TW200815856A - Transflective LC display with internal reflector and reflective polarizer - Google Patents

Transflective LC display with internal reflector and reflective polarizer Download PDF

Info

Publication number
TW200815856A
TW200815856A TW96128282A TW96128282A TW200815856A TW 200815856 A TW200815856 A TW 200815856A TW 96128282 A TW96128282 A TW 96128282A TW 96128282 A TW96128282 A TW 96128282A TW 200815856 A TW200815856 A TW 200815856A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
reflective
polarizer
display
crystal panel
Prior art date
Application number
TW96128282A
Other languages
Chinese (zh)
Inventor
Philip Edwin Watson
Andrew John Ouderkirk
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW200815856A publication Critical patent/TW200815856A/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A transflective display having a reflective viewing mode and a transmissive viewing mode is provided. The transflective display includes a liquid crystal (LC) panel having an array of partially reflective pixels. The reflective portions of the array of partially reflective pixels include metal positioned on a viewer side of the LC panel to reflect light back toward the viewer. The display also includes a reflective polarizer, in place of a conventional rear polarizer, positioned behind the LC panel on a side of the LC panel opposite the viewer side. The reflective polarizer is also oriented to reflect ambient light back toward the viewer.

Description

200815856 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示裝置,尤其係該等使用液晶(Lc) 面板及可在反射環境光且透射起源於一背光之光兩者中操 作者,及相關物品與程序。 【先前技術】 包括用於將資訊傳送給檢視者之電子顯示器的以微處理 器為基礎裝置已成為幾乎普遍存在。行動電話、手持電 腦、個人數位助理(PDA)、電子遊戲、MP3播放器及其他 可攜式音樂播放器、汽車立體音響及指示器、公共顯示 器、自動櫃員機、商店中資訊站、家用電器、電腦監視器 及電視,係此等裝置之範例。許多在此等裝置上設置之顯 示器係液晶顯示器(LCD或LC顯示器)。 與陰極射線管(CRT)顯示器不同的是,液晶顯示器不具 有發光之磷光影像螢幕,且因此需要一用於檢視形成於此 等顯不器上之影像的分離光源。例如,一光源可位於顯示 器後,其通常係稱為"背光"。背光係位於液晶顯示器中與 檢視者相反之侧上,使得藉由背光產生之光穿過液晶顯示 器到達檢視者。一使用此一背光之液晶顯示器可稱為在 ’’透射’’模式中操作。一替代照明來源可來自外部光源,如 環境室内光或太陽。 些液晶顯示器係經設計以在兩種模式任一模式中之操 作·上述利用背光之透射模式;或一"反射”模式,其使用 從一位於液晶顯示器之檢視者侧的外部光源所反射之光。 123391.doc 200815856 此等液晶顯示器(稱為’’半透射半反射"顯示器)一般具有一 液晶面板及一在液晶面板及背光間之部分反射層。在其他 情況中,部分反射層係置放於在液晶面板内而非在液晶面 板及背光之間。在任一情況中,部分反射層(在此稱為,,半 透射半反射器)透射來自背光之一足夠之光部分,同時亦 反射一足夠之外部光部分,以允許顯示器能在透射模式及 反射模式兩者中檢視。一示範性半透射半反射器係可由 3M公司獲得之VikuitiTM半透射半反射顯示器膜(,,TDF")。 此膜包括一由聚合多層光學膜形成之反射偏光器(即一反 射一偏光狀愍之光且透射一正交偏光狀態的光之物體)。 TDF產品亦包括一擴散黏合層及一中性密度塗層。 液晶顯示器之液晶面板組件一般包括二基板及一置放於 其間之液晶材料。基板可由玻璃、塑膠、或其他適合之透 明材料製成。該等基板係用一電極陣列供應,其將電氣信 號提供給一已知為圖像元件(像素)之個別區域的對應陣 列,其一起界定顯示器之檢視區域且個別界定該顯示器的 解析度。藉由該等電極提供之電氣信號,通常結合薄膜電 晶體(TFT) ’其允許調整各像素之光學元件,例如明顯地 修改透射光之偏光狀態,或允許光通過而不明顯地修改其 偏光狀態。在一些情況下,電氣信號可將液晶從透射狀態 切換為散射狀態,或在像素中提供一些其他光學改變。液 晶面板通常不包括一位於在該等基板間之高度吸收性滤色 片。然而,其可包括一橫越可見光譜吸收少於入射光之 50%的弱濾色片。 123391.doc 200815856 液晶面板中…材料可為向列型,如扭 ⑽)、光學補償f曲(0CB)、電性控制雙折射(ecb) 扭轉向列型(則)、或者雙穩態向列型液晶或其他已知向 列型模式中之情況。其亦可為用於鐵電、反鐵電、次鐵電 及其他矩列型模式之矩列型液晶。液晶亦可為—膽固醇液 晶、-液晶/聚合物複合物、一聚合物分散液晶、或可在 至少二光學可區分狀態間電性切換之任何其他類型的液晶 組態。200815856 IX. OBJECTS OF THE INVENTION: 1. Field of the Invention The present invention relates to a display device, and more particularly to such an operator using a liquid crystal (Lc) panel and light that can reflect ambient light and transmit light originating from a backlight. , and related items and procedures. [Prior Art] Microprocessor-based devices including electronic displays for transmitting information to viewers have become almost ubiquitous. Mobile phones, handheld computers, personal digital assistants (PDAs), video games, MP3 players and other portable music players, car stereos and indicators, public displays, automated teller machines, information stations in stores, household appliances, computers Monitors and televisions are examples of such devices. Many of the displays provided on such devices are liquid crystal displays (LCD or LC displays). Unlike cathode ray tube (CRT) displays, liquid crystal displays do not have a luminescent phosphor image screen and therefore require a separate source for viewing images formed on such displays. For example, a light source can be located behind a display, which is commonly referred to as "backlight". The backlight is located on the opposite side of the liquid crystal display from the viewer so that light generated by the backlight passes through the liquid crystal display to reach the viewer. A liquid crystal display using such a backlight can be said to operate in a 'transmission' mode. An alternative source of illumination can come from an external source such as ambient room light or the sun. Some liquid crystal displays are designed to operate in either mode of the two modes, the above-described transmission mode using backlights, or a "reflection" mode, which is reflected from an external light source located on the viewer side of the liquid crystal display. 123391.doc 200815856 These liquid crystal displays (referred to as ''transflective> displays) generally have a liquid crystal panel and a partially reflective layer between the liquid crystal panel and the backlight. In other cases, a partially reflective layer Placed in the liquid crystal panel rather than between the liquid crystal panel and the backlight. In either case, the partially reflective layer (herein referred to as a transflective) transmits sufficient light from one of the backlights, Reflecting a sufficient portion of the external light to allow the display to be viewed in both transmissive mode and reflective mode. An exemplary transflector is a VikuitiTM transflective display film available from 3M Company (,, TDF") The film comprises a reflective polarizer formed by polymerizing a multilayer optical film (ie, reflecting a polarized light and transmitting a crossed polarized light) The TDF product also includes a diffusion bonding layer and a neutral density coating. The liquid crystal panel assembly of the liquid crystal display generally comprises two substrates and a liquid crystal material placed therebetween. The substrate may be glass, plastic, or Other suitable transparent materials are produced. The substrates are supplied with an array of electrodes that provide electrical signals to a corresponding array of individual regions known as image elements (pixels) that together define the viewing area of the display and individually Defining the resolution of the display. The electrical signals provided by the electrodes, typically in combination with thin film transistors (TFTs), allow adjustment of the optical components of each pixel, such as significantly modifying the polarized state of the transmitted light, or allowing light to pass through. The polarization state is not significantly modified. In some cases, the electrical signal can switch the liquid crystal from a transmissive state to a scattering state, or provide some other optical change in the pixel. The liquid crystal panel typically does not include a height between the substrates. An absorptive color filter. However, it may include a cross-visible absorption of less than 50% of the incident light. Weak filter color. 123391.doc 200815856 In the LCD panel... the material can be nematic, such as twist (10), optically compensated f (0CB), electrically controlled birefringence (ecb), twisted nematic (then), or Bistable nematic liquid crystal or other known nematic mode. It can also be a matrix liquid crystal for ferroelectric, antiferroelectric, subferroelectric and other matrix modes. It is a cholesteric liquid crystal, a liquid crystal/polymer composite, a polymer dispersed liquid crystal, or any other type of liquid crystal configuration that can be electrically switched between at least two optically distinguishable states.

通常,液晶顯示器係單色或彩色。在單色顯示器中,可 使檢視區域中之各像素為暗、明亮、或中間強度位準,例 如在灰階影像中。此強度調變通常係以白光使用(以產生 白、黑或灰色像素),但另可用例如綠、橘色等等任何其 他單一色彩的光。但此強度調變無法在檢視區域之任何任 意位置處產生一色彩範圍。反之,”全彩"液晶顯示器可在 檢視區域内之任何任意位置處產生一可感知色彩範圍,例 如紅、綠、或藍色。 習知半透射半反射系統之設計通常涉及在反射亮度、透 射亮度及色彩產生間之折衷。通常,一半透射半反射層 (其位於液晶面板的透明基板間,或在液晶面板及背光間) 將會反射入射光之一部分,以在反射模式中提供來自外部 來源之照明,且將透射入射光之一不同部分,以提供來自 透射模式中之背光的照明。半透射半反射器之設計可加以 調諧’使得透射模式或反射模式更明亮,經常以他者為代 價。 123391.doc 200815856 【發明内容】 本申清案尤其係揭示一種半透射半反射顯示器,其具有 一反射檢視模式及一透射檢視模式。顯示器包括位於反射 偏光器前的液晶(LC)面板。反射偏光器取代習知後偏光 器,其與前偏光器一起用於控制透射或反射光之吸收/透 射。液晶面板包括具有反射部分及透射部分之部分反射像 素。反射部分包括位於液晶面板之檢視者側上的金屬層, 其用於將%^境光反射回至檢視者。反射偏光器位於像素之 至少透射部分後方,以便亦將環境光反射回至檢視者。部 分反射像素及反射偏光器一起在反射模式中從極高百分比 之顯示區域提供極佳亮度。 從以下詳細說明將會明白本申請案之此等及其他態樣。 然而,以上發明内容決不應視為限制所主張之主旨,該主 旨僅由隨附申請專利範圍定義,如可在申請案期間進行修 改。 【實施方式】 如上所述,"半透射半反射"液晶(LC)顯示器係可在環境 模式及背光模式下使用的任何直觀液晶顯示器。所揭示之 半透射半反射液晶顯示器使用包括内反射層及外半透射半 反射層之組態,以在反射模式中提供極高反射比,但在透 射模式中仍具有極高亮度。來自内反射器及外半透射半反 射器之兩種反射模式一起工作,以從極高百分比之顯示區 域提供極佳亮度。 圖1顯示一半透射半反射液晶顯示器10之一部分的示意 123391.doc 200815856 性側視圖,其包括一前偏光器12、一液晶面板14、取代習 知後偏光器之一反射偏光器16、及一背光18。控制器20係 經由一連接22電耦合至液晶面板14,以控制液晶面板之個 別像素24a至24g的光學狀態,該等像素係在界定該顯示器 之總體檢視區域的一區域上,依一重複圖案或陣列延伸。 另一控制器26係經由連接28電耦合至背光18,以控制其在 某些但非全部液晶顯示器中之運作。另外,某些顯示器Generally, the liquid crystal display is monochrome or colored. In a monochrome display, each pixel in the viewport can be dark, bright, or intermediate intensity level, such as in a grayscale image. This intensity modulation is typically used in white light (to produce white, black or gray pixels), but other colors such as green, orange, etc., can be used. However, this intensity modulation does not produce a range of colors at any arbitrary location in the viewing area. Conversely, a "full color" liquid crystal display can produce a perceptible color range, such as red, green, or blue, at any arbitrary location within the viewing area. Conventional transflective systems are typically designed to reflect brightness, A compromise between transmission brightness and color generation. Typically, a half transflective layer (between the transparent substrate of the liquid crystal panel or between the liquid crystal panel and the backlight) will reflect a portion of the incident light to provide external reflection in the reflective mode. The illumination of the source, and will transmit a different portion of the incident light to provide illumination from the backlight in transmissive mode. The design of the transflector can be tuned to make the transmissive or reflective mode brighter, often with the other In particular, the present disclosure discloses a transflective display having a reflective viewing mode and a transmissive viewing mode. The display includes a liquid crystal (LC) panel in front of the reflective polarizer. A reflective polarizer replaces a conventional post polarizer that is used with a front polarizer to control transmission or counter Absorption/transmission of light. The liquid crystal panel includes a partially reflective pixel having a reflective portion and a transmissive portion. The reflective portion includes a metal layer on the viewer side of the liquid crystal panel for reflecting the %2 light back to the viewer. The polarizer is located behind at least the transmissive portion of the pixel to also reflect ambient light back to the viewer. The partially reflective pixel and the reflective polarizer together provide excellent brightness from a very high percentage of the display area in the reflective mode. These and other aspects of the present application will be understood. However, the above summary should in no way be considered as limiting the claimed subject matter, which is defined only by the scope of the accompanying claims, as may be modified during the application. Embodiments As described above, a "transflective" liquid crystal (LC) display is any intuitive liquid crystal display that can be used in both ambient mode and backlight mode. The disclosed transflective liquid crystal display uses an inner reflective layer. And the configuration of the outer transflective layer to provide a very high reflectance in the reflective mode, but in transmission The mode still has very high brightness. The two reflection modes from the internal reflector and the outer transflector work together to provide excellent brightness from a very high percentage of the display area. Figure 1 shows a transflective liquid crystal display 10 A portion of the schematic 123391.doc 200815856 side view includes a front polarizer 12, a liquid crystal panel 14, a reflective polarizer 16 that replaces a conventional rear polarizer, and a backlight 18. The controller 20 is connected via a connection 22 is electrically coupled to the liquid crystal panel 14 to control the optical state of the individual pixels 24a through 24g of the liquid crystal panel, the pixels extending over a repeating pattern or array over an area defining the overall viewing area of the display. The device 26 is electrically coupled to the backlight 18 via a connection 28 to control its operation in some but not all of the liquid crystal displays. In addition, some monitors

中,控制器20、26間之另一連接29允許液晶面板及背光之 同步操作。 前偏光器12可為任何已知偏光器,但在示範性具體實施 例中,其係一種用於容易檢視及減少對於觀測者丨丨之眩光 的吸收性偏光器(有時亦稱為二向色偏光器)。偏光器12係 一以撓性聚合物為基礎之膜且經層壓或黏合至液晶面板 14,例如使用光學透明黏合劑。若偏光器12係一線性偏光 器,其在該膜或層之平面中具有一通過軸及一阻隔軸。平 灯於通過軸所偏光之光會透射,而平行於阻隔軸(垂直於 通過軸)所偏光之光被阻隔,例如藉由前偏光器12吸收。 液晶面板14包括密封在二透明基板間之液晶材料,及界 像素24a至24g之對應陣列的一電極陣列。一控制器係 可個別疋址或控制各像素以形成_所需影像。根據是否開 啟或關閉給定像素,或者在中間狀態下,、液晶面板旋轉通 义’、之光的偏光。同樣’液晶面板可將光偏光狀態從線性 改變為橢圓形或_,反之亦然。該液晶面板可使其前面 附接至該前偏光器,及亦可包括一擴散器膜、一抗反射 123391.doc 200815856 腺’一防眩表面或其他前表面處理。 圖2說明一更特定顯示器200,其係圖1内所示顯示器10 的一項具體實施例。現在參考圖1及2,液晶面板14内之像 素陣列係部分反射像素(pRp)之陣列。例如,圖2至5内詳 細5兄明的部分反射像素可經組態用以包括位於使用内反射 層212(圖1内未顯示)之液晶面板的檢視者侧(即觀測者11之The other connection 29 between the controllers 20, 26 allows for simultaneous operation of the liquid crystal panel and backlight. The front polarizer 12 can be any known polarizer, but in an exemplary embodiment, it is an absorptive polarizer (sometimes referred to as a two-way) for easy viewing and reducing glare to an observer. Color polarizer). The polarizer 12 is a flexible polymer based film and is laminated or bonded to the liquid crystal panel 14, for example, using an optically clear adhesive. If the polarizer 12 is a linear polarizer, it has a pass axis and a blocking axis in the plane of the film or layer. The light that is polarized by the flat light is transmitted through the light that is polarized by the axis, and the light that is polarized parallel to the blocking axis (perpendicular to the passing axis) is blocked, for example, by the front polarizer 12. The liquid crystal panel 14 includes a liquid crystal material sealed between two transparent substrates, and an electrode array of corresponding arrays of boundary pixels 24a to 24g. A controller can individually address or control each pixel to form the desired image. The polarization of the light of the liquid crystal panel is rotated according to whether the given pixel is turned on or off, or in the intermediate state. Similarly, the liquid crystal panel can change the light polarization state from linear to elliptical or _, and vice versa. The liquid crystal panel can have its front side attached to the front polarizer, and can also include a diffuser film, an anti-reflection 123391.doc 200815856 gland' an anti-glare surface or other front surface treatment. 2 illustrates a more specific display 200, which is a specific embodiment of display 10 shown in FIG. Referring now to Figures 1 and 2, the pixel array within liquid crystal panel 14 is an array of partially reflective pixels (pRp). For example, the partially reflective pixels of Figures 5 through 5 can be configured to include a viewer side of the liquid crystal panel using internal reflection layer 212 (not shown in Figure 1) (i.e., observer 11

側)上之金屬。内反射層212可為提供寬頻帶反射之鋁、 銀銦或任何其他金屬反射層,並且從觀測者!!之方向看 覆蓋某百分比之像素區域。示範性顯示器中,在不透明 像素邛分210前方具有内(液晶面板14内)反射層212的各像 素24之反射部分220包含總像素之大約15%與75%間,而像 素之透射部分222實質上包含像素區域之剩餘部分。特定 泛之,不範性具體實施例中,反射部分22〇覆蓋在其他情 ,中加以黑色遮蔽以覆蓋TFT、儲存電容器、或像素邊緣 區域的區域。定位内反射器212之液晶層厚度(例如圖2内 所示基板206與208間的液晶材料之厚度)通常比在像素之 透射區域222内更薄(可能係其厚度的一半)。 顯示器10可為單色顯示器或彩色顯示器。對於顏色,顯 示器可使用場順序彩色技術、繞射顏色分離、漶色片、或 用於顏色產生的該等效果之組合。圖2所顯示之濾色片 224(若有)可僅位於各像素之透射部分以上。_而,盆他 組態中,遽、色片可覆蓋整個像素區域。出於說明目的:、其 他圖式中省略了濾色片。 例如其包括直接照 月光18可為任何多種不同背光類型 123391.doc 200815856 亮或邊緣照亮背光設計。背光18可使用螢光燈泡、發光二 極體(LED)、或冷光發光技術。某些顯示器,背光⑽在 控制器28控制下的場順序彩色背光。該等顯示器中,滤色 片224通常不需要。其他顯示器中’背光以可為繞射背 光,該情形中,通常,但不必使用濾色片。雖然僅概要地 顯示,但背光18通常亦包括習知組件,諸如光導、光增強 膜、透鏡、及其他組件,以致較佳地在顯示器之檢視區域 上提供實質上均勻及有效率的照明。 反射偏光器16係外部半透射半反射器,因為其位於液晶 面板14及其部分反射内層212外部及後方,通常係液晶面 板14與背光18之間。示範性具體實施例中,反射偏光器16 覆盍像素之整個區域’特定言之係覆蓋像素之透射區域 222。反射偏光器16可為線性反射偏光器,例如此一 VikuitiTM RDF-C或TDF膜(明尼蘇達州聖保羅市3M&司)。 可使用之另一類型的反射偏光器為美國專利第6, u丨,696號 φ 内所述DRPF偏光器。例如,反射偏光器16亦可係線路格 柵反射偏光器或膽固醇反射偏光器。反射偏光器16可但不 必係美國專利第5,882,774號(Jonza等人)或美國專利申請案 公開案第 2002/0190406 號(Merrill 等人)、第 2002/0180107 號(Jackson 等人)、第 2004/0099992 號(Merrill 等人)及 2004/0099993(Jackson等人)之聚合物多層設計。因此,偏 光器16在偏光器之平面中具有一通過軸及一阻隔軸,其中 平行於通過轴所偏光之光係實質上透射,而平行於阻隔軸 所偏光之光係實質上由偏光潠16反射。在偏光器16中之吸 123391.doc -12· 200815856 收通常係可忽略,尤其係在可見波長上。背部偏光器16之 通過轴可具有相對於前偏光器12的通過軸之任何所需定 向,但基於本說明之目的,將假設背部偏光器丨6之通過軸 係與前偏光器12的通過軸垂直。在此情況下,顯示器1〇係 一反轉類型之半透射半反射器,因為像素24(其狀態(由控 制器20決定)使其在反射檢視模式中明亮)在透射檢視模式 會使其為暗的;且像素24(其狀態使其在反射檢視模式中 為暗的)在透射檢視模式中會使其明亮。 在此一方面中,半透射半反射顯示器一般成為二類之操 作:反向及非反向。非反向顯示器在反射及透射操作模式 中提供相同影像,因為在兩者情況中,任何離開顯示器之 光攸半透射半反射器行進至背部偏光器(其界定光的偏光 狀悲),透過液晶面板,且透過前偏光器離開。入射在顯 不器上之外部光穿過前偏光器、透過液晶面板、透過背部 偏光器,從半透射半反射器反射,返回透過背部偏光器及 液晶面板,且透過前偏光器離開。來自背光之光穿過半透 射半反射益、透過背部偏光器、透過液晶面板及透過前偏 光為離開。因為兩種操作模式提供類似影像(儘管反射模 式衫像係單色而背光影像可為彩色),接著自反射及透射 柄式離開系統的光將會_起運作以提供—更明亮的整體影 像。 如上所述’反射偏光器16用作液晶顯示器之背部偏光 器例如反射偏光器可為一片(美國明 匕蘇達州聖保羅市之3M公司),其經層壓以取代在顯示器 123391,doc -13 · 200815856 中之習知吸收性背部偏光器。RDF-C膜包括一聚合多層反 射偏光器及一光擴散黏合劑層。在此情況下,入射在顯示 器上之外部光穿過前偏光器,接著透過液晶面板,並撞擊 反射偏光器。此時,一偏光狀態(狀態"係被反射,及透 過液晶面板及前偏光器返回。但一正交偏光狀態(狀態,,2,,) 之光係猎由反射偏光器透射且被吸收或在背光鄰近損耗。 對於起源於背光之光,偏光狀態2係透過反射偏光器、透 φ 過液晶面板、及透過前偏光器來透射,同時偏光狀態1係 反射回進入背光且損耗。因此,反射操作模式將偏光狀態 1引入液晶面板,而透射操作模式將偏光狀態2引入液晶面 板,且二影像將因此反向。因而,透射模式影像看似反射 模式影像之負圖片(photo-negative),除了透射模式影像可 含有明亮色彩,而反射模式影像可為單色。 在反向顯不器之情況下,亦可能使用控制器2〇以電子方 式修改影像輸出,以校正光學反轉。控制器2〇可例如包括 • 一電子反轉演算法,其取決於背光18是否被激發而啟動與 否,即取決於顯示器1 〇係在反射模式或透射模式中。當背 光啟動時,此一演算法可以電子方式修改至個別像素之控 制#號,以電子方式使透射模式中的影像反轉,使得該影 像以如在反射模式中相同之前景/背景方案出現。 若而要亦可包括一偏光保留光擴散層作為反射偏光器 16之部分,以增強影像外觀。半透射半反射器^係位於液 晶面板U及背光18之間,使得其可反射來自外部來源之 光,諸如室内光或太陽。 123391.doc -14- 200815856 接下來參考圖6及7,顯示具有線性反射偏光器3 16、四 分之一波膜(QWF)304、及非去偏光或偏光保留擴散器32〇 之層壓結構300及400。可生產及銷售該等層壓結構以便取 代顯示器10及200内所示反射偏光器16及QWF 204。可使 用UV可固化或壓敏黏合劑320將層壓結構300及400内的膜 附著在一起。該等層壓結構亦可選擇性地包括用於將積層 附著於玻璃208或其他基板的透明黏合劑33〇。例如,線性 偏光器316可為Ouderkirk等人之美國專利第6,124,971號中 所述類型的RDF或TDF反射偏光器,其以提及方式併入本 文。線性偏光器316亦可選擇性地包括中性密度塗層。某 些層壓結構具體實施例中,四分之一波膜提供用於可見波 長’特別係用於紅色、綠色及藍色波長之四分之一波延 遲。 ^ ,入W爾尤态円,例Metal on the side). The inner reflective layer 212 can be a reflective layer of aluminum, silver indium or any other metal that provides broadband reflection, and from the observer! ! The direction of the coverage covers a certain percentage of the pixel area. In an exemplary display, the reflective portion 220 of each pixel 24 having the inner (inside the liquid crystal panel 14) reflective layer 212 in front of the opaque pixel portion 210 comprises between about 15% and 75% of the total pixels, while the transmissive portion 222 of the pixel is substantially The upper part of the pixel area is included. In a specific embodiment, the reflective portion 22 is covered with other black areas to cover the area of the TFT, the storage capacitor, or the pixel edge region. The thickness of the liquid crystal layer that positions the inner reflector 212 (e.g., the thickness of the liquid crystal material between the substrates 206 and 208 shown in Figure 2) is typically thinner (possibly half the thickness) of the transmissive region 222 of the pixel. Display 10 can be a monochrome display or a color display. For color, the display can use field sequential color techniques, diffractive color separation, enamel patches, or a combination of such effects for color generation. The color filter 224 (if any) shown in Figure 2 can be located only above the transmissive portion of each pixel. _And, in the potted configuration, 遽, color patches can cover the entire pixel area. For illustrative purposes: Filters are omitted from other drawings. For example, it includes direct illumination Moonlight 18 can be any of a variety of different backlight types. 123391.doc 200815856 Bright or edge illuminated backlight design. The backlight 18 can use a fluorescent bulb, a light emitting diode (LED), or a luminescent light emitting technique. For some displays, the backlight (10) is in a field sequential color backlight under the control of the controller 28. In these displays, the color filter 224 is generally not required. In other displays, the backlight can be a dimming backlight, in which case it is common, but not necessary, to use a color filter. Although only shown schematically, backlight 18 typically also includes conventional components such as light guides, light enhancement films, lenses, and other components to provide substantially uniform and efficient illumination over the viewing area of the display. The reflective polarizer 16 is an external transflector because it is located outside and behind the liquid crystal panel 14 and its partially reflective inner layer 212, typically between the liquid crystal panel 14 and the backlight 18. In an exemplary embodiment, the reflective polarizer 16 covers the entire area of the pixel 'specifically, covering the transmissive area 222 of the pixel. Reflective polarizer 16 can be a linear reflective polarizer such as this VikuitiTM RDF-C or TDF film (3M & São Paulo, Minnesota). Another type of reflective polarizer that can be used is the DRPF polarizer described in U.S. Patent No. 6, U. For example, the reflective polarizer 16 can also be a line grid reflective polarizer or a cholesterol reflective polarizer. The reflective polarizer 16 may, but need not be, US Pat. No. 5,882,774 (Jonza et al.) or U.S. Patent Application Publication No. 2002/0190406 (Merrill et al.), 2002/0180107 (Jackson et al.), 2004/ Polymer multilayer design of No. 0099992 (Merrill et al.) and 2004/0099993 (Jackson et al.). Therefore, the polarizer 16 has a passing axis and a blocking axis in the plane of the polarizer, wherein the light that is polarized parallel to the passing axis is substantially transmitted, and the light that is polarized parallel to the blocking axis is substantially polarized. reflection. The absorption in the polarizer 16 is usually negligible, especially at the visible wavelength. The pass axis of the back polarizer 16 can have any desired orientation relative to the pass axis of the front polarizer 12, but for purposes of this description, the pass axis of the back polarizer 丨6 and the pass axis of the front polarizer 12 will be assumed. vertical. In this case, the display 1 is an inverted type of transflector because the pixel 24 (whose state (determined by the controller 20) makes it bright in the reflective view mode) causes it to be in the transmissive view mode. Dark; and pixel 24 (whose state is dark in the reflective view mode) will make it bright in the transmissive view mode. In this aspect, transflective displays generally operate in two categories: reverse and non-reverse. The non-inverting display provides the same image in both the reflective and transmissive modes of operation, as in either case, any of the pupil transflective exiting the display travels to the back polarizer (which defines the polarization of the light), through the liquid crystal The panel exits through the front polarizer. The external light incident on the display passes through the front polarizer, through the liquid crystal panel, through the back polarizer, from the transflective reflector, back through the back polarizer and the liquid crystal panel, and exits through the front polarizer. The light from the backlight passes through the semi-transmissive semi-reflection, passes through the back polarizer, passes through the liquid crystal panel, and exits through the front polarized light. Because the two modes of operation provide similar images (although the reflective mode is monochromatic and the backlit image can be colored), then the self-reflecting and transmissive stalk-off light from the system will operate to provide a brighter overall image. As described above, the reflective polarizer 16 is used as a back polarizer for a liquid crystal display such as a reflective polarizer, which may be a sheet (3M Company, St. Paul, Alaska, USA), which is laminated to replace the display 123391, doc-13. A known absorbent back polarizer in 200815856. The RDF-C film comprises a polymeric multilayer reflective polarizer and a light diffusing adhesive layer. In this case, external light incident on the display passes through the front polarizer, then passes through the liquid crystal panel, and strikes the reflective polarizer. At this time, a polarized state (state " is reflected and returned through the liquid crystal panel and the front polarizer. However, the light of a quadrature polarization state (state, 2,,) is transmitted by the reflective polarizer and absorbed. Or in the vicinity of the backlight loss. For the light originating from the backlight, the polarized state 2 is transmitted through the reflective polarizer, through the liquid crystal panel, and through the front polarizer, while the polarized state 1 is reflected back into the backlight and is lost. The reflective mode of operation introduces the polarized state 1 into the liquid crystal panel, and the transmissive mode of operation introduces the polarized state 2 into the liquid crystal panel, and the two images are thus reversed. Thus, the transmissive mode image appears to be a photo-negative of the reflected mode image, In addition to the transmissive mode image, the image can be bright, and the reflective mode image can be monochrome. In the case of a reverse display, it is also possible to electronically modify the image output using the controller 2 to correct the optical reversal. 2〇 can include, for example, an electronic reversal algorithm that depends on whether the backlight 18 is activated or not, that is, depending on the display 1 In the shot mode or the transmissive mode, when the backlight is activated, the algorithm can be electronically modified to the control number of the individual pixels to electronically invert the image in the transmissive mode so that the image is the same as in the reflective mode. The foreground/background scheme appears. If desired, a polarized light-diffusion layer can also be included as part of the reflective polarizer 16 to enhance the appearance of the image. The transflective is located between the liquid crystal panel U and the backlight 18, such that It can reflect light from an external source, such as indoor light or the sun. 123391.doc -14- 200815856 Referring next to Figures 6 and 7, there is shown a linear reflective polarizer 3 16 , a quarter wave film (QWF) 304, And laminate structures 300 and 400 that are non-polarized or polarized to retain diffuser 32. These laminate structures can be produced and sold to replace reflective polarizers 16 and QWF 204 shown in displays 10 and 200. UV curable Or the pressure sensitive adhesive 320 adheres the films within the laminate structures 300 and 400. The laminate structures may also optionally include a transparent bond for attaching the laminate to the glass 208 or other substrate. For example, the linear polarizer 316 can be an RDF or TDF reflective polarizer of the type described in U.S. Patent No. 6,124,971 to Ouderkirk et al., which is incorporated herein by reference. Optionally comprising a neutral density coating. In certain laminate construction embodiments, the quarter-wave film provides a quarter-wave delay for the visible wavelengths, particularly for red, green, and blue wavelengths. ^ , into W Er special state, example

如線性反射偏光器,如,971專利所述者’擴散元件減小用 於反射偏光之反射偏光元件的鏡面反射率,而實質上不與 加反射偏《元件之反㈣或料透射偏光之❺光效率。才: 言之’擴散元件可為偏光保留型,因為其並不隨機化藉由 反射偏光元件反射或透射之光的Μ。理想擴散:件 具有較高程度之正向光散射’即低反射率。此對保留用於 反射偏光元件之偏光的最大選擇性报有利。可根據應用使 用變化擴散位準,其範圍從幾乎無擴散(鏡面)至極高 數量(蘭伯特)。擴散元件可為分離光學元件 垃 用或層壓至反射偏光元件之表 '、直接應 木一顯不器中,以非對 123391.doc -15- 200815856 稱方式散射光之橢圓形擴散器提供良好性能。此外,擴散 黏合劑可用作擴散元件。 某些示範性具體實施例中,反射偏光器亦可包括光吸收 膜或中性密度塗層,以在環境發光狀況下最佳化可檢視 性’同時不會顯著影響背光狀況下之顯示器外觀。光吸收 膜可為二向色偏光器。光吸收膜吸收來自背光之某些擴散 反射光’從而增加背光發光之有效率吸收並增加環境發光 狀況下之顯示器對比度。某些具體實施例中,當背光時, 環境發光狀況下之總體效果具有與暗背景相反之擴散照明 字元、以及與擴散白色背景相反之暗字元。 簡要參考圖8,顯示使用取代反射偏光器16及後QWF 204之積層300、400之一的顯示器500。除此之外,以及除 其不包括反射像素外(例如圖2之内反射層212),顯示器500 實質上與顯示器200相同。 現在更明確地參考圖2至5,顯示有效地串接使用兩種類 型之半透射半反射器(212及16)之顯示器200組態的特徵。 内反射器212允許將最高90%的像素區域用於影像描繪, 但由於顯示器亦包括以反射偏光器為基礎之半透射半反射 器16,其位於液晶面板14外部,作用區域對透射及反射影 像均有用。依此方式,一示範性具體實施例中,將最高 90%之作用區域用於反射影像(以兩種不同效率),而仍將 大約70%用於透射區域。 顯示器200包括液晶面板14,液晶位於玻璃板與其他基 板206與208之間。各像素之反射部分220中,反射層212位 123391.doc -16 - 200815856 於不透明像素部分2 1 0之頂部上,而在各像素之透射部分 222中,液晶材料較厚,且未以反射層覆蓋。前偏光器12 與液晶面板14之間係四分之一波板202。第二四分之一波 板204位於液晶面板14與反射偏光器16之間。應注意,所 有具體實施例中均不需要第二四分之一波板204。例如, 在反射偏光器16係膽固醇反射偏光器的具體實施例中,不 包括四分之一波板204。四分之一波板204以虛線顯示,以 代表其在此類具體實施例中之選擇性包括。 圖2說明液晶垂直狀態中之顯示器2〇〇,其具有用於說明 性目的之入射光線。此為暗狀態反射模式。應注意,將入 射射線250反射為返回觀測者之射線252。射線254以類似 自吸收之反射光250向上至進入透射區域222之液晶的點開 始。由於液晶處於垂直狀態,且未實現光偏光狀態,光 254以左旋(LHC)模式繼續,直至其撞擊第二四分之一波膜 204。此點上,將其轉換為線性偏光,並自由地穿過反射 偏光器16。假定光在背光系統中損耗。應注意對反射偏光 器新增部分吸收層將降低可重新進入液晶顯示器面板之光 百分比。 現在參考圖3,顯示器200處於液晶下狀態,此特定顯示 器組態中其係亮態反射模式。對於具有,,下,,(光學上明顯) 狀態液晶之反射模式,在退出前將來自進入液晶之入射射 線254的LHC光轉換為右旋(RHC)。接著藉由四分之一波板 204將其轉換為線性偏光,從反射偏光器16反射,並按與 進入完全相同之方式透過系統返回。此係由退出光線256 123391.doc 17- 200815856 代表。四分之一波板204將射線256從線性轉換為RHC,液 晶將射線256從RHC轉換為LHC,退出四分之一波板2〇2將 射線256從LHC轉換為線性’並且光以極小損耗退出系 統。 參考圖4,顯示採用暗態、透射模式背光運作之顯示器 200。液晶處於下狀態時,透過反射偏光器16及四分之一 波板204之組合,將藉由背光18透射之光線260轉換為LHc 光。液晶將光轉換為RHC,其接著藉由頂部的四分之一波 板202及前偏光器12組合加以吸收。 現在參考圖5 ’顯示採用免態、透射模式之背光運作的 顯示器200。液晶處於垂直狀態以便不會修改透射之光線 260時,LHC光在頂部撞擊四分之一波板2〇2與前偏光器12 組合’產生不吸收光線260之亮態。因此,採用液晶垂直 狀癌’顯示器200在透射模式處於亮態,而在反射模式處 於暗態。採用液晶下狀態,顯示器2〇〇在透射模式處於暗 _ 悲,而在反射模式處於亮態。此產生一反向顯示器組態。 藉由移除四分之一波膜202及204並以平行偏光器模式運行 顯示器’可獲得極其相似結果。反射偏光器之定向係選擇 成兩種反射模式(銘及多層)一起工作。 除非另外指示,用於本說明書及申請專利範圍中的所有 表達數量、性質之測量值及等等的數字應理解為在所有實 例中藉由術語"大約’’來修飾。因此,除非指示相反意思, 本說明書及申請專利範圍中提出的數值參數係近似值,其 可取決於使用本發明之教示的熟習此項技術人士欲獲得之 123391.doc -18- 200815856 期望性質而變化。至少且不試圖限制與申請專利範圍之範 疇等效的原理之應用,各數值參數應至少依據所描述有效 數字之數目及藉由應用普通整數化技術來構成。雖然提$ 本發明之寬廣範疇的數值範圍及參數係近似值,在特定範^ 例中提出之數值係盡可能精確地描述。然而,任何數值固 有地含有一些必然產生於其各自測試測量中會發現之標準 ^ 偏差的誤差。 _ 前述說明係說明性,且並非限制本發明之範圍。本文所 揭示之具體實施例的變更及修改可行,熟習技術人士在研 究本專利文件後會理解具體實施例之各種元件的實際替代 方案及等效物。可作出本文所揭示具體實施例之該等及其 他變更及修改,而不背離本發明之範圍及精神。本文參考 的所有專利及專利申請以提及方式完整併入,除範圍與前 述說明矛盾外。 【圖式簡單說明】 • 圖1係具有結合反射偏光器之部分反射像素的半透射半 反射液晶顯示器之一部分的示意性侧視圖;以及 圖2至5係更特定半透射半反射液晶顯示器具體實施例之 — 一部分的示意性侧視圖。 ' 圖6及7係積層膜結構之示意性侧視圖。 圖係使用圖6或7之積層結構之一的半透射半反射液晶 顯不器之一部分的示意性侧視圖。 在圖式中’相同參考符號指相同元件。 【主要元件符號說明】 123391.doc -19- 200815856For example, a linear reflective polarizer, such as the one described in the '971 patent, reduces the specular reflectance of the reflective polarizing element used to reflect the polarized light, and does not substantially overlap with the added reflex "the inverse of the element (four) or the transmitted transmission polarization). Light efficiency. Only: The diffusing element can be a polarization-retaining type because it does not randomize the enthalpy of light reflected or transmitted by the reflective polarizing element. Ideal diffusion: The piece has a high degree of forward light scattering', ie low reflectivity. This is advantageous for retaining the maximum selectivity of the polarized light used to reflect the polarizing element. Variable diffusion levels can be used depending on the application, ranging from almost no diffusion (mirror) to very high numbers (Lambert). The diffusing element can be used for the separation or lamination of the discrete optical element to the surface of the reflective polarizing element, and can be directly applied to the elliptical diffuser that does not scatter light in the manner of 123391.doc -15-200815856. performance. Further, a diffusion adhesive can be used as the diffusion element. In some exemplary embodiments, the reflective polarizer may also include a light absorbing film or a neutral density coating to optimize viewability under ambient illumination conditions while not significantly affecting the appearance of the display under backlight conditions. The light absorbing film may be a dichroic polarizer. The light absorbing film absorbs some of the diffuse reflected light from the backlight' to increase the efficient absorption of backlight illumination and increase the display contrast in ambient light conditions. In some embodiments, when backlighting, the overall effect of ambient illumination conditions has diffuse illumination characters that are opposite to the dark background, and dark characters that are opposite to the diffuse white background. Referring briefly to Figure 8, a display 500 using one of the overlays 300, 400 of the reflective polarizer 16 and the rear QWF 204 is shown. In addition, and in addition to not including reflective pixels (e.g., inner reflective layer 212 of FIG. 2), display 500 is substantially identical to display 200. Referring now more specifically to Figures 2 through 5, features of a display 200 configuration that effectively uses two types of transflective reflectors (212 and 16) are shown in series. The internal reflector 212 allows up to 90% of the pixel area to be used for image rendering, but since the display also includes a transflective 16 based on a reflective polarizer, which is external to the liquid crystal panel 14, the active area is for transmitting and reflecting images. Useful. In this manner, in an exemplary embodiment, up to 90% of the active area is used to reflect the image (in two different efficiencies) while still about 70% is used in the transmissive area. Display 200 includes a liquid crystal panel 14 that is positioned between the glass sheet and other substrates 206 and 208. In the reflective portion 220 of each pixel, the reflective layer 212 has a position 123391.doc -16 - 200815856 on top of the opaque pixel portion 2 1 0 , and in the transmissive portion 222 of each pixel, the liquid crystal material is thick and not reflected. cover. A quarter-wave plate 202 is interposed between the front polarizer 12 and the liquid crystal panel 14. The second quarter wave plate 204 is located between the liquid crystal panel 14 and the reflective polarizer 16. It should be noted that the second quarter-wave plate 204 is not required in all of the specific embodiments. For example, in a particular embodiment of the reflective polarizer 16 is a cholesterol reflective polarizer, the quarter wave plate 204 is not included. The quarter wave plate 204 is shown in dashed lines to represent its selectivity in such specific embodiments. Figure 2 illustrates a display 2 in a vertical state of liquid crystal with incident light for illustrative purposes. This is the dark state reflection mode. It should be noted that the incident ray 250 is reflected as a ray 252 that returns to the observer. The ray 254 begins with a point similar to the self-absorbed reflected light 250 up to the liquid crystal entering the transmissive region 222. Since the liquid crystal is in a vertical state and the light polarization state is not achieved, the light 254 continues in the left-handed (LHC) mode until it strikes the second quarter-wave film 204. At this point, it is converted to linearly polarized light and freely passed through the reflective polarizer 16. It is assumed that light is lost in the backlight system. It should be noted that the addition of a portion of the absorber layer to the reflective polarizer will reduce the percentage of light that can be re-entered into the LCD panel. Referring now to Figure 3, display 200 is in a liquid crystal state, which is a bright reflective mode in this particular display configuration. For a reflective mode with liquid crystals having,,,, (optically obvious) states, the LHC light from the incident ray 254 entering the liquid crystal is converted to right-handed (RHC) before exiting. It is then converted to linear polarization by a quarter-wave plate 204, reflected from the reflective polarizer 16, and returned through the system in exactly the same way as entering. This is represented by the exit light 256 123391.doc 17- 200815856. The quarter-wave plate 204 converts the ray 256 from linear to RHC, the liquid crystal converts the ray 256 from the RHC to the LHC, exits the quarter-wave plate 2〇2, converts the ray 256 from the LHC to linear 'and the light is minimally lossy Exit system. Referring to Figure 4, a display 200 operating in a dark state, transmissive mode backlight is shown. When the liquid crystal is in the down state, the light 260 transmitted through the backlight 18 is converted into LHc light by a combination of the reflective polarizer 16 and the quarter wave plate 204. The liquid crystal converts the light into an RHC which is then absorbed by a combination of the top quarter wave plate 202 and the front polarizer 12. Referring now to Figure 5', a display 200 operating in a stateless, transmissive mode backlight is shown. When the liquid crystal is in a vertical state so as not to modify the transmitted light 260, the LHC light hits the quarter wave plate 2〇2 at the top and the front polarizer 12 combines to produce a bright state that does not absorb light 260. Therefore, the liquid crystal vertical cancer display 200 is in a bright state in the transmissive mode and a dark state in the reflective mode. With the liquid crystal state, the display 2 is in darkness in the transmission mode and in the reflective mode. This produces a reverse display configuration. Extremely similar results can be obtained by removing the quarter wave films 202 and 204 and operating the display in parallel polarizer mode. The orientation of the reflective polarizer is chosen to work in two reflection modes (Ming and Multilayer). All numbers expressing quantities, measurements of properties, and the like, which are used in the specification and claims, are to be understood as being modified by the term "about' in all examples. Accordingly, the numerical parameters set forth in the specification and claims are approximations, which may vary depending on the desired properties of the 123391.doc -18-200815856 desired by those skilled in the art using the teachings of the present invention. . At the very least, and not as a limitation of the application of the principles of the claims Although the numerical ranges and parameters of the broad scope of the invention are approximated, the values set forth in the specific examples are described as precisely as possible. However, any value inherently contains errors that necessarily arise from the standard deviations found in their respective test measurements. The foregoing description is illustrative and not limiting of the scope of the invention. Variations and modifications of the specific embodiments disclosed herein are possible, and those skilled in the art will understand the actual alternatives and equivalents of the various elements of the specific embodiments. These and other variations and modifications of the specific embodiments disclosed herein may be made without departing from the scope and spirit of the invention. All patents and patent applications referred to herein are hereby incorporated by reference in their entirety in their entireties in the extent of BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view of a portion of a transflective liquid crystal display having partially reflective pixels in combination with a reflective polarizer; and FIGS. 2 to 5 are more specific transflective liquid crystal displays. For example - a schematic side view of a part. 6 and 7 are schematic side views of a laminated film structure. The figure is a schematic side view of a portion of a transflective liquid crystal display using one of the laminated structures of Fig. 6 or 7. In the drawings, the same reference numerals are used to refer to the same elements. [Main component symbol description] 123391.doc -19- 200815856

10 半透射半反射液晶顯示器 11 觀測者 12 前偏光器 14 液晶面板 16 反射偏光器 18 背光 20 控制器 22 連接 24a-24g 像素 26 控制器 28 連接 29 連接 200 顯示器 204 四分之一波膜 208 玻璃 212 内反射層 220 反射部分 222 透射部分 224 濾色片 250 入射射線 252 射線 254 射線 256 光線 300 層壓結構 123391.doc -20- 200815856 304 四分之一波膜 316 線性反射偏光器 320 極化保留擴散器 330 透明黏合劑 400 層壓結構 500 顯示器 123391.doc -21-10 Transflective liquid crystal display 11 Observer 12 Front polarizer 14 LCD panel 16 Reflecting polarizer 18 Backlight 20 Controller 22 Connection 24a-24g Pixel 26 Controller 28 Connection 29 Connection 200 Display 204 Quarter diaphragm 208 Glass 212 Internal reflection layer 220 Reflecting portion 222 Transmissive portion 224 Color filter 250 Incident ray 252 Ray 254 Ray 256 Light 300 Laminated structure 123391.doc -20- 200815856 304 Quarter wave film 316 Linear reflecting polarizer 320 Polarization retention Diffuser 330 Transparent Adhesive 400 Laminated Structure 500 Display 123391.doc -21-

Claims (1)

200815856 十、申請專利範圍: 1 · 一種半透射半反射顯示器,其具有一反射檢視模式及一 透射檢視模式,該顯示器包含: 一液晶(LC)面板,其具有一部分反射像素陣列,其中 該面板内之該部分反射像素陣列的反射部分包含位於該 液晶面板之一檢視者侧上的反射金屬,以將光反射回至 該檢視者;以及 一反射偏光器’其位於與該檢視者側相反的該液晶面 板之一側面上的該液晶面板後方,該反射偏光器係定向 成將環境光反射回至該檢視者。 2·如請求項1之半透射半反射顯示器,其進一步包含一背 光,其中該反射偏光器位於該液晶面板與該背光之間。 3·如請求項1之半透射半反射顯示器,其中在該液晶面板 内’該部分反射像素陣列之反射部分進一步包含位於與 該檢視者側相反的該液晶面板之該側面上的金屬。 4.如請求項1之半透射半反射顯示器,其進一步包含位於 該液晶面板之該檢視者侧上的一前吸收偏光器,其中該 反射偏光器用作一後偏光器。 5·如請求項4之半透射半反射顯示器,其中該反射偏光器 係一線性反射偏光器。 6·如請求項5之半透射半反射偏光器,其中該線性反射偏 光器係一反射顯示器膜(RDF)。 7·如請求項5之半透射半反射偏光器,其中該線性反射偏 光器係一半透射半反射顯示器膜(TDF)。 123391.doc 200815856 8.如請求項5之半透射半反射偏光器,其進一步包含位於 該線性反射偏光器與該液晶面板之間的一第一四分之一 波板以及位於該液晶面板之該檢視者側上的一^第二四分 之一波板。 9·如請求項4之半透射半反射偏光器,其中該反射偏光器 係一線路格栅反射偏光器。 10·如請求項9之半透射半反射偏光器,其進一步包含位於 該線路格柵反射偏光器與該液晶面板之間的一第一四分 之一波板以及位於該液晶面板之該檢視者側上的一第二 四分之一波板。 11·如睛求項4之半透射半反射顯示器,其中該反射偏光器 係一膽固醇反射偏光器。 12. —種積層光學膜,其包含: 一線性反射偏光器; 一四分之一波膜;以及 一非去偏光擴散器。 1種半透射半反射顯示器,其包括如請求項12之積層光 學膜。 123391.doc200815856 X. Patent Application Range: 1 · A transflective display having a reflective viewing mode and a transmissive viewing mode, the display comprising: a liquid crystal (LC) panel having a portion of a reflective pixel array, wherein the panel has The reflective portion of the partially reflective pixel array includes reflective metal on one of the viewer sides of the liquid crystal panel to reflect light back to the viewer; and a reflective polarizer 'which is located opposite the viewer side Behind the liquid crystal panel on one side of the liquid crystal panel, the reflective polarizer is oriented to reflect ambient light back to the viewer. 2. The transflective display of claim 1, further comprising a backlight, wherein the reflective polarizer is between the liquid crystal panel and the backlight. 3. The transflective display of claim 1, wherein the reflective portion of the partially reflective pixel array in the liquid crystal panel further comprises a metal on the side of the liquid crystal panel opposite the viewer side. 4. The transflective display of claim 1, further comprising a front absorption polarizer on the viewer side of the liquid crystal panel, wherein the reflective polarizer acts as a rear polarizer. 5. The transflective display of claim 4, wherein the reflective polarizer is a linear reflective polarizer. 6. The transflective polarizer of claim 5, wherein the linear reflective polarizer is a reflective display film (RDF). 7. The transflective polarizer of claim 5, wherein the linear reflective polarizer is a transflective display film (TDF). The semi-transmissive semi-reflective polarizer of claim 5, further comprising a first quarter-wave plate between the linear reflective polarizer and the liquid crystal panel and the same on the liquid crystal panel One ^ second quarter wave plate on the viewer side. 9. The transflective polarizer of claim 4, wherein the reflective polarizer is a line grid reflective polarizer. 10. The transflective polarizer of claim 9, further comprising a first quarter-wave plate between the line grid reflective polarizer and the liquid crystal panel and the viewer located in the liquid crystal panel A second quarter wave plate on the side. 11. A transflective display according to claim 4, wherein the reflective polarizer is a cholesterol reflective polarizer. 12. A laminated optical film comprising: a linear reflective polarizer; a quarter wave film; and a non-deviated diffuser. A transflective display comprising a laminated optical film as claimed in claim 12. 123391.doc
TW96128282A 2006-08-01 2007-08-01 Transflective LC display with internal reflector and reflective polarizer TW200815856A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82112306P 2006-08-01 2006-08-01

Publications (1)

Publication Number Publication Date
TW200815856A true TW200815856A (en) 2008-04-01

Family

ID=44768933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128282A TW200815856A (en) 2006-08-01 2007-08-01 Transflective LC display with internal reflector and reflective polarizer

Country Status (1)

Country Link
TW (1) TW200815856A (en)

Similar Documents

Publication Publication Date Title
EP3355105B1 (en) Viewing angle switchable display apparatus
US20080030656A1 (en) Transflective lc display with internal reflector and reflective polarizer
TW552567B (en) Device capable of being switched between image display state and mirror state and apparatus equipped with the same
CN106133587B (en) Mirror display and electronic apparatus
US6757039B2 (en) Paper white cholesteric displays employing reflective elliptical polarizer
KR100875567B1 (en) Display unit and electronic apparatus
US5486935A (en) High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
JP4122808B2 (en) Liquid crystal display device and electronic device
KR100610652B1 (en) Liquid crystal display
JP3598987B2 (en) Liquid crystal display and electronic equipment
TW200527069A (en) Liquid crystal display device
US9229268B2 (en) Liquid crystal display device
US6181399B1 (en) Reflective type liquid crystal display having scattering polarizer
JP2011209690A (en) Liquid crystal display device
JPWO2003034133A1 (en) Liquid crystal display device, mirror device, and electric apparatus provided with liquid crystal display device
US20070242198A1 (en) Transflective LC Display Having Backlight With Temporal Color Separation
US20090316070A1 (en) Display apparatus switchable between transmissive mode and reflective mode
JP2000147487A (en) Liquid crystal display device
JP4885380B2 (en) Liquid crystal display
US6833889B2 (en) Cholesteric liquid crystal display device with reflectors and manufacturing method for the same
JP2004354818A (en) Display device
JP2007025228A (en) Liquid crystal display device
JP4211341B2 (en) Display device and electronic device
TW200815856A (en) Transflective LC display with internal reflector and reflective polarizer
JP4507497B2 (en) Liquid crystal display