁碟具: 特定貫體特性,其決定用於該特定類型之磁碟的適當雷射 束功率型樣組。目此,寫人策略可依磁碟而不同。 圖4内功能性地代表的光碟記錄器〇DR可按許多不同方 式來實施。系統記憶體MEMS可包含非揮發性記憶體模 組,其用以儲存一般寫入策略說明WS1、ws2、、 以及寫入策略實施程式PWS。非揮發性記憶體模組較佳的 係可抹除及可程式化類型,以便可更新一般寫入策略說明 以及寫二策略實施程式PWS。可按可程式化的專用積體電 路形式實施雷射驅動器LDR。以下將給出範例。 μ /思,可藉由軟體或硬體或軟體與硬體之組合實 施功能實體。例如,可藉由適當地程式化一處理器來:: 實施錯誤校正編碼器ERC及通道編碼器chc。在此一以軟 體為主之實施方案中’軟體模組可使處理器執行屬於錯: 校正編碼器ERC及通道編碼器CHC之特定操作。控制器 CTRL通常係實施成適#程式化之處理器的形式。單—適 當程式化處理器可形成各種功能實體之组合實施方案,例 如控制器CTRL、錯誤校正編碼器ERC、及通道編碼琴 CHC。或者’可按—或多個專用電路之方式實施前述功能 121922.doc -17- 200818148 實體之每一者。即以硬體為主之實施方案。混合實施方案 可包含軟體模i且及一或多個專用電路。 圖5以一系列步驟S 1至S 5之形式說明數個操作,其係由 光碟記錄器ODR在使用者將光碟插入至光碟記錄器〇DR中 時執行。假定光碟係可記錄光碟,其可係唯寫一次或可重 寫類型。 步驟S 1中,控制器CTRL接收插入光碟之指示。控制器 CTRL作出回應,使裝載機構LDM適當地定位光碟(CTRL — LDM: POS[DSK])。隨後,控制器CTRL啟動磁碟旋轉馬達 DRM,其致使光碟在適當速度下旋轉(CTRL —DRM: ROT[DSK])。然後,控制器CTRL啟動光電介面EOI内之雷 射,其在光碟上產生用於讀取目的之光點(CTRL—>E〇I: POS[SP]) 〇控制器CTRL·控制光電介面Ε〇Ι,以便光點位於 已儲存識別資料之特定磁軌上。識別資料提供有關光碟之 一般資訊,包括類型資訊,即關於光碟所屬類型的資訊。 步驟S2中,讀取器RDR從光電介面EOI接收轉換器輸出 信號TO。轉換器輸出信號TO係較小大小之類比信號,其 代表所關注特定磁執上之光學變更。例如,轉換器輸出信 號TO可類似於圖1内曲線。讀取器rdR處理轉換器輸出信 號TO,以便獲得適當格式之讀取資料rd(RDR[T〇;| =>RD)。讀取資料RD包含前述識別資料。控制器CTRL從 讀取器RDR(IDeRD —CTRL)接收識別資料。 步驟S3中,控制器CTRL根據包括類型資訊之識別資料 選擇一般寫入策略說明WS*(CTRL: IDgWS*)。符號,,*,,係 121922.doc -18- 200818148 萬用字元,其指示所選定之一般寫入策略說明ws*可為存 在於系統記憶體MEMS内的任何一般寫入策略說明ws 1、 WS2、WS3、···。控制器CTRL選擇的一般寫入策略說明 WS*適用於光碟所屬之類型。控制器ctrl將所關注之一 . 般寫入策略說明Ws*載入至工作記憶體中(CTRL->MEMS:Ο System Memory MEMS contains general descriptions of various intrusion strategies _, WS2, WS3, . . . and write strategy implementation program pws. The general write strategy specifies that the appropriate laser beam power pattern is specified in the _ group, which is used to write data on a specific type of disk. A particular type of disk: A specific shape characteristic that determines the appropriate laser beam power pattern set for that particular type of disk. For this reason, the writing strategy can vary depending on the disk. The optical disk recorder 〇DR functionally represented in Figure 4 can be implemented in many different ways. The system memory MEMS can include a non-volatile memory module that stores general write strategy descriptions WS1, ws2, and write strategy implementations PWS. Non-volatile memory modules are preferably erasable and programmable to update the general write strategy description and the write-two policy implementation program PWS. The laser driver LDR can be implemented in the form of a programmable dedicated integrated circuit. An example will be given below. μ / thinking, functional entities can be implemented by software or hardware or a combination of software and hardware. For example, a processor can be suitably programmed:: The error correction encoder ERC and the channel encoder chc are implemented. In this software-based implementation, the software module allows the processor to perform the specific operations of the error encoder ERC and channel encoder CHC. The controller CTRL is usually implemented in the form of a #programmed processor. A single-suitable stylized processor can form a combined implementation of various functional entities, such as controller CTRL, error correction encoder ERC, and channel coding piano CHC. Alternatively, each of the foregoing functions may be implemented in the form of - or a plurality of dedicated circuits 121922.doc -17- 200818148 entities. That is, the hardware-based implementation plan. The hybrid implementation may include a soft phantom i and one or more dedicated circuits. Fig. 5 illustrates a number of operations in the form of a series of steps S1 to S5 which are performed by the optical disk recorder ODR when the user inserts the optical disk into the optical disk recorder 〇DR. It is assumed that a disc can record a disc, which can be a write-only or rewritable type. In step S1, the controller CTRL receives an indication to insert a disc. The controller CTRL responds to cause the loading mechanism LDM to properly position the disc (CTRL - LDM: POS[DSK]). Subsequently, the controller CTRL activates the disk rotation motor DRM, which causes the disk to rotate at the appropriate speed (CTRL - DRM: ROT [DSK]). The controller CTRL then activates the laser within the optoelectronic interface EOI, which produces a spot of light for reading purposes on the disc (CTRL_>E〇I: POS[SP]) 〇controller CTRL·controls the optoelectronic interfaceΕ 〇Ι, so that the spot is on a specific track on which the identification data has been stored. Identification data provides general information about the disc, including type information, that is, information about the type of disc. In step S2, the reader RDR receives the converter output signal TO from the photo interface EOI. The converter output signal TO is an analog signal of a smaller magnitude that represents the optical change in the particular magnetic actuator of interest. For example, the converter output signal TO can be similar to the curve in Figure 1. The reader rdR processes the converter output signal TO to obtain the read data rd (RDR[T〇;| => RD) in an appropriate format. The read data RD contains the aforementioned identification data. The controller CTRL receives the identification data from the reader RDR (IDeRD - CTRL). In step S3, the controller CTRL selects the general write strategy description WS* (CTRL: IDgWS*) based on the identification data including the type information. Symbol,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, WS2, WS3, ···. General Write Policy Description for Controller CTRL Selection WS* applies to the type to which the disc belongs. The controller ctrl will focus on one of the general write strategy descriptions Ws* loaded into the working memory (CTRL->MEMS:

* LD[WS*])。控制器CTRL進一步將寫入策略實施程式PWS 載入至工作記憶體中(CTRL —MEMS: LD[PWS])。 q 步驟S4中,控制器CTRL執行寫入策略實施程式PWS。* LD[WS*]). The controller CTRL further loads the write strategy implementation program PWS into the working memory (CTRL_MEMS: LD[PWS]). q In step S4, the controller CTRL executes the write strategy implementation program PWS.

寫入策略實施程式PWS處理在步驟S3内已選擇的一般寫入 策略說明WS*。此使得控制器CTRL產生寫入策略資料 WSD ’其明確地適用於雷射驅動器ldr(ctRL: PWSThe write strategy implementation program PWS processes the general write policy description WS* that has been selected in step S3. This causes the controller CTRL to generate the write strategy data WSD' which is explicitly applicable to the laser driver ldr (ctRL: PWS)

[W S ] 3 w S D)。以下將參考圖12詳細說明寫入策略資料 WSD之此產生。 步驟S5中,控制器CTRL將寫入策略資料WSD載入至雷 射駆動器LDR中(CTRL — LDR: LD[WSD])。雷射驅動器 〇 LDR具有取決於已載入至雷射驅動器LDR中的寫入策略資 料WSD之功能行為。更明確地說,寫入策略資料WSd使雷 • 射驅動器LDR提供特定輸出信號,其對通道編碼器CHC應 用於雷射驅動器LDR之特定位元序列作出回應而驅動雷射 LA °下面將更詳細地說明此點。 兀成步驟S5後,光碟記錄器〇dr準備就緒,可以在光碟 上冗錄資料。資料記錄包含穿過記錄路徑之信號流,以下 將參考圖4予以說明。 光碟記錄器ODR之輸入介面INP接收輸入信號IS,其可 121922.doc -19- 200818148 係類比或數位信號。若輸入信號IS係類比信號,輸入介面 將輸人信號IS轉換為數位信號,其可暫時㈣存於緩 衝記憶體内。若輸入信號IS係數位信號,可直接將輸入信 被IS應用於緩衝記憶體,以便暫時料。當輸人信號财 記錄路徑具有不同資料速率時,輸入介面iNp可進一 行資料速率轉換。 Ο Ο 錯誤校正編碼器獄從輸入介面INP接收寫入資料WD。 寫入資料彻代表輸入信號IS之至少一部分’其應記錄於 先碟上。錯誤校正編碼器獄對寫入資料WD應用錯誤校 =碼演算法。相應地,錯純正編碼胃咖提供錯誤保 遵身料ED,其包含給定數量之冗餘。即使錯誤保護資料 助之部分毁損,也可從錯誤保護資料印正確地取出寫入 資料WD。 ” 通道編碼器CHC將錯誤保護資料肋轉換為通道編碼資料 ⑶。通道編碼資料CD具有促進光學記錄之格式。通道編 碼資料CD通常包含位元字串,其具有與圖卜2及3内之說 明相同的值。各字串具有包含於預定義範圍内之長度。例 如’對於通道位元數目,藍光碟片標準定義最小長度為 匕,最大長度為8。一字串對應於光碟上之標記。標記應具 對應於一子串之長度的長度’如圖2内所說明。零字串 對應於光碟上之空間。空間應具有對應於零字串之長度的 長度,如圖2内所說明。 、雷射驅動器LDR根據通道編碼資料CD及㈣器⑽二已 载入至雷射驅動器LDR中的寫入策略資料wsd產生雷射電 121922.d, -20- 200818148 抓LC。寫入策略資料WSD定義用於雷射電流tc之特定型 樣。對於通道編碼資料CD内之一字串可具有的每一個可 能長度,均有特定雷射電流型樣。假定給定長度之一字串 出見於i道、扁碼:貝料CD内。該情形下,雷射驅動器使 • #射電流LC具有屬於藉由寫入策略資料WSD指定的該給 - $長度之特定雷射電流型樣。此特定雷射電流型樣應使雷 射LA在光碟上寫入給定長度之標記。 〇 冑射驅動器LDR在光碟記錄器ODR中扮演重要角色。雷 射㈣器LDR及光電介面E〇I有效地將通道編碼資料cd内 之子串轉變為光碟上之標記。該標記應具有精確長度, 其取決於字串内一之數目,以便促進光碟播放器在讀取標 記時精確地重製一字串。更明確地說,標記應具有較窄範 圍内的長度,其對於有關字串内之一數目係特有的。若標 記長度超出此特定範圍,即若標記過短或過長,會發生^ 取錯誤1此,雷射驅動器LDR可藉由寫人精確長度之^ (j 纪減小讀取錯誤之機率。 。。圖6說明雷射驅動器LDR ’其形成圖4内說明之光碟記錄 . $贿的部分。雷射驅動器咖包含以下功能實體:位址 • 產生器ADG、驅動器記憶體MEMD、先進先出型緩衝器 IF0數位型樣產生器DPG、及數位至類比轉換器Μ。。 =等功㊣實體構成驅動器路# ’其將通道編碼資料⑶轉 文為雷射電流型樣。驅動器路徑以特定方式將通道編碼資 料⑶轉變為雷射電流型樣,其取決於已載入至驅動器記 德體MEMD中之寫入策略資料娜。雷射驅動器咖進— 121922.doc 21 200818148 步包含鎖相迴路PLL,其接收通道時脈信號CCK。例如, 雷射驅動器LDR之前述功能實體可形成一積體電路。例 如,驅動器記憶體MEMD可係隨機存取記憶體之形式。 雷射驅動器LDR如下運作。位址產生器ADG接收通道編 . 碼資料CD,其可係運行長度編碼形式。該情形下,位址 產生器ADG可對通道編碼資料CD應用運行長度編碼,以 便獲得構成通道編碼資料CD之零及一。 ^ 位址產生器ADG可識別通道編碼資料CD内之個別一字 串。各字串構成需要寫入之特定標記。位址產生器ADG可 包含查找表,其將特定位址資料ADD與一字串可具有的各 特定長度相關聯。當此特定長度之一字串出現於通道編碼 資料CD内時,位址產生器ADG產生屬於特定長度之位址 資料ADD。位址產生器ADG將此位址資料ADD應用於驅動 器記憶體MEMD。位址資料ADD可指示驅動器記憶體 MEMD内之单一位址或一組位址。 〇 儲存於驅動器記憶體MEMD内之寫入策略資料WSD包含 用於通道編碼資料CD内的一字串可具有之各長度的型樣 _ 定義。型樣定義定義特定雷射電流型樣,其產生適當長度 之標記。將各型樣定義儲存於一特定位址或一組特定位址 内,如前述查找表内用於有關長度之位址資料ADD所定 義。隨後,當給定長度之一字串出現於通道編碼資料CD 内時,驅動器記憶體MEMD提供一特定型樣定義PDF。特 定型樣定義PDF屬於給定長度之一字串。 緩衝器FIFO暫時儲存驅動器記憶體MEMD回應來自位址 121922.doc -22- 200818148 產生器ADG之連續位址資料ADD而提供的連續型樣定義 PDF。缓衝裔FiF0以先進先出為基礎儲存連續型樣定義 pdf。相應地,當緩衝器FIF〇從數位型樣產生器接收 讀取請求RRQ時,緩衝器FIF〇釋放已位於緩衝器fif〇内最 . 長時間的型樣定義PDF。 • 數位型樣產生器DPG將緩衝器FIF0已釋放之型樣定義 PDF轉換為系列數子值SDV及一隨附系列時序脈衝Tp。 〇 為此目的,數位型樣產生器DPG可包含一組暫存器RG1、 RG2、RG3、…及時序電路TIM,如圖6内所說明。個別暫 存為RG1、RG2、RG3、…儲存對應於個別雷射電流位準 之個別數字值謂、赠、则、〜。例如,型樣定義聊 可包含藉由指定特定暫存器定義特定位準之數個位元。 例如,圖2内所說明之雷射束功率型樣包含以下雷射功 率位準:偏壓位準Pb、抹除位準Pe、及寫入位準pw。雷 射電流LC具有對應位準。數位型樣產生器DpG内之第一暫 Ο 存器RG1可儲存對應於偏壓位準Pb之數字值DV1。第二暫 存器RG2可儲存對應於抹除位準卜之數字值謂。第三暫 • 存器RG3可儲存對應於寫入位準Pw之數字值DV3。較佳的 . 係、,數位型樣產生器则包含儲存所謂的中間值之其他暫 存器。下面將詳細說明此點。 夺序電路TIM產生5亥系列時序脈衝τρ,其隨附前述系列 數字值SDV。各數字值具有兩個連續時序脈衝。兩個連續 時序脈:之第一個定義數位至類比轉換器歐應開始轉換 有關數字值的-瞬間。.兩個連續時序脈衝之最後一個定義 121922.doc -23- 200818148 類比至數位轉㈣DAC應結束轉換有關數字值並開始轉換 超過有關數字值之另一數字值的瞬間。因此,屬於特定數 子值之兩個連績時序脈衝決定數位至類比轉換器應轉 換該特定數字值期間的時間間隔。 數位至類比轉換器DAC根據數位型樣產生器DPG提供的 • 该系列數子值SDV及隨附系列之時序脈衝TP產生雷射電流 LC。更明確i也說,數位至類比轉換器dac轉換符號數位型 f) #產生器則在最近時序脈衝出現時提供的數字值。換言 之田射電流LC具有取決於數位型樣產生器DPG在最近時 序脈衝出現時提供的數字值之大小。因此,雷射電流大小 M[LC]僅可在時序脈衝出現時變化。 時序電路TIM根據數位型樣產生器DpG從鎖相迴路pLL 接收之驅動器'時脈信號DCK產生系列時序脈衝TP。例如, 夺序電路TIM可包含一組計婁文器,《才妾收驅自器時脈信號 DCK。個別計數器與型樣定義pD]p指定之個別數字值相關 〇 聯。計數器定義與計數器相關聯之數字值決定雷射電流大 小M[LC]期間的時間間隔。根據型樣定義PDF程式化個別 , 汁數器,以便用於個別數字值之個別時間間隔對應於期望 雷射束功率型樣。 詳細而言’第一計數器與出現於型樣定義pdf内之第一 數字值相關聯。時序電路TIM在第一計數器開始計數的瞬 間發出時序脈衝。將第一計數器程式化成計數器計數驅動 器時脈週期之特定數目,其係定義於型樣定義PDF内。驅 動器時脈週期之特定數目對應於第一數字值應決定雷射電 121922.doc -24- 200818148 :M[LC]期間的時間間隔。時序電路TIM在第一十 益已計數特定數目之M動哭, 弟计數 衝。在該瞬Η…: 期的瞬間發出時序脈 第二計數〜、 Γ數字值相關聯之第二計數器。將 係心式化為計算驅動H時脈週期之特定數目,直 二第於定義PDF内。驅動器時脈週期之特定數目對 Ο Ο :二期間的時間間 時脒调里 十數益已汁异特定數目之驅動器 呀數。1的瞬間發出時序脈衝。可按相似方式程式化其他 。十數w提供用於其他數字值之其他時序脈衝。 鎖相迴路PLL根據通道時脈信號咖產生驅動器時脈传 號⑽。鎖相迴路pLL作為頻率多工器運作。驅動器時脈 “虎DCK通常具有係通道時脈頻率之倍數的頻率。此倍數 稱為頻率倍增因數κ。驅動器時脈信號dck因此具有^於 通道時脈週期除以頻率倍增因數K之週期。 驅動器時脈信號DCK定義具有等於驅動器時脈週期的一 間距之時間格栅。雷射電流大小M[LC]僅可在此時間格栅 内的格栅點變化。此係由於時序電路TIM僅可提供格柵點 處之時序脈衝。例如,假定K=5。該情形下,對於每一個 通道時脈週期Tch,當雷射電流大小M[LC]可變化時,僅 有五個等距間隔的離散瞬間。驅動器時脈週期因此定義特 定時間解析度。 理想情況下,雷射電流LC應產生完全符合選定一般寫 入策略說明WS*之雷射束功率型樣。傳統上,驅動器時脈 k號DCK應提供足夠精細之時間格拇,以便實現此種完全 121922.doc -25- 200818148 符合之雷射束功率型揭。* n…、 爾栅應包含用於可根據選定 一切換雷射束功率之各可能瞬間的格 以味ίΓ要每—通道時脈週期的較大數目之格柵點, 八Μ未者曰頻倍增因數尺應較高。 例如,假定圖2代表用於2丁辦句々皆 U 率型樣。圖2說明岸在牲二τ ”’、入、理想雷射束功[W S ] 3 w S D). This generation of the write strategy data WSD will be described in detail below with reference to FIG. In step S5, the controller CTRL loads the write strategy data WSD into the laser actuator LDR (CTRL - LDR: LD [WSD]). The laser driver 〇 LDR has a functional behavior that depends on the write strategy data WSD that has been loaded into the laser driver LDR. More specifically, the write strategy data WSd causes the lightning driver LDR to provide a specific output signal that responds to the specific bit sequence of the channel encoder CHC applied to the laser driver LDR and drives the laser LA °. Explain this point. After the step S5 is completed, the disc recorder 〇dr is ready to be redundantly recorded on the disc. The data record contains the signal flow through the recording path, which will be described below with reference to FIG. The input interface INP of the optical disk recorder ODR receives the input signal IS, which can be analogous or digital signal to 121922.doc -19- 200818148. If the input signal IS is an analog signal, the input interface converts the input signal IS into a digital signal, which can be temporarily (IV) stored in the buffer memory. If the signal IS coefficient bit signal is input, the input signal IS can be directly applied to the buffer memory for temporary material. When the input signal path has different data rates, the input interface iNp can be converted into a data rate. Ο Ο The error correction encoder jail receives the write data WD from the input interface INP. The written data is representative of at least a portion of the input signal IS, which should be recorded on the first disc. Error Correction Encoder Prison Application WD Application Error Correction = Code Algorithm. Correspondingly, the wrong pure coded stomach coffee provides an error-protected ED that contains a given amount of redundancy. Even if the error protection data is partially damaged, the written data WD can be correctly taken out from the error protection material. The channel encoder CHC converts the error protection data ribs into channel coded data (3). The channel coded data CD has a format that facilitates optical recording. The channel coded data CD usually contains bit strings, which have the descriptions in Figures 2 and 3. The same value. Each string has a length that is included in a predefined range. For example, for the number of channel bits, the Blu-ray Disc standard defines a minimum length of 匕 and a maximum length of 8. A string corresponds to the mark on the disc. The mark should have a length corresponding to the length of a substring as illustrated in Figure 2. The zero string corresponds to the space on the disc. The space should have a length corresponding to the length of the zero string, as illustrated in Figure 2. The laser driver LDR generates the laser power 121922.d according to the channel coded data CD and the (4) device (10) 2 written into the laser driver LDR, and writes the LC 121922.d, -20-200818148 captures the LC. Write the strategy data WSD definition A specific type of laser current tc. For each possible length of a string in a channel coded material CD, there is a specific laser current pattern. Assuming a string of a given length See the i-way, flat code: bedding CD. In this case, the laser driver makes the #射流LC have a specific laser current type that belongs to the given -$ length specified by the write strategy data WSD. The specific laser current pattern shall be such that the laser LA writes a mark of a given length on the optical disc. The laser driver LDR plays an important role in the optical recorder ODR. The laser (R) and the optical interface E〇I effectively The substring within the channel coded data cd is converted to a mark on the disc. The mark should have an exact length that depends on the number of strings in the string to facilitate the disc player to accurately reproduce a string when reading the mark. More specifically, the mark should have a length within a narrower range, which is unique to a number in the relevant string. If the mark length is outside this specific range, ie if the mark is too short or too long, an error will occur. 1 , the laser driver LDR can reduce the probability of reading errors by writing the exact length of the lens. (Figure 6 illustrates the laser driver LDR 'which forms the disc record illustrated in Figure 4. $ bribe Part. Laser drive coffee contains The following functional entities: address • generator ADG, driver memory MEMD, FIFO buffer IF0 digital pattern generator DPG, and digital to analog converter Μ = = equal power positive entity constitutes the driver road # ' The channel-encoded data (3) is transferred to the laser current pattern. The driver path converts the channel-encoded data (3) into a laser-current pattern in a specific manner, depending on the write strategy data that has been loaded into the drive recorder MEMD. The laser driver receives the phase-locked loop PLL, which receives the channel clock signal CCK. For example, the aforementioned functional entities of the laser driver LDR can form an integrated circuit. For example, the drive memory MEMD can be in the form of random access memory. The laser driver LDR operates as follows. The address generator ADG receives the channel coded material CD, which may be in the run length coded form. In this case, the address generator ADG can apply run length coding to the channel coded data CD to obtain zero and one of the channel coded data CDs. ^ The address generator ADG identifies an individual string within the channel coded material CD. Each string constitutes a specific tag that needs to be written. The address generator ADG can include a lookup table that associates a particular address data ADD with a particular length that a string can have. When one of the strings of the specific length appears in the channel coded data CD, the address generator ADG generates the address data ADD belonging to a specific length. The address generator ADG applies this address data ADD to the drive memory MEMD. The address data ADD may indicate a single address or a set of addresses within the drive memory MEMD. W The write strategy data WSD stored in the drive memory MEMD contains the pattern _ definition for each length of a string in the channel coded data CD. The pattern definition defines a specific laser current pattern that produces a mark of the appropriate length. Each type definition is stored in a specific address or a specific set of addresses, as defined in the foregoing lookup table for the address information ADD of the relevant length. Subsequently, when a string of a given length appears in the channel encoded material CD, the drive memory MEMD provides a specific pattern definition PDF. The specific pattern definition PDF is a string of a given length. The buffer FIFO temporarily stores the continuous memory definition PDF provided by the drive memory MEMD in response to the contiguous address data ADD from the address AD922.doc -22- 200818148 generator ADG. Buffered FiF0 stores continuous pattern definitions on a first-in, first-out basis pdf. Accordingly, when the buffer FIF 接收 receives the read request RRQ from the digital pattern generator, the buffer FIF 〇 releases the pattern definition PDF that has been located in the buffer fif 最 for the longest time. • The digital pattern generator DPG converts the type definition PDF of the buffer FIF0 release into a series of sub-values SDV and an accompanying series of timing pulses Tp. 〇 For this purpose, the digital pattern generator DPG can include a set of registers RG1, RG2, RG3, ... and a timing circuit TIM, as illustrated in FIG. The individual temporary storages are RG1, RG2, RG3, ... and store individual digital values corresponding to individual laser current levels, such as gift, yes, and ~. For example, a model definition chat can include a number of bits that define a particular level by specifying a particular scratchpad. For example, the laser beam power pattern illustrated in Figure 2 includes the following laser power levels: bias level Pb, erase level Pe, and write level pw. The laser current LC has a corresponding level. The first temporary register RG1 in the digital pattern generator DpG can store the digital value DV1 corresponding to the bias level Pb. The second register RG2 can store a digital value corresponding to the erase level. The third temporary register RG3 can store the digital value DV3 corresponding to the write level Pw. Preferably, the digital model generator includes other registers that store so-called intermediate values. This will be explained in detail below. The reorder circuit TIM generates a 5 Hz series timing pulse τρ which is supplied with the aforementioned series of digital values SDV. Each digital value has two consecutive timing pulses. Two consecutive timing pulses: the first defined digit to the analog converter should start to convert the digital value - instant. The last definition of two consecutive timing pulses 121922.doc -23- 200818148 Analog to digital to (four) DAC should end the conversion of the digital value and begin to convert more than the other digital value of the digital value. Therefore, two consecutive timing pulses belonging to a particular number of values determine the time interval during which the analog converter should convert the particular digital value. The digital to analog converter DAC generates the laser current LC according to the series of digital sub-values SDV provided by the digital pattern generator DPG and the accompanying series of timing pulses TP. More specifically, i also said that the digital to analog converter dac converts the sign bit type f) # generator is the digital value provided when the most recent timing pulse occurs. In other words, the field current LC has a magnitude that depends on the digital value that the digital pattern generator DPG provides when the most recent burst occurs. Therefore, the laser current magnitude M[LC] can only be changed when a timing pulse occurs. The timing circuit TIM generates a series timing pulse TP according to the driver 'clock signal DCK received by the digital pattern generator DpG from the phase locked loop pLL. For example, the reordering circuit TIM can include a set of counting devices, which "receives the driver clock signal DCK. The individual counters are associated with the individual digital values specified by the pattern definition pD]p. The counter defines the digital value associated with the counter to determine the time interval during the laser current magnitude M[LC]. The PDF stylized individual, juicer, is defined according to the pattern so that the individual time intervals for the individual digital values correspond to the desired laser beam power pattern. In detail, the 'first counter' is associated with the first digital value that appears in the pattern definition pdf. The timing circuit TIM issues a timing pulse at the instant when the first counter starts counting. The first counter is programmed into a specific number of clock cycles of the counter count driver, which is defined in the pattern definition PDF. The specific number of drive clock cycles corresponding to the first digital value should determine the time interval during the laser power 121922.doc -24 - 200818148 :M[LC]. The timing circuit TIM has counted a certain number of M in the first tenth, and the younger counts the punch. The timing pulse is issued at the instant of the instant ...: period. The second counter ~, the second counter associated with the digital value. The system is centered to calculate the specific number of drive H clock cycles, which is defined in the PDF. The specific number of drive clock cycles is Ο Ο : During the time of the second period, the number of drives is equal to a certain number of drives. The momentary pulse of 1 is issued. Others can be stylized in a similar way. Tens of w provide other timing pulses for other digital values. The phase-locked loop PLL generates the driver clock signal (10) based on the channel clock signal. The phase-locked loop pLL operates as a frequency multiplexer. The driver clock "Tiger DCK usually has a frequency that is a multiple of the channel clock frequency. This multiple is called the frequency multiplication factor κ. The driver clock signal dck therefore has a period of the channel clock period divided by the frequency multiplication factor K. The clock signal DCK defines a time grid having a spacing equal to the clock period of the driver. The laser current magnitude M[LC] can only be varied at the grid point within the grid at this time. This is due to the timing circuit TIM being only available. Timing pulse at the grid point. For example, assume K = 5. In this case, for each channel clock period Tch, when the laser current magnitude M[LC] can vary, there are only five equally spaced intervals of dispersion. Instantaneous. The drive clock cycle thus defines a specific time resolution. Ideally, the laser current LC should produce a laser beam power pattern that fully conforms to the selected general write strategy specification WS*. Traditionally, the drive clock k number DCK A fine enough time frame should be provided to achieve this full 121922.doc -25-200818148 compliance with the laser beam power type. * n..., the grid should be included for switching according to the selected one The possible instantaneous moments of the beam power are to be a large number of grid points per channel-cycle clock cycle, and the frequency multiplication factor should be higher. For example, assume that Figure 2 represents 2 Ding's sentences are all U-shaped. Figure 2 shows that the shore is in the two τ"', into, ideal laser beam work

Pe_ 在特疋瞬間將雷射束功率從抹除位準 Ο Ο 、至寫人位準1^。此特定瞬間位於通道時脈週期之開 結束間的某處,其務前於需要寫入仰記的兩個一之 子串可將此特定瞬間表達為距離用於兩個零中第一個的 通道時脈週期之開始的負偏移。可將負偏移表達為通道時 =期之分數。假定負偏移等於通道時脈週期之3/ι〇。該 、下頻率倍增因數K傳統上應為丨〇,以便驅動器時脈 週期係通道時脈週期之1/1〇。 右通道時脈頻率較高,以傳統方式實現足夠精細之時間 解析度可能很困難,甚至不可能。在高速高密度記錄情形 中例如根據藍光碟片標準,通道時脈頻率較高。藍光碟 片帖準定義66百萬赫(MHz)之標稱通道時脈頻率,其對應 於1 5 · 1 5 1奈秒(ns)之標稱通道時脈週期。標稱通道時脈頻 率適用於標準播放速度,藉此每秒讀取66百萬通道位元。 门速。己錄可包含在光碟上寫入r乘66百萬通道位元,厌係 自然數,其通常稱為,,速度比賽因數,,。速度比赛因數R越 n,可記錄給定數量之資料的速度越快。 例如’假定根據藍光碟片標準之光學記錄需要速度比賽 因數R為10。該情形中,通道時脈頻率係10乘66 MHz。通 121922.doc -26- 200818148 iiH週期係1,515 ns,其係、標準通道時脈週期之1/10。 ’驅動器時脈週期職應為時間格柵提供用於選定 二,策略說明ws*内之各功率切換瞬間的格柵點。假 =循此傳統推理,驅動器時脈週期應為通道時脈週期 =㈣下’驅動器時脈週期應為151•嶋 ),、對應於6·6千兆赫(GHz)之頻率。 Ο u 里6又计工作及複雜製程,其成本較高。其亦可證明採 用給定現有萝裎盔沬奋相k 且明知 u 貝現此一精細間距。因此,以傳統方 ^見較尚速度比赛因數㈣為昂貴,或者採I給定現有 ^不可4現。下面參考圖7至12說明該等問題之解決 圖7、8、及9藉由較厚虛線分別說明三個期 入脈衝则、一BP3。圖7、8、及9各包含—= :,其具有代表時間了(單位為奈秒㈣)之—水平轴及代^ 田射電流大小M[LC]之一垂直軸。垂直格柵線代 栅。間距等於表示為恤之驅動器時脈週期,其係25〇 ps(=〇.25〇 ns)。垂直軸指示偏壓位準扑及寫入位準h。 可將三個期望雷射束寫人脈衝LBpi、咖2、LBp3 視為圖2或圖3内所說明之任何寫入脈衝的簡化版本。圖 7、8、及”,先於三個期望雷射束寫入脈衝咖、 咖2、聊3之偏塵位準雷射束功率轉變之開始位準 :低至南的-般表示。例如’先於三個期望雷射束寫入脈 衝BP1、LBP2、LBP3之偏壓位準pb可對應於圖2内之抹 121922.doc -27- 200818148 除位準Pe。同樣,後於三個期望雷射束寫入脈衝LBpi、 LBP2、LBP3之偏壓位準Pb係雷射束功率轉變之結束位準 從尚至低的一般表示。例如,後於三個期望雷射束寫入脈 衝LBPI、LBP2、LBP3之偏壓位準pb可對應於圖3内之冷 卻位準Pc。 • 圖7中,在從0·875 ns延伸至3.875 ns之時間間隔内,雷 射束功率應位於寫入位準pw。在〇·875⑽應將雷射束功率 0 仉偏壓位準%切換至寫入位準Pw,並應在3.875 ns從寫入 位準Pw切換回至偏壓位準Pb。圖8中,在〇·95 μ應將雷射 束功率從偏壓位準Pb切換至寫入位準5^,並應在3.95⑽ 從寫入位準Pw切換回至偏壓位準pb。圖9中,在〇·8 μ應 將雷射束功率從偏壓位準Pb切換至寫入位準pw,並應在 3.8 ns從寫入位準Pw切換回至偏壓位準扑。然而,時間袼 栅不允許在任何該等瞬間切換雷射電流大小m[lc]。 圖7、8、及9分別以灰階陰影說明雷射電流型樣。各雷 〇 射電流型樣將使雷射產生相同圖示内說明的期望雷射束寫 入脈衝,或至少足夠良好的近似值。此係可能實現的,而 • 與雷射電流大小M[LC]僅可在0.25 ns之倍數的瞬間變化無 - 關,其排除了特徵為個別期望雷射束寫入脈衝的任何前述 • 瞬間之切換。應注意,為簡單起見,圖7、8、及9内忽略 了延遲,其可發生於雷射驅動器1^3及與雷射LA間之信號路 徑内。 個別雷射電流型樣包含寫入位準pw及偏壓位準pb,其 分別對應於雷射束功率之寫入位準pw及偏壓位準外。 121922.doc -28- 200818148 即,當雷射電流LC之大小處於 率通常具有寫入位準Pw。卷干/、位準pw時,雷射束功 位準Pb時,雷射束功率通;大小M[LC]處於偏壓 吊具有偏壓位準Pb。 個別雷射電流型樣進一步具 率庫真門飧於官人A、隹η "以下共同點。在雷射束功 羊應專門處於寫入位準Ρ, 射電流大小M[LC]處於寫入 遇』中田 士,, 準PW。因此,圖7、8、及9 中,自1 ns至3.75 ns,雷斛φ ▲ 汉y Ο u 射電大小M[LC]處於寫入位準 Pw。此係最可能的時間格柵 ”、、 卓 座雍声於宜Λ办、隹D ^旱間^ ’其適配於雷射束功 ^處^ 的時間間隔内。在雷射束功率應專門 处於偏壓位準Pb期間的各驅動器時脈週期 小M[LC]處於偏壓位準Pb。因 田河丁电机大 此,圖7、8、及9中,自〇 至〇·75 ns以及自4·〇 ns以上,φ 壓位準pb。 "射U小m[lc]處於偏 圖7内所說明之雷射雷法刑# 樣包含50%中間位準Pi50%, 其係偏壓位準Pb與寫人位準Pw之中間。雷射電流大小 M[LC]處於驅動器時脈週期〇 MU·75至10 ns期間之50%中間位 準Pi5 0°/〇。此驅動器時脈週期中 、 心屑中應將雷射束功率從偏壓位 準P b切換至寫入位準p w。$ ο 〇/由/ + w 50/。中間位準阳⑽在具有“π ns之有效轉變點的雷射束功率内產生偏塵至寫入位準轉 變。此係應將雷射束功率從偏壓位準抑切換至寫入位準Pe_ Instantly sweeps the laser beam power from the erasing level 至 、 to the writing position 1^. This particular instant is located somewhere between the opening and ending of the channel clock cycle, and the two substrings that need to be written in the piggyback beforehand can express this particular instant as the distance for the first of the two zeros. A negative offset from the beginning of the clock cycle. A negative offset can be expressed as a fraction of the channel = period. Assume that the negative offset is equal to 3/ι〇 of the channel clock period. The lower frequency multiplication factor K should conventionally be 丨〇 so that the driver clock cycle is 1/1 of the channel clock period. The right channel has a higher clock frequency and achieves a fine enough time in the traditional way. Resolution may be difficult or even impossible. In the case of high-speed, high-density recording, for example, according to the Blu-ray disc standard, the channel clock frequency is high. The Blu-ray Disc is defined as the nominal channel clock frequency of 66 megahertz (MHz), which corresponds to the nominal channel clock period of 1 5 · 1 5 1 nanoseconds (ns). The nominal channel clock frequency is for standard playback speeds, which allows 66 million channel bits per second to be read. Door speed. Recorded can include writing r by 66 million channel bits on the disc, which is commonly referred to as the speed game factor, . The more the speed game factor R is, the faster the recordable amount of data can be. For example, 'Assume that the optical recording required by the Blu-ray disc standard requires a speed game factor R of 10. In this case, the channel clock frequency is 10 by 66 MHz. Pass 121922.doc -26- 200818148 The iiH period is 1,515 ns, which is 1/10 of the standard channel clock period. The 'driver clock cycle' should be provided for the time grid to select the second, and the strategy indicates the grid points for each power switching instant within ws*. False = Following this traditional reasoning, the driver clock cycle should be the channel clock cycle = (four) lower 'driver clock cycle should be 151•嶋), corresponding to the frequency of 6.6 gigahertz (GHz). Ο u 里6 counts work and complex processes, and its cost is high. It can also prove that the given existing Rosie Helmets are struggling with each other and know that the U-bike is now a fine pitch. Therefore, in the traditional way, the speed factor (4) is more expensive, or the existing one is not available. The solution to these problems will now be described with reference to Figures 7 through 12. Figures 7, 8, and 9 illustrate three injection pulses, a BP3, by thicker dashed lines, respectively. Figures 7, 8, and 9 each contain -= :, which has a vertical axis representing the time (in nanoseconds (four)) - the horizontal axis and the magnitude of the field current M[LC]. Vertical grid line grid. The spacing is equal to the driver clock period expressed as a shirt, which is 25 〇 ps (= 〇.25 〇 ns). The vertical axis indicates the bias level and the write level h. The three desired laser beam write human pulses LBpi, coffee 2, LBp3 can be considered as a simplified version of any of the write pulses illustrated in Figure 2 or Figure 3. Figure 7, 8, and ", prior to the three expected laser beam write pulse coffee, coffee 2, chat 3 dust position quasi-laser beam power conversion start level: low to south - general indication. For example 'Before the three expected laser beam write pulses BP1, LBP2, LBP3, the bias level pb can correspond to the wipe 121922.doc -27- 200818148 in Figure 2 except the level Pe. Similarly, after three expectations The bias level of the laser beam write pulses LBpi, LBP2, and LBP3 is generally indicated by the end level of the laser beam power transition from low to low. For example, after three expected laser beam write pulses LBPI, The bias level pb of LBP2 and LBP3 may correspond to the cooling level Pc in Figure 3. • In Figure 7, the laser beam power should be at the write bit during the time interval from 0·875 ns to 3.875 ns. Quasi-pw. In 〇·875(10), the laser beam power 0 仉 bias level % should be switched to the write level Pw, and should be switched back from the write level Pw to the bias level Pb at 3.875 ns. Figure 8 In the case, the laser beam power should be switched from the bias level Pb to the write level 5^ at 〇·95 μ, and should be switched back from the write level Pw to the bias level pb at 3.95 (10). in, The laser beam power should be switched from the bias level Pb to the write level pw at 〇·8 μ, and should be switched back from the write level Pw to the bias level at 3.8 ns. However, the time 袼It is not permissible to switch the laser current m[lc] at any such moment. Figures 7, 8, and 9 illustrate the laser current pattern in grayscale shading, respectively. Each rake current pattern will cause the laser to produce the same map. The desired laser beam write pulse is indicated, or at least a good enough approximation. This is possible, and • the laser current magnitude M[LC] can only be changed in an instant of multiples of 0.25 ns. It excludes any of the aforementioned transients that are characterized by individual desired laser beam write pulses. It should be noted that for simplicity, delays are ignored in Figures 7, 8, and 9, which may occur in a laser driver 1^ 3 and within the signal path between the laser LA. The individual laser current patterns include the write level pw and the bias level pb, which correspond to the write level pw and the bias level of the laser beam power, respectively. 121922.doc -28- 200818148 That is, when the magnitude of the laser current LC is at a rate, it usually has a write level Pw. When dry/, pww, the laser beam power is on when the laser beam is at the Pb level; the size M[LC] is at the bias level with the bias level Pb. The individual laser current patterns are further accurate. The threshold is common to the official A, 隹η " the following common points. In the laser beam, the sheep should be specifically written in the position, the current magnitude M[LC] is in the write encounter, the middle of the field, the quasi-PW. In Figures 7, 8, and 9, from 1 ns to 3.75 ns, Thunder φ ▲ Han y Ο u The radio size M[LC] is at the write level Pw. This is the most probable time grid", the singer of the singer, the 隹D ^ drought room ^ ' it is adapted to the time interval of the laser beam ^ ^ ^. The laser beam power should be specialized The clock period of each driver during the bias level Pb is small, M[LC] is at the bias level Pb. Because of the Tianhe Ding motor, in Figures 7, 8, and 9, from 〇 to 75 ns And from 4·〇ns or more, φ pressure level pb. "射U小m[lc] is shown in the partial map of the laser Leifa penalty # sample contains 50% of the intermediate level Pi50%, its bias The pressure level Pb is in the middle of the write level Pw. The laser current magnitude M[LC] is at the 50% intermediate level of the driver clock period 〇MU·75 to 10 ns Pi5 0°/〇. During the period, the laser beam power should be switched from the bias level P b to the write level pw. $ ο 〇 / by / + w 50 /. The intermediate position (10) is valid with "π ns A dust-to-write level transition occurs within the laser beam power at the transition point. This system should switch the laser beam power from the bias level to the write level.

Pw的精確瞬間。換言之,娜中間位準pi5Q%產生的偏壓 至寫入位準轉變實質上對應於若在G 875如切換雷射電流 LC則已獲得的偏壓至寫入位準轉變。 雷射電流大小M[LC]在驅動器時脈週期3 75至4 () μ期間 121922.doc •29- 200818148 亦處於50%中間位準pi5〇%,其中應將雷射束功率從寫入 位準Pw切換回至偏壓位準pb。此處,5〇%中間位準 在具有3.875 ns之有效轉變點的雷射束功率内產生寫入至 偏壓位準轉變,該點係應將雷射束功率從寫入位準pw切換 回至偏壓位準抑的瞬間。50%中間位準Pi5〇%產生的偏壓 • 至寫入位準轉變實質上對應於若在3.875 ns切換雷射電流 LC則已獲得的寫入至偏壓位準轉變。 f) 圖8内說明之雷射電流型樣包含20%中間位準Pi2〇%及 80%中_準Pi8G%。鳩中間位準pi2Q%對應於偏壓位準 Pb,其已添加寫入位準pw與偏壓位準外間之差異的別%。 80%中間位準Pi8G%對應於偏麼位準抑,#已添加寫入位 準Pw與偏壓位準Pb間之差異的8〇0/〇。 雷射電流大小M[LC]在·驅動ϋ時脈週期〇 75至1〇⑽期間 处於0 /〇中間位準ρι2()。/。,其中應將雷射束功率從偏壓位 準Pb切換至寫入位準Pw。2〇%中間位準在具有〇·% (J Μ之有效轉變點的雷射束功率内產生偏壓至寫入位準轉 變。此係應將雷射束功率從偏壓位準pb .~的精確瞬間。-中間位軒議產生的偏厂^寫= . 4轉變實質上對應於若在〇.95ns切換雷射電流㈣已獲得 的偏麼至寫入位準轉變。 田射電抓大小M[LC]在驅動器時脈週期3 75至4〇 ns期間 處於_中間位準·%,其中應將雷射束功率從寫入位 準Pw切換回至偏壓位準Pbe此處,8〇%中間位準議%在 -有3.95 ns之有效轉變點的雷射束功率内產生寫入至偏壓 121922.doc -30- 200818148 T準轉文。此係應將雷射束功率從寫入位準Pw切換回至偏 壓位準Pb的精確瞬間。8〇%中間位準^⑽%產生的寫入至 扁[4準轉麦貫枭上對應於若在3 · 9 5 ns切換雷射電流LC則 已獲得的寫入至偏壓位準轉變。 _ 囷9内°兒明之雷射電流型樣亦包含2〇%中間位準pi2〇%及 • 8G/°中間位準Pl8G% °然而,該等中間位準具有相對於圖8 之調換位置。雷射電流大小M[LC]在驅動器時脈週期〇.75 〇 至丨.0⑽期間處於80%中間位準Pi80%,其中應將雷射束功 率從偏壓位準Pb切換至寫入位準pw。雷射電流大小 在驅動器時脈週期3·75至4 〇如期間處於中間位準The precise moment of Pw. In other words, the bias-to-write level transition produced by the nano-level pi5Q% substantially corresponds to the bias-to-write level transition that has been obtained if G 875 is switched, such as switching the laser current LC. The laser current magnitude M[LC] is in the driver clock cycle 3 75 to 4 () μ period 121922.doc •29- 200818148 is also at 50% of the intermediate level pi5〇%, where the laser beam power should be written from the bit The quasi-Pw switches back to the bias level pb. Here, the 5〇% mid-level produces a write-to-bias level transition within the laser beam power with an effective transition point of 3.875 ns, which should switch the laser beam power back from the write level pw The moment to the bias level. Bias generated by 50% of the intermediate level Pi5〇% • The write level transition essentially corresponds to the write-to-bias level transition that has been obtained if the laser current LC is switched at 3.875 ns. f) The laser current pattern illustrated in Figure 8 contains 20% intermediate level Pi2〇% and 80% medium _ quasi Pi8G%. The middle level pi2Q% corresponds to the bias level Pb, which has added another % of the difference between the write level pw and the bias level. The 80% intermediate level Pi8G% corresponds to the partial level limit, and #8〇0/〇 of the difference between the write level Pw and the bias level Pb has been added. The laser current magnitude M[LC] is at the 0/〇 intermediate level ρι2() during the driving ϋ clock period 〇 75 to 1 〇 (10). /. Where the laser beam power should be switched from the bias level Pb to the write level Pw. The 2〇% intermediate level produces a bias to write level transition within the laser beam power with 〇·% (J Μ effective transition point. This should be the laser beam power from the bias level pb . The precise moment.- The partial factory generated by the middle position ^^^== 4 The transition essentially corresponds to if the laser current is switched at 〇.95ns (4), the obtained partial offset is changed to the write level change. [LC] is at _ intermediate level % during the driver clock cycle 3 75 to 4 ns, where the laser beam power should be switched from the write level Pw back to the bias level Pbe here, 8〇% The median level % is written to the bias voltage 121922.doc -30- 200818148 T quasi-transfer in the laser beam power with an effective transition point of 3.95 ns. This should be the laser beam power from the write bit. The quasi-Pw switches back to the precise moment of the bias level Pb. The 8〇% intermediate level ^(10)% is generated to the flat [4 quasi-transfer 对应 对应 corresponds to if the laser current is switched at 3 · 9 5 ns The LC has obtained the write-to-bias level change. _ 囷9 The temperature of the laser current also contains 2〇% of the intermediate level pi2〇% and • 8G/° the intermediate level Pl8G% ° However, Such The inter-level has a swap position relative to that of Figure 8. The laser current magnitude M[LC] is at 80% of the intermediate level Pi80% during the driver clock period 〇.75 〇 to 丨.0(10), where the beam power should be Switching from the bias level Pb to the write level pw. The magnitude of the laser current is at the intermediate level of the driver clock cycle 3·75 to 4

Pl2〇/°,其中應將雷射束功率從寫入位準Pw切換回至偏壓 位準Pb。 圖9中,80%中間位準Pi80%在具有〇·8 ns之有效轉變點 的雷射束功率内產生偏壓至寫入位準轉變。此係應將雷射 束功率從偏壓位準Pb切換至寫入位準!^的精確瞬間。2〇% 〇' 中間位準Pi20%在具有3·8 ns之有效轉變點的雷射束功率内 產生寫入至偏壓位準轉變。此係應將雷射束功率從寫入位 • 準Pw切換回至偏壓位準Pb的精確瞬間。80% t間位準 Ρι80%產生的偏壓至寫入位準轉變實質上對應於若在^ 切換雷射電流LC則已獲得的偏壓至寫入位準轉變。2〇%中 間位準Pi20%產生的寫入至偏壓位準轉變實質上對應於若 在3.8 ns切換雷射電流LC則已獲得的寫入至偏壓位準轉 變。 圖7、8、及9說明可藉由將一或多個中間位準入雷射 121922.doc 31 200818148 而=於雷射束功率内有效轉變點的較精細時間 柊栅:之門效轉變點出現於位於時間袼栅内兩個連續 栅點之間的瞬間。可藉由選擇適當中間位準定義且有r 大精心β β ^ 半&義具有較 0± , 、 ° 、及9 §兒明當有效轉變點出現 中間位準與瞬間之間具有實質線性關係。 n至寫入位準轉變之有效轉變點位於〇奶 =、係驅動器時脈週㈣·75至1G ns之中間。此Pl2 〇 / °, where the laser beam power should be switched back from the write level Pw to the bias level Pb. In Figure 9, 80% of the intermediate level Pi 80% produces a bias to write level transition within the laser beam power having an effective transition point of 〇·8 ns. This system should switch the laser beam power from the bias level Pb to the write level! The precise moment of ^. 2〇% 〇' The intermediate level Pi20% produces a write-to-bias level transition within the laser beam power with an effective transition point of 3·8 ns. This system should switch the laser beam power from the write bit • Pw to the exact moment of the bias level Pb. The bias-to-write level transition produced by the 80% t-inter-level 80% corresponds substantially to the bias-to-write level transition that has been obtained if the laser current LC is switched. The write-to-bias level transition produced by the 2〇% intermediate level Pi20% substantially corresponds to the write-to-bias level transition that has been obtained if the laser current LC is switched at 3.8 ns. Figures 7, 8, and 9 illustrate a finer time gate that can be effectively converted to a point within the laser beam power by one or more intermediate bits being admitted to the laser 121922.doc 31 200818148: Appears at the moment between two consecutive grid points in the time grid. Can be defined by selecting the appropriate intermediate level and having a large amount of elaborate β β ^ half & meaning has a more linear relationship between the intermediate level and the instant when the effective transition point appears to be more than 0±, °, and 9 § . The effective transition point of the n-to-write level shift is located between the milky =, the system driver clock cycle (four) · 75 to 1G ns. this

Ο 射電流LC處於此驅動器時脈週期内的5〇%中Ο The emission current LC is in 5〇% of the clock period of this driver

Pi50〇/o 〇圖8中,偏壓 干 至寫入位準轉變之有效轉變點位於 •…關於驅動器時脈週期,有效轉變點比對應於1〇 ns之格柵點提别2〇%。此係由於雷射電流a處於驅動器時 脈週期G.75M.〇 ns内之2()%中間位準ρ_,其結束於此 格柵點。圖9中,偏壓至寫入位準轉變之有效轉變點位於 〇.“s。關於驅動器時脈週期,有效轉變點比對應心⑽ 之格柵點提前80 %。此係由於雷射電流lc處於驅動器時 脈週期0.75至1.〇 ns内之2〇%中間位準pi2〇%,其結束於此 格柵點。 ^ 圖8中,寫人至偏壓位準轉變之有效轉變點出現於I% ns。關於驅動器時脈週期,有效轉變點比對應於3乃⑽之 格柵點推後80%。此係由於雷射電流LC處於驅動器時脈週 期3.75至4.0 ns内之80%中間位準pi8〇%,其開始於此格栅 點。圖9中,寫入至偏壓位準轉變之有效轉變點出現於3.8 ns。關於驅動器時脈週期,有效轉變點比對應於3·75如之 格柵點推後20%。此係由於雷射電流LC處於驅動器時脈週 121922.doc -32- 200818148 』3.75至4.G ns内之2Q%中間位準pi2Q%,其開始於此格拇 點。 圖10及11說明藉由引入參考圖7、8及9的上述中間位準 已,付的實際結果。圖10係一曲線圖,其具有代表時間 r τ(單位為奈秒(ns))之—水平軸及代表雷射電流大小M[]LC] • 之—垂直軸。圖11係一曲、線圖,其具有代表時間τ(單位為 不秘(ns))之一水平軸及代表雷射束功率pw之一垂直軸。 f) 圖1〇及11内所說明之實際結果已採用圖ό内所說明之雷射 驅動器LDR獲得。驅動器時脈週期Tdr係250 ps。 〃圖職明雷射驅動器LDR可產生的兩個實際雷射電流脈 衝··標準雷射電流脈衝scp及所謂的功率控制轉變雷射電 ⑼L脈衝XCP。已產生之標準雷射電流脈衝scp無任何中間 值數位型樣產生器DPG應用於數位類比轉換器之系列數 字值SDV内具有偏壓位準外至寫入位準Pw之立即轉變。同 樣,具有寫入位準Pw至偏壓位準pb之立即轉變。相應 〇 地’數位至類比轉換器DAC在第-時間間隔期間轉換對應 於偏麼位準Pb之數子值,隨後在第二時間間隔期間轉換對 , 應、於寫入位準Pw之數字值,最後在第三時間間隔期間再次 . 轉換對應於偏壓位準Pb之數字值。各時間間隔對應於型樣 疋義PDF疋義的特定數目之驅動器時脈週期。 已藉由在如圖7内所說明之偏壓位準pb與寫入位準pw間 以及寫入位準Pw與偏壓位準pb間引入5〇%中間位準MM% 產生功率控制轉變雷射電流脈衝xcp。參考圖6,數位型 樣產生器DPG包含儲存對應於50%中間位準pi5〇%之數字 121922.doc -33- 200818148 值的暫存器。數位型樣產生器DPG提供的系列數字值SDv 按連續順序包含: -對應於偏壓位準pb之數字值; -對應於50%中間位準pi5〇%之數字值; • -對應於寫入位準Pw之數字值; -對應於50%中間位準Pi5〇%之數字值; ^ -對應於偏壓位準Pb之數字值。 () 如同禚準基本電流脈衝情形,數位至類比轉換器DAC在 應於藉由型樣疋義pdf疋義的特定數目之驅動器時脈週 期的特定時間間隔期間轉換該等數字值之每一個。 圖10内說明之功率控制轉變雷射電流脈衝XCP具有較平 綾且比標準雷射電流LC脈衝之對應轉變稍早地發生之偏壓 至寫入位準。同樣,功率控制轉變雷射電流脈衝XCP具有 較平緩且比標準雷射電流LC脈衝之對應轉變梢早地發生之 寫入至偏壓位準。 Q 圖11說明兩個雷射束功率脈衝:標準雷射束功率脈衝 SLP及時間偏壓雷射束功率脈衝XLp。標準雷射束功率脈 . 衝SLP對圖10内說明之標準雷射電流脈衝SCP作出回應從 雷射LA發出。時間偏壓雷射束功率脈衝又1^對圖1〇内說明 之功率控制轉變雷射電流脈衝XCP作出回應從雷射[Α發 出。時間偏壓雷射束功率脈衝XLp比標準雷射束功率脈衝 SCP提刖125 ps出現。如上所述,此已藉由引入50〇/〇中間位 準Pi50%而實現。 重要的係應注意個別雷射束功率脈衝SLP、XLp具有實 121922.doc -34- 200818148 質相似形狀。更明確地說,若不論圖丨0内所說明之個別雷 射電流脈衝SCP、XCP内對應轉變間地差異,偏壓至寫入 位準轉變及寫入至偏壓位準轉變相似。由於個別雷射束功 率脈衝SLP、XLP具有實質相似形狀,該等脈衝將以相似 • 方式影響光學記錄材料。標準雷射電流脈衝SCP及功率控 • 制轉變雷射電流脈衝XCP將在光碟上產生相似形狀之標 冗。相應地’藉由引入中間位準,可實現無扭曲之精確時 ^ 間偏移。 C ) 圖7至11特別適用於兩種下列狀況。首先,雷射L A具有 鬆弛振盈週期,其大於驅動時脈週期Tdr。其次,雷射Εα 可經歷有效控制脈衝,其具有小於雷射la之鬆弛振盪週 ^的典型上升時間。有效控制脈衝源自雷射驅動器LDR之 輸出脈衝’其係藉由從雷射驅動器LDR延伸至雷射LA之電 性網路加以有效過濾,包括雷射LA本身。即,雷射LA具 有給定電性阻抗,其形成此電性網路之部分。 〇 右關於鬆弛振盪週期及典型上升時間之前述狀況不適 用中間位準較佳的係在所謂的預脈衝之後。預脈衝係雷 . 射電流LC低於臨界位準之時間間隔,其與雷射LA相關 . 聯田射LA之臨界位準構成開啟/關閉點:雷射乙八分別根 據雷射電流LC高於或低於臨界位準有效地開啟或關閉。相 a也預脈衝引入開啟延遲,其係雷射之典型動態回應, 斗1 , V-如 ^ 、""之係/主入雷射。開啟延遲有助於將中間位準轉譯為 夺間偏移,特別係前述狀況不適用時。 回2 1 3、及14分別以灰階陰影說明包含預脈衝之替代 121922.doc -35- 200818148 雷射電流型樣。除預脈衝外,圖12、 圖7、8、及9。圖12、13、及14指示:別對應於 界位準Pth。預脈衝出 田 相關聯之臨 中。此驅動器時脈週期 狀5至〇·75 ns Γ 一脈衝出現的驅二 先於雷射電流大,Lc]處於中間 $ 了正好 0.75至l.〇ns。 千们駆動為時脈週期 Ο Ο 圖15說明引入中間位準之寫入策 資料計算包含-系列步驟⑷、' ° ^。寫入策略 驟S4之部分。當執行寫入 h S4_6’其形成圖5内步 丁馬入朿略貫施程式pws 明之控制器C™L執行該等步驟。即,寫入策略二= PWS包含-組指令,其使控制器CTRL執行圖U内說明的 寫入朿略貢料計算。寫人策略資料計算係基於 二㈣明WS*及雷射驅動一之駆動器時脈週: ;、步驟S4_1中’控制器CTRL將存在於選般寫入策略 成明WS*内之一般寫入脈衝說明WRP載入至工作暫存 (WRPeWS”。一般寫入脈衝說明WRp定義應將雷射束J率 從偏壓位準Pb切換至寫入位準1^的特定瞬間。下文中此 瞬間將稱為通電切換瞬間Tsu。—般寫入脈衝說明WRp進 -步定義應'將雷射束功率從寫入位準pw切才矣至偏壓位準Pi50〇/o 〇 In Figure 8, the effective transition point for the bias-to-write level transition is at .... Regarding the driver clock period, the effective transition point is 2% higher than the grid point corresponding to 1 〇 ns. This is because the laser current a is at the 2 ()% intermediate level ρ_ within the driver clock period G.75M. 〇 ns, which ends at this grid point. In Figure 9, the effective transition point of the bias-to-write level transition is at 〇. "s. Regarding the driver clock period, the effective transition point is 80% ahead of the grid point of the corresponding heart (10). This is due to the laser current lc In the driver clock cycle period 0.75 to 1. 〇 ns 2 〇% intermediate level pi2 〇%, which ends at this grid point. ^ In Figure 8, the effective transition point of the write human to bias level transition appears in I% ns. Regarding the driver clock period, the effective transition point is 80% after the grid point corresponding to 3 is (10). This is because the laser current LC is in the 80% mid-position of the driver clock period 3.75 to 4.0 ns. Quasi-pi8〇%, which starts at this grid point. In Figure 9, the effective transition point written to the bias level transition occurs at 3.8 ns. Regarding the driver clock period, the effective transition point ratio corresponds to 3.75 The grid point is pushed back by 20%. This is because the laser current LC is at the 2Q% intermediate level pi2Q% of the driver's clock period 121922.doc -32- 200818148 』3.75 to 4.G ns, which starts at this grid Thumbs up. Figures 10 and 11 illustrate the actual results obtained by introducing the above-mentioned intermediate levels with reference to Figures 7, 8 and 9. Figure 10 is a song a line graph having a horizontal axis representing the time r τ (in nanoseconds (ns)) and a vertical axis representing the magnitude of the laser current M[]LC]. FIG. 11 is a curved line diagram having Represents the horizontal axis of time τ (unit is not secret (ns)) and the vertical axis representing the laser beam power pw. f) The actual results described in Figures 1 and 11 have been used in the mine described in Figure ό The driver driver LDR is obtained. The driver clock period Tdr is 250 ps. The two laser current pulses generated by the laser driver LDR can be generated. · Standard laser current pulse scp and so-called power control conversion laser (9) L pulse XCP. The standard laser current pulse generated by scp does not have any intermediate value. The digital pattern generator DPG is applied to the series of digital values SDV of the digital analog converter with an immediate transition from the bias level to the write level Pw. Having an immediate transition from the write level Pw to the bias level pb. Correspondingly the 'digital to analog converter DAC converts the number of sub-values corresponding to the level Pb during the first time interval, followed by a second Conversion pair during the interval, should be written to the level Pw The digital value, and finally during the third time interval, converts the digital value corresponding to the bias level Pb. Each time interval corresponds to a specific number of driver clock cycles of the type of PDF meaning. A voltage control transition laser current pulse xcp is generated between the bias level pb and the write level pw illustrated in FIG. 7 and between the write level Pw and the bias level pb by a 5% intermediate level MM%. Referring to Figure 6, the digital pattern generator DPG includes a register that stores values corresponding to the number 121922.doc -33 - 200818148 of 50% of the intermediate level pi5〇%. The series of digital values SDv provided by the digital pattern generator DPG comprises, in sequential order: - a digital value corresponding to the bias level pb; - a digital value corresponding to 50% of the intermediate level pi5〇%; - corresponding to the write The digital value of the level Pw; - the digital value corresponding to 50% of the intermediate level Pi5〇%; ^ - the digital value corresponding to the bias level Pb. () As in the case of a basic current pulse, the digital-to-analog converter DAC converts each of these digital values during a specific time interval of the clock cycle of a particular number of drivers that should be defined by the type pdf. The power control transition laser current pulse XCP illustrated in Figure 10 has a bias voltage that is relatively flat and occurs earlier than the corresponding transition of the standard laser current LC pulse to the write level. Similarly, the power control transition laser current pulse XCP has a flatter and write-to-bias level that occurs earlier than the corresponding transition tip of the standard laser current LC pulse. Q Figure 11 illustrates two laser beam power pulses: a standard laser beam power pulse SLP and a time-biased laser beam power pulse XLp. Standard Laser Beam Power Pulse The SLP responds to the standard laser current pulse SCP illustrated in Figure 10 from the laser LA. The time-biased laser beam power pulse is again responded to by the power control transition laser current pulse XCP illustrated in Figure 1 from the laser [Α. The time-biased laser beam power pulse XLp appears to be 125 ps higher than the standard laser beam power pulse SCP. As described above, this has been achieved by introducing a 50 〇/〇 intermediate level Pi 50%. It is important to note that the individual laser beam power pulses SLP, XLp have a similar shape to the real 121922.doc -34-200818148. More specifically, the bias-to-write level transition and the write-to-bias level transition are similar regardless of the difference between the corresponding transitions in the individual laser current pulses SCP, XCP as illustrated in Figure 丨0. Since the individual laser beam power pulses SLP, XLP have substantially similar shapes, the pulses will affect the optical recording material in a similar manner. The standard laser current pulse SCP and the power control conversion laser current pulse XCP will produce similar shapes on the disc. Accordingly, by introducing an intermediate level, an accurate inter-distance offset without distortion can be achieved. C) Figures 7 through 11 are particularly suitable for both of the following conditions. First, the laser L A has a relaxed oscillation period which is greater than the drive clock period Tdr. Second, the laser Εα can experience an effective control pulse having a typical rise time that is less than the relaxation oscillation period of the laser la. The effective control pulse originates from the output pulse of the laser driver LDR, which is effectively filtered by the electrical network extending from the laser driver LDR to the laser LA, including the laser LA itself. That is, the laser LA has a given electrical impedance that forms part of this electrical network.右 Right The above conditions regarding the relaxed oscillation period and the typical rise time are not suitable for the intermediate level after the so-called pre-pulse. Pre-pulse system lightning. The time interval at which the emission current LC is lower than the critical level, which is related to the laser LA. The critical level of the Liantian injection LA constitutes the on/off point: the laser B is higher than the laser current LC respectively. Or effectively turn on or off below the critical level. Phase a also introduces an on-delay in the pre-pulse, which is a typical dynamic response of the laser, hopper 1, V- such as ^, "" The turn-on delay helps to translate the intermediate level into a hand-off offset, especially if the aforementioned conditions are not applicable. Back to 2 1 3, and 14 respectively to indicate the replacement of the pre-pulse with gray-scale shading. 121922.doc -35- 200818148 Laser current type. In addition to the pre-pulses, Figures 12, 7, 8, and 9. Figures 12, 13, and 14 indicate that they do not correspond to the boundary Pth. The pre-pulse is associated with the field. This driver clock cycle is 5 to 75·75 ns Γ The pulse of the second appears before the laser current is large, and Lc] is in the middle $ exactly 0.75 to 1. 〇ns. Thousands of people are swaying for the clock cycle Ο Ο Figure 15 illustrates the introduction of the intermediate level of the written policy. The data contains the - series of steps (4), ' ° ^. Write the part of strategy S4. When the write h S4_6' is executed, it forms the step of FIG. 5, and the controller CTML of the program is executed to execute the steps. That is, the write strategy 2 = PWS contains a set of instructions that cause the controller CTRL to perform the write strategy calculations described in Figure U. The writing strategy data calculation is based on the second (four) WS* and the laser drive one of the actuator clock cycle: ;, in step S4_1, the controller CTRL will exist in the general write of the selected write strategy into the WS* The pulse indicates that the WRP is loaded into the work buffer (WRPeWS). The general write pulse indicates that the WRp definition should switch the laser beam J rate from the bias level Pb to the specific instant of writing the level 1^. This is called the power-on switching instant Tsu. The general write pulse indicates that the WRp advance-step definition should 'cut the laser beam power from the write level pw to the bias level.

Pb的另-特定瞬間。下文中此瞬間將稱為斷電切換瞬間 Tsd(WRP: Tsu,Tsd) 〇 步驟S4-2中,控制器CTRL計算通電格柵數目㈤及通電 121922.doc -36- 200818148 格栅偏移T〇ffu(TSU=GU.Tdr-T〇ffu)。通電格柵數目Gu係定 義格柵點之自然數(GueK),即驅動器時脈週期丁心乘以通 電格柵數目Gu。計算之通電格柵數目如定義構成通電: 換瞬間Tsu之最佳近似值同時比該瞬間略遲的格柵點。下 文中此格栅點將稱為通電格柵點。計算之通電格柵偏移Another specific moment of Pb. This moment will be referred to as the power-off switching instant Tsd (WRP: Tsu, Tsd). In step S4-2, the controller CTRL calculates the number of energized grids (5) and energizes 121922.doc -36- 200818148 grid offset T〇 Ffu (TSU=GU.Tdr-T〇ffu). The number of energized grids is the natural number of the grid points (GueK), that is, the drive clock period is multiplied by the number of grids Gu. The calculated number of energized grids is defined as energized: the best approximation of the instantaneous Tsu is at the same time the grid point is slightly later than the instant. This grid point will be referred to as the power grid point below. Calculated power grid offset

Toffu係通電切換瞬間Tsu與通電格柵點之間的差異。相應 地,通電格栅偏移Toffu係包含於零(〇)與驅動器時脈週: Ο ΟToffu is the difference between the power-on switching instant Tsu and the power-on grid point. Correspondingly, the energized grid offset Toffu is included in the zero (〇) and driver clock cycles: Ο Ο

Tdr(T〇ffrem<0,Tdr>)間之範圍内的有理數。相反,當將驅 動器時脈週期Tdr乘以通電格柵數目Gu,該乘法提供通電 格栅點,並從通電格柵點減去通電格柵偏移鳩時,猝 得通電切換瞬間丁SU。 又 步驟S4·3中,控制器CTRL計算通電中間位準Piu(Piu=Pb 準之和獲得通電中間位準Piu。通電偏移位準等於寫入位 ,與偏壓位準扑間之差異乘以標準化通電格柵偏移。 心準化通電格栅偏移等於通電格栅偏移To仇除以驅動哭 時脈週期Td”即’標準化通電格栅偏移以驅動器時朗 期Tdr為皁位表達通電切換瞬間Tsu與通電格柵點間之差 異。通電中間位準Piu隨(標準化)通電格柵偏移丁伽成比 例地變更。通電切換瞬間Tsu與通電格柵點越近,通電格 柵偏移T〇ffu越小,通電中間位準❿與偏壓位準外越近: ^電刀換_ TSU與通電格栅點越遠,通電袼栅偏 私丁咖越大,通電中間位準piu與寫入位準pw越近。 步驟S4_4t ’控制器„社以有點類似於上述步驟⑷ 121922.doc -37- 200818148 之方式計算斷電格栅數目㈤及斷電格栅偏移T〇ffd (Tsd = Gd.Tdr+Tc)ffd)。斷冑格柵數目μ係定義格栅點之自 然數⑹叫,即驅動器時脈週期Tdr乘以斷電格栅數目 :十之斷電格柵數目㈤定義構成斷電切換瞬間加之 .. 最佳近似值同時比該瞬間略早的格柵點。下文中此格柵點 將稱為斷電格拇點。斗瞀 & .· ”、、 汁^之斷電格栅偏移Toffu係斷電切 換瞬間Tsd與斷電格4冊點夕pq Α γ 呵电心栅點之間的差異。相應地,斷電袼栅 〇 私〇ffd係包各於零(0)與驅動器時脈週期Tdr ( ⑽〇’Tdr>)間之範圍内的有理數。相反,當將驅動 器時脈週期Tdr乘以斷電格栅數目㈤,該乘法提供斷電格 栅點,並將斷電格柵偏移TGffd加人斷電格柵點時,獲得 斷電切換瞬間Tsd。 y鉢S4 5中,控制态CTRL計算斷電中間位準pid(pid= Pb + (T〇ffd/Tdr).(PW-Pb))。藉由求偏麼位準外及斷電偏移 位準之和獲得斷電中間位準p i d。斷電偏移位準等於寫入 〇 位準Pw與偏壓位準Pb間之差異乘以標準化斷電格柵偏 移。標準化斷電格柵偏移等於斷電格柵偏移Toffd除以驅 • 動器時脈週期Tdr。即,標準化斷電格柵偏移以驅動器時 • 脈週期Tdr為單位表達斷電切換瞬間Tsd與斷電格栅點間之 差異。斷電中間位準Pid隨(標準化)斷電格柵偏移T〇ffd成 比例地欠更。k/f電切換瞬間Tsd與斷電格栅點越近,斷電 格柵偏移Toffd越小,斷電中間位準pid與偏壓位準扑越 近。相反,斷電切換瞬間Tsd與斷電袼柵點越遠,斷電格 柵偏移Toffd越大,斷電中間位準Pid與寫入位準pw越近。 121922.doc -38- 200818148 步驟S4_6中,控制器CTRL製備寫入脈衝產生參數,其 係傳送至雷射驅動器LDR。寫入脈衝產生參數可構成如上 關於步驟S4-1提及的一般寫入脈衝說明WRp之轉譯。寫入 脈衝產生參數定義在正好先於通電格栅點之驅動器時脈週 . 期Tdr期間,雷射電流LC應具有通電中間位準piu,或者足 • 夠良好的其近似值。即,就格栅數目,雷射電流LC應具有 . 格柵數目Ο11·1(其正好先於通電格柵數目Gu)與通電格栅數 〇 目GU本身間的通電中間位準PiU(PiU@[(Gd-l).Tdr,A rational number within the range between Tdr(T〇ffrem<0, Tdr>). Conversely, when the driver clock period Tdr is multiplied by the number of energized grids Gu, which multiplies the energized grid point and subtracts the energized grid offset 从 from the energized grid point, the power is switched instantaneously. In step S4·3, the controller CTRL calculates the energization intermediate level Piu (Piu=Pb quasi-sum sum is obtained by the energization intermediate level Piu. The energization offset level is equal to the write bit, and the difference between the bias level and the bias level is multiplied. To normalize the power grid offset. The mind normalization grid offset is equal to the power grid offset To hate to drive the crying clock period Td" ie the 'standardized power grid offset to drive the time period Tdr as the soap level The difference between the energization switching instant Tsu and the energized grid point is expressed. The energization intermediate level Piu is changed proportionally with the (normalized) energization grid offset Ding. The closer the energization switching instant Tsu is to the energized grid point, the energization grid offset The smaller the T〇ffu is, the closer the energization intermediate position is to the bias level: ^ The electric knife is changed _ The farther the TSU is from the power grid point, the larger the power grid is, the larger the power is, the higher the power level is, and the power is intermediate. The closer the in-place pw is, the closer the step S4_4t 'controller' is to calculate the number of power grids (5) and the power grid offset T〇ffd (Tsd = in a manner similar to the above steps (4) 121922.doc -37- 200818148. Gd.Tdr+Tc)ffd). The number of broken grids is defined by the natural number of the grid points (6), that is, the drive clock cycle Tdr is multiplied by the number of power grids: the number of power grids (10) is defined as the moment of power-off switching. The approximation is also a grid point that is slightly earlier than the instant. This grid point will be referred to below as the break point.瞀 瞀 & .· 、, 、^ The power grid offset Toffu is the power-off switching instant Tsd and the power-off grid 4 points 夕pq Α γ 呵 电 心 之间 。 。 。 。 。 The 〇 系 ffd package is a rational number in the range between zero (0) and the driver clock period Tdr ( (10) 〇 'Tdr>). Conversely, when the driver clock period Tdr is multiplied by the power grid The number (5), the multiplication provides the power grid point, and the power grid offset TGffd is added to the power grid point to obtain the power-off switching instant Tsd. In the y钵S4 5, the control state CTRL calculates the power-off intermediate The level pid (pid= Pb + (T〇ffd/Tdr). (PW-Pb)). The power-down intermediate level pid is obtained by summing the deviation of the level and the power-off offset level. The offset level is equal to the difference between the write 〇 level Pw and the bias level Pb multiplied by the normalized power grid offset. The normalized power grid offset is equal to the power grid offset Toffd divided by the drive The clock cycle Tdr. That is, the normalized power grid offset represents the difference between the power-off switching instant Tsd and the power-off grid point in units of the pulse period Tdr of the driver. The quasi-Pid is proportionally less than the (normalized) power-off grid offset T〇ffd. The closer the k/f electric switching instant Tsd is to the power-off grid point, the smaller the power-off grid offset Toffd is, and the power-off is in the middle. The closer the level pid is to the bias level, the opposite is. The farther the power-off switching instant Tsd is from the power-off gate point, the larger the power-off grid offset Toffd is, the power-off intermediate level Pid and the write level pw 121922.doc -38- 200818148 In step S4_6, the controller CTRL prepares a write pulse generation parameter which is transmitted to the laser driver LDR. The write pulse generation parameter may constitute the generality mentioned above with respect to step S4-1. The write pulse indicates the translation of WRp. The write pulse generation parameter is defined at the pulse period just before the power-on grid point. During the period Tdr, the laser current LC should have an energized intermediate level piu, or enough. The approximate value, that is, in terms of the number of grids, the laser current LC should have. The number of grids Ο11·1 (which happens to precede the number of energized grids Gu) and the number of grids of the grids GU itself itself. (PiU@[(Gd-l).Tdr,

Gd’Tdr])。寫入脈衝產生參數進一步定義在緊跟斷電格柵 點之驅動器時脈週期Tdr期間,雷射電流]1€:應具有斷電中 間位準Pid,或者足夠良好的其近似值。即,就格柵數 目,雷射電流LC應具有斷電格柵數目Qd與緊跟斷電格柵 數目Gd之格柵數目Gd+1間的通電中間位準piu(pid@ [Gd.Tdr,(Gd+l).Tdr])。 如上所述,圖6内所說明之雷射驅動器L]Dr内的暫存器 U 組RG1、RG2、RG3、…包含可應用於數位至類比轉換器 DAC之一組數字值。例如,雷射驅動器ldr可包含一暫存 • 器,其儲存對應於圖7内所說明之50〇/〇中間位準Pi50%的數 子值。雷射驅動器LDR可包含其他暫存器,其用以儲存對 應於個別中間位準(例如單位為1〇%)之個別數字值。相應 地,雷射驅動器LDR可將雷射電流乙(::設定於圖8及9内所說 明之20%中間位準pi2〇%及8〇%中間位準pi8〇%。此範例 中,雷射驅動器LDR可進一步將雷射電流lc設定於10%、 3 0%、40%、60〇/〇、7〇%、及 9〇%中間位準。 121922.doc -39- 200818148 在圖12内所說明之耷 t …束略:貝料計算中計算的中間位準 可此未正確地對應於儲 ^ 什%田射驅動器LDR内之任何數丰 值。該情形下,寫入策略眘 — mp. ^ 朿略貝枓汁舁可將計算之通電中間位 準Pm捨入至數字值存 a、# 于牡於雷射驅動器LDR内的最近可能 位準。或者,可重新Ρ& 月匕 王式化每射驅動器LDR内之暫存器組 RG1、RG2、RG3、 , ^ ,m 咏^ ··· 便個別暫存器包含對應於已計 异之中間位準的個別數字值。 Ο υ 參考圖式之上述詳細說明 & * Λ僅係本發明之說明及定義於申 #專利範圍中之額外特徵。 专倣本發明可按許多不同方式來實 把。為說明此點,簡要指明某些替代方案。 本叙明可應用於記錄任何類 # ^之先碟,其可為可重寫光 2碟或:寫一次型W,參考關於可重寫光碟的圖 ’存在從抹除位準Pe至寫人位準pw之立即轉變。此立即 ^可由根據本發明之步進式轉變來取代,其包括依時間 先後配置於抹除位準pe盥耷 平興寫入位準pw間的中間位準。此範 例中,抹除位準Pe係用以留下如 、 每卜如圖2内所說明之空間的靜 止位準。作為另一範例,灸 ,考關於唯寫一次型光碟之圖 3,存在從偏壓位準外至第— 土矛一舄入位準Pw2之立即轉變。 此立即傳輸可由根據本發 + '月之步進式轉變來取代,其包括 依時間先後配置於偏壓位準扑盥 -、罘一冩入位準Pw2間的中 間位準。此範例中,偏壓位 你用以留下如圖3内所說 明之空間的靜止位準。 根據本發明之雷射驅動信號可具有許多不同型樣。圖 7、8、9、12、13、14僅說明_些範例。該等範例中,雷 123922.doc -40- 200818148 射驅動信號具有中間位準之時間 週期。儘管前述係較佳,此一時間門二:—個.驅動器時脈 多驅動器時脈週期。相似解釋適用^可包含兩個或更 的預脈衝。預脈衝長度可為 13、14内提供 膏施妒搪士 * 更夕驅動器時脈週期。 貝施根據本發明之雷射驅動器 ό僅說明一範例,i + U 木用砟夕不同方式。圖 RG2、RG3其令雷射驅動器包含個別暫存器⑽、 Ο 位準的個別值_其:=用於雷射_ 對應暫存器指定特定位準。作為另^樣疋義糟由參考 確地定義特定位準。此…型樣定義可明 且右mA由一 貝轭方案中,雷射驅動器不需要 2 '兒明的前述個別暫存器RG1、RG2、RG3。作為 :中耗:’在僅需要處理-些不同類型之光碟的光學記錄 身“區動态不需要包含可程式記憶體。即,雷射驅 =僅茜要實施單一寫入策略,其可採用唯讀記憶體或佈 Ο 、㈣輯來實現。重要的係雷射驅動器能夠提供包含根據本 杳明之中間位準的型樣。 曾根據期望切換瞬間及屬於雷射驅動器信號之時間格柵計 二中間位準有許多不同方式。圖15僅說明一範例。例如, 時間:移可指先於或後於期望切換瞬間之格栅點。另外, 應/主思時間偏移不必取決於根據本線性函數之中間位準。 /、可為時間偏移與中間位準間之非線性關係。此一情 y中車乂佳的係藉由非線性等式或反映該非線性關係的其 近似等式計算中間位準。 精由硬體或軟體項目或者兩者實施功能存在許多方式。 121922.doc -41 - 200818148 關於此點’圖式僅為示音 且雕眚# n W Θ,/、各僅代表本發明之一可能 具肢貫施例。因此,儘管 L ^ 武酼不同方塊顯示不同功能, 此並不排除單一硬體或軟體 員目執行數個功能。也由 硬體或軟體項目或去$14 # 也不排除 貝目次者兩者之裝配件執行一功能。 上述解釋示範參考圖式之詳細 gO ^ 、。兒月係^明而非限制本發 明。存在許多替代方宏甘 士 η/、屬於隨附申請專利範圍之範 ^。申請專利範圍中的任何夂者 /考付唬不應被視為限制申請 Ο Ο 專利耗圍。該用語”包含”卄 3並不排除在申請專利範圍所列出 之外的其他元件或步驟。 -. 、,, 哪用在一凡件或步驟前的用語”一,, 或個並不排除複數個此一元件或步驟的存在。 【圖式簡單說明】 圖1係說明從可重寫光碟讀取之程序的複合圖。 圖2係況明在可重寫光碟上記錄之程序的複合圖。 圖3係說明在唯寫一次型光碟上記錄之程序的信號圖。 圖4係說明光學記錄器之方塊圖。 圖5係說明光碟記錄器在使用者插入可記錄光碟時執行 的數個操作之流程圖。 圖6係說明形成光學記錄器之部分的雷射驅動器之方塊 圖7、8、及9係信號圖,其分別說明期望雷射束寫入脈 衝及與其相關聯之雷射電流型樣。 圖1 〇係信號圖,其說明雷射驅動器可產生的兩個實際雷 射電流脈衝。 圖11係信號圖,其說明得自兩個實際雷射電流脈衝之兩 121922.doc -42- 200818148 個雷射束功率脈衝。 圖12、13、及14係信號圖,其分別說明期望雷射束寫入 脈衝及與其相關聯之替代雷射電流型樣。 圖1 5係說明允許雷射驅動器之適當程式化的寫入策略資 料計算之流程圖。 【主要元件符號說明】 ADG 位址產生器 CCK 〇 接收通道時脈信號 CHC 通道編碼器 CKG 時脈產生器 CTRL 處理器 DAC 數位至類比轉換器 DPG 型樣產生器 DRM 磁碟旋轉馬達 DSK 光碟 〇 EGI 光電介面 ERC 錯誤校正編碼器 FIFO 先進先出型緩衝器 INP 輸入介面 ^ LDM 裝載機構 LDR 雷射驅動器 MEMD 記憶體 MEMS 系統記憶體 〇DR 光學記錄器 121922.doc -43 - 200818148 PWS 寫入策略實施程式 RCD 遙控裝置 RDR 讀取器 RG1 暫存器 RG2 暫存器 RG3 暫存器 TIM 時序電路 TR 光碟磁軌 Ο Ο 121922.doc -44-Gd’Tdr]). The write pulse generation parameter is further defined during the driver clock period Tdr immediately following the power-off grid point, and the laser current of 1 €: should have a power-down intermediate level Pid, or a good enough approximation. That is, in terms of the number of grids, the laser current LC should have an energized intermediate level pui between the number of grids Qd and the number of grids Gd+1 followed by the number of grids Gd (pid@ [Gd.Tdr, (Gd+l).Tdr]). As noted above, the register U sets RG1, RG2, RG3, ... within the laser driver L] Dr illustrated in Figure 6 contain a set of digital values that can be applied to a digital to analog converter DAC. For example, the laser driver ldr may include a temporary memory that stores a value corresponding to the 50 〇/〇 intermediate level Pi 50% illustrated in Figure 7. The laser driver LDR may include other registers for storing individual digital values corresponding to individual intermediate levels (e.g., in units of 1%). Correspondingly, the laser driver LDR can set the laser current B (:: set to 20% of the intermediate level pi2〇% and 8〇% of the intermediate level pi8〇% as illustrated in Figures 8 and 9. In this example, Ray The laser driver LDR can further set the laser current lc to the intermediate levels of 10%, 30%, 40%, 60〇/〇, 7〇%, and 9〇%. 121922.doc -39- 200818148 In Figure 12 The illustrated 耷t ... bundle: the intermediate level calculated in the billimeter calculation may not correctly correspond to any number of rich values in the storage LDO. In this case, the write strategy is cautious - mp ^ 朿略贝枓汁舁 can round the calculated energized intermediate level Pm to the nearest possible level of the digital value a,# in the laser drive LDR. The register group RG1, RG2, RG3, , ^, m 咏^ ··· in the emitter driver LDR contains individual digital values corresponding to the intermediate levels that have been counted. Ο υ Reference pattern The above detailed description & * is only an explanation of the present invention and additional features defined in the scope of the patent. The invention can be varied in many different ways. To illustrate this point, briefly indicate some alternatives. This description can be applied to record any class # ^ first disc, which can be rewritable light 2 disc or: write once type W, refer to The picture of the rewritable optical disk has an immediate transition from the erasing level Pe to the writing position qu. This immediate ^ can be replaced by a step-wise transition according to the invention, which includes chronologically configuring the erasing level. The pe盥耷pingxing writes the intermediate level between the level pw. In this example, the erase level Pe is used to leave the static level of the space as shown in Fig. 2. As another Example, moxibustion, test on the write-once type disc, Figure 3, there is an immediate transition from the bias level to the first - soil spear-input position Pw2. This immediate transmission can be based on this hair + 'month step The type transition is substituted, which includes chronologically arranging the intermediate level between the bias level and the P-input level Pw2. In this example, the bias is used to leave as shown in Figure 3. The static level of the illustrated space. The laser drive signal according to the present invention can have many different patterns. 7, 8, 9, 12, 13, and 14 only illustrate some examples. In these examples, the Ray 123922.doc -40-200818148 shoot drive signal has an intermediate level time period. Although the foregoing is preferred, this time Gate 2: -. Driver clock multi-driver clock cycle. Similar explanation applies ^ can contain two or more pre-pulses. Pre-pulse length can provide paste for 13, 14 gentleman * Eve driver clock Cycles. According to the laser driver of the present invention, only one example is described, and i + U wood is used in different ways. Figure RG2, RG3, which allows the laser driver to contain individual registers (10), 个别 individual values of the _ it: = for the laser _ corresponding to the register to specify a specific level. As a different example, a specific level is defined by reference. The definition of this type is clear and the right mA is from a yoke scheme. The laser driver does not need the aforementioned individual registers RG1, RG2, RG3. As: Medium consumption: 'In the optical recording body that only needs to process - some different types of optical discs, the area dynamic does not need to contain programmable memory. That is, the laser drive = only a single write strategy is implemented, which can be used Read-only memory or cloth, (4) series. The important laser driver can provide the model with the intermediate level according to this specification. The time switch that has been switched according to the expectation and belongs to the laser driver signal There are many different ways of the intermediate level. Figure 15 only illustrates an example. For example, time: shift can refer to the grid point before or after the desired switching instant. In addition, the time shift should be independent of the linear function. The intermediate level can be a nonlinear relationship between the time offset and the intermediate level. In this case, the ruthlessness is calculated by the nonlinear equation or its approximate equation reflecting the nonlinear relationship. There are many ways to implement functions by hardware or software projects or both. 121922.doc -41 - 200818148 About this point 'The pattern is only the sound and the 眚# n W Θ, /, each represents only this One of the inventions It can be practiced. Therefore, although L ^ martial arts show different functions in different squares, this does not exclude a single hardware or software member from performing several functions. It is also excluded by hardware or software projects or going to $14 # The fittings of both of the shells perform a function. The above explanation demonstrates the detailed gO ^ , the syllabus of the model, and does not limit the invention. There are many alternatives, Fang Gangs η, which are attached patents. The scope of the scope ^. Any applicant/examination in the scope of patent application should not be considered as limiting the application Ο 专利 patent consumption. The term "include" 卄3 does not exclude from the scope of the patent application. Other elements or steps - - , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a composite diagram illustrating a program read from a rewritable optical disc. Figure 2 is a composite diagram of a program recorded on a rewritable optical disc. Fig. 3 is a signal diagram showing a procedure recorded on a write-once optical disc. Figure 4 is a block diagram showing an optical recorder. Fig. 5 is a flow chart showing a plurality of operations performed by the optical disk recorder when a user inserts a recordable optical disk. Figure 6 is a block diagram showing the laser driver forming part of the optical recorder. Figures 7, 8, and 9 are signal diagrams illustrating the desired laser beam write pulse and the laser current pattern associated therewith, respectively. Figure 1 shows a lanthanide signal diagram illustrating two actual laser current pulses that can be generated by a laser driver. Figure 11 is a signal diagram illustrating two laser beam power pulses from two actual laser current pulses. Figures 12, 13, and 14 are signal diagrams illustrating desired laser beam write pulses and their associated alternate laser current patterns, respectively. Figure 15 is a flow diagram illustrating the calculation of the appropriate stylized write strategy data for the laser driver. [Main component symbol description] ADG address generator CCK 〇 Receive channel clock signal CHC Channel encoder CKG Clock generator CTRL Processor DAC Digital to analog converter DPG Model generator DRM Disk rotation motor DSK Disc 〇 EGI Photoelectric interface ERC error correction encoder FIFO FIFO buffer INP input interface ^ LDM loading mechanism LDR laser driver MEMD memory MEMS system memory 〇 DR optical recorder 121922.doc -43 - 200818148 PWS write strategy implementation RCD Remote Control RDR Reader RG1 Register RG2 Register RG3 Register TIM Timing Circuit TR Optical Track Ο 922 121922.doc -44-

Claims (1)

200818148 十、申請專利範圍 1.200818148 X. Application for patent scope 1. 一種光學記錄器(〇DR)’其包含用以產生—雷射驅動信 號(LC)之一雷射驅動器(LDR) ’在具有一給定間距⑽ 之—時間格栅上對準該雷射驅動信號(Lc)中之位準變 化’該雷射驅動器(LDR)係配置成為該雷射驅動信號 (LC)提供—型樣,其包含依時間先後配置於用以在一光 碟磁執(TR)上留下—空間的—靜止位準⑽)與用以在該 光碟磁軌(TR)上寫人—標記的—寫人位準(pw)之間的一 中間位準(Pi50%),該中間位準(pi5〇%)係包含於該靜止 位準(Pb)與該寫入位準(Pw)之間。 士#求項1之光學δ己錄器,該雷射驅動器(LDR)係配置成 致使該雷射驅動信號(LC)之該型樣包含依時間先後配置 於該靜止位準(Pb)與該中間位準(Pi5〇%)間的一預脈衝位 準°亥預脈衝位準低於與耦合以接收該雷射驅動信號 (LC)之一雷射(la)相關聯的一臨界位準(pth)。 Ο 3 ·如請求項1之光學記錄器,該雷射驅動器(ldr)包含·· 5己憶體(MEMD),其用以儲存用於該雷射驅動信號 (Lc)之個別型樣定義(PDF); 一位址產生器(ADG),其用以根據一輸入資料信號 (CD)從該記憶體(MEMD)連續讀取該等個別型樣定義 (PDF)之一;以及 一型樣產生器(DPG、DAC),其用以根據從該記憶體 (MEMD)連續讀取之該個別型樣定義(pDF)產生該雷射驅 動信號(LC)。 121922.doc 200818148 4.如請求項3之光學記錄器,該型樣產生器(DPG、DAC)包 含: 個別暫存器(RG1、RG2、RG3、…),其可按一型樣定 義(PDF)單獨加以指定,以便儲存對應於該雷射驅動信 號(LC)可具有的個別位準(Pb、Pw、Pi50%、…)之個別 值(DV1、DV2、DV3、…);以及 一數位至類比轉換器(DAC),其用以根據儲存於該個 別暫存器(RG1、RG2、RG3、…)内之該等個別值(DV1、 DV2、DV3、…)提供該雷射驅動信號(LC)。 5 ·如請求項4之光學記錄器,其中將對應於個別中間位準 (Pi20%、Pi50%、Pi80%)之個別值(DV1、DV2、 DV3、…)儲存於個別暫存器(rgi、RG2、RG3、…)内。 6·如請求項4之光學記錄器,該型樣產生器(DPG、DAC)包 含一時序電路(TIM),其可藉由一型樣定義(PDF)加以程 式化,該時序電路(TIM)係配置成提供一系列時序脈衝 (TP),其定義轉換個別值(DV1、DV2、DV3、…)之個別 時間間隔。 7·如請求項1之光學記錄器,該光學記錄器包含: 一系統記憶體(MEMS),其用以儲存一寫入策略說明 (WS1、WS2、WS3、…),其定義應將雷射束功率從一位 準(Pb ; Pw)切換至另一位準(Pw ; Pb)的一切換瞬間 (Tsu ; Tsd);以及 一處理器(CTRL),其係配置成藉由指派一中間位準 (Piu ; Pid)給一時間間隔來定義用於該雷射驅動信號(LC) 121922.doc 200818148 之型樣,該時間間隔係由該切換瞬間(Tsu ; Tsd)位於 其間的兩個格栅點予以定義,f亥中間位準(piu;pid)係 包3於應從其切換該雷射束功率的該一個位準㈣;ρ%) 與應將該雷射束功率切換至的該另一位準(〜 之 間。 8· -種雷射驅動器(LDR)’其用於如請求们之光學記錄器 (ODR) 〇 9. Ο Ο 種藉由產生一雷射驅動信號(LC)之光學記錄方法,在 具有一給定間距(Td〇之一時間格拇上對準該雷射驅動信 號(LC)中之位準變化,該方法包含: 1樣產生步驟,其中該雷射驅動信號(Lc)具有包含 中間位準(Pl50〇/o)之一型樣,該中間位準(Μ心)係依 時間先後配置於用以在_光碟磁軌(TR)上留下一空間的 靜止位準(Pb)與用以在該光碟磁執(TR)上寫入一標記 的一寫入位準(PW)之間,該中間位準(Pi50%)係包含於該 月夢止位準(Pb)與該寫入位準(Pw)之間。 10· 一種根據用於一光碟之一寫入策略說明(ws*)定義用於 一雷射驅動信號(LC)之一型樣的方法,藉此在具有一給 定間距(Tdr)之一時間格柵上對準該驅動信號(LC)中之位 準變化,以及藉此該寫入策略說明(ws*)定義一切換瞬 間(Tsu ; Tsd),在該切換瞬間(Tsu ; Tsd)應將雷射束功率 ^位準(Pb , Pw)切換至另一位準(Pw ; Pb),該方法包 含·· 一指派步驟(S4),其中指派一中間位準(piu ; pid)給由 121922.doc 200818148 j切換瞬間(Tsu,Tsd)位於其間的兩個格栅點定義之一 犄間間隔,該中間位準(Piu; Pid)係包含於應從其切換 该雷射束功率的該一個位準(pb ; pw)與應將該雷射束功 率切換至的該另一位準(Pw ; pb)之間。 11·如請求項10之方法,該方法包含: 一計算步驟(队3;队5),其中與該切換瞬間(Tsu; Tsd)與鄰近該切換瞬間之一格柵點間的一時間差異An optical recorder (〇DR) that includes a laser driver (LDR) for generating a laser drive signal (LC) aligns the laser drive on a time grid having a given pitch (10) The level change in the signal (Lc) is configured to be provided by the laser drive signal (LC), which is configured to be chronologically arranged for use on a disc (TR) An intermediate level (Pi50%) between the left-space-stationary level (10) and the person-marked-written person level (pw) on the optical disk track (TR), The intermediate level (pi5〇%) is included between the static level (Pb) and the write level (Pw). The optical delta recorder of claim 1, the laser driver (LDR) being configured such that the pattern of the laser drive signal (LC) comprises chronologically configuring the rest level (Pb) and the A pre-pulse level between the intermediate levels (Pi5〇%) is lower than a critical level associated with the laser (la) coupled to receive the laser drive signal (LC) ( Pth). Ο 3 · The optical recorder of claim 1, the laser driver (ldr) comprising a memorandum (MEMD) for storing an individual type definition for the laser drive signal (Lc) PDF); an address generator (ADG) for continuously reading one of the individual pattern definitions (PDF) from the memory (MEMD) according to an input data signal (CD); and generating a pattern The device (DPG, DAC) is configured to generate the laser drive signal (LC) based on the individual pattern definition (pDF) continuously read from the memory (MEMD). 121922.doc 200818148 4. The optical logger of claim 3, the pattern generator (DPG, DAC) comprises: individual registers (RG1, RG2, RG3, ...), which can be defined as one type (PDF) Individually specified to store individual values (DV1, DV2, DV3, ...) corresponding to the individual levels (Pb, Pw, Pi50%, ...) that the laser drive signal (LC) can have; and a digit to An analog converter (DAC) for providing the laser drive signal (LC) according to the individual values (DV1, DV2, DV3, ...) stored in the individual registers (RG1, RG2, RG3, ...) ). 5. The optical recorder of claim 4, wherein the individual values (DV1, DV2, DV3, ...) corresponding to the individual intermediate levels (Pi20%, Pi50%, Pi80%) are stored in the individual registers (rgi, Within RG2, RG3, ...). 6. The optical recorder of claim 4, the pattern generator (DPG, DAC) comprising a timing circuit (TIM), which can be programmed by a type definition (PDF), the timing circuit (TIM) The system is configured to provide a series of timing pulses (TP) that define individual time intervals for converting individual values (DV1, DV2, DV3, ...). 7. The optical recorder of claim 1, the optical recorder comprising: a system memory (MEMS) for storing a write strategy specification (WS1, WS2, WS3, ...), the definition of which should be laser The switching power is switched from one level (Pb; Pw) to another switching point (Tsu; Tsd) of another level (Pw; Pb); and a processor (CTRL) configured to assign a middle bit Piu (Pid) gives a time interval to define the type of laser drive signal (LC) 121922.doc 200818148, which is the two grids between which the switching instant (Tsu; Tsd) is located Point is defined, the intermediate level (piu; pid) is the one level (four) from which the laser beam power should be switched; ρ%) and the other that should be switched to the laser beam power Level (~ between 8. 8 - Laser Drive (LDR)' is used for optical recorders (ODR) such as Requests 〇 9. Ο Ο Optical by generating a laser drive signal (LC) a recording method for aligning a level change in the laser drive signal (LC) on a thumb having a given pitch (Td〇, The method comprises: a sample generating step, wherein the laser driving signal (Lc) has a pattern including an intermediate level (Pl50〇/o), wherein the intermediate level (center) is configured in time series A static level (Pb) leaving a space on the _optical track (TR) and a writing level (PW) for writing a mark on the optical disk (TR), the middle The level (Pi50%) is included between the dream level (Pb) and the write level (Pw). 10. A definition based on the write strategy description (ws*) for one of the discs. a method of one of the laser drive signals (LC) whereby the level change in the drive signal (LC) is aligned on a time grid having a given pitch (Tdr), and thereby The write strategy specification (ws*) defines a switching instant (Tsu; Tsd) at which the laser beam power level (Pb, Pw) should be switched to another level (Pw). Pb), the method includes an assignment step (S4) in which an intermediate level (piu; pid) is assigned to the (Tsu, Tsd) bit by 121922.doc 200818148 j The two grid points therebetween define one inter-turn interval, and the intermediate level (Piu; Pid) is included in the one level (pb; pw) from which the laser beam power should be switched and the laser should be The beam is switched between the other level (Pw; pb). 11. The method of claim 10, the method comprising: a calculating step (team 3; team 5), wherein the switching instant (Tsu; Tsd) and a time difference between one of the grid points adjacent to the switching instant Ο (offu,Toffd)成一函數關係而計算該中間位準(pi。 Pid) 〇 12·如明求項上!之方法’其中該計算步驟中,計算該中間位 準(Piu ·’ Pid)所根據之該函數係一實質線性函數。 13·如明求項12之方法,其中該計算步驟中,將該時間差異 (Toffu,Toffd)乘以應從其切換該雷射束功率之該一個位 準(Pb ·’ pw)與應將該雷射束功率切換至的該另一位準 (Pw ; Pb)間之一差異。 14· 一種電腦可讀取媒體,其上儲存包含一組指令之一電腦 程式,當載入至一指令執行裝置中時,其使該指令執行 裝置執行如請求項1 〇之方法。 1 5 · —種用於驅動一光學記錄器(〇DR)内之一雷射(la)的信 號(LC),在具有一給定間距(丁心)之一時間袼栅上對準該 雷射驅動信號(LC)中之位準變化,該信號(LC)具有一型 樣,其包含依時間先後配置於用以在一光碟磁軌(TR)上 留下一空間的一靜止位準(Pb)與用以在該光碟磁執(tr) 上寫入一標記的一寫入位準(Pw)之間的一中間位準 121922.doc 200818148 (Pi50%),該中間位準(Pi50%)係包含於該靜止位準(Pb) 與該寫入位準(Pw)之間。 Ο υ 121922.docΟ (offu, Toffd) is a functional relationship and the intermediate level (pi. Pid) is calculated. 〇12·If the method is on the item! In the calculation step, the intermediate level (Piu · ' Pid) is calculated. According to this function is a substantial linear function. 13. The method of claim 12, wherein in the calculating step, the time difference (Toffu, Toffd) is multiplied by the one level (Pb · 'pw) from which the laser beam power should be switched and should be One of the differences between the other level (Pw; Pb) to which the laser beam power is switched. 14. A computer readable medium having stored thereon a computer program comprising a set of instructions which, when loaded into an instruction execution device, cause the instruction execution device to perform a method as claimed in claim 1. 1 5 · A signal (LC) for driving a laser (la) in an optical recorder (〇DR), which is aligned on the gate with a given pitch (Ding) a level change in the shot drive signal (LC) having a pattern comprising a chronologically arranged level of a position to leave a space on a disc track (TR) ( Pb) is an intermediate level between the writing level (Pw) used to write a mark on the optical disk (tr) of the optical disk 121922.doc 200818148 (Pi50%), the intermediate level (Pi50%) ) is included between the resting level (Pb) and the writing level (Pw). Ο υ 121922.doc
TW096122096A 2006-06-26 2007-06-20 High-speed optical recording TW200818148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096122096A TW200818148A (en) 2006-06-26 2007-06-20 High-speed optical recording

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW95123082 2006-06-26
PCT/IB2006/053764 WO2008001164A1 (en) 2006-06-23 2006-10-13 High-speed optical recording
TW096122096A TW200818148A (en) 2006-06-26 2007-06-20 High-speed optical recording

Publications (1)

Publication Number Publication Date
TW200818148A true TW200818148A (en) 2008-04-16

Family

ID=44802496

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096122096A TW200818148A (en) 2006-06-26 2007-06-20 High-speed optical recording

Country Status (1)

Country Link
TW (1) TW200818148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397909B (en) * 2009-02-18 2013-06-01 Mediatek Inc Controller and method for generating signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397909B (en) * 2009-02-18 2013-06-01 Mediatek Inc Controller and method for generating signals

Similar Documents

Publication Publication Date Title
JP3762847B2 (en) Information recording method and information recording apparatus
TW201108218A (en) Recording method and data storage medium
BR9917693B1 (en) ADAPTIVE WRITING CIRCUIT FOR ENTRY DATA WRITING IN AN OPTICAL RECORD MECHANISM, AND ADAPTIVE WRITING PULSE GENERATION CIRCUIT
JPH0684224A (en) Recording control method for magneto-optical disk
KR20020037330A (en) Methods and devices for recording marks on a recording surface of an optical record carrier
TW200818148A (en) High-speed optical recording
CN1228770C (en) Information recording method and information recording device
JP4060035B2 (en) Method and apparatus for recording marks on the information layer of an optical record carrier
JP2009512964A (en) Optimization of writing method based on reference level
US20020181357A1 (en) Disk drive device
JP2008084477A (en) Data writing device and data writing method
JP2004355764A (en) Optical disk apparatus and program
JP2006040508A (en) Optical information recording device
KR100787528B1 (en) Method and device for recording marks in an information layer of an optical record carrier
JP3870759B2 (en) Optical disc recording method and optical disc apparatus
JPH11345428A (en) Method and device for recording information
TW536694B (en) Controlling apparatus
JPH0335425A (en) Method and device for recording optical information
JP3762907B2 (en) Information recording method and information recording apparatus
JP3901204B2 (en) Optical disc recording method and optical disc apparatus
JPH0729239A (en) Recording control method for magneto-optical disk
JP2000149265A (en) Information recording method, information recording medium, and information recording device
JP2005092906A (en) Method of recording information and its device
JPH06195713A (en) Recording method in optical recording
JPH11120563A (en) Recording compensation method for optical disk and optical disk recorder