TW200816659A - A receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof - Google Patents

A receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof Download PDF

Info

Publication number
TW200816659A
TW200816659A TW096124353A TW96124353A TW200816659A TW 200816659 A TW200816659 A TW 200816659A TW 096124353 A TW096124353 A TW 096124353A TW 96124353 A TW96124353 A TW 96124353A TW 200816659 A TW200816659 A TW 200816659A
Authority
TW
Taiwan
Prior art keywords
signal
receiver
voltage
resistor
nmos transistor
Prior art date
Application number
TW096124353A
Other languages
Chinese (zh)
Other versions
TWI369081B (en
Inventor
Jae-Wook Lee
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200816659A publication Critical patent/TW200816659A/en
Application granted granted Critical
Publication of TWI369081B publication Critical patent/TWI369081B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/02Shaping pulses by amplifying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3565Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Dc Digital Transmission (AREA)
  • Circuits Of Receivers In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Networks Using Active Elements (AREA)

Abstract

Example embodiments are directed to a receiver for reducing ISI of at least one data transmission channel and compensating for signal gain loss, and method thereof. A receiver may include a high pass filter and a Schmitt trigger controlled by a plurality of first control signals and a plurality of second control signals. The plurality of first control signals and the plurality of second control signals may be used to shift a first trigger voltage and a second trigger voltage of the Schmitt trigger. A method of reducing intersymbol interference and compensating for signal gain loss of a receiver connected to at least one data transmission channel is also provided.

Description

200816659 九、發明說明: 【發明所屬之技術領域】 實例實施例係關於一種電子電路,舉例而言,係關於一 種用於降低資料傳輸通道之内標記干擾(ISI)並補償信號增 益損失之接收器及其方法。 ~ 【先前技術】 • 隨著半導體晶片之操作速度增加,資料傳送速率亦可隨 之上升。資料輸入/輸出速率亦可由於對半導體晶片中之 Ο 插腳之數目的限制而增加。isi可導致資料傳輸通道之非 線性組件中之信號品質降級。 圖1說明實例習知資料傳輸通道之電路。參看圖i,自發 射器110輸出之信號A可經由通道12〇傳輸至接收器13〇。接 收器130可包括一可將已通過通道12〇之信號B與參考電壓200816659 IX. Description of the Invention: [Technical Field of the Invention] Example embodiments relate to an electronic circuit, for example, to a receiver for reducing mark interference (ISI) in a data transmission channel and compensating for signal gain loss And its method. ~ [Prior Art] • As the operating speed of semiconductor wafers increases, the data transfer rate can also increase. The data input/output rate can also be increased due to the limitation on the number of pins in the semiconductor wafer. Isi can cause degradation in signal quality in non-linear components of the data transmission channel. Figure 1 illustrates an example of a circuit for a conventional data transmission channel. Referring to Figure i, the signal A output by the transmitter 110 can be transmitted to the receiver 13A via the channel 12A. Receiver 130 can include a signal B that can pass through channel 12 and a reference voltage

Vref進行比較之比較器132及一可放大比較器132之輸出信 號的放大器134。 圖2A、2B及圖2C說明傳輸穿過圖i之資料傳輸通道之信 〇 號的實例波形。圖2A說明自圖1之發射器110輸出之實例信 號A。圖2B說明通過圖工之通道12〇之實例信號b。圖%說 - 明圖1之放大器之實例輸出信號CO。放大器134之輸出 , #號€〇可具有如圖3中所說明之”眼”特性。參看圖3,信號 C〇中可存在兩個眼,且抖動雜訊可廣泛分布於兩個眼睛 之間。此抖動雜訊可由ISI導致。 可使用如美國專利第5,565,8 12號中所揭示之信號整形器 電路來移除由資料傳輸通道之ISI導致之抖動雜訊。參看 122081 .doc 200816659 圖4,信號整形器電路可包括一高通濾波器221(其可包括 一切換式電容器以接收輸入信號ΙΝ)、一比較器222、一電 容223及一斯密特(Schmitt)觸發器224。高通濾波器221可 包括兩個類似建構之增益級a&b,且標稱增益為約1〇且 時間常數為約50個取樣週期。第二增益級B之後可為比較 器222。增益級可具有一均衡之全差分結構。此實例架構 可改良電源對寄生效應排斥及抗擾性。放大器可按一方式 Ο Ο 設計以使得使其共同模式操作點可安定化。比較器222可 具有由增益級A及B提供之差分輸入及單端輸出,且可提 供引入數位信號之第一近似值。電容223可添加於比較器 222之輸出處以便限制其高頻回應。斯密特觸發器Μ*可恢 復仏唬邏輯位準。比較器222與斯密特觸發器之組合可 減少非常快速之雜訊尖峰,其可另外被取樣及曲解。 圖4中所說明之信號整形器電路可具有圖5中所說明之頻 率回應特性。參看圖5,為接收以特定頻率調變之輸入作 號IN,可移除除調變頻率以外之頻帶之雜訊。可藉由使^ 切換式電容器控制截止頻率來移除來自較低頻帶之雜訊, 且可使用斯密特觸發器224來移除來自較高頻帶之雜訊。 亦即’圖4中所說明之信號整形器電路可改良信號之信雜 比(SNR) 〇 ” 杨然而’資料傳輸通道之特性可隨頻率而變化。接收器之 “(例如’圖4中所說明之信號整形器電路)可隨 說明之通道特性而變化, 斤 夂丨U丑〜盃知失可取決於頻率。因 ’能夠降低資料傳輸通道之⑻及視頻率而定之增益損 12208l.d〇( 200816659 失之接收器可有助於減輕若干有害效應。 【發明内容】 實例實施例係關於一種用於降低至少一資料傳輸通道之 内標記干擾並補償信號增益損失之接收器及其方法。、之 Ο u 根據實例實施例,該接收器可包括··—高通遽波器·,及 斯密特觸發為,其由複數個第一控制信號及複數個第二 控制信號控制。該複數個第一控制信號及該複數個第二控 制信號可用於移位該斯密特觸發器之一第一觸發器電壓2 第一觸發恭電壓。該高通濾波器可經組態以接收一通過 第一通道之第一輸入信號,且該斯密特觸發器可經組態 以回應於該複數個第一控制信號及該複數個第二控制信號 將-來自該高通濾波器之第一信號與一第一電源電壓進‘ 比較’且產生-第一輸出信號及一第二輸出信號。 ::接收器亦可包括:-控制器,其經組態以產生該複數 個第-控制信號及該複數個第二控制信號;及一放大器, 其經組態以接收該第一輸出信號及該第二輸出信號且產生 該接收器之一輸出信號。 該斯密特觸發器可包括第一電阻器及第二電阻器,第一 NMOS電晶體至第四丽⑽電晶體以及第一觸發器電壓控 制器及第二觸發器電壓控制器。第一電阻器及第二電阻器 可具有-第二電源電麼可施加至之第一端子。該第一 NM〇S電晶體可具有—連接至該第—電阻ϋ之-第二端子 :輸士該第二輸出信號之沒極,及來自該高通滤波器之該 第一信號可施加至夕一明k ^ 至之閘極。該弟二NMOS電晶體可具有 122081.doc 200816659Vref compares comparator 132 and an amplifier 134 that amplifies the output signal of comparator 132. 2A, 2B and 2C illustrate example waveforms of signals transmitted through the data transmission channel of Fig. i. Figure 2A illustrates an example signal A output from the transmitter 110 of Figure 1. Figure 2B illustrates an example signal b through the channel 12 of the drawing. Figure % says - The example of the amplifier of Figure 1 outputs the signal CO. The output of amplifier 134, #号 can have the "eye" characteristic as illustrated in Figure 3. Referring to Figure 3, there may be two eyes in the signal C〇, and the jitter noise can be widely distributed between the two eyes. This jitter noise can be caused by ISI. A signal shaper circuit as disclosed in U.S. Patent No. 5,565,8,12, is incorporated to remove jitter noise caused by ISI of the data transmission channel. See 122081.doc 200816659 FIG. 4, the signal shaper circuit can include a high pass filter 221 (which can include a switched capacitor to receive an input signal ΙΝ), a comparator 222, a capacitor 223, and a Schmitt. Trigger 224. The high pass filter 221 can include two similarly constructed gain stages a & b with a nominal gain of about 1 〇 and a time constant of about 50 sample periods. The second gain stage B can be followed by a comparator 222. The gain stage can have a balanced fully differential structure. This example architecture improves power supply parasitic rejection and immunity. The amplifier can be designed in such a way that its common mode operating point can be stabilized. Comparator 222 can have differential inputs and single-ended outputs provided by gain stages A and B, and can provide a first approximation of the incoming digital signals. Capacitor 223 can be added to the output of comparator 222 to limit its high frequency response. The Schmitt trigger Μ* restores the logic level. The combination of comparator 222 and Schmitt trigger reduces very fast noise spikes which can be additionally sampled and misinterpreted. The signal shaper circuit illustrated in Figure 4 can have the frequency response characteristics illustrated in Figure 5. Referring to Fig. 5, in order to receive an input signal IN modulated at a specific frequency, noise in a frequency band other than the modulation frequency can be removed. The noise from the lower frequency band can be removed by controlling the cutoff frequency of the switched capacitor, and the Schmitt trigger 224 can be used to remove noise from the higher frequency band. That is, the signal shaper circuit illustrated in Figure 4 can improve the signal-to-noise ratio (SNR) of the signal. The characteristics of the data transmission channel can vary with frequency. (For example, 'Figure 4 The signal shaper circuit described can vary with the channel characteristics of the description, and the ugly U cup can be determined by the frequency. The loss of 12208l.d〇 can be mitigated by the loss of the data transmission channel (8) and the video rate. (200816659 Loss of the receiver can help mitigate some of the harmful effects. [Inventive] Example embodiments relate to one for reducing at least one a receiver and method for marking interference and compensating for signal gain loss within a data transmission channel. Ο u According to an example embodiment, the receiver may include a high-pass chopper, and a Schmitt trigger, Controlled by the plurality of first control signals and the plurality of second control signals, the plurality of first control signals and the plurality of second control signals can be used to shift one of the first trigger voltages of the Schmitt trigger a trigger voltage. The high pass filter can be configured to receive a first input signal through the first channel, and the Schmitt trigger can be configured to respond to the plurality of first control signals and the complex The second control signal compares the first signal from the high pass filter with a first supply voltage and generates a first output signal and a second output signal. The method includes: a controller configured to generate the plurality of first control signals and the plurality of second control signals; and an amplifier configured to receive the first output signal and the second output signal and Generating an output signal of the receiver. The Schmitt trigger may include a first resistor and a second resistor, a first NMOS transistor to a fourth (10) transistor, and a first flip-flop voltage controller and a second a trigger voltage controller. The first resistor and the second resistor may have a first power supply to which the second power source can be applied. The first NM〇S transistor may have a connection to the first resistor a second terminal: the second output signal of the second output signal, and the first signal from the high-pass filter can be applied to the gate of the 一 明 k ^ to the gate. The second NMOS transistor can have 122081. Doc 200816659

-連接至該第二電阻器之一第二端子以輸出該第 號之汲極,及㈣—電源電壓可施加至之_閘極。該第二 NMOS電晶體可具有—連接至該第—電阻器之該第二料 之汲極,及該第-輸出信號可施加至之-閘極。該第四 NMOS電晶體可具有_連接至該第二電阻器之該第二端子 之汲極,及該第二輸出信號可施加至之一閘極。該第一觸 發器電壓控制器可連接至該第一 NM〇s電晶體及該第二 NMOS電晶體之源極及—接地電壓源,且可由該複數個第 二控制信號控制。該第二觸發器電壓控制器可連接至該第 三NMOS電晶體及該第wNM〇s電晶體之源極及該接地電 壓源’且可由該複數個第一控制信號控制。 該第一觸發器電壓控制器可包括:複數個電流源,其連 接至該第一 NMOS電晶體及該第二NM〇s電晶體之該等源 極;及複數個NMOS電晶體,其各自分別連接至該複數個 電流源中之一者及該接地電壓源。該複數個NM〇s電晶體 中之母一者之閘極可分別接收該複數個第二控制信號中之 一者。 该第二觸發器電壓控制器可包括:複數個電流源,其連 接至該第三NMOS電晶體及該第四NMOS電晶體之該等源 極;及複數個NMOS電晶體,其各自分別連接至該複數個 電流源中之一者及該接地電壓源。該複數個NMOS電晶體 中之每一者之閘極可分別接收該複數個第一控制信號中之 一者0 該高通濾波器可包括一電容器及一電阻器。該電容器可 122081.doc 200816659 具有通過該第一通道之該第一輸入信號可施加至之一第一 端子。該電阻器可連接至該電容器之一第二端子及該第一 電源電壓之源。該電容器之該第二端子之信號可變為來自 該高通濾波器之該第一信號。 Ο- connected to a second terminal of the second resistor to output the drain of the number, and (d) - a supply voltage to which the gate can be applied. The second NMOS transistor can have a drain connected to the second material of the first resistor, and the first output signal can be applied to the gate. The fourth NMOS transistor can have a drain connected to the second terminal of the second resistor, and the second output signal can be applied to one of the gates. The first trigger voltage controller is connectable to the source of the first NM〇s transistor and the second NMOS transistor and to the ground voltage source, and is controllable by the plurality of second control signals. The second flip-flop voltage controller is connectable to the third NMOS transistor and the source of the wNM 〇s transistor and the ground voltage source and can be controlled by the plurality of first control signals. The first flip-flop voltage controller may include: a plurality of current sources connected to the first NMOS transistor and the source of the second NM 〇s transistor; and a plurality of NMOS transistors each having a respective Connected to one of the plurality of current sources and the ground voltage source. The gate of one of the plurality of NM〇s transistors can receive one of the plurality of second control signals, respectively. The second flip-flop voltage controller may include: a plurality of current sources connected to the third NMOS transistor and the sources of the fourth NMOS transistor; and a plurality of NMOS transistors each connected to the respective One of the plurality of current sources and the ground voltage source. The gate of each of the plurality of NMOS transistors can respectively receive one of the plurality of first control signals. The high pass filter can include a capacitor and a resistor. The capacitor can be 122081.doc 200816659 having the first input signal through the first channel can be applied to one of the first terminals. The resistor is connectable to a second terminal of the capacitor and a source of the first supply voltage. The signal of the second terminal of the capacitor can be changed to the first signal from the high pass filter. Ο

該第一電源電壓可為一施加至該第一通道之端接電壓。 該尚通濾波器可進一步經組態以接收一通過一第二通道 之第一輸入信號,且該斯密特觸發器可進一步經組態以回 應於該複數個第一控制信號及該複數個第二控制信號將一 來自滅回通濾波器之第二信號與一第一電源電壓進行比 較0 對於一第二輸入信號,該斯密特觸發器可包括第—電阻 态及第一電阻器,第一 NMOS電晶體至第四電晶體 =及第一觸發器電壓控制器及第二觸發器電壓控制器阳該 第一電阻益及第二電阻器可具有—電源電壓可施加至之第 :端子HNMOS電晶體可具有一連接至該第—電阻 益之第_端子以輸出該第二輸出信號之汲極,及來自該 高通濾波器之該第一信號可施加至之一閘極。該第2 NMOS電晶體可具有—連接至該第:電阻器之—第二料 以輸出<4第-輸出信號之沒極,及來自該高通遽波器之該 第二信號可施加至之—閘極。該第三N画電晶體可具有 -連接至該第一電阻器之該第二端子之汲極,及該第一輸 出1吕號可施加至之一蘭搞。兮够 χτ 、 閘極該第四NMOS電晶體可具有一 連接至該第二電阻器之兮裳- 器之4弟一知子之汲極,及該第二輸出 4吕號可施加至之一間;(¾。姑楚 . 閘極該弟一觸發器電壓控制器可連接 122081.doc 200816659 至5玄苐一 NMOS電晶體及該第二NMOS電晶體之源極及一 接地電壓源,且可由該複數個第二控制信號控制。該第二 觸發器電壓控制器可連接至該第三NMOS電晶體及該第四 NMOS電晶體之源極及該接地電壓源,且可由該複數個第 一控制信號控制。 該第一觸發器電壓控制器可包括:複數個電流源,其連 . 接至遠第一 NM0S電晶體及該第二NMOS電晶體之該等源 極;及複數個NMOS電晶體,其各自分別連接至該複數個 〇 電流源中之一者及該接地電壓源。該複數個NMOS電晶體 中之每一者之閘極可分別接收該複數個第二控制信號中之 一者。 該第二觸發器電壓控制器可包括:複數個電流源,其連 接至S亥第二NMOS電晶體及該第四NM〇s電晶體之該等源 極;及複數個NMOS電晶體,其各自分別連接至該複數個 電流源中之一者及該接地電壓源。該複數個nm〇s電晶體 r +之每一者之閘極可分別純該複數個第-控制信號中之 ϋ 一者。 該高通濾波器可包括第一電容器及第二電容器以及第一 • €阻器及第二電阻器。該第-電容器可具有通過該第一通 ϋ之該第-輸人信號可施加至之―第—端子。該第一電阻 器可連接至該第-電容器之一第二端子及該第一電源電壓 之源。該第二電容器可具有通過該第二通道之該第二輸入 信號可施加至-第一端子。該第二電阻器可連接至該第二 電容器之一第二端子及該第一電源電壓之該源n電 122081.doc 200816659 容器之該第二端子之信號可變為來自該高通濾波器之該第 -信號,且該第二電容器之該第二端子之信號可變為來自 5亥局通渡波恭之该弟二信號。 該第一電源電壓可為一施加至該至少一㈣中之每一者 之端接電壓。 -種用於在-連接至至少一資料傳輸之接收器中降低内 標記干擾並補償信號增益損失的方法可包括··接收通過一 對應通道之至少一輸入信號;回應於該至少一輸入信號使 用一高通濾波器來產生一第一輸出信號;產生複數個第一 控制信號及複數個第二控制信號以便移位一斯密特觸發器 之一第一觸發器電壓及一第二觸發器電壓;藉由回應於該 複數個第一控制信號及該複數個第二控制信號將該第一輸 出信號與一第一電源電壓進行比較而產生一第二輸出信號 及一第三輸出信號;及回應於該第二輸出信號及該第三輸 出信號而產生該接收器之一輸出信號。 因此’該接收器可使用該高通濾波器及該由該第一控制 k號及该第二控制信號控制之斯密特觸發器來補償一資料 傳輸通道之ISI及信號增益損失。 【實施方式】 在本文中揭示詳述之實例實施例。然而,對描述實施例 而言’本文所揭示之特定結構及功能細節僅為代表性的。 然而’實例實施例可以許多替代形式來實施且不應解釋為 僅限於本文中所闡明之實施例。 因此,雖然實例實施例能夠具有各種變更及替代形式, 122081.doc 200816659 Ό把例以實例方式展示於圖式中且將在本文中進行詳 1之㈣^ ’應瞭解’並不意欲將實例實施例限制於 所揭不之特疋形式’而相反地’實例實施例將涵蓋在實例 實施例之料内的所有變更、均等物及替代。遍及對圖之 描述,相同數字指相同元件。 Ο Ο 應瞭解’儘管術語第…第二等可在本文中用於描述各 種元件’但該等元件不應由該等術語限制。該等術語僅用 於對兀件進行區分。舉例而言,在不脫離實例實施例之範 脅的情況下,第一元件可被稱為第二元件,且類似地,第 二元件可被稱為第一元件。如本文中所使用,術語"及/或" 包括相關聯之所列項目中之—或多者的任何組合及所有組 合0 應瞭解,當一元件被稱為”連接,,或”麵接"至另一元件 時,其可直接連接或耦接至另一元件,或可存在介入元 件。相反,當一元件被稱為”直接連接”或,,直接耦接”至另 一元件時,則不存在介入元件。用於描述元件之間的關係 之其他術語應以相同方式解釋(例如,"在··之間,,與,,直接 在.··之間"、”鄰近"與”直接鄰近”,等等)。 本文中所使用之術語僅為達成描述特定實施例之目的, 且並非意欲限制實例實施例。如本文中所使用,除非上下 文清楚地另有指示,否則單數形式及"該"亦意欲包括 複數形式。應進一步瞭解,術語”包含"及/或”包括"在本文 使用時會指定所述特徵、整數、步驟、操作、元件,及/ 或組件之存在,但並不排除一或多個其他特徵、整數、步 122081.doc -12- 200816659 驟、操作:元件、組件,及/或其群組之存在或添加。 '' ^在某些替代實施例中,所述功能/動作可能 不按圖中所述之次序而發生。舉例而言,取決於所述之功 能性/動作’連續展示之兩個圖實際上可大體同時執行或 可有時按反次序來執行。 ^ 目7說明根據實例實施例之接收器730。參看圖7,以單 知仏7模式自發射器71〇輸出之信號A可經由通道Μ。傳輸 至接收器730。接收器730可包括-高通濾波器740、一控 〇 制器75()、一斯密特觸發器760及一放大器770。 咼通濾波器740可包括:一電容器742,其具有可接收通 過通道720之信號b之第一端子;及一電阻器744,其連接 至電谷器742之第二端子及第一電源電壓之源。控 制器750可產生第一控制信號x[m:〇]&第二控制信號γ[η:〇] 以控制斯密特觸發器76〇之第一觸發電壓Vth—〇及第二觸發 電壓Vth一1。斯密特觸發器760可回應於第一控制信號 X[m:〇]及第二控制信號γ[η:〇]而將高通濾波器740之輸出信 ) 號C與第一電源電壓V一term進行比較,且可產生輸出信號 OUT及/OUT。放大器770可放大斯密特觸發器760之輸出信 . 號0UT& /0UT,並可產生接收器730之輸出信號D。第一 電源電壓V—term可為通道720之端接電壓。 圖8為圖7中所說明之斯密特觸發器760之電路圖。參看 圖8,斯密特觸發器760可包括第一電阻器801及第二電阻 器802。電源電壓VDD可施加於第一電阻器801及第二電阻 器802之第一端子。第一電阻器8〇1之第二端子可連接至第 122081.doc -13- 200816659 一 NMOS電晶體803及第三NMOS電晶體805之汲極。第一 電阻器801之第二端子處之信號可變為斯密特觸發器760之 第二輸出信號/OUT。第二電阻器802之第二端子可連接至 第二NMOS電晶體804及第四NMOS電晶體806之汲極。第 二電阻器802之第二端子處之信號可變為斯密特觸發器760 ' 之第一輸出信號OUT。 - 第一 NMOS電晶體803及第二NMOS電晶體804之源極可 連接至第一觸發器電壓控制器810。第一觸發器電壓控制 〇 器8 10可包括連接至第一NMOS電晶體803及第二NMOS電 晶體804之源極之複數個電流源8 11至8 1 5,及分別連接至 複數個電流源811至8 15之複數個NMOS電晶體821至825。 NMOS電晶體821至825之閘極可分別接收第二控制信號 Υ[η:0]。 第三NMOS電晶體805之閘極可連接至斯密特觸發器760 之第一輸出信號OUT,且第四NMOS電晶體806之閘極可連 接至斯密特觸發器760之第二輸出信號/OUT。第三NMOS 電晶體805及第四NMOS電晶體806可鎖存圖7中所說明之高 通濾波器740之輸出信號C。第三NMOS電晶體805及第四 . NMOS電晶體806之源極可連接至第二觸發器電壓控制器 830。 第二觸發器電壓控制器830可包括連接至第三NMOS 電晶體805及第四NMOS電晶體806之源極之複數個電流源 831、 832及833,及分別連接至複數個電流源831、832及 833之複數個NMOS電晶體841、842及843。NMOS電晶體 841、842及843之閘極可分別接收第一控制信號X[m:0]。 122081.doc -14- 200816659 圖9說明斯密特觸發器760之操作。參看圖9,隨著第_ 控制信號X[m:〇]及第二控制信號γ[η:〇]中之處於邏輯高位 準之信號之數目增加,第一觸發器電壓Vth—〇及第二觸發 器電壓Vth一1可移位至高位準。 x 圖1〇為用於解釋圖7中所說明之接收器73〇之操作的實例 時序圖。參看圖10,自發射器71〇輸出之信號A在通過通道 720時可改變至信❹可通過高通濾波器74〇且變 為信號c。第一觸發器電壓乂化一0及第二觸發器電壓v讣」 可控制高通濾波器740具有邏輯低位準還是邏輯高位準, 且輸出信號C可作為接收器730之輸出信號〇而輸出。 圖11A及圖11B說明通過圖7中所說明之通道72〇之信號b 的實例’’眼"圖及圖7中所說明之接收器730之輸出信號D。 圖11A及圖11B展示:較之於圖丨中所說明之習知接收器 130之輸出信號C0之眼,接收器73〇之輸出信號〇之眼中可 存在較少的抖動雜訊(圖11B中所說明)。 圖12說明圖7中所說明之接收器730之實例頻率回應特 性。參看圖12,為接收以特定頻率調變之信號b ,接收器 730之信號增益由接收器730之高通濾波器74〇變化,且斯 密特觸發器760可由第一控制信號x[m:〇]及第二控制信號 Υ[η:0]控制,以補償視資料傳輸通道特性而定之信號增益 損失。 圖13說明根據實例實施例之差分信令類型之實例接收器 1330。參看圖13,自發射器1310輸出之第一差分信號a及 第二差分信號/A可經由通道對1320傳輸至接收器133〇。接 122081.doc -15- 200816659 收器130可包括:一高通濾波器1340,其接收通過通道對 1320之第一差分信號b及第二差分信號/B ; —控制器 1350,其產生第一控制信號x[m:0]及第二控制信號 Υ[η:0];及一斯密特觸發器136〇,其回應於第一控制信號 X[m:0]及第二控制信號γ[η:0]將高通濾波器134〇之輸出信 _ 號C及/C與第一電源電壓V-term進行比較且產生輸出信號 - 〇υτ及/〇υτ。可經由放大器1370將斯密特觸發器1360之輸 出信號OUT及/OUT作為接收器1330之輸出信號D輸出。 Ο 高通濾波器1340可包括:一第一電容器1341,其具有一 接收通過通道對1320中之一者之第一差分信號B之第一端 子;一第一電阻器1342,其連接至第一電容器1341之第二 端子及第一電源電壓V—term之源;一第二電容器1343,其 具有一接收通過通道對13 20中之另一者之第二差分信號/B 之第一端子;及一第二電阻器1344,其連接至第二電容器 1343之第二端子及第一電源電壓v_term之源。 斯密特觸發器1360可類似於圖8中所說明之斯密特觸發 ◎器760。然而,高通濾波器1340之第一電容器1341之輸出 信號C可連接至圖8中所說明之斯密特觸發器760之第一 - NM0S電晶體803之閘極,且高通遽波器1340之第二電容器 1343之輸出信號/C可連接至圖8中所說明之斯密特觸發器 760之第二NM0S電晶體804之閘極。 為以差分信令模式接收傳輸穿過通道對1320的差分信號 B及/B,高通濾波器1340及斯密特觸發器1360可在第一控 制信號X[m:0]及第二控制信號Y[n:〇]之控制下變化接收器 122081.doc -16 - 200816659 1330之信號增益。因此,可補償視通道對132〇之特性而定 之信號增益損失。 在實例實施例因此得到描述後,將顯而易見可以許多方 式變化该等實例實施例。該等變化並不被視作脫離實例實 施例之預期精神及範疇,且對於熟悉此項技術者而言將顯 ^ 而易見之所有該等變更意欲包括於以下申請專利範圍之範 . 疇内。 【圖式簡單說明】 Ο 圖1說明習知資料傳輸通道之實例電路。 圖2A、2B及圖2C說明傳輸穿過圖1中所說明之資料傳輸 通道之信號的實例波形。 圖3說明圖1中所說明之放大器之輸出信號的實例眼特 性。 圖4說明實例習知信號整形器電路。 圖5說明圖4中所說明之信號整形器電路之實例頻率回應 特性。 U 圖6說明根據特定通道特性之實例信號增益損失。 圖7說明根據實例實施例之實例接收器。 , 圖8為圖7中所說明之斯密特觸發器之實例電路圖。 圖9為展示圖7中所說明之斯密特觸發器之操作的實例 號圖。 ,σ 圖10為展示圖7中所說明之接收器之操作的實例時序 圖。 ' 圖11Α及圖11Β為通過圖7中所說明之通道之信號的每例 122081.doc 17 200816659 眼圖及圖7中所說明之接收器之實例輸出信號。 圖12說明圖7中所說明之接收器之實例頻率回庶特^生 圖13說明根據實例實施例之差分信令類型之實例接收 器。 【主要元件符號說明】The first supply voltage can be a termination voltage applied to the first channel. The pass filter may be further configured to receive a first input signal through a second channel, and the Schmitt trigger may be further configured to respond to the plurality of first control signals and the plurality of The second control signal compares a second signal from the clear-back filter to a first supply voltage. For a second input signal, the Schmitt trigger can include a first resistance state and a first resistor. The first NMOS transistor to the fourth transistor=and the first flip-flop voltage controller and the second flip-flop voltage controller, the first resistor and the second resistor may have a power supply voltage applicable to the: terminal The HNMOS transistor may have a drain connected to the first terminal of the first resistor to output the second output signal, and the first signal from the high pass filter may be applied to one of the gates. The second NMOS transistor can have a second component connected to the first resistor to output a <4 first-output signal, and the second signal from the high-pass chopper can be applied thereto - Gate. The third N-picture transistor can have a drain connected to the second terminal of the first resistor, and the first output 1 can be applied to one of the drains. The fourth NMOS transistor may have a drain connected to the second resistor of the second resistor, and the second output 4 may be applied to one of the gates. (3⁄4. Gu Chu. The gate of the brother-trigger voltage controller can be connected to 122081.doc 200816659 to 5 Xuanyuan an NMOS transistor and the source of the second NMOS transistor and a ground voltage source, and can be Controlled by a plurality of second control signals, the second trigger voltage controller is connectable to the third NMOS transistor and the source of the fourth NMOS transistor and the ground voltage source, and can be the plurality of first control signals The first trigger voltage controller may include: a plurality of current sources connected to the first first NMOS transistor and the second NMOS transistor; and a plurality of NMOS transistors Each of the plurality of NMOS current sources is coupled to one of the plurality of 〇 current sources and the ground voltage source. The gate of each of the plurality of NMOS transistors can receive one of the plurality of second control signals, respectively. The second trigger voltage controller may include: a plurality of a current source connected to the second source of the second NMOS transistor and the fourth NM〇s transistor; and a plurality of NMOS transistors each connected to one of the plurality of current sources and The ground voltage source, the gate of each of the plurality of nm〇s transistors r + may be purely one of the plurality of plurality of first control signals. The high pass filter may include a first capacitor and a second a capacitor and a first and a second resistor. The first capacitor may have a first terminal to which the first input signal of the first pass can be applied. The first resistor can be connected to a second terminal of the first capacitor and a source of the first power voltage. The second capacitor may have the second input signal through the second channel applicable to the first terminal. The second resistor may be connected a signal to the second terminal of the second capacitor and the source of the first power voltage 122081.doc 200816659 the second terminal of the container may be the first signal from the high pass filter, and the first The signal of the second terminal of the two capacitors can be changed from The first power supply voltage may be a termination voltage applied to each of the at least one (four) - a receiver for connecting to at least one data transmission The method for reducing the internal marker interference and compensating for the signal gain loss may include: receiving at least one input signal through a corresponding channel; generating a first output signal by using a high pass filter in response to the at least one input signal; generating a plurality of a first control signal and a plurality of second control signals for shifting a first trigger voltage and a second trigger voltage of a Schmitt trigger; by responding to the plurality of first control signals and the plurality of The second control signal compares the first output signal with a first power supply voltage to generate a second output signal and a third output signal; and generates the receiving in response to the second output signal and the third output signal One of the output signals. Therefore, the receiver can use the high pass filter and the Schmitt trigger controlled by the first control k number and the second control signal to compensate for the ISI and signal gain loss of a data transmission channel. [Embodiment] Example embodiments detailed in the text are disclosed herein. However, the specific structural and functional details disclosed herein are merely representative of the described embodiments. However, the example embodiments may be embodied in many alternate forms and should not be construed as being limited to the embodiments set forth herein. Accordingly, while example embodiments are capable of various modifications and alternatives, the examples are shown by way of example in the drawings and will be described in detail herein. The examples are to be construed as being limited to the details of the embodiments of the example embodiments. Throughout the description of the figures, the same numbers refer to the same elements. Ο Ο It should be understood that 'although the terms second, etc. may be used herein to describe various elements', such elements should not be limited by the terms. These terms are only used to distinguish between components. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of the example embodiments. As used herein, the term "and/or" includes any of the associated items or any combination of all and all combinations 0 should be understood when an element is referred to as "connected, or" When connected to another component, it may be directly connected or coupled to another component, or an intervening component may be present. In contrast, when an element is referred to as "directly connected" or "directly coupled" to another element, there are no intervening elements. Other terms used to describe the relationship between the elements should be interpreted in the same manner (eg, "Between,, and, directly between.···, "proximity" and "directly adjacent", etc.). The terminology used herein is for the purpose of the description and the embodiments As used herein, the singular and "the" are also intended to include the plural. It should be further understood that the term "comprising" and / or "comprises" or "an" or "an" Features, Integers, Steps 122081.doc -12- 200816659 Steps, Operations: The presence or addition of components, components, and/or groups thereof. '' In some alternative embodiments, the functions/acts may not occur in the order described in the figures. For example, two figures that are continually displayed depending on the functionality/actions described may in fact be performed substantially concurrently or may sometimes be performed in the reverse order. ^ Item 7 illustrates a receiver 730 in accordance with an example embodiment. Referring to Fig. 7, the signal A output from the transmitter 71A in the 仏7 mode can be transmitted via the channel. Transfer to the receiver 730. Receiver 730 can include a high pass filter 740, a control RC 75(), a Schmitt trigger 760, and an amplifier 770. The pass filter 740 can include a capacitor 742 having a first terminal that can receive the signal b through the channel 720, and a resistor 744 coupled to the second terminal of the valley 742 and the first supply voltage source. The controller 750 can generate a first control signal x[m:〇]& second control signal γ[η:〇] to control the first trigger voltage Vth_〇 and the second trigger voltage Vth of the Schmitt trigger 76〇 One 1. The Schmitt trigger 760 can respond to the first control signal X[m: 〇] and the second control signal γ[η: 〇] and output the high-pass filter 740 to the first power supply voltage V-term. The comparison is made and the output signals OUT and /OUT can be generated. Amplifier 770 amplifies the output signal of the Schmitt trigger 760, the number 0UT& /0UT, and produces the output signal D of the receiver 730. The first supply voltage V_term can be the termination voltage of the channel 720. FIG. 8 is a circuit diagram of the Schmitt trigger 760 illustrated in FIG. Referring to FIG. 8, the Schmitt trigger 760 can include a first resistor 801 and a second resistor 802. The power supply voltage VDD can be applied to the first terminals of the first resistor 801 and the second resistor 802. The second terminal of the first resistor 8〇1 can be connected to the drain of the NMOS transistor 803 and the third NMOS transistor 805 of the 122081.doc-13-200816659. The signal at the second terminal of the first resistor 801 can be changed to the second output signal /OUT of the Schmitt trigger 760. The second terminal of the second resistor 802 can be connected to the drains of the second NMOS transistor 804 and the fourth NMOS transistor 806. The signal at the second terminal of the second resistor 802 can be changed to the first output signal OUT of the Schmitt trigger 760'. - The sources of the first NMOS transistor 803 and the second NMOS transistor 804 are connectable to the first flip-flop voltage controller 810. The first flip-flop voltage control buffer 8 10 can include a plurality of current sources 8 11 to 8 15 connected to the sources of the first NMOS transistor 803 and the second NMOS transistor 804, and are respectively connected to the plurality of current sources. A plurality of NMOS transistors 821 to 825 of 811 to 815. The gates of the NMOS transistors 821 to 825 can respectively receive the second control signal Υ[η:0]. The gate of the third NMOS transistor 805 can be connected to the first output signal OUT of the Schmitt trigger 760, and the gate of the fourth NMOS transistor 806 can be connected to the second output signal of the Schmitt trigger 760 / OUT. The third NMOS transistor 805 and the fourth NMOS transistor 806 can latch the output signal C of the high pass filter 740 illustrated in FIG. The sources of the third NMOS transistor 805 and the fourth NMOS transistor 806 are connectable to the second flip-flop voltage controller 830. The second flip-flop voltage controller 830 can include a plurality of current sources 831, 832, and 833 connected to the sources of the third NMOS transistor 805 and the fourth NMOS transistor 806, and connected to the plurality of current sources 831, 832, respectively. And a plurality of NMOS transistors 841, 842 and 843 of 833. The gates of NMOS transistors 841, 842, and 843 can receive the first control signal X[m:0], respectively. 122081.doc -14- 200816659 Figure 9 illustrates the operation of the Schmitt trigger 760. Referring to FIG. 9, as the number of signals at the logic high level in the _th control signal X[m: 〇] and the second control signal γ[η: 〇] increases, the first flip-flop voltage Vth - 〇 and the second The flip-flop voltage Vth-1 can be shifted to a high level. x Fig. 1A is an example timing diagram for explaining the operation of the receiver 73A illustrated in Fig. 7. Referring to Figure 10, the signal A output from the transmitter 71 is changeable to pass through the channel 720 and can pass through the high pass filter 74 and become the signal c. The first flip-flop voltage 一0 and the second flip-flop voltage v讣” can control whether the high-pass filter 740 has a logic low level or a logic high level, and the output signal C can be output as the output signal 接收 of the receiver 730. Figures 11A and 11B illustrate an example ''eye'" of the signal b through the channel 72 illustrated in Figure 7 and the output signal D of the receiver 730 illustrated in Figure 7. 11A and 11B show that there may be less jitter noise in the eye of the output signal 接收 of the receiver 73〇 compared to the eye of the output signal C0 of the conventional receiver 130 illustrated in the figure (FIG. 11B). Explained). Figure 12 illustrates an example frequency response characteristic of receiver 730 illustrated in Figure 7. Referring to Figure 12, to receive a signal b modulated at a particular frequency, the signal gain of the receiver 730 is varied by the high pass filter 74 of the receiver 730, and the Schmitt trigger 760 can be first controlled by the signal x[m: And the second control signal Υ[η:0] control to compensate for the signal gain loss depending on the characteristics of the data transmission channel. FIG. 13 illustrates an example receiver 1330 of differential signaling type in accordance with an example embodiment. Referring to Figure 13, the first differential signal a and the second differential signal /A output from the transmitter 1310 can be transmitted to the receiver 133A via the channel pair 1320. The receiver 130 can include: a high pass filter 1340 that receives the first differential signal b and the second differential signal /B through the channel pair 1320; - a controller 1350 that produces a first control a signal x[m:0] and a second control signal Υ[η:0]; and a Schmitt trigger 136〇 responsive to the first control signal X[m:0] and the second control signal γ[η :0] The output signals C and /C of the high pass filter 134 are compared with the first supply voltage V-term and the output signals - 〇υτ and /〇υτ are generated. The output signals OUT and /OUT of the Schmitt trigger 1360 can be output as the output signal D of the receiver 1330 via the amplifier 1370. The high pass filter 1340 can include a first capacitor 1341 having a first terminal that receives a first differential signal B through one of the channel pairs 1320; a first resistor 1342 coupled to the first capacitor a second terminal of 1341 and a source of a first power supply voltage V_term; a second capacitor 1343 having a first terminal receiving a second differential signal /B through the other of the pair of channels 13 20; A second resistor 1344 is coupled to the second terminal of the second capacitor 1343 and a source of the first supply voltage v_term. The Schmitt trigger 1360 can be similar to the Schmitt trigger 760 illustrated in FIG. However, the output signal C of the first capacitor 1341 of the high pass filter 1340 can be connected to the gate of the first-NM0S transistor 803 of the Schmitt trigger 760 illustrated in FIG. 8, and the high pass chopper 1340 The output signal /C of the two capacitor 1343 can be coupled to the gate of the second NMOS transistor 804 of the Schmitt trigger 760 illustrated in FIG. To receive the differential signals B and /B transmitted through the channel pair 1320 in a differential signaling mode, the high pass filter 1340 and the Schmitt trigger 1360 can be at the first control signal X[m:0] and the second control signal Y. The signal gain of the receiver 122081.doc -16 - 200816659 1330 is changed under the control of [n:〇]. Therefore, the signal gain loss of the apparent channel pair 132〇 can be compensated for. Having thus described the example embodiments, it will be apparent that the example embodiments can be varied in many ways. Such variations are not to be interpreted as a departure from the spirit and scope of the example embodiments, and all such modifications are intended to be included in the scope of the following claims. . BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an example circuit of a conventional data transmission channel. 2A, 2B and 2C illustrate example waveforms of signals transmitted through the data transmission channel illustrated in FIG. Figure 3 illustrates an example eye characteristic of the output signal of the amplifier illustrated in Figure 1. Figure 4 illustrates an example conventional signal shaper circuit. Figure 5 illustrates an example frequency response characteristic of the signal shaper circuit illustrated in Figure 4. U Figure 6 illustrates an example signal gain loss based on specific channel characteristics. FIG. 7 illustrates an example receiver in accordance with an example embodiment. FIG. 8 is an example circuit diagram of the Schmitt trigger illustrated in FIG. 7. Fig. 9 is a view showing an example of the operation of the Schmitt trigger illustrated in Fig. 7. σ Figure 10 is an example timing diagram showing the operation of the receiver illustrated in Figure 7. Figure 11A and Figure 11B show an example output signal of the receiver illustrated by the eye diagram of the channel illustrated in Figure 7 and the receiver illustrated in Figure 7. Figure 12 illustrates an example frequency response of the receiver illustrated in Figure 7. Figure 13 illustrates an example receiver of differential signaling type in accordance with an example embodiment. [Main component symbol description]

Ο 110 發射器 120 通道 130 接收器 132 比較器 134 放大器 221 高通濾波器 222 比較器 223 電容 224 斯密特觸發器 710 發射器 720 通道 730 接收器 740 高通濾波器 742 電容器 744 電阻器 750 控制器 760 斯密特觸發器 770 放大器 801 第一電阻器 122081.doc • 18 - 200816659 802 第二電阻器 803 第一 NMOS電晶體 804 第二NMOS電晶體 805 第三NMOS電晶體 806 第四NMO,S電晶體 ^ 810 第一觸發器電壓控制器 • 811 、 812 、 813 、 814 、 815 電流源 821 、 822 、 823 、 824 、 825 NMOS電晶體 〇 830 第二觸發器電壓控制器 831 、 832 、 833 電流源 841 、 842 、 843 NMOS電晶體 1310 發射器 1330 實例接收器 1340 高通濾波器 1341 第一電容器 1342 第一電阻器 (J 1343 第二電容器 1350 控制器 β 1360 斯密特觸發器 1370 放大器 A 信號/增益級 /A 信號 B 信號/增益級 /B 信號 122081.doc -19- 200816659 c /cΟ 110 Transmitter 120 Channel 130 Receiver 132 Comparator 134 Amplifier 221 High Pass Filter 222 Comparator 223 Capacitor 224 Schmitt Trigger 710 Transmitter 720 Channel 730 Receiver 740 High Pass Filter 742 Capacitor 744 Resistor 750 Controller 760 Schmitt trigger 770 amplifier 801 first resistor 122081.doc • 18 - 200816659 802 second resistor 803 first NMOS transistor 804 second NMOS transistor 805 third NMOS transistor 806 fourth NMO, S transistor ^ 810 First Trigger Voltage Controller • 811, 812, 813, 814, 815 Current Sources 821, 822, 823, 824, 825 NMOS Transistor 830 Second Trigger Voltage Controller 831, 832, 833 Current Source 841 , 842 , 843 NMOS transistor 1310 transmitter 1330 example receiver 1340 high pass filter 1341 first capacitor 1342 first resistor (J 1343 second capacitor 1350 controller β 1360 Schmitt trigger 1370 amplifier A signal / gain stage /A signal B signal / gain stage / B signal 122081.doc -19- 200816659 c /c

COCO

DD

ININ

OUTOUT

. /OUT. /OUT

VDD ζ ) V—termVDD ζ ) V—term

Vth_0 Vth_l X[m:0] Y[n:0]Vth_0 Vth_l X[m:0] Y[n:0]

U 信號 信號 輸出信號 輸出信號 輸入信號 輸出信號 輸出信號 電源電壓 第一電源電壓 第一觸發器電壓 第二觸發器電壓 第一控制信號 第二控制信號 122081.doc -20-U signal signal output signal output signal input signal output signal output signal power supply voltage first power supply voltage first trigger voltage second trigger voltage first control signal second control signal 122081.doc -20-

Claims (1)

200816659 十、申請專利範圍: l 一種降低至少-資料傳輸通道之 增益損失之接收器,其包含:〜己干擾並補償信號 一高通濾波器;及 -斯密特觸發器,其由複數個第 第二控制信號控制。 工制仏琥及複數個 2· 之::器’其中該複數個第-控制信號及該 Ο u 觸發電ίΓ 用於移位該斯密特觸發器之-第- 碉%电壓及一第二觸發電壓。 3 ·如凊求項2之接收器,豆中兮古 通過一第一通道之第一輸入信號;且 一通過— m 波器經組態以接收 該斯密特觸發器經組態以回應於該複數個第—控制声 :及_個第二控制信號將來自該高通濾波器之一第 二言:與:第一電源電壓進行比較,且產生一第一輸出 仏琥及一弟二輸出信號。 4. 如請求項3之接收器,其進一步包含·· -控制器’其經組態以產生該複數個第一控制信號及 該複數個第二控制信號;及 一放大器,其經組態以接收該第__輸出信號及該第二 輸出信號,且產生該接收器之—輸出信號。 5. 如請求項4之接收器,其中該斯密特觸發器包含: 第-電阻器及第二電阻器,其具有一第二電源電麼所 施加至之第一端子; 一第一NM〇S電晶體,其具有一連接至該第一電阻器 122081.doc 200816659 之第一鳊子以輸出該第二輸出信號之汲極,及來自該 咼通濾波菇之該第一信號所施加至之一閘極; 第一 NMOS電晶體,其具有一連接至該第二電阻器 之一第二端子以輸出該第二輸出信號之汲極,及該第一 電源電壓所施加至之一閘極; - 一第三NM0S電晶體,其具有一連接至該第一電阻器 • 之"亥第一纟而子之汲極,及該第一輸出信號所施加至之一 閘極; 〇 第四NMOS電晶體,其具有一連接至該第二電阻器 之該第二端子之汲極,及該第二輸出信號所施加至之一 閘極; 第一觸發器電壓控制器,其連接至該第一 NM〇S電 晶體及該第二NMOS電晶體之源極及一接地電壓源,且 由該複數個第二控制信號控制;及 一第二觸發器電壓控制器,其連接至該第三NMOS電 、 晶體及該第四NMOS電晶體之源極及該接地電壓源,且 〇 由該複數個第一控制信號控制。 6·如請求項5之接收器,其中該第一觸發器電壓控制器包 . 含·· • 複數個電流源,其連接至該第一 NMOS電晶體及該第 二NMOS電晶體之該等源極;及 複數個NMOS電晶體,其各自分別連接至該複數個電 流源中之一者及該接地電壓源,該複數個電晶體 中之每一者之閘極分別接收該複數個第二控制信號中之 122081.doc • 2 - 200816659 一者。 如請求項5之接收器,其中該第二觸發器電壓控制器包 含: 複數個電流源’其連接至該第三NMOS電晶體及該第 四NMOS電晶體之該等源極;及 複數個NMOS電晶體,其各自分別連接至該複數個電 流源中之一者及該接地電壓源,該複數個NM〇s電晶體 Ο 8· 〇 9. 10. 中之每一者之閘極分別接收該複數個第一控制信號中之 一者。 如請求項4之接收器,其中該高通濾波器包含: 一電容器,其具有通過該第一通道之該第一輸入信號 所施加至之一第一端子;及 一電阻器,其連接至該電容器之一第二端子及該第一 電源電壓之源, 其中孩電容器之該第二端子之一信號變為來自該高通 渡波之該第一信號。 如請求項4之接收器,其中該第一電源電壓為一施加至 該第一通道之端接電壓。 如請求項4之接收器,其中該高通濾波器進一步經組態 以接收一通過一第二通道之第二輸入信號;且 忒斯始、特觸發器進一步經組態以回應於該複數個第一 控制信號及該複數個第二控制信號將一來自該高通濾波 器之第二信號與該第一電源電壓進行比較。 如凊求項10之接收器,其中該斯密特觸發器包含·· 122081.doc 200816659 第-電阻器及第二電阻器,其具有一電源電壓所施加 至之第一端子; 一第一NMOS電晶體,其具有一連接至該第一電阻器 之一第二端子以輸出該第二輸出信號之汲極,及來自該 同通濾波器之該第一信號所施加至之一閘極; 一第一 NMOS電晶體,其具有一連接至該第二電阻器 =一第二端子以輸出該第一輸出信號之汲極,及來自該 尚通濾波器之該第二信號所施加至之一閘極; 一第三NMOS電晶體,其具有一連接至該第一電阻器 之該第二端子之汲極,及該第一輸出信號所施加至之一 閘極; 一第四NMOS電晶體,其具有一連接至該第二電阻器 之該第二端子之汲極,及該第二輸出信號所施加至之一 閘極; 第觸發器電壓控制器,其連接至該第一 NMOS電 曰曰體及4第一 NMOS電晶體之源極及一接地電壓源,且 由該複數個第二控制信號控制;及 第一觸發器電壓控制器,其連接至該第三NM〇s電 曰曰體及w亥第四NMOS電晶體之源極及該接地電壓源,且 由該複數個第一控制信號控制。 12·如明求項11之接收器,其中該第一觸發器電壓控制器包 含: 複數個電流源,其連接至該第一 NM〇s電晶體及該第 二NMOS電晶體之該等源極;及 122081.doc 200816659 複數個NMOS電晶體,其各自分別連接至該複數個電 流源中之一者及該接地電壓源,該複數個NM〇s電晶體 中之每一者之閘極分別接收該複數個第二控制信號中之 一者。 13 ·如明求項11之接收器,其_該第二觸發器電壓控制器包 含·· 複數個電流源,其連接至該第三NM0S電晶體及該第 四NMOS電晶體之該等源極;及200816659 X. Patent application scope: l A receiver for reducing the gain loss of at least the data transmission channel, comprising: a high-pass filter for interference and compensation signals; and a Schmitt trigger, which is composed of a plurality of first Two control signal control. The system 仏 及 及 及 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Trigger voltage. 3. The receiver of claim 2, the first input signal of the first channel is passed through the bean; and the first through the m-waveper is configured to receive the Schmitt trigger configured in response to The plurality of first control sounds: and _ second control signals will come from one of the high pass filters, second words: compared with: the first power supply voltage, and generate a first output 仏 ah and a second output signal . 4. The receiver of claim 3, further comprising: - a controller configured to generate the plurality of first control signals and the plurality of second control signals; and an amplifier configured to Receiving the first __ output signal and the second output signal, and generating an output signal of the receiver. 5. The receiver of claim 4, wherein the Schmitt trigger comprises: a first resistor and a second resistor having a second power supply applied to the first terminal; a first NM〇 An S transistor having a first die connected to the first resistor 122081.doc 200816659 to output a drain of the second output signal, and the first signal from the mushroom is applied thereto a first NMOS transistor having a drain connected to a second terminal of the second resistor to output the second output signal, and the first power voltage applied to one of the gates; a third NMOS transistor having a drain connected to the first resistor and a first output signal applied to one of the gates; 〇 a fourth NMOS a transistor having a drain connected to the second terminal of the second resistor, and the second output signal is applied to one of the gates; a first flip-flop voltage controller coupled to the first The NM〇S transistor and the source of the second NMOS transistor are connected a voltage source, and controlled by the plurality of second control signals; and a second flip-flop voltage controller connected to the third NMOS, the source of the crystal and the fourth NMOS transistor, and the ground voltage source, And being controlled by the plurality of first control signals. 6. The receiver of claim 5, wherein the first trigger voltage controller package comprises: a plurality of current sources connected to the first NMOS transistor and the second NMOS transistor And a plurality of NMOS transistors each connected to one of the plurality of current sources and the ground voltage source, the gates of each of the plurality of transistors respectively receiving the plurality of second controls 122081.doc • 2 - 200816659 in the signal. The receiver of claim 5, wherein the second trigger voltage controller comprises: a plurality of current sources 'connected to the third NMOS transistor and the sources of the fourth NMOS transistor; and a plurality of NMOS a transistor, each of which is respectively connected to one of the plurality of current sources and the ground voltage source, and the gates of each of the plurality of NM〇s transistors Ο 8· 〇 9. 10. respectively receive the gate One of a plurality of first control signals. The receiver of claim 4, wherein the high pass filter comprises: a capacitor having a first input signal applied through the first channel to one of the first terminals; and a resistor coupled to the capacitor And a second terminal and a source of the first power voltage, wherein a signal of the second terminal of the child capacitor becomes the first signal from the high-pass wave. The receiver of claim 4, wherein the first supply voltage is a termination voltage applied to the first channel. The receiver of claim 4, wherein the high pass filter is further configured to receive a second input signal through a second channel; and the sigma trigger is further configured to respond to the plurality of A control signal and the plurality of second control signals compare a second signal from the high pass filter with the first supply voltage. The receiver of claim 10, wherein the Schmitt trigger comprises: 122081.doc 200816659 a first-resistor and a second resistor having a first terminal to which a power supply voltage is applied; a first NMOS a transistor having a drain connected to a second terminal of the first resistor to output the second output signal, and a first signal from the same filter applied to one of the gates; a first NMOS transistor having a drain connected to the second resistor=a second terminal to output the first output signal, and a second signal from the Shangtong filter applied to the gate a third NMOS transistor having a drain connected to the second terminal of the first resistor, and a first output signal applied to one of the gates; a fourth NMOS transistor a drain connected to the second terminal of the second resistor, and the second output signal is applied to one of the gates; a trigger voltage controller connected to the first NMOS capacitor And the source of the first NMOS transistor and a grounding current a source, and controlled by the plurality of second control signals; and a first flip-flop voltage controller connected to the third NM〇s electrical body and the source of the fourth NMOS transistor and the ground voltage The source is controlled by the plurality of first control signals. The receiver of claim 11, wherein the first trigger voltage controller comprises: a plurality of current sources connected to the first NM〇s transistor and the sources of the second NMOS transistor And 122081.doc 200816659 a plurality of NMOS transistors each connected to one of the plurality of current sources and the ground voltage source, the gates of each of the plurality of NM〇s transistors being respectively received One of the plurality of second control signals. 13. The receiver of claim 11, wherein the second flip-flop voltage controller comprises a plurality of current sources connected to the third NMOS transistor and the sources of the fourth NMOS transistor ;and 〇 稷數個NMOS電晶Μ,其各自分別連接至該複數個電 μ源中之一者及该接地電壓源,該複數個電晶體 中之每一者之閘極分別接收該複數個第一控制信號中之 一者。 14·如請求項1〇之接收器,其中該高通濾波器包含: 一第一電容器,其具有通過該第一通道之該第一輸入 信號所施加至之一第一端子; -弟-電阻器’其連接至該第一電容器之一第二端子 及該第一電源電壓之源; 一弟一電容器,其具有通過該第_ 乐一通道之該第二輸入 信號所施加至之一第一端子;及 一第二電阻H,其連接至該第二電容器之—第二端子 及該第一電源電壓之該源, 其中该第一電容器之該第二端子夕 一、 乐知子之—信號變為來自該 局通慮波器之該第一信號,且該第 ^ 昂電各器之該第二端 子之一#號變為來自該高通濾波器之該第二俨號 122081.doc 200816659 15·如請求項ι〇之接收器,其中該第一電源電壓為一施加至 該至少一通道♦之每一者之端接電壓。 16· —種降低至少_資料傳輸通道之内標記干擾並補償信號 增益損失之方法,其包含·· 接收通過一對應通道之至少一輸入信號; 回應於該至少一輸入信號使用一高通濾波器而產生一 第一輸出信號; Ο =複=個第—控制信號及複數個第二控制信號以便 器電麼斯在特觸發器之一第一觸發器電壓及一第二觸發 制=::該:數個第-控制信號及該複數個第二控 太止 弟—輸出信號與一第一電源雷壓推;r 產生一第二輪φ > 电碌電壓進仃比較而 輪出“號及一第三輸出信號· 回應於該第— 贶,及 w乐—輸出信號及該 收15之一輪出信號。 珣出4唬而產生該接 〇 122081.doc〇稷 a plurality of NMOS transistors, each of which is respectively connected to one of the plurality of electrical sources and the ground voltage source, the gates of each of the plurality of transistors respectively receiving the plurality of first One of the control signals. 14. The receiver of claim 1, wherein the high pass filter comprises: a first capacitor having a first input signal applied through the first channel to one of the first terminals; 'connecting to a second terminal of the first capacitor and a source of the first supply voltage; a capacitor-having capacitor having a second input signal applied to the first terminal through the first channel And a second resistor H connected to the second terminal of the second capacitor and the source of the first power voltage, wherein the second terminal of the first capacitor, the signal of the first branch The first signal from the board of the board is considered to be, and the one of the second terminals of the second unit becomes the second number 122081.doc 200816659 15 from the high pass filter. The receiver of claim 1, wherein the first power voltage is a termination voltage applied to each of the at least one channel ♦. 16. A method of reducing at least _ mark interference within a data transmission channel and compensating for signal gain loss, comprising: receiving at least one input signal through a corresponding channel; responding to the at least one input signal using a high pass filter Generating a first output signal; Ο = complex = a first control signal and a plurality of second control signals for the first trigger voltage and one second trigger system of the special trigger =:: a plurality of first control signals and the plurality of second control terminals - the output signal is boosted by a first power supply; r generates a second round of φ > the electrical voltage is compared with the turn of the "number and one The third output signal is responsive to the first 贶, and the w music output signal and the one of the 15 rounds of the round signal. The output is generated by 4 〇 122081.doc
TW096124353A 2006-07-19 2007-07-04 A receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof TWI369081B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060067307A KR100723535B1 (en) 2006-07-19 2006-07-19 Receiver for reducing intersymbol interference of channel and for compensating signal gain loss

Publications (2)

Publication Number Publication Date
TW200816659A true TW200816659A (en) 2008-04-01
TWI369081B TWI369081B (en) 2012-07-21

Family

ID=38278772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096124353A TWI369081B (en) 2006-07-19 2007-07-04 A receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof

Country Status (6)

Country Link
US (1) US7969218B2 (en)
JP (1) JP2008029004A (en)
KR (1) KR100723535B1 (en)
CN (1) CN101110581B (en)
DE (1) DE102007034574A1 (en)
TW (1) TWI369081B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451032B2 (en) * 2010-12-22 2013-05-28 Silicon Laboratories Inc. Capacitive isolator with schmitt trigger
US8680891B2 (en) * 2011-01-27 2014-03-25 Qualcomm Incorporated High voltage tolerant differential receiver
US8446204B2 (en) 2011-01-27 2013-05-21 Qualcomm Incorporated High voltage tolerant receiver
CN104365023B (en) * 2012-03-16 2016-06-29 英特尔公司 For switching device and the system of equilibrium
CN103368532A (en) * 2013-07-09 2013-10-23 华东师范大学 Hysteretic voltage digital adjustable Schmitt trigger
KR102294149B1 (en) 2015-02-13 2021-08-26 삼성전자주식회사 Schmitt trigger circuit and non-volatile memory device including the same
KR20200032807A (en) * 2018-09-18 2020-03-27 삼성디스플레이 주식회사 Reciever and transceiver including the same
KR102549607B1 (en) * 2019-01-28 2023-06-29 삼성전자주식회사 Electronic circuit capable of selectively compensating for crosstalk noise and inter-symbol interference
CN110011693A (en) * 2019-04-04 2019-07-12 深圳市三旺通信股份有限公司 Signal-isolated transmission method and circuit based on transformer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824890A1 (en) 1988-07-22 1990-01-25 Philips Patentverwaltung STEREO RECEIVER
US5565812A (en) 1995-03-23 1996-10-15 Texas Instruments Incorporated Increased sensitivity signal shaper circuit to recover a data stream coming from a digitally modulated channel
US6459323B2 (en) 1997-08-14 2002-10-01 Dolphin Interconnect Solutions As Interface isolator and method for communication of differential digital signals
US6597352B1 (en) 1999-05-05 2003-07-22 Nokia Corporation Method and device for filtered sync detection
JP2002368830A (en) 2001-06-08 2002-12-20 Dainippon Printing Co Ltd Signal reception section
KR100532224B1 (en) * 2002-04-08 2005-11-29 실리콤텍(주) Infrared remote control receiver having semiconductor signal processing device designed with only cmos process
US6808494B2 (en) * 2003-02-10 2004-10-26 Siemens Medical Solutions Usa, Inc. Transmit circuit for imaging with ultrasound
US6982582B1 (en) * 2003-06-23 2006-01-03 Marvell International Ltd. Simplified comparator with digitally controllable hysteresis and bandwidth
CN2690992Y (en) * 2004-04-30 2005-04-06 北京铱星世纪数字应用开发有限责任公司 Input signal anti-interference circuit for entrance guard controller
KR100902658B1 (en) 2008-07-16 2009-06-15 박종칠 Molding apparatus for contact lens

Also Published As

Publication number Publication date
US7969218B2 (en) 2011-06-28
KR100723535B1 (en) 2007-05-30
DE102007034574A1 (en) 2008-03-27
CN101110581B (en) 2011-12-28
US20080018370A1 (en) 2008-01-24
CN101110581A (en) 2008-01-23
TWI369081B (en) 2012-07-21
JP2008029004A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
TW200816659A (en) A receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof
US7496161B2 (en) Adaptive equalization system for a signal receiver
JP6140860B2 (en) Single-end configurable multimode driver
US9094244B2 (en) Receiver circuit with de-emphasis function
US9209789B1 (en) Apparatus to convert electrical signals from small-signal format to rail-to-rail format
US7873980B2 (en) High-speed cable with embedded signal format conversion and power control
US8718127B2 (en) Apparatus and method for digitally-controlled adaptive equalizer
US20130014199A1 (en) Startup circuit and high speed cable using the same
US20110095784A1 (en) Apparatus and method for providing multi-mode clock signals
US20080260049A1 (en) Serializer and deserializer
US7271623B2 (en) Low-power receiver equalization in a clocked sense amplifier
US7504859B2 (en) Level converter and semiconductor device
JP2001507183A (en) Line terminal circuit for controlling the common mode voltage level on the transmission line
US10110204B2 (en) Low power buffer with gain boost
US20100120383A1 (en) Differential output circuit and communication device
JP2020522931A (en) Circuit and method for implementing a differential input receiver
CN107852160B (en) Analog multiplexer core circuit and analog multiplexer circuit
US6140857A (en) Method and apparatus for reducing baseline wander
JPH09502588A (en) Signaling device
Gerfers et al. A 0.2–2 Gb/s 6x OSR receiver using a digitally self-adaptive equalizer
US20150280950A1 (en) Signal Processing
US10666466B2 (en) Semiconductor integrated circuit, receiving device, and communication system
US7372328B2 (en) Amplification circuit for driving a laser signal
FR3006833A1 (en) CIRCUIT AND METHOD FOR SIGNAL CONVERSION
Zo What is important in a transmitter?

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees