TW200817456A - Multifunctional mixed micelle of graft and block copolymers and preparation thereof - Google Patents

Multifunctional mixed micelle of graft and block copolymers and preparation thereof Download PDF

Info

Publication number
TW200817456A
TW200817456A TW096104345A TW96104345A TW200817456A TW 200817456 A TW200817456 A TW 200817456A TW 096104345 A TW096104345 A TW 096104345A TW 96104345 A TW96104345 A TW 96104345A TW 200817456 A TW200817456 A TW 200817456A
Authority
TW
Taiwan
Prior art keywords
polymer
segment
copolymerized
type
cell
Prior art date
Application number
TW096104345A
Other languages
Chinese (zh)
Other versions
TWI361813B (en
Inventor
Ging-Ho Hsiue
Chun-Liang Lo
Ko-Min Lin
Chun-Kai Huang
Hung-Hao Chen
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Publication of TW200817456A publication Critical patent/TW200817456A/en
Application granted granted Critical
Publication of TWI361813B publication Critical patent/TWI361813B/en

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

The present invention discloses a novel mixed micelle structure with a functional inner core and hydrophilic outer shells self-assembled from a graft macromolecule and one or more block copolymer, and preferably from a graft copolymer and two or more diblock copolymers. The micelle synthesized in the present invention has a size of about 50-200 nm, which can be used as a cancer diagnosis agent and a cancer drug delivery carrier.

Description

,200817456 九、發明說明: 發明所屬之技術領域 本發明係關於一種具有殼核結構之高分子型微胞,尤 其有關一種具有殼核結構之多功能性高分子型微胞,其由 一接枝共聚合高分子與至少一種雙團聯共聚合高分子自我 組裝而形成。 先前技術 多成份微胞在生醫應用上已廣泛的研究,而各種型態 之多成份微胞具有許多有利特性,如:可使微胞具有特殊 功能性、增強微胞對於腫瘤辨識之專一性、可穩定微胞結 構、可克服不同材料的使用缺陷、以及可使微胞顯現多功 能性等Π 4]。在高分子領域中,多成份微胞(亦稱複合型微 胞)之型態包含雙團聯-雙團聯共聚合高分子系統、雙團聯_ 三團聯共聚合高分子系統、三團聯_三團聯共聚合高分子系 統、以及雙團聯接枝共聚合高分子系統[2_10]。然而,至今 尚無文獻報告雙團聯_接枝共聚合高分子系統之複合型微 胞。且在過去數十年間,複合型微胞皆著重於微胞行成機 制探时[]’鮮少有研究將其應用藥物傳輸上[3,4]。複合型 微胞形成之複雜性,以及殼核結構組成之完整性皆成 合型微胞在生醫應用上之限制瓶頸。 發明内容 本毛月係揭露一種新穎的複合型微胞結構,其具有 200817456 功能性内核以及親水性外殼,藉由一接枝共聚合高分子與 一團聯共聚合高分子或多團聯共聚合高分子自我組裝而 成’其中尤以一接枝共聚合高分子與兩或多個雙團聯共聚 合高分子之組成較佳。該複合型微胞之尺寸係介於50至 2〇〇奈米之間。 本發明提供一種新穎的複合型微胞結構,包含一功能 性内核與一親水性外殼,其係由一接枝共聚合高分子與一 個或多個團聯共聚合高分子自我組裝而成。較佳的,由一 接枝共聚合高分子與兩個或多個雙團聯共聚合高分子自我 組裝而成。本發明所合成的微胞具有一粒徑大小為約 50-200 nm 〇 本發明提供一種具殼核結構之高分子型微胞,其中該 結構包含一接枝共聚合高分子與一團聯共聚合高分子該 接枝共聚合高分子包含一主鏈及鍵結於該主鏈的—疏水性 側鏈,該團聯共聚合高分子包含一疏水性高分子鏈段與一 親水性高分子鏈段,其中該接枝共聚合高分子之疏水性側 鏈聚集,肖團聯共聚合高分子之疏水性鏈段堆疊聯合在該 接枝共聚合高分子之聚集的疏水性側鏈上,i該團聯共聚 合高分子之親水性鏈段從其中突出裸露於外而形成殼核結 構。 本發明進一步提供一種 之製備方法,包含下列步驟 具有设核結構的高分子型微胞 團聯共聚合高分子溶解 鬲分子包含一主鏠及一 a)將一接枝共聚合高分子與一 於有機溶劑中,其中該接枝共聚合 6 200817456 鍵結於該主鏈上的疏水性側鏈 該團聯共聚合高分子包含BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer type micelle having a core-shell structure, and more particularly to a multifunctional polymer type micelle having a core-shell structure, which is grafted by a graft The copolymerized polymer is formed by self-assembly of at least one double-co-polymerized polymer. Prior art multi-component micelles have been extensively studied in biomedical applications, and various types of multi-component cells have many advantageous properties, such as: enabling microcapsules to have special functions and enhancing the specificity of cell lines for tumor recognition. It can stabilize the structure of the microcells, overcome the defects in the use of different materials, and make the microcapsules appear versatile. In the polymer field, the type of multi-component micelles (also known as composite micelles) includes a double-cluster-double-coupling copolymer polymer system, a double-cluster_triple-coupling polymer system, and three groups. _ three-group co-polymerization polymer system, and double-coupling graft copolymerization polymer system [2_10]. However, to date, no literature has reported a composite cell of a double-agglomerated-graft copolymerized polymer system. And in the past few decades, the composite micelles have focused on the micropore-making machine []'s few studies have applied its drug delivery [3,4]. The complexity of the formation of complex micelles and the integrity of the structure of the core nucleus are the limiting bottlenecks of the integrated micelles in biomedical applications. SUMMARY OF THE INVENTION The present invention discloses a novel composite microcell structure having a functional core of 200817456 and a hydrophilic outer shell, which is copolymerized with a polymer or a copolymerized polymer by a graft copolymerization polymer. The polymer self-assembles into a composition in which a graft copolymerized polymer and two or more double-co-polymerized polymers are preferred. The size of the composite micelle is between 50 and 2 nanometers. The present invention provides a novel composite microcell structure comprising a functional core and a hydrophilic outer shell which are self-assembled from a graft copolymerized polymer and one or more cluster copolymerized polymers. Preferably, the graft copolymerized polymer is self-assembled with two or more double-co-polymerized polymers. The microcell synthesized by the invention has a particle size of about 50-200 nm. The present invention provides a polymer-type microcell having a core-shell structure, wherein the structure comprises a graft copolymerized polymer and a cluster. Polymerized polymer The graft copolymerized polymer comprises a main chain and a hydrophobic side chain bonded to the main chain, and the copolymerized polymer comprises a hydrophobic polymer segment and a hydrophilic polymer chain a segment in which a hydrophobic side chain of the graft copolymerized polymer is aggregated, and a hydrophobic segment of the Schottky copolymerized polymer is stacked on the hydrophobic side chain of the graft copolymerized polymer, i The hydrophilic segment of the copolymerized polymer is exposed from the outside to form a shell-core structure. The present invention further provides a preparation method comprising the following steps: a polymer-type microcell-co-polymerized polymer having a core structure, a dissolved macromolecule containing a host and a) a graft copolymerized polymer and a In the organic solvent, wherein the graft copolymerization 6 200817456 is bonded to the hydrophobic side chain of the main chain, the copolymerized polymer contains

有機溶劑置換成水。The organic solvent is replaced with water.

於步驟a)中一種或多種不同的團聯共聚合高 較佳的,於步驟a)中一 分子被溶解於該有機溶劑。 車乂佳的,一樂物與該接枝共聚合高分子及團聯共聚合 高分子共同溶解於該有機溶劑。 車乂仫的,忒接枝共聚合高分子的疏水性側鏈與該團聯 共聚合咼分子的疏水性鏈段包含相同之重複單元。 辜交佳的,該團聯共聚合高分子係雙團聯共聚合高分 子’其包含該疏水性高分子鏈段與該親水性高分子鏈段。 更佳的,該雙團聯共聚合高分子為曱氧基聚乙二醇吨_聚乳 酸交酯(methoxy-p〇ly(ethylene glycol)-b,poly(jD,ZMactide))。 較佳的’該疏水性高分子鏈段之數目平均分子量介於 5 00-2 5 00,及該親水性高分子鏈段之數目平均分子量介於 2000-10000 〇 較佳的’該團聯共聚合高分子之疏水性鏈段為生物可 分解吸收。 較佳的’該團聯共聚合高分子之疏水性鏈段為聚酯、 聚乳酸交醋、聚乳酸或聚己内酯。更佳的,該團聯共聚合 200817456 高分子之疏水性鏈段為聚乳酸交酯。 車父佳的’該接枝共聚合高分子的親水性鏈段為聚丙烯 酸酯’或酸驗/離子強度敏感型高分子,其中該酸鹼/離子強 度敏感型高分子為聚丙烯酸、聚甲基丙烯酸、聚丁烯二酸 (p〇ly(butenedioicaicd))、聚組胺酸(polyhistidine)、或聚乙 烯基咪唑(p〇ly(vinyl imidazole))。 較佳的’該團聯共聚合高分子之親水性鏈段為聚醚、 聚乙二醇(p〇ly(ethylene glycol))、甲氧基聚乙二醇 (meth〇xy-p〇ly(ethylene glyc〇1))、或聚(2_ 乙基 噁唑 琳)(poly(2-ethyl-2-oxazoline))。 較佳的,該接枝共聚合高分子的主鏈包含具親水性的 第一重複單元,及該疏水性側鏈鍵結於該第一重複單元。 更佳的,中該第一重複單元具有一羧基結構,及該疏水性 侧鏈為生物可分解吸收。 較佳的,該接枝共聚合高分子的主鏈為聚丙烯酸、聚 甲基丙烯酸、聚丁烯二酸、聚組胺酸、或聚乙烯基咪唑。 更佳的,該接枝共聚合高分子的主鏈為聚甲基丙烯酸。 杈佳的,該接枝共聚合高分子之疏水性側鏈為聚酯、 久乳§久父S曰來乳酸或聚己内醋。更佳的,該接枝共聚合 而分子之疏水性側鏈為聚乳酸交酯。 較佳的,該接枝共聚合高分子主鏈進一步包含一第二 重複單元,而該第二重複單元不同於該第一重複單元,其 該第一重複單元應答於溫度變化使該微胞的核崩毀。更佳 的,該接枝共聚合高分子的主鏈之第二重複單元為異丙 200817456 基丙烯醯胺(N-is〇propyl acryiamide)單體所形成者。最佳 的,該接枝共聚合高分子的主鏈為N_異丙基丙烯醯胺與甲 基丙烯酸之共聚合高分子。 較佳的,該高分子型微胞粒徑大小為5〇-2〇〇 nm。 較佳的,該雙團聯共聚合高分子具有一連接於該親水 性高分子鏈段的一末端的末端功能性分子,及該末端功能 性分子為可與腫瘤細胞表面之受器(recept〇r)結合的配體 (ligand)。更佳的,該配體為半乳醣殘基(galact〇se residue)。 較佳的,該雙團聯共聚合高分子具有一連接於該親水 性高分子鏈段的一末端的末端功能性分子,及該末端功能 性分子為一螢光基團(fiuorescence group)。更佳的,該螢光 團基為螢光螢光異硫氰酸鹽(flu〇rescein isQthiQeyanate)。 較佳的,該雙團聯共聚合高分子具有一連接於該親水 性高分子鏈段的一末端的末端功能性分子,及該末端功能 性分子為一染劑(dye)。更佳的,該染劑為近紅外線染劑。 較佳的,该結構包含多個不同的團聯共聚合高分子, 且每一個該團聯共聚合高分子包含一疏水性高分子鏈段與 一親水性咼分子鏈段。更佳的,該多個不同的團聯共聚合 高分子的每一個都是雙團聯共聚合高分子,其包含一疏水 性高分子鏈段與一親水性高分子鏈段。 較佳的,該不同的團聯共聚合高分子之疏水性高分子 鏈段具有一相同之重複單元。 較佳的,該不同的團聯共聚合高分子之親水性高分子 鏈段具有一相同的重複單元。 9 .200817456 較佳的,料_團聯共聚合高分子之親水性高分子 鏈段具有不同的重複單元。 較佳的,該多個不同團聯共聚合高分子於親水性高分 子鏈段本端連接有不同的末端功能性分子。更佳的,該末 端功能性分子中的一個為可與腫瘤細胞表面之受體 (receptor)結合之配體(ligand)。最佳的,該配體為半乳醣殘 基。選擇性的,該末端功能性分子中的一個為螢光基團, 例如螢光異硫氰酸鹽。選擇性的,該末端功能性分子中的 一個為為染劑,例如近紅外線染劑。 實施方式 在本發明中,一種多組成分微胞已由接枝共聚合高分 子/、又團%共聚合咼分子製備而成,並藉由臨界微胞濃度 (CMC)之差異控制微胞粒徑之大小。在匕特殊殼核結構之複 合型微胞可藉由小心設計與操控每一組成分而具有廣泛之 應用性/中—用途即是應用於抗癌藥物載體。細胞内藥 物釋放疋非常重要之癌症治療藥物傳遞途徑。此途徑可 曰加藥物對於標的地區細胞之毒性以纟降低藥物對於正常 細胞或、_之副作用。—般來說,細胞内誘導藥物自載體 釋可藉由4酶體中酵素或是吞噬小體酸鹼值改變造成載 體結構改變0日访 古 曰則巳有开多材料被研發與合成以應用於細 胞内藥物傳輪。然而,物才料由於具強烈帶電性或具疏 ^〖生在體内使用時則會由單核球巨噬細胞系統(Μ”)所辨 識,、捕捉,而難以到達腫瘤組織達到藥物控制釋放之效 10 200817456 用。也因此,若要利用細胞内藥物傳輸方式治療癌症,親 水性分子結構於微胞或粒子載體表面是非常重要的。 本發明之一實施例係製備一具有多功能性殼/核之新 穎複合型微胞,係由一具有環境應答接枝共聚合物:聚(N-異丙基丙烯酸醯胺-CO -曱基丙烯酸)_g_聚乳酸交醋) (poly(N-isopropyl acrylamide-co-methacryl acid)-g-poly(AL-lactide))(簡寫為 P(NIPAAm-co-MAAc)-g-PLA) ’與兩雙團聯共聚合物:曱氧 基聚(乙二醇)-b-聚(LU-乳酸交酯)(meth〇xy p〇ly(ethylene glyC〇l)-b-P〇ly(D,L-lactide))(簡寫為 mPEG_pLA)與聚(八乙 基-2-噁唑琳-b_聚(AZ-乳酸交酯)(p〇ly (2-ethyl-2-〇Xaz〇line)-b-p〇ly(Az]actide))(簡寫為 PE0z_PLA)共同組成’此奈米結構能完整隱蔽高負電性之 接枝共聚合物於内核並使殼核結構呈現多功能性。此多功 能性複合型微胞應用於細胞㈣物傳輸上顯示藥物釋放行 為與微胞之功能性具強烈相關性。此外,複合型微胞外殼 隱蔽性亦壯料性造成複合型微胞與接枝共聚合 物(P(NIPAA㈣。_MAAe)_g_PLA,陳AAm]/[MA圳/[pla] 一 .9 ·2·5 mol/mo1)所形成之微胞相比較,複合型微胞 顯示較高之藥物活性與較低 ^ 、奴低之材枓毒性。本實施例不僅提 出一全新由雙團聯-接枝妓平人古 ,、來a阿分子糸統所構成之微胞 I口構,並且k供一由一接枝妓 _ 文/、♦合咼分子與一雙團聯共聚 合高分子或多雙團聯丘平人古 /、z 口呵/刀子所製備之多功能性微胞 概念以應用於藥物傳遞上。 .200817456 本發明之另一實施例係製備一具有多功能性微胞以應 用於癌細胞標的、分佈顯影、以及抗癌藥物傳遞上,係由 一具有環境應答接枝共聚合物 P(NIPAAm-co-MAAc)-g-PLA、一 雙團聯共聚合物 mPEG_PLA、以及兩功能性雙團聯共聚合物半乳胺糖Preferably, one or more different agglomerates are copolymerized in step a), and a molecule is dissolved in the organic solvent in step a). Che Yujia, a music substance and the graft copolymerized polymer and the copolymerized copolymer polymer are dissolved in the organic solvent. In the rut, the hydrophobic side chain of the ruthenium graft copolymerized polymer and the hydrophobic segment of the conjugated ruthenium molecule contain the same repeating unit. Preferably, the group is polymerized with a polymer-based double-agglomerated copolymerized polymer, which comprises the hydrophobic polymer segment and the hydrophilic polymer segment. More preferably, the bis-co-polymerized polymer is methoxy-p〇ly (ethylene glycol-b, poly(jD, ZMactide). Preferably, the number average molecular weight of the hydrophobic polymer segment is between 500 and 50,000, and the number average molecular weight of the hydrophilic polymer segment is between 2,000 and 10,000 Å. The hydrophobic segment of the polymeric polymer is biodegradable and absorbable. Preferably, the hydrophobic segment of the co-polymerized polymer is polyester, polylactic acid vinegar, polylactic acid or polycaprolactone. More preferably, the copolymer is co-polymerized. 200817456 The hydrophobic segment of the polymer is polylactide. Che's father's 'the hydrophilic segment of the graft copolymerized polymer is polyacrylate' or acidity/ion strength sensitive polymer, wherein the acid-base/ion strength sensitive polymer is polyacrylic acid, polymethyl Acrylic acid, polybutylene diacid (polyhistidine), or polyimidazole (plyly (vinyl imidazole)). Preferably, the hydrophilic segment of the copolymerized polymer is polyether, polyethylene glycol (polyethylene glycol), methoxypolyethylene glycol (meth〇xy-p〇ly ( Ethylene glyc〇1)), or poly(2-ethyl-2-oxazoline). Preferably, the main chain of the graft copolymerized polymer comprises a first repeating unit having hydrophilicity, and the hydrophobic side chain is bonded to the first repeating unit. More preferably, the first repeating unit has a carboxyl structure and the hydrophobic side chain is biodegradable. Preferably, the main chain of the graft copolymerized polymer is polyacrylic acid, polymethacrylic acid, polybutyric acid, polyhistamine or polyvinylimidazole. More preferably, the main chain of the graft copolymerized polymer is polymethacrylic acid. Preferably, the hydrophobic side chain of the graft copolymerized polymer is polyester, long-term milk § Jiufu S曰 lactic acid or poly-caprolactone. More preferably, the graft is copolymerized and the hydrophobic side chain of the molecule is polylactide. Preferably, the graft copolymerized polymer backbone further comprises a second repeating unit, and the second repeating unit is different from the first repeating unit, wherein the first repeating unit is responsive to a temperature change to cause the microcell The nuclear collapse. More preferably, the second repeating unit of the main chain of the graft copolymerized polymer is formed by a monomer of isopropyl 200817456 N-is〇propyl acryiamide. Most preferably, the main chain of the graft copolymerized polymer is a copolymerized polymer of N-isopropylacrylamide and methacrylic acid. Preferably, the macromolecule has a particle size of 5〇-2〇〇 nm. Preferably, the double-co-polymerized polymer has a terminal functional molecule attached to one end of the hydrophilic polymer segment, and the terminal functional molecule is a receptor that can interact with the surface of the tumor cell (recept〇 r) Binding ligand. More preferably, the ligand is a galact〇se residue. Preferably, the bis-co-polymerized polymer has a terminal functional molecule attached to one end of the hydrophilic polymer segment, and the terminal functional molecule is a fiuorescence group. More preferably, the fluorophore group is fluor〇resicin isQthiQeyanate. Preferably, the bis-co-polymerized polymer has a terminal functional molecule attached to one end of the hydrophilic polymer segment, and the terminal functional molecule is a dye. More preferably, the dye is a near infrared ray dye. Preferably, the structure comprises a plurality of different agglomerated copolymerized polymers, and each of the copolymerized copolymers comprises a hydrophobic polymer segment and a hydrophilic hydrazine molecular segment. More preferably, each of the plurality of different agglomerated copolymerized polymers is a bi-cluster copolymerized polymer comprising a hydrophobic polymer segment and a hydrophilic polymer segment. Preferably, the hydrophobic polymer segment of the different co-polymerized polymer has an identical repeating unit. Preferably, the hydrophilic polymer segment of the different co-polymerized polymer has an identical repeating unit. 9.200817456 Preferably, the hydrophilic polymer segment of the aggregate-polymerized polymer has different repeating units. Preferably, the plurality of different agglomerated copolymerized polymers are linked to different terminal functional molecules at the proximal end of the hydrophilic high molecular segment. More preferably, one of the terminal functional molecules is a ligand that binds to a receptor on the surface of a tumor cell. Most preferably, the ligand is a galactose residue. Optionally, one of the terminal functional molecules is a fluorescent group, such as a fluorescent isothiocyanate. Optionally, one of the terminal functional molecules is a dye, such as a near infrared ray dye. Embodiments In the present invention, a multi-component microcell has been prepared by graft copolymerization of a polymer/molecule copolymerized ruthenium molecule, and neutrino is controlled by a difference in critical microcell concentration (CMC). The size of the path. The complex type of microvesicles in the special core-nuclear structure can be applied to anticancer drug carriers by carefully designing and manipulating each component and having a wide range of applications/medium-use. Intracellular drug release is a very important cancer therapeutic drug delivery route. This pathway can increase the toxicity of the drug to cells in the target area to reduce the side effects of the drug on normal cells. In general, the intracellular induction of drug release from the carrier can be caused by changes in the enzymes in the 4 enzymes or changes in the pH of the phagosome. The 0-day access to the ancient 曰 巳 巳 多 材料 材料 材料 材料 材料 材料 材料 材料 材料 材料 多 多Intracellular drug delivery. However, due to the strong chargeability or sparseness, it is recognized by the mononuclear macrophage system (Μ) when it is used in the body, and it is difficult to reach the tumor tissue to achieve drug-controlled release. Therefore, in order to treat cancer by intracellular drug delivery, it is very important that the hydrophilic molecular structure is on the surface of the microcell or particle carrier. One embodiment of the present invention prepares a multifunctional shell. /nuclear novel composite type microcells, which are grafted copolymers with environmental response: poly(N-isopropyl decylamine-CO-mercaptoacrylic acid)_g_polylactic acid vinegar (poly(N-) Isopropyl acrylamide-co-methacryl acid)-g-poly(AL-lactide) (abbreviated as P(NIPAAm-co-MAAc)-g-PLA) 'with two-paired co-polymer: oxime-based poly(B Glycol)-b-poly(LU-lactide)(meth〇xy p〇ly(ethylene glyC〇l)-bP〇ly(D,L-lactide) (abbreviated as mPEG_pLA) and poly(octaethyl) -2- oxazoline-b_poly(AZ-lactide) (p〇ly (2-ethyl-2-〇Xaz〇line)-bp〇ly(Az]actide)) (abbreviated as PE0z_PLA) 'This nanostructure can completely conceal the highly negatively charged grafted copolymer in the inner core and make the core structure versatile. This multifunctional composite type microcapsule is applied to cell (four) transport to show drug release behavior and cell The functionality is strongly correlated. In addition, the concealment of the composite microcapsules is also strong and the composite micelles and grafted copolymers (P(NIPAA(4)._MAAe)_g_PLA, Chen AAm]/[MAzhen/[ Pla]] 1.9 ·2·5 mol/mo1) Compared with the microvessels formed, the composite microcapsules showed higher drug activity and lower sputum toxicity, and the present example not only proposed a brand new one. By the double-agglomeration-grafting of the sputum, the micro-cell I structure consisting of a genus, and the k-grafting 妓 _ _ / / ♦ 咼 咼 咼 与 与 咼A multi-functional microcapsule concept prepared by co-polymerizing a polymer or a multi-dual group of qiqiupu people/z, a knife/knife for application to a drug delivery. 200817456 Another embodiment of the present invention is to prepare one more Functional micelles are applied to cancer cell markers, distribution imaging, and anticancer drug delivery. A graft copolymer having the environmental response P (NIPAAm-co-MAAc) -g-PLA, a group of double-linked copolymers mPEG_PLA, and two functional groups linked copolymer bis-galacto amidoglucosan

(galactosamine)-PEG-PLA (簡寫為 Gal-PEG-PLA)與螢光異 硫氰酸鹽(fluorescein isothiocyanate)-PEG-PLA (FITC-PEG-PLA)所共同組成。多功能性微胞可藉由 asial〇glycoprotein (肝癌細胞)_Gal (多功能性微胞)之受器 調和標的機制(recept〇r-mediated tumor targeting mechanism)準確辨識肝癌細胞。細胞内呑後之酸驗環境改 變破壞多功能性微胞内部結構造成藥物釋放,並進而增加 其對肝癌細胞之毒殺性。而多功能性微胞之顯影功能可利 用,、輛焦顯从鏡(Confocal laser scanning microscopy, CLSM)清楚觀察其於細胞内之分佈。藉由小心設計與精準 的刼控分子組成,本發明之高分子型微胞可同時廣泛應用 於癌症診斷、癌症辨識、與癌症治療上。 本發明可藉由以下幾個實例加以了解,而這些實例僅提 供说明而非限制本發明之範圍。 實例一: 材料 外消旋乳酸交酯(£U_Lactide)與曱基丙烯酸 (methacrylic acid,簡寫為 maAc)訂購自 Lancaster 〇 對甲笨 12 200817456 石黃酸甲酯(Methyl p-toluenesulfonate,簡寫為 MeOTs)、辛 酸亞錫(stannous octoate,簡寫為Sn(Oct)2)、甲基丙稀酸經 乙基酯(2-hydroxyethyl methacrylate,簡寫為 HEMA)、祐 (pyrene)與偶氮二異丁腈(2,2、azobisisobutyronitrile,簡寫 為ΑΙΒΝ)δ丁賭自Aldrich。N-異丙基丙稀酿胺(N-Isopropyl acrylamide,簡寫為NIPAAm)與乙基噁唑琳 (2-ethyl-2-〇xaZ〇line)訂購自 TCI。曱氧基聚乙二醇(mPEG, , 重量平均分子量(Mw) = 5000 Da)訂購自Sigma。外消旋乳 酸交酯使用前以四氫吱喃(tetrahydrofuran,THF)再結晶兩 次。N-異丙基丙烯醯胺與偶氮二異丁腈使用前分別以正己 烧(hexane)與丙酮(acetone)進行再結晶。甲基丙烤酸與甲基 丙烯酸羥乙基酯使用前以減壓蒸餾進行純化。乙基噁唑琳 與對甲苯績酸甲酯使用前以氫化鈣(CaH2)進行除水後再減 壓蒸餾純化。 、P(NIPAAm-co-MAAc)-g_PLA (接枝 I,G1)接枝共聚合物之 製備 將已純化之外消旋乳酸交酯(AZ_lactide) (4 g)、hema (0.26 g)及除水之甲苯(5 mL)置於圓底雙頸瓶中,連接於真 空管系統下除水除氧。於10(rc下單體完全溶解並加入觸媒(galactosamine)-PEG-PLA (abbreviated as Gal-PEG-PLA) is composed of fluorescein isothiocyanate-PEG-PLA (FITC-PEG-PLA). The versatile microcell can accurately identify liver cancer cells by the asic〇glycoprotein _Gal (multifunctional microcell) receptor retraction targeting mechanism. The acidity of the cell after the cell sputum changes the internal structure of the versatile micro-cell to cause drug release, and thereby increase its toxicity to liver cancer cells. The development function of the multifunctional microcell can be utilized, and the distribution of the intracellular cells is clearly observed by the Confocal laser scanning microscopy (CLSM). By careful design and precise control of molecular composition, the polymer type microcapsules of the present invention can be widely applied to cancer diagnosis, cancer identification, and cancer treatment. The invention may be understood by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. Example 1: Material racemic lactide (£U_Lactide) and methacrylic acid (maAc) ordered from Lancaster 〇 甲 笨 12 200817456 Methyl p-toluenesulfonate (MeOTs) , stannous octoate (Sn(Oct) 2), 2-hydroxyethyl methacrylate (HEMA), pyrene and azobisisobutyronitrile (2) 2, azobisisobutyronitrile, abbreviated as ΑΙΒΝ) δ gambling from Aldrich. N-Isopropyl acrylamide (NIPAAm) and ethyl oxazolidine (2-ethyl-2-〇xaZ〇line) were ordered from TCI. Oxyloxy polyethylene glycol (mPEG, , weight average molecular weight (Mw) = 5000 Da) was ordered from Sigma. The racemic lactide was recrystallized twice with tetrahydrofuran (THF) before use. N-isopropylacrylamide and azobisisobutyronitrile were recrystallized with hexane and acetone before use, respectively. Methylpropanol acid and hydroxyethyl methacrylate were purified by distillation under reduced pressure before use. Ethyl oxazolidine and p-toluene acid methyl ester were dehydrated by calcium hydride (CaH2) before use and then distilled under reduced pressure. Preparation of P(NIPAAm-co-MAAc)-g_PLA (Grafted I, G1) Graft Copolymer The purified racemic lactide (AZ_lactide) (4 g), hema (0.26 g) and Water toluene (5 mL) was placed in a round bottom double neck flask and connected to a vacuum tube system to remove water and remove oxygen. Completely dissolve the monomer at 10 (rc) and add catalyst

Sn(OCt)2 (1 wt%),在氮氣環境下進行陽離子開環聚合反 應。反應進行16小時後加入〇] N甲醇K〇H (methan〇iic KOH)終止反應。產物經己烷再沉澱純化、矽膠管柱除去鹽 類及不純物,可得PLA-EMA (Mn = 2〇〇〇)。將定量pla_ema 13 200817456 (〇·3 5 g)、NIPAAm 單體(1.15 g)、MAAc 單體(〇·16 g)及起 始劑AIBN (0.023 g)置於雙頸圓底燒瓶中,加入丙酮(15 mL) 溶解反應物並通入氮氣。於70°C下進行自由基聚合反應共 24小時。反應完成後以h20及乙醚分別進行再沉澱去除未 反應兩次’經乾燥後可得接枝共聚合物 P(NIPAAm-co-MAAc)-g-PLA (接 枝 I, G1) ([NIPAAm]:[MAAc]:[PLA] = 84 : 5·9 : 2·5 mol/mol)。 mPEG-PLA (團聯I,B1)雙團聯共聚合物之製備 將已純化之外消旋乳酸交酯(1 g)、mPEG (10 g,Mw = 5 000 Da)及除水之曱苯(4 mL)置於圓底雙頸瓶 中,連接於真空管系統下除水除氧。於i 3 〇°C單體完全溶解 下加入觸媒Sn(OCt)2 (1 wt%),在氮氣環境下進行離子開環 聚合反應。反應進行1 6小時後加入〇· 1 N甲醇KOH終止 反應。產物經由二氯甲烧與二乙醚(diethyl ether)之混和液 在低溫下進行結晶,並乾燥可得雙團聯共聚合物 mPEG-PLA (團聯 I,Bl) ([EG]:[LA] = 113:7 mol/mol)。 PEOz-PLA (團聯II,B2)雙團聯共聚合物之製備 PEOz-PLA之合成乃是修飾舊有的反應程序[G H Hsi^, C.Ch.Wang,C.L.Lo,C.H.Wang,J.P.Li,J.L.Yang,Int· J· Pharm· 20 06, 3 17, 69],其步驟如下。將起始劑Me〇Ts (0.232 mg)置入圓底雙頸瓶中,連接於真空管系統下除水除 氧’再加入丙稀腈(3 0 mL)並控制反應溫度於1⑽。◦。加入 14 200817456 已除水之單體乙基噁唑啉(10 mL)迴流反應3〇小時。反應 終止後加入〇.丨N曱醇K〇H終止反應。產物經乙醚再沉澱 純化、秒膠管柱除去鹽類及不純物,並乾燥可得pe〇z_〇h。 將PE0z (2 §)與外消旋乳酸交酯(0.426 g)以Sn(OCt)2 (1 Wt /°)進行離子開環聚合反應。控制反應溫度在1 3 0°C迴 流’反應1 6小時。反應完成後加入〇·丨n曱醇KOH終止 反應,並經乙_再沉澱純化可得雙團聯共聚合物PE〇z_pLa (團聯 II,B2) ([E〇z]:[LA] = 52.5:9.7 mol/mol)。 共聚合高分子化學結構與數目平均分子量之鑑定乃是 利用核磁共振光譜儀iH-NMR (AMX_5〇〇, Bruke〇。共聚合 咼刀子之I 5度分佈性指數乃是利用凝膠滲透層析儀(GPC) 測里GPC流動相為二甲基曱醯胺(N,N_dimethylf〇rmamide, 簡稱DMF),流量為i ml/min,測量溫度為4〇它。共聚合 高分子之臨界微胞濃度(critical micelle c〇ncentmiQn, ' CMC)鑑定是以芘為疏水性染劑,螢光光譜儀於激發光譜 393 nm下。觀察最而濃度之樣品與對低濃度之樣品其在 330-340 nm之最高螢光強度,並以此強度之比值(約 133 7.5/133 5)對濃度對數座標作圖,曲線底部與反曲點兩直線 外插交叉點相對之濃度定義為臨界微胞濃度。表1列出各 共聚合高分子之鑑定結果。 15 200817456 表1 Mn [Da] 親水性鏈段 Mn [Da] 親脂性鏈段 聚合度分佈 CMC [g/mL] 接枝I 9970 6150 1.24^ 1.27 χ ΙΟ-6 團聯I 5000 500 1.0^^~~ 8.39 x 10° 團聯II 5200 700 1.70 x 10-6 複合型奈米微胞之製備 將固定濃度之接枝I共聚合物(〇· 1 3 M)溶解於DM SO 中,分別加入不同濃度之團聯I共聚合物,均勻混合後置 入透析袋(MWCO 6000 〜8000,SpectrumLabs,Inc·),於室 溫下母2〜3小時更換純水一次,共進行4 8小時以製備 G1B1複合型奈米微胞。冷凍乾燥(Het〇_H〇lten a/S,Sn(OCt)2 (1 wt%) was subjected to a cationic ring-opening polymerization reaction under a nitrogen atmosphere. After the reaction was carried out for 16 hours, the reaction was terminated by the addition of 〇]N methanol K〇H (methan〇iic KOH). The product was purified by reprecipitation from hexane, and the column was removed to remove salts and impurities to obtain PLA-EMA (Mn = 2 Å). Quantitative pla_ema 13 200817456 (〇·3 5 g), NIPAAm monomer (1.15 g), MAAc monomer (〇·16 g) and initiator AIBN (0.023 g) were placed in a double neck round bottom flask with acetone added. (15 mL) Dissolve the reactants and pass nitrogen. The radical polymerization was carried out at 70 ° C for 24 hours. After completion of the reaction, reprecipitation was carried out with h20 and diethyl ether respectively to remove unreacted two. After drying, graft copolymer P (NIPAAm-co-MAAc)-g-PLA (graft I, G1) was obtained ([NIPAAm] :[MAAc]:[PLA] = 84 : 5·9 : 2·5 mol/mol). Preparation of mPEG-PLA (cluster I, B1) di-co-linked co-polymers. Purified racemic lactide (1 g), mPEG (10 g, Mw = 5 000 Da) and deuterated benzene (4 mL) was placed in a round bottom double neck bottle and connected to a vacuum tube system to remove water and remove oxygen. The catalyst Sn(OCt)2 (1 wt%) was added under complete dissolution of the i 3 〇 ° C monomer, and ion-opening polymerization was carried out under a nitrogen atmosphere. After the reaction was carried out for 16 hours, the reaction was terminated by the addition of 〇·1 N methanolic KOH. The product is crystallized at a low temperature by a mixture of methylene chloride and diethyl ether, and dried to obtain a double-co-linked copolymer mPEG-PLA (Group I, Bl) ([EG]: [LA] = 113:7 mol/mol). Preparation of PEOz-PLA (Bundle II, B2) double-co-polymerization The synthesis of PEOz-PLA is to modify the old reaction procedure [GH Hsi^, C.Ch.Wang, CLLo, CHWang, JPLi , JLYang, Int J. Pharm. 20 06, 3 17, 69], the steps are as follows. The starter Me〇Ts (0.232 mg) was placed in a round bottom double neck flask, and connected to a vacuum tube system to remove water and remove oxygen and then add acrylonitrile (30 mL) and control the reaction temperature at 1 (10). Hey. Add 14 200817456 The monomeric ethyloxazoline (10 mL), which has been dehydrated, is refluxed for 3 hours. After the reaction was terminated, the reaction was terminated by the addition of 〇.丨N sterol K〇H. The product was reprecipitated by diethyl ether, and the gel column was used to remove salts and impurities, and dried to obtain pe〇z_〇h. PE0z (2 §) and racemic lactide (0.426 g) were ion-opened and polymerized with Sn(OCt)2 (1 Wt / °). The reaction temperature was controlled to reflux at 130 ° C for 1 6 hours. After the reaction is completed, the reaction is terminated by adding 〇·丨n sterol KOH, and purified by B-reprecipitation to obtain a double-co-linked copolymer PE〇z_pLa (Group II, B2) ([E〇z]: [LA] = 52.5: 9.7 mol/mol). The chemical structure and number average molecular weight of the copolymerized polymer were identified by the nuclear magnetic resonance spectrometer iH-NMR (AMX_5〇〇, Bruke〇. The I 5 degree distribution index of the copolymerized knives was obtained by using a gel permeation chromatograph ( GPC) The GPC mobile phase is dimethyl decylamine (N, N_dimethylf〇rmamide, DMF for short), the flow rate is i ml/min, and the measurement temperature is 4 〇. The critical microcell concentration of the copolymerized polymer (critical The micelle c〇ncentmiQn, 'CMC) was identified as a hydrophobic dye with a fluorescence spectrometer at 393 nm in the excitation spectrum. The highest concentration of the sample and the lowest concentration of the sample at 330-340 nm were observed. The intensity, and the ratio of the intensity (about 133 7.5/133 5) is plotted against the logarithmic scale of the concentration. The concentration at the bottom of the curve and the inflection point are defined as the critical cell concentration. Table 1 lists each Identification results of copolymerized polymers. 15 200817456 Table 1 Mn [Da] Hydrophilic segment Mn [Da] Lipophilic segment polymerization degree distribution CMC [g/mL] Grafting I 9970 6150 1.24^ 1.27 χ ΙΟ-6 Group Union I 5000 500 1.0^^~~ 8.39 x 10° Mission II 5200 700 1.70 x 10-6 Preparation of composite nano-cells A fixed concentration of grafted I copolymer (〇·13 M) was dissolved in DM SO, and different concentrations of the group I copolymer were added. After uniformly mixing, put into a dialysis bag (MWCO 6000 ~ 8000, SpectrumLabs, Inc.), and replace the pure water once every 2 to 3 hours at room temperature for 48 hours to prepare G1B1 composite type nano-cells. Freeze-drying (Het〇_H〇lten a/S,

Denmark)後收集產物進行分析。將固定濃度之接枝Σ共聚After collecting the product for analysis. Copolymerization of a fixed concentration of grafted rhodium

合物(0·13 Μ)與團聯I共聚合物(0.20 μ)溶解於DMSO 中,分別加入不同濃度之團聯Π共聚合物,均勻混合後置 入透析袋(MWC0 6000 〜8000, SpectrumLabs,Inc·),於室 溫下母2〜3小時更換純水一次,共進行4 8小時以製備 G1B 1B 2複合型奈米微胞。冷凍乾燥後收集產物進行分析。 圖1A係G1B1複合型微胞在不同團聯I雙團聯共聚合 物組成下其平均粒徑大小與粒徑分佈圖。G1Bi複合型微胞 製備過程中接枝I接枝共聚合物濃度皆固定於1〇 〇 mg/L。 圖1B係G1B1B2複合型微胞在不同團聯π雙團聯共聚合 物組成下其平均粒徑大小與粒徑分佈圖。G1B1B2複合型微 胞製備過程中接枝I接枝共聚合物濃度皆固定於1〇 〇 mg/L,團聯I雙團聯共聚合物濃度皆固定於5.625 mg/]L。 16 200817456 表2列出圖1A與圖1B之複合型微胞其組成接枝I、團 聯I與團聯II之濃度。 表2 G1 (mg/L) B1 (mg/L) B2 (mg/L) G1 : B1 : B2 = 33.9 : 55.7 : 10.4 mol/mol 10.0 5.625 v O / 1.125 G1 : B1 = 50 : 50 mol/mol 10.0 3.15 二組成G1B1B2複合型奈米微胞(G1 :Β1 :Β2 = 33·9 : 55·7 : 10.4 mol/mol)藉由疏水性高分子鏈段pla聚集與排 列,自我組裝成為微胞結構。將微胞固定濃度(〇1 mg/mL) 分散於生理時鹽水(phosphate buffer saline,簡稱PBS)中經 由動態光散射儀(DLS)觀測其粒徑為182.3 ±1.5 nm,且粒 徑分佈指數(polydispersity index,PDI)為 0.038 土 0.014,具 有均一粒徑大小與狹小分佈。以都普勒顯微電泳法 (Zetasizer 3 00OHS,Malvern)量測複合型微胞於 pbs (〇· 1 mg/mL)中之界面電位值,用以判斷雙團聯共聚合物對於複 合型微胞内核之隱蔽程度。並以接枝共聚合高分子所形成 之接枝I微胞作為比較,其界面電位經量測為_丨5 · 5 土 〇. 9 mV。複合型微胞之界面電位為-7·8 土 ι·3瓜又,内核之高負 電性MAAc已由外殼結構mPEG與pe〇z所遮蔽。複合型 微胞之殼核結構最直接證據可經由醋酸鈾醯(uranyl acetate,2 wt %)對MAAc染色後以穿透式電子顯微鏡(TEM; Hitachi H-600 microscope, accelerating voltage = 100 kV) 17 200817456 所觀測,如圖2所示。由圖2可之染色區域分佈於内核, 亦即内核由接枝I所組成,而外殼無染色區域則由mPEG 與PEOz所組成。此外,複合型微胞之表面型態可由原子 粒顯微鏡(AFM)所觀測。其結果顯示G1 b 1 b2複合型微胞粒 徑大小均一且為球形,粒徑大小與動態光散射所得結果相 符合。 雙團聯共聚合物對於複合型微胞形成之影響乃由不同 比例組成之G1B1複合型微胞與G1B1B2複合型微胞進行 探时。二組共聚合咼分子具有不同之臨界微胞濃度:團聯 I之臨界微胞濃度遠大於團聯Π與接枝I (表1)。當固定濃 度之接枝I與不同濃度之團聯I混合製備複合型微胞時, 各不同比例組成之G1B 1複合型微胞之粒徑皆約丨6〇 nm (如圖1A所示),且小於接枝z微胞與團聯j微胞。G1Bl 複合型微胞之粒徑分佈皆呈現窄分佈。當團聯π加入一固 定濃度之G1B1時(團聯Π臨界微胞濃度接近接枝I臨界微 、 胞濃度但小於團聯I臨界微胞濃度),G1B1B2複合型微胞 之粒徑與團聯II之加入無關(如圖1B所示),且小於各單一 組成微胞或G1B2複合型微胞(33〇·2 土 〇·9 nm; PDI = 〇 〇72 ± 0.011),但卻與G1B1複合型微胞相近。然而,當團聯π 加入之莫耳含量超過〇·54時則無法形成微胞。這些結果顯 示高臨界微胞濃度之共聚合高分子決定複合型奈米微胞之 粒徑大小。也就是說在本系統中,團聯1的存在可調控與 控制複合型微胞之形成,以及控制與降低微胞之粒徑大小。 來(Ν-異丙基丙烯酸醯胺)(p〇ly(N_is〇p⑺ 18 200817456 簡稱(PNIPAAm))為一水溶性且親水之高分子,且具有溫度 敏感性質。其低溫臨界溶液溫度(LCST)為28-35°C之間。如 溫度低於其低溫臨界溶液溫度時,高分子呈現溶解狀態; 而溫度高於低溫臨界溶液溫度時則呈現聚集狀態。若於 PNIPAAm導入親水材料如MAAc後,則破壞PNIPAAm其 異丙基基團之聚集能力,因而提升共聚合物之相轉移溫 度。而本發明以具有解離能力之MAAc提高材料之相轉移 溫度,並同時賦予酸鹼應答能力。在酸性環境下, P(NIPAAm-co-MAAc)會產生聚集與沉澱,這是由於MAAc 質子化降低P(NIPAAm-co-MAAc)之親水性並使其低溫臨 界溶液溫度降回至32°C,此酸鹼應答性與溫度應答性是具 有相關聯性。在先前研究中顯示接枝I微胞具有在酸性且 高溫環境下產生微胞結構改變之性質(C. L. Lo, K. M. Lin, G. H. Hsiue,J. Controlled Release 2005,104,477) 〇 圖 3 顯 示 G1B1B2 複合型微胞(G1 : B1 : B2 = 33·9 : 55·7 : 10·4 mol/mol)於酸性環境下(pH 4.0)隨溫度變化其結構改變之 情形。複合型微胞結過破壞乃是以芘為疏水性染劑,以螢 光光譜儀觀察芘分子之乃/八變化。芘溶液則作為對照組。 由於芘分子其分子對稱性或π電子雲會受所處極性及環境 擾動(perturbation)之影響,會使第一根放射光譜(/;)產生巨 烈之變化,而相較於其餘四根不同波長之放射光譜則無明 顯之改變,因此在微胞形成機制探討上為一常使用之染 劑,並以/; / /3代表芘所處環境之改變(K· Kalyanasimdaram J. K. Thomas,J. Am. Chem. Soc. 1997, 99, 2039)。/// /3 越 19 •200817456The compound (0·13 Μ) and the group I copolymer (0.20 μ) were dissolved in DMSO, and different concentrations of the group conjugated co-polymer were added, uniformly mixed and placed in a dialysis bag (MWC0 6000 8000 to 8000, SpectrumLabs). , Inc.), replacing the pure water once every 2 to 3 hours at room temperature for a total of 48 hours to prepare a G1B 1B 2 composite type nanocell. After lyophilization, the product was collected for analysis. Fig. 1A is a graph showing the average particle size and particle size distribution of G1B1 composite micelles under different bundled I doublet copolymerization compositions. The concentration of grafted I grafted copolymer was fixed at 1〇 〇 mg/L during the preparation of G1Bi composite micelles. Fig. 1B is a graph showing the average particle size and particle size distribution of the G1B1B2 composite type microcells under the composition of different agglomerated π double-clustered copolymers. The concentration of grafted I grafted co-polymer was fixed at 1〇 〇 mg/L during the preparation of G1B1B2 composite cells, and the concentration of the double-linked copolymer was fixed at 5.625 mg/]L. 16 200817456 Table 2 lists the concentrations of the composite micelles of Figures 1A and 1B which are grafted I, ligated I and conjugated II. Table 2 G1 (mg/L) B1 (mg/L) B2 (mg/L) G1 : B1 : B2 = 33.9 : 55.7 : 10.4 mol/mol 10.0 5.625 v O / 1.125 G1 : B1 = 50 : 50 mol/mol 10.0 3.15 Two-component G1B1B2 complex type nano-cells (G1: Β1: Β2 = 33·9: 55·7: 10.4 mol/mol) self-assembled into a microcell structure by aggregation and arrangement of hydrophobic polymer segments pla . The fixed cell concentration (〇1 mg/mL) was dispersed in physiological buffer saline (PBS) and its particle size was observed by dynamic light scattering (DLS) to be 182.3 ± 1.5 nm, and the particle size distribution index ( The polydispersity index (PDI) is 0.038 ± 0.014, with a uniform particle size and a narrow distribution. The interfacial potential of the composite micelles in pbs (〇·1 mg/mL) was measured by Doppler microelectrophoresis (Zetasizer 3 00OHS, Malvern) to determine the double-cluster copolymer for the composite micro The degree of concealment of the core. The grafted I microcells formed by graft copolymerization of the polymer were compared, and the interface potential was measured as _丨5 · 5 soil 〇. 9 mV. The interfacial potential of the composite micelle is -7·8 soil ι·3 melon, and the high-negative MAAc of the inner core has been obscured by the outer shell structure mPEG and pe〇z. The most direct evidence for the core structure of the composite micelles can be stained with MAAc via uranyl acetate (2 wt %) by a transmission electron microscope (TEM; Hitachi H-600 microscope, accelerating voltage = 100 kV) 17 Observed in 200817456, as shown in Figure 2. The dyed area of Figure 2 is distributed in the inner core, that is, the inner core is composed of graft I, and the unstained area of the outer shell is composed of mPEG and PEOz. In addition, the surface type of the composite micelle can be observed by atomic microscopy (AFM). The results show that the particle size of the G1 b 1 b2 composite microspheres is uniform and spherical, and the particle size is consistent with the results obtained by dynamic light scattering. The effect of the double-cluster co-polymer on the formation of complex micelles was investigated by G1B1 complex type micelles composed of different proportions and G1B1B2 complex type micelles. The two groups of copolymerized ruthenium molecules have different critical cell concentration: the critical cell concentration of the group I is much larger than that of the group 接枝 and graft I (Table 1). When a fixed concentration of graft I is mixed with different concentrations of the group I to prepare a composite type of micelle, the particle size of the G1B 1 composite type micelles of different ratios is about 〇6〇nm (as shown in FIG. 1A). And less than the grafted z-cells and the clustered j-cells. The particle size distribution of the G1Bl complex type microcells is narrowly distributed. When agglomerated π is added to a fixed concentration of G1B1 (the critical microcell concentration of the cluster is close to the critical microcell concentration of the graft I, but less than the critical microcell concentration of the cluster I), the particle size and cluster of the G1B1B2 composite type microcell The addition of II is irrelevant (as shown in Figure 1B), and is smaller than each single constituent cell or G1B2 complex type cell (33〇·2 soil·9 nm; PDI = 〇〇72 ± 0.011), but complexed with G1B1 The type of micelles are similar. However, when the molar content of the π-joining π is more than 〇·54, the micelle cannot be formed. These results show that the copolymerized polymer of the high critical microcell concentration determines the particle size of the composite nanocell. That is to say, in the present system, the presence of the group 1 can regulate and control the formation of the composite type of cells, and control and reduce the particle size of the micelles. (Ν-isopropyl isopropylamine) (p〇ly (N_is〇p(7) 18 200817456 abbreviation (PNIPAAm)) is a water-soluble and hydrophilic polymer with temperature-sensitive properties. Its low temperature critical solution temperature (LCST) The temperature is between 28 and 35 ° C. If the temperature is lower than the temperature of the low temperature critical solution, the polymer is in a dissolved state; and when the temperature is higher than the temperature of the low temperature critical solution, it is in a state of aggregation. If the PNIPAAm is introduced into a hydrophilic material such as MAAc, Then, the aggregation ability of the isopropyl group of PNIPAAm is destroyed, thereby increasing the phase transition temperature of the copolymer. However, the present invention increases the phase transition temperature of the material with MAAc having dissociation ability, and at the same time imparts acid-base responsiveness. Next, P(NIPAAm-co-MAAc) will produce aggregation and precipitation, because MAAc protonation reduces the hydrophilicity of P(NIPAAm-co-MAAc) and lowers the temperature of the critical solution to 32 °C. Alkali responsiveness is associated with temperature responsiveness. In previous studies it was shown that grafted I microcells have the property of producing microstructural changes in acidic and high temperature environments (CL Lo, KM Lin, GH Hsiue, J. Controlled Release 2005, 104, 477) Figure 3 shows that G1B1B2 composite micelles (G1: B1: B2 = 33·9: 55·7: 10·4 mol/mol) change with temperature in an acidic environment (pH 4.0) The structure of the composite micro-cells is destroyed by the use of hydrazine as a hydrophobic dye, and the spectroscopy is observed by a fluorescence spectrometer. The hydrazine solution is used as a control group. Because of its molecular symmetry Or the π electron cloud is affected by the polarity and environmental perturbation, which will cause a great change in the first emission spectrum (/;), but no significant difference compared to the other four different wavelengths of the emission spectrum. The change is therefore a commonly used dye in the discussion of the mechanism of cell formation, and /; / / 3 represents the change of the environment in which K. Kalyanasimdaram JK Thomas, J. Am. Chem. Soc. 1997, 99, 2039)./// /3 The more 19 • 200817456

,7/ / L越面,即表示祐所 祐溶液之/ /3值由於熱 •74。對於複合型微胞在pH 低,即表示芘所處環境極性越低 處環境極性越高。如圖3所示, 消耗隨著溫度升高由1 · 8 1降至1 4.0環境中 1.25 當溫度高於37X:時祐之八//3值快速由 升至1.46,表示芘環境由複合型微胞内部極性較低環境因 微胞破壞後接觸環境極性較高之溶液。 本發明另外以飛行時間二次離子質譜儀(time_〇f_fHght secondary i〇n mass spectr〇metry,簡稱 t〇f_sims)分析複 合型微胞之結構破懷前與結構破壞後之差異。複合型微胞 之結構破懷前與結構破壞後表面化學結構組成分別以正、 負離子進行分析。由二次離子質譜儀分析顯示接枝I由於 結構破壞顯露於外。複合型微胞之結構破懷前與結構破壞 後亦以醋酸轴醯(2 wt %)對MAAc染色,以穿透式電子顯微 鏡(TEM)觀測結構差異。如圖4A與4B所示,G1B1B2複合 型微胞(Gl : Β1 :Β2 = 33·9 : 55.7 : 10.4 mol/mol)在結構破, 7 / / L over the face, that is, the value of the / / 3 value of the solution is due to heat • 74. For composite micelles, the lower the polarity of the environment, the lower the polarity of the environment where the enthalpy is located. As shown in Figure 3, the consumption decreases from 1 · 8 1 to 1 in the environment with increasing temperature. 1.25 When the temperature is higher than 37X: When the value of 八//3 is rapidly increased from 1.46, it means that the environment is composed of composite type micro A solution with a low polarity inside the cell due to contact with the environment with high polarity after destruction of the cell. In the present invention, the difference between the structure of the composite type cell and the structure after the damage is analyzed by a time-of-flight secondary ion mass spectrometer (time_〇f_fHght secondary i〇n mass spectr〇metry, t〇f_sims). The structure of the composite microcells was analyzed before and after the structural damage, and the chemical composition of the surface was analyzed by positive and negative ions, respectively. Analysis by secondary ion mass spectrometry revealed that graft I was revealed due to structural damage. The structure of the composite micelles was stained with acetic acid axis (2 wt%) and the structure was observed by a transmission electron microscope (TEM) before and after structural damage. As shown in Figures 4A and 4B, the G1B1B2 complex type cell (Gl: Β1 : Β2 = 33·9 : 55.7 : 10.4 mol/mol) is broken in structure.

壞後已無明顯之殼核結構。 實例二: 本實例係利用接枝共聚物p(NIPAAm_co-MAAc)-g_PLA 與雙團聯共聚合物mPEG-PLA混合自組裝形成複合型微胞 用以包覆疏水性抗癌藥物小紅莓(doxorubicin,簡稱 Dox)。血液循環時,藥物可被包覆於内核而不致洩出造成 副作用。 複合型微胞包覆抗癌藥物D〇x相同以透析法(dialysis) 200817456 製備。其步驟與實例一相似。將 P(NIPAAm-co-MAAc)-g-PLA (接枝 I)共聚合物(20 mg)與 mPLA-b-PEG (團聯I)共聚合物(2 mg)溶解於DMSO/DMF (2 mL/8 mL)溶液中,加入已混合之Dox-HCl (20 mg)與三 乙胺(triethylamine,TEA,0.3 mL)混合液,使Dox變成疏水 性以利微胞内核攜帶。先攪拌2小時後,再以透析膜(MWCO 6000-8000)進行透析,每2小時換水一次,共透析72小時。 將透析袋内產物收集冷凍乾燥後,保存於4 °C冰箱。藥物 包覆量之評估乃是將上述複合型藥物微胞溶解於DMSO 中,至其結構溶解後,以超過濾裝置(MWCO 1000)分離藥 物與高分子,再以UV/Vis於485 nm測量Dox之吸收。將 吸收值内插入Dox檢量線換算藥物於複合型微胞中實際含 量。藥物含量估算公式如下:藥物含量(% w/w) = (藥物於複 合型微胞重量)/(藥物於複合型微胞重量+高分子於複合型 微胞重量)X 1 0 0。 複合型微胞包覆抗癌藥物Dox經AFM觀察其型態呈現 球形,且粒徑大小約1 6 5 nm。 藥物釋放行為探討。複合型藥物微胞定量置於不同酸鹼 值之緩衝溶液中(50 mg/L),於37°C或25°C下固定時間以超 過濾裝置(MWCO 10000)取樣,並以紫外線光譜儀(UV/Vis) 分析藥物濃度。對照藥物包覆率計算定時間下藥物釋放量 藉以探討複合型藥物微胞之酸鹼應答行為對於藥物釋放之 影響。緩衝溶液酸鹼值分別為pH 7.4磷酸緩衝溶液與pH 5.0琥珀酸緩衝溶液。UV/Vis於485 nm測其吸收值。 21 200817456 甘、月已母木又測试。細胞毒殺實驗(gr〇wth inhib出⑽assay) 、J疋刀別加入藥物、接枝1藥物微胞與複合型藥物微胞, 藥物濃度介於卜⑽_L,計算不同時間與濃度下細胞 、存舌率比較藥物、接枝I藥物微胞與複合型藥物微胞 對HeLa癌細胞毒殺的效果。平均標準差(n = 6卜將 人類子宮頸癌細胞以Dulbecc〇,s m〇dified Eagle,s㈤以匕㈤ (簡稱DMEM)培養基培養在37,5 % c〇2的恆溫培養箱 中至、、、田胞生長至一定數目後,分盤至96 well培養盤中培 養,細胞數為5 xlO3 ceii/mL。約8小時細胞貼附後,移除 培養基並加入含有不同濃度之藥物、接枝!藥物微胞及複 合型藥物微胞培養液。48小時後,以比色分析法(MTT assay) 進行分析。此外,而無藥物之接枝共聚合物微胞與複合型 微胞亦進行材料毒性分析,步驟與上述方法相同。 内吞作用評估。藥物及複合型藥物微胞在細胞内之分佈 情形係利用共輛焦顯微鏡(Confocal Laser Scanning Microscopy,CLSM)進行觀察。在6孔培養盤中置入蓋玻 片’蓋玻片上黏貼加強圈標示觀測範圍,每孔種植1 x ;[ 〇5 個細胞。至細胞貼附後,加入藥物濃度1 〇 pg /mL之Dox 與複合型藥物微胞培養液。於固定時間下移除培養基,以 PBS 清洗後加入 LysoTracker DND-26 2 mL (50_70 nM 溶 於DMEM培養基)再次培養0.5小時。以PBS及0·1 % Triton X-100 PBS清洗細胞。細胞試片的固定以三聚曱醛 (paraformaldehyde,4 wt%)之 PBS 溶液反應 30 分鐘,再以 22 200817456After the bad, there is no obvious core structure. Example 2: This example uses a graft copolymer p (NIPAAm_co-MAAc)-g_PLA and a double-cluster copolymer mPEG-PLA to self-assemble to form a composite microcapsule for coating a hydrophobic anticancer drug cranberry ( Doxorubicin, referred to as Dox). When the blood circulates, the drug can be coated on the core without causing side effects. The composite microcapsule-coated anticancer drug D〇x was prepared in the same manner as Dialysis 200817456. The steps are similar to those in Example 1. P(NIPAAm-co-MAAc)-g-PLA (graft I) copolymer (20 mg) and mPLA-b-PEG (coupling I) copolymer (2 mg) were dissolved in DMSO/DMF (2 In a solution of mL/8 mL), a mixture of mixed Dox-HCl (20 mg) and triethylamine (TEA, 0.3 mL) was added to make Dox hydrophobic to facilitate microcapsule core carry. After stirring for 2 hours, dialysis was carried out with a dialysis membrane (MWCO 6000-8000), and water was changed every 2 hours for a total of 72 hours. The product in the dialysis bag was collected and lyophilized, and stored in a refrigerator at 4 °C. The drug coating amount was evaluated by dissolving the above-mentioned composite drug cells in DMSO, and after the structure was dissolved, the drug and the polymer were separated by an ultrafiltration device (MWCO 1000), and Dox was measured at 485 nm with UV/Vis. Absorption. Insert the absorbance value into the Dox calibration line to convert the actual amount of drug in the composite micelle. The drug content is estimated as follows: drug content (% w/w) = (drug weight of complex micelles) / (drug weight of composite micelles + weight of polymer in composite micelles) X 1 0 0. The composite microcapsule-coated anticancer drug Dox was observed to have a spherical shape by AFM, and the particle size was about 165 nm. Discussion on drug release behavior. The compound drug cells were dosed in a buffer solution of different pH values (50 mg/L), sampled at 37 ° C or 25 ° C for a fixed time with an ultrafiltration device (MWCO 10000), and UV spectrometer (UV) /Vis) Analyze drug concentration. The amount of drug released at a given time was calculated against the drug coverage rate to investigate the effect of the acid-base response behavior of the compound drug cells on drug release. The pH value of the buffer solution was pH 7.4 phosphate buffer solution and pH 5.0 succinate buffer solution, respectively. UV/Vis measured its absorbance at 485 nm. 21 200817456 Gan, Yue has been tested by the mother. Cytotoxic killing experiment (gr〇wth inhib out (10)assay), J 疋 knife to add drugs, graft 1 drug micelles and complex drug micelles, the drug concentration is in Bu (10) _L, calculate the cell and tongue rate at different times and concentrations To compare the effects of drugs, grafted I drug micelles and compound drug cells on the toxicity of HeLa cancer cells. The mean standard deviation (n = 6) was cultured in a culture medium of 37,5 % c〇2 in human cultured cervical cancer cells with Dulbecc〇, sm〇dified Eagle, s(5) and 匕(5) (referred to as DMEM). After the cells have grown to a certain number, they are cultured in a 96 well culture plate, and the number of cells is 5 x lO3 ceii/mL. After about 8 hours of cell attachment, the medium is removed and the drug containing different concentrations is added and grafted! Microcells and complex drug cell culture medium. After 48 hours, analysis was performed by colorimetric assay (MTT assay). In addition, drug-free grafted polymer microcapsules and composite micelles were also analyzed for material toxicity. The procedure is the same as above. Endocytosis evaluation. The distribution of drug and complex drug cells in the cells is observed by Confocal Laser Scanning Microscopy (CLSM). Placed in a 6-well culture plate. Cover the slides on the coverslips and stick the reinforcement circle to indicate the observation range. Plant 1 x per well; [ 〇 5 cells. After the cells are attached, add Dox with compound concentration 1 〇pg /mL and compound drug culture medium. .to The medium was removed at a fixed time, washed with PBS, and then added to LysoTracker DND-26 2 mL (50_70 nM in DMEM medium) for another 0.5 hour. The cells were washed with PBS and 0.1% Triton X-100 PBS. Fix in a PBS solution of paraformaldehyde (4 wt%) for 30 minutes, then 22 200817456

PBS清洗後,於加強圈範圍内滴人8q %甘油(giyeer〇M PBS溶液15叫並貼覆於載玻片避光保存。共輛焦顯微鏡 物鏡設定為40X; Dox激發雷射光波長485 nm,放射光波 長590 nm ; LysoTracker激發雷射光波長5〇4 nm,放射光 波長5llnm。掃猫所得之影像與相位差顯微鏡影像重疊以 判斷Dox釋放所在位置。 複合型藥物微胞、經UV/Vis;則量可知其藥物含量約19 wt.%。藥物釋放測試乃利用透析膜分離藥物與微胞。圖$ 顯示在不同pH環境下藥物自複合型藥物微胞釋放情形。複 合型藥物微胞於pH 5.0緩衝溶液下相較於pH74緩衝溶液 下具有明顯藥物釋放差異。且在pH 5.〇緩衝溶液下於h c與3rc藥物釋放行為亦明顯不同。在pH 緩衝溶液與 25 f下’初期前2小時具有一快速藥物釋放特性,藥物釋 放量達25 Wt. %左右。而後藥物釋放行為隨時間之增長並 無增加㈣,此乃由於複合型微胞内核與外殼有一二氫 鍵作用力,而此氫鍵仙造成微胞壓縮使部㈣物受播壓 而W,_造成初期有25%之藥物釋放。但隨時間增長至% :時’藥物仍保存於複合型藥物微胞内核,表示微胞内核After PBS washing, 8q% glycerol was dripped in the reinforced circle (giyeer 〇M PBS solution 15 and attached to the slide to protect from light. The co-focus microscope objective lens was set to 40X; Dox excitation laser light wavelength was 485 nm, The wavelength of the emitted light is 590 nm; the wavelength of the laser light is 5〇4 nm and the wavelength of the emitted light is 5llnm. The image obtained by the sweeping cat overlaps with the phase difference microscope image to judge the position of Dox release. The composite drug cell, UV/Vis; The amount of the drug is about 19 wt.%. The drug release test uses a dialysis membrane to separate the drug from the micelle. Figure $ shows the release of the drug from the complex drug micelle at different pH environments. The 5.0 drug buffer had a significant difference in drug release compared to the pH 74 buffer solution, and the drug release behavior was significantly different between hc and 3rc in pH 5. 〇 buffer solution. 2 hours before the initial pH in buffer solution and 25 f It has a rapid drug release characteristic, and the drug release amount is about 25 Wt. %. Then the drug release behavior does not increase with time (4), because the composite microcapsule core and the outer shell have a dihydrogen The force of the bond, and the hydrogen bond is caused by the compression of the microcapsule, so that the part (4) is subjected to the sowing pressure, and W, _ causes 25% of the drug to be released at the beginning. However, when the time increases to %: the drug is still stored in the compound drug micro Cell kernel, indicating the microkernel kernel

;。構並未因氯鍵作用力而產生結構破壞。另—方面,在pH •緩衝溶液與37°C下,初期2 ^、昧g卩古 時即有5〇Wt%左右之藥 里,此乃由於微胞結構破壞所造成。藥物釋放結果 烈顯示微胞結構破壞控制藥物釋放行為。 。 細胞毒殺測試用以瞭解複合型藥物微胞對於癌細胞生 長的抑制效果以及對癌細胞之毒殺能力。研究中⑴除了已以複 23 200817456 合型藥物微胞進行測試外,D〇x · HC1與接枝I藥物微胞亦 共同進行觀察以作為對照組。將不同濃度的複合型藥物微 胞、Dox.HCl、以及接枝I藥物微胞分別與2xl〇4 HeLa細 月匕/、同^養以觀察細胞存活情形。如圖6所示,於4 8小時 培養中Dox.HCl具有較高之毒殺能力,其IC5〇約為〇.8 Kg/mL。而複合型藥物微胞與接枝I藥物微胞其IC5G則分別 為3 pg/mL與6 pg/mL。其原因乃在於d〇x · HC1小分子是 以擴散方式進入細胞並直接毒殺癌細胞,因此其作用速度 較快;而複合型奈米藥物微胞與接枝I藥物微胞則是藉由 胞飲作用進入細胞後,在吞噬小體室(end〇s〇mal compartments)或溶素體室(iyS〇s〇mai c〇mpartments)藉由環 境酸化改變微胞結構後將藥物釋離。此外,48小時培養條 件下,複合型奈米藥物微胞與接枝〗藥物微胞之藥物釋放 S約達總量之65 %與60 %。相較於d〇x.HCi藥物對細胞 作用量較低,因而其細胞毒殺能力較差。另一方面,由於 v接枝I藥物微胞外殼帶強負電性,因此其進入細胞能力較 差,故其細胞毒殺效果相較於複合型奈米藥物微胞與 HC1而言呈現較差之能力。$ 了區隔細胞毒性來源是源自 載體或是藥物,不含藥物之複合型微胞與接枝"敬胞亦對 HeLa細胞進行毒性測試。在48小時培養中,複合型微胞 與接枝I微胞隨著濃度增加對細胞毒性明顯增強。複合型 微胞之IC5〇為2.5 mg/mL ;而接枝J微胞則為15 灿。 顯不複合型微胞毒性低於接枝I微胞,此乃由於強負電由 mPEG所遮蔽。此外,由藥物濃度換算载體濃度可知,接 24 200817456 枝i微胞所造成之細胞毒性亦高於複合型奈米微胞。亦即, 接枝I微胞在癌症治療與細胞内藥物傳遞之應用性較差。 導入雙團聯共聚合物進入微胞後,可穩定微胞結構以及隱 蔽負電性材料如MAAc,不僅增加細胞吞噬量及降低細胞 毒性’亦可克服聚離子型高分子(p〇lyi〇ns)在生醫使用上之 限制。 , 複合型藥物微胞與藥物於細胞内分佈與藥物釋放行為 以共軛焦顯微鏡針對HepG2細胞(人類肝癌細胞)與複合型 藥物被胞或藥物共同培養進行觀察。加入LysoTracker可觀 察酸性胞器或受酸化胞器之分佈位置,藉以判斷複合型藥 物微胞在細胞内之分佈與藥物釋放。D〇x.HC1不論在1小 日才或8小時與HepG2培養下皆分佈於細胞核内。而 LysoTracker則分佈於細胞質與細胞核,其原因是由於ϋ〇χ · HC1酸化細胞所致。複合型藥物微胞在初期1小時培養時, 其所包覆之Dox釋放於細胞質内,且LyS〇Tracker所顯示 之綠光亦分佈於此區域。而8小時培養時,D〇x不僅分佈 於細胞貝,其亦進入細胞核内,LyS〇Tracker則僅分佈於細 胞夤。這顯示複合型藥物微胞經由胞飲作用進入細胞後, 細胞内吞筮小體至(end〇S〇mal C〇mpartments)或溶素體室 (lysosomal c〇mpartments)酸化造成微胞結構破壞並釋出藥 物,因此在初期1小時培養下藥物僅分佈於細胞質。而8 小時後,D〇x進入細胞核,且微胞仍持續釋放藥物,因此 Dox亦分佈於細胞f。相似之結果亦可在中國倉鼠細胞 25 200817456 (CHO-K1)中觀察到。 複&型藥物微胞於本實例中可藉由細胞内酸驗環境改 變而快速結構破壞以釋放藥物,其亦有一親水性外殼用以 蔽南f電性材料及增加材料之溶解度。 實例三: 同實例一之步驟,圑聯ΠΙ (mPEG5〇〇〇_pLAi_,分子量 分佈為1.15,臨界微胞濃度為16 mg/L)與團聯^ (mPEGwoo-PLAim,分子量分佈為12〇,臨界微胞濃度為 5.4 mg/L)共聚合高分子之合成是將mpEG (Mn 5〇⑼)與外 消旋乳酸交酯(AZ-lactide)以錫觸媒為起始劑進行開環聚 合反應而得。這些高分子具有相同之化學結構,但不同之 組成比例。; The structure does not cause structural damage due to the chlorine bond force. On the other hand, in the pH buffer solution and 37 ° C, the initial 2 ^, 昧 g 卩 ancient times there are about 5 〇 Wt% of the drug, which is caused by the destruction of the cell structure. Drug release results strongly indicate that cell structure disruption controls drug release behavior. . The cytotoxic killing test is used to understand the inhibitory effect of the complex drug microtubules on the growth of cancer cells and the ability to kill cancer cells. In the study (1), D〇x · HC1 and grafted I drug micelles were also observed together as a control group, except that the mice were tested with the compound of 2008/07456. Different concentrations of the composite drug cells, Dox.HCl, and the grafted I drug micelles were separately cultured with 2xl〇4 HeLa. As shown in Figure 6, Dox. HCl has a higher toxic ability in 48 hours of culture with an IC5 〇 of about 0.8 Kg/mL. The IC5G of the composite drug micelles and the grafted I drug micelles were 3 pg/mL and 6 pg/mL, respectively. The reason is that d〇x · HC1 small molecule enters the cell by diffusion and directly kills the cancer cell, so its action speed is faster; while the composite nano drug cell and the grafted I drug cell are by cell After the drinking effect enters the cells, the drug is released after changing the cell structure by environmental acidification in the end 〇smal space compartment or the lysosomal compartment (iyS〇s〇 〇 c〇mpartments). In addition, under the 48-hour culture condition, the drug release S of the composite nano-medicine micelles and the grafted drug-cells reached about 65% and 60% of the total amount. Compared with the d〇x.HCi drug, the amount of action on cells is low, so its cell toxic ability is poor. On the other hand, since the v-grafted I drug microcapsule has a strong negative charge, its ability to enter cells is poor, so its cell cytotoxic effect is inferior to that of the composite nano drug cell and HC1. The source of cytotoxicity is derived from the carrier or drug, and the drug-free composite micelles and grafts are also tested for toxicity of HeLa cells. In 48 hours of culture, the cytotoxicity of the composite micelles and the grafted I micelets increased significantly with increasing concentration. The IC5〇 of the compound micelles was 2.5 mg/mL, while the grafted J mice cells were 15 can. The apparently complex microcytotoxicity is lower than that of the grafted I mice, which is obscured by mPEG due to strong negative charge. In addition, it can be seen from the concentration of the drug-converted carrier that the cytotoxicity caused by the micro-cells is higher than that of the composite nano-cells. That is, grafted I micelles are less useful in cancer treatment and intracellular drug delivery. After the introduction of the double-cluster copolymer into the microcell, the microcell structure and the concealed negatively charged material such as MAAc can be stabilized, which not only increases the phagocytosis and reduces the cytotoxicity, but also overcomes the polyionic polymer (p〇lyi〇ns). Restrictions on the use of biomedicine. , Intracellular distribution and drug release behavior of complex drug micelles and drugs were observed by co-culture of HepG2 cells (human liver cancer cells) with complex drugs by cells or drugs by conjugated focal microscope. The LysoTracker can be used to observe the distribution of acidic organelles or acidified organelles to determine the distribution of drug-like cells in the cells and drug release. D〇x.HC1 is distributed in the nucleus in either 1 hour or 8 hours and in HepG2 culture. LysoTracker is distributed in the cytoplasm and nucleus, which is caused by ϋ〇χ · HC1 acidified cells. When the composite drug micelles were cultured for an initial period of 1 hour, the coated Dox was released into the cytoplasm, and the green light displayed by the LyS〇Tracker was also distributed in this region. At 8 hours of culture, D〇x was not only distributed in the cell blast, but also in the nucleus, and LyS〇Tracker was only distributed in the sputum. This indicates that the complex drug microvesicles enter the cells via pinocytosis, and the acidification of the cells by endocytic sputum to 〇smalmal C〇mpartments or lysosomal c〇mpartments causes destruction of the cell structure and The drug is released, so the drug is only distributed in the cytoplasm in the initial 1 hour culture. After 8 hours, D〇x enters the nucleus, and the micelles continue to release the drug, so Dox is also distributed in cell f. Similar results can also be observed in Chinese hamster cells 25 200817456 (CHO-K1). In this example, the compound & drug microcapsules can be rapidly structurally disrupted by intracellular acid assays to release the drug. They also have a hydrophilic outer shell to mask the electrical material and increase the solubility of the material. Example 3: The same procedure as in Example 1, 圑 ΠΙ (mPEG5〇〇〇_pLAi_, molecular weight distribution of 1.15, critical cell concentration of 16 mg / L) and ganglian ^ (mPEGwoo-PLAim, molecular weight distribution of 12 〇, The critical microcell concentration is 5.4 mg/L. The synthesis of the copolymerized polymer is the ring-opening polymerization of mpEG (Mn 5〇(9)) and racemic lactide (AZ-lactide) with tin catalyst as the initiator. And got it. These polymers have the same chemical structure but different composition ratios.

本實例是利用具有不同分子量長度與不同臨界為胞濃 度之雙團聯共聚合物(團聯I、團聯Ιπ或團聯Iv)分別與— 接枝共聚合物(實例一所製備之Graft)製備複合型微胞,以 了解雙團聯共聚合物在複合型微胞製備上對於其型態與結 構之影響° f先’-接枝共聚合物與—雙團聯共聚合物共 同溶解於DMSO/DMF (4/1 v/v)混合溶劑中以製備高分切 液。混合溶劑之使用乃在於此溶劑可製備較小粒徑之複合 型微胞。接枝共聚合物於溶劑中之濃度固定於 接枝共聚合物與雙團聯共聚合物組成比$丄:9。複人型微 胞則同實例-之步驟以透析法進行製備。所製備之:組兩 組成複合型微胞(分別為接枝Ϊ與團聯I複合型微胞、接枝 26 200817456 I與團聯III複合型微胞、以及接枝^與團聯ιν複合型微胞) 以TEM觀察其殼核結構與粒徑大小可得到下面三點結論: (1)本貝例中對於所有複合型微胞而言,内核結構經 染色可知其組成為接枝共聚合物,而外殼結構則由親水性 同刀子mPEG所組成。(2)複合型微胞内核半徑(R)隨著雙 團聯共聚合物疏水性鏈段PLA之分子量增加而減少 (Rpla· > RPLA1G88 > RPLA175G)。(3)複合型微胞粒徑大小隨 著雙團聯共聚合物疏水性鏈段PLA之分子量增加而增加。 短鏈段PL·A可形成較小粒徑之複合型微胞。 複合型彳放胞乃測试其在血清或血清蛋白存在下之穩定 性。此測試選用接枝I (25 mol0/〇)與團聯IV (75 m〇1%)所組 成之複合型微胞。將複合型微胞懸浮於含4 wt· %牛灰清白 蛋白(Bovine serum albumin,BSA)之生理食鹽水中 mg/mL),於37°C固定時間下以動態光散射儀觀察複合型微 胞粒佐之麦化’ G。動悲光散射測量模式設定為CQNTIN。 而未與B S Α混合約之複合型微胞溶液粒徑以動態光散射觀 測為心。接枝I微胞則作為對照組。粒徑變化比率則是將 G除以。’ G·/心。由結果可知複合型微胞在72小時内皆呈 現穩定狀態’這是由於微胞外殼之mPEG阻擔血清蛋白的 吸附而避免聚集產生。此現象顯示複合型微胞具有長時間 血液循環特性。 實例四·· 具標的功能之雙團聯共聚合物Gal-PEG3_-PLA83() 27 200817456 (Gal-PEG-PLA,[Gal]:[PEG]:[LA] = 8·4·:7·6:84 mol/mol)與 具顯影功能之雙團聯共聚合物fitc-peg34()()-pla830 (FITC-PEG-PLA,[FITC;h[PEG;h[LA] = 4:8:88 mol/mol)乃 是利用硫醇-醯胺偶合反應(thiol-maleimide coupling reaction)製備而成。 F7TC-凡EG-PZ乂雙團聯共聚合物之合成。PLA-NH2。首 先將N-Boc-L-丙胺酸醇(alaninol)以鉀/萘 (potassium/naphthalene)處理形成金屬烧氧化物 (N_Boc-L-alaninol-OK)。將外消旋乳酸交酯(Z),L-lactide) (2 g)溶於甲苯(2 mL)中以 N-Boc-L-alaninol-OK (0.35 g)為起 始劑,於1 00°C下反應1 2小時。反應完成後以醋酸終止反 應,再以乙醚進行再沉澱可得高分子PLA-NHBoc。而後 PLA-NHBoc (2.1 g)溶於蟻酸(20 mL)及氯仿(20 mL)混合溶 液中於室溫下處理9小時後以乙醚再沉澱。產物(1.5 g)以 三乙胺(20 mL)及氯仿(20 mL)混合溶液於室溫下處理8小 時去質子後,再以乙醚進行再沉澱則可得pla-nh2。 PLA-SH。將PLA-NH2 (2 g)溶解於乙腈(10 mL)中,加入過 量之2-亞胺基硫烧氯化氫物(2-iminothiolane hydrochloride) (0.45 8 g)後,並添加適量的TEA-緩衝液(濃度為50mM,Ph 8.0)於室溫下反應15小時。未反應之2-亞胺基硫烷 (2-iminothiolane)以 5 mM HC1 溶液與 1 mM HC1 溶液多次 進行透析後去除,冷凍乾燥或真空乾燥後即可得PLA-SH。 馬來醯亞胺-PEG-NH2。N-甲氧羰基馬來醯亞胺 (N-Methoxycarbonylmaleimide) (0·2 g)溶解於 DMSO (10mL) 28 200817456 後於室溫下加入聚氧伸乙基雙(胺)(polyoxyethylene bis(amine)) (1 g)水溶液中反應6小時。反應完成後,在-20 °C下以二氯曱烷與乙醚混合溶液(1 / Γ v/v)進行再結晶可得 馬來醯亞胺-PEG_NH2。PLA-PEG-NH2。PLA-SH (0.8 g)溶 解於 0.1 M Tris/丙烯腈(1/3 v/v) (aq,pH 6.5) (15 mL)中, 而後於室溫下加入馬來醯亞胺-PEG-NH2 (2 g) Tris溶液 (1 0 mL)反應6小時。反應完成後,分別以生理食鹽水及去 離子水進行透析,再進行冷凍乾燥。乾燥之產物溶解於二 氯甲烷後以乙醚進行再沉澱去除PLA-SH可得 NH2-PEG-PLA〇 FITC-PEG-PLA〇 NH2-PEG-PLA(1 g)先溶 解於甲醇(40 mL)後,於室溫避光下加入FITC (0.15 g)反應 24小時。以0·5 M NaCl水溶液與去離子水進行透析去除未 反應物後,冷凍乾燥或真空乾燥後即可得FITC-PEG-PLA。 五G-PLd雙團聯共聚合物之合成。Gal-馬來醯亞 胺。N-甲氧羰基馬來醯亞胺(0.68 g)溶解於DMS0 (10 mL) 後於室溫下加入半乳胺糖氯化氫(galactosamine hydrochloride) (0·5 g)水溶液中反應6小時。反應完成後以 乙醚進行再沉澱可得Gal-馬來醯亞胺。PLA-PEG-SH。 PLA-PEG-NH2 (1 g)溶解於乙晴(15 mL)中,加入過量之2-亞胺基硫烧氯化氫物(2-iminothiolane hydrochloride) (0· 1 g)後,並添加適量的TEA-buffer(濃度為50mM,ρΗ8·0)於 室溫下反應15小時。未反應之2-亞胺基硫烷以5 mMHCl 溶液與1 mM HC1溶液多次進行透析後去除,冷凍乾燥或 真空乾燥後即可得PLA-PEG-SH。Gal-PEG-PLA。 29 200817456 PLA-PEG-SH (1 g)溶解於甲醇(15 mL)後再加入Gal_馬來醯 亞胺(〇·1 g)於室溫下反應24小時。以0·5 M NaCl水溶液與 去離子水進行透析去除未反應物後,冷凍乾燥或真空乾燥 後即可得Gal-PEG_PLA。 實例五: 本實例之多功能性複合型藥物微胞以透析法進行製 備。首先,抗癌藥物Dox溶解於DMSO/DMF (4/1 v/v)混合 溶劑後以過量三乙胺(1.2莫耳)中和HC1。再將接枝t (5〇 mol%)、團聯 iv (20 m〇1%)、Gal_pEG_pLA 〇5 m〇i%)、以 及FITC_PEG_PLA(15 mol%)溶解於藥物溶液中並進行透析 (MWCO 60〇〇-8〇00)。透析後進行冷凍乾燥或真空乾燥即可 得多功能性複合型藥物微胞。將複合型藥物微胞溶解於 DMSO後,藥物含量可經由紫外光光譜儀測得約3丨。 圖7顯示多功能性複合型藥物微胞經醋酸鈾醯(2 染色 後之TEM觀測圖。結果顯示功能性複合型藥物微胞具完整 之殼核結構,且其粒徑約16〇nm左右。由於巨大分子由腫 瘤血管穿透至組織須藉由血管開放間隙、血管細胞膜穴樣 内陷、或血管破洞缺損等。而其孔洞間隙大約38〇至Μ如m 間。本實例所製備多功能性複合型藥物微胞粒徑低於2〇〇 nm且適合藉由上述之孔洞間隙溢出血管。由文獻可知含 PEG覆蓋之微胞其粒徑大小影響到粒子於體内器官之分 佈’粒徑低於2 0 0 n m可僻备Λ睡磁、、風、奋α 士 j避光由胖贓過濾效應。粒徑大小亦 影響細胞内呑能力,粒徑大於$⑽ 了位人於500 nm之粒子需用籠不相關 30 200817456 胞飲作用(clathrin-independent end〇cyt〇sis),而粒徑小於 200 nm之粒子則可藉由非特定籠相關程序(n〇n-specific Clathrin-dependent process)進入細胞。因此,本實例所製備 之多功能性複合型藥物微胞其粒徑約16〇nm,符合生理條 件所需之粒徑限制。 ' 多功能性複合型藥物微胞對於環境應答能力影響藥物 自微胞之釋放。圖8為容工士么匕α_ 口马夕功月匕性稷合型藥物微胞在ρΗ 7.4 與ΡΗ5.0緩衝溶液中之藥物釋放行為圖。於卩1174且叨 °c環境下,多功能性複合型藥物微胞在初期有15糾.%筚 物突釋(initiai burst)的現象。之後,幾乎無藥物自载體^ 出而保持-穩定藥物總釋放量。在pH 5 ()且抓環境下, 藥物釋放曲線可明顯區分為兩部分。初期兩小時内一快速 突釋現象約釋放35 wt.%藥物。而隨後藥物持續穩定釋放藥 物,約14〇小時後藥物釋放量達7〇败%。此藥物釋放行為 結果證實多功能性複合型藥物微胞具酸驗應答性,改變環 境之酸驗值可破壞微胞内核結構而釋放抗癌藥物。乂 本實例另以接枝I、團聯Iv、FITC_PEG_PLA、以及This example utilizes a double-cluster copolymer having a different molecular weight length and a different critical cell concentration (union I, agglomerate π or agglomerated Iv), respectively, with a graft copolymer (Graft prepared in Example 1). Preparation of composite micelles to understand the effect of double-co-linked copolymers on the morphology and structure of composite micelles. f First--grafted copolymers and double-linked copolymers are co-dissolved in A high concentration of cut solution was prepared in a mixed solvent of DMSO/DMF (4/1 v/v). The use of a mixed solvent is such that a smaller particle size composite micelle can be prepared in this solvent. The concentration of the grafted copolymer in the solvent is fixed at a composition ratio of the grafted copolymer to the double-cluster copolymer of $丄:9. The complex human cells were prepared by the dialysis method in the same manner as in the example. The prepared two groups of composite micelles (grafting Ϊ and 团 I I complex type micelles, grafting 26 200817456 I and ganglian III composite type micelles, and grafting and gangming ιν complex type Microtubules The following three conclusions can be obtained by observing the core structure and particle size of TEM: (1) For all composite micelles, the core structure is dyed to know that its composition is grafted copolymer. The outer shell structure is composed of hydrophilicity and knife mPEG. (2) The core radius of the composite microcell (R) decreases as the molecular weight of the hydrophobic cluster segment of the double-co-polymer is increased (Rpla· > RPLA1G88 > RPLA175G). (3) The particle size of the composite micelle increases as the molecular weight of the hydrophobic group segment of the double-clustered copolymer increases. The short segment PL·A can form a composite micelle of a smaller particle size. Compound sputum cells were tested for stability in the presence of serum or serum proteins. In this test, a composite type of microcells composed of graft I (25 mol0/〇) and agglomerated IV (75 m〇1%) was used. The composite microcapsules were suspended in a physiological saline solution containing 4 wt·% bovine serum albumin (BSA), and the composite vesicles were observed by dynamic light scattering at a fixed time of 37 °C.佐之麦化' G. The moving light scattering measurement mode is set to CQNTIN. The particle size of the composite type cell solution which was not mixed with B S 为 was measured by dynamic light scattering. Grafted I micelles served as a control group. The particle size change ratio is obtained by dividing G. ‘G·/heart. From the results, it was found that the composite type microvesules exhibited a stable state within 72 hours. This was due to the adsorption of mPEG-blocking serum proteins of the microcapsule shell to avoid aggregation. This phenomenon shows that the composite micelle has long-term blood circulation characteristics. Example 4· The dual-co-polymeric polymer with the function of Gal-PEG3_-PLA83() 27 200817456 (Gal-PEG-PLA,[Gal]:[PEG]:[LA] = 8·4·:7·6 : 84 mol/mol) and the developed double-coupling copolymer fitc-peg34()()-pla830 (FITC-PEG-PLA, [FITC; h[PEG;h[LA] = 4:8:88 Mol/mol) is prepared by a thiol-maleimide coupling reaction. F7TC - Synthesis of EG-PZ 乂 double-co-polymer. PLA-NH2. First, N-Boc-L-alanine (alaninol) was treated with potassium/naphthalene to form a metal oxide oxide (N_Boc-L-alaninol-OK). The racemic lactide (Z), L-lactide) (2 g) was dissolved in toluene (2 mL) with N-Boc-L-alaninol-OK (0.35 g) as the starting agent at 100 ° The reaction was carried out for 1 hour at C. After completion of the reaction, the reaction was terminated with acetic acid, followed by reprecipitation with diethyl ether to obtain a polymer PLA-NHBoc. Then, PLA-NHBoc (2.1 g) was dissolved in a mixed solution of formic acid (20 mL) and chloroform (20 mL) at room temperature for 9 hours and then reprecipitated with diethyl ether. The product (1.5 g) was treated with a mixed solution of triethylamine (20 mL) and chloroform (20 mL) at room temperature for 8 hours to remove protons, and then reprecipitated with diethyl ether to obtain pla-nh2. PLA-SH. Dissolve PLA-NH2 (2 g) in acetonitrile (10 mL), add an excess of 2-iminothiolane hydrochloride (0.45 8 g), and add the appropriate amount of TEA-buffer (Concentration 50 mM, Ph 8.0) was reacted at room temperature for 15 hours. Unreacted 2-iminothiolane was removed by dialysis with 5 mM HCl solution and 1 mM HCl solution several times, and lyophilized or vacuum dried to obtain PLA-SH. Maleidin-PEG-NH2. N-Methoxycarbonylmaleimide (0·2 g) was dissolved in DMSO (10 mL) 28 200817456 and then added polyoxyethylene bis (amine) at room temperature. (1 g) The reaction was carried out for 6 hours in an aqueous solution. After the completion of the reaction, recrystallization was carried out at -20 ° C with a mixed solution of dichlorosilane and diethyl ether (1 / Γ v / v) to obtain maleimide-PEG_NH2. PLA-PEG-NH2. PLA-SH (0.8 g) was dissolved in 0.1 M Tris/acrylonitrile (1/3 v/v) (aq, pH 6.5) (15 mL), then maleimide-PEG-NH2 was added at room temperature. (2 g) Tris solution (10 mL) was reacted for 6 hours. After completion of the reaction, the cells were dialyzed against physiological saline and deionized water, respectively, and then lyophilized. The dried product was dissolved in dichloromethane and reprecipitated with diethyl ether to remove PLA-SH. NH2-PEG-PLA〇FITC-PEG-PLA〇NH2-PEG-PLA (1 g) was dissolved in methanol (40 mL). The reaction was carried out by adding FITC (0.15 g) at room temperature in the dark for 24 hours. The unreacted material was removed by dialysis against 0.5 M aqueous NaCl solution and deionized water, and then freeze-dried or vacuum-dried to obtain FITC-PEG-PLA. Synthesis of five G-PLd double-cluster copolymers. Gal-maleimide. N-methoxycarbonylmaleimide (0.68 g) was dissolved in DMS0 (10 mL), and then added to aqueous solution of galactosamine hydrochloride (0.5 g) at room temperature for 6 hours. After the reaction is completed, reprecipitation with diethyl ether gives Gal-maleimide. PLA-PEG-SH. PLA-PEG-NH2 (1 g) was dissolved in acetonitrile (15 mL), and an excess of 2-iminothiolane hydrochloride (0.1 g) was added, and an appropriate amount of TEA was added. -buffer (concentration: 50 mM, ρ Η 8 · 0) was reacted at room temperature for 15 hours. The unreacted 2-iminothione was dialyzed by a 5 mM HCl solution and a 1 mM HCl solution, and then lyophilized or vacuum dried to obtain PLA-PEG-SH. Gal-PEG-PLA. 29 200817456 PLA-PEG-SH (1 g) was dissolved in methanol (15 mL) and then added with Gal_maleimide (〇·1 g) for 24 hours at room temperature. After dialysis with 0.55 M NaCl aqueous solution and deionized water to remove unreacted materials, freeze-drying or vacuum drying to obtain Gal-PEG_PLA. Example 5: The versatile composite drug micelle of this example was prepared by dialysis. First, the anticancer drug Dox was dissolved in a DMSO/DMF (4/1 v/v) mixed solvent and neutralized with an excess of triethylamine (1.2 mol). Graft t (5〇mol%), iv (20 m〇1%), Gal_pEG_pLA 〇5 m〇i%), and FITC_PEG_PLA (15 mol%) were dissolved in the drug solution and dialyzed (MWCO 60) 〇〇-8〇00). After dialysis, freeze-drying or vacuum drying can be used to multi-functional composite drug micelles. After dissolving the complex drug micelles in DMSO, the drug content can be measured by ultraviolet spectrometry to be about 3 Torr. Figure 7 shows the TEM observation of the versatile composite drug microvesicles after uranyl acetate (2 staining. The results show that the functional composite drug micro-cells have a complete shell-core structure, and the particle size is about 16 〇 nm. Because the giant molecules penetrate from the tumor blood vessels to the tissue through the open space of the blood vessels, the cavernous invagination of the blood vessels, or the defects of the blood vessel holes, etc., the gap between the holes is about 38〇 to the same as m. The composite compound drug has a particle size of less than 2 〇〇 nm and is suitable for overflowing the blood vessel through the above-mentioned pore gap. It is known from the literature that the particle size of the PEG-covered microcapsule affects the distribution of particles in the internal organs. Below 2000 nm, you can sleep in the magnetic, wind, and f, and protect from the light. The particle size also affects the cell's internal sputum ability. The particle size is greater than $(10). Particles need to be cage-independent 30 200817456 clathrin-independent end〇cyt〇sis, while particles less than 200 nm in size can be nnn-specific Clathrin-dependent process Enter the cell. Therefore, this is The prepared multifunctional composite drug microcell has a particle size of about 16 〇 nm, which is in accordance with the particle size limitation required for physiological conditions. The multifunctional versatile drug microcapsule affects the release of the drug from the microcell. Fig. 8 is a diagram showing the drug release behavior of the sputum 7.4 7.4 匕 α α 马 夕 功 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 。 。 。 7.4 7.4 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 In the early stage, the compound drug cell had a 15% correction of the phenomenon of initiai burst. After that, almost no drug was released from the carrier to maintain the total release of the drug. At pH 5 () and grasp Under the environment, the drug release curve can be clearly divided into two parts. A rapid burst release in the initial two hours releases about 35 wt.% of the drug, and then the drug continues to release the drug stably, and the drug release amount is 7 约 after about 14 hours. %. The release behavior of this drug confirmed that the versatile compound drug has acid responsiveness, and changing the acid value of the environment can destroy the core structure of the microcapsule and release the anticancer drug. Iv, FITC_PEG_PLA, and

Gal-PEG-PLA共同製備多功能性複合型微胞(不含藥物), 製備方式上述相同。接枝!於多功能性複合型㈣主要扮 演ί哀境應答之功能,以達到藥物控制釋放之效果。團聯^ 於多功能性複合型微胞主要是控制微胞之殼核結構完整性 以及得到粒徑分佈均-之微胞。具螢光顯影功能之 FITC-PEG-PLA雙團聯共聚合高分子主要提供直接證據顯 示多功能性複合型微胞累積位置。具標的功能之 31 200817456Gal-PEG-PLA co-prepares multifunctional multifunctional micelles (without drug) in the same manner as described above. graft! In the versatile compound type (4), it mainly plays the role of gluteal response, in order to achieve the effect of drug controlled release. The versatile composite type of microcells mainly control the structural integrity of the core of the microcells and obtain the microcells with the same particle size distribution. The FITC-PEG-PLA double-co-polymerized polymer with fluorescent development mainly provides direct evidence to show the cumulative position of the multifunctional composite micelle. With the function of the mark 31 200817456

Gal PEG_PLA雙團聯共聚合高分子主要是辨識肝癌細胞表 面之接受器asial〇glyCopr〇tein以達到對癌細胞主動標的 (active tumor targeting)之功能。 此實例係將多功能性複合型藥物微胞於不同濃度下與 癌細胞共同培養,用關斷多功能性複合㈣物微胞對癌 細胞之生長抑制效果以及對癌細胞之毒殺能力。 作為對照組。在共同培養24小時與72小時後,可知d〇x.hci 之1C5〇(致使一半細胞死亡之濃度)約為l_2^/mL。而多功 能性複合型藥物微胞於24小時培養之IC5Q約為25The Gal PEG_PLA double-co-polymerized polymer mainly recognizes the receptor asiatic glyCopr〇tein on the surface of liver cancer cells to achieve the function of active tumor targeting. In this example, the multifunctional composite drug microcapsules are co-cultured with cancer cells at different concentrations, and the growth inhibitory effect on the cancer cells and the ability to kill cancer cells are turned off by the multifunctional multiplexed (tetra) microcapsules. As a control group. After co-cultivation for 24 hours and 72 hours, it was found that 1C5 〇 (concentration causing half of cell death) of d〇x.hci was about 1⁄2^/mL. The multi-functional composite drug microcells have an IC5Q of about 25 in 24 hours.

Pg/mL。而72小時培養下之1〇5〇約為4 ^/mL,與d〇x hci 相=近。另一方面,多功能性複合型微胞(不含藥物)於72 =時之之ICw為792 pg/mL。此結果顯示細胞毒性來自於 多功能性複合型藥物微胞之藥物釋放。 為了評估多功能性複合型藥物微胞在生物標誌應用上 之功能性,以共軛焦顯微鏡觀察多功能性複合型藥物微胞 與HeLa細胞共同培養6小時下之藥物釋放情形與累積位 置對於大部为欲胞載體而言,微胞載體藥物釋放觸發機 制接發生於呑噬小體而後釋放至細胞質。由共輛焦顯微鏡 觀察結果顯示HeLa細胞顯示綠色螢光(FITC)於細胞質,表 示多功能性複合型藥物微胞之累積位置。而紅色發光(D〇x) =累積於細胞質與細胞核中。於本實例中多功能性複合型 樂物微胞之傳遞途徑可清楚由FITC標記之微胞顯現。 實例六: 32 200817456 為了評估多功能性複合型藥物微胞對於腫瘤專一標的 性’由實例五製備之多功能性複合型藥物微胞與實例二之 複合型藥物微胞乃與人類肝癌HePG2細胞共同培養以觀察 細胞毒殺情形。 磨瘤#的從繹活。將HepG2細胞以DMEM培養基培養 在37 C,5 % C〇2的恒溫培養箱中,至細胞生長至一定數 目後,分盤至96 well培養盤中培養,細胞數為2 xl04 / well。約8小時細胞貼附後,移除培養基並加入含有不同 濃度之多功能性複合型藥物微胞及複合型藥物微胞培養液 於4°C或37°C下進行培養。共同培養2小時,再將含有藥 物微胞之培養液洗掉,加入新鮮之培養液於37t:下進行培 養24與48小日守。元成後’以台盼藍(trypanbiue)將細胞染 色’以相位差顯微鏡計算HepG2細胞之存活率。此外,在 咼濃度之半乳糖存在下(1 5 0 mM)亦重複相同實驗進行抑制 標的行為分析。 結果如圖9所示,於24小時共同培養下,多功能性複 合型藥物微胞與複合型藥物微胞於37°C下之細胞毒殺率大 於4。(: ’且多功能性複合型藥物微胞有較高之細胞毒殺率。 由於在4°C時細胞之胞飲作用會停止,因此進入細胞核之 藥物是由於Gal與細胞表面過度表現的接收器 asialoglycoprotein結合,而後於37〇c培養時進入細胞。而 在如兩小時即以37°C培養情況下,多功能性複合型藥物微 胞可藉由胞飲作用以及Gal表面接收器的結合進入細胞 内’因此其細胞毒殺性大於前兩小時以4 處理之細胞毒 33 200817456Pg/mL. The 1〇5〇 under 72 hours of culture was about 4^/mL, which was close to d〇x hci. On the other hand, the versatile composite micelle (without drug) had an ICw of 792 pg/mL at 72 =. This result shows that cytotoxicity results from drug release from multifunctional versatile drug micelles. In order to evaluate the functionality of the multifunctional drug-type drug cells in the biomarker application, the conjugated focal microscope was used to observe the drug release and cumulative position of the multi-functional composite drug cells and HeLa cells cultured for 6 hours. For the cytoplasmic vector, the microcarrier carrier drug release trigger mechanism occurs in the phage phage and then is released to the cytoplasm. The results of observation by a common focus microscope showed that HeLa cells showed green fluorescence (FITC) in the cytoplasm, indicating the cumulative position of the multifunctional composite drug micelles. Red luminescence (D〇x) = accumulated in the cytoplasm and nucleus. In this example, the route of delivery of the multifunctional composite type of music cells can be clearly visualized by FITC-labeled micelles. Example 6: 32 200817456 In order to evaluate the versatility of composite drug micelles for tumor specificity, the multifunctional drug-type microvesicles prepared by Example 5 and the compound drug cells of Example 2 are shared with human liver cancer HePG2 cells. Culture to observe cell poisoning.磨瘤# from the 绎 live. HepG2 cells were cultured in DMEM medium in a 37 C, 5% C〇2 incubator until the cells were grown to a certain number, and the cells were cultured in 96 well plates at a cell count of 2 x 104 / well. After about 8 hours of cell attachment, the medium was removed and cultured at 4 ° C or 37 ° C by adding a multi-functional complex type drug cell and a complex drug cell culture medium containing different concentrations. After cocultivation for 2 hours, the culture solution containing the drug micelles was washed away, and fresh culture medium was added to culture at 37 t: 24 and 48 days. After Yuancheng, the cells were stained with trypanbiue. The survival rate of HepG2 cells was calculated by phase contrast microscopy. In addition, the same experiment was repeated for the behavioral analysis of the inhibitor in the presence of bismuth galactose (150 mM). As a result, as shown in Fig. 9, under the 24-hour co-cultivation, the cytotoxicity of the multifunctional compound drug cell and the complex drug cell at 37 ° C was more than 4. (: 'And the versatile compound drug cells have a higher cell cytotoxicity rate. Since the pinocytosis of the cells stops at 4 ° C, the drug that enters the nucleus is a receiver that is overexpressed by Gal and cell surface. The asialoglycoprotein binds and then enters the cells when cultured at 37 ° C. However, in the case of culture at 37 ° C for two hours, the multifunctional composite drug cells can enter the cells by the pinocytosis and the binding of the Gal surface receptor. Internal 'so its cytotoxicity is greater than the first two hours to treat 4 cytotoxicity 33 200817456

殺性。而隨著時間赴具4 nA 1 長細胞的毒殺性越高。將半乳糖 (Galactose)加入系統 +礼糖 爭反庫,谇養倏杜你^夕力此性稷合型藥物微胞進行競 f反應^養條件與時間與上。 論24小時或48小時 ▲ ,、、、、口果如圖1〇,不 夕功能性複合型藥物微胞或 稷口 H★胞之細胞存活率皆大於無半 此競爭實驗可看出,夕 …、 系、冼 由 r ,β6/ι 出夕功此性複合型藥物微胞確實且有腫 瘤標的之功能。 s ® 功nrr實例六可知’多功能性複合型藥物微胞已成 備*成,並可用於癌症診斷與癌症藥物傳遞 M結果可知多功能性複合型藥物微胞呈現球型且 粒:大小約16〇nm,符合生理條件所需之粒徑限制。而腫 瘤才示的分析與共輕焦顯微鏡觀測結果顯示多功能性複合型 藥物微胞可藉由受器調和胞飲作用(recep一一 endocytGsis)進人細胞後顯現強烈細胞毒性。本發明旨在提 供二新概念’即是製儀一同時具有長時間血液循環、腫瘤 辨識、以及結合癌症診斷與癌症藥物控制釋放之理想微 胞。而若將多功能性複合型藥物微胞之:FITC置換為Cy5.5 等近紅外線染劑,將可應用於動物體内以評估多功能性複 合型藥物微胞之體内分佈與癌症治療效果。 圖示之簡單說明 圖1A顯示本發明實例一中G1B1複合型微胞在不同的 雙團聯共聚合物團聯丨的莫耳比下其平均粒徑大小與粒徑 分佈指數,其中G1B1複合型微胞製備過程中接枝共聚合 34 200817456 物接枝I的濃度皆固定於1〇·〇 mg/L。 圖1B顯示本發明實例一中GIB 1B2複合型微胞在不同 的雙團聯共聚合物團聯I的莫耳比下其平均粒徑大小與粒 徑分佈指數,其中G1B1B2複合型微胞製備過程中接枝共 聚合物接枝I的濃度皆固定於10.0 mg/L,雙團聯共聚合物 團聯I的濃度皆固定於5.625 mg/L。 圖2係本發明實例一中G1B1B2複合型微胞之穿透式 電子顯微鏡(TEM)的影像照片(標示刻度為500奈米)。 圖3顯示本發明實例一中GIB 1B2複合型微胞在固定 酸性環境(pH 4.0),不同溫度下複合型微胞之芘(pyrene)分 子螢光光譜中振動鍵的強度比(/7//3)。 圖4A係本發明實例一中G1B1B2複合型微胞於結構破 壞前之穿透式電子顯微鏡(TEM)影像照片(標示刻度為2〇〇 奈米)。 圖4B係本發明實例一中G1B1B2複合型微胞於結構破 壞後之穿透式電子顯微鏡(TEM)影像照片(標示刻度為2〇〇 奈米)。 圖5係本發明實例二中複合型藥物微胞在不同酸性與 中性環境下,分別於25°C與37°C下之藥物釋放圖。 圖6係本發明實例二中複合型藥物微胞對於人類子宮 頸癌HeLa細胞之生長抑制能力圖,其中以自由D〇x及接 枝共聚合高分子所形成之接枝I藥物微胞作為對照組。 圖7係本發明實例五中多功能性複合型藥物微胞之穿 透式電子顯微鏡(TEM)影像照片。 35 200817456 於 圖 圖8係本1明實例五中多功能性複合型藥物微胞分別 37C下在11±(ΡΗ 5·〇)與巾性(ρΗ 7·4)環境之藥物釋放 多功能性複合型藥物微胞對人 48小時細胞生長抑制圖。以實 對照組。 圖9係本發明實例六中 類肝癌HepG2細胞之24與 例二之複合型藥物微胞作為 圖10係本發明實例4 人類肝癌HepG2細胞在$、、曲以力能性複合型藥物微胞對 24與48小時細胞生長扣^。度之半乳糖含量下(⑼祕)之 月包作為對照組。 |圖。以實例二之複合型藥物微 36 200817456 參考資料: [1] X. Gao, Y. Cui? R. M. Levenson, L. W. K. Chung, S. Nie, Nat. BiotechnoL 2004, 22? 969.Killing sex. And the higher the toxicity of 4 nA 1 long cells over time. Add galactose (Galactose) to the system + ritual sugar to fight against the library, and raise the sputum. You can use this kind of sputum-type drug cell to carry out the reaction and raise the condition and time. On the 24th or 48th hour ▲,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ..., system, 冼 by r, β6 / ι 夕 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此s ® gong nrr example 6 knows that 'multifunctional composite drug micro-cells have been prepared, and can be used for cancer diagnosis and cancer drug delivery M results. It can be seen that the multifunctional composite drug micro-cells are spherical and grain: size is about 16 〇 nm, the particle size limit required for physiological conditions. The analysis of the tumor and the observation of the total light microscopic microscope showed that the multifunctional composite drug microvesicles could be strongly cytotoxic by entering the cells by the receptor-reducing pinocytosis (recep-endocytGsis). The present invention is directed to providing a two-new concept, i.e., an ideal cell for simultaneous long-term blood circulation, tumor identification, and combined cancer diagnosis and controlled release of cancer drugs. However, if the multi-functional compound drug cell: FITC is replaced by a near-infrared dye such as Cy5.5, it can be applied to animals to evaluate the in vivo distribution of multi-functional compound drug cells and the therapeutic effect of cancer. . BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A shows the average particle size and particle size distribution index of G1B1 complex type microcells in the different double-cluster copolymer group enthalpy in the first example of the present invention, wherein the G1B1 complex type Graft copolymerization during cell preparation 34 200817456 The concentration of graft I was fixed at 1〇·〇mg/L. 1B shows the average particle size and particle size distribution index of GIB 1B2 composite type microcells in different double-cluster copolymer group I in the first example of the present invention, wherein the preparation process of G1B1B2 composite type micelles The concentration of the grafted copolymer I was fixed at 10.0 mg/L, and the concentration of the double-clustered copolymer I was fixed at 5.625 mg/L. Fig. 2 is a photograph of a transmission electron microscope (TEM) of a G1B1B2 composite type microcell in Example 1 of the present invention (marking scale is 500 nm). Fig. 3 is a graph showing the intensity ratio of a vibration bond in the fluorescence spectrum of a pyrene molecule of a composite type cell of a GIB 1B2 composite type microcell in a fixed acidic environment (pH 4.0) at a different temperature in the first embodiment of the present invention (/7// 3). Fig. 4A is a transmission electron microscope (TEM) image of the G1B1B2 composite type microcapsule in the first example of the present invention before the structure is broken (marking scale is 2 奈 nanometer). Fig. 4B is a transmission electron microscope (TEM) image of the G1B1B2 composite type microcapsule in the first example of the present invention after the structure is broken (marking scale is 2 奈 nanometer). Fig. 5 is a diagram showing the drug release of the composite drug micelles in Example 2 of the present invention under different acidic and neutral environments at 25 ° C and 37 ° C, respectively. Figure 6 is a graph showing the growth inhibition ability of the composite drug microcapsules for human cervical cancer HeLa cells in Example 2 of the present invention, wherein the grafted I drug micelles formed by free D〇x and graft copolymerized polymers are used as a control. group. Fig. 7 is a through-electron microscopy (TEM) image of a multifunctional multifunctional drug cell of Example 5 of the present invention. 35 200817456 Fig. 8 is a multi-functional composite of drug-releasing drug in the environment of 11±(ΡΗ 5·〇) and towel (ρΗ 7.4) in 37C. A 48-hour cell growth inhibition map of a drug-type cell. Take the actual control group. Figure 9 is a composite drug cell of 24 and 2 of the liver cancer HepG2 cells of Example 6 of the present invention as Figure 10 is an example of the present invention. Human hepatocellular carcinoma HepG2 cells are in the form of a conjugated drug cell. 24 and 48 hours of cell growth deduction ^. The monthly package of galactose content ((9) secret) was used as a control group. | Figure. Example 2 of the compound drug micro 36 200817456 References: [1] X. Gao, Y. Cui? R. M. Levenson, L. W. K. Chung, S. Nie, Nat. BiotechnoL 2004, 22? 969.

[2] N. Kang,Μ· Ε· Perron,R. E. Prud’Homme,Y. Zhang,G. Gaucher, J. C. Leroux, Nano lett. 2005, 5? 315.[2] N. Kang, Μ· Ε· Perron, R. E. Prud’Homme, Y. Zhang, G. Gaucher, J. C. Leroux, Nano lett. 2005, 5? 315.

[3] E. S. Lee, K. Na? Y. H. Bae? Nano Lett. 2005, 5, 325.[3] E. S. Lee, K. Na? Y. H. Bae? Nano Lett. 2005, 5, 325.

[4] C. L. Lo? K. M. Lin, C. K. Huang, G. H. Hsiue, Adv. Fund. Mater. (DOI: 1 0.1 002/adfm.200500627) [5] D. F. K. Shim, C. Marques, Μ. E. Cates,[4] C. L. Lo? K. M. Lin, C. K. Huang, G. H. Hsiue, Adv. Fund. Mater. (DOI: 1 0.1 002/adfm.200500627) [5] D. F. K. Shim, C. Marques, Μ. E. Cates,

Macromolecules 1991, 24, 5309.Macromolecules 1991, 24, 5309.

[6] C. Honda,K. Yamamoto,T. Nose,Po/ymer 1996,37, 1975.[6] C. Honda, K. Yamamoto, T. Nose, Po/ymer 1996, 37, 1975.

[7] A. L. Borovinskii, A. R. Khokhlov, Macromolecules 1998, 37, 7636· [8] C. Konak, M. Helmstedt, Macromolecules 2003? 36, 4603.[7] A. L. Borovinskii, A. R. Khokhlov, Macromolecules 1998, 37, 7636· [8] C. Konak, M. Helmstedt, Macromolecules 2003? 36, 4603.

[9] W. Mingvanisg, C. Chaibundit, C. Boot, PCCP 20025 4, 778.[9] W. Mingvanisg, C. Chaibundit, C. Boot, PCCP 20025 4, 778.

[10] T. Liu, V. N. Nace, B. Chu5 Langmuir 1999, 75, 3 109. 37[10] T. Liu, V. N. Nace, B. Chu5 Langmuir 1999, 75, 3 109. 37

Claims (1)

200817456 十、申請專利範圍 1. 一種具殼核結構之高分子型微胞,其中該結構包含 一接枝共聚合高分子與一圑聯共聚合高分子,該接枝共聚 合高分子包含一主鏈及鍵結於該主鏈的一疏水性側鏈,該 團聯共聚合高分子包含一疏水性高分子鏈段與一親水性高 分子鏈段,其中該接枝共聚合高分子之疏水性側鏈聚集, 該團聯共聚合高分子之疏水性鏈段堆疊聯合在該接枝共聚 合高分子之聚集的疏水性側鏈上,且該團聯共聚合高分子 之親水性鏈段從其中突出裸露於外而形成殼核結構。 2. 如申請專利範圍第1項之高分子型微胞,其中該接 枝共聚合高分子的疏水性側鏈與該團聯共聚合高分子的疏 水性鏈段包含相同之重複單元。 3 ·如申請專利範圍第1項之高分子型微胞,其中該團 、聯共聚合高分子係雙團聯共聚合高分子,其包含該疏水性 高分子鏈段與該親水性高分子鏈段。 4·如申請專利範圍第3項之高分子型微胞,其中該疏 水性高分子鏈段之數目平均分子量介於500-2500,及該親 水性高分子鏈段之數目平均分子量介於2000_ 10000。 5.如申請專利範圍第3項之高分子型微胞,其中該團 聯共聚合高分子之疏水性鏈段為生物可分解吸收。 38 200817456 6·如申#專利|&圍第5項之高分子型微胞,其中該團 聯共聚合高分子之疏水性鍵段為聚_、聚乳酸錢、聚乳 酸或聚己内S旨。 7·如申睛專利範圍第6項之高分子型微胞,其中該團 聯共聚合高分子之疏水性鏈段為聚乳酸交酯。 8·如申請專利範圍第3項之高分子型微胞,其中該接 枝共聚合高分子的親水性鏈段為聚丙烯酸酯,或酸鹼/離子 強度敏感型高分子,其中該酸鹼/離子強度敏感型高分子為 聚丙烯酸、聚甲基丙烯酸、聚丁烯二酸(p〇ly(butenedi〇ic aicd))、聚組胺酸(polyhistidine)、或聚乙烯基咪嗅 (poly(vinyl imidazole)) 〇 9.如申請專利範圍第3項之高分子型微胞,其中該團 聯共聚合高分子之親水性鏈段為聚醚、聚乙二醇 (poly(ethylene glycol))、曱氧基聚乙二醇 (methoxy-poly(ethylene glycol))、或聚(2-乙基 _2-σ惡嗤 琳)(poly(2-ethyl-2-oxazoline))。 10·如申請專利範圍第3項之高分子型微胞’其中該雙 團聯共聚合高分子為甲氧基聚乙二醇-b-聚乳酸交酯 (methoxy-poly(ethylene glycol)-b-poly(AZ-lactide))。 39 200817456 11 ·如申請專利範圍第1項之高分子型微胞,其中該接 枝共聚合高分子的主鏈包含具親水性的第一重複單元,及 該疏水性側鏈鍵結於該第一重複單元。 12·如申請專利範圍第u項之高分子型微胞,其中該第 一重複單兀具有一羧基結構,及該疏水性側鏈為生物可分 解吸收。 13·如申請專利範圍第12項之高分子型微胞,其中該 接枝共聚合高分子的主鏈為聚丙烯酸、聚甲基丙烯酸、聚 丁烯二酸、聚組胺酸、或聚乙烯基咪唑。 14 ·如申請專利範圍第13項之高分子型微胞,其中該 接枝共聚合高分子的主鏈為聚曱基丙烯酸。 1 5 ·如申請專利範圍第12項之高分子型微胞,其中該 ^來合问分子之疏水性側鏈為聚酯、聚乳酸交酯、聚 乳酸或聚己内酯。 I6·如申請專利範圍第15項之高分子型微胞,其中接 ϋ 取 a /、來3高分子之疏水性側鏈為聚乳酸交酯。 如申請專利範圍第11項之高分子型微胞,其中該接 40 200817456 枝共聚合高分子主鏈進一步包含一第二重複單元,而該第 一重複單兀不同於該第一重複單元,其該第二重複單元應 答於溫度變化使該微胞的核崩毀。 18.如申請專利範圍第17項之高分子型微胞,其中該 接枝共聚合高分子的主鏈之第二重複單元為仏異丙基丙烯 醯胺(N-isopropyl acrylamide)單體所形成者。 1 9.如申請專利範圍第丨8項之高分子型微胞,其中該 接枝共聚合局分子的主鏈為N_異丙基丙烯醯胺與甲基丙烯 酸之共聚合高分子。 20.如申請專利範圍第i項之高分子型微胞,其中該高 分子型微胞粒徑大小為50-200 nm。 2 1.如申請專利範圍第3項之高分子型微胞,其中該雙 團聯共聚合高分子具有一連接於該親水性高分子鏈段的一 末端的末端功能性分子,及該末端功能性分子為可與腫瘤 細胞表面之受器(recept〇r)結合的配體(ligand)·。 22. 如申請專利範圍第21項之高分子型微胞,其中該 配體為半乳醣殘基(galactose residue)。 23. 如申請專利範圍第3項之高分子型微胞,其中該雙 41 200817456 團聯共聚合高分子具有一連接於該親水性高分子鏈段的一 末端的末端功能性分子,及該末端功能性分子為一螢光基 團(fluorescence group) 〇 24·如申請專利範圍第23項之高分子型微胞,其中該 螢光團基為螢光螢光異硫氰酸鹽(fluorescein isothiocyanate)。 25.如申請專利範圍第3項之高分子型微胞,其中該雙 團聯共聚合高分子具有一連接於該親水性高分子鏈段的一 末^0的末端功能性分子,及該末端功能性分子為一染劑 (dye) 〇 26·如申請專利範圍第25項之高分子型微胞,其中該 染劑為近紅外線染劑。 2?·如申請專利範圍第丨項之高分子型微胞,其中該結 構包含多個不同的團聯共聚合高分子,且每一個該團聯共 聚合高分子包含一疏水性高分子鏈段與一親水性高分子鏈 段。 28·如申請專利範圍第27項之高分子型微胞,其中該 多個不同的團聯共聚合高分子的每一個都是雙團聯共聚合 高分子,其包含一疏水性高分子鏈段與一親水性高分子鏈 42 200817456 段。 29.如申請專利範圍第28項之高分子型微胞,其中該 不同的團聯共聚合高分子之疏水性高分子鏈段具有一相同 之重複單元。 30.如申請專利範圍第28項之高分子型微胞,其中該 不同的團聯共聚合高分子之親水性高分子鏈段具有一相同 的重複單元。 31·如申請專利範圍第28項之高分子型微胞,其中該 不同的團%共聚合高分子之親水性高分子鏈段具有不同的 重複單元。 32·如申請專利範圍第28項之高分子型微胞,其中該 多個不同15聯共聚合高分子於親水性高分子鏈段末端連接 有不同的末端功能性分子。 3 3 · 士申明專利範圍第3 2項之高分子型微胞,其中該 末端功能性分子中的一個為可與腫瘤細胞表面之受體 (receptor)結合之配體(ligand)。 34.如申明專利範圍第33項之高分子型微胞,其中該 配體為半乳醣殘基。 43 200817456 請專利範圍第32項之高分子型微胞,其中該 末端功能性分子中的 個為螢 光基團 螢 36·如申請專利範圍第35 光基團為螢光異硫氰酸鹽^ 項之高分子型微胞,其中該 37·如申請專利範圍 末端功能性分子中的一 第32項之高分子型微胞,其中該 個為為染劑。 38·如申請專利範圍第 染劑為近紅外線染劑。 37項之高分子型微胞 其中該 39· —種複合型微胞結構,包含一功能 性外殼,其得、纟一接&共聚合高分子與一 聚合高分子自我組裝而成。 性内核與一親水 個或多個團聯共 40.如申請專利範圍第39項之複合型微胞社 由-接枝共聚合高分子與兩個或多個雙團聯共聚合 自我組裝而成。 ,其係 南分子 4 1 ·如申請專利範圍第 I大小為約50_200 nm。 39項之複合型微胞結構,其粒 44 200817456 42. —種具有殼核結構的高分子型微胞之製備方法 含下列步驟: 匕 a) 將一接枝共聚合高分子與一團聯共聚合高分子溶解、 有機溶劑中,其中該接枝共聚合高分子包含一 於 土鍵及一鍵 結於該主鏈上的疏水性側鏈,該團聯共聚合高分子包人 疏水性高分子鏈段與一親水性高分子鏈段, ^ b) 將步驟a)之高分子溶液對抗水作透析處理 機溶劑置換成水。 將该有 4:如申請專利範圍第42項之製備方 含〇將從步驟b)獲得的水溶液進 :進步包 高分子型微胞。 7東乾、h而獲得乾燥之 :4·如申請專利範圍第42項之製 心中-種或多種不同的團聯 -中於/驟 溶劑。 K。呵刀子破溶解於該有機 45·如申請專利範圍第42 與該接枝丘聚“八工s員之i備方法’其中-藥物 牧饮,、本口问分子及團 有劑溶劑中。 來合-分子共同溶解於該 45200817456 X. Patent application scope 1. A polymer type microcell having a core-shell structure, wherein the structure comprises a graft copolymerized polymer and a conjugated copolymer polymer, and the graft copolymer polymer comprises a main a chain and a hydrophobic side chain bonded to the main chain, the copolymerized polymer comprising a hydrophobic polymer segment and a hydrophilic polymer segment, wherein the hydrophobicity of the graft copolymerized polymer The side chain is aggregated, and the hydrophobic segment of the copolymerized polymer is combined with the hydrophobic side chain of the graft copolymerized polymer, and the hydrophilic segment of the copolymerized polymer is from The protrusion is exposed to the outside to form a core structure. 2. The polymeric micelle according to claim 1, wherein the hydrophobic side chain of the graft copolymerized polymer and the hydrophobic segment of the copolymerized polymer comprise the same repeating unit. 3. The polymer type microcell of the first aspect of the patent application, wherein the group and the co-polymerized polymer double-co-polymerized polymer comprise the hydrophobic polymer segment and the hydrophilic polymer chain segment. 4. The polymeric micelle according to item 3 of the patent application, wherein the number of the hydrophobic polymer segments has an average molecular weight of 500-2500, and the number average molecular weight of the hydrophilic polymer segments is 2000_10000 . 5. The polymeric micelle according to item 3 of the patent application, wherein the hydrophobic segment of the copolymerized polymer is biodegradable and absorbable. 38 200817456 6·如申# Patent|& The fifth type of polymer type microcells, wherein the hydrophobic bond of the polymer of the group is poly-, polylactic acid, polylactic acid or poly-caprol S Purpose. 7. The macromolecular type microcell of claim 6, wherein the hydrophobic segment of the copolymerized polymer is polylactide. 8. The polymeric micelle according to item 3 of the patent application, wherein the hydrophilic segment of the graft copolymerized polymer is a polyacrylate, or an acid-base/ion strength sensitive polymer, wherein the acid/base/ The ionic strength sensitive polymer is polyacrylic acid, polymethacrylic acid, polybutylene diacid (p〇ly (butenedi〇ic aicd), polyhistidine, or poly(vinyl). Imidazole)) 〇9. The polymeric micelle according to item 3 of the patent application, wherein the hydrophilic segment of the copolymerized polymer is polyether, poly(ethylene glycol), hydrazine Oxy-poly(ethylene glycol) or poly(2-ethyl-2-oxazoline). 10. The polymer type microcell of the third aspect of the patent application, wherein the double-co-polymerized polymer is methoxy-poly(ethylene glycol)-b -poly(AZ-lactide)). 39. The polymer type cell of the first aspect of the invention, wherein the main chain of the graft copolymerized polymer comprises a hydrophilic first repeating unit, and the hydrophobic side chain is bonded to the first A repeating unit. 12. The polymeric micelle of claim U, wherein the first repeating monocyclic has a carboxyl structure and the hydrophobic side chain is biodegradable. 13. The polymeric micelle according to claim 12, wherein the main chain of the graft copolymerized polymer is polyacrylic acid, polymethacrylic acid, polybutyric acid, polyhistamine, or polyethylene. Imidazole. 14. The polymer type micelle according to claim 13, wherein the main chain of the graft copolymerized polymer is polyacrylic acid. 1 5 . The polymeric cell of claim 12, wherein the hydrophobic side chain of the molecule is polyester, polylactide, polylactic acid or polycaprolactone. I6· The polymer type micelle according to item 15 of the patent application, wherein the hydrophobic side chain of the a/, 3 polymer is polylactide. The polymer type microcapsule of claim 11, wherein the 40 200817456 branched polymer backbone further comprises a second repeating unit, and the first repeating unit is different from the first repeating unit, The second repeat unit collapses the core of the micelle in response to a change in temperature. 18. The polymer type micelle according to claim 17, wherein the second repeating unit of the main chain of the graft copolymerized polymer is formed by a monomer of N-isopropyl acrylamide. By. 1 9. The macromolecular type microcell of claim 8, wherein the main chain of the graft copolymerization host is a copolymerized polymer of N-isopropylacrylamide and methacrylic acid. 20. The polymeric cell of the invention of claim i, wherein the high molecular size cell size is 50-200 nm. 2 1. The polymer type microcell of claim 3, wherein the double-co-polymerized polymer has a terminal functional molecule attached to one end of the hydrophilic polymer segment, and the terminal function A sex molecule is a ligand that binds to a receptor (recept〇r) on the surface of a tumor cell. 22. The polymeric cell of claim 21, wherein the ligand is a galactose residue. 23. The polymeric micelle according to claim 3, wherein the double 41 200817456 copolymerized polymer has a terminal functional molecule attached to one end of the hydrophilic polymer segment, and the terminal The functional molecule is a fluorescent group 〇24. The polymer type microcell of claim 23, wherein the fluorophore group is fluorescein isothiocyanate. . 25. The polymer type microcapsule according to claim 3, wherein the double-co-polymerized polymer has a terminal functional molecule attached to the hydrophilic polymer segment, and the terminal The functional molecule is a dye (dye) 〇26. The polymer type micelle according to claim 25, wherein the dye is a near-infrared dye. 2. The polymeric micelle according to the scope of claim 2, wherein the structure comprises a plurality of different copolymerized macropolymers, and each of the copolymerized polymers comprises a hydrophobic polymer segment With a hydrophilic polymer segment. 28. The polymeric micelle according to claim 27, wherein each of the plurality of different copolymerized polymers is a double-co-polymerized polymer comprising a hydrophobic polymer segment Paragraph with a hydrophilic polymer chain 42 200817456. 29. The polymeric micelle of claim 28, wherein the hydrophobic polymer segment of the different co-polymerized polymer has an identical repeating unit. 30. The polymeric cell of claim 28, wherein the hydrophilic polymer segment of the different co-polymerized polymer has an identical repeating unit. 31. The polymeric micelle according to claim 28, wherein the hydrophilic polymer segment of the different copolymerized polymer has different repeating units. 32. The macromolecule cell of claim 28, wherein the plurality of different 15 co-polymerized polymers have different terminal functional molecules attached to the end of the hydrophilic polymer segment. 3 3 · The polymeric cell of the third aspect of the patent scope, wherein one of the terminal functional molecules is a ligand that binds to a receptor on the surface of a tumor cell. 34. The polymeric cell of claim 33, wherein the ligand is a galactose residue. 43 200817456 Please refer to the macromolecule of the 32nd item of the patent range, wherein one of the terminal functional molecules is a fluorescent group. 36. As claimed in the patent range, the 35th photo group is a fluorescent isothiocyanate ^ The polymer type micelle of the item, wherein the 37. is a polymer type cell of the 32nd item in the functional molecule of the end of the patent application, wherein the one is a dye. 38. If the patent application scope is the near-infrared dye. 37-type polymer type microcapsules The 39-type complex type microcell structure comprises a functional outer shell, which is obtained by self-assembly of a copolymerized polymer and a polymerized polymer. The sexual core is combined with a hydrophilic group or a plurality of groups. 40. The composite type microspheres of the compounding type 39 are self-assembled by two- or two double-coupling copolymers. . , its southern molecule 4 1 · If the scope of the patent application is I, the size is about 50_200 nm. 39 composite micro-cell structure, granule 44 200817456 42. The preparation method of the polymer type microcell having a shell-core structure comprises the following steps: 匕a) A graft copolymerized polymer is combined with a group The polymerized polymer is dissolved in an organic solvent, wherein the graft copolymerized polymer comprises a hydrophobic side chain bonded to the main chain and a hydrophobic side chain bonded to the main chain. a segment and a hydrophilic polymer segment, ^ b) replacing the polymer solution of step a) with water as a dialysis processor to replace water. 4: The preparation of the formula according to the scope of claim 42 contains an aqueous solution obtained from the step b): a progressive polymer type microcapsule. 7 Donggan, h and obtained dry: 4 · as in the scope of patent application No. 42 - one or more different groups - in / solvent. K. The knife is broken and dissolved in the organic 45. As in the scope of the patent application, the 42nd and the grafting of the "Eight Workers' Method" - the drug-drinking drink, the mouth-supplying molecule and the agent solvent. Hemi-molecules are dissolved together in the 45
TW096104345A 2006-10-02 2007-02-06 Multifunctional mixed micelle of graft and block copolymers and preparation thereof TWI361813B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84838206P 2006-10-02 2006-10-02
US84838106P 2006-10-02 2006-10-02

Publications (2)

Publication Number Publication Date
TW200817456A true TW200817456A (en) 2008-04-16
TWI361813B TWI361813B (en) 2012-04-11

Family

ID=44769330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096104345A TWI361813B (en) 2006-10-02 2007-02-06 Multifunctional mixed micelle of graft and block copolymers and preparation thereof

Country Status (1)

Country Link
TW (1) TWI361813B (en)

Also Published As

Publication number Publication date
TWI361813B (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US7229973B2 (en) pH-sensitive polymeric micelles for drug delivery
Liu et al. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs
Shrestha et al. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities
Johnson et al. Biocompatible poly (2‐hydroxyethyl methacrylate)‐b‐poly (L‐histidine) hybrid materials for pH‐sensitive intracellular anticancer drug delivery
Li et al. Stimulus‐sensitive polymeric nanoparticles and their applications as drug and gene carriers
Prabaharan et al. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery
US20080081075A1 (en) Multifunctional mixed micelle of graft and block copolymers and preparation thereof
Chan et al. Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs
Sprouse et al. Investigating the effects of block versus statistical glycopolycations containing primary and tertiary amines for plasmid DNA delivery
US9732142B2 (en) Intracellular antibody delivery
Zhao et al. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin
Huynh et al. Acid degradable cross-linked micelles for the delivery of cisplatin: a comparison with nondegradable cross-linker
Du et al. 19F-and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery
Vollrath et al. A toolbox of differently sized and labeled PMMA nanoparticles for cellular uptake investigations
Qiao et al. One-pot synthesis of pH-sensitive poly (RGD-co-β-amino ester) s for targeted intracellular drug delivery
Li et al. GSH/pH dual-responsive biodegradable camptothecin polymeric prodrugs combined with doxorubicin for synergistic anticancer efficiency
Li et al. Fluorescent, thermo-responsive biotin-P (NIPAAm-co-NDAPM)-b-PCL micelles for cell-tracking and drug delivery
Wu et al. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate
EP2035488A1 (en) Micelles for drug delivery
Kongkatigumjorn et al. Probing endosomal escape using phlexi nanoparticles
Pinyakit et al. Sequential post-polymerization modification of a pentafluorophenyl ester-containing homopolymer: a convenient route to effective pH-responsive nanocarriers for anticancer drugs
Sang et al. Preparation and controlled drug release ability of the poly [N-isopropylacryamide-co-allyl poly (ethylene glycol)]-b-poly (γ-benzyl-l-glutamate) polymeric micelles
Nguyen et al. Biocompatible polyion complex micelles synthesized from arborescent polymers
Kakkar et al. Amphiphilic PEO‐b‐PBLG Diblock and PBLG‐b‐PEO‐b‐PBLG Triblock Copolymer Based Nanoparticles: Doxorubicin Loading and In Vitro Evaluation
JP4824710B2 (en) Multifunctional mixed micelle of graft copolymer and block copolymer and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees