TW200817239A - Complementation control system and method of flight vehicle - Google Patents

Complementation control system and method of flight vehicle Download PDF

Info

Publication number
TW200817239A
TW200817239A TW95136738A TW95136738A TW200817239A TW 200817239 A TW200817239 A TW 200817239A TW 95136738 A TW95136738 A TW 95136738A TW 95136738 A TW95136738 A TW 95136738A TW 200817239 A TW200817239 A TW 200817239A
Authority
TW
Taiwan
Prior art keywords
flight
vehicle
control
flight vehicle
control unit
Prior art date
Application number
TW95136738A
Other languages
Chinese (zh)
Other versions
TWI302895B (en
Inventor
Chang-Hui Wu
Original Assignee
Wu Chang Huei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wu Chang Huei filed Critical Wu Chang Huei
Priority to TW95136738A priority Critical patent/TW200817239A/en
Publication of TW200817239A publication Critical patent/TW200817239A/en
Application granted granted Critical
Publication of TWI302895B publication Critical patent/TWI302895B/zh

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A complementation control system of a flight vehicle including: a navigation system, and a user interface control device. Wherein the navigation is configured in the flight vehicle, and contains a flight control unit and a sensor module further. The flight control unit is adapted to control the flying state of the flight vehicle, and the sensor module is used for outputting signals to the flight control unit to assist in controlling the flight vehicle. In addition, the user interface control device is adapted to output command signals to the flight control unit, and changes the flying mode of the flight vehicle, and then further corrects and controls the flying state of the flight vehicle. Whereby, the present invention can achieve the purpose of controlling the flight vehicle by flying automatically and collocate with revising command manually.

Description

200817239 九、發明說明: 【發明所屬之技術領域】 涉:;種飛行載具之控制系統及盆運作方 法,特別係指一種無人飛耔 叹具連作方 作方法。 ^丁载具之互補式控制系統及其運 【先前技術】 近幾年來由於科技技術的快速發展 具(U_ned Aerial㈣咖,uav)的 門:人^丁載 各個研究單位也紛紛投入大量的心力來從事工rAn ’ 行、降落及偵測等相關輔助儀器精密的飛 穩的飛行或降落任務。 有更流暢及平 而就以目前無人飛行载具的自 Ρ皆的無人飛行載具需要搭配 :糸、、4而言,較進 導引助航設備,更甚至是機载雷達測=或無線電波束 機載自動駕馱儀,自動遵循地 :儀寺设備,再配合 完成自動降落的任務。其中,若躭設備的引導,以 誤,駕駛員僅能轉換為純手動‘有任何偏差或失 的方式完成飛行降落任務。 杈式,以純人工目视 此外,另一習用的飛行載1 輔助降落系統,其係以—電“牛洛技術係慣稱為視覺 透過-電腦顯示榮幕,指配ί地面導引設備,再 駕駛員適當的操作方式斑飛航方=敬貝或热人飛機的地面 電腦亦無法自主執行降=矛的地面導引f備’機栽 力必須透過駕駛員知作飛機 200817239 方可降落。 因此,綜觀目前的飛行降落系統,雖然搭載先進的儀 态以及搭配良好的飛行技術方法,然而在最主要的駕駛員 與飛行載具上的自動駕駛儀仍沒有辦法互相輔助,以截長 補短來合力完成飛行或降落的任務。對此,使得用以控制 然人飛行為的飛行或降落之系統仍有需加以改良的地方。 【發明内容】 々此./广奴-%厂,丨文聊厌的技術問題在於,使無人 飛行載具不僅可藉由本身機载航電系統而自動飛行及降落 ,予f设跑運上’更可透過-人機界面輸入設備來輸入相關 =;機載航電系統中,在自動飛行或降落時修4 的上下偏差,因應風況等以及修正航高 、圭W丄,M 衣兄交化或航電糸統的誤差,π 達到錯由人機互補差異的崎及降 為了解決上述問題,實箱° 一 助修正飛行速度與航道航λ動飛彳τ時仍具㈣動輔 根據本發日摘提出之—方=、功能的人機互補導航模式, 控制系統,其包括:一航;系提供—種飛行載具之互補式 中,航電系統係配置於該飛行人機界面控制器。其 行控制單元(Fllght c〇ntr載:、’亚且進一步包含一飛 飛行控制單元係用以控制兮ηιΐ,FCU)及一感測模組, 模組則係用以輸出—檢測;^行載具的飛行狀態,而感剛 輔助該飛行㈣單元控料2、’、°錢仃控鮮元’以進行 制器係輸出—控制指令紙行載具。此外,人機界面控 行載具的飛行模式,並且在,仃控制單元,用以切換該飛 控制指令,以修正及控制該^同^式下輸出不同涵義的 %仃載具的飛行狀態。藉此, 200817239 達到透過互補式控制系統控制飛行載具之目的。 為了解決上述問題,根據本發明所提出之另一方案, 提供一種飛彳于載具之互補式控制方法’其步驟包括:首先, 啟動該飛行載具執行一飛行任務,緊接著透過一人機界面 控制器來進行選擇飛行載具的飛行模式,若選擇飛行載具 係以一人機互補導航模式進行飛行時,則先由一飛行控制 單元(Flight Control Unit)搭配輔助用之一感測模組以控 制飛行載具的飛行狀態,再藉由人機界面控制器的修正控 制以進一步改變飛行載具的飛行狀態。 以上之概述與接下來的詳細說明及附圖,皆是為了能 進一步說明本發明為達成預定目的所採取之方式、手段及 功效。而有關本發明的其他目的及優點,將在後續的說明 及圖式中加以闡述。 【實施方式】 請參考第一圖,係本發明飛行載具之互補式控制系統 之實施例方塊圖,如圖所示,本發明提供一種用於控制飛200817239 IX. INSTRUCTIONS: [Technical field to which the invention pertains]: The control system of the flying vehicle and the operation method of the basin, especially the method of continuous construction of the unmanned flying sling. ^Complementary control system of Ding vehicle and its operation [Prior technology] In recent years, due to the rapid development of technology and technology (U_ned Aerial (u), uav): People ^ Ding Zai research units have also invested a lot of effort Engage in rAn 'row, landing and detection and other related auxiliary instruments for precise flying or landing missions. There are more unobtrusive vehicles with smoother and flattering current unmanned vehicles. It needs to be matched with: 糸, 4, more navigation aids, and even airborne radar = or radio The beam airborne automatic driving instrument automatically follows the ground: the instrument of the temple, and then cooperates with the task of completing the automatic landing. Among them, if the guidance of the equipment is wrong, the driver can only convert to pure manual ‘there is any deviation or loss to complete the flight landing mission.杈 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 此外 另一 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外The driver's proper operation mode: the ground computer of Jingbei or the hot man plane can't perform the grounding guidance of the lowering spear. The machine load must be reported by the driver as the aircraft 200817239. Looking at the current flight landing system, although equipped with advanced manners and a good flight technology method, there is still no way to assist each other in the main driver and the flying vehicle autopilot. Cooperate to complete the flight or landing mission. In this regard, the system for controlling the flight or landing of the flight is still in need of improvement. [Summary of the Invention] 々 this. / Guangnu-% factory, 丨文聊The technical problem is that the unmanned aerial vehicle can not only fly and land automatically by its own airborne avionics system, but also enter the 'transparent-human-machine interface input device. Off=; In the airborne avionics system, the up-and-down deviation of the repair 4 during automatic flight or landing, in response to wind conditions, etc., as well as the correction of the altitude, the 丄W丄, the M brother brother or the avionics error, π reached In order to solve the above problems, the difference between the human and the machine complements the difference. In order to correct the flight speed and the navigation speed of the navigation channel, there are still (4) movements and supplements according to the date of this issue. The machine complementary navigation mode, the control system, comprising: a navigation; providing a complementary type of flight vehicle, the avionics system is configured on the flight man-machine interface controller. The line control unit (Fllght c〇ntr :, 'Asia and further includes a flight control unit for controlling 兮ηιΐ, FCU) and a sensing module, the module is used for output-detection; ^ the flight state of the vehicle, and the sense of assistance The flight (4) unit control material 2, ', ° money control fresh element' to carry out the system output - control command paper line carrier. In addition, the human-machine interface controls the flight mode of the vehicle, and, in, the control unit To switch the flight control command to correct and control In the same formula, the flight state of the %仃 vehicle of different meanings is output. Thereby, 200817239 achieves the purpose of controlling the flight vehicle through the complementary control system. In order to solve the above problem, according to another solution proposed by the present invention, Providing a complementary control method for flying a carrier' includes the steps of: first, starting the flight vehicle to perform a flight task, and then selecting a flight mode of the flight vehicle through a human-machine interface controller, if the flight is selected When the vehicle is flying in a man-machine complementary navigation mode, a flight control unit (Flight Control Unit) is used together with one of the auxiliary sensing modules to control the flight state of the flight vehicle, and then controlled by the human-machine interface. Correction control of the device to further change the flight state of the flight vehicle. The above summary and the following detailed description and the accompanying drawings are intended to further illustrate the manner, means and function of the present invention for achieving the intended purpose. Other objects and advantages of the present invention will be described in the following description and drawings. [Embodiment] Please refer to the first figure, which is a block diagram of an embodiment of a complementary control system for a flight carrier of the present invention. As shown in the figure, the present invention provides a method for controlling flying.

制器10及一航電系統20。其中,航電系統2〇進一步包含 —飛行控制單元21、一感測模組22、一飛行記錄單元23 及一無線通訊模組24,飛行控制單元21係用以控制飛行 載具100的飛行狀態,而感測模組22則用以輸出一檢測信 ,以輔助該飛行控制單元21控制The controller 10 and an avionics system 20. The avionics system 2 further includes a flight control unit 21, a sensing module 22, a flight recording unit 23, and a wireless communication module 24, and the flight control unit 21 is configured to control the flight status of the flight vehicle 100. The sensing module 22 is configured to output a detection signal to assist the flight control unit 21 to control

發飛行記錄單元23中所儲存的飛行資料, 號給該飛行控制單元21, 飛行載具100,再去避仔言 卜’而無線通訊模 [輸的功能,以收 舉例而言,本實 200817239 把例可私配地面通訊基地台(圖未示)而即時地下傳飛行資 =或接收地面通訊基地台所上傳的相關資減命令。此 夕,的飛行記錄單元23可例如以快閃記憶體或各型式 白、J 3己1¾卡為儲存媒體。 人=在上述的感測模組22中可包含多種模組或裝置以 用’其巾所包含的例如:空速計制以提供給飛行 二+早兀21有關飛行載具100飛行時的對空速度;氣壓高 超音波高度計’皆係用以提供給飛行控制單元21 2仃載具1〇〇飛行時的高度資料,而當飛行載具⑽ 貼地”於氣壓高度計的絕對精度不足,因此就可 ti ί ΐ,圍為數十公尺但精度高的超音波高度計來辅助 、奋里距離’二轴陀螺儀係用以量測飛行載具100的側 滾、俯仰及偏航角速度,以提供給飛行控制單元21;三軸 2速規㈣以量測飛行載具⑽之三轴線性的加速度而提 飛仃控制單71 21 ;全球衛星定位系統(Global 1⑽ing System,GPS)係提供飛行載具iQ〇的三度空 ,位址關係、對地速度或時間給飛行控制單元Μ,另外, 若GPS的取樣頻率過低而造成資訊不足的情形時,上述之 =2便可發揮_的作用;而三軸姿態儀係量測飛 二載1GG的側滾角、俯仰角及指向角而提供至飛行控制 早70 2。上述所舉例的量測或伯測裝置皆是用以提供飛行 載具1〇〇即時的飛航資訊給飛行控制單元21,以 制飛行載具100的飛行。 u工 另外’人機界面控制器10則係用以提供操作人員依 據目視mm況所做的操作,並且得以輸出控制指令到 灯控制早7G 2J ’以隨時切換飛行載具⑽的飛行模式,並 200817239 制飛!载具ι〇°的飛行狀態,其中該飛 王手動模式、速度控制模式、全自動導航 二航模式。其中,全手動模式係僅由人機 控制信號為空速、昇降界面控制器1請輸出的 夜據這㈣令以及;;^蝴旨令,由飛行控制單元 門與各舵面;全自動導航桓;、:且?所提供的資訊來驅動油 的檢測信號交由飛行控制1Γ _系完全由感測模組22所輸出 徑計晝來控制飛行载^丨^兀21依據預先設定的飛行路 了由感測模組22與飛行控制。。而_人機互補導航模式則係除 控制該飛行載具1〇〇之外,更單^ 21依據飛行路徑計畫來 較高的控制權來進_步即時修可由人機界面控制器10取得 速度以及平移航道航才4正控制飛行載具100的飛行 請同時參考第二圖,係 器之方塊示意®,如圖所示,斤應収人機界面控制 一第一操作界面U、一第_ 铖界面控制器10包含有·· 13及一無線傳輪單元14,其1界面12、一模式切換單元 作界面12皆係為雙轴四方向=操作界面11及第二操 作人員藉以進行修正及控、作界面(如搖桿),以讓操 模式切換單元13係提料彳具⑽的飛行狀態。而 具100白勺飛行模式,而無線傳;Λ員得以執行切換飛行載 線以和飛行載具1〇〇 :早及> 14則可例如為遙控天 傳輸。 几电系統20進行無線控制信號之 切換成全手動模式時, 在此,若將模式切換單元13 200817239 表示飛行載具100由操作人員全權控制,此時第一操作界 面11可例如一轴為升降舵的控制,另一軸為方向舵與鼻輪 的控制;而第二操作界面12則相對的可例如一轴為油門的 控制,另一軸為飛行副翼的控制,然而上述的操作界面之 定義可措由插作人貝的習慣而自行於程式中設定各自的定 義。 而若將模式切換單元13切換成人機互補導航模式 時,則表示飛行載具100不僅係依據感測模組22所提供的 檢測信號而進行飛行,更可藉由操作人員於地面的目視狀 況加以修正或控制飛行載具100的飛行空速、航道或航高 等狀態,而此模式下的操作界面之定義便與全手動模式不 同,例如:第一操作界面11的雙軸分別為飛行載具100 的飛行高度上下平移修正量以及飛行航道左右平移修正 量;而第二操作界面12的雙軸則可定義為空速快慢修正量 及左右平衡修正量等。藉此,可以使飛行載具100在飛行 時,可以依據本身所偵測的狀況進行飛行,若產生定位誤 差(如:GPS誤差)或環境狀況(如:風向或風速)有變化時, 可再搭配地面操作人員的目視以修正飛行載具1 〇 〇的飛 行。 請參考第三圖,係本發明飛行載具之互補式控制方法 之流程圖,如圖所示,首先,啟動飛行載具100並開始執 行一飛行任務(S301),其中飛行任務可例如包含有該飛行 載具100之滑行、起飛、爬升、巡航、戰鬥、下滑降落或 緩落等任務,接著提供人機界面控制器10給地面操作人員 以選擇飛行載具100的飛行模式(S303),其飛行模式可例 如有全手動模式、速度控制模式、人機互補導航模式及全 200817239 自動導航模式等。若選擇飛行載具100以人機互補導航模 式飛行時’則先由在飛行載具100搭載的航電系統20中之 飛行控制單元21,搭配感測模組22所偵測輸出的偵測信 號以控制飛行載具100的飛行狀態(S305),同時亦接受地 面操作人員依據目視狀況來操作人機界面控制器1〇所傳 遞的控制信號,以進行修正控制來進一步改變飛行載具 100的飛行狀態(S307),也就是說在人機互補導航模式^ 飛行時’可同時由感測模組22的偵測信號來自動控制以及 由人機界面控㈣1G的㈣錢來手歸正飛行載具 100,並且以人機界面控制器、10擁有較高的控制權以修正 自動控制時的誤差。 感測:于載具100以全手動模式飛行時,則關閉 二制m —作’ 111由人機界面控制器ίο取得全部的 t ^ ίο ^ 制^丁載」00的飛行(S3〇9)。反之 行載具100以全自動導 ±右才木作人貝迗擇舣The flight data stored in the flight recording unit 23 is sent to the flight control unit 21, the flight vehicle 100, and then the sneak peeks and the wireless communication module [transmission function, for example, the present 200817239 The example can be privately equipped with a ground communication base station (not shown) and immediately transmit the flight capital = or receive the relevant credit reduction order uploaded by the ground communication base station. In this case, the flight recording unit 23 can be, for example, a flash memory or a variety of white, J 3 hex cards for storage media. Person = a plurality of modules or devices may be included in the sensing module 22 described above for use in the case of the airbags included in the towel, for example: an airspeed meter to provide flight 2 + early flight 21 The airspeed; the air pressure hypersonic altimeter' is used to provide the flight control unit 21 2仃 the height data of the vehicle during flight, and when the flight vehicle (10) is attached to the ground, the absolute accuracy of the barometric altimeter is insufficient, so Can be used to measure the roll, pitch and yaw rate of the flying vehicle 100 to provide the ultrasonic level altimeter with a precision of tens of meters but high precision The flight control unit 21; the three-axis two-speed gauge (four) measures the acceleration of the three-axis linearity of the flight vehicle (10) and lifts the control unit 71 21; the global satellite positioning system (Global 1 (10)ing System, GPS) provides the flight vehicle The iQ〇's three-degree space, address relationship, ground speed or time is given to the flight control unit. In addition, if the GPS sampling frequency is too low and the information is insufficient, the above-mentioned =2 can play the role of _; And the three-axis attitude meter is measuring the fly. The roll angle, pitch angle and pointing angle of the 1GG are provided to the flight control early 70 2 . The above-mentioned measurement or test device is used to provide the flight vehicle 1 〇〇 instantaneous flight information to the flight control The unit 21 is used to make the flight of the flight vehicle 100. The other 'human machine interface controller 10' is used to provide an operation performed by the operator according to the visual condition, and the control command can be output to the light control early 7G 2J ' To switch the flight mode of the flight vehicle (10) at any time, and to fly the 200817239! The flight state of the vehicle is ι〇°, where the flying king manual mode, the speed control mode, and the fully automatic navigation second flight mode. Among them, the full manual mode is only The man-machine control signal is the airspeed, and the elevator interface controller 1 should output the night data (4) order and;; ^ butterfly decree, from the flight control unit door and each rudder surface; fully automatic navigation 桓;, and The information provided to drive the detection signal of the oil is transferred to the flight control 1 _ _ is completely controlled by the output module of the sensing module 22 to control the flight load 依据 兀 21 according to the preset flight path by the sensing module 22 With flight control. The _ human-machine complementary navigation mode is in addition to controlling the flight vehicle 1 ,, and more than 21 according to the flight path plan, the higher control right can be obtained by the human-machine interface controller 10 Speed and translation channel voyage 4 is controlling the flight of the flight vehicle 100. Please refer to the second figure at the same time. The block diagram of the system is as shown in the figure. As shown in the figure, the human interface controls a first operation interface U, a first The interface controller 10 includes a 13 and a wireless transmission unit 14, wherein the interface 12 and the mode switching unit are both the two-axis four-direction=operation interface 11 and the second operator corrects And controlling and making an interface (such as a rocker) to allow the operation mode switching unit 13 to pick up the flight state of the cookware (10). With a 100-day flight mode and wireless transmission; the employee can perform the switching of the flight line and the flight vehicle 1 : early and > 14 for example for remote control day transmission. When the electric system 20 switches the wireless control signal to the full manual mode, if the mode switching unit 13 200817239 indicates that the flight vehicle 100 is fully controlled by the operator, the first operation interface 11 can be, for example, an axis for the elevator. Control, the other axis is the control of the rudder and the nose wheel; and the second operation interface 12 can be, for example, one axis for the control of the throttle and the other axis for the control of the flight aileron, but the above definition of the operation interface can be inserted into People's habits and set their own definitions in the program. If the mode switching unit 13 is switched to the adult machine complementary navigation mode, it means that the flight vehicle 100 not only performs flight according to the detection signal provided by the sensing module 22, but also can be operated by the operator on the ground. The state of the flight airspeed, the navigation channel or the altitude of the flight vehicle 100 is corrected or controlled, and the definition of the operation interface in this mode is different from the full manual mode. For example, the two axes of the first operation interface 11 are respectively the flight vehicle 100. The flight height up and down translation correction amount and the flight channel left and right translation correction amount; and the second operation interface 12 dual axis can be defined as the airspeed speed correction amount and the left and right balance correction amount. Thereby, the flying vehicle 100 can be made to fly according to the condition detected by itself when flying, and if a positioning error (such as GPS error) or an environmental condition (such as wind direction or wind speed) is changed, Match the ground operator's visuals to correct the flight of the flight vehicle 1 。. Please refer to the third figure, which is a flowchart of a complementary control method of the flying carrier of the present invention. As shown in the figure, first, the flying carrier 100 is started and a flight task is started (S301), wherein the flight task may include, for example, The task of taxiing, taking off, climbing, cruising, fighting, sliding down or slowing down the flying vehicle 100, and then providing the human interface controller 10 to the ground operator to select the flight mode of the flying vehicle 100 (S303), The flight mode can be, for example, a full manual mode, a speed control mode, a human-machine complementary navigation mode, and a full 200817239 automatic navigation mode. If the flight vehicle 100 is selected to fly in the human-machine complementary navigation mode, the flight control unit 21 in the avionics system 20 mounted on the flight vehicle 100 first matches the detection signal detected by the sensing module 22. To control the flight state of the flight vehicle 100 (S305), and also accept the ground operator to operate the control signal transmitted by the human-machine interface controller 1 according to the visual condition to perform correction control to further change the flight of the flight vehicle 100. State (S307), that is to say, when the man-machine complementary navigation mode ^ flight time can be automatically controlled by the detection signal of the sensing module 22 and controlled by the human-machine interface (4) 1G (4) money to correct the flight vehicle 100, and with the human-machine interface controller, 10 has a higher control to correct the error in automatic control. Sensing: When the vehicle 100 is flying in the full manual mode, the second system m is turned off - "111 is obtained by the human-machine interface controller ίο, and all flights of the t ^ ίο ^ system ^ 00" (S3〇9) are obtained. . On the contrary, the vehicle 100 is fully automatic.

全依據航電系統20中輸侧單=載具⑽便完 的檢測信號而完成自動㈣飛行載接=_組22 綜上所述,太称 /、 〇之飛行(S311)。 境狀況下能以全自動導堇:使氣仃载具100在理想的環 疋及感測模組22的有效 路徑計晝的設 降落於預設跑到上, ; σ〜而執行飛行任務至自動 差或其他機載裂置模組^差理况導致GPS定位誤 化時,更可藉由切換至 =表風速風向有變 目視方式判斷飛行狀、、兄丄補抵式,由操作人員以 兄而⑽人機界面控制器Η)來力^ 12 200817239 正氣行载具I 〇 〇的空好 左古平穸,而如古4迢或航南等,使得航道可以 夕 航阿或下滑道可以上下平移,使#作人α 航電系統20之間得以相作人貝與 道。 财獅兀成飛仃至降落於預設跑 淮以上所述,僅為本發明的具體實施彳丨 及圖式而已,並非用u ΡΡ々 戶、她例之砰細說明 I非用以限制本發明,本發 以下述之申喑袁刹r 、# 月之所有Μ圍應 k心r明寻利靶圍為準,任何熟系 明之領域内,可軔# $ # 、“ μ、技#者在本發 只厂輕易思及之變化或修飾皆 案所界定之專利範圍。 w凰在以下本 【圖式簡單說明】 第一 1本發明飛行載具之互補式嶋統之實施例方塊 第二T發明所應用之人機界面控制器之方塊示意圖·· S圖係本發明飛行載具之互補式控制 【主要元件符號說明】 之机耘0 互補式控制系統i 人機界面控制器1 〇 第一操作界面1 1 第二操作界面12 模式切換單元13 激線傳輸單元14 飛行載具1〇〇 航電系統2 0 飛行控制單元21 200817239 感測模組2 2 飛行記錄單元2 3 無線通訊模組2 4The automatic (four) flight loading is completed according to the detection signal of the transmission side single=carrier (10) in the avionics system 20 = _ group 22 In summary, the flight of too much /, 〇 (S311). Under the condition of the environment, it can be fully automated: the airborne vehicle 100 is placed on the ideal loop and the effective path of the sensing module 22 is set to run on the preset; σ~ and the mission is performed to When the GPS difference is caused by the automatic difference or other airborne cracking module, the GPS position can be misdirected by changing to the table wind speed and the wind direction, and the flight mode is determined by the operator. Brother and (10) man-machine interface controller Η) to force ^ 12 200817239 Zhengqi line vehicle I 〇〇 empty good left Gu Ping 穸, and such as ancient 4 迢 or Hangnan, etc., so that the channel can be voyage or the glides can be up and down Translation, so that #人人α avionics system 20 can be made into a person and a road. The lion lion 兀 仃 仃 仃 降 降 降 降 降 降 降 降 预设 , , , , , , , , , , , , , , , , , , , , , , , , , , , 预设 预设 预设 预设Invented, this issue is based on the following claims: 刹 刹 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The scope of patents defined by the company is easily changed or modified in this case. w 凤凰 in the following [Simplified description of the drawings] The first embodiment of the complementary system of the flying carrier of the present invention is the second block. Block diagram of the human-machine interface controller applied by the invention. · S-picture is the complementary control of the flight vehicle of the present invention. [Main component symbol description] Machine 耘 0 Complementary control system i Human-machine interface controller 1 An operation interface 1 1 second operation interface 12 mode switching unit 13 activating transmission unit 14 a flying vehicle 1 aeronautical system 2 0 flight control unit 21 200817239 sensing module 2 2 flight recording unit 2 3 wireless communication module twenty four

Claims (1)

200817239 十、申請專利範圍: 1、 一種飛行載具之互補式控制系統,包括: 一航電系統,係配置於該飛行載具,並進一步包含: 一飛行控制單元(Flight Control Unit),係用以控 制該飛行載具的飛行狀態;及 一感測模組,係輸出一檢測信號給該飛行控制單元, 以輔助該飛行控制早元控制該飛行載具;及 一人機界面控制器,係輸出一控制指令給該飛行控制 單元,用以切換該飛行載具的飛行模式,並且修正 及控制該飛行載具的飛行狀態。 2、 如申請專利範圍第1項所述之飛行載具之互補式控制 系統,其中該感測模組係包含: 一空速計,係用以提供該飛行載具飛行時的對空速度 給該飛行控制單元; 一氣壓高度計,係用以提供該飛行載具飛行時的高度 給該飛行控制單元; 一超音波高度計,係用以輔助該氣壓高度計做高度的 量測; 一三軸陀螺儀,係量測該飛行載具的侧滾、俯仰及偏 航角速度,以提供給該飛行控制單元; 一三轴加速規’係量測該飛行載具之二轴線性的加速 度,以提供給該飛行控制單元; 一全球衛星定位系統(Global Positioning System),以提供該飛行載具的三度空間位址、對 地速度或時間給該飛行控制單元;及 15 200817239 -係量測該飛行載具的側滾角、俯仰角 曰向角,以提供給該飛行控制單元。 申明專利|&圍第丨項所之 中該航mm包=<互補式控制 一及係用以儲存該飛行控制單元所記錄 厶b 月& 以收 一訊模组,係提供-無線資料傳輸功 务该现行記錄器中的飛行資料。 項所述之飛行載具之互輸 一 /、甲σ哀人枝界面控制器包含·· 一第一操作界面; 一第二操作界面; 一單元’係用以執行該切換飛行载具之飛行 與該航電系統進行無線控制 其:二第:操作界面及該第二操作界面係為雙軸四 飛行狀態。 <仃1正及控制該飛行载具之 如申請專利範圍第 系統,其中該飛行模式包丁載具之互補式控制 一==控界面控制器所輪出之該 ,^ 刺°亥队仃载具之油門及舵面; 一速度控制模式,係由該人 速、昇降率及偏航率指令信號,二; 16 200817239 $依據.¾些指令信號與該檢測信號來控制油門及 痛匕面, 一 t自動導航模式,係完全㈣傭控制單被據-丁路仏5十晝及該感測模組所輸出之該 來控制該飛行載具;及 Fu -=互補導航模式’係除了㈣飛行控制單元依據 於來::广计畫及該感測模組所輸出之該檢測信 冗=制該飛行載具之外,更可由該 才工制裔取得較高的护^ 6、 行載呈的允、* Β ή制私末進一步修正控制該飛 〃、工速及航遏航高等飛行狀態。 一種飛行載具之互補式 物飛行載具執行一 =::其步驟包括: 機界面控制器以選擇該飛行載具的飛行模 若選擇該飛行载具以一人 制單元及—感 =11’::據,路徑計畫:行= 航高之飛行狀態。 ι仃載具的空速及航道 如申請專利範園第6項所述之飛行 方法’其中該飛行任務包含該載二互補式控制 飛、導巡航、戰鬥、τ滑降骨行、起 如申請專禾j慈ρη g r 或礙洛專任務。 ㈣视圍弟6項所述之 方法,更包含選擇一全 /、之互補式控制 力杈式,係關閉該感測模組 8、 200817239 並由该人機界面控制器取得該γ μ 协Μ现仃載具的控制權以 &制该飛行載具之飛行狀態。 =咖範圍第6項所述之飛行載具之互補式控制 含選擇一速度控制模式,係由該飛行控制 ίο ::::飛行載具的控制權,並依據該人機界面控 所傳送的㈣、昇降率及偏 制_于载具之飛行狀態。 目動才工 SIS: 6項所述之飛行載具之互補式控制 制單元取得自動導航模式,係由該飛行控 tf * r, a ^ 丁載/、的控制權,並依據該飛行路秤 '自動控制該飛行載具之飛行狀態。 " 18200817239 X. Patent application scope: 1. A complementary control system for a flight vehicle, comprising: an avionics system, configured on the flight vehicle, and further comprising: a flight control unit (Flight Control Unit) To control the flight state of the flight vehicle; and a sensing module, which outputs a detection signal to the flight control unit to assist the flight control to control the flight vehicle early; and a human-machine interface controller is output A control command is given to the flight control unit for switching the flight mode of the flight vehicle and correcting and controlling the flight state of the flight vehicle. 2. The complementary control system for a flight vehicle according to claim 1, wherein the sensing module comprises: an airspeed meter for providing an airspeed of the flight vehicle during flight a flight control unit; a pneumatic altimeter for providing the flight control unit with a height during flight; an ultrasonic altimeter for assisting the barometric altimeter in height measurement; a three-axis gyroscope, Measuring the roll, pitch and yaw rate of the flight vehicle to provide to the flight control unit; a three-axis acceleration gauge measuring the two-axis acceleration of the flight vehicle to provide the flight a control unit; a Global Positioning System to provide a three-dimensional space address, ground speed or time of the flight vehicle to the flight control unit; and 15 200817239 - measuring the flight vehicle The roll angle and the pitch angle are angled to provide to the flight control unit. The declaration of the patent|& 围 丨 丨 该 = = = = = & 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补 互补Data transmission function The flight data in the current recorder. The inter-transmission of the flight vehicle described in the item, the A σ 人 枝 枝 interface controller includes: a first operation interface; a second operation interface; a unit 'is used to perform the flight of the switching flight vehicle The aircraft is wirelessly controlled with the avionic system: the second: the operation interface and the second operation interface are two-axis four-fly state. <仃1 is controlling the flight vehicle as in the system of patent application scope, wherein the complementary control of the flight mode package carrier === control interface controller is rotated, ^ 刺°海队仃The throttle and the rudder surface; a speed control mode is the command signal of the speed, the hoist rate and the yaw rate of the person, 2; 16 200817239 $ according to the command signal and the detection signal to control the throttle and the pain surface, A t-automatic navigation mode, the full (four) commission control order is controlled by the Ding Lu仏 5 昼 and the output of the sensing module to control the flight vehicle; and the Fu-=complementary navigation mode is in addition to (four) flight The control unit is based on: the wide plan and the detection signal outputted by the sensing module: in addition to the flying vehicle, the higher level of protection can be obtained by the skilled worker. The permission, * Β 私 私 私 私 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步A complementary vehicle flight vehicle of a flight vehicle performs a =:: the steps thereof include: the machine interface controller selects the flight mode of the flight vehicle to select the flight vehicle in a one-person unit and - sense = 11': : According to the route plan: line = flight status of the flight height. The airspeed and navigation channel of the ι仃 vehicle are as described in the flight method described in the sixth paragraph of the patent application park. The flight mission includes the second complementary control flight, guided cruise, combat, τ gliding bone line, starting from the application Wo j Ci ρη gr or the singular task. (4) Depending on the method described in the six items of the siblings, the method further comprises selecting a full/and complementary control type, and closing the sensing module 8, 200817239 and obtaining the γ μ-coupling by the human-machine interface controller The control of the vehicle is now in accordance with the flight status of the flight vehicle. = The complementary control of the flight vehicle described in item 6 of the coffee range includes the selection of a speed control mode, which is controlled by the flight control ίο :::: flight vehicle, and transmitted according to the man-machine interface control (4), the rate of lifting and partial _ in the flight state of the vehicle. Sighting SIS: The complementary control unit of the flight vehicle described in item 6 obtains the automatic navigation mode, which is controlled by the flight control tf * r, a ^ ding /, and according to the flight road scale 'Automatically control the flight status of the flight vehicle. " 18
TW95136738A 2006-10-03 2006-10-03 Complementation control system and method of flight vehicle TW200817239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136738A TW200817239A (en) 2006-10-03 2006-10-03 Complementation control system and method of flight vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136738A TW200817239A (en) 2006-10-03 2006-10-03 Complementation control system and method of flight vehicle

Publications (2)

Publication Number Publication Date
TW200817239A true TW200817239A (en) 2008-04-16
TWI302895B TWI302895B (en) 2008-11-11

Family

ID=44769307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136738A TW200817239A (en) 2006-10-03 2006-10-03 Complementation control system and method of flight vehicle

Country Status (1)

Country Link
TW (1) TW200817239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254716A (en) * 2014-04-25 2019-09-20 索尼公司 Information processing unit, information processing method and imaging system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085528B (en) * 2014-07-10 2016-08-24 中国商用飞机有限责任公司 Aircraft nose wheel turning control system and aircraft nose wheel Servo Control method
TWI642596B (en) * 2016-01-18 2018-12-01 緯創資通股份有限公司 Balance-control method of a multirotor unmanned aerial vehicle threw at any angle to take off, computer program product and multirotor unmanned aerial vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254716A (en) * 2014-04-25 2019-09-20 索尼公司 Information processing unit, information processing method and imaging system
CN110254716B (en) * 2014-04-25 2023-09-01 索尼公司 Information processing apparatus, information processing method, and imaging system

Also Published As

Publication number Publication date
TWI302895B (en) 2008-11-11

Similar Documents

Publication Publication Date Title
US20200301422A1 (en) Aircrew Automation System and Method
CN109131908B (en) System and method for performing emergency landing and landing
JP4328660B2 (en) Aircraft automatic take-off device, automatic landing device, automatic take-off and landing device, aircraft automatic take-off method, automatic landing method, and automatic take-off and landing method
KR101507752B1 (en) Method for automatic landing of uav
US8032267B1 (en) Aviation navigational and flight management systems and methods with emergency landing guidance and radar vectoring
CN106662870B (en) Method and device for generating a resulting setpoint trajectory for an aircraft, and associated aircraft
CN111046097B (en) Adaptable vehicle monitoring system
CN104812671A (en) Takeoff assistance
CN103389732A (en) Piloting control method of aircraft
US10589845B2 (en) Autopilot system, and related components and methods
CN102582826A (en) Driving method and system of four-rotor-wing unmanned flight vehicle
KR20110022211A (en) Intelligent unmaned and small-sized flying body robot steering system
CN104503466A (en) Micro-miniature unmanned plane navigation unit
Jordan et al. NASA langley's AirSTAR testbed: A subscale flight test capability for flight dynamics and control system experiments
US20070273544A1 (en) Method and a device for processing and displaying aircraft piloting information
CN106125761A (en) UAV Navigation System and air navigation aid
JP2011051470A (en) Simple manual flight operation system of unmanned flying body
TW200817239A (en) Complementation control system and method of flight vehicle
US11104421B2 (en) Autopilot system, and related components and methods
US7885733B1 (en) Aviation navigational and flight management systems and methods utilizing radar vectoring
CN202120126U (en) Unmanned aerial vehicle and remote controller
US10676210B2 (en) Lock-detecting system
Hynes et al. Flight evaluation of pursuit displays for precision approach of powered-lift aircraft
KR100472968B1 (en) Autonomous Take-Off and Landing System for Large-Class Unmanned Airship
Stevenson et al. Assessment of alternative manual control methods for small unmanned aerial vehicles