TW200816666A - Frequency selective and frequency diversity transmissions in a wireless communication system - Google Patents

Frequency selective and frequency diversity transmissions in a wireless communication system Download PDF

Info

Publication number
TW200816666A
TW200816666A TW96125926A TW96125926A TW200816666A TW 200816666 A TW200816666 A TW 200816666A TW 96125926 A TW96125926 A TW 96125926A TW 96125926 A TW96125926 A TW 96125926A TW 200816666 A TW200816666 A TW 200816666A
Authority
TW
Taiwan
Prior art keywords
sub
transmission
frequency
band
bands
Prior art date
Application number
TW96125926A
Other languages
Chinese (zh)
Other versions
TWI353125B (en
Inventor
Durga Prasad Malladi
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200816666A publication Critical patent/TW200816666A/en
Application granted granted Critical
Publication of TWI353125B publication Critical patent/TWI353125B/en

Links

Abstract

Techniques for efficiently supporting frequency selective scheduling (FSS) and frequency diversity scheduling (FDS) are described. In one design, a first transmission for an FSS user may be mapped to a subband selected for this user from among at least one subband in a first frequency region of the system bandwidth. The first transmission may be mapped to a fixed portion or different portions of the selected subband in different time intervals. A second transmission for an FDS user may be mapped across multiple subbands in a second frequency region of the system bandwidth. The second transmission may be mapped to different subbands or different resource blocks in the second frequency region in different time intervals. Each time interval may correspond to a symbol period, a slot, a subframe, etc. The frequency hopping may be performed based on a fixed hopping pattern or a pseudo-random hopping pattern.

Description

200816666 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通訊,且更具體言之係關於用 於無線通訊系統之傳輸技術。 【先前技術】 (:200816666 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to transmission techniques for wireless communication systems. [Prior Art] (:

廣泛布署無線通訊系統以提供各種通訊服務,諸如語 音、視訊、封包資料、訊息傳遞、廣播等等。此等無線系 統可為能夠藉由共用可用系統資源而支援多個使用者之多 向近接系統。該等多向近接系統之實例包括分碼多向近接 (CDMA)系統、分時多向近接(TDMA)系統、分頻多向近接 (FDMA)系統、正交FDMA(〇FDMA)系統及單載波 fdma(sc-fdma)系統。 在無線通訊系統中,一基地台可服務於許多使用者。此 等使用者可觀測到不同通道條件(例如,π同衰落、多路 υ干擾效應)’且可達成不同的接收之信號雜訊干擾比 (NR) Λ外’給疋使用者可觀測到頻率選擇性衰落且可 達成跨越系統頻寬之不同SINR。需要支援針對具有不同通 I條件之不同使用者之傳輸以使得對於所有使用者均可達 成良好效能。 【發明内容】 本文描述用於有效支援頻 隹排γ , 更頭羊、擇性排程(FSS)及頻率分 集排私(FDS)之技術。對 ^ ^ ^ 、 s,可在自用於FSS之至少一 子頻贡中選擇以用於_使Wireless communication systems are widely deployed to provide various communication services such as voice, video, packet data, messaging, and broadcasting. Such wireless systems may be multi-directional proximity systems capable of supporting multiple users by sharing available system resources. Examples of such multi-directional proximity systems include a code division multi-directional proximity (CDMA) system, a time division multi-directional proximity (TDMA) system, a frequency division multi-directional proximity (FDMA) system, a quadrature FDMA (〇FDMA) system, and a single carrier. Fdma (sc-fdma) system. In a wireless communication system, a base station can serve many users. These users can observe different channel conditions (eg, π-fading, multi-channel interference effects) and can achieve different received signal-to-noise interference ratios (NR). Selective fading and different SINRs across system bandwidth can be achieved. There is a need to support transmissions for different users with different I conditions so that good performance is achieved for all users. SUMMARY OF THE INVENTION This document describes techniques for effectively supporting frequency γ γ, more head hopping, selective scheduling (FSS), and frequency diversity smuggling (FDS). For ^ ^ ^ , s, it can be selected from at least one of the sub-fractions used for FSS for _

It^ ^ 者之子頻帶上發送針對該使用 者之傳輸。對於FDS,可柊私m 5越用於FDS之多個子頻帶而發 122906.doc 200816666 送針用者之傳輸以達成通道及干擾分集。 於此使用者的子#帶. 子頻π中選擇以用 备-”境=一子頻帶可包括多個資源塊,且 -傳輸映射至所選子頻帶之固定' 中將弟 塊)。亦可藉由在所選子頻册 ' 固疋貧源 曰街杜所&子頻帶内之跳頻而在不 中將第一傳輸映射至所 曰曰 資源塊)。 “子頻…同部分(例如,不同The transmission to the user is sent on the sub-band of It^^. For FDS, the more the m 5 is used for multiple sub-bands of the FDS, the transmission is made to the channel and the interference diversity is achieved. The sub-band of the user is selected in the sub-frequency π to use - "the sub-band can include multiple resource blocks, and - the transmission is mapped to the fixed sub-band of the selected sub-block". The first transmission can be mapped to the resource block by not hopping in the sub-band of the selected sub-frequencybook ''''''''''''''' For example, different

使= + ^ 而映射針對—FDS 1、輸n第二頻率11域可對應於系統頻 見之兩個非重疊部分。第二頻率區域中之多個子頻帶可為 :接或非鄰接的。可藉由子頻帶級跳頻而在不同時間間隔 帽k傳輸映射至第二頻率區域中之不同子頻帶 =由貝源塊級跳頻而在不同時間間隔中將第二傳輸映射至 第二頻率區域中之不同資源塊。 一般而言’可在不同時間間隔中將傳輸映射至—或多個 子頻帶中之副载波的不同集合。一時間間隔可對庫於 號週期、—時槽、—子訊框等等。可基於固定跳躍圖案:戈 偽隨機跳躍圖案而執行跳頻。 下文更詳細地描述本揭示案之各種態樣及特徵。 【實施方式】 請示具有多個節點B 110及多個UE 12〇之無線通訊系 統100。節點B —般為與UE通訊之固定台且亦可稱作演進 122906.doc 200816666 節點B(e節點B)、基地台、存取點等等。每一節點B 110提 供對特定地理區域之通訊覆蓋且支援位於覆蓋區域内之 UE之通訊。術語’’小區’’視使用該術語之上下文而可指節點 B及/或其覆蓋區域。系統控制器130可耦接至節點B且為此 等節點B提供協調及控制。系統控制器130可為單一網路實 體或網路實體之集合,例如,行動性管理實體(MME)/系 統架構演進(SAE)閘道器、無線電網路控制器(RNC)等等。 UE 120可分散於整個系統中,且每一UE可為固定或行 動的。亦可將UE稱作行動台、行動設備、終端機、存取 終端機、用戶單元、台等等。UE可為蜂巢式電話、個人 數位助理(PDA)、無線通訊器件、掌上型器件、無線數據 機、膝上型電腦等等。在以下描述中可交換地使用術語 ”1^’’與”使用者’’。 節點B可在任何給定時刻向下行鏈路上之一或多個UE發 射資料及/或自上行鏈路上之一或多個UE接收資料。下行 鏈路(或前向鏈路)係指自節點B至UE之通訊鏈路,且上行 鏈路(或反向鏈路)係指自UE至節點B之通訊鏈路。 本文描述之傳輸技術可用於下行鏈路傳輸以及上行鏈路 傳輸。該等技術亦可用於諸如CDMA、TDMA、FDMA、 OFDMA及SC-FDMA系統之各種無線通訊系統。經常可交 換地使用術語n系統”與’’網路’’。CDMA系統可實施諸如通 用陸地無線電存取(Universal Terrestrial Radio Access, UTRA)、cdma2000等等之無線電技術。UTRA包括寬頻 CDMA(W-CDMA)及低碼片速率(LCR)。cdma2000 包含 Μ ι 22906.doc 200816666 2000、IS-95及IS-856標準。TDMA系統可實施諸如全球行 動通訊系統(GSM)之無線電技術。OFDMA系統可實施諸如 演進 UTRA(E-UTRA)、IEEE 802.11、IEEE 802.16、IEEE 802.20、Flash-OFDM®等等之無線電技術。此等各種無線 電技術及標準在此項技術中已知。UTRA、E-UTRA及GSM 為全球行動電信系統(Universal Mobile Telecommunication System,UMTS)之部分。長期演進(Long Term Evolution, LTE)為UMTS的即將發布之版本,其使用E_UTRA。 UTRA、E-UTRA、GSM、UMTS及LTE描述於來自名為,’第 三代合作夥伴計劃’’(3GPP)之組織的文件中。cdma2000描 述於來自名為’’第三代合作夥伴計劃2"(3GPP2)之組織的文 件中。為了清楚起見,在下文中關於LTE而描述傳輸技術 之某些態樣,且在下文之大量描述中使用3GPP術語。 LTE在下行鏈路上利用正交分頻多工(OFDM)且在上行鏈 路上利用單載波分頻多工(SC-FDM)。OFDM及SC-FDM將 系統頻寬分割為多個(N個)正交副載波,一般亦將該等正 交副載波稱作載頻調、次載波(bin)等等。可藉由資料來調 變每一副載波。一般而言,對於OFDM,在頻域中發送調 變符號且對於SC-FDM,在時域中發送調變符號。鄰近副 載波之間的間距可為固定的,且副載波之總數目(N)可視 系統頻寬而定。在一設計中,對於5 MHz之系統頻寬, N = 5 12,對於10 MHz之系統頻寬,N= 1024,且對於20 MHz之系統頻寬,N=2048。一般而言,N可為任何整數 值0 122906.doc 200816666 、圖2展示可用於傳輸之頻率結構綱。可將系統頻寬分割 為SB個子頻f,可將每-子頻帶分割為κ固資源塊,且 每一資源塊可包括NSC個副載波。一般而纟,Nsb、Nrb及 Nsc可為任何整數值。纟一設計中,每一資源塊包括 ‘=12個副載波。子頻帶之數目(Nsb)及每—子頻帶中的 資源塊之數目(NRB)可視系統頻寬而$。在—設計中,將 系統頻寬分割為NSB=6個子頻帶,且每—子頻帶包括I =8個資源塊。對於Nsb、Nrb及—亦可使用其他值以使得 nsb.Nrb.NscSN。 圖:展示可用於傳輸之時間結構3〇〇。可將傳輸時刻表分 』為右干單疋的訊框。每一訊框可跨越預定持續時間,例 如’ 1〇毫秒(ms)。可將訊框分割為队⑹個時槽,且每一時 &可包括Nsym個符號週期’丨中〜“及%可為任何整數 士在°又°十中,每一訊框包括Ns丨。t=20個時槽,且每一 日守槽可包括Nsym=6或7個符號週期。一子訊框可包括兩個 時槽且亦可稱作傳輸時間間隔(TTI)。一般而言,每一訊 框可包括任何數目之子訊框及時槽,且每一時槽可包括任 何數目之符號週期。 圖4展不可用於傳輸之資源結構400。Τ將可用於傳輸之 時間頻率資源分割為時間頻率資源塊。時間頻率資源塊可 為可配置給使用者之資源的最小單位。一般而言,一時門 源塊可覆蓋任一頻率尺寸且跨越任-持續時間。在 °又°十中’—時間頻率資源塊在頻率上覆蓋-個資源塊且 在時間上跨越-個時槽。在此設計中,若資源塊包括12個. 122906.doc 200816666 連續副載波,則時間頻率— 時包括72個資源要素且 八有,、個付號週期 個資源要素。資源='槽具有七個符號週期時包㈣ 貝原要素為一個符號週期中之一 可用以發送-個調變符號。在—科 爾栽波且 計中,一時間頻 ;里以下描述中之設 ]頻率-貝源塊在頻率上覆蓋一 古五”眘满士n 4b〜 lu貝雄塊,且術 口口貝源塊可才日代副載波之—集合或f 在經排程以進行傳輸時,可向 ’、&塊。 塊。 用者私派一或多個資源 使用者可分散於整個I統中 對於-些使用*,到不同it道條件。 干挎八隼g, #’、輸跨越頻率而發送以達成通道及 二Γ 得以改良。對於其他使用者,若复傳 輸在糸統㈣之具妹高_之_ = 可得以改良。 私 < 則效月b 在一態樣中,系統可支援表 ^ '11 M ^ 4t 矛中所不之排程機制/類型。 頻率4擇性排程(FSS)亦可稱作子頻 u 程(FDS)亦可稱作跳頻排程。 $ Ή &集排 表1Let = + ^ be mapped to -FDS 1, and the second frequency 11 field of n can correspond to the two non-overlapping parts of the system frequency. The plurality of sub-bands in the second frequency region may be: contiguous or non-contiguous. Depending on the sub-band level hopping, the mask k can be mapped to different sub-bands in the second frequency region at different time intervals = hopping by the source block level and mapping the second transmission to the second frequency region in different time intervals Different resource blocks in the middle. In general, transmissions may be mapped to different sets of subcarriers in multiple subbands in different time intervals. A time interval can be used for the library period, time slot, sub-frame, and the like. Frequency hopping can be performed based on a fixed hopping pattern: a pseudo-random hopping pattern. Various aspects and features of the present disclosure are described in more detail below. [Embodiment] A wireless communication system 100 having a plurality of Node Bs 110 and a plurality of UEs 12 is shown. Node B is typically a fixed station that communicates with the UE and may also be referred to as Evolution 122906.doc 200816666 Node B (eNodeB), base station, access point, and the like. Each Node B 110 provides communication coverage for a particular geographic area and supports communication for UEs located within the coverage area. The term ''cell'' may refer to node B and/or its coverage area, depending on the context in which the term is used. System controller 130 can be coupled to Node B and provide coordination and control for Node B for this purpose. System controller 130 can be a single network entity or a collection of network entities, such as a Mobility Management Entity (MME) / System Architecture Evolution (SAE) gateway, a Radio Network Controller (RNC), and the like. UEs 120 may be dispersed throughout the system, and each UE may be fixed or mobile. The UE may also be referred to as a mobile station, a mobile device, a terminal, an access terminal, a subscriber unit, a station, and the like. The UE can be a cellular telephone, a personal digital assistant (PDA), a wireless communication device, a palm device, a wireless data modem, a laptop computer, and the like. The terms "1^'" and "user" are used interchangeably in the following description. The Node B may transmit data to one or more UEs on the downlink and/or receive data from one or more UEs on the uplink at any given time. The downlink (or forward link) refers to the communication link from the Node B to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the Node B. The transmission techniques described herein are applicable to both downlink transmissions and uplink transmissions. These techniques are also applicable to various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA, and SC-FDMA systems. The terms n-system and 'network' are often used interchangeably. CDMA systems may implement radio technologies such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes wideband CDMA (W- CDMA) and low chip rate (LCR). cdma2000 includes ι ι 22906.doc 200816666 2000, IS-95 and IS-856 standards. TDMA systems can implement radio technologies such as Global System for Mobile Communications (GSM). Radio technologies such as Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. These various radio technologies and standards are known in the art. UTRA, E-UTRA and GSM It is part of the Universal Mobile Telecommunication System (UMTS). Long Term Evolution (LTE) is an upcoming release of UMTS that uses E_UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in From a document named '3rd Generation Partnership Project' (3GPP), cdma2000 is described in a program named ''3rd Generation Partnership Program 2&quo' In the document of the organization of (3GPP2). For the sake of clarity, certain aspects of the transmission technique are described below with respect to LTE, and 3GPP terminology is used in the following extensive description. LTE utilizes orthogonality on the downlink. Frequency Multiplexing (OFDM) and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (N) orthogonal subcarriers, which is also generally Equal orthogonal subcarriers are called carrier tones, secondary carriers, etc. Each subcarrier can be modulated by data. In general, for OFDM, the modulation symbols are transmitted in the frequency domain and for SC- FDM, transmitting modulation symbols in the time domain. The spacing between adjacent subcarriers can be fixed, and the total number of subcarriers (N) can be determined by the system bandwidth. In one design, for a system frequency of 5 MHz Width, N = 5 12, for a system bandwidth of 10 MHz, N = 1024, and for a system bandwidth of 20 MHz, N = 2048. In general, N can be any integer value 0 122906.doc 200816666 , Figure 2 Demonstrate the frequency structure that can be used for transmission. The system bandwidth can be divided into SB sub-frequencies f, and each sub-frequency can be Κ divided solid resource blocks, and each resource block may include NSC subcarriers. In general, Nsb, Nrb, and Nsc can be any integer value. In the first design, each resource block includes ‘=12 subcarriers. The number of subbands (Nsb) and the number of resource blocks per per subband (NRB) may be $ depending on the system bandwidth. In the design, the system bandwidth is divided into NSB = 6 sub-bands, and each sub-band includes I = 8 resource blocks. For Nsb, Nrb, and - other values can also be used to make nsb.Nrb.NscSN. Figure: Shows the time structure available for transmission. The transmission schedule can be divided into frames of the right-hand side. Each frame can span a predetermined duration, such as ' 1 milliseconds (ms). The frame can be divided into groups (6) time slots, and each time & can include Nsym symbol periods '丨中~' and % can be any integer in °°°°°, each frame includes Ns丨. t = 20 time slots, and each day slot may include Nsym = 6 or 7 symbol periods. A subframe may include two time slots and may also be referred to as a transmission time interval (TTI). Each frame may include any number of sub-frames and time slots, and each time slot may include any number of symbol periods. Figure 4 shows a resource structure 400 that is not available for transmission. The time-frequency resources available for transmission are split into time. Frequency resource block. The time frequency resource block can be the smallest unit of resources that can be configured to the user. In general, the temporary source block can cover any frequency size and span any-duration. The time-frequency resource block covers - one resource block in frequency and spans - time slot in time. In this design, if the resource block includes 12. 122906.doc 200816666 continuous subcarrier, the time frequency - time includes 72 Resource elements and eight, and one payment period Resource element. Resource = 'The slot has seven symbol periods. (4) The original element is one of the symbol periods that can be used to transmit - one modulation symbol. In the - Cole carrier, one time frequency; In the description, the frequency-bean source block covers an ancient five in the frequency of the "five man" n 4b ~ lu Beixiong block, and the mouth of the mouth source block can be the generation of sub-carriers or f in the arrangement When transferring to the program, you can go to the ', & block. Piece. The user privately distributes one or more resources. Users can be dispersed throughout the system. For some use*, to different iterations. Cognac gossip, #', transmission across the frequency to send to achieve the channel and the second is improved. For other users, if the retransmission is in the system (4), the __ can be improved. Private < Efficient Month b In one aspect, the system can support the schedule mechanism/type in the table ' '11 M ^ 4t Spears. Frequency 4 Selective Scheduling (FSS) can also be called sub-frequency scheduling (FDS) or frequency hopping scheduling. $ Ή & set row Table 1

在一設計中,藉由跳頻而達成FDS。對於跳頻,可在不 同跳躍週期巾於系㈣寬之不同部分巾發送針對—使用者 之傳輸。跳躍週期為花費於副 戰皮之、巧疋集合上的時間 Ϊ,且可對應於一符號週期、一一 守價一子訊框、一訊框 122906.doc -10· 200816666 等等。可基於使用者可能已知之跳躍圖案而自可用於咖 之所有副載波中選擇副載波之不同集合用於使用者。在一 設計中,ϋ由向使用者指派所選子頻帶内之副載波而達成 FSS所選子頻帶可為使用者在可用於FSS之所有子頻帶 中達成最咼SINR之子頻帶。跳頻亦可用於FSS,但可能限 於所選子頻帶。 在用以支援FSS以及FDS之設計中,可將系統頻寬分 割為多個⑺⑽個)子頻帶,且每一子頻帶可用於Fss或 FDS。可在廣播通道(BCH)上發送或以其他方式傳送指示 那些子頻帶用於FSS且哪些子頻帶用於FDS之資訊。舉例 而言,子頻帶位元遮罩對於Nsb個子頻帶中之每一者可包 括一個位元。可將用於每一子頻帶之位元設定為〇以指示 該子頻帶係用於FDS或將其設定為丨以指示該子頻帶係用 於FSS 〇 在一設計中’可向FSS使用者指派用於FSS之子頻帶中 之資源塊。在此設計中,FSS使用者可能限於一子頻帶, 可自用於FSS之所有子頻帶中選擇該子頻帶。指派給fSS 使用者之資源塊可佔據副載波之固定集合(不存在跳頻)或 副載波之不同集合(存在跳頻)。在一設計中,可向FDS使 用者指派用於FDS之子頻帶中之任何者中的資源塊。在此 設計中,FDS使用者可跨越用於FDS之所有子頻帶而跳 躍。指派給FDS使用者之資源塊可佔據用於fDS之子頻帶 中的副載波之不同集合。 本文描述之傳輸技術可有效地支援FSS以及FDS使用 122906.doc 200816666 者,且可允許兩種類型之使用者均達成良好效能。一些使 用者可自藉由FDS達成之通道及干擾分集而獲益。其他使 用者可自在具有良好S服之特定子頻帶上之傳輸而獲益。 該等傳輸技術允許FSS以及FDS使用者均易於在給定時間 ,期(例如’-時槽、—子訊框等等)内進行多路傳輸。可 藉由各種夕工結構來支援該等傳輸技術,以下描述該等多 工結構中之'一些。 、 今圖5展示子頻帶結構500之設計。在此設計中,將系統頻 寬分割為NSB = 6個實體子頻帶,向其指派指數〇至5。每— 實,子頻帶覆蓋系統頻寬之特定部分。亦界定六個虛擬子 頻帶且向其指派指數0至5。在不使用跳頻時,將虛擬子頻 帶5映射至實體子頻帶^且兩者均可簡稱為子頻帶s,其中 se(〇,...,5}。在使用跳頻時,可在不同時間間隔中將虛擬 子頻帶,映射至不同實體子頻帶。虛擬子頻帶可在使用跳 頻時簡化資源之配置。在以下描述中,除非另行標註,否 則術語”子頻帶”係指實體子頻帶。 圖6A展示支援FSS以及藉由子頻帶級跳頻而進行之fds 的多工結構600之設計。在此實例設計中,將系統頻寬分 割為NSB = 6個實體子頻帶0至5,兩個實體子頻帶〇及!用於 FSS,且四個實體子頻帶2至5用於FDS。對於fss,虛擬子 頻帶與實體子頻帶之間的映射為靜態的。在圖6八所示之實 例中,在每一時間間隔中皆將虛擬子頻帶〇映射至實體子 頻帶0,且在每一時間間隔中皆將虛擬子頻帶丨映射至實體 子頻帶1。 、 122906.doc •12- 200816666 對於FDS,可在每-時間間隔中將每—虛擬子頻帶映射 至用於FDS之實體子頻帶中之任一者。在圖6A所示之實例 中,在時間間隔π中將虛擬子頻帶2映射至實體子頻帶2, 在時間間隔π + 1中將其映射至實體子頻帶3,在時間間隔 ” + 2中將其映射至實體子頻帶4,等等。圖6八展示在每: 時間間隔中虛擬子頻帶2至5至實體子頻帶2至5之映射。在 圖6Α所示之實例中,用於FDS之每—虛擬子頻帶以循環或 週期方式跨越實體子頻帶2至5而跳躍。虛擬子頻帶至實體 子頻帶之映射亦可基於其他跳躍圖案。 圖6B展示支援FSS以及藉由子頻帶級跳頻而進行之 的多工結構610之設計。在此實例設計中,將系統頻寬分 割為NSB = 6個實體子頻帶〇至5,兩個實體子頻帶〇及3用於 FSS,且四個實體子頻帶丨、2、4及5用於FDS。對於咖, 對於se{0,3},在每一時間間隔中皆將虛擬子頻帶^映射至 實體子頻帶s。 對於FDS,可在每-時間間隔中將每—虛擬子頻帶映射 至用於FDS之實體子頻帶中之任一者。在圖6B所示之實例 中,基於偽隨機跳躍圖案而在不同時間間隔中將虛擬子頻 帶1映射至實體子頻帶丨、2、4及5中之不同者。亦基於相 同偽隨機跳躍圖案但循環地分別自虛擬子頻帶丨偏移1、2 及3而將虛擬子頻帶2、4及5映射至實體子頻帶丨、2、4及 5 ° 在圖6A及圖6B所示之實例設計中,兩個子頻帶用於 FSS,且四個子頻帶用於FDS。一般而言,Nsb個子頻帶中 122906.doc -13 - 200816666 之任何者可用於FSS。用於FSS之子頻帶可彼此鄰近(例 如,如圖6A所示)或非鄰接,且可能跨越系統頻寬而分布 (例如,如圖6B所示)。不用於FSS之子頻帶可用於叩3。 可跨越用於FDS之所有子頻帶執行子頻帶級跳頻。 • 可藉由子頻帶級跳頻而以若干方式向FDS使用者指派資 源塊。如圖2所示,每一子頻帶可包括具有指數〇至Nrb-1 之Nrb個資源塊。可向FDS使用者指派特定虛擬子頻帶j中 ( 之特定資源塊r。藉由子頻帶級跳頻,可在不同時間間隔 中將虛擬子頻帶s映射至不同實體子頻帶。在一設計中, 將虛擬子頻帶s中之Nrb個資源塊映射至虛擬子頻帶$所映 射至的每一實體子頻帶中之相同資源塊位置。舉例而言, 在圖6B中,可向FDS使用者指派虛擬子頻帶尸i中之資源 塊r=3。接著,可在時間間隔”中將此?1)§使用者映射至實 體子頻帶1中之資源塊3,在時間間隔π+丨中將其映射至實 體子頻▼ 5中之資源塊3 ’在時間間隔中將其映射至實 〇 體子頻帶2中之資源塊3,等等。可在不同時間間隔中將 FDS使用者映射至不同實體子頻帶,但此等實體子頻帶内 之貧源塊位置不變。在另一設計中,可向FDS使用者指派 特定虛擬子頻帶s中之特定資源塊r,且可將虛擬子頻帶^中 , 之資源塊r映射至不同實體子頻帶中之不同資源塊位置。 圖7展示支援FSS以及藉由資源塊級跳頻而進行之fds的 多工結構700之設計。在此實例設計中,將系統頻寬分割 為NSB = 6個實體子頻帶〇至5,四個實體子頻帶〇、1、3及5 用於FSS ’且兩個實體子頻帶2及4用於FDS。對於FSS,虛 122906.doc -14- 200816666 之間的映射為靜態的,且對於 間隔中將虛擬子頻帶s映射至實 擬子頻帶與實體子頻帶 se{0,l,3,5} ’ 在每一時間 體子頻帶s。 用於FDS之所有貫體子頻帶之資源塊可聚集且可稱作實 體育源塊。在圖7所示之實例設計中,每-實體子頻帶包 括MRB = 8個資源塊,且用 、 . 且用於FDS之實體子頻帶2及4包括總 共16個貫體資源塊,向直# 、 °其私派指數〇至15。可界定16個虛In one design, FDS is achieved by frequency hopping. For frequency hopping, the transmission to the user can be sent in different parts of the system (4) wide in different hop periods. The hop period is the time 花费 spent on the collection of the sub-combat, and can correspond to a symbol period, a one-by-one price, a sub-frame, a frame 122906.doc -10· 200816666, and so on. A different set of subcarriers can be selected for the user from all of the subcarriers available to the coffee based on the hopping pattern that the user may know. In one design, the FSS selected subband is achieved by assigning subcarriers within the selected subband to the user, which may be the subband for the user to achieve the final SINR in all subbands available for FSS. Frequency hopping can also be used for FSS, but may be limited to the selected subband. In designs designed to support FSS and FDS, the system bandwidth can be divided into multiple (7) (10) subbands, and each subband can be used for Fss or FDS. Information indicating which sub-bands are used for FSS and which sub-bands are used for FDS may be transmitted or otherwise transmitted on the Broadcast Channel (BCH). For example, the sub-band bit mask can include one bit for each of the Nsb sub-bands. The bit for each sub-band can be set to 指示 to indicate that the sub-band is used for FDS or set to 丨 to indicate that the sub-band is used for FSS 〇 in a design that can be assigned to FSS users A resource block used in a subband of the FSS. In this design, the FSS user may be limited to a sub-band, which may be selected from all sub-bands used for the FSS. A resource block assigned to an fSS user may occupy a fixed set of subcarriers (no frequency hopping) or a different set of subcarriers (with frequency hopping). In one design, the FDS user may be assigned resource blocks for use in any of the sub-bands of the FDS. In this design, FDS users can jump across all subbands used for FDS. A resource block assigned to an FDS user may occupy a different set of subcarriers for use in a subband of the fDS. The transmission techniques described herein are effective in supporting FSS and FDS use 122906.doc 200816666 and allow both types of users to achieve good performance. Some users benefit from the channel and interference diversity achieved by FDS. Other users may benefit from transmission over a particular sub-band having a good S service. These transmission techniques allow both FSS and FDS users to easily multiplex within a given time period (e.g., '-time slot, subframe, etc.). These transmission techniques can be supported by various Xigong structures, some of which are described below. Figure 5 now shows the design of the subband structure 500. In this design, the system bandwidth is partitioned into NSB = 6 entity subbands, which are assigned an exponent 〇 to 5. Each—the subband covers a specific portion of the system bandwidth. Six virtual sub-bands are also defined and assigned indices of 0 to 5. When frequency hopping is not used, the virtual sub-band 5 is mapped to the entity sub-band ^ and both can be simply referred to as sub-band s, where se(〇,...,5}. When using frequency hopping, it can be different The virtual sub-bands are mapped to different entity sub-bands in the time interval. The virtual sub-bands may simplify the configuration of resources when frequency hopping is used. In the following description, the term "sub-band" refers to an entity sub-band unless otherwise noted. 6A shows a design of a multiplex structure 600 that supports FSS and fds by subband level hopping. In this example design, the system bandwidth is partitioned into NSB = 6 entity subbands 0 to 5, two entities. Subbands are used for FSS, and four entity subbands 2 to 5 are used for FDS. For fss, the mapping between virtual subbands and entity subbands is static. In the example shown in Figure 6-8, The virtual sub-band 〇 is mapped to the entity sub-band 0 in each time interval, and the virtual sub-band 丨 is mapped to the entity sub-band 1 in each time interval. 122906.doc •12- 200816666 For FDS, Can be per-time interval The subband is mapped to any of the entity subbands for the FDS. In the example shown in Figure 6A, the virtual subband 2 is mapped to the entity subband 2 in time interval π, in time interval π + 1 Map it to entity subband 3, map it to entity subband 4 in time interval + 2, etc. Figure 6-8 shows virtual subband 2 to 5 to entity subband 2 in each: time interval Mapping of 5. In the example shown in Figure 6, the per-virtual subband for the FDS hops in a cyclic or periodic fashion across the physical subbands 2 to 5. The mapping of the virtual subband to the entity subband may also be based on other Figure 6B shows the design of a multiplex structure 610 that supports FSS and hopping by sub-band level. In this example design, the system bandwidth is divided into NSB = 6 entity sub-bands to 5, two Entity subbands 3 and 3 are used for FSS, and four entity subbands 丨, 2, 4, and 5 are used for FDS. For coffee, for se{0, 3}, virtual subbands are used in each time interval. ^ Map to entity subband s. For FDS, it can be in every - time interval Each virtual subband is mapped to any one of the entity subbands for the FDS. In the example shown in Figure 6B, the virtual subband 1 is mapped to the physical subband in different time intervals based on the pseudorandom hopping pattern不同, 2, 4, and 5 are different. The virtual subbands 2, 4, and 5 are also mapped to the physical subbands based on the same pseudorandom hopping pattern but cyclically offset from the virtual subbands 1, 2, and 3, respectively.丨, 2, 4, and 5 ° In the example designs shown in Figures 6A and 6B, two subbands are used for FSS, and four subbands are used for FDS. In general, 122906.doc -13 in Nsb subbands - Any of 200816666 is available for FSS. The sub-bands for the FSS may be adjacent to each other (e.g., as shown in Figure 6A) or non-contiguous, and may be distributed across the system bandwidth (e.g., as shown in Figure 6B). Subbands not used for FSS can be used for 叩3. Subband level hopping can be performed across all subbands for the FDS. • Resource blocks can be assigned to FDS users in several ways by subband hopping. As shown in FIG. 2, each subband may include Nrb resource blocks having indices 〇 to Nrb-1. The FDS user can be assigned a specific resource sub-band in the specific virtual sub-band j. By sub-band level hopping, the virtual sub-band s can be mapped to different entity sub-bands in different time intervals. In one design, The Nrb resource blocks in the virtual sub-band s are mapped to the same resource block position in each of the entity sub-bands to which the virtual sub-band $ is mapped. For example, in Figure 6B, the virtual sub-band can be assigned to the FDS user. The resource block in corpse i is r=3. Then, the user can be mapped to the resource block 3 in the entity sub-band 1 in the time interval, and mapped to the entity in the time interval π+丨The resource block 3' in the sub-frequency ▼ 5 is mapped to the resource block 3 in the real sub-band 2 in the time interval, etc. The FDS user can be mapped to different entity sub-bands in different time intervals, However, the positions of the poor source blocks in the subbands of the entities are unchanged. In another design, the FDS user can be assigned a specific resource block r in a specific virtual subband s, and the resources in the virtual subband can be Block r is mapped to different ones in different entity subbands Source block location. Figure 7 shows the design of a multiplex structure 700 that supports FSS and fds by resource block-level hopping. In this example design, the system bandwidth is partitioned into NSB = 6 entity sub-bands to 5. Four entity subbands 〇, 1, 3, and 5 are used for FSS' and two entity subbands 2 and 4 are used for FDS. For FSS, the mapping between imaginary 122906.doc -14-200816666 is static, And for the interval, the virtual sub-band s is mapped to the real sub-band and the entity sub-band se{0, l, 3, 5} ' at each time the body sub-band s. Resources for all the sub-subbands of the FDS The blocks may be aggregated and may be referred to as real sports source blocks. In the example design shown in Figure 7, the per-sub-subband includes MRB = 8 resource blocks, and the sub-bands 2 and 4 for FDS are used. Including a total of 16 block resources, to the direct #, ° its private index 〇 to 15. Can define 16 virtual

ϋ 擬資源塊且向其指派指數0至15。虛擬㈣ 頻時簡化資源之配置。 用跳 料,可使用f源塊級跳頻,且可在每—時間間隔 中將母-虛擬資源塊映射至實體資源塊中之任一者。在圖 7所示之實例中,在時間間隔神將虛擬資源塊〇映射至; 體資源塊〇’在時„隔州中將其映射至實㈣源塊卜 在日—夺間間隔#2中將其映射至實體資源塊2等等。圖7展示 在母-時間間隔中虛擬f源塊0至15至實體資源塊〇至^之 、射在圖7所不之貫例中,每一虛擬資源塊以循環方式 跨越實體資源塊〇至15㈣躍。虛擬資源塊至實體資源塊 之映射亦可基於其他跳躍圖案。 可向FDS使用者指派特定虛擬資源塊”冑由資源塊級跳 頻,可在不同時間間隔中將虛擬資源塊广映射至可處於相 同或不同子頻帶中之不同實體資源塊。 在圖7所示之實例設計中,四個非鄰接子頻帶用於fss, 且兩個非鄰接子頻帶用於FDS。一般而言,Nsb個子頻帶 中之任何者可用於FSS,且其餘子頻帶可用於fdS。可跨 122906.doc 15 200816666 越用於FDS之所有子頻帶而執行資源塊級跳頻。 /贡、、及跳頻(例如,如圖6A及圖6B所示)可具有跨越系 統頻寬=較少跳躍位置,其中跳躍位置之數/由用於剛 之子頻T的數目判定。資源塊級跳頻(例如,如圖7所示)可 - 具有:越系統之較多跳躍位置,因為可存在比用於FDS之 子頻帶多的用於FDS之資源塊。 一般而言,對於FSS可使用或可不使用跳頻。在一設計 巾’對於FSS不使用跳頻。在此設計中,可將給定子頻帶 巾之同一資源塊配置給-FSS使用#,且可在系統頻寬之 同一部分中發送針對此FSS使用者之傳輸。在另一設計 中,對於FSS使用子頻帶内之跳頻。在此設計中,可將給 定子頻帶中之不同資源塊配置給一FSS使用者,且可在此 子頻帶之不同部分中發送針對此FSS使用者之傳輸。 圖8展示支援具有跨越一子頻帶内之資源塊之跳頻的fss 之多工結構800之設計。在此設計中,子頻帶包括^^^ = 8個 I丨 實體資源塊,向其指派指數〇至7。亦界定八個虛擬子頻帶 且向其指派指數0至7。可在每一時間間隔中將每一虛擬資 源塊映射至實體資源塊0至7中之任一者。在圖8所示之實 ^ 例中,在時間間隔"中將虛擬資源塊0映射至實體資源塊 • 0 ’在時間間隔m+1中將其映射至實體資源塊1,在時間間 隔π+2中將其映射至實體資源塊2,等等。圖8展示在每一 時間間隔中虛擬資源塊〇至7至實體資源塊.〇至7之映射。圖 8展示循環移位跳躍圖案,且亦可使用其他跳躍圖案。 在圖6Α、圖6Β及圖7所示之實例設計中,一些子頻帶用 122906.doc -16- 200816666 於FSS,且其餘子頻帶用於FDS。可能需要允許Nsb個子頻 帶中之所有或許多子頻帶用於FSS。不同FSS使用者可在 不同子頻帶中達成良好效能。可藉由對此等^以使用者在 其所要子頻帶上排程而達成改良之效能(例如,較高之系 統輸送量)。拟 Resource blocks and assign them an index of 0 to 15. Virtual (four) frequency simplifies the configuration of resources. With hopping, f-source block-level hopping can be used, and the parent-virtual resource block can be mapped to any of the physical resource blocks in every-time interval. In the example shown in FIG. 7, the virtual resource block 〇 is mapped to the time interval; the body resource block 〇 'in the time „ ing the state to map it to the real (four) source block in the day-to-the-interval interval #2 Map it to entity resource block 2, etc. Figure 7 shows the virtual f source block 0 to 15 to the physical resource block 〇 to ^ in the parent-time interval, shot in the example of Figure 7, each virtual The resource block traverses the physical resource block to 15 (four) hops in a round-robin manner. The mapping of the virtual resource block to the physical resource block can also be based on other hopping patterns. A specific virtual resource block can be assigned to the FDS user" 跳 hopping by the resource block level, The virtual resource blocks are broadly mapped to different physical resource blocks that may be in the same or different sub-bands in different time intervals. In the example design shown in Figure 7, four non-contiguous sub-bands are used for fss and two non-contiguous sub-bands are used for FDS. In general, any of the Nsb subbands can be used for FSS, and the remaining subbands can be used for fdS. Resource block-level hopping can be performed across all sub-bands of the FDS across 122906.doc 15 200816666. / tribute, and hopping (e.g., as shown in Figures 6A and 6B) may have a spanning system bandwidth = less hopping position, wherein the number of hopping positions is determined by the number of sub-frequency Ts used. Resource block-level hopping (e.g., as shown in Figure 7) may have: more hopping locations in the system, as there may be more resource blocks for the FDS than for the sub-bands of the FDS. In general, frequency hopping may or may not be used for FSS. In a design towel, no frequency hopping is used for FSS. In this design, the same resource block of the given sub-band can be configured for -FSS use #, and the transmission for this FSS user can be sent in the same portion of the system bandwidth. In another design, frequency hopping within subbands is used for FSS. In this design, different resource blocks in the given sub-band can be configured for an FSS user, and transmissions for this FSS user can be sent in different portions of the sub-band. 8 shows a design of a multiplex structure 800 that supports fss with frequency hopping across resource blocks within a sub-band. In this design, the subband includes ^^^ = 8 I 丨 physical resource blocks to which an index 〇 is assigned to 7. Eight virtual subbands are also defined and assigned indices of 0 to 7. Each virtual resource block can be mapped to any of physical resource blocks 0 through 7 in each time interval. In the example shown in FIG. 8, the virtual resource block 0 is mapped to the entity resource block in the time interval " 0' is mapped to the physical resource block 1 in the time interval m+1, at the time interval π Map it to entity resource block 2 in +2, and so on. Figure 8 shows the mapping of virtual resource blocks 7 to 7 to physical resource blocks 〇 to 7 in each time interval. Figure 8 shows a cyclic shift skip pattern, and other skip patterns can also be used. In the example designs shown in Figures 6A, 6A, and 7, some subbands are used for FSS with 122906.doc -16-200816666 and the remaining subbands are used for FDS. It may be desirable to allow all or many of the subbands in the Nsb subbands to be used for FSS. Different FSS users can achieve good performance in different sub-bands. Improved performance (e.g., higher system throughput) can be achieved by scheduling the user to schedule on the desired sub-band.

圖9A展示支援FSS以及FDS之多工結構9〇〇之設計,其中 在所有子頻帶上支援FSS。在此實例設計中,冑系統頻寬 分割為NSB = 6個子頻帶〇至5,在每一時間週期中,兩個子 頻帶用於FSS,且四個子頻帶用於FDS。一般而言,一時 間週期可對應於一符號週期、一時槽、一子訊框、一訊框 等等。在此實例設計中,子頻帶0及1在時間週期所中用於 FSS,子頻帶2及3在時間週期W+1中用於Fss,子頻帶4及5 在時間週期心2中用於FSS,等等。在每一時間週期中, 不用於FSS之子頻帶用於刚。可對於用於刚之子頻帶使 用跨越子頻帶或資源塊之跳頻。 可界定多個(M個)時間交錯,其中每一時間交錯包括均 勻地間隔Μ個時間週期之時間週期。一般而言,%可為任 何整數值。在圖从所示之實例設計中,界核,時間交 錯〇至5,其中時間交錯〇包括時間週期…代等等,時間 交錯!包括時間週細】、㈣等等,且時間 ; 間週期W+5、w+11等等。在円^去s _ 匕栝日守 寺寺在圖9A未展不之另一實例設 二:可界定三個時間交錯。至2’其中時間交錯。包括時間 等等’時間交錯1包括時間週期州、 專 守間交錯2包括時間週期m+2、w + 5等等。在 122906.doc -17- 200816666 任何情況下,無關於時間交錯之數目,在每一時間交錯中 均可使用零或多個子頻帶之特定集合以用於FSS。對於圖 9 A所示之實例設計,子頻帶〇及丨在時間交錯〇中用於 FSS,子頻帶2及3在時間交錯1中用於FSS,子頻帶4及5在 時間交錯2中用於FSS,等等。對於每一時間交錯,不用於 FSS之子頻帶可用於FDS。 圖9B展示支援FSS以及FDS之多工結構910之設計,其中 在所有子頻帶上支援FSS。在此實例設計中,將系統頻寬 分割為NSB=6個子頻帶〇至5,且界定m=6個時間交錯0至 5。在圖9B所示之實例設計中,子頻帶〇、1及2在時間交錯 〇中用於FSS,子頻帶3、4及5在時間交錯1中用於!^8,子 頻帶0及3在時間交錯2中用於FSS,子頻帶在時間交錯 3中用於FSS,子頻帶2及5在時間交錯4中用於FSS且無子 頻帶在時間交錯5中用於fsS。 可在適當時間交錯中向FSS使用者指派所要子頻帶中之 V 資源塊。對於圖9A所示之實例設計,可在時間交錯〇及/或 3中向需要子頻帶〇及1之FSS使用者指派此等子頻帶中之資 源塊,可在時間交錯或4中向需要子頻帶2及3之fss使 . 用者指派此等子頻帶中的資源塊,且可在時間交錯2及/或 ‘ 5中向需要子頻帶4及5之FSS使用者指派此等子頻帶中之資 源塊。因此,可向每一FSS使用者指派該使用者之所要子 頻帶中之資源塊。 —般而言,多工結構可包括任何數目(Nsb)之子頻帶及 任何數目(M)之時間交錯。在每一時間交錯中可使用任何 122906.doc -18 - 200816666 數目之子頻帶用於FSS。在M個時間交錯中可使用相同戋 不同數目之子頻帶用於FSS。對於每一時間交錯,用於 FSS之子頻帶可為鄰接或非鄰接的。 可以各種方式將在每一時間交錯中用於Fss之子頻帶及 用射DS之子頻帶傳送給使用者。在一設計中,可對: 間交錯0選擇用於FSS及FDS之子頻帶,且基於對於時間交 錯〇用於FSS及FDS之子頻帶而界定對於每一其餘時間= 錯,用於FSS及刚的子頻帶。在-設計中,子頻帶位元 遮罩可用於時間交錯G,且可對於I個子頻帶中之每—者 :::元。可將每-子頻帶之位元設定為。以指示該子 =了7"或將其位元㈣為1以指示該子頻帶係用 於每-复ΓΓ用於時間交錯0之子頻帶位元遮罩而界定用 κ,、餘時間交錯之子頻帶位元遮罩。在一 於母一其餘時間交锊之早相册 用 之子㈣& 元遮罩為用於時間交錯〇 頒帶位7〇遮罩的循環移位Figure 9A shows a design of a multiplex architecture that supports FSS and FDS, where FSS is supported on all subbands. In this example design, the 胄 system bandwidth is partitioned into NSB = 6 subbands 5 to 5, in each time period, two subbands are used for FSS, and four subbands are used for FDS. In general, a period of time may correspond to a symbol period, a time slot, a sub-frame, a frame, and the like. In this example design, subbands 0 and 1 are used for FSS in time periods, subbands 2 and 3 are used for Fss in time period W+1, and subbands 4 and 5 are used for FSS in time period heart 2 ,and many more. In each time period, sub-bands that are not used for FSS are used for just. Frequency hopping across sub-bands or resource blocks can be used for the sub-bands used. Multiple (M) time interlaces may be defined, wherein each time interleaving includes a time period that is evenly spaced for a period of time. In general, % can be any integer value. In the example design shown in the figure, the kernel is bound, the time is erroneous to 5, and the time interleaving includes time period... generation, etc., time interleaving! Including time week], (four), etc., and time; interval W+5, w+11, and so on. In 円^去s _ 匕栝 匕栝 守 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺 寺To 2' where time is staggered. Including time, etc. 'Time Interlace 1 includes time period states, inter-station interlaces 2 including time periods m+2, w + 5, and so on. In any case, 122906.doc -17- 200816666, regardless of the number of time interlaces, a particular set of zero or more sub-bands can be used for FSS in each time interlace. For the example design shown in Figure 9A, subbands 丨 and 丨 are used for FSS in time interleaving, subbands 2 and 3 are used for FSS in time interlace 1, and subbands 4 and 5 are used in time interleaving 2 FSS, and so on. For each time interleaving, subbands not used for FSS are available for FDS. Figure 9B shows a design of a multiplex architecture 910 that supports FSS and FDS, where FSS is supported on all subbands. In this example design, the system bandwidth is partitioned into NSB = 6 subbands 〇 to 5, and m = 6 time interleaving 0 to 5 are defined. In the example design shown in FIG. 9B, subbands 〇, 1 and 2 are used for FSS in time interleaving, and subbands 3, 4 and 5 are used in time interlace 1 for !^8, subbands 0 and 3 are in The time interleaving 2 is for FSS, the subband is used for FSS in time interlace 3, subbands 2 and 5 are used for FSS in time interleaving 4 and no subband is used for fsS in time interleaving 5. The V resource blocks in the desired sub-band can be assigned to the FSS user in an appropriate time interlace. For the example design shown in FIG. 9A, the resource blocks in the sub-bands can be assigned to the FSS users requiring sub-bands 〇 and 1 in time interleaving and/or 3, which can be interleaved or 4 in the required sub-bands. The fss of bands 2 and 3 allow the user to assign resource blocks in these sub-bands and may assign them to the FSS users requiring sub-bands 4 and 5 in time interleaving 2 and/or '5. Resource block. Thus, each FSS user can be assigned a resource block in the desired sub-band of the user. In general, a multiplex structure can include any number (Nsb) of subbands and any number (M) of time interleaving. Any number of sub-bands of 122906.doc -18 - 200816666 can be used for FSS in each time interlace. The same number of sub-bands can be used for M time interleaving for FSS. For each time interleaving, the sub-bands for the FSS may be contiguous or non-contiguous. The sub-bands for Fss and the sub-bands of the DS can be transmitted to the user in each of the time interleavings in various ways. In one design, inter-interlace 0 may be selected for sub-bands for FSS and FDS, and based on sub-bands for FSS and FDS for time interleaving, defined for each remaining time = error, for FSS and just-in-child frequency band. In a design, a subband bit mask can be used for time interleaving G, and can be for each of the I subbands ::::. The bit per sub-band can be set to . Defining the sub-band with a sub-band, indicating that the sub-subordinate (4) is 1 or indicating that the sub-band is used for each sub-band sub-band mask for time interleaving 0 Bit mask. In the early albums of the mother and the rest of the time, the children's (4) & yuan masks are used for time-interleaving, and the cyclic shift of the 7-inch mask is given.

(J ,6個時間交錯之實例設計,可如下=:::不之具有 錯之子頻帶位元遮罩: 出對於母一時間交 用於時間父錯〇之子頻帶位元遮罩,1 用於時間交錯i之子 ,,,,,, 用於時間交錯2之子二:罩,°,1,1,· 頻贡位兀遮罩yOOnn! u 用於時間交錯3之子頻帶 ’,,,,, 用於時間交錯4之子頻帶位元^ ,,〇,〇,〇,〇}, 用於時間交_5^ 遮且 亦可久於宜 頻帶位元遮草,,〇,〇,〇山1}。 J &於某一其他 、、I疋用於該等時間交錯之子頻 122906.doc -19- 200816666 ::元遮罩。亦可對於所有時間交錯使用相同子頻帶位元 相册在任何&況下,藉由對於Μ個時間交錯使用M個子 查W立70遮罩之預定映射’可發送單一子頻帶位元遮罩以 ^對於Μ個時間交錯中之每_者用於挪及刪之子頻 在$ °又。十中,可獨立選擇對於每一時間交錯用於 S及FDS之子頻帶,且藉由(例如)使用用於每一時間交錯 的單獨子頻帶位元遮罩來傳送該等子頻帶。(J, 6 time interleaved example design, can be as follows =::: not wrong sub-band bit mask: out of the sub-band mask for the parent time to hand over the time parent error, 1 for Time interleaved i son,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the time interleaving 4 sub-band bits ^,, 〇, 〇, 〇, 〇}, used for time _5^ occlusion and can also be used for a long time to cover the grass, 〇, 〇, 〇山1}. J & in some other, I 疋 for these time interleaved sub-frequency 122906.doc -19- 200816666 :: meta-mask. It is also possible to use the same sub-band Byte Album in any & In the following, by using a predetermined mapping of M sub-chasings for a time interval, a single sub-band bit mask can be transmitted to be used for each of the time interleavings. In the range of $° and ten, the subbands for S and FDS are interleaved for each time, and are used, for example, for each Time-interleaved individual sub-band bit masks are transmitted to convey the sub-bands.

系統可支援亦可稱作增量冗餘、_組合 combnnng)等等之混合自動再傳輸(harq)。對於職〇之 情況’發射H發送針對—封包之傳輸且可發送—或多個再 傳輸直至封包由接收器正確解碼,或已發送最大數目之再 傳輸,或遇到某一盆#炊| M上、^ 、』呆八他終止狀況。HARQ可改良資料傳輸 之可靠性。 可界定職HARQ交錯,其中_為任何整數值。每一 HARQ交錯可覆蓋間隔_時間週期之時間週期(不計曾滅 配置用於附加項之時間)。作為—些實例,可如圖从所示 而界定三個或六個HARQ交錯,或可如圖9Β所示而界定六 個HARQ交錯。亦可界定較少或較多harq交錯。每二 HARQ交錯可對應於不同時間交錯。 HARQ處理係指對於一封包之所有傳輸及再傳輸(若存 在)。HARQ處理可在資源可用時開始且可在第一傳輸之後 或在一或多個後續再傳輸之後終止。HARQ處理可具有可 視接收器處之解碼結果而定之可變持續時間。每一 HARQ 處理可在一HARQ交錯上得以發送。可在具有Fss使用者 122906.doc •20- 200816666 所=子㈣之HARQ交錯中向該使用者指派資源塊。The system can support hybrid automatic retransmission (harq), which can also be called incremental redundancy, _combination combnnng, and the like. For the case of job ' 'transmit H send for - packet transmission and can be sent - or multiple retransmissions until the packet is correctly decoded by the receiver, or the maximum number of retransmissions have been sent, or encounter a certain basin #炊| M On, ^, 』 stay eight he terminated the situation. HARQ improves the reliability of data transmission. The job HARQ interlace can be defined, where _ is any integer value. Each HARQ interlace can cover the time period of the interval_time period (excluding the time when the configuration is used for additional items). As an example, three or six HARQ interlaces may be defined as shown, or six HARQ interlaces may be defined as shown in Figure 9A. It is also possible to define fewer or more harq interlaces. Every two HARQ interlaces may correspond to different time interleaving. HARQ processing refers to all transmissions and retransmissions (if any) for a packet. HARQ processing may begin when resources are available and may terminate after the first transmission or after one or more subsequent retransmissions. The HARQ process can have a variable duration depending on the decoding result at the receiver. Each HARQ process can be sent on a HARQ interlace. The resource block can be assigned to the user in a HARQ interlace with Fss user 122906.doc • 20-200816666 = sub (iv).

中)可等/冑間乂錯之時間週期(例如’在圖9A或圖9B 8中卜若時、Η短ΓΓ跳頻之時間間隔(例如,在圖5至圖 右日守間週期長於時間間隔,則跳 期::生。在-設計中,-時間間隔跨越-符:週Π 兮“二週期跨越具有12或14個符號週期之兩個時槽。在此 口又汁中,跳頻可在具有兩個時 號週期地發生。在另_+d/ 時間週期内逐個符 F… 设叶中,一時間週期等於-時間間Medium) can wait for / time between errors (for example, 'in Figure 9A or 9B 8, the time interval between Η and ΓΓ hopping (for example, in Figure 5 to the right day, the custodial period is longer than the time) Interval, then skip:: Health. In the design, - time interval spans - symbol: Zhou Π 兮 "Two cycles span two time slots with 12 or 14 symbol periods. In this mouth and juice, frequency hopping Can occur periodically with two time periods. In another _+d/ time period, one by one F... Set the leaves, one time period is equal to - time

P同 兩者均可算;^ σι^ 'ffl XI 在此… 號週期、一時槽、-子訊框等等。 又§十中’對於FSS,跳頻可對於每—時 時間週期地發生。對於刚,可對 时 執订跳頻或可跨越所有時間交錯而共同地執行跳頻。 圖10展不多工結構1000之設豆 交錯w跨越一子頻帶 zH、有對於一時間 設計中,時Η六扭 4之跳頻的FSS。在此實例 ί Η、用i日#㊣ 夺間週功所、m+M等等,每一時 間週期對應於一時槽,且每一 期。 ^間間隔對應於一符號週 在圖10所示之實例設計中, ^ i# 0 $ 7 , B w - 子頻贡包括NRB = 8個實體資 圖案而在時間交錯^每—符==7。基於偽隨機跳躍 ^ ^ ^ ^中將每一虛擬資源塊 映射至貫體貝源塊〇至7令之一 期时將虚擬資源塊0映射…一在夺間週.之符號週 將其映射至實體^^^^源⑽在符號週則中 資源垅2,箅算 … 4週期2中將其映射至實體 貝/原塊2等羊。圖1 〇届+立η主日日丄 展不在時間交錯所之每-符號週期尹 122906.doc -21 - 200816666 虛擬資源塊0至7至實體資源塊0至7之映射。圖1〇展示偽隨 機跳躍圖案,且亦可使用其他跳躍圖案。P can be counted both; ^ σι^ 'ffl XI here... number cycle, one-time slot, - subframe, and so on. Also § ten in the case of FSS, frequency hopping can occur periodically for each time period. For just, the frequency hopping can be performed in time or the frequency hopping can be performed in common across all time interleaving. Figure 10 shows the multiplexed structure of 1000 beans. The staggered w spans a sub-band zH, and there is a FSS for the frequency hopping of a time-time design. In this example, ί Η, using i 日# 夺 周 周 , , m+M, etc., each time period corresponds to a time slot, and each period. The interval between ^ corresponds to a symbol week in the example design shown in Fig. 10, ^ i# 0 $ 7 , B w - sub-frequency tributor includes NRB = 8 entity assets and is interleaved at time ^ per-symbol == 7 . Based on the pseudo-random hopping ^^^^, each virtual resource block is mapped to the singular source block 〇 to 7th order, and the virtual resource block 0 is mapped. The entity ^^^^ source (10) in the symbol week, the resource 垅 2, calculate... 4 cycles 2 map it to the entity shell / original block 2 and other sheep. Figure 1 〇 + + 立 主 日 不在 不在 122 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 906 Figure 1 shows a pseudo random skip pattern and other skip patterns can also be used.

U 一般而言,可對於用於FDS及FSS之跳頻使用各種跳躍 圖案。可對於FDS及FSS使用相同跳躍圖案,或可對於FDS 及FSS使用不同跳躍圖案。跳躍圖案可為諸如循環移位圖 案或某一其他圖案之固定跳躍圖案。亦可基於已知函數或 產生(其可接收任一參數作為輸入或種子(sa幻)而產生 跳躍圖案。在-設計中,—跳躍圖案用於系統中之每一小 區或扇區。相鄰小區或扇區可使用不同跳躍圖案以使小 區/扇區間干擾隨機化。 、在°又°十中,用於每一小區或扇區之跳躍圖案在時間上 為靜態的且以預定持續時間(例如’預定數目之子訊框)而 重複。舉例而t ’可基於固定跳躍圖案(例如,循環移位 =案)而對於跨越每—子訊框中之12或14個符號週期的q個 資源塊之集合執行㈣。彳在每—子訊框<第_個符號週 期中分別將虛擬資源塊〇至W映射至實體資源塊〇至二广 可在子訊框之每-其餘符號週期中將每—虛擬資源塊映射 至不同實體資源塊。 在另一設計中,用於每一小區或扇區之跳躍圖案隨U In general, various hopping patterns can be used for frequency hopping for FDS and FSS. The same hopping pattern can be used for FDS and FSS, or different hopping patterns can be used for FDS and FSS. The jump pattern can be a fixed jump pattern such as a cyclic shift pattern or some other pattern. A hopping pattern can also be generated based on a known function or generation (which can receive any parameter as an input or seed (sa illusion). In a design, a hop pattern is used for each cell or sector in the system. The cell or sector may use different hopping patterns to randomize cell/inter-sector interference. In °°°, the hopping pattern for each cell or sector is static in time and for a predetermined duration ( For example, 'a predetermined number of sub-frames' are repeated. For example, t ' may be based on a fixed hopping pattern (eg, cyclic shift = case) for q resource blocks spanning 12 or 14 symbol periods per subframe. The set is executed (4). In the per-sub-frame < _th symbol period, the virtual resource block 〇 to W is mapped to the physical resource block 〇 to the second wide, in each of the remaining symbol periods of the sub-frame Each virtual resource block is mapped to a different physical resource block. In another design, the hopping pattern for each cell or sector follows

而k化。可基於已知函數(例如,對於小區或扇區為特A 之偽隨機擾碼之函數)來界定跳躍圖案。舉例而言,。疋 於固定跳躍圖案(例如’循環移位圖案)來對於跨越每:基 衹框中之12或14個符號週期的Q個資源塊之集八執y子 頻。然而,可基於擾碼之四個位元來判定第一個;仃跳 对琬週期 122906,d〇c -22- 200816666 之初始映射。舉例而言’若4位元擾碼值為^則對於子訊 框之第-個符號週期’可將虛擬資源塊〇映射至實體資源 塊β,可將虛擬資源塊!映射至實體資源塊,等 專。4位疋擾碼值可自jt ^rt ±r- rz -?· . 丁自子汛框至子訊框而改變以達成隨時 間變化之跳頻。 >圖11展示用於對於FSS及觸發送傳輸之過程1100之設And k. The hopping pattern can be defined based on a known function (e.g., a function of a pseudo-random scrambling code for a particular cell or sector). For example, A fixed hopping pattern (e.g., a 'cyclic shift pattern) is used to perform a sub-frequency for a set of Q resource blocks spanning 12 or 14 symbol periods per frame. However, the first mapping can be determined based on the four bits of the scrambling code; the initial mapping of the hopping period 122906, d〇c -22-200816666. For example, if the 4-bit scrambling code value is ^, the virtual resource block 〇 can be mapped to the physical resource block β for the first symbol period of the subframe, and the virtual resource block! can be mapped to the physical resource block. Waiting for the special. The 4-bit scrambling code value can be changed from jt ^rt ±r- rz -?·. from the sub-frame to the sub-frame to achieve the frequency hopping over time. > Figure 11 shows the process for the process 1100 for FSS and touch transmission

什三可由節點B或某—其他實體來執行過㈣⑼。可將針 對第一使用者(例如, s使用者)之弟一傳輸映射至自系 :頻見之弟一頻率區域中之至少一子頻帶中選擇以用於第 一使用者的子頻帶(步驟1112)。可在不同時間間隔中將第 一傳輸映射至所選子頻帶之固定部分(例如,特定資源 Μ亦可對於第-使用者執行在所選子頻帶内之跳頻。 在此2況下,可在不同時間間隔中將第一傳輸映射至所選 項π之不同4分(例如,不同資源塊)。可在連續時間週 期中或在時間交錯之均勻間隔之時間週期中發送第 輸0 可跨越第二頻率區域中之多個子頻帶而映射針對第二使 (幻士 FDS使用者)之第二傳輸(步驟1114)。第—與第 二頻率區域可對應於系統頻寬之兩個非重疊部分。第二頻 率區域中之多個子頻帶可為鄰接或非鄰接的。可對於第二 使用者執行子頻帶級之跳頻。在此情況下,可在不同時間 間隔中將第:傳輸映射至第:頻率區域巾之*同子頻帶。 亦可對於第_使用者執行資源塊級之跳頻m兄下, 可在不同時間間隔中將第二傳輸映射至第二頻率區域中之 122906.doc -23- 200816666 :二源塊。:可執行副載波級之跳頻。 至-ίΠ子::由跳頻而在不同時間間隔中將傳輸映射 躍圖案(例如,循::之副載波的不同集合。可基於固定跳 於擾碼而判定、 圖案)或偽隨機跳躍圖案(例如,基 中之所選子頻慨而執行跳頻。可藉由映射至第-頻率區域 個子頻帶的第二弟—傳輸及映射至第二頻率區域中之多 驟⑴6)。弟—傳輸而產生OFDM符號或sc_職符號(步 所=!選擇性排程’使用者亦可在第-頻率區域中之 、▼上發㈣輸。對於頻率分集排程,使用者可跨 -頻率區域中之多個子頻帶而發送傳輸。 圖12展示用於對㈣认刚發送傳輸之裝置咖之設 ,置12GG包括用於將針對第—使用者之第—傳輸映射 至自=統頻寬之第一頻率區域中之至少一子頻帶中選擇以 用於:-使用者的子頻帶之構件(模組1212)、用於跨越系 統頻寬之第二頻率區域中之多個子頻帶而映射針對第二使 用者的第二傳輸之構件(模組1214)及用於藉由映射至第一 頻率區域中之所選子頻帶之第一傳輸及映射至第二頻率區 域中的夕個子頻帶之第二傳輸而產生〇FDM符號或 FDM符號之構件(模組1216)。 圖13展示用於對於Fss & FDS發送傳輸之過程⑽的設 计。可由節點B或某一其他實體來執行過程13〇〇。可在第 一時間交錯中將針對第一組使用者之傳輸映射至至少一子 頻帶之第一集合’其中將第一組中之每一使用者映射至第 122906tdoc •24- 200816666 -集合中的-子頻帶(步驟1312)。第一時間 句間隔之時間週期。可在第—時間交錯中將 用者之傳輸映射至子頻帶t μ _ lx # ^ ^乐一、、且使 用π之弟一集合,其中跨越第二 中之子頻帶而映射第二έ由 — a 一、、且中的母一使用者(步驟1314)。镇 二集合可包括不包括於第一集合中之子頻帶。 可在第一時間交錯中將- T竹針對弟二組使用者之傳輸 至少-:頻帶之第三集合…將第三組中之每一二 映射至:二集合中的一子頻帶(步驟1316)。第三子頻帶集 合可與第一子頻帶隼人相π 、’、 杲口相冋或不同。弟二時間交錯可 不包括於第一時間交錯中的均勻間隔之時間週期。可在第 -日^•間乂錯中將針對第四組使用者之傳輸映射至子頻帶之 第四集合’其中跨越第四集合中之子頻帶而映射第四组中 的每-使用者(步驟1318)。第四集合可包括不包括於第三 集合中之子頻帶。可以_ /丨、,七α > a 、員〇方式在頜外時間交錯上發送傳 輸。可藉由HARQ在用於每一 甘、、且之時間父錯上發送針對該 組使用者之傳輸。 可基於FSS使用者之訊務負载及咖使用者之訊務負載 而將系統頻寬分割為用於FSS之子頻帶集合及用於剛之 子頻帶集合。傳送每一隼合中 ^ + 〃中之子頻帶之資訊可廣播至使 者或以其他方式而發送。可經由—或多個子頻帶位元遮 罩而提供此資訊,例如,對於第一時間交錯使用一子頻帶 位儿遮罩,對於每一時間交錯使用—子頻帶 等。 ^干Τ 圖 14展示用於對於FSS及FDS發送傳輸之裝置剛之設 122906.doc -25- 200816666 計。震置刚包括用於在第—時間交錯中 用:之傳輸映射至至少-子頻帶之第-集合之丄 :::: 組中的每—使用者映射至第—集合中之—子頻帶 之:::至:_一時間交錯中將針對第二組使用者 輸映,頻帶之第二集合的構件,其中跨越第二集 :於::頻:而映射第二組中之每一使用者(模組1414)、 ^在^時㈣錯中將針對第三組使用者之傳輸 子頻帶的第三集合之構件,其中將第三組中之每一 第用至第三集合中之一子頻帶(模組1416)及用於在 中將針對第四組使用者的傳輸映射至子頻帶 第四組中的每—使用者帶而映射 圖:展示用於接收傳輸之過程15。。之設計。可由㈣ Ο 發傳二實體來執行過程⑽。若藉由頻率選擇性排程而 ,傳輸,則可自選自系統頻寬之第一頻率區域中之至少 中的子頻帶接收傳輸(步驟1512)。可在 由選子頻帶之固定部分(例如,特定資源塊)接收 =頻Γ由跳頻而發送,則亦可在不同時間間隔中自所 “T之不同部分(例如,不同資源塊)接收傳輸。 第右rt頻率分集排程發送傳輸,則可自跨越系統頻寬之 弟一頻率區域中之客 朴 子頻f而接收傳輸(步驟1 5 14)。若 =子頻帶級跳頻而發送,則可在不同時間間隔中自第二 而二區域中之不同子頻帶接收傳輸。若藉由資源塊級跳頻 則亦可在不同時間間隔中自第二頻率區域中之不 122906.doc -26 - 200816666 同負源塊接收傳輸。若藉由 稽由跳頻而發送,則可基於固定跳 躍圖案(例如,循環移位圖查 ㈡案)或偽酼機跳躍圖案而接收傳 輸。亦可(例如)藉由HARQ而在妁勹„ 一 士 V向在均勻間隔之時間週期中接 收傳輸。可基於廣播資却、y % # 八備貝Λ Μ吕唬傳輸等等而判定第一及第 二頻率區域中之子頻帶。The third can be performed by Node B or some other entity (4) (9). The transmission of the first user (eg, s user) may be mapped to a self-selection: at least one sub-band of the frequency-frequency region selected for use in the sub-band of the first user (step 1112). The first transmission may be mapped to a fixed portion of the selected sub-band in different time intervals (eg, a particular resource may also perform frequency hopping within the selected sub-band for the first-user. In this case, Mapping the first transmission to different 4 points (eg, different resource blocks) of the selected option π in different time intervals. The 0th transmission may be transmitted in a continuous time period or in a time interval of evenly spaced time interleaving A plurality of sub-bands in the two frequency regions are mapped for a second transmission of the second enable (Shincus FDS user) (step 1114). The first and second frequency regions may correspond to two non-overlapping portions of the system bandwidth. The plurality of sub-bands in the second frequency region may be contiguous or non-contiguous. Frequency hopping at the sub-band level may be performed for the second user. In this case, the:transport may be mapped to the first in different time intervals: The frequency zone region has the same sub-band. It is also possible to perform the resource block-level hopping m sibling for the _user, and the second transmission can be mapped to the second frequency region at different time intervals. 122906.doc -23 - 200816666 : Two source blocks: hopping at the subcarrier level can be performed. To - Π ::: The frequency hopping pattern will be transmitted in different time intervals by frequency hopping (for example, different sets of subcarriers:: can be fixed based on Performing frequency hopping by hopping on the scrambling code to determine, pattern, or pseudo-random hopping pattern (eg, selecting the selected sub-frequency in the base. Can be transmitted and mapped to the second brother by mapping to the sub-bands of the first-frequency region) In the second frequency region, there are a plurality of (1) 6). The transmission of the OFDM symbol or the sc_ job symbol (step =! selective scheduling) can also be performed by the user in the first frequency region. For frequency diversity scheduling, the user can transmit transmissions across multiple sub-bands in the frequency region. Figure 12 shows the device for transmitting (4) the transmission of the transmission, and the 12GG includes for the purpose of The first-transmission mapping is selected from at least one of the first frequency regions of the self-frequency bandwidth for: - a component of the user's sub-band (module 1212), for spanning the system bandwidth Multiple sub-bands in the second frequency region are mapped for the second a second transmission component (module 1214) and a second transmission for mapping to a selected sub-band of the first frequency region and mapping to a second sub-band of the second frequency region Generating a FDM symbol or FDM symbol component (module 1216). Figure 13 shows a design for the process (10) of transmitting a transmission for Fss & FDS. Process 13 can be performed by Node B or some other entity. Mapping the transmissions for the first group of users to the first set of at least one sub-band in a first time interlace' wherein each user in the first group is mapped to the 122906tdoc •24-200816666-set Subband (step 1312). Time period of the first time sentence interval. The user's transmission may be mapped to the sub-band t μ _ lx # ^ ^ in the first-time interleaving, and a set of π is used, wherein the second sub-band is mapped across the sub-band of the second A parent user of one, and (step 1314). The town two sets may include sub-bands that are not included in the first set. The transmission of -T bamboo to the second group of users may be at least - the third set of frequency bands in the first time interleaving ... mapping each of the third set to: a sub-band in the two sets (step 1316) ). The third sub-band set may be opposite or different from the first sub-band π, ', 杲. The second time interleaving may not be included in the evenly spaced time period of the first time interleaving. The transmission for the fourth group of users may be mapped to the fourth set of sub-bands in the first-day error, wherein each user in the fourth group is mapped across the sub-bands in the fourth set (steps) 1318). The fourth set may include sub-bands that are not included in the third set. It can be transmitted by _ / 丨,, 七α > a, 〇 〇 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The transmission for the group of users can be sent by HARQ on the time of the parental error for each. The system bandwidth can be split into a set of subbands for FSS and a set of subbands for just based on the traffic load of the FSS user and the traffic load of the coffee user. The information transmitted in the sub-bands of ^ + 隼 in each combination can be broadcast to the messenger or otherwise transmitted. This information can be provided via - or multiple sub-band bit masks, for example, a sub-band bit mask is interleaved for the first time, interleaved for each time - sub-bands, and the like. ^ Dry Figure 14 shows the device for transmitting transmissions for FSS and FDS. The setting is just 122969.doc -25- 200816666. The stimuli just include the mapping used in the first-time interleaving: the mapping of the transmission to at least the first set of sub-bands:::: Each user in the group maps to the sub-band of the first set ::: to: _ a time interleaved for the second set of users, the second set of components of the band, which spans the second episode: at::frequency: and maps each user in the second group (module 1414), ^ in the fourth (four) error, a component of the third set of transmission subbands for the third group of users, wherein each of the third group is used to one of the third set The frequency band (module 1416) and the map for mapping the transmissions for the fourth group of users to the per-user band in the fourth group of sub-bands: showing the process 15 for receiving transmissions. . The design. The process (10) can be performed by (iv) Ο transmitting two entities. If transmitted by frequency selective scheduling, transmissions may be received from sub-bands selected from at least one of the first frequency regions of the system bandwidth (step 1512). The transmission may be performed by frequency hopping in a fixed part (for example, a specific resource block) of the selected sub-band, and may also be transmitted from different parts of the T (for example, different resource blocks) in different time intervals. The right rt frequency diversity scheduling transmission transmission may be received from the guest sub-frequency f in the frequency region of the system bandwidth (step 1 5 14). If the sub-band level is hopped and transmitted, The transmission may be received from different sub-bands in the second and second regions in different time intervals. If the resource block-level frequency hopping is used, the time may not be 122906.doc -26 in the second frequency region in different time intervals. - 200816666 Receive transmission with the same negative source block. If transmitted by frequency hopping, the transmission may be received based on a fixed hopping pattern (eg, a cyclic shift pattern (2)) or a pseudo-hopping pattern. ) By HARQ, the transmission is received in a time interval of even intervals. The sub-bands in the first and second frequency regions may be determined based on broadcast resources, y%# 八备贝Λ Μ 吕唬 transmission, and the like.

圖16展示用於接收傳輸之過程ι_之設計。裝置测包 括用於在藉由頻率選擇性排程而發送傳輸之情況下自選自 系統頻寬之第一頻率區域中之至少一子頻帶中的子頻帶接 收傳輸之構件(模組1612),及用於在藉由頻率分集排程發 送傳輸之情況下自跨越系統頻寬之第二頻率區域中的多個 子頻帶而接收傳輸之構件(模組1614)。 圖12、圖14及圖16中之模組可包含處理器、電子器件、 硬體器件、電子組件、邏輯電路、記憶體等等或其任一組 合0 圖17展示節點β 11〇及兩個ue i2〇x&12〇y之一設計之方 塊圖,節點B 11〇及兩個UE 12〇x&12〇y為圖的節點B中 之一者及UE中之兩者。在節點3 11〇處,發射(τχ)資料處 理器1714可自資料源1712接收訊務資料及/或自控制器/處 理器1730及排程器1734接收信號傳輸。τχ資料處理器 1714可處理(例如,編碼、交錯及符號映射)訊務資料及信 號傳輸’且分別提供資料符號及信號傳輸符號。調變器 (Mod)l 716可多路傳輸導頻符號連同資料及信號傳輸符 號’對經多路傳輸之符號執行調變(例如,對於OFDM)且 提供輸出碼片。發射器(TMTR)1718可處理(例如,轉換為 122906.doc •27- 200816666 類比、放大、濾波及升頻轉換)輸出碼片且產生可經由天 線1720發射之下行鏈路信號。 在每一 UE 120處,天線1752可自節點B 11〇及其他節點b 接收下行鏈路信號。接收器(RCVR)1754可調節(例如:遽 波、放大、降頻轉換及數位化)自天線1752接收之信號2 提供樣本。解調㈣(DemQd)1756可對樣本執行解調變(例 如,對於OFDM)且提供符號估計。接收(RX)資料處理器 1758可處理(例如,符號解映射、去交錯及解碼)符號估 計,將經解碼之資料提供至資料儲集器176〇, i將^得 之信號傳輸提供至控制器/處理器177〇。一般而言,在每 一 UE 120處藉由RX資料處理器1758及解調變器進= 之處理分別與在節點B 11G處藉由τχ資料處理器PM及調 變器1 71 6進行之處理互補。 在上行鏈路上,ΤΧ資料處理器1782可處理來自資料源 1 780之訊務資料及來自控制器/處理器177〇之信號傳輸,、 且分別產生資料及'信號傳輸符號。此等符號可由調變器Figure 16 shows the design of the process ι_ for receiving transmissions. The device includes means for receiving a transmission (module 1612) from a sub-band selected from at least one of the first frequency regions of the system bandwidth, wherein the transmission is transmitted by frequency selective scheduling, and A means for receiving a transmission (module 1614) from a plurality of sub-bands in a second frequency region spanning a system bandwidth in the case of transmitting transmissions by frequency diversity scheduling. The modules in Figures 12, 14 and 16 may comprise processors, electronics, hardware devices, electronic components, logic circuits, memories, etc. or any combination thereof. Figure 17 shows nodes β 11 〇 and two A block diagram of one of ue i2〇x&12〇y, node B 11〇 and two UEs 12〇x&12〇y are one of the nodes B of the graph and two of the UEs. At node 3 11A, the transmit (τχ) data processor 1714 can receive the traffic data from the data source 1712 and/or receive signal transmissions from the controller/processor 1730 and the scheduler 1734. The τχ data processor 1714 can process (e.g., encode, interleave, and symbol map) traffic data and signal transmissions' and provide data symbols and signal transmission symbols, respectively. Modulator 1 716 can multiplex the pilot symbols along with the data and signal transmission symbols ' to perform modulation on the multiplexed symbols (e.g., for OFDM) and provide output chips. Transmitter (TMTR) 1718 can process (e.g., convert to 122906.doc • 27-200816666 analog, amplify, filter, and upconvert) output chips and generate downlink signals that can be transmitted via antenna 1720. At each UE 120, antenna 1752 can receive downlink signals from Node B 11 and other Nodes b. Receiver (RCVR) 1754 can adjust (e.g., chop, amplify, downconvert, and digitize) the signal 2 received from antenna 1752 to provide samples. Demodulation (4) (DemQd) 1756 may perform demodulation on the samples (e. g., for OFDM) and provide symbol estimates. A receive (RX) data processor 1758 can process (e.g., symbol demap, deinterleave, and decode) symbol estimates, provide decoded data to a data store 176, i provide signal transmission to the controller / Processor 177〇. In general, the processing by the RX data processor 1758 and the demodulation transformer at each UE 120 and the processing by the τχ data processor PM and the modulator 1 71 6 at the Node B 11G, respectively. Complementary. On the uplink, the data processor 1782 can process the traffic data from the data source 1 780 and the signal transmission from the controller/processor 177, and generate the data and 'signal transmission symbols, respectively. These symbols can be modulated by a modulator

1784凋纟交且由發射器1786調節以產生可經由天線1752發射 之上行鏈路信號。在節點B 處,來自UE 其他1JE之上行鏈路信號可由天線1 720接收、由接收器 1 740凋即、由解調變器1 742解調變且由RX資料處理器 17料處理。處理器17私可將經解碼之資料提供至資料儲集 裔1 746,且將偵測得之信號傳輸提供至控制器/處理器 1730。 " 控制器/處理器173〇、m〇x&177〇y可分別指導節點β 122906.doc -28- 200816666 11〇及1^12(^與12〇7處之操作。記憶體1732、1772乂及 1772y可分別儲存用於節點b no及ue 120x與120y之資料 及程式碼。排程器1734可對UE進行排程以與節點b u〇進 行通訊。排程器1734及/或控制器/處理器1730可識別待藉 . 由FDS*排程之UE及待藉由FSS而排程之UE,且可向此等 UE指派適當子頻帶中之資源塊。排程器1734及/或控制器/ 處理器1730可執行圖11中之過程11〇〇、圖13中之過程13〇〇 (、 及/或用於至UE之傳輸的其他過程。分別位於UE 120x及 120y處之控制器/處理器m〇x& m〇y可執行圖15中之過 程1 500及/或用以接收及/或發送針對此等UE之傳輸的其他 過程。 可以各種方式實施本文描述之傳輸技術。舉例而言,可 在硬體、韌體、軟體或其組合中實施此等技術。對於硬體 實施,用以在實體(例如,節點B或UE)處執行技術之處理 單7G可建構於一或多個特殊應用積體電路(ASIC)、數位信 U 號處理器(DSP)、數位信號處理器件(DSPD)、可程式化邏 輯器件(PLD)、場可程式化閘陣列(FpGA)、處理器、控制 器、微控制器、微處理器、電子器件、經設計以執行本文 , 描述之功能的其他電子單元、電腦或其組合内。 ,對於韌體及/或軟體實施,可藉由執行本文描述之功能 的模組(例如,程序、函數等等)而實施該等技術。韋刃體及/ 或軟體指令可儲存於記憶體(例如,圖17 ⑽、™或,)中且可由處理器(例如,處= 1730、177GX或177Gy)執行。可將記憶體建構於處理器内 122906.doc -29- 200816666 部:處理器外部。韌體及/或軟體指令亦可儲存於其他處 理器可讀媒體中,諸如隨機存取記憶體(RAM)、唯讀記憶 體(R〇M)、非揮發性隨機存取記憶體(NVRAM)、可程式化 唯讀記憶體(pr0m)、電可抹除PR〇M(EEpR〇M)、快閃記 怳體、緊密光碟(CD)、磁性或光學資料儲存器件等等。1784 is withdrawn and adjusted by transmitter 1786 to produce an uplink signal that can be transmitted via antenna 1752. At Node B, the uplink signals from the other 1JEs of the UE are received by antenna 1 720, demodulated by Receiver 1 740, demodulated by Demodulation Transformer 1 742, and processed by RX Data Processor 17. The processor 17 privately provides the decoded data to the data repository 1 746 and provides the detected signal transmission to the controller/processor 1730. " Controller/processor 173〇, m〇x&177〇y can instruct nodes β 122906.doc -28- 200816666 11〇 and 1^12 (^ and 12〇7 operations respectively. Memory 1732, 1772 177 and 1772y may store data and code for nodes b no and ue 120x and 120y, respectively. Scheduler 1734 may schedule UEs to communicate with node 〇. Scheduler 1734 and/or controller/ The processor 1730 can identify the UEs to be borrowed by the FDS* and the UEs to be scheduled by the FSS, and can allocate resource blocks in the appropriate subbands to the UEs. Scheduler 1734 and/or controller The processor 1730 may perform the process 11 of FIG. 11, the process 13 of FIG. 13, and/or other processes for transmission to the UE. Controllers/processing at the UEs 120x and 120y, respectively. The apparatus m〇x& m〇y may perform the process 1 500 of Figure 15 and/or other processes for receiving and/or transmitting transmissions for such UEs. The transmission techniques described herein may be implemented in various ways. These techniques can be implemented in hardware, firmware, software, or a combination thereof. For hardware implementation, for use in entities (eg, sections) The processing of the execution technology at point B or UE) 7G can be constructed in one or more special application integrated circuits (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic Device (PLD), Field Programmable Gate Array (FpGA), processor, controller, microcontroller, microprocessor, electronics, other electronic units designed to perform the functions described herein, computers, or a combination thereof For firmware and/or software implementations, the techniques may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described herein. The blade and/or software instructions may be stored in memory. The body (eg, Figure 17 (10), TM or,) can be executed by a processor (eg, at 1730, 177GX, or 177Gy). The memory can be built into the processor 122906.doc -29- 200816666: Processor External firmware and/or software instructions may also be stored in other processor readable media, such as random access memory (RAM), read only memory (R〇M), non-volatile random access memory ( NVRAM), programmable read-only memory (pr 0m), electrically erasable PR〇M (EEpR〇M), flash memory, compact disc (CD), magnetic or optical data storage devices, etc.

ϋ 提供本揭示案之先前描述以使任何熟習此項技術者能夠 製作或使用本揭示案。對本揭示案之各種修改對於熟習此 項技術者將為_而易1的,1可在不脫離本揭示案之精神 或fe可的炀況下將本文界定之一般原理應用於其他變化。 因此,本揭不案不欲限於本文描述之實例及設計,而應與 本文所揭示之原理及新奇特徵最廣泛地一致。 【圖式簡單說明】 圖1展示無線通訊系統。 圖2展示頻率結構。 圖3展示時間結構。 圖4展示資源結構。 圖5展示子頻帶結構。 圖6A及圖6B展示支援FSS以及藉由跨越子頻帶之跳頻而 進行之FDS的兩個多工結構。 圖7展示支援F S S以及藉由跨越資源塊之跳頻而進行之 FDS的多工結構。 圖8展示跨越一子頻帶内之資源塊之跳頻。 圖9A及圖9B展示支援FSS以及FDS之兩個多工結構,其 中在所有子頻帶上支援1?88。 122906.doc -30- 200816666 圖職示對於一時間交 頻。 于頻π内之資源塊之跳 圖11及圖12分別展示 傳輸之過程及裝置。 、★送針對FSS及FDS使用者之 圖13及圖U分別展示用於 FDS使用者之傳輸之過程及以卜1父錯上發送針對FSS及 圖15展示用於接收傳輪之過程。 圖16展示用於接收傳輸之農置。 【主要元件符號說明】 Ο 圖17展示節點B及兩個使用者設備(UE)之方塊圖。 122906.doc 100 無線通訊系統 110 節點B 120 UE 120x UE 120y UE 130 系統控制器 200 頻率結構 300 時間結構 400 資源結構 500 子頻帶結構 600 多工結構 610 .多工結構 700 多工結構 800 多工結構 ioc -31· 200816666 900 多工結構 910 多工結構 1000 多工結構 1200 裝置 1212 模組 1214 模組 ' 1216 模組 1400 裝置 ( 1412 模組 1414 模組 1416 模組 1418 模組 1600 裝置 1612 模組 1614 模組 / 1712 ϋ 貧料源 1714 發射(TX)資料處理器 1716 調變器(Mod) ~ 1718 發射器(TMTR) 1720 天線 1730 控制器/處理器 1732 記憶體 1734 排程器 1740 接收器 122906.doc -32- 200816666 1742 解調變器 1744 RX資料處理器 1746 資料儲集器 1752 天線 1754 接收器(RCVR) 1756 解調變器(Demod) 1758 接收(RX)資料處理器 1760 資料儲集器 1770 控制器/處理器 1770x 控制器/處理器 1770y 控制器/處理器 1772x 記憶體 1772y 記憶體 1780 資料源 1782 TX資料處理器 1784 調變器 1786 發射器 122906.doc 33-The previous description of the present disclosure is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the present disclosure will be made to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Therefore, the present disclosure is not intended to be limited to the examples and designs described herein, but rather broadly consistent with the principles and novel features disclosed herein. [Simple diagram of the diagram] Figure 1 shows the wireless communication system. Figure 2 shows the frequency structure. Figure 3 shows the time structure. Figure 4 shows the resource structure. Figure 5 shows the subband structure. Figures 6A and 6B show two multiplex structures that support FSS and FDS by frequency hopping across sub-bands. Figure 7 shows a multiplex structure that supports F S S and FDS by hopping across resource blocks. Figure 8 shows frequency hopping across resource blocks within a sub-band. Figures 9A and 9B show two multiplex structures supporting FSS and FDS, which support 1?88 on all subbands. 122906.doc -30- 200816666 Figure shows the frequency for a time. Jumping of Resource Blocks in Frequency π Figure 11 and Figure 12 show the transmission process and apparatus, respectively. , and send to FSS and FDS users. Figure 13 and Figure U show the process of transmission for FDS users and the process of transmitting to FSS and the display for receiving the transmission. Figure 16 shows a farm for receiving transmissions. [Main Component Symbol Description] Figure 17 shows a block diagram of Node B and two User Equipments (UEs). 122906.doc 100 Wireless communication system 110 Node B 120 UE 120x UE 120y UE 130 System controller 200 Frequency structure 300 Time structure 400 Resource structure 500 Sub-band structure 600 Multiplex structure 610. Multiplex structure 700 Multiple structure 800 Multiple structure Ioc -31· 200816666 900 multiplex structure 910 multiplex structure 1000 multiplex structure 1200 device 1212 module 1214 module ' 1216 module 1400 device ( 1412 module 1414 module 1416 module 1418 module 1600 device 1612 module 1614 Module / 1712 贫 Poor Source 1714 Transmit (TX) Data Processor 1716 Modulator (Mod) ~ 1718 Transmitter (TMTR) 1720 Antenna 1730 Controller / Processor 1732 Memory 1734 Scheduler 1740 Receiver 122906. Doc -32- 200816666 1742 Demodulation Transformer 1744 RX Data Processor 1746 Data Reservoir 1752 Antenna 1754 Receiver (RCVR) 1756 Demodulation Transformer (Demod) 1758 Receive (RX) Data Processor 1760 Data Reservoir 1770 Controller / Processor 1770x Controller / Processor 1770y Controller / Processor 1772x Memory 1772y Memory 178 0 Source 1782 TX Data Processor 1784 Modulator 1786 Transmitter 122906.doc 33-

Claims (1)

200816666 十、申請專利範圍 種用於無線通訊之裝置,其包含: 1. 至少—處理器,其經組態以將— ^ 第一僖於他私r '斗對一第一使用者之 φs 自—第一頻率區域中之至少-子頻帶 中選擇以用於該第一使用中之^子頻τ 率區域中之多個子頻帶而映射…跨越-第二頻 二傳於w ㈣映射—針對-第二使用者之第 一傳輸,该弟一頻率區域與該 、 m t ^ Am Ah ^ 一頻率區域對應於系統 頻見之兩個非重疊部分;及 一記憶體,其耦接至該至少一處理器。 2·如請求項1之裝置,其中該至 ° JS] 04 n pe , 處理器經組態以在不 IJ時間間隔中將該第一傳 定部分。 傳輸映射至该所選子頻帶之一固 3·如請求項1之裝置,其中該至少一 於兮楚土 處理器經組態以在用 % β弟一使用者之該 眛Μ ^ 、于领贡内執行跳頻,且在不同 時間間隔中將該第一傳輪映 1, 分。 寻㈣射至该所選子頻帶之不同部 4·如請求項1之裝置,其中每一子骟册—人 且, τ母子頻π包含多個副載波’ 且八中该至少一處理哭麵έ能 箆1 h 、、且L以在不同時間間隔中將該 弟一傳輪映射至該多個子頻帶中 丁5貝呗τ之田彳載波的不同集合。 乂 如叫求項4之裝置,1中各一日车 划+ 4母時間間_應於一符號週 之子::包含多個符號週期之時槽’或-包含多個時槽 6.二::求項1之裝置’其中該至少-處理器經組態以對於 --使用者執行子頻帶級跳頻’且在不同時間間隔中 122906.doc 200816666 將4弟二傳輸映射至該第二頻 7·如請求们之裝置,其中每一;4中之不同子頻帶。 且其中該至少一户理H 頻帶包含多個資源塊, ^ 處理态經組態以對… 資源塊級跳頻,且在 :弟二使用者執行 至該第二頻率α ^ 隔中將該第二傳輸映射 貝羊Q域中之不同資源塊。 8·如請求们之裝置,其中該至少卢 -固定跳躍圖荦或一偽p機sk <理器經組態以基於 帶而對”=戈“機跳躍圖案來跨越該多個子頻 I亥弟二傳輸執行跳頻。 9·如請求項1之裝置,其 頻帶為非鄰接的員率區域中之該多個子 10 ·如請求項1之驻 勻間p 、,,、中該至少-處理器經組態以在均 寫之時間週期中將該針 : 映射至該所選子頻帶。 使用者之第一傳輸 n.如請求項1之裝置,其中 L 映射至該第-頻率區域中:二處理器經組態以藉由 及映射至★亥第S亥所4子頻帶之該第-傳輸 衿… 域中的該多個子頻帶之該第二傳 則 正交分頻多工(OFDM)符號。 12. -種用於無線通訊之方法,兑包含. 針對—第-使用者之第-傳輸映射至一自一第一 頻率區域中$ $小 至夕一子頻帶中選擇以用於該第一使用者 的子頻帶;及 /越-第二頻率區域中之多個子頻帶而映射一針對— ::使用者之第二傳輸,該第-頻率區域與該第二頻率 區域對應於系統頻寬之兩個非重疊部分。 122906.doc 200816666 求貝12之方法,其中該映射該第—傳輸包含在不同 時間間隔中將該第—傳輸映射至該所選子一固定 部分。 日士 „长項12之方法’其中該映射該第-傳輸包含在不同 :間間隔中將該第-傳輸映射至該所選子頻帶之不同部 分0 丰长貝12之方法,其中該映射該第二傳輸包含在不同 门:間隔中將該第二傳輸映射至該第二頻率區域中之不 同子頻帶。 16·如請求項12之方法,其 日1 母子頻Y包含多個資源塊, :该映射該第二傳輸包含在不同時間間隔中將該第 I?::輸映射至該第二頻率區域中之不同資源塊。 •種用於無線通訊之裝置,其包含: (J 用::一針對一第一使用者之第_傳輸映射一 *的子頻帶二子頻帶中選擇用於該第, 對 跨:用—第二頻率區域中之多個子頻帶而映射一針 該第「者之第二傳輸之構件,該第-頻率區域與 ",如請求項17之事置,”:頻見的兩個非重疊部分。 <及置,其中該用於映射 包含用於在不同睥門η隐由 射名卓一傳輸之構件 门日守間間隔中將該第一傳 子頻帶之-固定部分的構件。 專輸映射至該所選 :二求項17之裝置,其中該用於映射該第 包各用於在不同時間間 專輸之構件 將忒弟一傳輸映射至該所選 122906.doc 200816666 子頻帶之不同部分的構件。 20.如請求項17之裝置,1 ,、甲邊用於映射該第-值 包含用於在不同時間間 傳輸之構件 頻率區域中之不同子頻帶的構件。 以弟二 2 1 ·如請求項1 7之裝詈,甘士 — 纟置,其中每一子頻帶包含多 且八中该用於映射該第二傳輸之構‘ 間間隔中將該第-傳於恤M s U於在不同時 弟-傳輸映射至該第二頻率 貧源塊的構件。 ^ τ <不冋 22. —種處理器可讀媒體,其包 理器可讀媒體包含: 、-上之指令,該處 :用於將一針對一第-使用者之第-傳輸映射至_自 一弟一頻率區域中 目 子頻f中選擇用於該第一使 用者的子頻帶之第一指令集合;及 L 用越一第二頻率區域中之多個子頻帶而映射一 、'對-弟二使用者之第二傳輸的第二指令集合,該第一 _區域與該第二頻率區域對應於系統頻寬之兩 @部分。 外里 23· —種用於無線通訊之裝置,其包含: 至2、-處理器,其經組態以在一第一時間交錯中將針 對-第一組使用者之傳輸映射至至少一子頻帶之一第一 集合’且在該第-時間交錯中將針對一第二組使用者之 傳輸映射至子頻帶之一第二集合,該第一組中之每一使 2者係映射至該第一集合中之一子頻帶,該第二組中之 母-使用者係跨越該第二集合中的該等子頻帶而映射, 122906.doc 200816666 該第二集合包括不 第-時間交錯包二 中之子頻帶,且該 曰匕括均勻間隔之時間週期;及 一記憶體,苴& & 具耦接至該至少一處理琴。 24·如請求項23之桊 ^ ^ ^ ^ " ,/、中該至少一處理器經組態以在一 弟一時間交錯中 、〃十對一弟二組使用者之傳輸映射至至 少一子頻帶之_筮-崔人 ^ 弟一集5 ,且在該第二時間交錯中將針 :」四組使用者的傳輸映射至子頻帶之-第四集合, ^二組I之每~使用者係映射至該第三集合中之一子 頻f ,亥第四組中的每一使用者係跨越該第四集合中之 該等子頻帶而映射,該第四集合包括不包括於該第三集 口中之子頻I,且該第二時間交錯包括不包括於該第一 時間交錯中的均勻間隔之時間週期。 CJ 25·如請:欠項24之農置,其中用於該第二時間交錯之子頻帶 ^該第三集合不同於用於該第一時間交錯的子頻帶之該 第一集合,且用於該第二時間交錯之子頻帶之該第四集 合不同於用於該第一時間交錯的子頻帶之該第二集合。 26·如請求項24之裝置,其中該至少一處理器經組態由 混合自動再傳輸(HARQ)而分別在該第一時間交錯及該第 二時間交錯上向該第一組使用者及該第三組使用者發送 傳輸。 、 27.如請求項23之裝置,其中該至少一處理器經組態以基於 藉由頻率選擇性排程(FSS)之使用者之訊務負載及藉2頻 率分集排程(FDS)的使用者之訊務負載而將系統頻寬分 割為至少一子頻帶之該第一集合及子頻帶之該第二 —— 朱 122906.doc 200816666 合。 28.如請求項23之裝置’其中該至少一處理器經組態以發送 傳送用於該第-日夺間交錯的子頻帶之該第一集合及該第 二集合之資訊。 29·如請求項28之裝置’其中該資訊包含一子頻帶位元遮 罩,其中一位元用於複數個子頻帶中之每一者,用於每 子頻π之邊位元被設定為一第一 *以指示該子頻帶處 於該第-集合巾,且被狀n值㈣示該子頻帶 係處於該第二集合中。 3〇·如,月求項24之裝置,其中該至少一處理器經組態以發送 傳送用於該第一時間交錯的子頻帶之該第一集合及該第 =合之資訊,且其中用於該第二時間交錯之子頻帶之 該第三集合及㈣四集合係基於用於該第—時間交錯的 子頻帶之該第一集合及該第二集合而判定。 3 1·種用於無線通訊之方法,其包含: Ο 在一第-時間交錯中將針對—第—組使用者之傳輸映 至少一子頻帶之一第-集合,該第-組中的每-使 交錯包括均勻間隔之時間週期;及 六一一. 莱口中之子頻▼,且該第一時間 在該第一時間交錯中將針 射至子頻帶之一第一“ 、且使用者之傳輸映 跨越,二,該第二組中的每-使用者係 %越该弟二隼人士方楚 包括不j、二 而映射’且該第二集合 匕括於泫第一集合中之子頻帶。 32.如請求項31之方法,其進一步包含: 122906.doc 200816666 交錯中將針對-第三組使用者之傳輸映 射至至少—工此册 ^ 田土〃 子頻V之一第三集合,該第三組中的每一使 者係映射至該第三隼人中 卜 m 口中t子頻贡,且該第二時間 二:匕不包括於該第一時間交錯中之均句間 週期;及 u 在该第二時間交錯中將針對一第四組使用者之傳輸映 射至子頻帶之-第四集合,該第四組中的每一使用者係 跨越該第四集合中之該等子頻帶而映射,且該第四集: 包括不包括於該第三集合中之子頻帶。 、D 33. 如請求項32之方法’其進一步包含: 藉由此合自動再傳輸(HARQ)而分別在該第一時間交錯 及》亥第—a守間父錯上向該第一組使用者及該第三 者發送傳輸。 一、、' 便用 34. —種用於無線通訊之裝置,其包含: 至少一處理器,其經組態以在藉由頻率選擇性排程而 :送-傳輸之情況下自一選自一第一頻率區域中之至少 :子頻帶中的子頻帶接收該傳輸’且在藉由頻率分集排 程而發送該傳輸之情況下自跨越—第二頻率區域中之多 個子頻帶而接收該傳輸,該第一頻率區域與該第二頻率 區域對應於系統頻寬之兩個非重疊部分·,及 5己fe體,其耗接至該至少一處理器。 35·如請求項34之裝置,其中該至少_處理器經組態以在藉 由頻率選擇性排程而發送該傳輸之情況下在不同時間間 隔中自該所選子頻帶之一固定部分接收該傳輸。 122906.doc 200816666 36·如請求項34 由頻率、,至少—處理器經組態以在藉 3二一頻帶叫=:_間 .由頻:::裝置’其中該至少一處理器經組態《在藉 中自令坌 專輸之h況下在不同時間間隔 且1中兮存 〃中母-子頻帶包含多個資源塊, 發送”/、—處理器經組態以在藉由頻率分集排程而 域中:不::情況下在不同時間間隔中自該第二頻率區 一 同資源塊接收該傳輸。 39·如請求項34之裝置,1 m 八中該至夕一處理器經組態以基於 胃跳頻而發送該傳輸之一 機跳躍圖案來接收該傳輸。 η偽^ 勻F; 項34之裝置’其中該至少-處理器經組態以在均 時間週期中藉由混合自動再傳輸(harq) 琢得輸。 /貝34之裝置’其中該至少一處理器經組態以基於 廣播資訊而判定該第-頻率區域與該第二頻率區域中之 該等子頻帶。 42. -種用於無線通訊之方法,其包含: $由頻率選擇性排程而發送一傳輸之情況下自一選 自-第-頻率區域中之至少一子頻帶中的子頻帶接收該 傳輸;及 在藉由頻率分集排程而發送該傳輸之情況下自跨越一 122906.doc 200816666 :二頻率區域中之多個子頻帶而接收該傳輸,該第—頻 率區域與該第二頻率區域對應於系統頻寬之兩個非重最 部分。 且 勺^項42之方法,其中該自該所選子頻帶接收該傳輪 ^在不同時間間隔中自該所選子頻帶之—固定部分接 收該傳輸。 疋I刀接 44_如請求項42之方法,豆中兮ώ斗 ,、中该自该所選子頻帶接收該傳輪 匕3在不同時間間隔中自該所選+ # π > π η # υ 該傳輸。 斤、子頻…同部分接收 45·=:項42之方法,其中該自跨越該多個子頻 二傳輸包含在不同時間間隔中自該第二頻率區域中之不 同子頻帶接收該傳輸。 46_如請求項42之方法, 0 . ^ 甲母子頻帶包含多個資源塊, /、中该自跨越該多個+瓶嫌 夕個子頻▼而接收該傳輸包含在不同 時間間隔中自該第二頻率F七 輸。 貞旱£域巾之*同資源塊接收該傳 47. 一種用於無線通訊之裝置,其包含: 一=於在藉由頻率選擇性排程而發送—傳輸之情況下自 一k自一第一頻率區域中 收該傳輸之構件;及 子頻帶中的子頻帶接 ::在藉由頻率分集排程而發送該傳輸之情況下自跨 越 弟一頻率區域中之多個;t 杜 ^ ^ 夕個子頻▼而接收該傳輸的構 之而Γ —f率區域與該第二頻率11域對應於系統頻寬 之兩個非重疊部分。 122906.doc 200816666 48.如請求項47之 傳輸之構件包含用於:不同所選子頻帶接收該 之:固定部分接收該傳輪之構件:+自該所選子頻帶 49.如請求項47之 甘 傳輸之構件包含於自該所選子頻帶接收該 之不同部分接收該傳輸之構件。…該所選子頻帶 50.如請求項47之裝置,其中該用於自 接收該傳輸之構 汉心個子頻帶而 頻率區域中之不门工 在不同時間間隔中自該第二 51如社/Γ 貞帶接㈣傳輸的構件。 .如,求項47之裝置,其中 且其中該用於自跨越該多個子含多個資源塊, 包含用於在不同時間間隔專輸之構件 資源塊接收該傳輸的構件。 、革£域中之不同 52· 一種處理器可讀媒體, 4體,《包括儲存於其上之 理器可讀媒體包含: 4處 -用於在藉由頻率選擇性 指宴ό 、联A M J知达得輸之情況下 = 第一頻率區域中之至少-子頻帶中的子 頻T接收該傳輸之第一指令集合;及 子 一用於在藉由頻率分隼排 ^ 排私而發送該傳輸之情況下指 =跨=第:頻率區域中之多個子頻帶而接收該;^ 口’该第一頻率區域與該第二頻率區域對 應於系統頻寬之兩個非重疊部分。 —' 122906.doc200816666 X. Patent application for a device for wireless communication, comprising: 1. At least a processor configured to - 僖 他 他 他 私 他 斗 对 第一 第一 第一 第一 第一 第一 第一- selecting at least one of the sub-bands in the first frequency region for mapping for a plurality of sub-bands in the first sub-frequency τ rate region ... spanning - second frequency bi-transmission to w (four) mapping - for - a first transmission of the second user, the frequency range of the brother and the mt ^ Am Ah ^ frequency region corresponding to two non-overlapping portions of the system frequency; and a memory coupled to the at least one processing Device. 2. The apparatus of claim 1, wherein the to JS] 04 n pe , the processor is configured to place the first pass portion in an IJ time interval. The transmission is mapped to one of the selected sub-bands, such as the device of claim 1, wherein the at least one processor is configured to use the user of the % β- The tribute performs frequency hopping and maps the first passer to 1 in different time intervals. Finding (4) to the different parts of the selected sub-band 4. The apparatus of claim 1, wherein each sub-book-person and τ mother-child frequency π comprises a plurality of sub-carriers' and at least one of eight processes the crying face έ can 箆 1 h , and L to map the younger one to the different sets of the 彳 呗 呗 该 该 该 该 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 For example, the device of claim 4, 1 day of each car plan + 4 mother time _ should be in the symbol week of the child:: the time slot containing multiple symbol periods ' or - contains multiple time slots 6. Two: : The apparatus of claim 1 wherein the at least - the processor is configured to perform sub-band hopping for the user - and in the different time intervals 122906.doc 200816666 maps the 4 nd transmission to the second frequency 7. As requested by the devices, each of them; 4 different sub-bands. And wherein the at least one H-band contains a plurality of resource blocks, and the processing state is configured to hop to the resource block level, and the second user performs the second frequency α ^ interval The second transmission maps different resource blocks in the Q domain. 8. The device of the request, wherein the at least Lu-fixed jump map or a pseudo-p machine sk < the processor is configured to span the plurality of sub-frequency I-based based on the band The second transmission performs frequency hopping. 9. The device of claim 1, wherein the frequency band is the plurality of sub-elements in the non-contiguous rate region. • the inter-station p, ,, in the request item 1, the at least the processor is configured to The pin: is mapped to the selected sub-band during the time period of the write. First transmission of the user n. The apparatus of claim 1, wherein L is mapped to the first frequency region: the second processor is configured to be mapped to the fourth sub-band of the ★ - transmitting the second pass orthogonal frequency division multiplexing (OFDM) symbol of the plurality of subbands in the domain. 12. A method for wireless communication, including: a first-transmission mapping of a first-user to a first sub-band in a first frequency region selected for the first a sub-band of the user; and/or a plurality of sub-bands in the second frequency region are mapped to a second transmission for the :: user, the first frequency region and the second frequency region corresponding to the system bandwidth Two non-overlapping parts. 122906.doc 200816666 The method of claim 12, wherein the mapping the first transmission comprises mapping the first transmission to the selected sub-fixed portion in different time intervals. The method of the Japanese term "long term 12" wherein the mapping of the first transmission comprises mapping the first transmission to a different portion of the selected sub-band 0 in a different interval, wherein the mapping The second transmission includes mapping the second transmission to a different sub-band in the second frequency region in a different gate: interval. 16. The method of claim 12, wherein the day 1 mother-child frequency Y comprises a plurality of resource blocks, The mapping the second transmission comprises mapping the first I::: mapping to different resource blocks in the second frequency region in different time intervals. • A device for wireless communication, comprising: (J:: Determining, for a first sub-band, a sub-band of a first user, a sub-band, a sub-band for mapping the first one of the plurality of sub-bands in the second frequency region The second transmission component, the first frequency region and ", as in the case of claim 17, ": two non-overlapping portions of the frequency. < and set, where the mapping is included for use in different tricks η 隐 by the name of Zhuo Yi transmission of the component door day guard The means for mapping the first sub-band to the fixed portion is mapped to the selected device: the device of the second item 17, wherein the means for mapping the packet for each time during different time intervals Mapping the transmission to the components of the different portions of the selected 122906.doc 200816666 subband. 20. As claimed in claim 17, the edge is used to map the first value to be used at different times The components of the different sub-bands in the component frequency region of the transmission. The brothers 2 1 · as claimed in claim 1 7 , the Gansu - device, wherein each sub-band contains more than eight and is used to map the In the interval of the second transmission, the first transmission is transmitted to the member of the second frequency poor source block in the different time-sharing. ^ τ < 不冋22. Read media, the processor readable medium includes: -, the command on the, the: for mapping a first-user-first transmission to the _ from a younger frequency region in the target frequency f Selecting a first set of instructions for the sub-band of the first user; and L Mapping a second instruction set of a second transmission of a pair of 'second-frequency users' by using a plurality of sub-bands in a second frequency region, wherein the first_region and the second frequency region correspond to a system bandwidth Two @parts. A device for wireless communication, comprising: to 2, a processor configured to map a transmission for a first group of users in a first time interleaving And a first set of at least one sub-band and mapping, in the first-time interleaving, a transmission for a second group of users to a second set of one of the sub-bands, each of the first group Mapping to one of the sub-bands in the first set, the parent-user in the second set is mapped across the sub-bands in the second set, 122906.doc 200816666 The second set includes not- The time interleaves the sub-bands of the packet 2, and the time interval is evenly spaced; and a memory, 苴 && is coupled to the at least one processing piano. 24. If the at least one processor of the request item 23 is configured to map the transmission to at least one of the user of the ten-to-one brothers in a one-time interleaving The sub-band _ 筮 - Cui Ren ^ brother episode 5, and in the second time interleaving: "four groups of users' transmissions mapped to the sub-band - the fourth set, ^ two groups of each ~ use Mapping to one of the sub-frequencies f in the third set, each user in the fourth group is mapped across the sub-bands in the fourth set, the fourth set including not included in the The sub-frequency I of the three sets of ports, and the second time interleaving includes a time interval of uniform intervals not included in the first time interleaving. CJ 25, if requested, the farm of the debt 24, wherein the sub-band for the second time interleaving is different from the first set of sub-bands for the first time interleaving, and is used for The fourth set of sub-bands of the second time interleaving is different from the second set of sub-bands for the first time interleaving. The device of claim 24, wherein the at least one processor is configured to be hybrid automatic retransmission (HARQ) to the first group of users and the second time interleaving respectively The third group of users sends the transmission. 27. The device of claim 23, wherein the at least one processor is configured to be based on a traffic load of a user by frequency selective scheduling (FSS) and a use of a frequency diversity scheduling (FDS) The traffic load of the user divides the system bandwidth into the first set of at least one sub-band and the second of the sub-bands - Zhu 122906.doc 200816666. 28. The device of claim 23, wherein the at least one processor is configured to transmit information for the first set and the second set of sub-bands for the first-day interleaving. 29. The device of claim 28, wherein the information comprises a sub-band bit mask, wherein one bit is used for each of the plurality of sub-bands, and the bit for each sub-frequency π is set to one The first * indicates that the sub-band is in the first-collection towel, and the n-value (four) indicates that the sub-band is in the second set. 3. The device of claim 24, wherein the at least one processor is configured to transmit the first set of subbands for the first time interleaving and the information of the first combination, and wherein The third set and the (four) four sets of subbands interleaved at the second time are determined based on the first set and the second set of subbands for the first time interleaving. 3 1. A method for wireless communication, comprising: Ο mapping, in a first-time interleaving, a transmission of at least one sub-band to a user of the first group, each of the first group - causing the interlace to include a time interval of even intervals; and a sub-frequency in the six-one. The first time in the first time interleaving triggers the needle to one of the sub-bands first, and the user transmits In the second group, the per-user system % includes the sub-bands that are not j and two, and the second set is included in the sub-band of the first set. The method of claim 31, further comprising: 122906.doc 200816666 interlacing to map the transmission of the third group of users to at least one of the third subset of the field frequency V, the third Each of the messengers in the group is mapped to the t-sub-tribution in the third person, and the second time two is not included in the inter-sentence period in the first time interleaving; and u is in the first In the second time interleaving, the transmission will be targeted to a fourth group of users. Shooting to a fourth set of sub-bands, each user of the fourth set being mapped across the sub-bands in the fourth set, and the fourth set: including not included in the third set Sub-band. The method of claim 32, wherein the method further comprises: by means of automatic retransmission (HARQ), respectively, at the first time interleaving and "Hai-a custodial parent error" A group of users and the third party transmit transmissions. 1. A device for wireless communication, comprising: at least one processor configured to be selectively scheduled by frequency And: in the case of a transmission-transmission, the transmission is received from a sub-band selected from at least one of the first frequency regions: and the transmission is transmitted by the frequency diversity scheduling. Receiving the transmission in a plurality of sub-bands in the two frequency regions, the first frequency region and the second frequency region corresponding to two non-overlapping portions of the system bandwidth, and 5 fel bodies, which are consumed to the at least one Processor. 35. The device of claim 34, wherein the at least _ The processor is configured to receive the transmission from a fixed portion of the selected sub-band in different time intervals in the case of transmitting the transmission by frequency selective scheduling. 122906.doc 200816666 36. By frequency, at least - the processor is configured to call the 3:1 band called =:_. By frequency::: device 'where the at least one processor is configured "in the borrowing In the case of h, at different time intervals and in 1, the mother-subband contains multiple resource blocks, and the transmit "/," processor is configured to be in the domain by frequency diversity scheduling: no:: The transmission is received from the same resource block in the second frequency zone in different time intervals. 39. The apparatus of claim 34, wherein the processor is configured to transmit the transmission hopping pattern based on gastric hopping to receive the transmission. The apparatus of item 34 wherein the at least processor is configured to automatically transmit by means of hybrid automatic retransmission (harq) in an average time period. The device of the 'bay 34' wherein the at least one processor is configured to determine the sub-frequency region and the sub-bands in the second frequency region based on the broadcast information. 42. A method for wireless communication, comprising: receiving a transmission from a sub-band selected from at least one sub-band selected from a - frequency region by transmitting a transmission by frequency selective scheduling And receiving the transmission from a plurality of sub-bands in a two-frequency region, the first-frequency region corresponding to the second frequency region, in the case of transmitting the transmission by frequency diversity scheduling The two non-weight parts of the system bandwidth. And the method of item 42, wherein the receiving the transmission from the selected sub-band receives the transmission from the fixed portion of the selected sub-band in different time intervals.疋I knife connection 44_, as in the method of claim 42, the bean in the bucket, the receiving the rim 3 from the selected sub-band from the selected + # π > π η in different time intervals # υ The transmission. The method of receiving, by the same portion, 45. =: Item 42, wherein the transmitting from the plurality of sub-frequency two transmissions comprises receiving the transmission from different sub-bands in the second frequency region in different time intervals. 46_, as in the method of claim 42, 0. ^ A mother-child sub-band includes a plurality of resource blocks, /, the self-crossing the plurality of + bottles of singular frequency ▼ and receiving the transmission is included in the different time interval from the first Two frequencies F seven losses. Receiving the transmission with the same resource block 47. A device for wireless communication, comprising: a = in the case of transmission-transmission by frequency selective scheduling a component that receives the transmission in a frequency region; and a sub-band in the sub-band: a plurality of self-crossing frequency regions in the case of transmitting the transmission by frequency diversity scheduling; t Du ^ ^ 夕The sub-frequency ▼ receives the transmission and the f-f rate region and the second frequency 11 domain correspond to two non-overlapping portions of the system bandwidth. 122906.doc 200816666 48. The means for transmitting the request item 47 comprises: receiving the different selected sub-bands: the fixed part receiving the member of the transport wheel: + from the selected sub-band 49. as claimed in claim 47 The means for transmitting the transmission includes means for receiving the transmission from the different portions of the selected sub-band. The selected sub-band 50. The apparatus of claim 47, wherein the sub-band for receiving the transmission from the sub-band and the non-mutation in the frequency region are from the second 51 in different time intervals Γ 贞 接 (4) Transmitted components. The apparatus of claim 47, wherein the means for self-containing the plurality of resource blocks across the plurality of sub-ports comprises means for receiving the transmission at a component resource block dedicated at different time intervals. The difference between the field and the field 52. A processor-readable medium, 4 body, including the processor-readable medium stored thereon includes: 4 places - used to refer to the AMJ by frequency selectivity In the case of knowing the loss = at least the sub-frequency in the first frequency region - the sub-frequency T in the sub-band receives the first set of instructions for the transmission; and the sub-one is used to transmit the private allocation by frequency allocation In the case of transmission, the finger = cross = multiple sub-bands in the frequency region is received; the port 'the first frequency region and the second frequency region correspond to two non-overlapping portions of the system bandwidth. —' 122906.doc
TW96125926A 2006-07-14 2007-07-16 Frequency selective and frequency diversity transm TWI353125B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83077006P 2006-07-14 2006-07-14

Publications (2)

Publication Number Publication Date
TW200816666A true TW200816666A (en) 2008-04-01
TWI353125B TWI353125B (en) 2011-11-21

Family

ID=40892196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96125926A TWI353125B (en) 2006-07-14 2007-07-16 Frequency selective and frequency diversity transm

Country Status (3)

Country Link
CN (1) CN101491137B (en)
TW (1) TWI353125B (en)
UA (1) UA92958C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369424B2 (en) 2006-07-14 2013-02-05 Qualcomm Incorporated Frequency selective and frequency diversity transmissions in a wireless communication system
CN102123014B (en) * 2010-03-30 2016-05-18 电信科学技术研究院 Orthogonal covering codes configuration and frequency hopping configuration indicating method and device
CN106412876B (en) * 2015-07-28 2020-05-22 中国电信股份有限公司 Transmission method, device, terminal and system
US10667282B2 (en) * 2017-07-11 2020-05-26 Qualcomm Incorporated Uplink hopping pattern modes for hybrid automatic repeat request (HARQ) transmissions
CN110933717B (en) * 2018-09-14 2022-08-02 中国电信股份有限公司 Internet of vehicles communication method, system, device and computer readable storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760317B1 (en) * 2000-07-06 2004-07-06 Nokia Mobile Phones Ltd. Adaptive transmission channel allocation method and system for ISM and unlicensed frequency bands

Also Published As

Publication number Publication date
TWI353125B (en) 2011-11-21
UA92958C2 (en) 2010-12-27
CN101491137B (en) 2013-10-23
CN101491137A (en) 2009-07-22

Similar Documents

Publication Publication Date Title
RU2407230C2 (en) Frequency-selective and frequency-separated transmission in wireless communication system
JP5734922B2 (en) Signaling transmission with local spreading for wireless communication
TWI362853B (en) Half-duplex communication in a frequency division duplex system
KR101138515B1 (en) Method and apparatus for multiplexing cdm pilot and fdm data
US20190373612A1 (en) Partitioning of frequency resources for transmission of control signals and data signals in sc-fdma communication systems
TWI342700B (en) Configurable pilots in a wireless communication system
JP5016044B2 (en) Variable control channel for wireless communication systems
TWI451729B (en) Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
TWI374679B (en) Acknowledgement of control messages in a wireless communication system
US9154276B2 (en) Wireless communication system, mobile station apparatus, and base station apparatus using demodulation reference signal
DK1922830T3 (en) Code-division-multiplexing in a single-carrier access system frekvensdivisionsmultipelt
WO2018082244A1 (en) Method and device for configuring demodulation reference signal, computer storage medium
TW201141287A (en) Method and apparatus for resource allocation with carrier extension
TW200935794A (en) Frequency diverse control mapping of channel elements to resource elements
JP2009539276A (en) Method and apparatus for subslot packet in wireless communication
JP2010537501A (en) Frequency diversity communication in wireless communication systems
TW200832994A (en) Base station and method for mitigating interference in a sectorized communication network
TW200816666A (en) Frequency selective and frequency diversity transmissions in a wireless communication system
TW200818801A (en) Variable control channel for a wireless communication system
RU2473170C2 (en) Transfer of pilot signal and data in mimo system applying subband multiplexing