TW200815381A - Methods for treating or reducing muscle fatigue - Google Patents

Methods for treating or reducing muscle fatigue Download PDF

Info

Publication number
TW200815381A
TW200815381A TW096119821A TW96119821A TW200815381A TW 200815381 A TW200815381 A TW 200815381A TW 096119821 A TW096119821 A TW 096119821A TW 96119821 A TW96119821 A TW 96119821A TW 200815381 A TW200815381 A TW 200815381A
Authority
TW
Taiwan
Prior art keywords
group
muscle
compound
exercise
fatigue
Prior art date
Application number
TW096119821A
Other languages
Chinese (zh)
Inventor
Andrew R Marks
Original Assignee
Univ Columbia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2006/032405 external-priority patent/WO2007024717A2/en
Application filed by Univ Columbia filed Critical Univ Columbia
Publication of TW200815381A publication Critical patent/TW200815381A/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention provides methods for treating muscle fatigue with compounds of the invention. The invention relates to compositions and methods for treating, preventing or reducing muscle fatigue by administering compounds that stabilize ryanodine receptors (RyR), which regulate calcium channel functioning in cells. The invention provides methods to treat muscle fatigue in a subject suffering from a wide variety of acute and chronic pathologies, neurological or genetic diseases or conditions, including but not limited to cardiac disease, HIV infection and AIDS, muscular dystrophy, cancer, malnutrition, exercise-induced muscle fatigue, age-associated muscle fatigue, renal disease and renal failure. The invention provides methods for treating a subject suffering from muscle fatigue as a result of sustained, prolonged and/or strenuous exercise, or chronic stress.

Description

200815381 九、發明說明: 【發明所屬之技術領域】 本發明領域係屬於骨骼肌疲勞、肌肉症狀與異常以及 上述之治療方法。 【先前技術】 肌聚網(sarcoplasmic reticuium,SR)除了其他功能以 外,係作為細胞内鈣離子(Ca2 + )專門的儲存部位。可打開 與關閉肌漿網中的通道’理阿諾鹼受體(ryan〇dine reeeptQi>,200815381 IX. Description of the invention: [Technical field to which the invention pertains] The field of the invention belongs to skeletal muscle fatigue, muscle symptoms and abnormalities, and the above-described treatment methods. [Prior Art] Sarcoplasmic reticuium (SR) is a specialized storage site for intracellular calcium ions (Ca2+), among other functions. It can open and close the channel of the sarcoplasmic reticulum (ryan〇dine reeeptQi>,

RyR) ’可調控肌漿網釋放Ca2 +到細胞内的細胞質。肌聚網 釋放Ca2 +至細胞質可提高細胞質的Ca2+濃度。RyR受體的 開啟率(open probability,Po)意指RyR通道在任何特定時 刻打開且因此能夠自肌漿網釋放Ca2+到細胞質的可能性。 理阿諾鹼受體有三種類型,其全部均為 Ca2+通道: RyRl、RyR2與RyR3。RyRl主要發現於骨骼肌與其他組 織中;RyR2主要發現於心臟與其他組織中;而RyR3發現 於腦部與其他組織中。RyR通道係由四個RyR多肽結合四 個 FK506 結合蛋白(FK506 binding protein,FKBP)所組 成,明球地說為 FKBP12 (calstabinl)與 FKBP12.6 (calstabin2)。Calstabinl 結合於 RyRl ; calstabin2 結合於 RyR2 ;且 calstabinl 結合於 RyR3。FKBP 蛋白(calstabinl 與cals tab in2)結合於RyR通道(每個RyR亞基搭配一分子) 以穩定RyR的通道功能並促進鄰近RyR通道之間的耦聯閘 控(coupled gating);因而避免通道關閉狀態時的異常活化。 5 200815381 蛋白激酶A(Protein kinase A,PKA)結合於RyR受體 的細胞質表面(cytoplasmic surface)。RyR受體的蛋白激晦 A磷酸化造成部分calstabin自RyR上分離。Calstabin自 RyR上分離造成RyR開啟率的提高,因而增加肌漿網釋放 到細胞質的Ca2+ 〇 骨骼肌細胞與心臟細胞中,肌漿網釋放Ca2+為一控制 肌肉效能的重要生理機制,因為增加細胞質中的Ca2+濃度 可導致肌肉收縮。骨骼肌中的興奮收縮 (Excitation-contraction, EC)搞聯(coupling)包括橫小管 (transverse tubule,T-tubule)内細胞膜的電性去極化,此可 活化電壓閘控式 L型 Ca2+通道(L-type Ca2+ channels, LTCCs)。LTCCs透過與RyRl間的實體互動而引發肌漿網 釋出Ca2+。細胞質内Ca2+濃度提高的結果導致肌動蛋白-肌凝蛋白(actin_myosin)的互動以及肌肉收縮。為了緩和肌 肉,細胞内的Ca2 +經由肌漿網Ca2、ATP酶泵浦(SERCAs) 抽回肌漿網,而該 SERCA受到受磷蛋白(phospholamban, PLB)的調控,而受磷蛋白類型取決於肌肉纖維類型。 疲勞為骨骼肌變得較虛弱的過程,係為反覆或強烈運 用(例如,運動),或為不適、異常或疾病的結果。疲勞會 造成工作失敗且其為許多醫學疾病的明顯症狀,這些醫學 疾病包括心臟衰竭(heart failure)、腎臟衰竭(renal failure)、癌症以及許多肌肉萎縮症(muscular dystrophy)。 過去十年來,已經逐漸明白兩種典型的肌肉疲勞解釋(稱為 6 200815381 乳酸累積與細胞内酸中毒)並不會造成疲勞。事實上,這兩 者在高度強烈運動中為避免疲勞的保護機制(Allen and Westerblad 2004; Pedersen,Nielsen et al· 2004)。 肌肉收縮取決於下列過程的有效耦聯··肌肉表面的電 性刺激;經由理何諾鹼受體(肌漿網 Ca2+釋出通道)釋出 C a2+;以產生肌凝蛋白肌動蛋白橫橋(cross bridge)。於是, 可明顯得知興奮收縮耦聯中造成瞬間Ca2 +振幅減少的缺陷 除了其他效應外,將透過沒有效率的肌動蛋白橫橋形成使 收縮與力量受損。Eberstein與Sandow提出抑制Ca2 +釋放 為疲勞過程的一可能因素(Eber stein and San do w 1 963)。許 多肌肉標本(muscle preparation)已經描述疲勞刺激時引起 釋放之 Ca2 +振幅減少(Allen,Lee et al· 1989; Westerblad and Allen 1991; Allen and Westerblad 2001) 〇 並發現自疲 勞恢復的時間進程(time course)與長時間Ca2 +釋放減少之 時間進程相似(Westerblad,Bruton et al. 2000)。 肌漿網Ca2 +滲漏在強烈運動後的肌原纖維與肌肉萎縮 症模式中獲得驗證(Wang,Weisleder et al. 2005),而這可 能係由於骨骼肌理阿諾鹼受體(RyRl)的缺陷所造成。心臟 衣竭中交感神經系統(sympathetic nervous system,SNS)的 長期活化促使本體的骨骼肌疲勞,而這係因為:RyRl複合 體上缺少構酸二酉旨酶(phosphodiesterease)PDE4D3;蛋白激 酶A對RyRl的絲胺酸2844(Serine 2844)過度磷酸化; RyRl 複合體缺少 calstabinl ; 以及功能增加 7 200815381 (gain-of-function)的通道缺陷(Reiken,Lacampagne et al. 20 03)。骨骼肌中的RyRl功能失常導致變樣的局部亞細胞 (subcellular)Ca2+釋放結果以及減弱的整體鈣離子瞬間電 流(Ward,Reiken et al. 2 003) 〇 JTV5 19,4-[3-(4 -苄基哌啶 -1-基)丙醯基]-7 -甲氧基-2,3,4,5 -四氫-1,4 -苯并硫氮呼單 鹽 酸 鹽 (4_[3-(4-benzylpiperidin-l-yl)propionyl]-7-methoxy_2,3,4, 5-tetrahydro-1,4-benzothiazepine monohydrochloride),係 一種1,4-苯并硫氮呼(l,4-benzothiazepine),已經顯示其為 RyR鈣離子通道的調節劑,將其施用於心臟衰竭的鼠科模 式能夠改善骨骼肌功能,可藉由活體外(ex vivo)分離的肌 肉疲勞步驟(左冠狀動脈結紮後五星期)驗證。JTV5 19對肌 肉疲勞的有利效應不僅係由於心臟功能改善,因為對缺少 calstabin2小鼠(其並沒有從治療得到任何心臟利益)施用 藥劑仍可看見有利的效應。因此,已經假設JTV5 19可直 接影響肌肉功能(Wehrens,Lehnart et al· 2005)。在長時間 運動中,RyRl複合體上缺少磷酸二酯酶PDE4D3;蛋白激 酶A對RyRl的絲胺酸2844過度磷酸化;RyRl複合體缺 少calstabinl等RyRl大分子複合物中同樣的改變,與小 鼠模式中反覆強烈運動之間存在著時間依賴性與活動依賴 性的關係。經長時間運動後,這些RyRl大分子複合物調 控與功能中的生化改變為穩定的並恢復緩慢(數天至數星 期)。因此已經提出RyRl的Ca2 +滲漏限制肌肉效能的高峰 且在長時間、緊張的運動過程中造成肌肉傷害。 8 200815381 當肌肉細胞内的小管(稱為肌漿網(SR))釋出妈離子 (Ca2 + )時開始橫紋肌的收縮。興奮收縮(EC)耦聯需要肌衆 網上的鈣離子釋出通道(稱為理阿諾鹼受體(RyR))。在心臟 中發現第2類型的理阿諾鹼受體(RyR2),而在骨骼肌中發 現第1類型的理阿諾鹼受體(RyR 1)。RyRl受體為一四分子 聚合物,其由四個565,000道爾頓((1&11〇11)的1^111多肽與 四個 12,000道爾頓的 FK506結合蛋白質(FKBP12)所組 成。FKBP12為調控性亞基,其可穩定 RyR通道功能 (Brillantes et al·,1994)並幫助鄰近RyR通道的耦聯閘控 (Marx etal·,1998);後者(RyRl)配置在特定肌漿網區域(釋 放細胞内儲存的 Ca2 + )中的密集陣列中,因而促進肌肉收 縮。除了 FKBP12之外,RyRl大分子複合物亦包括蛋白激 酶 A與鱗酸酶 PP1的催化與調控性亞基(Marx et al·, 2001) 〇 每個RyRl亞基結合一個FKBP12分子。FKBP12的分 離明顯地改變通道的生物物理特性,造成亞傳導 (subconductance)狀態的出現並提高通道的開啟率(P。) (Brillantes et al.5 1994; Gaburjakova et al·,2001)。此夕卜’ FKBP12自RyRl通道的分離抑制耦聯閘控,造成通道隨機 的閘控而不是整體性的閘控(Marx et al·,1 998)。RyR通道 陣列的耦聯閘控對有效調控肌肉收縮之興奮收縮耦聯來說 係重要的(Marx et al·,1 998)。FKBP係順式·反式胜肽脯氨 基異構臃(peptidyl-prolyl isomerase),其廣泛地表現且擔 任多種細胞功能(Marks,1996)。FKBP12牢固地結合並調 9 200815381 控下列蛋白的功能:骨骼肌 Ca2+釋出通道(RyRl) (Brillantes et al., 1994; Jayaraman et al.? 1992);心肌 Ca2 + 釋出通道(RyR2) (Kaftan et al·,1 996);以及相關的細胞内 Ca2+釋出通道,已知有第1型的1,4,5-三磷酸肌醇受體 (inositol 1,4,5-triphosphate receptor,IP 3 R 1) (Cameron et al·,1997),以及第1型的轉化生長因子p(trans forming growth factor β,TGFP)受體(TpRI) (Chen et al·,1997)。RyR) ' regulates the release of Ca2+ from the sarcoplasmic reticulum into the cytoplasm of cells. The myometrial network releases Ca2+ to the cytoplasm to increase the cytoplasmic Ca2+ concentration. The open probability (Po) of the RyR receptor means the possibility that the RyR channel opens at any given time and is therefore capable of releasing Ca2+ from the sarcoplasmic reticulum to the cytoplasm. There are three types of Arino base receptors, all of which are Ca2+ channels: RyRl, RyR2 and RyR3. RyRl is mainly found in skeletal muscle and other tissues; RyR2 is mainly found in the heart and other tissues; and RyR3 is found in the brain and other tissues. The RyR channel is composed of four RyR polypeptides combined with four FK506 binding proteins (FKBP), which are called FKBP12 (calstabinl) and FKBP12.6 (calstabin2). Calstabinl binds to RyRl; calstabin2 binds to RyR2; and calstabinl binds to RyR3. The FKBP protein (calstabinl and cals tab in2) binds to the RyR channel (one molecule per RyR subunit) to stabilize the channel function of RyR and facilitate coupled gating between adjacent RyR channels; thus avoiding channel closure Abnormal activation in the state. 5 200815381 Protein kinase A (PKA) binds to the cytoplasmic surface of the RyR receptor. Protein stimulating of the RyR receptor A phosphorylation causes partial calstabin to be isolated from RyR. The separation of Calstabin from RyR causes an increase in the RyR opening rate, thus increasing the release of sarcoplasmic reticulum into the cytoplasmic Ca2+ skeletal muscle cells and cardiac cells. The release of Ca2+ from the sarcoplasmic reticulum is an important physiological mechanism for controlling muscle function, because of increased cytoplasm. The Ca2+ concentration can cause muscle contraction. Excitation-contraction (EC) coupling includes electrical depolarization of the cell membrane in a transverse tubule (T-tubule), which activates a voltage-gated L-type Ca2+ channel ( L-type Ca2+ channels, LTCCs). LTCCs trigger sarcoplasmic reticulum to release Ca2+ through physical interaction with RyRl. The increase in intracellular Ca2+ concentration results in the interaction of actin-myosin and muscle contraction. To alleviate muscle, intracellular Ca2+ is pumped back to the sarcoplasmic reticulum via sarcoplasmic reticulum Ca2 and ATPase pumps (SERCAs), which are regulated by phospholamban (PLB), which depends on the type of phosphoprotein Muscle fiber type. Fatigue is a process in which skeletal muscle becomes weaker, either as a result of repeated or intense use (eg, exercise), or as a result of discomfort, abnormality, or disease. Fatigue can cause work failure and is a clear symptom of many medical conditions, including heart failure, renal failure, cancer, and many muscular dystrophys. Over the past decade, it has become clear that two typical muscle fatigue explanations (called 6 200815381 lactic acid accumulation and intracellular acidosis) do not cause fatigue. In fact, these two are protective mechanisms for avoiding fatigue in highly intense exercise (Allen and Westerblad 2004; Pedersen, Nielsen et al. 2004). Muscle contraction depends on the effective coupling of the following processes: electrical stimulation of the muscle surface; release of Ca2+ via the sino base receptor (sarcoplasmic reticulum Ca2+ release channel); to produce the myosin crossover bridge (cross bridge). Thus, it is apparent that the defect causing the transient Ca2+ amplitude reduction in the excitatory contraction coupling, among other effects, causes the contraction and strength to be impaired through the formation of the inefficient cross-linking of the actin. Eberstein and Sandow propose a possible factor that inhibits Ca2+ release as a fatigue process (Eberstein and San do w 1 963). Many muscle preparations have described a reduction in Ca2+ amplitude caused by fatigue stimulation (Allen, Lee et al. 1989; Westerblad and Allen 1991; Allen and Westerblad 2001) and found time course of self-fatigue recovery (time course) ) is similar to the time course of prolonged Ca2+ release (Westerblad, Bruton et al. 2000). Sarcoplasmic reticulum Ca2+ leakage was demonstrated in the myofibrils and muscle wasting patterns after intense exercise (Wang, Weisleder et al. 2005), and this may be due to defects in the skeletal muscle aroma base receptor (RyRl). caused. Long-term activation of the sympathetic nervous system (SNS) in cardiac exhaustion causes skeletal muscle fatigue in the body, because this is due to the lack of phosphodiesterase PDE4D3 on the RyRl complex; protein kinase A versus RyRl The serine 2844 (Serine 2844) hyperphosphorylation; the RyRl complex lacks calstabinl; and the functional increase of 7200815381 (gain-of-function) channel defects (Reiken, Lacampagne et al. 20 03). RyR1 dysfunction in skeletal muscle results in localized subcellular Ca2+ release and reduced global calcium ion transient currents (Ward, Reiken et al. 2 003) 〇JTV5 19,4-[3-(4-Benzyl) Isopiperidin-1-yl)propanyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine hydrochloride (4_[3-(4) -benzylpiperidin-l-yl)propionyl]-7-methoxy_2,3,4, 5-tetrahydro-1,4-benzothiazepine monohydrochloride), a 1,4-benzothiazepine, already It is shown to be a modulator of the RyR calcium channel, which can be applied to the murine model of heart failure to improve skeletal muscle function, and can be separated by ex vivo separation (five weeks after left coronary artery ligation) verification. The beneficial effect of JTV5 19 on muscle fatigue is not only due to improved cardiac function, but a beneficial effect can still be seen in the administration of the agent in the absence of calstabin2 mice, which do not receive any cardiac benefit from treatment. Therefore, it has been hypothesized that JTV5 19 can directly affect muscle function (Wehrens, Lehnart et al. 2005). In long-term exercise, the phosphodiesterase PDE4D3 is absent on the RyRl complex; protein kinase A is hyperphosphorylated against RyR1's serine 2844; the RyRl complex lacks the same changes in the RyRl macromolecular complex such as calstabinl, and mice There is a relationship between time dependence and activity dependence between the repeated strong movements in the model. After prolonged exercise, the biochemical changes in the regulation and function of these RyRl macromolecular complexes are stable and slow (several days to several weeks). Therefore, it has been suggested that Ca2+ leakage of RyRl limits the peak of muscle performance and causes muscle damage during prolonged and intense exercise. 8 200815381 The contraction of striated muscle begins when a small tube (called sarcoplasmic reticulum (SR)) in muscle cells releases maternal ions (Ca2+). Excitatory contraction (EC) coupling requires a calcium ion release channel (called the RyR) on the muscle network. The second type of the RyR receptor (RyR2) was found in the heart, and the first type of RyR1 receptor (RyR 1) was found in skeletal muscle. The RyRl receptor is a four-molecular polymer consisting of four 565,000 daltons (1&11〇11) 1^111 polypeptide and four 12,000 dalton FK506 binding proteins (FKBP12). FKBP12 is Regulatory subunits that stabilize RyR channel function (Brillantes et al., 1994) and help coupler gating in adjacent RyR channels (Marx et al., 1998); the latter (RyRl) are localized in specific sarcoplasmic reticulum regions (release) The dense array of intracellular Ca2+ stores promotes muscle contraction. In addition to FKBP12, the RyRl macromolecular complex also includes catalytic and regulatory subunits of protein kinase A and luciferase PP1 (Marx et al. , 2001) 〇 Each RyRl subunit binds to a FKBP12 molecule. The separation of FKBP12 significantly alters the biophysical properties of the channel, causing the appearance of a subconductance state and increasing the channel opening rate (P.) (Brillantes et al. 5 1994; Gaburjakova et al., 2001). The separation of FKBP12 from the RyRl channel inhibits coupled gating, resulting in random gate gating rather than ensemble gating (Marx et al., 1 998). Coupling of RyR channel arrays Control is important for the activation of contractile coupling that effectively regulates muscle contraction (Marx et al., 1 998). The FKBP is a cis-trans-plyidyl-prolyl isomerase, which is widely Performance and role in a variety of cellular functions (Marks, 1996). FKBP12 binds tightly and regulates 9 200815381 Controlling the function of the following proteins: skeletal muscle Ca2+ release channel (RyRl) (Brillantes et al., 1994; Jayaraman et al.? 1992) Myocardial Ca2+ release channel (RyR2) (Kaftan et al., 1996); and related intracellular Ca2+ release channels, known as type 1 1,4,5-trisphosphate receptors ( Inositol 1,4,5-triphosphate receptor, IP 3 R 1) (Cameron et al., 1997), and type 1 transforming growth factor p (TGFP) receptor (TpRI) (Chen et Al·, 1997).

/ \ 美國共同申請案編號1〇/794,21 8揭露心臟衰竭時治療 骨絡肌功能缺陷的方法,該方法係藉由施用抑制Fkb 1 2結 合蛋白自RyRl受體上分離的藥劑,在此將其全文以參考 資料方式併入本文中。 美國共同申請案編號11/212,3〇9與美國申請案編號 11/212,413揭露利用新穎的苯并硫κ衍& m和預防 與RyR雙體相關之異常與疾病的方法,其中該異常與疾病 。括月骼肌異承與疾病(諸如,骨骼肌疲勞、運動引起的骨 骼肌疲勞、肌肉萎縮症、胳❿田火二 膀胱異常與大小便失禁),在此將 其全文以參考資料方式併入本文中。 亟需發現可有效治癍+ 摩或預防肌肉疲勞的新穎藥劑,而 肌肉疲勞可為壓力或運魚〜 勒所引起或由與RyR受體(調控細 胞内的鈣離子通道功能) W目關之疾病所引起,其中該疾病包 括心臟疾病或異常、督勒 月絡肌功能缺陷、愛滋病病毒感染 (HIV Infection)、愛滋广 養不良(malnutrition) 瑪(AIDS)、肌肉萎縮症、癌症、營 '運動引起的肌肉疲勞、年齡相關性 10 200815381 肌肉疲勞、腎臟疾病、腎臟衰竭。 【發明内容】 在一態樣中,本發明提供治療、預防或改善肌肉症狀、 疾病或異常的方法,該方法包括對個體施用一治療有效劑 量之式I的化合物。在某些態樣中,本發明提供治療、預 防或改善個體中肌肉疲勞的方法,其包括對個體施用一治 療有效劑量之化合物,該化合物具有式I的結構;/ \ US co-pending application No. 1 〇 / 794, 21 8 discloses a method for treating skeletal muscle function defects in heart failure by administering an agent that inhibits Fkb 1 2 binding protein from the RyRl receptor, This is incorporated herein by reference in its entirety. U.S. Patent Application Serial No. 11/212, No. 3, and U.S. Application Serial No. 11/212,413, disclose the use of the novel benzothiazepines & m and methods for preventing abnormalities and diseases associated with RyR dimers, wherein the abnormalities are disease. Including skeletal muscle dysplasia and disease (such as skeletal muscle fatigue, exercise-induced skeletal muscle fatigue, muscular dystrophy, sputum field fire bladder abnormalities and incontinence), which is hereby incorporated by reference in its entirety. In this article. There is an urgent need to find novel agents that can effectively treat sputum + or prevent muscle fatigue, while muscle fatigue can be caused by stress or fish-to-fish or by the RyR receptor (regulating intracellular calcium channel function). Caused by the disease, including heart disease or abnormality, Dyracic muscle function deficiency, HIV Infection, malnutrition AIDS, muscular dystrophy, cancer, camp Exercise-induced muscle fatigue, age-related 10 200815381 Muscle fatigue, kidney disease, kidney failure. SUMMARY OF THE INVENTION In one aspect, the invention provides a method of treating, preventing or ameliorating a muscle condition, disease or disorder, the method comprising administering to the individual a therapeutically effective amount of a compound of formula I. In certain aspects, the invention provides a method of treating, preventing or ameliorating muscle fatigue in an individual comprising administering to the individual a therapeutically effective amount of a compound having the structure of Formula I;

其中, η為0、1或2 ; q 為 0、1、2、3 或 4; 各個R係分別地由下列所構成的群組中選出:Η、鹵 素、-OH、-ΝΗ2、-NO〗、-CN、-CF3、-OCF3、-N3、-S03H、 -S( = 0)2 烷基、-S( = 0)烷基、-0S( = 0)2CF3、醯基、-Ο-醯基、烷基、烷氧基、烷胺基、烷基芳胺基 (alkylarylamino)、烧硫基、環烧基、烧芳基、芳基、 雜芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳基、 11 200815381 (雜-)芳硫基與(雜-)芳胺基;其中可取代 醯基、-〇-醯基、烷基、烷氧基、燒賤 基、烷硫基、環烷基、烷芳基、芳基、 基、雜壞烧基、婦基、快基、(雜_)芳義 與(雜-)芳胺基; R1係由下列所構成的群組中選出:jj、 婦基、芳基、烧芳基、環烧基、雜芳義 中可取代或不取代各個烷基、烯基、_ 環烷基、雜芳基與雜環基; R2 係由下列所構成的群% Η、-C( = 0)R5、-C( = S)R6、-S〇2R7 -(CH2)m-RlO、烷基、芳基、烷芳基、雜男 環烷基烷基(cycloalkylalkyl)與雜環基· 不取代各個烷基、芳基、烷芳基、雜$ 環烷基烷基與雜環基; R3係由下列所構成的群組中選出: -C( = 0)NHY、醯基、-0-醯基、烷基、歸 芳基、環烧基、雜芳基與雜環基;其中 代各個醯基、烷基、烯基、芳基、燒芳 雜芳基與雜環基;而其中Y係由下列戶斤 選出:Η、烷基、芳基、烷芳基、環烷 雜環基,且其中可取代或不取代各個烷 芳基、環烷基、雜芳基與雜環基; 或不取代各個 基、燒基芳胺 雜芳基、雜環 、(雜-)芳硫基 酮基、烧基、 與雜環基;其 基、烷芳基、 中選出: -P(=0)R8R9 n 1基、環烷基、 其中可取代或 基、環烷基、 Η 、-C〇2Y、 基、芳基、燒 可取代或不取 基、環燒基、 構成的群組中 基、雜芳基與 基、芳基、烷 12 200815381 R4係由下列所構成的群組中選出:Η、烷基、烯基、 芳基、烧芳基、環烷基、雜芳基與雜環基;其中可取 代或不取代各個烷基、烯基、芳基、烷芳基、環烷基、 雜芳基與雜環基;Where η is 0, 1, or 2; q is 0, 1, 2, 3, or 4; each R system is selected from the group consisting of: Η, halogen, -OH, -ΝΗ2, -NO , -CN, -CF3, -OCF3, -N3, -S03H, -S( = 0)2 alkyl, -S( = 0)alkyl, -0S( = 0)2CF3, fluorenyl, -Ο-醯Base, alkyl, alkoxy, alkylamino, alkylarylamino, thiol, cycloalkyl, aryl, aryl, heteroaryl, heterocyclyl, heterocycloalkyl, Alkenyl, alkynyl, (hetero-)aryl, 11 200815381 (hetero-) arylthio and (hetero-)arylamino; wherein thiol, -fluorenyl, alkyl, alkoxy, a thiol group, an alkylthio group, a cycloalkyl group, an alkylaryl group, an aryl group, a aryl group, a hetero-alkyl group, a sulfhydryl group, a fast group, a (hetero-) aryl group and a (hetero-) arylamine group; Among the groups consisting of: jj, aryl, aryl, aryl, cycloalkyl, heteroaryl, may be substituted or unsubstituted, each alkyl, alkenyl, _cycloalkyl, heteroaryl and Heterocyclic group; R2 is a group consisting of %, -C(=0)R5, -C(=S)R6, -S〇2R7-(CH2)m-R10, alkyl, aryl, alkane Fang , cycloalkylalkyl and heterocyclyl · unsubstituted individual alkyl, aryl, alkaryl, heterocycloalkylalkyl and heterocyclic; R3 is a group consisting of the following Selected: -C( = 0)NHY, fluorenyl, -0-fluorenyl, alkyl, aryl, cycloalkyl, heteroaryl and heterocyclic; in which each thiol, alkyl, alkenyl , aryl, arylheteroaryl and heterocyclic; wherein Y is selected from the group consisting of hydrazine, alkyl, aryl, alkaryl, cycloalkylheterocyclyl, and which may or may not be substituted Alkaryl, cycloalkyl, heteroaryl and heterocyclic; or unsubstituted individual, alkylarylamine heteroaryl, heterocycle, (hetero-)arylthioketone, alkyl, heterocyclic ; its base, alkaryl, selected: -P (=0) R8R9 n 1 group, cycloalkyl, which may be substituted or substituted, cycloalkyl, Η, -C〇2Y, aryl, aryl, burn Substituted or unsubstituted, cycloalkyl, constituting group, heteroaryl and aryl, alkane 12 200815381 R4 is selected from the group consisting of hydrazine, alkyl, alkenyl, aromatic Base, aryl group, naphthenic , Aryl, heteroaryl and heterocyclyl; wherein each preferably a substituted or unsubstituted alkyl group, alkenyl group, aryl group, alkaryl group, cycloalkyl, heteroaryl and heterocyclyl;

Rs係由下列所構成的群組中選出:-NUu、 -(CH2)ZNR15R16、_NHNR"Ri6、ΝΗ〇Η、—〇Ri5、Rs is selected from the group consisting of -NUu, -(CH2)ZNR15R16, _NHNR"Ri6, ΝΗ〇Η, 〇Ri5,

-C( = 0)NHNR15Ri6> -C〇2r15. -C( = 0)NRi5Ri6' -CH2X . 醯基、烧基、烯基、芳基、烷芳基、環烷基、環烷基 烧基、雜芳基、雜環基與雜環烷基;其中可取代或不 取代各個醯基、烷基、烯基、芳基、烷芳基、環烷基、 環烷基烧基、雜芳基、雜環基與雜環烷基,而其中Z 為 1、2、3、4、5 或 6; R6係由下列所構成的群組中選出:-OR! 5、 -NHNR15R16、-NHOH、-NR15R16、-CH2X、醯基、稀 基、烷基、芳基、烷芳基、環烷基、環烷基烷基、雜 芳基、雜環基與雜環烷基;其中可取代或不取代各個 醯基、烯基、烷基、芳基、烷芳基、環烷基、環烷基 烧基、雜芳基、雜環基與雜環烷基; R7係由下列所構成的群組中選出:一0Rl5、-NR15R16、 -NHNR15R16、-NHOH、-CH2X、烷基、烯基、炔基、 芳基、烷芳基、環烷基、環烷基烷基、雜芳基、雜環 基與雜環烷基;其中可取代或不取代各個烷基、烯 基、炔基、芳基、烷芳基、環烷基、環烷基烷基、雜 芳基、雜環基與雜環烧基; 13 200815381-C( = 0)NHNR15Ri6> -C〇2r15. -C( = 0)NRi5Ri6' -CH2X . Mercapto, alkyl, alkenyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; which may be substituted or unsubstituted, each fluorenyl group, alkyl group, alkenyl group, aryl group, alkylaryl group, cycloalkyl group, cycloalkylalkyl group, heteroaryl group, a heterocyclic group and a heterocycloalkyl group, wherein Z is 1, 2, 3, 4, 5 or 6; R6 is selected from the group consisting of -OR! 5, -NHNR15R16, -NHOH, -NR15R16 , -CH2X, fluorenyl, dilute, alkyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl and heterocycloalkyl; wherein each may be substituted or unsubstituted Mercapto, alkenyl, alkyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl and heterocycloalkyl; R7 is selected from the group consisting of : a 0Rl5, -NR15R16, -NHNR15R16, -NHOH, -CH2X, alkyl, alkenyl, alkynyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclic and Heterocycloalkyl; which may or may not be substituted for each alkyl, alkenyl, Alkynyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl and heterocycloalkyl; 13 200815381

Rs與R9係分別地由下列所構成的群組中選出:OH、 醯基、烯基、烷氧基、烷基、烷胺基、芳基、烧芳基、 環烷基、環烷基烷基、雜芳基、雜環基與雜環烷基; 其中可取代或不取代各個醯基、烯基、烷氧基、烷基、 烷胺基、芳基、烷芳基、環烷基、環烷基烷基、雜芳 基、雜環基與雜環烷基;The Rs and R9 systems are respectively selected from the group consisting of OH, decyl, alkenyl, alkoxy, alkyl, alkylamino, aryl, aryl, cycloalkyl, cycloalkylane a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; wherein each of a decyl group, an alkenyl group, an alkoxy group, an alkyl group, an alkylamino group, an aryl group, an alkylaryl group, a cycloalkyl group, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group;

Rio係由下列所構成的群組中選出:-NRi5R16、 OH、-S02Rn、-NHSO2R11、C( = 0)(R12)、NHC = 0(R12)、 -O C = O (R12)與-P (= 〇) R13 R14; R11、R12、R13與R14係分別地由下列所構成的群組中 選出:Η、OH、NH2、-NHNH2、-NHOH、醯基、晞基、 烷氧基、烷基、烷胺基、芳基、烷芳基、環烷基、環 烷基烷基、雜芳基、雜環基與雜環烷基;其中可取代 或不取代各個醯基、烯基、烷氧基、烷基、烷胺基、 芳基、烷芳基、環烷基、環烷基烷基、雜芳基、雜環 基與雜環烷基; X係由下列所構成的群組中選出:鹵素、-CN、 -CO2R15、-C( = 0)NRl5Rl6、-NR15R16、-〇Ri5、-S〇2r7 與-P( = 〇)R8R9 ;以及Rio is selected from the group consisting of -NRi5R16, OH, -S02Rn, -NHSO2R11, C(=0)(R12), NHC = 0(R12), -OC = O(R12) and -P ( = 〇) R13 R14; R11, R12, R13 and R14 are respectively selected from the group consisting of hydrazine, OH, NH2, -NHNH2, -NHOH, fluorenyl, fluorenyl, alkoxy, alkyl An alkylamino group, an aryl group, an alkylaryl group, a cycloalkyl group, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; wherein the fluorenyl group, the alkenyl group, the alkoxy group may be substituted or unsubstituted a group, an alkyl group, an alkylamino group, an aryl group, an alkylaryl group, a cycloalkyl group, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; the X system is selected from the group consisting of the following: : halogen, -CN, -CO2R15, -C( = 0)NRl5Rl6, -NR15R16, -〇Ri5, -S〇2r7 and -P( = 〇)R8R9;

Ri5與Ri6係分別地由下列所構成的群組中選出:Η、 醯基、烯基、烷氧基、OH、ΝΗ2、烷基、烷胺基、芳 基、烷芳基、環烷基、環烷基烷基、雜芳基、雜環基 與雜環烷基;其中可取代或不取代各個醯基、烯基、 14 200815381 烷氧基、烷基、烷胺基、芳基、烷芳基、環烷基、環 烷基烷基、雜芳基、雜環基與雜環烷基;以及選擇性 地,R15與R16可和其所結合的氮共同形成一個雜環, 該雜環可以含有取代基; 苯并硫氮呼環中的氣可選擇性地為一四級氮 (quaternary nitrogen);以及 其鏡像異構物(enantiomers)、 非鏡像異構物 (diastereomers)、互變異構物(tautomers)、藥學上可 接受之鹽類、水合物、溶劑合物、複合物(c 〇 m p 1 e X e s) 與前藥。某些實施例中,該化合物不是SI、S2、S3、 S4、 S5 、 S6 > S7 、 S9、 Sll、 S12、 S13、S14、 S19、 S20 、 S22 、 S23 、 S24 、 S25 、 S26 、 S27 、 S36 、 S37 、 S38 、 S40 、 S43 、 S44 、 S45 、 S46 ' S47 、 S48 、 S49 ' S50 、 S51 、 S52 、 S53 、 S54 、 S55 、 S56 、 S57 、 S58 ' S59 、 S60 、 S61 、 S62 、 S63 、 S64 ' S66 ' S67 、 S68 ' S69 、 S70 ' S71 、 S72 、 S73 、 S74 ' S75 、 S76 、 S77 、 S78 、 S79 、 S80 、 S81 、 S82 、 S83 、 S84 、 S85 、 S86 、 S87 、 S88 、 S89 、 S90 、 S91 、 S92 、 S93 、 S94 、 S95 、 S96、S97、S98、S99或S100。在另一實施例中,該 化合物不是 S4、 S7、 S20、 S24、 S25、 S26、 S27 或 S36。在一實施例中,該化合物不是JTV-519。 在某些實施例中,該些方法治療症狀。在其他實施例 中,該些方法治療病因與7或症狀。 15 200815381 在某些實施例中’該化合物係由一選自下列所構成之 群組的化學式所描述··式I-a、〗_b、i-c、卜d、he、i-f、 I-g、I-h、I-i、I-j、I-k、1-1、^、ϊ_η、1〇 或 Ι-Ρ。在其 它實施例中,該化合物係由一選自下列所構成之群組的化 學式所描述··式 I-a、I-b、I-e、u、、卜h、Μ、卜η、 1-0與Ι-Ρ。在其它實施例中,該化合物係由一選自下列所 構成之群組的化學式所描述:式I-n、Lo與。在其他實 施例中’該化合物係選自下列所構成之群組:S 1、s 2、S 3、 S4、 S5、 S6、 S7、 S9、 Sll、 S12、 S13、 S14、 S19、 S20、 S22 、 S23 、 S24 、 S25 、 S26 、 S27 、 S36 、 S37 、 S38 、 S40 、 S43、S44、S45、S46、S4 7、S48、!549、S50、S51、S52、 S53 、 S54 、 S55 、 S56 、 S57 、 S58 、 S59 、 S60 ' S61 、 S62 、 S63、 S64、 S66、 S67、 S68、S69、 S70、 S71、 S72、S73、 S74 、 S75 、 S76 、 S77 、 S78 、 S79 、 S80 、 S81 、 S82 、 S83 、 S84 、 S85 、 S86 、 S87 ' S88 、 S89 、 S90 、 S9卜 S92 、 S93 、 S94、S95、S96、S97、S98、S99,S100、S101、S102、S103、 S104、S107、S10 8、S109、S110、Sm、S112、S113、S114、 SI 15、SI 16 > SI 17 > SI 18 > SI 19 ' S120、S121、SI 22 與 S 1 23。在其他實施例中,該化合物係選自下列所構成之群 、组:S47、S48、S50、S51、S59、S64、S74、S75、S77、 S85、 S101、 S102' S103' S107' S109、 S110' Sill、 S117 與S 1 2 1。在其他實施例中,該化合物係選自下列所構成之 群組:S68、S101、S102、S103、S107、S109、S110、sill、 S 11 7與S 1 2 1。在一實施例中,該化合物為s 1 0 7。 16 200815381 在方法的其他實施例中,肌肉疲勞係由於一骨骼肌疾 病或異常所造成。其他實施例中,骨骼肌疾病或異常與 RyRl ^:體功能異常相關。在某些實施例中,該些方法治療 肌病變(myopathy)所引起的肌肉疲勞。在其他實施例中/,、 該些方法治療肌肉萎縮症所引起的肌肉疲勞。在其他實.施 例中該些方法治療中央軸空病(central core disease)所引 起的肌肉疲勞。在其他實施例中,該些方法治療惡性高熱 綜合症(malignant hyperthermia)。在其他實施例中,肌肉 疲勞係運動引起的肌肉疲勞或年齡相關性肌肉疲勞。在其 他實施例中,運動引起的肌肉疲勞係由於長時間運動或高 強度運動所導致。 在其他實施例中,該個體罹患神經性病變 (neuropathy)、神經疾病或異常、癲癇症狀(seizure condition)、遺傳疾病或異常、心臟疾病或異常、傳染病、 愛滋病病毒感染、愛滋病、肌病變、肌肉萎縮症、癌症、 營養不良、腎臟疾病或腎臟衰竭。在某些實施例中,心臟 疾病或異常係選自下列所構成之群組:不規則心跳疾病、 運動引起的不規則心跳、充血性心臟衰竭(congestive heart failure)、慢性阻塞性肺病、高血壓或任何上述之組合。在 其他實施例中,不規則心跳疾病係選自下列所構成之群 組:心房或心室心律不整;心房顫動(atrial fibrillation)或 心室顏動(ventricular fibrillation);心房頻脈心律不整 (atrial tachyarrhythmias)或心室頻脈心律不整(ventricular tachyarrhythmias);心房頻脈(atrial tachycardias)或心至頻 17 200815381 脈(ventricular tachycardias);兒茶酚胺多型性心室頻脈 (catecholaminergic polymorphic ventricular tachycardia, CP VT)與上述之運動引起的變異型。 在其他η施例中’肌病變為先天性肌病變(congenital myopathy)。在其他實施例中,肌病變係選自下列所構成之 群組:肌肉萎縮症、中央軸空病、軸空與桿狀體的肌病變 (myopathy with cores and rods)、粒線體性肌病變 (mitochondrial myopathy)、内分泌性肌病變(endocrine myopathy)、肝醋儲積症(glycogen storage diseases)、肌紅 素展症(myoglobinurias)、皮肌炎(dermatomyositis)、肌肉 骨化症(myositis ossificans)、家族性周期性麻痺(familial periodic paralysis)、多發性肌炎(polymyositis)、包涵體肌 炎(inclusion body myositis)、神經性肌強直(neuromyotonia) 與僵硬人症(stiff-man syndrome)。在其他實施例中,肌病 變為肌肉萎縮症、中央軸空病或惡性高熱綜合症。在其他 實施例中,肌肉萎縮症係選自下列所構成之群組:杜氏肌 肉萎縮症(Duchenne muscular dystrophy)、顏面肩狎肱骨型 肌肉萎縮症(facioscapulohumeral dystrophy)、肢帶型肌肉 萎縮症(limb girdle muscular dystrophy)、肌強直性進行型 肌肉萎縮症(myotonic muscular dystrophy)、第1型萎縮性 肌強直(myotonic dystrophy type I)、第 2 型肌強直 (myotonic muscular)、貝氏肌肉萎縮症(Becker’s muscular dystrophy)、先天性肌肉萎縮症(congenital muscular dystrophy)、遠端型肌肉萎縮症(distal muscular 18 200815381 dystrophy)、Emery-Dreifuss 型肌肉萎縮症(Emery Dreifuss muscular dystrophy)與眼咽型肌肉萎縮症(〇cul〇pharyngeal muscular dystrophy)。在其他實施例中,肝醣儲積症係選自 下列所構成之群組·龐貝氏症(p〇nipe,s disease)、安德生症 (Andersen’s disease)與柯氏症(c〇H,s diseases)。在其他實 施例中,肌紅素尿係選自下列所構成之群組:麥卡德爾氏 症(McArdle’s disease)、塔瑞氏症(τ&Γ1ιί disease)與戴瑪羅 氏症(DiMauro disease)。在其他實施例中,粒線體性肌病 變係選自下列所構成之群組:K e a r n s - S a y r e氏症 (Kearns-Sayre syndrome)、MELAS 症與 MERRF 症。在其 他實施例中,該個體為選自下列所構成之群組的一非人類 動物:犬科、馬科、貓科、豬、鼠科、牛科、鳥類與綿羊 類動物。在一實施例中,該個體為人類。 在另一態樣中,本發明提供治療、預防或改善個體中 肌肉疲勞的方法,其包括對個體施用一治療有效劑量的化 合物,該化合物係由選自下列所構成之群組的化學式所描 述:SI、S2、S3、S4、S5、S6、S7、S9、Sll、S12、S13、 S14 、 S19 、 S20 、 S22 、 S23 、 S24 、 S25 、 S26 、 S27 、 S36 、 S37 、 S38 、 S40 、 S43 、 S44 、 S45 、 S46 、 S47 ' S48 、 S49 、 S50、 S51 、 S52、 S53、 S54' S55、S56、 S57' S58、 S59、 S60 、 S61 、 S62 - S63 ' S64 > S66 ' S67 ' S68 ' S69 ' S70 、 S71 、 S72 、 S73 、 S74 、 S75 、 S76 、 S77 、 S78 、 S79 、 S80 、 S81、 S82、 S83、 S84、 S85、 S86、 S87、 S88、 S89、 S90、 S91、S92、S93、S94、S95' S96' S97、S98' S99' S100、 19 200815381 5101、 S102、S103、S104、S107、S108、S 109、S110、Sill、 S112、S113、S114、S115、S116、S117、S118、S119、S120、 S 1 21、S 1 2 2與S 1 2 3,或任何上述之鏡像異構物、非鏡像異 構物、互變異構物、藥學上可接受之鹽類、水合物、溶劑 合物、複合物、代謝物與前藥。在某些實施例中,該化合 物不是 S4、S7、S20、S24、S25、S26、S27 或 S36。在一 實施例中,肌肉疲勞係運動引起的肌肉疲勞。在另一實施 例中,肌肉疲勞係伴隨以肌肉疲勞為特徵之任何其他疾病 或症狀。在一實施例中,肌肉疲勞係由於肌病變所引起。 在另一實施例中,肌肉疲勞係由於肌肉萎縮症所引起。在 另一實施例中,肌肉疲勞係由於中央軸空病所引起。在某 些實施例中,該化合物係選自下列所構成之群組:S47、 S48、S50、S51、S59、S64、S74、S7 5、S77、S85、S101、 5102、 S103、S107、 S109、 S110、 S111、S117 與 S121, 或任何上述之鏡像異構物、非鏡像異構物、互變異構物、 藥學上可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,該化合物係選自下列所構成之群組: S101、S102、S103、S107、S109、S110、si 11、si 17 與 S 1 2 1,或任何上述之鏡像異構物、非鏡像異構物、互變異 構物、藥學上可接受之鹽類、水合物、溶劑合物、複合物 與前藥。在一實施例中,該化合物係S 1 〇 7。 在某些實施例中,該個體罹患運動引起的肌肉疲勞、 年齡相關性肌肉疲勞、肌病變、神經異常或神經性病變、 傳染病、慢性疾病(chronic disorder)、遺傳病或任何其他 20 200815381 與肌肉疲勞相關之疾病或異常。在某些實施例中,該個體 罹患心臟疾病或異常、愛滋病病毒感染、愛滋病、肌肉萎 縮症、癌症、營養不良、腎臟疾病、腎臟衰竭或任何上述 之組合。在其他實施例中,該個體罹患不規則心跳;運動 引起的不規則心跳;充血性心臟衰竭;慢性阻塞性肺病; 高血壓或任何上述之組合。在某些實施例中,個體的不規 則心跳包括心房與心室心律不整;心房顫動與心室顫動; 心房頻脈心律不整與心室頻脈心律不整;心房頻脈與心室 頻脈;兒茶酚胺多型性心室頻脈(CPVT)與上述之運動引起 的變異型。在某些實施例中,運動引起的肌肉疲勞係由於 長時間運動所造成。在其他實施例中,肌肉疲勞係由於高 強度運動所造成。 引起。 在某些實施例中,肌肉疲勞為個體中高強度運動引起 的肌肉疲勞。在另一實施例中,肌肉疲勞係由於長時間運 動所造成。在其他實施例中,肌肉疲勞為個體中年齡相關 性肌肉疲勞。在某一實施例中,肌肉疲勞係伴隨於疾病戋 異常。在某些實施例中,肌肉疲勞係由於肌病變所弓丨起。 在其他實施例中,肌肉疲勞係由於個體中的肌肉萎縮症所 在某些態樣中,本發明提供治療或預防個體中肌病變 的方法,該方法包括對個體施用治療有效劑量的化合物’,Ri5 and Ri6 are respectively selected from the group consisting of hydrazine, fluorenyl, alkenyl, alkoxy, OH, hydrazine, alkyl, alkylamino, aryl, alkaryl, cycloalkyl, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; wherein each of the fluorenyl group, the alkenyl group, the alkyl group, the alkyl group, the alkyl group, the aryl group, the alkylene group may be substituted or unsubstituted. a group, a cycloalkyl group, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocycloalkyl group; and, optionally, R15 and R16 may form a heterocyclic ring together with the nitrogen to which they are bonded, and the heterocyclic ring may Containing a substituent; the gas in the benzothiazepine ring may be optionally a quaternary nitrogen; and its enantiomers, diastereomers, tautomers (tautomers), pharmaceutically acceptable salts, hydrates, solvates, complexes (c 〇 mp 1 e X es) and prodrugs. In certain embodiments, the compound is not SI, S2, S3, S4, S5, S6 > S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S24, S25, S26, S27, S36, S37, S38, S40, S43, S44, S45, S46 'S47, S48, S49 'S50, S51, S52, S53, S54, S55, S56, S57, S58 'S59, S60, S61, S62, S63, S64 ' S66 ' S67 , S68 ' S69 , S70 ' S71 , S72 , S73 , S74 ' S75 , S76 , S77 , S78 , S79 , S80 , S81 , S82 , S83 , S84 , S85 , S86 , S87 , S88 , S89 , S90, S91, S92, S93, S94, S95, S96, S97, S98, S99 or S100. In another embodiment, the compound is not S4, S7, S20, S24, S25, S26, S27 or S36. In one embodiment, the compound is not JTV-519. In certain embodiments, the methods treat symptoms. In other embodiments, the methods treat the cause and 7 or symptoms. 15 200815381 In certain embodiments 'the compound is described by a chemical formula selected from the group consisting of: Formula Ia, 〗 〖b, ic, 卜d, he, if, Ig, Ih, Ii, Ij , Ik, 1-1, ^, ϊ_η, 1〇 or Ι-Ρ. In other embodiments, the compound is described by a chemical formula selected from the group consisting of: Formula Ia, Ib, Ie, u,, h, Μ, η, 1-0, and Ι-Ρ . In other embodiments, the compound is described by a chemical formula selected from the group consisting of: Formula I-n, Lo and. In other embodiments 'the compound is selected from the group consisting of: S 1 , s 2, S 3, S4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22 , S23, S24, S25, S26, S27, S36, S37, S38, S40, S43, S44, S45, S46, S4 7, S48, ! 549, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60 'S61, S62, S63, S64, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87 'S88, S89, S90, S9, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101, S102, S103, S104, S107, S10 8, S109, S110, Sm, S112, S113, S114, SI 15, SI 16 > SI 17 > SI 18 > SI 19 ' S120, S121, SI 22 with S 1 23 . In other embodiments, the compound is selected from the group consisting of: S47, S48, S50, S51, S59, S64, S74, S75, S77, S85, S101, S102' S103' S107' S109, S110 'Sill, S117 and S 1 2 1. In other embodiments, the compound is selected from the group consisting of S68, S101, S102, S103, S107, S109, S110, sill, S11 7 and S 1 2 1 . In one embodiment, the compound is s 1 0 7 . 16 200815381 In other embodiments of the method, muscle fatigue is caused by a skeletal muscle disease or abnormality. In other embodiments, skeletal muscle disease or abnormalities are associated with RyRl^: dysfunction. In certain embodiments, the methods treat muscle fatigue caused by myopathy. In other embodiments, the methods treat muscle fatigue caused by muscular dystrophy. In other embodiments, these methods treat muscle fatigue caused by central core disease. In other embodiments, the methods treat malignant hyperthermia. In other embodiments, muscle fatigue is caused by muscle fatigue or age-related muscle fatigue. In other embodiments, exercise-induced muscle fatigue is caused by prolonged exercise or high-intensity exercise. In other embodiments, the individual has neuropathy, neurological disease or abnormality, seizure condition, genetic disease or abnormality, heart disease or abnormality, infectious disease, HIV infection, AIDS, myopathy, Muscular atrophy, cancer, malnutrition, kidney disease or kidney failure. In certain embodiments, the heart disease or abnormality is selected from the group consisting of irregular heartbeat disease, exercise-induced irregular heartbeat, congestive heart failure, chronic obstructive pulmonary disease, hypertension Or any combination of the above. In other embodiments, the irregular heartbeat disorder is selected from the group consisting of: atrial or ventricular arrhythmia; atrial fibrillation or ventricular fibrillation; atrial tachyarrhythmias Or ventricular tachyarrhythmias; atrial tachycardias or heart to frequency 17 200815381 ventricular (tachycardias); catecholaminergic polymorphic ventricular tachycardia (CP VT) and the above-mentioned movement The resulting variant. In other η applications, 'muscle lesions are congenital myopathy. In other embodiments, the myopathy is selected from the group consisting of: muscular dystrophy, central axis disease, myopathy with cores and rods, mitochondrial myopathy (mitochondrial myopathy), endocrine myopathy, glycogen storage diseases, myoglobinurias, dermatomyositis, myositis ossificans, family Familial periodic paralysis, polymyositis, inclusion body myositis, neuromyotonia, and stiff-man syndrome. In other embodiments, the myopathy becomes muscular atrophy, central axis disease, or malignant hyperthermia syndrome. In other embodiments, the muscular dystrophy is selected from the group consisting of Duchenne muscular dystrophy, facioscapulohumeral dystrophy, limb-type muscular dystrophy (limb) Girdle muscular dystrophy), myotonic muscular dystrophy, myotonic dystrophy type I, myotonic muscular, Bayesian muscular dystrophy (Becker's) Muscular dystrophy), congenital muscular dystrophy, distal muscular dystrophy, emery-Dreifuss muscular dystrophy, and pharyngeal muscular atrophy (Emery Dreifuss muscular dystrophy) 〇cul〇pharyngeal muscular dystrophy). In other embodiments, the glycogen storage disorder is selected from the group consisting of: p〇nipe, s disease, Andersen's disease, and comorbid (c〇H, s diseases). In other embodiments, the myoglobinuria is selected from the group consisting of McArdle's disease, Tau & Γ1ιί disease, and DiMauro disease. In other embodiments, the mitochondrial myopathy is selected from the group consisting of K e a r n s - S a y r e (Kearns-Sayre syndrome), MELAS and MERRF. In other embodiments, the individual is a non-human animal selected from the group consisting of: canine, equine, feline, porcine, murine, bovine, avian, and ovine. In an embodiment, the individual is a human. In another aspect, the invention provides a method of treating, preventing or ameliorating muscle fatigue in an individual comprising administering to the individual a therapeutically effective amount of a compound, the compound being described by a chemical formula selected from the group consisting of :SI, S2, S3, S4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S24, S25, S26, S27, S36, S37, S38, S40, S43 , S44 , S45 , S46 , S47 ' S48 , S49 , S50 , S51 , S52 , S53 , S54 ' S55 , S56 , S57 ' S58 , S59 , S60 , S61 , S62 - S63 ' S64 > S66 ' S67 ' S68 ' S69 'S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95' S96' S97, S98' S99' S100, 19 200815381 5101, S102, S103, S104, S107, S108, S 109, S110, Sill, S112, S113, S114, S115, S116, S117, S118, S119 , S120, S 1 21, S 1 2 2 and S 1 2 3, or any of the above-mentioned image isomers, non Like heterogeneous composition, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes, metabolites and prodrugs thereof. In certain embodiments, the compound is not S4, S7, S20, S24, S25, S26, S27 or S36. In one embodiment, muscle fatigue is muscle fatigue caused by exercise. In another embodiment, muscle fatigue is accompanied by any other disease or condition characterized by muscle fatigue. In one embodiment, muscle fatigue is caused by muscle lesions. In another embodiment, muscle fatigue is caused by muscle wasting. In another embodiment, muscle fatigue is caused by central axis air disease. In certain embodiments, the compound is selected from the group consisting of: S47, S48, S50, S51, S59, S64, S74, S7 5, S77, S85, S101, 5102, S103, S107, S109, S110, S111, S117 and S121, or any of the above image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes and prodrugs. In certain embodiments, the compound is selected from the group consisting of: S101, S102, S103, S107, S109, S110, si 11, si 17 and S 1 2 1, or any of the above-described mirror image isomers Non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes and prodrugs. In one embodiment, the compound is S 1 〇 7 . In certain embodiments, the individual suffers from exercise-induced muscle fatigue, age-related muscle fatigue, myopathy, neurological or neuropathic disease, infectious disease, chronic disorder, genetic disease, or any other 20 200815381 with A disease or abnormality associated with muscle fatigue. In certain embodiments, the individual is suffering from a heart disease or abnormality, an HIV infection, AIDS, muscular dystrophy, cancer, malnutrition, kidney disease, kidney failure, or a combination of any of the foregoing. In other embodiments, the individual suffers from an irregular heartbeat; an irregular heartbeat caused by exercise; congestive heart failure; chronic obstructive pulmonary disease; hypertension or any combination of the above. In certain embodiments, the individual's irregular heartbeat includes atrial and ventricular arrhythmia; atrial fibrillation and ventricular fibrillation; atrial frequency arrhythmia and ventricular pacing arrhythmia; atrial frequency and ventricular frequency; catecholamine polymorphic ventricle Frequency pulsation (CPVT) and the variation caused by the above motion. In some embodiments, exercise-induced muscle fatigue is caused by prolonged exercise. In other embodiments, muscle fatigue is caused by high intensity exercise. cause. In some embodiments, muscle fatigue is muscle fatigue caused by high intensity exercise in an individual. In another embodiment, muscle fatigue is caused by prolonged exercise. In other embodiments, muscle fatigue is age-related muscle fatigue in an individual. In one embodiment, muscle fatigue is accompanied by an abnormality in the disease. In certain embodiments, muscle fatigue is caused by muscle lesions. In other embodiments, muscle fatigue is due to certain aspects of muscular dystrophy in an individual, and the present invention provides a method of treating or preventing a muscle lesion in an individual, the method comprising administering to the individual a therapeutically effective amount of a compound'

該化合物係由式I、 I-i、I-j、I-k、μ、 21 200815381 異構物非鏡像異構物、互變異構物、藥學上可接受之踏 類、水合物、溶劑合物、複合物、代謝物或前藥或任何上 述之組合。在某些態樣中,本發明提供治療或預防個體中 肌肉萎縮症的方法,該方法包括對個體施用治療有效劑量 的化合物,該化合物係由式I、I-a、I-b、I-c、i-d、&、 1 f 1 g、I_h、i-i、y、卜k、h、卜m、Ι-η、I 〇 或 i p 所 表不或其鏡像異構物、非鏡像異構物、互變異構物、藥 與上可 、 千 义之鹽類、水合物、溶劑合物、複合物、代謝物 )、或任何上述之組合。在某些態樣中,本發明提供治 療或預防個體内中央軸空病(cental disease)的方 '匕括對個體施用治療有效劑量的化合物,該化 合物係由式 1、La、I-b、I-c、I-d、I-e、I-f、I-g、u、u、 1 3 1虻、H、i-n、i_〇或i_p所表示,或其鏡像異構 物、非鏡像異構物、互變異構物、藥學上可接受之鹽類、 水合物、溶劑合物、複合物、代謝物或前藥或任何上述之 在某些態樣中,本發明提供治療或預防個體内惡性 t 的方法,該方法包括對個體施用治療有效劑量 的化合物,枯乂^人 該化合物係由式 I、I-a、I_b、I-c、I-d、I-e、 I-f、I-g、I-h、τ · s 1 、I-j、I_k、1-1、I-m、I-n、I-o 或卜p 所 表不’或其鏡像異構物、非鏡像異構物、互變異構物、藥 子上可接文之鹽類、水合物、溶劑合物、複合物、代謝物 藥或任何上述之組合。在某些實施例中,該化合物係The compound is a compound of the formula I, Ii, Ij, Ik, μ, 21 200815381 isomers, tautomers, tautomers, pharmaceutically acceptable treads, hydrates, solvates, complexes, metabolism Or prodrug or any combination of the above. In certain aspects, the invention provides a method of treating or preventing muscular atrophy in a subject, the method comprising administering to the individual a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, id, & , 1 f 1 g, I_h, ii, y, b, h, b, Ι-η, I 〇 or ip, or its mirror image isomer, non-image isomer, tautomer, drug In combination with the above, a salt, a hydrate, a solvate, a complex, a metabolite, or any combination thereof. In certain aspects, the invention provides a method of treating or preventing a central disease in a subject, comprising administering to the individual a therapeutically effective amount of a compound of Formula 1, La, Ib, Ic, Id, Ie, If, Ig, u, u, 1 3 1虻, H, in, i_〇 or i_p, or its mirror image isomer, non-image isomer, tautomer, pharmaceutically acceptable Accepted salts, hydrates, solvates, complexes, metabolites or prodrugs or any of the foregoing, in certain aspects, the invention provides a method of treating or preventing malignant t in an individual, the method comprising administering to the individual A therapeutically effective amount of a compound which is a compound of Formula I, Ia, I_b, Ic, Id, Ie, If, Ig, Ih, τ · s 1 , Ij, I_k, 1-1, Im, In, Io or 卜p or not or its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes, metabolites or Any combination of the above. In certain embodiments, the compound is

I I b' I-e、i-f、i_g、u、1-1、I-n、1-〇 或 i-p 所表 示之化a物或其鏡像異構物、非鏡像異構物、互變異構物、 22 200815381 藥學上可接受之鹽類、水合物、溶劑合物、複合物、代謝 物或前藥或任何上述之組合。 在其他實施例中,該化合物係選自下列所構成之群組 中: Sl,S2,S3, S4, S5,S6,S7 ,S9, SI 1, S12, SI 3, S14, S19, S20, S22, S23, S24, S25, S26, S27? S36, S37, S38, S40, S43, S44, S45, S46, S47, S48? S49, S50, S51, S52, S53? S54, S55, S56, S57, S58, S59, S60, S61, S62, S63? S64, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101, S102, S103, S104, S107, S108, S109,S110,Sill,S112,S113,S114,S115,S116,S117, S118, S119,S120, S121,S122 與 S123,與其鏡像異構物、 非鏡像異構物、互變異構物、藥學上可接受之鹽類、水合 物、溶劑合物、複合物、代謝物或前藥以及任何上述之組 合。在某些實施例中,該化合物不是此處所述之SI、S2、 S3、 S4、 S5、 S6、 S7、S9、S11、S12、 S13、 S14、 S19、 S20 、 S22 、 S23 、 S24 、 S25 、 S26 、 S27 、 S36 、 S37 、 S38 、 S40、S43、S44、S45、S46、S47、S48、S49 ' S50、S51 ' S52 、 S53 、 S54 、 S55 、 S56 、 S57 、 S58 、 S59 、 S60 、 S61 > S62 ' S63 ' S64 、 S66 ' S67 、 S68 、 S69 ' S70 ' S71 〜S72 ' S73 、 S74 、 S75 、 S76 ' S77 、 S78 、 S79 、 S80 ' S81 、 S82 ' S83 、 S84 、 S85 、 S86 、 S87 、 S88 ' S89 、 S90 、 S91 、 S92 、 S93、S94·、S95、S96、S97、S98、S99 或 S100。在某些實 23 200815381 施例中,該化合物不是S4、S7、S20、S24、S25、S26、S27 或S36。在另一實施例中,該化合物不是jtv-519。 在其他實施例中,該方法包括對個體施用一治療有效 劑量的化合物,該化合物係由式I-n、1-〇或I-p所表示, 或其鏡像異構物、非鏡像異構物、互變異構物、藥學上可 接受之鹽類、水合物、溶劑合物、複合物、代謝物或前藥 或任何上述之組合。在其他實施例中,該化合物係選自下 列所構成之群組:S68、S101、S102、S103、S104、S107、 S108' S109、Sll〇、Sill、S112、S113、S114、S115、S116、 SI 17、SI 18、SI 19、S120、S121、S122 與 S123,以及任 何上述之鹽類、水合物、溶劑合物、多型體(polymorph)、 複合物、代謝物、前藥與任何上述之組合。在其他實施例 中’該化合物係選自下列所構成之群組:S 1 〇 1、S 1 02、 S103、S107、S109、S110、Sill、S117 與 S121,以及任 何上述之鹽類、水合物、溶劑合物、多型體、複合物、代 謝物、前藥與任何上述之組合。在其他實施例中,該化合 物係S107、其任何鹽類、水合物、溶劑合物、多型體、複 合物、代謝物、刖藥或任何上述之組合。在其他實施例中, 該化合物係S 1 1 7、其任何鹽類、水合物、溶劑合物、多型 體、複合物、代謝物 '前藥或任何上述之組合。 在本發明方法的某些實施例中,以下列形式施用該化 合物:特定鹽類、水合物、溶劑合物、同分異構物、鏡像 異構物或大致上純淨的形式。在某些實施例中,係以大致 24 200815381 上純淨形式經分離的化合物施用該化合物,其中該化合物 係S 1 1 7。在治療肌病變或肌肉萎縮症方法的某些實施例 中,該症狀可為肌肉疲勞、運動引起的肌肉疲勞或任何其 他與骨骼肌缺陷有關的症狀。 在另一態樣中,本發明提供減少個體内鈣激活蛋白酶 (calpain)活性或血漿肌酸激酶(creatine kinase)活性或含量 以治療或減少個體中骨骼肌疲勞的方法,該方法包括對個 體施用一治療有效劑量的化合物(以結構式I所表示)。在另 一態樣中,本發明提供減少個體内鈣激活蛋白酶活性或企 漿肌酸激酶活性或含量以治療或減少個體中骨骼肌傷害的 方法,該方法包括對個體施用一治療有效劑量的化合物(以 結構式I所表示)。在另一態樣中,本發明提供減少個體内 鈣激活蛋白酶活性或血漿肌酸激酶活性或含量以治療或減 少個體中骨骼肌功能缺陷的方法,該方法包括對個體施用 一治療有效劑量的化合物(以結構式Ϊ所表示)。在另—態樣 中’本發明提供減少個體内鈣激活蛋白酶活性或血製肌酸 激酶活性或含量以治療或延緩肌病變(例如,但不限於中央 轴空病或惡性高熱綜合症)開始之方法,該方法包括辦個體 施用一治療有效劑量的化合物(以結構式I所表示)。在另一 態樣中’本發明提供減少個體内鈣激活蛋白酶活性或金聚 肌酸激酶活性或含量以治療或延缓個體中肌肉萎縮症開始 之方法,該方法包括對個體施用一治療有效劑量的化合物 (以結構式I所表示)。 25 200815381 在其他實施例中,該化合物係以下列所表示:結構式 Ι-η、1-〇或I-p ’或其鏡像異構物、非鏡像異構物、互變異 構物、藥學上可接受之鹽類、水合物、溶劑合物、複合物、 代謝物或前藥或任何上述之組合。在其他實施例中,該化 合物係選自由下列所構成之群組:SI、S2、S3、S5、S6、 S9、 Sll、 S12、 S13、 S14、 S19、 S22、S23、 S37、 S38、 S40 、 S43 、 S44 、 S45 ' S46 、 S47 、 S48 、 S49 、 S50 、 S51 、 S52、 S53、 S54、 S55、 S56、 S57' S58、 S59、 S60、 S61、 S62 、 S63 、 S64 、 S66 、 S67 、 S68 、 S69 、 S70 、 S71 、 S72 、 S73 、 S74 、 S75 、 S76 ' S77 、 S78 、 S79 、 S80 、 S81 、 S82 、 S83 、 S84 、 S85 、 S86 、 S87 、 S88 、 S89 、 S90 、 S91 、 S92 、 S93' S94、S95、S96、S97、S98、S99、S100、S101、S10 2、 S103、 S104、 S107、 S108、 S109、 S110、 S111、S112、 S113 、 S114、 S115、 S116、 S117、 S118、 S119、 S120' S121、 S122 與S 1 23,以及上述之鏡像異構物、非鏡像異構物、互變異 構物、藥學上可接受之鹽類、水合物、溶劑合物、複合物、 代謝物或前藥以及任何上述之組合。在其他實施例中,該 化合物係選自由下列所構成之群組:S 1 0 1、S 1 02、S 1 03、 S107、S109、S1 10、SI 1 1、S1 17 與 S121。在一實施例中, 該化合物係S 1 07或其藥學上可接受之鹽類。在另一實施例 中,該化合物係S117或其藥學上可接受之鹽類。在某些實 施例中,該化合物不是SI、S2、S3、S4、S5、S6、S7、S9、 SI 1、S12、S13、S14、S19、S20、S22、S2 3、S24、S25、 S26 ' S27 、 S36 、 S37 、 S38 、 S40 、 S43 、 S44 、 S45 ' S46 、 26 200815381 S47 、 S48 、 S49 ' S50 、 S51 、 S52 、 S53 ' S54 、 S55 、 S56 、 S57 、 S58 、 S59 、 S60 、 S61 、 S62 、 S63 、 S64 、 S66 、 S67 、 S68 、 S69 、 S70 、 S71、 S72 、 S73 、 S74 、 S75 、 S76 、 S77 、 S78 、 S79 、 S80 、 S81 、 S82 、 S83 、 S84 、 S85 、 S86 、 S87 、 S88、 S89、 S90、 S91、 S92、 S93、 S94、 S95、 S96:S97、 S 9 8、S 9 9或s 1 0 0。在另一實施例中,該化合物不是s 4、 S7、S20、S24、S25、S26、S27 或 S36。在一實施例中, 該化合物不是JTV-519。 在治療肌肉萎縮症方法的某些實施例中,肌肉萎縮症 係選自下列所構成之群組:杜氏肌肉萎縮症、顏面肩胛肱 骨型肌肉萎縮症、肢帶型肌肉萎縮症、肌強直性進行型肌 肉萎縮症、貝氏肌肉萎縮症 '先天性肌肉萎縮症、遠端型 肌肉萎縮症、Emery-Dreifuss型肌肉萎縮症與眼咽型肌肉 萎縮症。 在某些態樣中,本發明提供治療方法,其中該個體為 人類。在某些實施例中,該個體為選自下列所構成之群組 的非人類動物:犬科、馬科、貓科、豬、鼠科、牛科、家 禽、專羊、鼓長類、齧齒動物、綿羊(〇 v i n e)與牛科。 在其他態樣中,本發明提供治療方法,其中該化合物 係藥學組合物的部分。在某些實施例中,該藥學組合物包 括至少一藥學可接受的賦形劑(excipient)。在其他實施例 中’該至少一藥學可接受的賦形劑包括芳香劑 (aromatics)、緩衝劑、黏著劑(binders)、著色劑…❹^^以^、 27 200815381 崩解劑(disintegrants)、稀釋劑、乳化劑(emulsifiers)、增 量劑(extenders)、氣味改善劑(flavor-improving agents)、 膠凝劑(gellants)、滑動劑(glidants)、防腐劑、皮膚滲入促 進劑(skin-penetration enhancers)、助溶劑(solubilizers)、 安定劑(stabilizers)、懸浮劑(suspending agents)、甜味劑 (sweeteners)、張力劑(tonicity agents)、載劑(vehicles)、 黏度增強劑(viscosity-increasing agents)或任何上述之組 合。在其他實施例中,該藥學組合物更包括一第二活性製 劑。在某些實施例中,該第二活性製劑係一止痛劑。在某 些實施例中,該組合物係以膠囊形式、粒狀形式(granule form)、粉末形式、溶液形式、懸浮形式(suspension form) 或鍵片形式(tablet form)或動物飼料形式而存在。 在某些實施例中,經由下列方式施用組合物:非腸道 式(parenteral)、腸道式(enteral)、靜脈内、動脈内、脊聽 内、骨絡内(intraosseal)、皮内(intracutaneous)、皮下、真 皮内(intradermal)、真皮下(subdermal)、皮膚滲透 (transdermal)、腦脊趙膜内(intrathecal)、肌肉内、腹膜内 (intrap eritoneal)、胸骨内(intrasternal)、實質細胞 (parenchymatous)、口服、舌下(sublingual)、口頰式 (buccal)、直腸式(rectal)、陰道式(vaginal)、吸入式或鼻 内(intranasal)施用。在某些實施例中,利用藥物釋植入管 放(drug-releasing implant)或經由滲透式幫浦(osm〇tic pump)施用該化合物。在某些實施例中,對該個體施用足 以恢復calstabin 1與RyRl結合之劑量的化合物。在某些 28 200815381 實施例中,對該個體施用足以提高calstabin ^ 合之劑量的化合物。在某些實施例中,對該個體施用足 減少鈣激活蛋自酶活性之劑量的化合物。在某些實^ 中,對該個體施用足以減少血漿肌酸激酶活性或:旦^ 量的化合物:*某些治療壓力或運動引起之疲勞::施二 中,在運動或壓力狀態開始前(7、6、5、4、3、2 义 過程中同時、結束時或結束後(1、2、3、4、$ 天則)、II b' Ie, if, i_g, u, 1-1, In, 1-〇 or ip represented by a substance or its mirror image isomer, non-image isomer, tautomer, 22 200815381 Pharma Acceptable salts, hydrates, solvates, complexes, metabolites or prodrugs or combinations of any of the foregoing. In other embodiments, the compound is selected from the group consisting of: Sl, S2, S3, S4, S5, S6, S7, S9, SI 1, S12, SI 3, S14, S19, S20, S22 , S23, S24, S25, S26, S27? S36, S37, S38, S40, S43, S44, S45, S46, S47, S48? S49, S50, S51, S52, S53? S54, S55, S56, S57, S58 , S59, S60, S61, S62, S63? S64, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84 , S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101, S102, S103, S104, S107, S108, S109, S110, Sill , S112, S113, S114, S115, S116, S117, S118, S119, S120, S121, S122 and S123, and its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, Hydrates, solvates, complexes, metabolites or prodrugs, and combinations of any of the foregoing. In certain embodiments, the compound is not SI, S2, S3, S4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S24, S25 as described herein. , S26, S27, S36, S37, S38, S40, S43, S44, S45, S46, S47, S48, S49 'S50, S51 'S52, S53, S54, S55, S56, S57, S58, S59, S60, S61 > S62 ' S63 ' S64 , S66 ' S67 , S68 , S69 ' S70 ' S71 ~ S72 ' S73 , S74 , S75 , S76 ' S77 , S78 , S79 , S80 ' S81 , S82 ' S83 , S84 , S85 , S86 , S87, S88 'S89, S90, S91, S92, S93, S94·, S95, S96, S97, S98, S99 or S100. In some embodiments of the application, the compound is not S4, S7, S20, S24, S25, S26, S27 or S36. In another embodiment, the compound is not jtv-519. In other embodiments, the method comprises administering to the individual a therapeutically effective amount of a compound represented by the formula In, 1-oxime or Ip, or a mirror image isomer thereof, a non-image isomer, a tautomer. A pharmaceutically acceptable salt, hydrate, solvate, complex, metabolite or prodrug or a combination of any of the foregoing. In other embodiments, the compound is selected from the group consisting of: S68, S101, S102, S103, S104, S107, S108' S109, S11, Sill, S112, S113, S114, S115, S116, SI 17. SI 18, SI 19, S120, S121, S122 and S123, and any of the foregoing salts, hydrates, solvates, polymorphs, complexes, metabolites, prodrugs and combinations thereof . In other embodiments 'the compound is selected from the group consisting of S 1 〇1, S 1 02, S103, S107, S109, S110, Sill, S117 and S121, and any of the above salts, hydrates , solvates, polymorphs, complexes, metabolites, prodrugs, in combination with any of the foregoing. In other embodiments, the compound is S107, any salt, hydrate, solvate, polymorph, complex, metabolite, peony, or any combination thereof. In other embodiments, the compound is S117, any salt, hydrate, solvate, polymorph, complex, metabolite 'prodrug, or any combination thereof. In certain embodiments of the methods of the invention, the compound is applied in the form of a particular salt, hydrate, solvate, isomer, mirror image isomer or substantially pure form. In certain embodiments, the compound is administered as a compound isolated in neat form on substantially 24 200815381, wherein the compound is S 1 17 . In certain embodiments of the method of treating myopathy or muscular dystrophy, the condition can be muscle fatigue, exercise-induced muscle fatigue, or any other condition associated with skeletal muscle defects. In another aspect, the invention provides a method of reducing calciin activity or plasma creatine kinase activity or content in an individual to treat or reduce skeletal muscle fatigue in an individual, the method comprising administering to the individual A therapeutically effective amount of a compound (represented by Structural Formula I). In another aspect, the invention provides a method of reducing calcitonin activity or creatinine kinase activity or content in an individual to treat or reduce skeletal muscle damage in an individual, the method comprising administering to the individual a therapeutically effective amount of a compound (Expressed by Structural Formula I). In another aspect, the invention provides a method of reducing calcitonin activity or plasma creatine kinase activity or amount in an individual to treat or reduce skeletal muscle function deficits in an individual, the method comprising administering to the individual a therapeutically effective amount of a compound (indicated by the structural formula). In another aspect, the invention provides for the reduction of intracellular calcium activating protease activity or blood creatine kinase activity or content to treat or delay muscle lesions such as, but not limited to, central axis disease or malignant hyperthermia syndrome. In the method, the method comprises administering to the individual a therapeutically effective amount of a compound (represented by Structural Formula I). In another aspect, the invention provides a method of reducing calcitonin activity or glycerol creatine kinase activity or amount in an individual to treat or delay the onset of muscular dystrophy in an individual, the method comprising administering to the individual a therapeutically effective dose Compound (represented by structural formula I). 25 200815381 In other embodiments, the compound is represented by the formula: Ι-η, 1-〇 or Ip ' or its mirror image isomer, non-image isomer, tautomer, pharmaceutically acceptable a salt, hydrate, solvate, complex, metabolite or prodrug or a combination of any of the foregoing. In other embodiments, the compound is selected from the group consisting of: SI, S2, S3, S5, S6, S9, S11, S12, S13, S14, S19, S22, S23, S37, S38, S40, S43, S44, S45 'S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57' S58, S59, S60, S61, S62, S63, S64, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76 'S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93' S94, S95, S96, S97, S98, S99, S100, S101, S10 2, S103, S104, S107, S108, S109, S110, S111, S112, S113, S114, S115, S116, S117, S118, S119, S120 'S121, S122 and S 1 23, and the above-described mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes, metabolites or pre- Medicine and any combination of the above. In other embodiments, the compound is selected from the group consisting of S 1 0 1 , S 1 02, S 1 03, S107, S109, S1 10, SI 1 1 , S1 17 and S121. In one embodiment, the compound is S1 07 or a pharmaceutically acceptable salt thereof. In another embodiment, the compound is S117 or a pharmaceutically acceptable salt thereof. In certain embodiments, the compound is not SI, S2, S3, S4, S5, S6, S7, S9, SI 1, S12, S13, S14, S19, S20, S22, S2 3, S24, S25, S26 ' S27, S36, S37, S38, S40, S43, S44, S45 'S46, 26 200815381 S47, S48, S49 'S50, S51, S52, S53 'S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96: S97, S 9 8 , S 9 9 or s 1 0 0. In another embodiment, the compound is not s 4, S7, S20, S24, S25, S26, S27 or S36. In one embodiment, the compound is not JTV-519. In certain embodiments of the method of treating muscular dystrophy, the muscular dystrophy is selected from the group consisting of Duchenne muscular atrophy, facial scapula muscular atrophy, limb-type muscular dystrophy, and myotonic Muscular atrophy, Bayesian muscular dystrophy 'congenital muscular dystrophy, distal muscular dystrophy, Emery-Dreifuss muscular dystrophy and ocular pharyngeal muscular atrophy. In some aspects, the invention provides methods of treatment wherein the individual is a human. In certain embodiments, the individual is a non-human animal selected from the group consisting of: canine, equine, feline, pig, murine, bovine, poultry, sheep, drum, class, rodent Animals, sheep (〇vine) and bovidae. In other aspects, the invention provides methods of treatment wherein the compound is part of a pharmaceutical composition. In certain embodiments, the pharmaceutical composition comprises at least one pharmaceutically acceptable excipient. In other embodiments, the at least one pharmaceutically acceptable excipient includes aromatics, buffers, binders, colorants, 、^^^, 27 200815381 disintegrants, Diluents, emulsifiers, extenders, flavor-improving agents, gellants, glidants, preservatives, skin penetration enhancers (skin-penetration) Enhancers), solubilizers, stabilizers, suspending agents, sweeteners, tonicity agents, vehicles, viscosity-increasing agents ) or any combination of the above. In other embodiments, the pharmaceutical composition further comprises a second active formulation. In certain embodiments, the second active agent is an analgesic. In some embodiments, the composition is in the form of a capsule, a granule form, a powder form, a solution form, a suspension form or a tablet form or an animal feed form. In certain embodiments, the composition is administered by parenteral, enteral, intravenous, intraarterial, intraosseous, intraosseal, intracutaneous (intracutaneous), intracutaneous (intraosseal), intracutaneous (intracutaneous) ), subcutaneous, intradermal, subdermal, transdermal, intrathecal, intramuscular, intraperitoneal, intrasternal, parenchymal (intrasternal), parenchymal (intrasternal), parenchymal (intrasternal), parenchymal (intrasternal) Parenchymatous), oral, sublingual, buccal, rectal, vaginal, inhaled or intranasal. In certain embodiments, the compound is administered using a drug-releasing implant or via an osm〇tic pump. In certain embodiments, the subject is administered a dose of a compound that restores the binding of calstabin 1 to RyR1. In certain 28 200815381 embodiments, the individual is administered a compound sufficient to increase the dose of calstabin. In certain embodiments, the individual is administered a compound that reduces the amount of calcium-activated egg self-enzymatic activity. In some embodiments, the individual is administered a compound sufficient to reduce plasma creatine kinase activity or: a certain amount of fatigue caused by treatment stress or exercise: in the second, before the onset of exercise or stress ( 7, 6, 5, 4, 3, 2 in the process of simultaneous, at the end or after the end (1, 2, 3, 4, $ days),

候)施用該化合物。在某些實施例中,對該個體施用6之:: 物的劑量係約〇.〇1毫克/公斤/天至約2〇毫克 : 某些實施例中’對該個體施用之化合物的劑量係約〇〇; 克/公斤/天至約i毫克/公斤/天。 在某些態樣中’本發明提供治療或預防有需要之個體 中肌肉疲勞的方法’其包括對個體施用治療或預防有效劑 量的化合物(其可減少RyR1通道的開啟率在某些實施例 中,本發明提供治療或預防有f要之個體巾肌肖疲勞的方 法,其包括對個體施用治療或預防有效劑量的化合物(可減 少通過RyRl通道的Ca2 +離子流卜在某些實施例中,本發 明提供治療或預防有需要之個體中肌肉疲勞的方法,其包 括對個體施用治療或預防有效劑量的化合物(可減少經由The compound is administered. In certain embodiments, the dosage of 6:: is administered to the individual from about 1 mg/kg/day to about 2 mg: in certain embodiments, the dosage of the compound administered to the individual About gram; kg / kg / day to about i mg / kg / day. In certain aspects, the invention provides a method of treating or preventing muscle fatigue in an individual in need thereof, which comprises administering to the individual a therapeutically or prophylactically effective amount of a compound that reduces the rate of opening of the RyRl channel, in certain embodiments. The present invention provides a method of treating or preventing muscle fatigue in an individual towel having an effect, comprising administering to the individual a therapeutically or prophylactically effective amount of a compound (reducing Ca2+ ion flux through the RyR1 channel, in certain embodiments, The present invention provides a method of treating or preventing muscle fatigue in an individual in need thereof, comprising administering to the individual a therapeutically or prophylactically effective amount of a compound (reducible via

RyRl通道的#5離子滲漏)。在其他實施例中,本發明提供 治療或預防有需要之個體中肌肉疲勞的方法,其包括對個 體施用治療或預防有效劑量的化合物(可增加calstabin j 結合RyR 1的親合力)。在其他實施例中,本發明提供治療 或預防有需要之個體中肌肉疲勞的方法,其包括對個體施 29 200815381 用治療或預防有效劑量的化合物(可減少caistabin丨自 RyR 1上的分離)。在某些實施例中,本發明提供治療或預 防有要之個體中肌肉疲勞的方法,其包括對個體施用治 療或預防有效劑量的化合物(可增加calstabin 1再結合於 RyRl)。在某些實施例中,本發明提供治療或預防有需要 之個體中肌肉疲勞的方法,其包括對個體施用治療或預防 有效劑篁的化合物(可摹擬calstabin 1對RyR l的結合)。 在本發明之方法的某些實施例中,該個體罹患肌病 變、神經異常、傳染病、慢性疾病、遺傳病或任何其他與 肉疲勞症狀相關之疾病或異常。上述之疾病或異常的非 限制性實例為心臟疾病或異常、骨骼肌功能缺陷、愛滋病 病毒感染、愛滋病、肌肉萎縮症、癌症、營養不良、運動 弓I起的肌肉疲勞、年齡相關性肌肉疲勞、腎臟疾病、腎臟 衰竭、不規則心跳;運動引起的不規則心跳;充jk性心臟 衰竭;慢性阻塞性肺病;高血壓或任何上述之組合。個體 的不規則心跳包括心房與心室心律不整;心房顫動與心室 額動;心房頻脈心律不整與心室頻脈心律不整;心房頻脈 與心室頻脈;兒茶酚胺多型性心室頻脈(CpVT)與其運動引 起的變異型。 在某些實施例中,該個體係人類。在其他實施例中’ 该個體係非人類動物,諸如犬科、馬科、貓科、豬、鼠科、 牛、家禽、綿羊或任何其他需要治療的動物。 30 200815381#5 ion leakage of the RyRl channel). In other embodiments, the invention provides a method of treating or preventing muscle fatigue in an individual in need thereof, comprising administering to the individual a therapeutically or prophylactically effective amount of a compound (which increases the affinity of calstabin j in combination with RyR 1 ). In other embodiments, the invention provides a method of treating or preventing muscle fatigue in an individual in need thereof, comprising administering to the individual a therapeutically or prophylactically effective amount of a compound (which reduces the separation of caistabin(R) from RyR1). In certain embodiments, the invention provides a method of treating or preventing muscle fatigue in a subject in need thereof, comprising administering to the individual a therapeutically or prophylactically effective amount of a compound (which may increase calstabin 1 recombination with RyRl). In certain embodiments, the invention provides a method of treating or preventing muscle fatigue in an individual in need thereof, comprising administering to the individual a compound that treats or prevents the effective agent 篁 (a combination of calstabin 1 and RyR l can be mimicked). In certain embodiments of the methods of the invention, the individual is suffering from a myopathy, a neurological disorder, an infectious disease, a chronic disease, a genetic disease, or any other disease or abnormality associated with symptoms of fatigue. Non-limiting examples of such diseases or abnormalities are heart disease or abnormalities, skeletal muscle function defects, HIV infection, AIDS, muscular dystrophy, cancer, malnutrition, muscle fatigue from exercise, age-related muscle fatigue, Kidney disease, kidney failure, irregular heartbeat; irregular heartbeat caused by exercise; jk-induced heart failure; chronic obstructive pulmonary disease; hypertension or any combination of the above. Individual irregular heartbeats include atrial and ventricular arrhythmia; atrial fibrillation and ventricular turnover; atrial frequency arrhythmia and ventricular pacing arrhythmia; atrial frequency and ventricular frequency; catecholamine polymorphic ventricular frequency (CpVT) and Variants caused by exercise. In some embodiments, the system is human. In other embodiments the system is a non-human animal, such as a canine, equine, feline, porcine, murine, bovine, poultry, sheep or any other animal in need of treatment. 30 200815381

本發明係關於治療肌肉疲勞的組合物與方法,其係藉 由施用可穩定理阿諾鹼受體(調控細胞中鈣離子通道功能) 的新穎化合物而作用。本發明提供治療或預防或減少肌肉 疲勞的方法,其係藉由施用丨,4-苯并硫氮呼類化合物(其為 RyR穩定劑)而作用。個體的肌肉疲勞可由許多急性與慢性 病變(pathology)、疾病或症狀所引起,包括但不限於心臟 疾病、愛滋病病毒感染與愛滋病、肌肉萎縮症、癌症、營 養不良、運動引起的肌肉疲勞、年齡相關性肌肉疲勞、腎 臟疾病與腎臟衰竭。本發明提供治療或預防個體内理阿諾 驗文體的約離子滲漏與肌肉疲勞之方法,其中該個體羅串、 以肌肉疲勞為特徵的疾病或異常或者該個體的肌肉疲勞係 由於持續、長時間與/或激烈運動或長期壓力所造成。本發 月乂供以鈣離子釋出通道穩定劑(例如,RyCal化合物)户 療肌肉疲勞的方法。本發明提供減少鈣激活蛋白酶活性戋 a里的方法。本發明提供減少血漿肌酸激酶活性的方法。 V. 本發 通道。在 鈣離子釋 法所用之 含量減少 抑制個體 本發明方 的結合。 定個體細 某些實 放至個 化合物 。在其 細胞内 法所用 在其他 胞内的 所用之化合物可調控個 施例中’本發明方法所 體的細胞内。在其他實 可限制或預防個體内結 他實施例中,本發明方 FKBP與RyR的分離。 之化合物可提高個體細 實施例中,本發明方法 RyR-FKBP複合物。在 用之化合物可滴 施例中,本發明 合於RyR的pg 法所用之化合牧 在其他實施例呼 胞内FKBP與j 所用之化合物^ 其他實施例中, 31 200815381 發明方法所用之化合物可限制、預防或治療個體内RyR受 體的滲漏。在其他實施例中,本發明方法所用之化合物可 調控個體内RyR與FKBP的結合。在其他實施例中,本發 明方法所用之化合物可藉由提高FKBP對經蛋白激酶A磷 酸化之RyR的親合力而減少RyR的開啟率。在本發明的某 些實施例中,RyR係 RyRl。在本發明的某些實施例中, FKBP 係 calstabinl。 在某些實施例中,本發明的治療方法係有關於因持續 或強烈運動所引起之肌肉疲勞的治療方法。在其他實施例 中,本發明的治療方法係有關於因長期壓力所引起之肌肉 疲勞的治療方法。 在某些實施例中,本發明係關於治療或預防肌肉症狀 (包括但不限於肌病變,例如肌肉萎縮症)的方法。在某些 實施例中,本發明係有關於治療有需要之個體中肌病變之 方法,其包括對個體施用治療或預防有效劑量的本發明化 合物之一者,諸如式 I、I-a、I-b、I-c、I-d、I-e、I-f、I-g、 I-h、I-i、I-j、I-k、1-1、I-m、I-n、I-o 或 I-p 的化合物, 或上述之鏡像異構物、非鏡像異構物、互變異構物、藥學 上可接受之鹽類、水合物、溶劑合物、複合物或前藥。 本發明之方法與組合物可用以治療任何有需要的個 體。在某些實施例中,該個體係哺乳類,諸如選自下列所 構成之群組的哺乳類:靈長類、齧齒動物、綿羊、牛科、 32 200815381 豬、馬科、貓科與犬科。在較佳的實施例中,該個體係人 類。 本發明之方法與組合物可用以治療或預防影響肌肉的 症狀、疾病或異常(例如,肌病變)。舉例來說,本發明之 方法與組合物可用以治療或預防選自下列所構成之群組的 肌病變:先天性肌病變、肌肉萎縮症、粒線體性肌病變、 内分泌性肌病變、肌肉肝醣健積症、肌紅素尿、皮肌炎、 肌肉骨化症、家族性周期性麻痒、多發性肌炎、包涵體肌 炎、神經性肌強直與僵硬人症。影響骨骼肌功能之疾病或 異常的一非限制性實例係中央軸空病、惡性高熱綜合症等 等0 在較佳的實施例中,本發明之方法與組合物可用以治 療或預防肌肉萎縮症。舉例來說,本發明之方法與組合物 可用以治療或預防選自下列所構成之群組的肌肉萎縮症: 杜氏肌肉萎縮症、顏面肩胛肱骨型肌肉萎縮症、肢帶型肌 肉萎縮症、肌強直性進行型肌肉萎縮症、貝氏肌肉萎縮症、 先天性肌肉萎縮症、遠端型肌肉萎縮症、Emery-Dreifuss 型肌肉萎縮症與眼咽型肌肉萎縮症。 可利用技術中已知的任何適當方法施用本發明之組合 物。例如,可利用選自下列所構成之群組的途徑施用本發 明之組合物:非腸道式、腸道式、靜脈内、動脈内、脊髓 内、骨骼内、皮内、皮下、真皮内、真皮下、皮膚滲透、 腦脊髓膜内、肌肉内、腹膜内、胸骨内、實質細胞、口服、 33 200815381 4I ffl .頰式、直腸式、陰道式、吸入式或鼻内施用,$ 利用樂物釋放植入管施用該化人物。在^用或 中,本發Λ化°物n佳的實施例 法係關於治療或預防有需要之個體中肌病變的方 〆、匕括對個體施用治療或 或直鏡 縻飞預防有效劑里的化合物Sl〇7 U像異構物、非鏡像異構物、互變異構 風 接受之_絲 未予上可 氣、水合物、溶劑合物、複合物或前藥。 在—更佳的實施例中,本發明係關方 :::趙中肌肉萎縮症(例如,杜氏肌肉萎縮症):::需 =:個體施用治療或預防有效劑量的化合二或 ,構%、非鏡像異構物、互變異構物桩 受之鹽類、水合物、溶劑合物、複合物或前藥,上了接 【實施方式】 應用於此處盘隨附+士 处/、隨附之申請專利範圍時,除 明示,否則單數形式的「一」、「該」包括其複數二 因此例如提到「一藥劑」時,其包括複數個此類藥劑鱼 熟悉技術人士所知的均等物,而提到「FKBP126多狀,、 係指一或多個ΡΚΒΡ12·6多肽(亦稱為ealstabin2)與熟^ ’ 術人士所知的均等物,冑等。所有此處提到的公 利U、專利與其他參考文獻,其全文將以參考^ 入本文中。 A併 此處所用之詞彙「疲勞」意指骨骼肌疲勞與/或虛弱。 肌肉疲勞可由下列因素所引發:激烈或反覆的身體活動或 34 200815381 =nΛ m常;症狀;或具有疲勞症狀或 …原纖維與/或肌肉功能的任何潛在病生理症狀。肌肉 疲勞的定義為運動矣招& + & 、失敗-這可在壓力型運動試驗上 評估並以特定任務(諸如, 咏 ^步仃7杈跑/踏車上跑步)中失敗所 化之時間定量。任務Φ生 、 里任私中失敗的定義為由於無法繼續(這定義 成肌肉疲勞)所導致的運動終止。The present invention relates to compositions and methods for treating muscle fatigue by administering a novel compound that stabilizes the Arnoxine receptor, which regulates calcium channel function in cells. The present invention provides a method of treating or preventing or reducing muscle fatigue by administering a guanidine, 4-benzothiazepine compound which is a RyR stabilizer. Individual muscle fatigue can be caused by many acute and chronic pathologies, diseases or symptoms, including but not limited to heart disease, HIV infection and AIDS, muscular dystrophy, cancer, malnutrition, exercise-induced muscle fatigue, age-related Sexual muscle fatigue, kidney disease and kidney failure. The present invention provides a method for treating or preventing about ion leakage and muscle fatigue of an individual's internal Anoplast body, wherein the individual string, a disease or abnormality characterized by muscle fatigue or the muscle fatigue of the individual is sustained and long Time and / or intense exercise or long-term stress. The present invention provides a method for the treatment of muscle fatigue by a calcium ion release channel stabilizer (for example, a RyCal compound). The present invention provides a method of reducing calpain activity 戋 a . The present invention provides a method of reducing plasma creatine kinase activity. V. This is the channel. The reduction in the amount used in the calcium ion release method inhibits the combination of the individual of the present invention. Individuals are fined to some compounds. The compounds used in other intracellular methods for intracellular methods can be modulated in the cells of the method of the invention. In other embodiments of the invention, the separation of the FKBP from the RyR is disclosed. The compounds can be used to enhance the individual methods of the RyR-FKBP complex of the present invention. In the compound-administerable example of the compound, the compound used in the pg method of the present invention for RyR is used in other embodiments of the compounds used in the intracellular FKBP and j. In other examples, the compound used in the method of the invention may be limited. Preventing or treating leakage of RyR receptors in an individual. In other embodiments, the compounds used in the methods of the invention modulate the binding of RyR to FKBP in an individual. In other embodiments, the compounds used in the methods of the present invention reduce the rate of RyR opening by increasing the affinity of FKBP for protein kinase A phosphorylated RyR. In some embodiments of the invention, the RyR is RyRl. In certain embodiments of the invention, the FKBP is calstabinl. In certain embodiments, the methods of treatment of the present invention are directed to methods of treating muscle fatigue caused by sustained or intense exercise. In other embodiments, the method of treatment of the present invention is directed to a method of treating muscle fatigue caused by prolonged stress. In certain embodiments, the invention relates to methods of treating or preventing muscle symptoms including, but not limited to, myopathy, such as muscular dystrophy. In certain embodiments, the invention relates to a method of treating a muscle lesion in an individual in need thereof, comprising administering to the individual a therapeutically or prophylactically effective amount of one of the compounds of the invention, such as Formula I, Ia, Ib, Ic a compound of Id, Ie, If, Ig, Ih, Ii, Ij, Ik, 1-1, Im, In, Io or Ip, or a mirror image isomer, a non-image isomer, a tautomer, A pharmaceutically acceptable salt, hydrate, solvate, complex or prodrug. The methods and compositions of the present invention can be used to treat any individual in need thereof. In certain embodiments, the system is a mammal, such as a mammal selected from the group consisting of: primates, rodents, sheep, bovidae, 32 200815381 pig, equine, feline, and canine. In the preferred embodiment, the system is human. The methods and compositions of the present invention can be used to treat or prevent symptoms, diseases, or abnormalities (e.g., myopathy) that affect muscle. For example, the methods and compositions of the present invention can be used to treat or prevent myopathy from a group consisting of: congenital muscle disease, muscular dystrophy, mitochondrial myopathy, endocrine myopathy, muscle Hepatic glycocalyx, myoglobinuria, dermatomyositis, muscle ossification, familial periodic itching, polymyositis, inclusion body myositis, neuromuscular rigidity and stiff human disease. A non-limiting example of a disease or abnormality affecting skeletal muscle function is central axis disease, malignant hyperthermia syndrome, etc. In a preferred embodiment, the methods and compositions of the present invention are useful for treating or preventing muscular dystrophy . For example, the methods and compositions of the present invention can be used to treat or prevent muscular atrophy selected from the group consisting of: Duchenne muscular atrophy, facial scapula muscular atrophy, limb-type muscular dystrophy, muscle Tonic-type muscular dystrophy, Bayesian muscular dystrophy, congenital muscular dystrophy, distal muscular atrophy, Emery-Dreifuss muscular dystrophy, and pharyngeal muscular atrophy. The compositions of the present invention can be administered by any suitable method known in the art. For example, the compositions of the invention may be administered by a route selected from the group consisting of parenteral, enteral, intravenous, intraarterial, intraspinal, intraosseous, intradermal, subcutaneous, intradermal, Subdermal, skin penetration, intrathoracic, intramuscular, intraperitoneal, intrasternal, parenchymal, oral, 33 200815381 4I ffl. Buccal, rectal, vaginal, inhaled or intranasal, $ use of music The implant is released by applying the implant. In the present invention, the preferred embodiment of the present invention relates to the treatment or prevention of muscle lesions in an individual in need thereof, the treatment of the individual or the treatment of the anti-injective agent. The compound S1〇7 U is like an isomer, a non-image isomer, a tautomeric wind, which is not a gas, hydrate, solvate, complex or prodrug. In a more preferred embodiment, the invention is related to::: Zhaozhong muscular atrophy (eg, Duchenne muscular dystrophy)::: need =: individual administration of a therapeutic or prophylactically effective amount of compound II or % , non-image isomers, tautomeric piles, salts, hydrates, solvates, complexes or prodrugs, which are attached to the [application] In the case of the patent application, the singular forms "a" and "the" are used in the singular and the singular Equals, and refers to "FKBP126 polymorphism, refers to one or more ΡΚΒΡ12.6 polypeptide (also known as ealstabin2) and the equivalents known to the skilled person, 胄, etc. All the public interest mentioned here U, patents and other references, the entire disclosure of which is incorporated herein by reference. Muscle fatigue can be caused by the following factors: intense or repetitive physical activity or symptoms; or any underlying physical symptoms of fatigue or ... fibrils and/or muscle function. Muscle fatigue is defined as sports tempering & + & failure - this can be assessed on a stress-type exercise test and defeated by a specific task (such as 咏^仃仃7杈Run/Treadmill running) Time quantification. The task of Φ sheng, ri, private failure is defined as the termination of exercise due to the inability to continue (this is defined as muscle fatigue).

\ 持續或長時間運動的定義為超過特定與可測量的時間 週期執行運動。 激烈運動係在特定時間週期引起肌肉疲勞的運動。 長期壓力定義為長期引起肌肉疲勞的情況,其係由於 持續的長時間運動或壓力任一者所弓丨起,其中壓力係由通 常伴隨著交感神經系統長期活化(例如,「攻擊或逃避(fight 〇r Hight)」反應的長期活化)之慢性疾病/異常所引起。在 -實施例t,在慢性阻塞性肺病、高血壓、氣喘或曱狀腺 機能亢進(hyperthyroidism)過程中出現個體的骨骼肌功能 缺陷。 在某些態樣中’本發明係關於用以治療與預防肌病變 的組合物與方法。此處所用之詞彙「肌病變(my〇pathy)」 意指肌肉本身功能失常所引起的神經肌肉性異常 (neuromuscular disorder)。此處所用之詞彙「肌病變」包 括本文所述之所有肌病變且亦包括熟悉技術人士所知的所 有其他肌病變。 35 200815381 肌病變可為遺傳(例如,許多種肌肉萎縮症)或養成而 得二肌病變疾病與異常包括(但不限於)先天性肌病變、肌 肉委縮症(其特徵為隨意肌逐漸虛弱)、粒線體性肌病變、 内分泌性肌病變、肌肉肝醣儲積症、肌紅素尿、皮肌炎、 肌肉骨化症、家族性周期性麻痒、多發性肌炎、包涵體肌 炎、神經性肌強直、僵硬人症、普通肌肉痙攣(e〇mm〇n muscle cramps)與手足搐搦(tetany)。 肌肉萎縮症的實例包括(但不限於)杜氏肌肉萎縮症、 顏面肩狎肢骨型肌肉萎縮症、肢帶型肌肉萎縮症、肌強直 性進行型肌肉萎縮症、貝氏肌肉萎縮症、先天性肌肉萎縮 症、返型肌肉萎縮症、Emery-Dreifuss型肌肉萎縮症與 眼咽型肌肉萎縮症。粒線體性肌病變的實例包括(但不限 於)Kearns-Sayre 氏症、MELAS 症與 MERRF 症。 MELAS (mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke)為「粒線體性肌病變、腦病、乳酸酸 血症與中風」的縮寫,其係一種進行性的神經退化性異常。 MELAS症影響多種器官系統,包括中樞神經系統(central nervous system,CNS)、骨絡肌、眼睛、心肌以及機會不大 的胃腸與腎臟系統。MERFF(myoclonus epilepsy with ragged-red fibers)為「具褪紅纖維之肌陣攣癲癇」的縮寫, 其引起癲癇(epHePsy)、失去平衡(coordination loss)、失智 症(dementia)與肌肉虛弱。肌肉肝醣儲積症的實例包括(但 不限於)龐貝氏症、安德生症與柯氏症。肌紅素尿的實例包 括(但不限於)麥卡德爾氏症、塔瑞氏症與戴瑪羅氏症。 36 200815381 之同彙的定義。在此處提供基團\ Continuous or long-term motion is defined as performing motion beyond a specific and measurable time period. Intense exercise is a movement that causes muscle fatigue during a specific time period. Long-term stress is defined as a condition that causes long-term muscle fatigue, which is caused by sustained long-term exercise or stress, which is usually accompanied by long-term activation of the sympathetic nervous system (for example, "attack or escape (fight)慢性r Hight) "long-term activation of the reaction" caused by chronic diseases/abnormalities. In Example t, an individual's skeletal muscle function defect occurs during chronic obstructive pulmonary disease, hypertension, asthma, or hyperthyroidism. In certain aspects, the present invention relates to compositions and methods for treating and preventing myopathy. The term "my〇pathy" as used herein refers to a neuromuscular disorder caused by dysfunction of the muscle itself. The term "muscle lesion" as used herein includes all muscle lesions described herein and also includes all other muscle lesions known to those skilled in the art. 35 200815381 Muscle lesions may be hereditary (eg, many types of muscular dystrophy) or develop secondary musculoskeletal diseases and abnormalities including (but not limited to) congenital muscle lesions, muscle contractions (characterized by progressive muscle weakness), Granuloid myopathy, endocrine muscle disease, muscle glycogen storage, myoglobinuria, dermatomyositis, muscle ossification, familial periodic itching, polymyositis, inclusion body myositis, nerve Sexual muscle rigidity, stiff human disease, general muscle spasm (e〇mm〇n muscle cramps) and hand and foot spasm (tetany). Examples of muscular dystrophy include, but are not limited to, Duchenne muscular dystrophy, facial scapular limb muscle atrophy, limb-type muscular dystrophy, myotonic progressive muscular dystrophy, Bayesian muscular dystrophy, congenital Muscular atrophy, recurrent muscle atrophy, Emery-Dreifuss muscular atrophy and ophthalmic pharyngeal muscular atrophy. Examples of mitochondrial myopathy include, but are not limited to, Kearns-Sayre's disease, MELAS, and MERRF. MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke) is an abbreviation for "mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke", which is a progressive neurodegenerative disorder. MELAS affects a variety of organ systems, including the central nervous system (CNS), skeletal muscle, eyes, heart muscle, and the gastrointestinal and renal systems that are less likely to have a chance. MERFF (myoclonus epilepsy with ragged-red fibers) is an abbreviation for "myoclonus epilepsy with reddish fibers", which causes epilepsy (epHePsy), coordination loss, dementia, and muscle weakness. Examples of muscle glycogen storage include, but are not limited to, Pompe disease, Ander's disease, and Kohlosis. Examples of myoglobinuria include, but are not limited to, McCardel's disease, Tarre's disease, and Dharma's disease. 36 200815381 The definition of the same sink. Providing groups here

此處所用之詞彙「 下述為本說明書所用 或詞彙的初步定義,除非The vocabulary used herein is as follows: a preliminary definition of the terms used in this specification or a vocabulary, unless

供之通式 I、I-a、I-b、l-c、id Μ、I-j、H、1-1、、Ι-η、 n 在此稱為「本發明的化合物(們)」。 利用數字命名系統來命名本發明的化合物們,本文提 供第1至123號化合物。利用字首「s」或字首「arm」 任一者來歸類這些編號過的化合物。因此,第一個編號的 化合物稱為「S1」或「ARMO〇i」,第二個編號的化合物 稱為「S2」或「ARM0 02」,第三個編號的化合物稱為「S3」 或「ARM003」等等。「S」與「ARM」命名系統可以交替 應用在整篇說明書、圖示與申請專利範圍中。 此處所用之㈣彙「烧基」意指具有1至6個碳原子的 直鏈或支鏈飽和碳氫化合物。代表性的烷基包括(但不限於) 甲基、乙基、丙基、異丙基、丁基、第二丁基(sec_butyl)、 第三丁基(tert-butyl)、戊基、異戊基、新戊基、己基、異 己基與新己基。「CrC4烷基」一詞意指含有1至4個碳 原子的直鏈或支鏈烷(碳氫化合物)基,諸如甲基、乙基、 丙基、異丙基、正丁基、第三丁基與異丁基。 37 200815381 此處所用之詞彙r烯基」意指具有2至6個碳原子 具有至少〜個碳-碳雙鍵的直鏈或支鏈碳氫化合物。一實 例中,烯基具有一或兩個雙鍵。烯基基團可能以Ε或Ζ 結構存在而本發明的化合物包含上述兩種結構。 此處所用之詞彙「炔基」意指具有2至6個碳原子 具有至少一個碳-礙三鍵的直鏈或支鏈碳氫化合物。 此處所用之詞彙「芳基」意指含有1至3個芳環(不 l 咬結)的芳族基團。 此處所用之詞彙「環基(cyclic group)」包括環烧基 雜環基。 此處所用之詞彙「環烷基(cycloalkyl)」意指3至7 成員飽和或部分不飽和的碳環。可用環烷基任何適當的 位置共價連結至所定義的化學結構。舉例性的環烷基包 環丙基、環丁基、環戊基、環己基與環庚基。 此處所用之詞彙「鹵素」意指氟、氣、溴與碘。 \ .. 此處所用之詞彙「雜環基(heterocyclic group)」或「 環的(heterocyclic)」或「雜環基(heterocyclyl)」或「雜 (heterocyclo)」意指至少含一碳原子環内具有至少一個 原子(hetero atom)的完全飽和、部分不飽和或完全不飽和 基(例如,4至7成員的單環、7至1 1成員的雙環,或 至16成員的三環系統),亦包括芳基(即,「雜芳基」) 且 施 的 且 是 與 個 環 括 雜 環 雜 環 38 10 200815381 含雜原子之雜環基的各環可具有1、2、3或4個選自氮原 子、氧原子和/或硫原子的雜原子,其中氮與硫雜原子可選 擇性地被氧化而氮雜原子可選擇性地被四級化 (quaternized)。雜環基可在環或環狀系統中的任何雜原子 或碳原子處連結至分子的其餘部分。舉例性的雜環基包括 (但不限於)氮雜環庚燒基(aZepanyl)、氣雜環丁燒基 (azetidinyl)、氮雜壞丙豨基(aziridinyi)、二氧戊環基 (dioxolanyl)、咬 σ南基(furanyl)、吱喃氮烧基(furaZanyl)、 同派嗪基(homo piperazinyl)、咪 n坐丁基(imidazolidinyl)、 咪唑啉基(imidazolinyl)、異噻唑基(isothiazolyl)、異口号嗤 基(isoxazolyl)、嗎琳基(morpholinyl) 、 口咢二嗤基 (oxadiazolyl) 、 口咢唑啶基(oxaz〇ndinyl) 、 口咢唑基 (oxazolyl)、。咢唑啶基(oxazolidinyl)、嘧啶基 (pyrimidinyl)、啡啶基(phenanthridinyl)、啡啉基 (phenanthrolinyl)、哌 口井基(piperazinyi)、哌啶基 (piperidinyl)、口比喃基(pyranyl)、吼 口井基(pyrazinyi)、口比 唑烷基(pyrazolidinyl)、吡唑啉基(pyrazolinyl)、吡唑基 (pyrazolyl)、塔 口井基(pyridazinyl)、吼哆 d咢嗤基(pyrido oxazolyl)、°比 σ多味嗤基(pyridoimidazolyl)、口比 β多嗟 σ坐基 (pyridothiazolyl) 、 《比唆基(pyridinyl)、嘧咬基 (pyrimidinyl)、°比嘻烧基(pyrrolidinyl)、《比嘻琳基 (pyrrolinyl)、。昆咬基(quinuclidinyl)、四氫咬喃基 (tetrahydrofuranyl)、硫二氣基(thiadiazinyl)、口塞二 口坐基 (thiadiazolyl)、售吩基(thienyl)、嗟吩嗟嗤基 39 200815381 (thienothiazolyl)、《塞吩口等峻基(thienooxazolyl)、嗟吩味 σ坐 基(thienoimidazolyl)、硫嗎琳基(thiomorpholinyl)、α塞吩基 (thiophenyl)、三 σ井基(triazinyi)和三唑基(triaz〇iyl)。舉 例性的雙環雜環基包括吲哚基(indolyl)、異吲哚基 (isoindolyl)、苯并噻唑基(benzothiazolyl)、苯并 口咢唑基 (benzoxazolyl)、苯并 口等二 口坐基(benzoxadiazolyl)、苯并口塞 吩基(benzothienyl)、。昆啶基(qUinuClidinyl)、喹啉基 (quinolinyl)、四氫異啥琳基(tetrahydroisoquinolinyl)、異 啥琳基(isoquinolinyl)、苯并味嗤基(benzimidazolyl)、苯 并°比喃基(benzopyranyl)、σ引ϋ朵琳基(indolizinyl)、苯并吱 喃基(benzofuryl)、苯并呋喃氮烷基(benzofurazanyl) '色酮 基(chromonyl)、香豆素基(coumarinyl)、苯并α比喃基 (benzopyranyl)、噌琳基(cinnolinyl)、啥喏琳基 (quinoxaliny 1) 、17引嗤基(indazolyl) 、 比洛 σ比嘴基 (pyrrolopyridyl)、氟°比淀基(諸如,氟[2,3-c]°比唆基、氟 [3,2-b]吼啶基或氟[2,3-b]吼啶基)、二氫異吲哚基 (dihydroisoindolyl)、二氫嗤唾淋基(例如,3,4 -二氫-4'氧_ 啥嗤琳基)、三口井氮呼基(triazinylazepinyl)、四氫喧琳基 (tetrahydroquinolinyl)等。舉例性的三環基包括吓嗤基 (carbazolyl)、苯并 11 引 11 朵基(benzidolyl) 、 _ 琳基 (phenanthrolinyl) 、 σ丫唆基(acridinyl) 、 非咬基 (phenanthridinyl)、口山基(xanthenyl)等。 此處所用之詞彙「苯基」意指經取代或未經取代的笨 基。 40 200815381 上述詞彙「烷基」、「烯基」、「炔基」、「芳基」、 「苯基」、「環基」、「環烷基」、「雜環基」、「雜環 (heterocyclo)」和「雜環(heterocycle)」可進一步視需要 而具有一或多個取代基。舉例性的取代基包括(但不限於) 一或多個下列基團:氫、鹵素、C F 3、〇 C F 3、氰基、硝基、 N3、酮基、環烷基、婦基、炔基、雜環、芳基、烷芳基、 雜芳基或 0Ra、SRa、S( = 0)Re、S( = 〇)2Re、P( = 〇)2Re、 S( = 0)20Ra 、 P( = 0)2〇Ra 、 NRbRc 、 NRbS( = 0)2Re 、 NRbP( = 0)2Re、S( = 0)2NRbRe、P( = 0)2NRbRc、C( = 0)0Ra、 C( = 0)Ra、C( = 〇)NRbRc、0C( = 0)Ra、0C( = 0)NRbRc、 NRbC( = 0)0Ra、NRdC( = 0)NRbRc 、NRdS( = 0)2NRbRc、 NRdP( = 0)2NRbRc、NRbC( = 0)Ra 或 NRbP( = 0)2Re,其中 Ra 係氫、烷基、環烷基、烯基、炔基、烷芳基、雜芳基、雜 環或芳基;Rb、Re與Rd係分別為氫、烷基、環烷基、烷 芳基、雜芳基、雜環、芳基,或可選擇性地,上述之Rb 與Rc與他們所連結的氮原子共同形成雜環;而Re係烷基、 環烷基、.烯基、環烯基、炔基、烷芳基、雜芳基、雜環或 芳基。上述舉例性的取代基中,諸如烷基、環烷基、烯基、 炔基、環烯基、烷芳基、雜芳基、雜環與芳基等基團其本 身可選擇性地被取代。 舉例性的取代基可視情況進一步包含至少一標定基, 諸如螢光、生物冷光、化學冷光、呈色以及放射標定基團。 螢光標定基團係從下列中選出:二吡咯甲烷二氟化硼化合 物(bodipy)、丹磺醯(dan”1)、螢光素(fluorescein)、若丹 41 200815381 明(rhodamine)、德州紅(Texas red)、花青素染料(cyanine dyes)、焦油腦(pyrene)、香豆素(coumarins)、卡斯克德藍 TM (Cascade BlueTM)、太平洋藍(Pacific Blue)、馬力納藍 (Marina Blue)、奥勒崗綠(Oregon Green)、4’ ,6 -二脎基 苯吲味(DAPI)、11弓I °朵比拉染料(indopyra dyes)、螢光黃 (lucifer yellow)、碳化丙咬(propidium iodide)、η比嘻紫質 (porphyrins)、精胺酸(arginine)以及上述之變異物與衍生 物。例如,本發明的ARM 1 1 8包含一標定基「Βς>DIPY」, 其係以 4,4-二氟-4·硼-3a,4a-二氮-s-氫節婦基團 (454-difluoro-4-bora-3a,4a-diaza-<s,-indacene moiety)為主 體的一螢光團(fluorophores)家族。更多關於螢光標定基團 與螢光技術的資訊,可參考,例如Richard P. Haughland 戶斤著的▽ Handbook of Fluorescent Probes and Research C/zewica/s」第六版(Molecular Probes 1996 年出版),其全 文在此以參考資料併入本文中。熟悉技術的人士可輕易地 挑選一適當的標定基,且不需過度試驗即可將上述的標定 基結合至本發明的任何化合物上。The general formula I, I-a, I-b, l-c, id Μ, I-j, H, 1-1, Ι-η, n are referred to herein as "the compounds of the present invention". The compounds of the present invention are named using a digital nomenclature system, and compounds Nos. 1 to 123 are provided herein. Use the prefix "s" or the prefix "arm" to classify these numbered compounds. Therefore, the first numbered compound is called "S1" or "ARMO〇i", the second numbered compound is called "S2" or "ARM0 02", and the third numbered compound is called "S3" or " ARM003" and so on. The "S" and "ARM" naming systems can be applied interchangeably throughout the specification, illustration and patent application. The term "alkyl" as used herein means a straight or branched chain saturated hydrocarbon having 1 to 6 carbon atoms. Representative alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, second butyl (sec-butyl), tert-butyl, pentyl, isethyl Base, neopentyl, hexyl, isohexyl and neohexyl. The term "CrC4 alkyl" means a straight or branched alkane (hydrocarbon) group having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, and third. Butyl and isobutyl. 37 200815381 The term "r-alkenyl" as used herein means a straight or branched hydrocarbon having from 2 to 6 carbon atoms having at least ~ carbon-carbon double bonds. In one embodiment, an alkenyl group has one or two double bonds. The alkenyl group may exist in a ruthenium or osmium structure and the compound of the present invention comprises the above two structures. The term "alkynyl" as used herein means a straight or branched hydrocarbon having 2 to 6 carbon atoms and having at least one carbon-blocking triple bond. The term "aryl" as used herein means an aromatic group containing from 1 to 3 aromatic rings (not bite). The term "cyclic group" as used herein includes a cycloalkylheterocyclic group. The term "cycloalkyl" as used herein means a carbon ring of 3 to 7 members which is saturated or partially unsaturated. Any suitable position of the cycloalkyl group can be covalently attached to the defined chemical structure. Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "halogen" as used herein means fluorine, gas, bromine and iodine. The term "heterocyclic group" or "heterocyclic" or "heterocyclyl" or "heterocyclo" as used herein means at least one ring of carbon atoms. a fully saturated, partially unsaturated or fully unsaturated group having at least one hetero atom (eg, a single ring of 4 to 7 members, a bicyclic ring of 7 to 11 members, or a tricyclic system of 16 members), Each ring including an aryl group (i.e., "heteroaryl group") and which is bonded to a heterocyclic group containing a hetero atom of a heterocyclic ring 38 10 200815381 may have 1, 2, 3 or 4 selected from the group consisting of A heteroatom of a nitrogen atom, an oxygen atom and/or a sulfur atom, wherein the nitrogen and sulfur heteroatoms are selectively oxidized and the nitrogen heteroatoms are selectively quaternized. The heterocyclic group can be attached to the remainder of the molecule at any heteroatom or carbon atom in the ring or ring system. Exemplary heterocyclic groups include, but are not limited to, aZepanyl, azetidinyl, aziridinyi, dioxolanyl. , σ 南 south (furanyl), furaZanyl, homo piperazinyl, imidazolidinyl, imidazolinyl, isothiazolyl, Isoxazolyl, morpholinyl, oxadiazolyl, oxaz〇ndinyl, oxazolyl, orthoquinone. Oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, piperazinyi, piperidinyl, pyranyl , pyrazinyi, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyrido oxazolyl ), ° ratio σ 嗤 嗤 ( (pyridoimidazolyl), mouth ratio β 嗟 坐 坐 坐 (pyridothiazolyl), "pyridinyl", pyrimidinyl, pyrrolidinyl, "pyrrolidinyl" Pyrolinyl,. Quinuclidinyl, tetrahydrofuranyl, thiadiazinyl, thiadiazolyl, thienyl, 嗟 嗟嗤 39 39 200815381 (thienothiazolyl ), "thienooxazolyl", thienoimidazolyl, thiomorpholinyl, thiophenyl, triazinyi, and triazolyl (triaz〇iyl). Exemplary bicyclic heterocyclic groups include indolyl, isoindolyl, benzothiazolyl, benzoxazolyl, benzoxadiazolyl, and the like. , benzothienyl, (benzothienyl). qUinuClidinyl, quinolinyl, tetrahydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl σIndolizinyl, benzofuryl, benzofurazanyl 'chromonyl, coumarinyl, benzo-α-pyran Benzopyranyl, cinnolinyl, quinoxaliny 1, 17 indazolyl, pyrolopipyridyl, fluoropyridyl (such as fluorine [2] , 3-c]° thiol, fluoro[3,2-b]acridinyl or fluoro[2,3-b]acridinyl), dihydroisoindolyl, dihydropyridinium A group (for example, 3,4-dihydro-4'oxy-indolyl), three wells, triazinylazepinyl, tetrahydroquinolinyl, and the like. Exemplary tricyclic radicals include carbazolyl, benzidolyl, phenanthrolinyl, acridinyl, phenanthridinyl, or sulphate. (xanthenyl) and so on. The term "phenyl" as used herein means a substituted or unsubstituted stupid group. 40 200815381 The above terms "alkyl", "alkenyl", "alkynyl", "aryl", "phenyl", "cyclo", "cycloalkyl", "heterocyclyl", "heterocyclic" The heterocyclo) and "heterocycle" may further have one or more substituents as needed. Exemplary substituents include, but are not limited to, one or more of the following groups: hydrogen, halogen, CF 3 , hydrazine CF 3 , cyano, nitro, N 3 , keto, cycloalkyl, aryl, alkynyl , heterocyclic, aryl, alkaryl, heteroaryl or 0Ra, SRa, S( = 0)Re, S( = 〇)2Re, P( = 〇)2Re, S( = 0)20Ra, P( = 0) 2〇Ra , NRbRc , NRbS( = 0)2Re , NRbP( = 0)2Re, S( = 0)2NRbRe, P( = 0)2NRbRc, C( = 0)0Ra, C( = 0)Ra, C( = 〇)NRbRc, 0C( = 0)Ra, 0C( = 0)NRbRc, NRbC( = 0)0Ra, NRdC( = 0)NRbRc, NRdS( = 0)2NRbRc, NRdP( = 0)2NRbRc, NRbC ( = 0)Ra or NRbP( = 0)2Re, wherein Ra is hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, alkaryl, heteroaryl, heterocyclic or aryl; Rb, Re and Rd Is a hydrogen, an alkyl group, a cycloalkyl group, an alkylaryl group, a heteroaryl group, a heterocyclic ring, an aryl group, or, alternatively, Rb and Rc described above together with the nitrogen atom to which they are attached form a heterocyclic ring; Re is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkylaryl group, a heteroaryl group, a heterocyclic group or an aryl group. Among the above exemplary substituents, groups such as an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a cycloalkenyl group, an alkylaryl group, a heteroaryl group, a heterocyclic ring and an aryl group may be optionally substituted by themselves. . Exemplary substituents may further comprise at least one calibration group, such as fluorescent, biologically luminescent, chemically luminescent, colored, and radiolabeled groups, as appropriate. The fluorescing group is selected from the following: dipyrrole methane boron difluoride compound (bodipy), dansone (dan"1), fluorescein, rhodamine 41 200815381 (rhodamine), Texas red (Texas red), cyanine dyes, pyrene, coumarins, Cascade BlueTM, Pacific Blue, Marina Blue ), Oregon Green, 4', 6-dimercaptobenzoquinone (DAPI), 11 bow I ° indopyra dyes, lucifer yellow, carbonized bite (propidium iodide), η than porphyrins, arginine, and variants and derivatives thereof. For example, ARM 1 18 of the present invention comprises a calibration group "Βς>DIPY", which is The main component is 4,4-difluoro-4·boron-3a,4a-diaza-s-hydrogen sulfoxide group (454-difluoro-4-bora-3a, 4a-diaza-<s,-indacene moiety) a family of fluorophores. For more information on the cursor-based group and fluorescence technology, see, for example, Richard P. Haughland's Handbook of Fluorescent Probes and Research C/zewica/s, 6th Edition (Molecular Probes, 1996) The entire text of which is incorporated herein by reference. Those skilled in the art can readily select an appropriate calibration base and incorporate the above-described calibration groups onto any of the compounds of the present invention without undue experimentation.

此處「四級氮」一詞意指正四價氮原子,其包括如四 烷基銨基(例如,四曱基銨鹽「tetramethylammonium」、 N -甲基〇比唆「N-methylpyridinium」)内的正價氮;質子化 銨鹽類(protonated ammonium species)(例如,三甲基氫銨 鹽「 trimethyl-hydroammonium 」 、N-氫 °比咬 「N-hydropyridinium」)内的正價氮;N-氧化胺(amine N ο X i d e s )(例如 ,N -甲基-嗎福林-N -氧化物 42 200815381 厂 N-methyl-morpholine-N-oxide 」 、N-氧化 口比淀 「pyridine-N-oxide」)内的正價氮;以及N-胺基銨鹽類(例 如,N-胺基ϋ比唆鹽r N-aminopyridinium」)内的正價氮。 除非另外指出,否則整篇說明書中本發明化合物之苯 并硫氮17乎環(benzothiazepine ring)内的氮可選擇性地為一 四級氮。其非限制性的實例包括ARM-1 13與ARM-1 19。 本發明的化合物可以其互變異構形式(tautomeric form)存在’例如醯胺(aini(ie)或亞胺醚(imino ether)。所有 此類的互變異構形式在此視為本發明的一部分。 此處所用之詞彙「前藥」代表一化合物,其施用於個 體後’藉由新陳代謝或化學過程而進行化學轉化而產生本 發明之化合物。「前藥」意指在活體内轉化成原形藥(parent drug)的藥劑。前藥通常係有幫助的,因為在某些情況下, 它們比起原形樂更易施用。例如,口服施用時它們係生物 可用的(bioavailable)然而原形藥不是。前藥在藥學組合物 中亦具有兩於原形藥的良好溶解度。例如,該化合物攜帶 可在體液(例如’血液)中藉由水解分離的保護性基團因而 釋放活性化合物’或是該保護基團在體液中被氧化或還原 以釋放該化合物。 本發明化合物的所有立體異構物(例如,那些因為各種 取代基上的不對稱碳原子而存在者)包括鏡像異構形式與 非鏡像異構形式,均視為落在本發明的範圍中。舉例來說, 43 200815381 本發明化合物的個別立體異構物,其可大致上不具其他異 構物(例如,具有特定活性的純淨或大致上純淨之光學異構 物),或可為混合物,例如消旋異構物或與全部其他或其他 選取之立體異構物混合。本發明的對掌中心(ehiral centers) 可具有S(左旋)或 R(右旋)結構(由「IUPAC 1 974 Recommendations」所定義)。可藉由物理方法分離消旋異 構物’舉例諸如分顧結晶法(fractional crystallization);非 鏡像異構衍生物的分離或結晶;或對掌性管柱層析法 f (chiral column chromatography)的分離法。可藉由任何適 當的方法從消旋異構物獲得個別的光學異構物,該方法包 括(不限於)習知方法,例如與一光學活性酸反應隨後進行 結晶的鹽形成法。 本發明的化合物在其製備之後’較佳為經過分離與純 化,好獲付一含有等於或高於9 9%重量百分比之化合物的 組合物(「大致上純淨的」化合物),接著以此文所述之方 式應用或配製該組合物。本發明中此頬「大致上純淨的」 I 化合物亦視為本發明的一部分。 本發明化合物的所有結構異構物可以混合、純淨或大 ^純淨的形式存在。本發明化合物的U包含順式⑺ :反式W稀烴異構物兩者’以及環經或雜環的順式與反式 此處所用之詞彙「代謝物」意指活體内(例如,個體中 化學化合物所產生的副產品。 44 200815381 整篇說明書中,可挑選基團與取代基好提供穩定的基 團與化合物。 此處所用之詞彙「RyCal化合物」意指具有本發明提 供之通式 I、I-a (la)、i-b (lb)、I-c (Ic)、i-d (Id)、I-e (Ie)、I-f (If)、I-g (Ig)、i-h (Ih)、I-i (n)、i-j (ij)、i-k (Ik)、I-l (II)、I-m (Im)、I-n (in)、i-0 (I〇)、I-p (1?)或 n 的化合物,且在此稱為「本發明的化合物(們)」^上述之 化合物包括(但不限於)任一或更多該式的化合物,包括(但 不限於)下列的化合物··此處所界定的s 1、S 2、S 3、S 4、 S5、S6、S7、S9、S11、S12、S13、S14、S19、S20、S22、 S23、 S24、 S25、 S2 6、 S27、 S36、 S37、 S38、 S40 、 S43 、 S44、S45、S46、S47 > S48、S49、S50、S51、S52、S53、 S54、S55、S56、S5 7、S58、S59、S60、S61、S62、S63、 S64、S66 ' S67 ' S68 ' S69 ' S70、S71' S72、S73 1 S74、 S75、S76、S77、S78、S79、S80、S81、S82、S83、S84、 S85、S86、S87 ' S88 ' S89 ' S90、S91、S92、S93、S94、 S95 、 S96 、 S97 、 S98 、 S99 、 S100 、 S101 、 S102 、 S103 、 S104、 S105、 S107、 S108、 S109、 S110、 Sill、 S112、 S113 、 S114、 S115、 S116、S117、S118、 S119、 S120、 S121、 S122 與S 1 2 3。在某些實施例中,該化合物經離析且係大致上純 淨的。 以本發明之方法治療的個體可包括哺乳類。上述之哺 乳類可包括人類、靈長類、犬科、馬科、貓科、豬、鼠科、 45 200815381 牛科、家禽、有蹄類動物(ungulate)或綿羊。此處 泛, 彙「動物」、「個體」與「患者」包括動物界的所項等等: 其包括(但不限於)哺乳類、動物(例如,猶、狗 '馬 與人類。 激祿a(pKA) 「蛋白激酶A填酸化」意指藉由酵素棄白 以磷酸根取代氫氧根的反應。 磷酸1 的漆禮外受The term "quaternary nitrogen" as used herein means a tetravalent nitrogen atom, which includes, for example, a tetraalkylammonium group (for example, tetrakisammonium salt, N-methylpyridinium, N-methylpyridinium). Normal valence nitrogen; protonated ammonium species (eg, trimethyl-hydroammonium, N-hydropyridinium, n-hydropyridinium); N- Amine oxide (amine N ο X ides ) (for example, N-methyl-morphine-N-oxide 42 200815381 N-methyl-morpholine-N-oxide), N-oxidation port pyridine-N- The normal valence nitrogen in the oxide"; and the normal valence nitrogen in the N-aminoammonium salt (for example, N-aminopyridinium salt). Unless otherwise indicated, the nitrogen in the benzothiazepine ring of the compound of the present invention in the entire specification may be optionally a fourth-order nitrogen. Non-limiting examples thereof include ARM-1 13 and ARM-1 19. The compounds of the invention may exist in their tautomeric form, such as aini (ie) or imino ether. All such tautomeric forms are considered herein as part of the present invention. The term "prodrug" as used herein denotes a compound which, after administration to an individual, undergoes chemical conversion by metabolic or chemical processes to produce a compound of the invention. "Prodrug" means conversion to a prodrug in vivo ( Prodrugs of parent drugs are usually helpful because, in some cases, they are easier to administer than protoplasts. For example, they are bioavailable when administered orally, whereas prodrugs are not. The pharmaceutical composition also has two good solubility in the prodrug. For example, the compound carries a protective group which can be separated by hydrolysis in a body fluid (for example, 'blood) to thereby release the active compound' or the protective group in the body fluid. Is oxidized or reduced to release the compound. All stereoisomers of the compounds of the invention (for example, those due to various substituents The inclusion of a carbon atom and the presence thereof, including both the mirror image and the non-image isomer form, are considered to fall within the scope of the invention. For example, 43 200815381 individual stereoisomers of the compounds of the invention, which may be substantially Without other isomers (for example, pure or substantially pure optical isomers with specific activities), or may be a mixture, such as a racemic isomer or mixed with all other or other selected stereoisomers. The invention's ehiral centers may have S (left-handed) or R (right-handed) structures (as defined by "IUPAC 1 974 Recommendations"). Separation of racemic isomers by physical methods, such as Fractional crystallization; separation or crystallization of a non-figomereous derivative; or separation of chiral column chromatography by any suitable method from racemic isomers Individual optical isomers are obtained, which include, without limitation, conventional methods, such as salt formation followed by crystallization with an optically active acid. After preparation, it is preferably subjected to separation and purification to obtain a composition ("approximately pure" compound) containing a compound equal to or higher than 99% by weight, which is then applied as described herein. Or formulating the composition. The "substantially pure" I compound of the invention is also considered to be part of the invention. All structural isomers of the compounds of the invention may exist in a mixed, pure or large form. The U of the compound comprises cis (7): both trans-W-hydrocarbon isomers and the cis and trans of the ring or heterocycle. The term "metabolite" as used herein means in vivo (eg, chemistry in an individual) A by-product produced by the compound. 44 200815381 In the entire specification, groups and substituents can be selected to provide stable groups and compounds. The term "RyCal compound" as used herein means having the formula I, Ia (la), ib (lb), Ic (Ic), id (Id), Ie (Ie), If (If) provided by the present invention, Ig (Ig), ih (Ih), Ii (n), ij (ij), ik (Ik), Il (II), Im (Im), In (in), i-0 (I〇), Ip ( a compound of 1) or n, and is referred to herein as "a compound of the invention". The above compounds include, but are not limited to, any one or more compounds of the formula including, but not limited to, the following Compounds·· as defined herein, s 1, S 2, S 3, S 4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S24, S25, S2 6, S27, S36, S37, S38, S40, S43, S44, S45, S46, S47 > S48, S49, S50, S51, S52, S53, S54, S55, S56, S5 7, S58, S59, S60, S61, S62, S63, S64, S66 'S67 ' S68 ' S69 ' S70, S71' S72, S73 1 S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87 ' S88 ' S89 ' S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101, S102, S103, S104, S105, S107, S108, S109, S110, Sill, S112, S113, S114, S115, S116, S117, S118, S119, S120, S121, S122 and S1 2 3 . In certain embodiments, the compound is isolated and substantially pure. Individuals treated by the methods of the invention may include mammals. The above-mentioned mammals may include humans, primates, canines, equines, felines, pigs, murines, 45 200815381 bovine, poultry, ungulate or sheep. Here, the "animal", "individual" and "patient" include the animal kingdom and so on: it includes (but is not limited to) mammals, animals (for example, Jue, dog 'horse and humans.) pKA) "protein kinase A filled with acid" means the reaction of replacing the hydroxide with phosphate by the whitening of the enzyme.

\\

RyRl 或 RyR2 受體的 「後 (Back-phosphorylation)」意指藉由蛋白激鱗A 體鱗酸化。 A物成上 「藥學組合物」意指一或多種本文所述之化& ^ ^ 蘊,與其炒 述之藥學可接受的鹽類、水合物、多型體或前辦 ’、 ^、0合物° 化學成份(諸如,生理可接受的載劑與賦形劑)的心 藥學組合物之目的係加速對有機體的化合物施用。 本發明之化合物亦可配製成藥學可接受的鹽類’例如 上述之酸加成鹽類(acid addition salt)與複合物。上述鹽類 的配製可藉由改變藥劑的物理特性且不妨礙其生理效應而 加速藥物應用。物體狀態中有用之變化的實例包括(但不限 於)降低溶點以加速穿越黏膜(transmucosal)的施用以及提 高溶解度以加速施用較高濃度的藥劑。 詞彙「藥學可接受的鹽類」意指適合或相容於患者或 個體(諸如’人類患者或動物)治療的鹽類。 46 200815381 此處所用之詞彙「藥學可接受的酸加成鹽類」意指任 何式 I、I-a、I-b、I-c、I-d、I-e、I-f、i-g、u、I-i、I-j、 I-k、1-1、I-m、I-n、I-o或I-p或n所表示之鹼性化合物 或它們任合中間物的無毒性有機或無機鹽類。可形成適當 之酸加成鹽類的舉例性無機酸包括(但不限於)··氯化氫、 氫溴酸、硫酸與磷酸,以及諸如磷酸單氫鈉(s〇dium monohydrogen orthophosphate)與硫酸氫鉀(potassium hydrogen sulfate)的金屬鹽類。可形成適當之酸加成鹽類的 舉例性有機酸包括:諸如乙醇酸、乳酸、丙酮酸、丙二酸、 琥珀酸(succinic acid)、戊二酸、反丁 烯二酸(fumaric acid)、蘋果酸、酒石酸、擰檬酸、抗壞血酸、順丁烯二酸 (maleic acid)、苯甲酸、苯乙酸、肉桂酸與水楊酸等單、 雙與二羧·酸’以及諸如對甲苯續酸(p_t〇luene sUlfonic acid) 與甲確酸(methanesulfonic acid)等磺酸。可形成單或雙酸 鹽類’且此類鹽類以水合態、溶合態或幾乎無水態之任一 形式存在。一般來說,本發明化合物的酸加成鹽類較易溶 於水與許多親水性有機溶劑中,且相對於他們的自由鹼基 型態,酸加成鹽類通常顯示較高的熔點。 本發明之化合物亦可配製成藥學可接受的鹽類,例如 上述之酸加成鹽類與複合物。上述鹽類的配製可藉由改變 藥劑的物理特性且不妨礙其生理效應而加速藥物應用。物 理狀態中有用之變化的實例包括(但不限於)降低熔點以加 速穿越黏膜的施用以及提高溶解度以加速施用較高濃度的 藥劑。 47 200815381 詞彙「藥學可接受的鹽類」意指適合 個議如,人類患者)治療的鹽類。該些鹽類可以^^ I-a、I-b、I-c、Ld、I-e、I-f、I:g、I h、Μ、η、!彳、μ、 I-m、Ι·η、I-0、][_p所表示之化合物或任何本文描述之特 定化合物或者任何上述之中間物的無毒性有機或無機鹽 類。舉例性鹽類形成離子包括(但不限於):銨離子(nh4 + )、 鈣離子(Ca2 + )、鐵離子(1^2+與Fe3 + )、鎂離子(Mg2 + )、鉀離 子(κ+)、吼啶離子(C5H5NH+)、四級銨鹽(NR〆)、鈉離子 (: (Na )、醋酸鹽、碳酸鹽、氯化物、溴化物、檸檬酸鹽、氰 化物、氫氧化物、硝酸鹽、亞硝酸鹽、氧化物、磷酸鹽、 硫酸手、順丁烯二酸鹽、反丁烯二酸鹽、乳酸鹽、酒石酸 鹽、葡萄糖酸鹽、苯磺酸鹽(besylate)與丙戊酸(vUproate)。 形成適當鹽類之舉例性無機酸包括(但不限於):氯化氫、 氫溴酸、硫酸與磷酸,以及諸如磷酸單氫鈉與硫酸氫鉀的 金屬鹽類。形成適當之酸加成鹽類的舉例性有機酸包括·· 諸如乙醇酸、乳酸、丙酮酸、丙二酸、丁二酸、戊二酸、 反丁烯二酸、蘋果酸、酒石酸、檸檬酸、抗壞血酸、順丁 ί 烯二酸、苯曱酸、苯乙酸、肉桂酸與水揚酸等單、雙與三 護酸’以及諸如對甲苯磺酸與甲磺酸等磺酸。可形成單或 雙酸鹽類’且此類鹽類以水合態、溶合態或幾乎無水態之 任一形式存在d 一般來說,具有式I、I-a、j_b、卜“ I-e、I-f、I-g、卜h、Li、rj、u、卜m、I n、卜〇 與 I-p的化合物,其酸加成鹽類較易溶於水與許多親水性有 機溶劑中,且相對於他們自由鹼基型態,酸加成鹽類通常 48 200815381 顯示較高的熔點。熟悉技術的人士可執行適當鹽類的挑 選。例如,可依照P· Heinrich Stahl與Camille G·所著的 「 Handbook of Pharmaceutical Salts : Properties, Selection, and Use」或 Berge 於 1977 年發表在 j· pharm Sci·,Vol 66(1),p 1-19 的「Pharmaceutcial Salts」來挑選 鹽類。例如,可使用其他非藥學可接受的鹽類(例如,草酸 鹽),用在實驗室的本發明化合物之離析或是之後轉換成藥 學上可接受的酸加成鹽類。 本發明的式 I、I-a、I-b、I-c、I-d、I-e、I-f、I-g、 I-h、I-i、I-j、I-k、1-1、I-m、I-n、I-o 與 I-ρ 以及式 ii 之 化合物可形成水合物或溶劑合物,而這包括在申請專利範 圍内。當本發明式 I 之化合物以位置異構物 (regioisomers)、結構異構物(configurational isomers)、構 形物(conformers)或非鏡像異構物(diasteroisomeric)形式 存在時,所有上述之形式以及上述之不同混合物係包括在 式I的範圍内。若有需要’可利用已知的分離與純化方法 離析個別異構物。例如,當本發明的式I係消旋異構物時, 可藉由光學解析(optical resolution)將消旋異構物分成 (S)-化合物與(R)-化合物。個別光學異構物與上述之混合物 係包括在式 I、I-a、I-b、I-c、I-d、I-e、I-f、I-g、I-h、I-i、 I-j、I-k、1-1、I-m、I-n、I-o 與 I-p 以及式 II 的範圍中。 此處所用之詞彙「溶劑合物」意指式I、I-a、I-b、I-c、 I-d、I-e、I-f、I-g、I-h、I-i、I-j、I-k、1-1、I-m、I-n、I-o 49 200815381 與I-p以及式II的化合物或式I化合物的藥學可接受鹽 類,其中適當溶劑之分子係以晶體晶格方式併入。適當溶 劑在施用劑量上為生理可接受的。適當溶劑的實例為乙 醇、水等等。當水為溶劑時,該分子被視為「水合物」。 詞彙「多型體」意指物質的特定結晶狀態,其具有特 定物理性質(諸如,X光繞射、紅外線光譜、熔點等等)。 此處所應用之「有效劑量」、「足夠劑量」或「治療 有效劑量」藥劑等詞彙係足以造成有益或所欲之結果(包括 臨床結果)的劑量,因此「有效劑量」取決於其施用的環境。 該反應為預防與/或治療的。詞彙「有效劑量」亦包括式I 化合物為「有效治療」且避免或大致上減弱不欲之副作用 的劑量。 此處所用以及技術所了解的,「治療」為一獲得有益 或所欲之結果(包括臨床結果)的方法。不論可觀察到或不 可觀察到,有益或所欲之結果可包括(但不限於):一或多 種症狀或疾病的減輕或改善;減少疾病的程度;穩定(即, 不惡化)疾病的狀態;預防疾病的擴散;疾病進展的延遲或 減緩;疾病狀態的改善與緩和;以及緩解(remission)(不論 部分或全部)。「治療」亦意指存活時間的延長,這係與若 未接收治療所預期之存活時間相比。 此處所用之詞彙「抑制分離」包括阻礙、減少、抑制、 限制或避免個體細胞内的FKBP亞基自RyR分子物理分離 50 200815381 或分開,以及阻礙、減少、抑去丨 ac 抑制、限制或避免個體細胞内 的RyR分子自FKBP亞基物理分離或分開。 此處所用之詞彙「提高結合 。」包括增強、提高或改善 個體細胞内經磷酸化之RyR物 人κ 、、Ό σ FKBP的能力(例如, 比起陰性對照組的背景結合高出約兩肖、約五倍的結合能 力),以及增強、提高或改善個體細胞内的FKBp物理結合 經磷酸化之RyR的能力(例如,卜扭咚 比起陰性對照組的背景結 合尚出約兩倍、約五倍的結合能力)。 此處所用之詞彙「心肌細胞」包括心肌纖維,例如心 臟心肌中所發現的心肌纖維。 本發明提供能夠治療和預防與RyR受體(調控細胞内 的妈離子通道功能)相關之異常與疾病的化合物。更明_地 說’本發明提供能夠治療或預防RyR通道滲漏的化合物。 「與RyR受體相關之異常與疾病」意指可藉由調控RyR 受體(調控細胞内的#5離子通道功能)而治療與/或預防的 異常與疾病。「與RyR受體相關之異常與疾病」包括(但 不限於)心臟異常與疾病、骨胳肌異常與疾病、認知異常與 疾病、惡性高熱綜合症、中央軸空病、糖尿病與嬰兒猝死 症(sudden infant death syndrome)。心臟異常與疾病包栝 (但不限於)不規則心跳異常與疾病、運動引發的不規則心 跳異常與疾病、心因性猝死(sudden cardiac death)、運動 引發的心因性猝死、充血性心臟衰竭、慢性阻塞性肺病與 高血壓。不規則心跳異常與疾病包括運動引發的不規則心 51 200815381 跳異常與疾病,其包括(但不限於)心房與心室心律不整; 心房顫動與心室顫動;心房頻脈心律不整與心室頻脈心律 不整;心房頻脈與心室頻脈;兒茶酚胺多型性心室頻脈 (CPVT)與其運動引發的變異型。骨骼肌異常與疾病包括 (但不限於)骨骼肌疲勞、運動引發的骨骼肌疲勞、肌肉萎 縮症、膀胱功能失調與大小便失禁。認知障礙與疾病包括 (但不限於)阿兹海默症(Alzheimer’s Disease)、各種類型記 憶喪失與年齡依賴性記憶喪失。 如本文所提及,本發明之化合物能夠治療和預防與 RyR受體(調控細胞内的鈣離子通道功能)相關之異常與疾 病,其係藉由下列事項而完成:修補通道的滲漏與提高 FKBP蛋白(例如,calstabinl)對經蛋白激酶 A磷酸化之 RyR的結合。因此,在一實施例中,該化合物有用於治療 和預防與RyR受體(調控細胞内的鈣離子通道功能)相關之 肌肉疲勞。 在一實施例中,本發明之化合物有效於治療與RyR受 體(調控細胞内的鈣離子通道功能)相關之肌病變、不適、 疾病、異常或症狀所引起的肌肉疲勞。上述之異常與症狀 的實例包括(但不限於)心臟疾病或異常、骨骼肌功能缺 陷、愛滋病病毒感染、愛滋病、肌肉萎縮症、癌症、營養 不良、運動引起的肌肉疲勞、年齡相關性肌肉疲勞、腎臟 疾病與腎臟衰竭。 52 200815381 心臟異常與疾病的實例包括(但不限於)不規則心跳異 常與病病、運動引發的不規則心跳異常與疾病、充血性心 贓衰竭、慢性阻塞性肺病與高血壓。不規則心跳異常與疾 的實例包括運動引發的不規則心跳異常與疾病,其包括 (俜不限於)心房與心室心律不整;心房顫動與心室顫動; ,、房頻脈心律不整與心室頻脈心律不整;心房頻脈與心室 雜勝;兒茶紛胺多型性心室頻脈(CPVT)與其運動引發的變 在一實施例中,本發明之化合物調控個體細胞内的約 離子通道。在另一實施例中,本發明之化合物減少釋放至 摘#細胞内的飼離子。在另一實施例中,本發明之化合物 降制或避免個體内結合於RyR之FKBP含量的減少。在另 〆實施例中’本發明之化合物抑制個體細胞内FKBP與RyR 的分離。在另一實施例中,本發明之化合物提高個體細胞 内與RyR的結合。在另一實施例中,本發明之化合 物穩定個體細胞内的RyR-FKBP複合物。在另一實施例 中,本發明之化合物預防或治療個體内RyR受體的滲漏。 在为/實施例中,本發明之化合物調控個體内尺忭與FKBP 的鍺合。在另一實施例中,本發明之化合物藉由提高fkbp 對麟蛋白激酶A磷酸化之RyR的親合力而減少RyR的開 啟率β在另一實施例中,本發明之化合物減少或抑制鈣激 洚蛋白酶活性以便治療肌肉疲勞。在另一實施例中,本發 明么化合物減少血裴肌酸激酶含量以便治療肌肉疲勞。 53 200815381 本發明之方法可在活體内(Ζπ Wvo)或活體外(h vz7ro) 實施。因此在一實施例中,本發明之方法係在活體外系統 中實施(例如,試管中經離析的細胞成分上)。在另一實施 例中,本發明之方法係在活體内實施,諸如培養細胞或組 織中或個體内。 在另一實施例中,本發明提供應用式I、I-a、I-b、I-c、 I-d、I-e、i_f、Ι-g、i-h、I-i、I-j、I-k、1-1、I-m、I-n、I-o 與1-p以及式II所表示之化合物,以製備治療或預防肌肉 異常或疾病(例如,但不限於個體内的肌肉疲勞)的藥劑。 在另一實施例中,肌肉疲勞可由增強的壓力所引起, 例如接受持續且長時間運動方案的個體(例如,軍人或運動 員)。因此在一實施例中,本發明之化合物係有用於治療遭 受壓力(係由於,例如強烈運動方案)之個體的肌肉疲勞。 骨路肌異常與疾病包括(但不限於)壓力引起的骨骼肌疲 勞、運動引起的骨骼肌疲勞、肌肉萎縮症、膀胱異常與大 小便失禁。"Back-phosphorylation" of the RyRl or RyR2 receptor means squaring by protein squamous A. A "pharmaceutical composition" means one or more of the pharmaceutically acceptable salts, hydrates, polymorphs or pre-treatments ', ^, 0 described herein. The purpose of the cardiopharmaceutical composition of a chemical component, such as a physiologically acceptable carrier and excipient, is to accelerate the administration of the compound to the organism. The compounds of the present invention may also be formulated as pharmaceutically acceptable salts such as the above acid addition salts and complexes. The above salts can be formulated to accelerate drug application by altering the physical properties of the agent without impeding its physiological effects. Examples of useful changes in the state of the object include, but are not limited to, lowering the melting point to accelerate the application of transmucosal and increase solubility to accelerate the administration of higher concentrations of the agent. The term "pharmaceutically acceptable salts" means salts which are suitable or compatible for the treatment of a patient or individual, such as a human patient or animal. 46 200815381 The term "pharmaceutically acceptable acid addition salt" as used herein means any of Formulas I, Ia, Ib, Ic, Id, Ie, If, ig, u, Ii, Ij, Ik, 1-1, Non-toxic organic or inorganic salts of the basic compounds represented by Im, In, Io or Ip or n or their intermediates. Exemplary inorganic acids which form suitable acid addition salts include, but are not limited to, hydrogen chloride, hydrobromic acid, sulfuric acid, and phosphoric acid, as well as sodium monohydrogen orthophosphate and potassium hydrogen sulfate (sodium monohydrogen orthophosphate). Potassium hydrogen sulfate). Exemplary organic acids which form suitable acid addition salts include, for example, glycolic acid, lactic acid, pyruvic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, Malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, benzoic acid, phenylacetic acid, cinnamic acid and salicylic acid, such as mono-, di- and dicarboxylic acids, and such as p-toluene acid ( P_t〇luene sUlfonic acid) and sulfonic acid such as methanesulfonic acid. Single or double acid salts can be formed and such salts exist in either of a hydrated state, a dissolved state or a nearly anhydrous state. In general, the acid addition salts of the compounds of the present invention are relatively soluble in water and many hydrophilic organic solvents, and acid addition salts generally exhibit a higher melting point relative to their free base type. The compounds of the invention may also be formulated as pharmaceutically acceptable salts, such as the acid addition salts and complexes described above. The above salts can be formulated to accelerate drug application by altering the physical properties of the agent without impeding its physiological effects. Examples of useful changes in the physical state include, but are not limited to, lowering the melting point to accelerate the application across the mucosa and increasing solubility to accelerate the administration of higher concentrations of the agent. 47 200815381 The term "pharmaceutically acceptable salts" means salts suitable for the treatment of humans, such as human patients. These salts can be ^^ I-a, I-b, I-c, Ld, I-e, I-f, I:g, I h, Μ, η, ! A non-toxic organic or inorganic salt of the compound represented by 彳, μ, I-m, Ι·η, I-0,][_p or any of the specific compounds described herein or any of the above intermediates. Exemplary salt-forming ions include, but are not limited to, ammonium ions (nh4 + ), calcium ions (Ca2+), iron ions (1^2+ and Fe3+), magnesium ions (Mg2+), and potassium ions (κ). +), acridine ion (C5H5NH+), quaternary ammonium salt (NR〆), sodium ion (: (Na), acetate, carbonate, chloride, bromide, citrate, cyanide, hydroxide, Nitrate, nitrite, oxide, phosphate, sulfuric acid hand, maleate, fumarate, lactate, tartrate, gluconate, besylate and propyl Illustrative inorganic acids which form suitable salts include, but are not limited to, hydrogen chloride, hydrobromic acid, sulfuric acid and phosphoric acid, and metal salts such as sodium monohydrogen phosphate and potassium hydrogen sulfate. Exemplary organic acids of addition salts include, for example, glycolic acid, lactic acid, pyruvic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, malic acid, tartaric acid, citric acid, ascorbic acid, cis Single or double with butyl phthalic acid, benzoic acid, phenylacetic acid, cinnamic acid and salicylic acid Acid protecting 'and sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid. Forming mono- or di-acid salts' and such salts are present in either hydrated, dissolved or almost anhydrous form. Said that compounds having the formula I, Ia, j_b, Bu "Ie, If, Ig, Bu h, Li, rj, u, Bu m, I n, Buddhism and Ip" are more soluble in acid addition salts. In water and many hydrophilic organic solvents, and with respect to their free base type, acid addition salts generally show a higher melting point in 48 200815381. Those skilled in the art can perform selection of suitable salts. For example, according to P · "Handbook of Pharmaceutical Salts: Properties, Selection, and Use" by Heinrich Stahl and Camille G. or "Pharmaceutcial Salts" by Berge in j. pharm Sci, Vol 66 (1), p 1-19, 1977 To select salts. For example, other non-pharmaceutically acceptable salts (eg, oxalates) can be used for isolation or subsequent conversion to a pharmaceutically acceptable acid addition salt in a laboratory compound of the invention. Class I, Ia, Ib, Ic of the invention , Id, Ie, If, Ig, Ih, Ii, Ij, Ik, 1-1, Im, In, Io and I-ρ and compounds of formula ii may form hydrates or solvates, and this includes patent application Within the scope of the present invention, when the compounds of formula I of the present invention exist as regioisomers, configurational isomers, conformers, or diasteroisomeric Forms as well as the various mixtures described above are included within the scope of Formula I. If desired, individual isomers can be isolated by known separation and purification methods. For example, when the formula I of the present invention is a racemic isomer, the racemic isomer can be separated into the (S)-compound and the (R)-compound by optical resolution. Individual optical isomers and mixtures thereof are included in Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, 1-1, Im, In, Io, and Ip, and In the scope of II. The term "solvate" as used herein means Formulas I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, 1-1, Im, In, Io 49 200815381 and Ip And a compound of formula II or a pharmaceutically acceptable salt of a compound of formula I wherein the molecular system of a suitable solvent is incorporated in a crystalline lattice. Suitable solvents are physiologically acceptable at the dosages employed. Examples of suitable solvents are ethanol, water, and the like. When water is a solvent, the molecule is considered a "hydrate." The term "polytype" means a specific crystalline state of a substance having specific physical properties (such as X-ray diffraction, infrared spectrum, melting point, etc.). The terms "effective dose", "sufficient dose" or "therapeutically effective dose" as used herein are sufficient to cause a beneficial or desired result (including clinical outcome), so the "effective dose" depends on the environment in which it is administered. . The response is for prevention and/or treatment. The term "effective dose" also includes a dose of a compound of formula I which is "effectively treated" and which avoids or substantially reduces the undesirable side effects. As used herein and as understood by the art, "treatment" is a method of obtaining beneficial or desired results, including clinical outcomes. Whether observable or unobservable, beneficial or desirable results may include, but are not limited to, amelioration or amelioration of one or more symptoms or diseases; reduction in the extent of the disease; stabilization (ie, no deterioration) of the condition of the disease; Prevent the spread of disease; delay or slow progression of disease; improvement and mitigation of disease status; and remission (whether in part or in whole). "Treatment" also means prolonged survival, as compared to the expected survival time if no treatment is received. The term "inhibiting isolation" as used herein includes hindering, reducing, inhibiting, limiting or avoiding the physical separation of FKBP subunits from RyR molecules in individual cells, as well as blocking, reducing, suppressing 丨ac inhibition, restriction or avoidance. RyR molecules within individual cells are physically separated or separated from the FKBP subunit. The term "enhanced binding" as used herein includes the ability to enhance, enhance or ameliorate the phosphorylation of RyR in human cells, such as κ, Ό σ FKBP (for example, a higher background than the negative control group). , about five times the binding capacity), and the ability to enhance, enhance or improve the physical binding of FKBp to phosphorylated RyR in individual cells (eg, the twist binding is about twice as high as the background binding of the negative control group). Five times the combined ability). The term "cardiomyocyte" as used herein includes myocardial fibers, such as those found in cardiac myocardium. The present invention provides a compound capable of treating and preventing abnormalities and diseases associated with the RyR receptor, which regulates the function of the mother ion channel in the cell. More specifically, the present invention provides a compound capable of treating or preventing leakage of a RyR channel. "Abnormality and disease associated with RyR receptors" means abnormalities and diseases that can be treated and/or prevented by modulating the RyR receptor (regulating the #5 ion channel function in cells). "Abnormalities and diseases associated with RyR receptors" include (but are not limited to) cardiac abnormalities and diseases, skeletal muscle abnormalities and diseases, cognitive abnormalities and diseases, malignant hyperthermia syndrome, central axis disease, diabetes and sudden infant death ( Sudden infant death syndrome). Cardiac abnormalities and disease burdens (but not limited to) irregular heartbeat abnormalities and diseases, irregular heartbeat abnormalities and diseases caused by exercise, sudden cardiac death, motor-induced sudden cardiac death, congestive heart failure , chronic obstructive pulmonary disease and high blood pressure. Irregular heartbeat abnormalities and diseases including irregular heart caused by exercise 51 200815381 Jump abnormalities and diseases including (but not limited to) atrial and ventricular arrhythmia; atrial fibrillation and ventricular fibrillation; atrial frequency arrhythmia and ventricular arrhythmia Atrial frequency and ventricular frequency; catecholamine polymorphic ventricular frequency (CPVT) and its motor-induced variants. Skeletal muscle abnormalities and diseases include, but are not limited to, skeletal muscle fatigue, exercise-induced skeletal muscle fatigue, muscle wasting, bladder dysfunction, and incontinence. Cognitive disorders and diseases include, but are not limited to, Alzheimer's Disease, various types of memory loss, and age-dependent memory loss. As referred to herein, the compounds of the present invention are capable of treating and preventing disorders and diseases associated with the RyR receptor (regulating intracellular calcium channel function) by accomplishing the following: repairing channel leakage and improvement Binding of FKBP protein (eg, calstabinl) to RyR phosphorylated by protein kinase A. Thus, in one embodiment, the compound is useful for the treatment and prevention of muscle fatigue associated with the RyR receptor, which regulates calcium channel function in cells. In one embodiment, the compounds of the invention are effective for treating muscle fatigue caused by myopathy, discomfort, disease, abnormality or symptoms associated with RyR receptors (regulating intracellular calcium channel function). Examples of such abnormalities and symptoms include, but are not limited to, heart disease or abnormalities, skeletal muscle function defects, HIV infection, AIDS, muscular dystrophy, cancer, malnutrition, exercise-induced muscle fatigue, age-related muscle fatigue, Kidney disease and kidney failure. 52 200815381 Examples of cardiac abnormalities and diseases include, but are not limited to, irregular heartbeat abnormalities and illnesses, exercise-induced irregular heartbeat disorders and diseases, congestive heart failure, chronic obstructive pulmonary disease, and hypertension. Examples of irregular heartbeat abnormalities and diseases include irregular heartbeat abnormalities and diseases caused by exercise, including (not limited to) atrial and ventricular arrhythmia; atrial fibrillation and ventricular fibrillation; , atrial pulse arrhythmia and ventricular frequency rhythm Incomplete; atrial frequency and ventricular stimuli; catechin polymorphic ventricular pulsation (CPVT) and its motor-induced changes In one embodiment, the compounds of the invention modulate about ion channels within an individual's cells. In another embodiment, the compounds of the invention reduce the release of the feeder ions into the cells. In another embodiment, the compounds of the invention reduce or avoid a reduction in the amount of FKBP bound to RyR in an individual. In another embodiment, the compounds of the invention inhibit the isolation of FKBP from RyR in a subject. In another embodiment, the compounds of the invention increase the binding of cells to RyR in an individual. In another embodiment, the compounds of the invention stabilize the RyR-FKBP complex in an individual cell. In another embodiment, the compounds of the invention prevent or treat leakage of RyR receptors in an individual. In the present invention, the compounds of the present invention modulate the binding of the ruler to FKBP in an individual. In another embodiment, the compounds of the invention reduce the rate of opening of RyR by increasing the affinity of fkbp for the phosphorylation of RyR of linsin kinase A. In another embodiment, the compounds of the invention reduce or inhibit calcium stimuli Chymotrypsin activity to treat muscle fatigue. In another embodiment, the compounds of the invention reduce blood creatinine kinase levels for the treatment of muscle fatigue. 53 200815381 The method of the invention can be practiced in vivo (Ζπ Wvo) or ex vivo (h vz7ro). Thus in one embodiment, the methods of the invention are practiced in an in vitro system (e.g., on isolated cell components in a test tube). In another embodiment, the methods of the invention are practiced in vivo, such as in cultured cells or tissues or within an individual. In another embodiment, the present invention provides the application of Formulas I, Ia, Ib, Ic, Id, Ie, i_f, Ι-g, ih, Ii, Ij, Ik, 1-1, Im, In, Io and 1- p and a compound represented by formula II for the preparation of a medicament for treating or preventing a muscle abnormality or disease such as, but not limited to, muscle fatigue in an individual. In another embodiment, muscle fatigue can be caused by increased pressure, such as an individual (e.g., a soldier or an athlete) who receives a sustained and prolonged exercise regimen. Thus in one embodiment, the compounds of the invention are used to treat muscle fatigue in an individual suffering from stress (e.g., due to, for example, a strong exercise regimen). Abnormal bone myopathy and diseases include, but are not limited to, stress-induced skeletal muscle fatigue, exercise-induced skeletal muscle fatigue, muscular dystrophy, bladder abnormalities, and fecal incontinence.

待決申請案 USSN 1 1/2 12,309 與 1 1/212,413 以及 PCT 申請案PCT/US2006/32405講述以1,4-苯并硫氮呼為基礎 合成少數的前導化合物(lead compound),其藉由提高 calstabinl的結合以挽救RyRl通道功能與Ca2 +滲漏。 量胳肌疲勞 54 200815381Pending applications USSN 1 1/2 12, 309 and 1 1/212, 413 and PCT application PCT/US2006/32405 teach the synthesis of a small number of lead compounds based on 1,4-benzothiazepines by Increase the binding of calstabinl to rescue RyRl channel function and Ca2+ leakage. Measuring the muscle fatigue 54 200815381

Ca釋出通道中的缺陷(例如,通道「滲漏」的提 可導致骨路肌疲勞。在某些態樣中,本發明提 :2 + 中缺陷…化合物,該化合物可用於治療、 減輕或預防下列症狀之方法:肌…;肌肉疲勞,包括 但不限於運動引起的肌肉疲勞或肌肉傷害;與疾病症狀(例 如,但不限於肌病變、肌肉萎縮症等等)有關之肌肉疲勞或 傷害。近期認為乳酸累積可能不是有害的研究引發對骨絡Defects in the Ca release channel (eg, the "leakage" of the channel can lead to fatigue of the bone path muscle. In some aspects, the present invention provides: 2 + a defect in a compound that can be used to treat, alleviate or Methods for preventing the following symptoms: muscles; muscle fatigue, including but not limited to muscle fatigue or muscle damage caused by exercise; muscle fatigue or injury associated with disease symptoms such as, but not limited to, muscle lesions, muscular dystrophy, and the like. Recent studies that lactic acid accumulation may not be harmful are triggering

肌疲勞之分子機制的疑問。假說中已經提出㉖離子不健全 調控的作用。 本發明提供顯示長時間運動過程中第1型理阿諾鹼受 體(RyRi)功能變樣的數據,RyR1係骨骼肌肌漿網(SR)中的 主要鈣離子釋出通道且為興奮收縮耦聯(ECC)所必須。長 時間運動過程中’ RyRl通道在其Ser2844(人類中的Questions about the molecular mechanism of muscle fatigue. The hypothesis has proposed the role of 26 ion imperfect regulation. The present invention provides data showing changes in the function of the type 1 RyRi receptor during long-term exercise, and the main calcium ion release channel in the RyR1 skeletal muscle sarcoplasmic reticulum (SR) is coupled with excitatory contraction. (ECC) is required. Long-term movement during the RyRl channel in its Ser2844 (human

Ser2 8 43)受到蛋白激酶a的過度磷酸化。蛋白激酶a的過 度磷酸化係與RyRl複合體缺少(depleti〇n)磷酸二酯酶 (phosphodiesterase) PDE4D3 有關。再者,蛋白激酶 A 的 過度碌酸化促使通道大分子複合物缺少RyRl穩定亞基 calstabinl (FKBP12),造成「滲漏式」通道(在正常通道不 活化的狀態下提高開啟率蛋白激酶A磷酸化的稃度以及 calstabinl與PDE4D3的缺少係與運動的強度與腐期以及 漸進式疲勞有關。特定缺少骨絡肌calstabinl的小鼠與缺 少PDE4D小鼠兩者均顯示明顯受損的運動能力。明罐地導 致calstabinl再結合於RyR1通道的小分子S107,町改善 21天運動方案過程中經分離之肌肉的運動能力與力量產 55 200815381 生。可由反覆式強直收縮過程中所測得之細胞内辦離子, 確定S1 07可治療肌肉纖維並顯示疲勞的減少。再者,si〇7 可治療長時間運動小鼠’其顯示肌肉均漿質 (homogenates)的血漿肌酸激酶含量以及鈣離子依賴性中 性蛋白酶妈激活蛋白酶活性的減少。這驗證長時間或高強 度運動過程中肌肉疲勞機制的存在,其中因RyR][通^缺 少calstabinl的肌漿網鈣離子滲漏可導致鈣離子訊號缺陷 與骨骼肌傷害。在一態樣中,本發明提供RyCal化合物的 用途,該化合物針對肌肉疲勞、肌肉症狀與異常的分子機 制;並提供上述之治療方法。 #5離子釋出通道穩定藥劑藉由避免持續與強烈運動時 理阿諾鹼受體的鈣離子滲漏而預防肌肉疲勞。骨骼肌反覆 且激烈的活動會造成υ伴隨強烈應用的虛弱(亦稱為疲 勞)2)疼痛與虛弱肌肉的感覺(稱為感知),以及3)不同程 度的肌肉衰退(稱為萎縮性重組(dystr〇phie rein〇deling))。 肌肉疲勞的顯性理論為細胞内乳酸的累積造成細胞内酸中 毋’直接經由肌原纖維蛋白抑制力量的產生(Hill et al., 1929)低於生理溫度下(2(TC),確實發現細胞内pH値的 酸度變化可促進骨骼肌的易疲勞性(Hill et al·,1929)。然 而’更多近期研究質疑酸中毒對肌肉疲勞的意義,其顯示 引發肌肉疲勞的反覆短暫強直性收縮在更接近生理的狀態 下(37°C)不會造成細胞内pH値明顯的變化(Westerblad et al·,1997),其中酸中毒並不明顯影響力量的產生。這些發 現符σ疲勞收縮時產生之乳酸經由乳酸轉運體(lactate 56 200815381 transporter)以一基本的速度排出。然而,非常強烈的運動 員訓練過程中,由肝醣無氧斷裂而成的乳酸仍是一重要限 制因素。重要地,發現細胞内酸中毒可在反覆或長時間強 直性收縮時細胞内Ca2+長期增加的過程中保存肌肉的應激 性與肌原纖維的鬆他’因而避免肌肉疲勞(Pedersen et al. 2004) 〇 假設細胞内pH値的變化並不是主要的疲勞機制,那 麼可能為興奮收縮耦聯中的變化造成疲勞。細胞内Ca2+經 由RyRl通道的釋出引發肌肉收縮。1963年提出的現在古 典生理學實驗,收縮活化的可逆式變化可能在肌肉疲勞中 扮演重要角色(Eberstein et al·,1963)。在反覆強直性收縮 導致疲勞漸進式發展的過程中,細胞内Ca2 +濃度水平的下 降解釋力量產生減少的原因(Allen et al·,2001 )。然而,咖 啡因與其他化合物(其可最大地活化RyRl通道與造成突然 的肌漿網Ca2 +釋出)可短暫地使強直性Ca2+濃度回復正常 (Allen et al·,2001)。因此RyRi依賴性肌漿網Ca2 +釋出機 制的變化似乎牵涉於疲勞生成中。 肌漿網Ca2負载的測量顯示骨絡肌疲勞時可釋放之 Ca2 +總量的減少,而這可能為疲勞時造成肌漿網Ca2 +釋放 減少的其中一個原因(Cooke et al. 1 985 )。另一理論包括 細胞内無機磷酸鹽濃度([Pi]〇的提高使肌漿網儲存胞器中 的 Ca2+進行沉澱(Allen,2001;Cooke,1 985)。然而,[Pi]i 的增加(由於ATP快速斷裂)發生於疲勞早期,但是強直性 57 200815381 [Ca2+]i的減少發生於疲勞晚期(第ni時期)。此外,反覆、 拉直的收縮之後可發現靜止期[Ca2+]i的提高,然而刺激、 強直性的[Cahh卻減少(Warren et ai 1993;㈣謝e et ai 1 995)。靜t期[Ca2 + ]i的提高可引起興奮收縮耦聯的長期損 "例士藉由活化可傷害肌漿網Ca2+釋出通道的蛋白酶 (La b et ai·,1 995 ; Chln et 以,; Brut〇n 以以, 1996) 〇 r 長時間持續運動的疲勞可能起因於肌漿網Ca2 +滲漏, 該0漏係由RyRJ通道非完全關閉所引起,而肌漿網“Η 儲存量的部分消失促成力量產生的減少與靜止期[(^2十]1 的提高,這干擾肌肉的緩和且當持續聘將造成肌肉衰退。 近期數據顯示經演化保存的壓力途徑,攻擊或逃避反應, 可具體地控制骨骼肌中的RyRl Ca2 +釋出(Gaburjak〇va et al·,2001 ; Marx et al·,2001),而此壓力途徑的異常、長期 活化將引發造成肌肉疲勞的肌漿網Ca2+滲漏(Reiken et al·, 2003) 〇 \ 運動過程中,RyRl/鈣離子釋出通道經蛋白激酶Α變 得過度構酸化且缺少穩定性蛋白cal stab ini。本發明的 RyCal化合物提高calstabinl對經蛋白激酶a過度磷酸化 RyR 1的結合親合力。這些化合物稱為「鈣離子通道穩定劑」 或「RyCal」且屬於1,4-苯并硫氮呼類與相關之結構。在一 非限制性實例中,RyCal化合物的治療改善在踏車上跑步 之小鼠的運動表現。再者,證據指出經由蛋白激酶A過度 58 200815381 填酸化RyRl通道的鈣離子滲漏可由於鈣離子依賴性蛋白 酶的活化而造成肌肉傷害,而RyCal可在長時間運動過程 中避免#5離子滲漏與抑制肌肉傷害。在某些實施例中, RyCal化合物可用於治療、預防或改善慢性疾病中的肌肉 疲勞’該慢性疾病包括(但不限於)心臟衰竭、愛滋病、癌 症、月臟农竭、慢性阻塞性肺病、高血壓、氣喘、曱狀腺 機能充進、慢性肌肉疲勞。在其他實施例中,RyCal化合 物可用於治療或改善肌肉萎縮症。在其他實施例中,以 RyCal化合物治療可預防或減少肌肉疲勞,其可改善接受 長時間持續壓力與/或身體運動之個體的運動表現。在其他 實施例中’以RyCal化合物治療可預防或減少肌肉疲勞, 其可改善接受激烈身體運動之個體的運動表現。 骨胳肌因激烈運用而變得虛弱亦稱為疲勞。再者,反 覆伸張依賴性攣縮(stretch-dependent contracture)可導致 額外的肌肉傷害與衰退。雖然疲勞被視為壓力過程中尖端 表現(peak performance)受限與工作失敗的重要機制,但並 未完全界定引起疲勞或肌肉纖維傷害之機制的特徵。此 外’確定疲勞分子機制能夠針對性介入(targeted intervention)可助於預防疲勞與肌肉組織傷害(wehrens, 2005)。控制骨骼肌表現的重要生理機制為細胞内鈣離子 (Ca2 + )的釋出,其自Ca2+專門儲存位置(肌漿網)經由理阿 諸鹼受體(11>^111)〇32 +釋出通道而釋出。骨骼肌中,細胞膜 去極化活化電壓閘控式L-型Ca2 +通道(LTCCs; Cavl.l), 接著其藉由兩離子通道的直接接觸活化肌漿網上的RyRJ。 59 200815381Ser2 8 43) is hyperphosphorylated by protein kinase a. The over-phosphorylation of protein kinase a is associated with the depleti〇n phosphodiesterase PDE4D3 in the RyRl complex. Furthermore, excessive acidification of protein kinase A causes the channel macromolecular complex to lack the RyRl stable subunit calstabinl (FKBP12), resulting in a "leakage" channel (increased opening rate of protein kinase A phosphorylation in the absence of normal channels) The degree of mobility and the lack of calstabinl and PDE4D3 are related to the intensity of exercise and rot and progressive fatigue. Both the mice lacking the calistal muscle calstabinl and the lack of PDE4D mice showed significantly impaired exercise capacity. The small molecule S107, which causes calstabinl to recombine in the RyR1 channel, improves the exercise capacity and strength of the isolated muscle during the 21-day exercise program. The intracellular ion can be measured by the repeated tonic contraction process. It is determined that S1 07 can treat muscle fibers and show a reduction in fatigue. Furthermore, si〇7 can treat long-term exercise in mice, which show plasma creatine kinase levels and calcium-dependent neutrality in muscle homogenates. Protease mom activates a decrease in protease activity. This verifies the existence of muscle fatigue mechanisms during prolonged or high-intensity exercise, Calcium ion signal defects and skeletal muscle damage can result from sarcoplasmic reticulum calcium ion leakage due to lack of calstabinl. In one aspect, the invention provides the use of a RyCal compound for muscle fatigue, muscle symptoms and Abnormal molecular mechanisms; and provide the above-mentioned treatment methods. #5Ion release channel stabilizing agent prevents muscle fatigue by avoiding calcium ion leakage of the Arino base receptor during continuous and intense exercise. Skeletal muscle is repeated and intense Activity can cause weakness (also known as fatigue) with strong application 2) pain and feeling of weak muscles (called perception), and 3) varying degrees of muscle decline (called atrophic reorganization (dystr〇phie rein〇deling) )). The dominant theory of muscle fatigue is that the accumulation of intracellular lactic acid causes intracellular acid 毋' to directly inhibit the production of muscle through fibrillin (Hill et al., 1929) below physiological temperature (2(TC), indeed found Changes in acidity of intracellular pH 可 promote skeletal muscle fatigue (Hill et al., 1929). However, more recent studies question the significance of acidosis to muscle fatigue, which shows repeated transient tonic contraction that causes muscle fatigue. In a more physiological state (37 ° C), there is no significant change in intracellular pH (Westerblad et al., 1997), in which acidosis does not significantly affect the production of force. The lactic acid is discharged at a basic rate via the lactic acid transporter (lactate 56 200815381 transporter). However, during the very intense athlete training, the lactic acid formed by the anaerobic cleavage of glycogen is still an important limiting factor. Importantly, it was found Intracellular acidosis can preserve muscle stress and myofibrillar relaxation during the long-term increase of intracellular Ca2+ during repeated or prolonged tonic contraction. 'Therefore avoiding muscle fatigue (Pedersen et al. 2004) 〇 Assume that intracellular pH 値 changes are not the main fatigue mechanism, which may cause fatigue in the changes in excitatory contraction coupling. Intracellular Ca2+ is triggered by the release of RyRl channels. Muscle contraction. In the current classical physiology experiments proposed in 1963, reversible changes in contractile activation may play an important role in muscle fatigue (Eberstein et al., 1963). In the process of repetitive tonic contraction leading to progressive development of fatigue, Decreased intracellular Ca2+ levels explain the reasons for the decrease in strength (Allen et al., 2001). However, caffeine and other compounds (which maximally activate the RyRl channel and cause sudden release of sarcoplasmic reticulum Ca2+) The tonic Ca2+ concentration can be transiently restored to normal (Allen et al., 2001). Therefore, changes in the RyRi-dependent sarcoplasmic Ca2+ release mechanism appear to be involved in fatigue formation. Measurement of sarcoplasmic reticulum Ca2 loading shows bone network A decrease in the total amount of Ca2+ released during muscle fatigue, which may be one of the causes of reduced sarcoplasmic reticulum Ca2+ release during fatigue (Cook e et al. 1 985). Another theory involves the concentration of intracellular inorganic phosphate ([Pi]〇 increases the precipitation of Ca2+ in the sarcoplasmic reticulum storage organ (Allen, 2001; Cooke, 1 985). The increase in [Pi]i (due to rapid breakage of ATP) occurs in the early stages of fatigue, but tonicity 57 200815381 The decrease in [Ca2+]i occurs in the late stage of fatigue (nith period). In addition, the increase of the stationary phase [Ca2+]i can be found after the retraction and straightening contraction, whereas the stimulation and tonicity [Cahh is reduced (Warren et ai 1993; (4) Xie e et ai 1 995). An increase in the static t-phase [Ca2+]i can cause long-term damage in the excitatory contraction coupling" by activation of a protease that can damage the Ca2+ release channel of the sarcoplasmic reticulum (La b et ai·, 1 995; Chln et Brut〇n, 1996) 〇r Long-term continuous exercise fatigue may result from sarcoplasmic reticulum Ca2+ leakage, which is caused by incomplete closure of the RyRJ channel, and sarcoplasmic reticulum “Η storage Partial disappearance contributes to the reduction in strength and the increase in quiescent period [(^2十]1, which interferes with the relaxation of muscles and when sustained employment will cause muscle decline. Recent data show that the pressure pathways that have been preserved by evolution, attack or escape response, Specific release of RyRl Ca2 + in skeletal muscle can be controlled (Gaburjak〇va et al., 2001; Marx et al., 2001), and abnormal, long-term activation of this stress pathway will trigger sarcoplasmic reticulum Ca2+ causing muscle fatigue. Leakage (Reiken et al., 2003) During the exercise, the RyRl/calcium ion release channel becomes over-acidified by protein kinase 且 and lacks the stable protein cal stab ini. The RyCal compound of the present invention enhances the calstabinl pair Protein kinase a hyperphosphorylation The binding affinity of RyR 1. These compounds are referred to as "calcium channel stabilizers" or "RyCal" and belong to the structure of 1,4-benzothiazepines and related structures. In a non-limiting example, RyCal compounds Treatment improves the motor performance of mice running on a treadmill. Furthermore, evidence suggests that calcium ion leakage through the proteinase A over 58 200815381 acid-filled RyRl channel can cause muscle damage due to activation of calcium-dependent proteases, RyCal can avoid #5 ion leakage and inhibit muscle damage during prolonged exercise. In certain embodiments, RyCal compounds can be used to treat, prevent, or ameliorate muscle fatigue in chronic conditions including, but not limited to, Heart failure, AIDS, cancer, septic, chronic obstructive pulmonary disease, hypertension, asthma, dysfunction of the squamous gland, chronic muscle fatigue. In other embodiments, RyCal compounds can be used to treat or ameliorate muscular dystrophy In other embodiments, treatment with a RyCal compound can prevent or reduce muscle fatigue, which can improve long-term sustained stress and/or In other embodiments, 'treatment with RyCal compounds can prevent or reduce muscle fatigue, which can improve the performance of individuals undergoing intense physical activity. The skeletal muscle is weakened due to intense use. For fatigue, in addition, stretch-dependent contracture can lead to additional muscle damage and decline. Although fatigue is seen as an important mechanism for limited peak performance and job failure during stress, The characteristics of the mechanism that causes fatigue or muscle fiber damage are not fully defined. In addition, the determination of fatigue molecular mechanisms can help prevent fatigue and muscle tissue damage (wehrens, 2005). An important physiological mechanism controlling skeletal muscle expression is the release of intracellular calcium (Ca2+), which is released from the Ca2+ specific storage site (sarcoplasmic reticulum) via the Argonine receptor (11>^111)〇32+. Released by the channel. In skeletal muscle, cell membrane depolarization activates voltage-gated L-type Ca2+ channels (LTCCs; Cavl.l), which in turn activates RyRJ on the sarcoplasmic reticulum by direct contact with the two ion channels. 59 200815381

RyRl通道的開啟造成大量肌漿網Ca2+的釋出,其活 化肌原纖維與肌肉收縮。再者,與交感神經系統持續活化 以及血漿兒茶酚胺含量提高相關之疾病形式,可引起細胞 内壓力途徑的適應不良性活化,造成RyR1通道關閉狀態 的不穩定與細胞内 Ca2 +滲漏(Reiken et al· 2003; Brillantes et al. 1994)。發現經由RyRl通道的肌漿網Ca2 +滲漏可減 少細胞内肌漿網的鈣離子儲存量、提高補償性能量的消耗 與造成肌肉疲勞的明顯加快。壓力引起的肌肉缺陷限制尖 端表現並促成肌肉疲勞的病理型態(永久地降低表現)。再 者,RyRl關閉狀態的不穩定包括缺少穩定性通道亞基 calstabinl (FKBP12)(Reiken et al. 2003 ϊ Brillantes et al. 19 94)。實驗證明提高calstabin對RyR的結合親合力可挽 回通道功能(Wehrens,2003)。 肌漿網經由第1型骨骼肌理阿諾驗受體(RyRl)的Ca2 + 釋出可活化骨骼肌收縮。橫小管膜的去極化活化二羥基吡 啶(di hydropyridine)受體的電壓感應子(Cavl.l),其接著經 由直接的蛋白-蛋白交互作用活化RyRl通道造成肌漿網 Ca2+儲存量的釋出。Ca2 +結合於肌鈣蛋白(troponin)C使 肌動蛋白-肌凝蛋白橫橋產生並縮短肌小節(sarcomere)。 Ca2 +釋出通道包括由560 kDa之RyRl亞基的同源四聚體 (homotetramer)構成的大分子複合物,其形成調控通道功能 蛋白的骨架,這些蛋白包括:蛋白激酶 A與磷酸二酯酶 PDE4D3,兩者均經由鑲嵌蛋白mAKAP結合於通道;ppi (經由 spinophilin 結合);與 calstabinl (FKBP 12) 60 200815381 (Jayaraman,Brillantes et al. 1 992 ; Brillantes,Ondrias et al. 1994; Marx, Reiken et al. 2000 ; Marx, Reiken et ah 2001) 〇 造成肌漿網Ca2 +釋出振幅減少的興奮收縮耦聯缺陷將 損害收縮與力量產生。Eberstein與Sandow提出受損的肌 漿網Ca2 +釋出可能為肌肉疲勞的促進因素(Eberstein and Sandow 1963)。已經描述疲勞刺激時可引起肌漿網Ca2 +釋 出振幅的減少(Allen,Lee et al· 1989 ; Westerblad and v Allen 1991 ; Allen and Westerblad 2001)。此外,已經顯示 強烈且反覆的收縮過程中Ca2+儲存量的下降(Kabbara & Allen,19 99),且發現自疲勞恢復的時間進程與長時間抑制 之肌漿網Ca2 +釋出的時間進程相似(Westerblad,Bruton et al· 2000)。再者,已經提出疲勞時無機鈣離子磷酸 鹽的沉澱可造成肌漿網自由 Ca2+的減少(Allen and Westerblad 200 1) 〇 疲勞肌肉中肌漿網Ca2 +釋出缺陷的證據促使檢查骨絡 V 肌疲勞中RyR1調節式肌漿網Ca2 +釋出的作用。Calstabinl (FKBP12)對RyRl的結合可穩定通道的關閉狀態並促進鄰 近通道之間的耦聯閘控(Brillantes,Ondrias et al. 1994 ; Marx,Ondrias et al· 1 998)。以藥物自 RyRl 去除 calstabinl (利用雷帕霉素(rapaniyCin)或FK506,兩者均結 合於calstabinl並使其自RyR1大分子複合物上分離)可引 起亞傳導狀態,且在完整的骨骼肌中可造成去極化引起 61 200815381 之收縮快速消失(Lamb and Stephenson 1996)。造成喪失 calstabinl結合力的RyRi突變可導致受損的興奮收縮耦赠 以及電壓閘控式肌漿網Ca2+釋出最大量的減少而不影響 肌漿網Ca2+的儲存含量(Aviia,Lee et al· 2003)。遺傳式 去除FKBP12 在骨骼肌中並部會引起嚴畫的 組織或發育缺陷,但卻發現嚴重的心臟發育缺陷,這睬麟 骨骼肌功能的詳細評估(Shou,Aghdasi et al. 1 998)。反之 特定性剔除(knock-out)骨骼肌造成 電壓閘控式肌漿網Ca2 +釋出的減少並提高分離肌小管中L 型的通道電流(Tang,Ingalls et al· 2004)。在伸趾長肌 (extensor digitalis longus,EDL)而不是比目魚肌(soleus) 或橫隔膜中,可發現最大致強直力量的減少與力量-頻率關 係的向右偏移(Tang,Ingalls et al. 2004)。這些數據指出 calstabinl調控骨骼肌中興奮收縮耦聯的獲得。The opening of the RyRl channel causes the release of a large amount of sarcoplasmic reticulum Ca2+, which activates myofibrils and muscle contraction. Furthermore, forms of disease associated with sustained activation of the sympathetic nervous system and increased plasma catecholamine levels can cause maladaptive activation of intracellular pressure pathways, resulting in instability of the RyR1 channel's closed state and intracellular Ca2+ leakage (Reiken et al) · 2003; Brillantes et al. 1994). It was found that sarcoplasmic reticulum Ca2+ leakage through the RyRl channel reduced calcium ion storage in the intracellular sarcoplasmic reticulum, increased compensatory energy consumption, and markedly accelerated muscle fatigue. Stress-induced muscle defects limit the pathology of the tip and contribute to muscle fatigue (permanently reducing performance). Furthermore, the instability of the RyRl shutdown state includes the lack of a stable channel subunit calstabinl (FKBP12) (Reiken et al. 2003 ϊ Brillantes et al. 19 94). Experiments have shown that increasing the binding affinity of calstabin to RyR restores channel function (Wehrens, 2003). The sarcoplasmic reticulum can activate skeletal muscle contraction via Ca2+ release from type 1 skeletal muscle Ano receptor (RyRl). Depolarization of the transverse tubular membrane activates the voltage inducer of the dihydropyridine receptor (Cavl.l), which in turn activates the RyRl channel via direct protein-protein interaction resulting in the release of sarcoplasmic reticulum Ca2+ storage . Ca2+ binding to troponin C causes the actin-myosin cross-bridge to produce and shorten the sarcomere. The Ca2+ release channel comprises a macromolecular complex consisting of a 560 kDa RyRl subunit homotetramer that forms the backbone of regulatory channel functional proteins, including: protein kinase A and phosphodiesterase. PDE4D3, both bound to the channel via the mosaic protein mAKAP; ppi (via spinophilin binding); and calstabinl (FKBP 12) 60 200815381 (Jayaraman, Brillantes et al. 1 992; Brillantes, Ondrias et al. 1994; Marx, Reiken et Al. 2000; Marx, Reiken et ah 2001) The stimulating contraction coupling defect that causes the sarcoplasmic reticulum Ca2+ release amplitude to decrease will impair contraction and force production. Eberstein and Sandow suggest that the release of damaged sarcoplasmic reticulum Ca2+ may be a contributing factor to muscle fatigue (Eberstein and Sandow 1963). It has been described that fatigue stimulation can cause a decrease in the amplitude of sarcoplasmic reticulum Ca2+ release (Allen, Lee et al. 1989; Westerblad and v Allen 1991; Allen and Westerblad 2001). In addition, the decline in Ca2+ storage during intense and repetitive contraction has been shown (Kabbara & Allen, 19 99), and it has been found that the time course of self-fatigue recovery is similar to the time course of long-term inhibition of sarcoplasmic reticulum Ca2+ release. (Westerblad, Bruton et al. 2000). Furthermore, it has been suggested that the precipitation of inorganic calcium ion phosphate during fatigue can cause a decrease in free Ca2+ in the sarcoplasmic reticulum (Allen and Westerblad 200 1). Evidence for the release of sarcoplasmic reticulum Ca2+ release from fatigue muscles. The role of RyR1 regulated sarcoplasmic reticulum Ca2+ release in fatigue. The combination of Calstabinl (FKBP12) on RyRl stabilizes the closed state of the channel and promotes coupling between adjacent channels (Brillantes, Ondrias et al. 1994; Marx, Ondrias et al. 1 998). Removal of calstabinl from drug RyRl (using rapaniyCin or FK506, both of which binds to calstabinl and separates it from the RyR1 macromolecular complex) can cause sub-conducting states and can be found in intact skeletal muscle. The depolarization caused the rapid contraction of 61 200815381 (Lamb and Stephenson 1996). RyRi mutations that cause loss of calstabinl binding can result in impaired excitatory contraction and maximum reduction in Ca2+ release from voltage-gated sarcoplasmic reticulum without affecting the storage of sarcoplasmic reticulum Ca2+ (Aviia, Lee et al. 2003) ). Hereditary removal of FKBP12 in skeletal muscle can cause severe tissue or developmental defects, but severe cardiac development defects are found, a detailed assessment of unicorn skeletal muscle function (Shou, Aghdasi et al. 1 998). Conversely, specific knock-out of skeletal muscle results in a decrease in Ca2+ release from the voltage-controlled sarcoplasmic reticulum and increases L-channel currents in isolated myotubes (Tang, Ingalls et al. 2004). In the extensor digitalis longus (EDL) rather than the soleus (soleus) or diaphragm, the reduction in maximum maximal straight force and the right-off shift in force-frequency relationship can be found (Tang, Ingalls et al. 2004). ). These data indicate that calstabinl regulates the acquisition of excitatory contraction coupling in skeletal muscle.

Calstabinl對 RyRl的結合係受到蛋白激酶 A在 RyRl-S2 843(小鼠RyRl序列中的位置S2844)上磷酸化的 調控(Reiken,Lacampagne et al· 2003)。RyRl-S2843 上的 磷酸化提高雙層脂質膜(lipid bilayer)中之RyRl的平均開 啟率(Reiken,Lacampagne et al. 2003)。RyRl-S2843A 突 變型通道無法被蛋白激酶A磷酸化,因此無法在開啟率 中顯示相同之蛋白激酶A依賴性的提高。模擬蛋白激酶 A磷酸化的RyRl-S2843D突變具有高開啟率並具有不穩 定的開啟與關閉狀態(Reiken, Lacampagne et a 1. 2003)。因為其他研究團體已經發現其對通道功能極小或 62 200815381 沒有效應,所以仍在研究RyRl之蛋白激酶A磷酸化的 作用(Stange,Xu et al· 2003)。已經證實RyRl的其他轉譯 後修飾可調控calstabinl與RyRl的結合,修飾包括氧化 與在每個RyR單體上高達50個自由(還原態)硫醇類(thiols) 的榖胱甘肽化(glutathionylation)。 已經在強烈運動後的肌原纖維與肌肉萎縮症模式中證 實肌襄網Ca2渗漏為一異常的#5離子火花波(spark)(Wang, Weisleder et al· 2005),其可能係由RyRl功能缺陷所引 ( 起。心臟衰竭中交感神經系統(SNS)的長期活化,係與下 列相關:早期骨骼肌疲勞;以及RyRl Ser2844上的蛋白 激酶A過度磷酸化(意指心臟衰竭的骨骼肌中,每個同源 四聚體通道的四個蛋白激酶A位置平均有3-4個經蛋白激 酶A構酸化);RyRl複合體缺少calstabinl ;以及功能增 加的通道缺陷(Reiken,Lacampagne et al· 2003)。骨絡肌 中的RyRl功能失常可導致變樣的局部亞細胞Ca2 +釋放結 果(Ward,Reiken et al· 2003) 〇 I RyR 1複合體中的修飾可在長時間或高強度運動時改 變且可能限制肌肉尖端表現、提高肌肉疲勞與促成肌肉傷 害。在某些態樣中,本發明提供長時間、高強度、強迫 運動的小鼠模式應用,以評估RyR1通道在骨骼肌疲勞中 的角色。如此處所述,RyRl通道大分子複合物在運動時 進行重組,以致於其逐漸受到蛋白激酶A的過度磷酸 化,且缺少PDE4D3與caistabinl。功能上,這重組伴隨 63 200815381 著「滲漏式」通道(開啟率提高)與約離子活化性蛋白酶(部 激活蛋白酶)的活化,以及肌酸激酶(cPK)滲漏至血漿,其 與肌肉傷害相符。這些改變更伴隨著經分離肌肉中力量 產生的減少與受損的運動能力,並在缺少PDE4D或肌肉 專一性缺少 calstabinl的小鼠中更加惡化。以#5離子通 道穩定劑S107預防RyRl通道滲漏,其可增強caistabinl 對RyR 1的結合力、抑制鈣激活蛋白酶的活化與肌酸激酶 的滲漏、並改善運動表現。因此,引起滲漏式通道、部 《 離子活化性蛋白酶(鈣激活蛋白酶)的活化、以及肌酸激酶 (CPK)滲漏至血漿的RyRl通道複合體重組,係一牵涉於 長時間或高強度運動時肌肉疲勞的機制。 輕微與激烈的踏車運動後之肌肉細胞中細胞内Ca2 +釋 出(Ca2+火花波)的共軛焦影像研究顯示,疲勞性運動引起 異常Ca 火花波的活性(Wang etal· 2005)。此外,具有異 常Ca2+火花波活性(起因於激烈運動)的肌原纖維,顯示有 毒性 Ca2+效應之衰退(亦稱為「萎縮性重組(dystrophic I remodeling)」)的組織徵兆(Wang et al· 2005)。長達數星期 與數月的持續運動可能造成RyRl功能異常、細胞内Ca2 + 滲漏、肌肉表現的減少與肌肉萎縮性重組。再者,1,4 -苯 并硫氮呼類藥劑藉由修正壓力引起的細胞内Ca2 +滲漏而提 高肌肉尖端表現並預防萎縮性重組。 動物模式可在活體内、經分離的骨絡肌細胞以及單一 RyRl通道程度下確定RyRl功能缺陷引起肌肉疲勞與萎縮 64 200815381 性重組。運用這些疲勞動物模式與具特徵之肌肉、細胞與 通道的技術允許基於修正RyR 1滲漏之治療方法的試驗, 該治療可在長時間運動時造成骨骼肌表現的改善、肌肉疲 勞的減少與萎縮性重組的減少。 肌肉萎縮症 第1型萎縮性肌強直(DM1),成人中最常見的肌肉萎 縮症(7,400新生兒中有1位),係一由萎縮性肌強直蛋白激 I 酶(myotonic dystrophy protein kinase,DMPK)基因之 3’未 I / 轉譯區中的 CTG三核苷酸重複擴增所引起之多系統性異 常(multisystemic disorder),其造成漸進性肌肉虛弱、遺傳 性肌肉過度興奮(肌強直)、心臟傳導缺陷、白内障(cataract) 與胰島素抵抗性(Bachinski LL,Udd B,Meola G,et al. Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of differentThe binding of Calstabinl to RyRl is regulated by phosphorylation of protein kinase A in RyRl-S2 843 (position S2844 in the mouse RyRl sequence) (Reiken, Lacampagne et al. 2003). Phosphorylation on RyRl-S2843 increases the average opening rate of RyRl in the lipid bilayer (Reiken, Lacampagne et al. 2003). The RyRl-S2843A mutant channel is not phosphorylated by protein kinase A and therefore does not show the same protein kinase A-dependent increase in the rate of opening. The RyRl-S2843D mutation that mimics protein kinase A phosphorylation has a high onset rate and has an unstable on and off state (Reiken, Lacampagne et al 1. 2003). Since other research groups have found no effect on channel function or 62 200815381, the role of protein kinase A phosphorylation in RyRl is still being investigated (Stange, Xu et al. 2003). Other post-translational modifications of RyRl have been shown to modulate the binding of calstabinl to RyRl, including oxidative and glutathionylation of up to 50 free (reduced) thiols on each RyR monomer. . It has been confirmed in the myofibrils and muscle atrophy models after intense exercise that the tendon network Ca2 leakage is an abnormal #5 ion spark (Wang, Weisleder et al. 2005), which may be functioned by RyRl. The long-term activation of the sympathetic nervous system (SNS) in heart failure is related to: early skeletal muscle fatigue; and protein kinase A hyperphosphorylation on RyRl Ser2844 (meaning skeletal muscle in heart failure, The average of four protein kinase A positions per homotetramer channel is 3-4 via protein kinase A; the RyRl complex lacks calstabinl; and increased functional channel defects (Reiken, Lacampagne et al. 2003) RyR1 dysfunction in skeletal muscle can lead to localized subcellular Ca2+ release in variants (Ward, Reiken et al. 2003) Modifications in the 〇I RyR 1 complex can change during prolonged or high-intensity exercise and may Limiting muscle tip performance, increasing muscle fatigue and contributing to muscle damage. In some aspects, the present invention provides long-term, high-intensity, forced-moving mouse mode applications to assess RyR1 channels Role in skeletal muscle fatigue. As described herein, the RyRl channel macromolecular complex recombines during exercise such that it is progressively over-phosphorylated by protein kinase A and lacks PDE4D3 and caistabinl. Functionally, this recombination is accompanied 63 200815381 The "leakage" channel (increased opening rate) and the activation of an ion-activated protease (partial activating protease) and the leakage of creatine kinase (cPK) into plasma are consistent with muscle damage. Reduced and impaired exercise capacity in isolated muscles and worsened in mice lacking PDE4D or muscle specificity lacking calstabinl. Prevention of RyRl channel leakage with #5 ion channel stabilizer S107, which can be enhanced Caistabin1 binds to RyR 1, inhibits the activation of calpain and creatinine kinase, and improves motor performance. Thus, it causes leakage channels, activation of ion-activated proteases (calcium-activated proteases), and Creatine kinase (CPK) leaks into the plasma RyRl channel complex recombination, which is involved in long-term or high-intensity exercise Mechanism of meat fatigue. Confocal focal image studies of intracellular Ca2+ release (Ca2+ spark waves) in muscle cells after mild and intense treadmill exercise show that fatigue movement causes abnormal Ca spark wave activity (Wang et al· 2005). In addition, myofibrils with abnormal Ca2+ spark wave activity (caused by intense exercise) show signs of a decline in toxic Ca2+ effect (also known as "dystrophic remodeling") (Wang et Al· 2005). Sustained exercise for several weeks and months may cause abnormal RyRl function, intracellular Ca2+ leakage, decreased muscle performance, and muscle atrophic reorganization. Furthermore, 1,4-benzothiazepines improve muscle tip performance and prevent atrophic recombination by correcting intracellular Ca2+ leakage caused by stress. Animal models can determine muscle fatigue and atrophy caused by defects in RyRl function in vivo, isolated skeletal muscle cells, and a single RyRl channel. The use of these fatigued animal models and characteristic muscle, cell and channel techniques allows for trials based on modified RyR 1 leakage treatments that can improve skeletal muscle performance, muscle fatigue reduction and atrophy during prolonged exercise. Reduction of sexual reorganization. Muscular atrophy Type 1 atrophic myotonia (DM1), the most common muscular atrophy in adults (1 in 7,400 neonates), a myotonic dystrophy protein kinase (myotonic dystrophy protein kinase) , DMPK) The 3' not I/translated region of the CTG trinucleotide repeat amplification caused by multiple systemic disorders, which cause progressive muscle weakness, hereditary muscle hyperexcitability (muscle rigidity) Cardiac conduction defects, cataract and insulin resistance (Bachinski LL, Udd B, Meola G, et al. Confirmation of the type 2 myotonic dystrophy (CCTG) n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of Different

European origins: a single shared haplotype indicates an I ancestral founder effect. Am J Hum Genet. Oct 2003;73(4):83 5-848. Hamshere MG,Harley H,Harper P, et al. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet, Jan 1 999; 3 6(1): 5 9-6 1 ; Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a 65 200815381 CCTG expansion in intron 1 of ZNF9. Science. Aug 3 2001 ;293 (553 1):864-867)。含有重複 CUG擴充的突變型 DMPK傳訊RNA (mRNA)係保留於細胞核中因此減少其蛋 白質含量(Mankodi A, Logigian E, Callahan L, et al· Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. Sep 8 2000;289(5485): 1769-1773)。RNA重複擴充改變染色質結 構;靜默(silence)旁側基因(編碼轉錄因子)的表現; 並破壞發育與運動時基因表現的調控(Ebralidze A,Wang Y,Petkova V, et al. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science. Jan 16 2004;303(5656):383-387) 〇 在第1型萎縮性肌強直中,多數嚴重症狀(包括肌肉虛 弱與漸進式肌肉衰弱)的起因似乎係由細胞内 Ca2+濃度的 提高與伴隨之肌原纖維衰退所引起(Jacobs AE,Benders A A, Oosterhof A,et al. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta. Nov 14 1990; 1096(1 ): 14-1 9)。再者,近期研究已經在第1型萎縮 性肌強直中經擾亂的Ca2 +循環與RyRl和肌漿網Ca2+ ATP 酶(SERCA1)之mRNA的異常剪接(spicing)之間建立關聯性 (Kimura T? Nakamori M? Lueck JD, et al. Altered mRNA Splicing of the Skeletal Muscle Ryanodine Receptor and Sarcoplasmic/Endoplasmic Reticulum Ca2 + -ATPase in 66 200815381European origins: a single shared haplotype indicates an I ancestral founder effect. Am J Hum Genet. Oct 2003;73(4):83 5-848. Hamshere MG,Harley H,Harper P, et al. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet, Jan 1 999; 3 6(1): 5 9-6 1 ; Liquori CL, Ricker K, Moseley ML, et Al. Myotonic dystrophy type 2 caused by a 65 200815381 CCTG expansion in intron 1 of ZNF9. Science. Aug 3 2001; 293 (553 1): 864-867). Mutant DMPK signaling RNA (mRNA) containing a repetitive CUG expansion is retained in the nucleus and thus reduces its protein content (Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. Sep 8 2000; 289 (5485): 1769-1773). Repeated expansion of RNA alters chromatin structure; silencing of side genes (encoding transcription factors); and disrupts regulation of gene expression during development and exercise (Ebralidze A, Wang Y, Petkova V, et al. RNA leaching of transcription Factors disrupts transcription in myotonic dystrophy. Science. Jan 16 2004;303(5656):383-387) In the type 1 atrophic myotonia, the cause of most serious symptoms (including muscle weakness and progressive muscle weakness) seems to be Increased by intracellular Ca2+ concentration and concomitant myofibrillar decay (Jacobs AE, Benders AA, Oosterhof A, et al. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta. Nov 14 1990; 1096(1 ): 14-1 9). Furthermore, recent studies have established a correlation between the Ca2+ cycle disturbed in Type 1 atrophic myotonia and the abnormal splicing of RyRl and sarcoplasmic reticulum Ca2+ ATPase (SERCA1) mRNA (Kimura T? Nakamori M? Lueck JD, et al. Altered mRNA Splicing of the Skeletal Muscle Ryanodine Receptor and Sarcoplasmic/Endoplasmic Reticulum Ca2 + -ATPase in 66 200815381

Myotonic Dystrophy Type 1 . Hum Mol Genet· Jun 2 2 2005)。第1型萎縮性肌強直的肌肉專一性基因小鼠模式 可存活,其中重複擴充CUG的表現造成類似萎縮性 肌強直的表現型(Mankodi A,Logigian E,Callahan L,et al· Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science· Sep 8 2000;28 9(5 4 8 5):1769-1773)。在沒有肌肉纖維壞死 的情況下具有肌強直的表現型,而短型與長型重複表現之 ! 小鼠品系分別顯示相對較少或較多的肌肉再生與修復之組 κ * 織學徵兆(Mankodi A,Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science· Sep 8 2000;289(5485):1769-1773)。既然具有短型或長型重複表 現之小鼠沒有顯示肌肉虛弱的徵兆,且因為已經在 RyRl變化與第1型萎縮性肌強之間建立關聯性,丑“LR小 鼠提供研究運動與交感神經系統活化在這些小鼠中效應的 模式。在描述RyR 1通道組成、磷酸化狀態與功能特徵之 \ 後’可用持續運動試驗與RyCal化合物治療來刺激丑以1111 小鼠。由於並不了解第丨型萎縮性肌強直中具有重複擴充 式CUG之轉錄本(transcript)造成肌強直與肌肉衰退的機 制’這將提供1)嚴重疲勞之基因動物模式的研究,2)第1 型萎縮性肌強直分子機制的說明,以及3)針對成人中常 見的肌肉萎縮症發展治療基礎理論。. 壓力途徑輿浙▲肉碲勞 67 200815381 、 墼力途么的持縯活化,例如發生在激烈的身體 運動(〇如但不限於格鬥)過程中,可造成肌肉表現的減 〆/、、且織傷害。由於持續高含量兒茶酚胺(造成細胞内Ca2 + 滲漏)的毒性為產生肌肉傷害的主要決定因素。這種想法可 下歹〗所支持· 1)生理式(非格鬥)運動或壓力可在敏感性 ~ 弓丨發仏紋肌溶解症(rhabdomyolysis))中引起肌 肉虛弱痙攣與組織萎縮(Wappler et al·,2001) ; 2)激烈而 T是輕微踏車運動引起肌肉細胞中Ca2+火花波頻率的明顯 C ; 提同扣出細胞内的Ca2 +滲漏(Wang et al·,2005) ; 3)惡性高 熱綜合症(MH)與中央軸空病(CCD)中發現的過量兒茶紛胺 造成不受控制的細胞内Ca2+釋出(Μ〇ηη^Γ以2〇〇〇 ;Myotonic Dystrophy Type 1 . Hum Mol Genet· Jun 2 2 2005). The muscle-specific gene model of type 1 atrophic myotonia can survive, and the performance of repeated expansion of CUG results in a phenotype similar to atrophic myotonia (Mankodi A, Logigian E, Callahan L, et al· Myotonic dystrophy in transgenic Mice expressing an expanded CUG repeat. Science· Sep 8 2000; 28 9(5 4 8 5): 1769-1773). In the absence of muscle fiber necrosis, there is a phenotype of muscle rigidity, while short and long forms are repeated! Mouse strains show relatively few or more muscle regeneration and repair groups κ * woven signs (Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science· Sep 8 2000; 289 (5485): 1769-1773). Since mice with short or long repeat performance do not show signs of muscle weakness, and because of the association between RyRl changes and type 1 atrophic muscle strength, ugly "LR mice provide research exercise and sympathetic nerves The system activates the pattern of effects in these mice. After describing the RyR 1 channel composition, phosphorylation status and functional characteristics, the 'Continuous Exercise Test and RyCal Compound Treatment can be used to stimulate the ugly 1111 mice. A type of atrophic myotonia with a transcript of repeated expansion CUG (the transcript) causes a mechanism of muscle rigidity and muscle decline 'This will provide 1) a study of animal models of severe fatigue, 2) type 1 atrophic myotonia Description of the mechanism, and 3) The basic theory of the development of treatment for muscle atrophy common in adults.. Pressure pathway 舆 ▲ ▲ meat 67 67 67 200815381 、 墼 途 么 的 的 , , , , , , , , , , , , , , , , , , , , Such as, but not limited to, fighting) can cause muscle loss and/or woven damage. Due to the sustained high content of catecholamine (causing intracellular Ca 2 + leakage) toxicity is the main determinant of muscle damage. This idea can be supported by 歹〗 1) Physiological (non-fighting) exercise or stress can be in sensitivity ~ 丨 仏 仏 肌 肌(rhabdomyolysis)) causes muscle weakness and tissue atrophy (Wappler et al., 2001); 2) intense and T is a significant C in the frequency of Ca2+ spark waves in muscle cells caused by gentle treadmill movement; Ca2+ leakage (Wang et al., 2005); 3) Excessive catecholamines found in malignant hyperthermia syndrome (MH) and central axis airway disease (CCD) cause uncontrolled release of intracellular Ca2+ (Μ 〇ηη^Γ to 2〇〇〇;

MaeLennan et al· 1995); 4)多數的惡性高熱綜合症/中央軸 空病與RyRl錯義突變有關(Loke et aU 2〇〇3) ; 5)如同發 生於心臟衰竭中的高腎上腺素狀態(hyperadrenergic state) 可引起RyRl過度磷酸化、Ca2 +滲漏與骨骼肌疲勞(Reiken et al· 2003);以及6)藉由活化卜腎上腺素受體、細胞内 cAMP生成與蛋白激酶Α磷酸化所造成的過量血漿兒茶酚 V 胺可造成肌肉傷害(Goldspink et al.,2004 ; Tan et al. 2003)。壓力依賴性肌肉傷害與功能障礙發生於細胞内兒茶 酚胺效應子(蛋白激酶A,PKA)與細胞内Ca2 +釋出之間的 接合處。骨絡肌理阿諾鹼受體(RyR1)Cah釋出通道構成細 胞内的骨架’其合併蛋白激酶A介導式壓力訊號與細胞内 Ca2 +釋出的調控,因此決定興奮收縮耦聯與肌肉功能的獲 得。重要地,活體内長期高腎上腺素狀態發生之長期提高 68 200815381MaeLennan et al. 1995); 4) Most malignant hyperthermia/central axis disease is associated with RyRl missense mutations (Loke et aU 2〇〇3); 5) as high adrenaline states occur in heart failure ( Hyperadrenergic state) can cause RyRl hyperphosphorylation, Ca2+ leakage and skeletal muscle fatigue (Reiken et al. 2003); and 6) by activation of adrenergic receptors, intracellular cAMP production and protein kinase Α phosphorylation Excessive plasma catechol V amine can cause muscle damage (Goldspink et al., 2004; Tan et al. 2003). Pressure-dependent muscle damage and dysfunction occur at the junction between the intracellular catechol phenolamine effector (protein kinase A, PKA) and intracellular Ca2+ release. The ossicular alkaloid receptor (RyR1) Cah release channel constitutes an intracellular skeleton that combines protein kinase A-mediated stress signals with intracellular Ca2+ release regulation, thus determining excitatory contraction coupling and muscle function. Obtained. Importantly, the long-term increase in long-term high adrenaline status in vivo 68 200815381

RyRl蛋白激酶A的磷酸化,將缺少穩定性calstabinl亞基 ^成肌裝網Ca2 +渗漏與肌肉疲勞。再者,這些發現可擴展 至活體内的疲勞動物模式。因此,肌肉持續表現時的交感 神經系統持續活化促成疲勞發展的提高與萎縮性骨胳肌傷 害。既然21天激烈運動後骨骼肌RyRl Ca2 +釋出通道係經 蛋白激麵A過度鱗酸化並缺少穩定性calstabinl亞基,盆 中相似的改變可造成心臟衰竭動物中的細胞内Ca2 +渗漏, 那麼長時間(大於1星期)形式的運動可能會造成有害的細 胞内Ca2+滲漏(經由有缺陷的RyRl通道)。 一態樣中,本發明建立長時間持續肌肉表現而發生肌 肉疲勞之分子機制。在另一態樣中,本發明藉由施用新穎 的1,4·苯并硫氮呼衍生物提供治療或預防有害的細胞内 Ca2+滲漏與肌肉傷害之方法。骨骼肌理阿諾鹼受體(RyR1) 通道係由4個RyRl亞基與相關之蛋白(結合於通道的細胞 質功旎區)形成一大分子訊號複合物。本發明某些態樣檢驗 經由異位調節子(allosteric modulator)調控RyR1功能的 機制。檢查兩個特定形式的異位調節\1)eAMp依賴性蛋 白激酶A (PKA)對通道的調控,其有效地活化通道閘控; 2)在交感神經系統的長期活化(由於激烈、持續性運動)造 成蛋白激酶A磷酸化長期提高時,RyRl通道缺少穩定性 亞基 calstabinl。 持續運動時RyRl的蛋白激酶A調控失常可造成細胞 内的Ca2 +滲漏,並可能為肌肉疲勞提高與萎縮性重組的機 69 200815381 制。在某些態樣中,本發明測定疲勞運動對下列的影響: 1) RyRl的蛋白激酶A礙酸化;2) RyRl通道功能,利用 將RyRl通道再組成於雙脂質膜中檢驗之;3) Calstabinl 與RyRl的結合;4)經分離之肌原纖維中的細胞内Ca2+火 花波;5)經分離的骨骼肌功能;6)粒腺體的完整性;7)活 體内運動表現;8)骨骼肌組織學、纖維組成類型與氧化能 力;9)肌酸激酶(CK)血漿含量;10)白血球中RyRl的蛋白 激酶A構酸化與calstabinl的缺少。長時間持續運動時的 calstabinl缺少與蛋白激酶A的過度磷酸化造成RyRl過度 活化、細胞内Ca2 +滲漏、肌漿網Ca2 +儲存量的減少、疲勞 的加速與肌肉萎縮性重組。 在某些實施例中,以任何RyCal化合物治療可使RyR 功能異常與細胞内Ca2 +滲漏正常化。在心臟衰竭模式與激 烈運動時,RyRl係受到蛋白激酶A (PKA)過度磷酸化且為 「滲漏式」,在RyCal化合物治療後RyRl可再結合 calstabinl,該RyCal化合物使心臟衰竭中的單一通道正常 化並改善肌肉效能。RyCals可能可在活體内與以RyCais 治療的細胞中預防持續運動時的細胞内Cah滲漏並使 RyRl通道功能正常化。 藉由預防RyRl的Ca2+滲漏,RyCal化合物可改善激 烈運動(如同發生格鬥)時的骨骼肌疲勞與萎縮性重組Y藉 由應用小鼠與大鼠中的兩種肌肉疲勞動物模式(游泳與: 車上跑步),本發明某些態樣顯示以RyCal化合物治療可預 70 200815381 防RyRl缺少calstabinl,而這減少肌肉疲勞、改善表現並 抑制肌肉萎縮性重組。 本發明某些態樣確認中第1型萎縮性肌強直中肌肉疲 勞的分子機制。在某些實施例中,Ry Cal化合物藉由預防 RyRl的Ca2 +滲漏而改善萎縮性肌強直小鼠模式中的骨骼 肌疲勞時間與萎縮性重組。 本發明其他態樣描述基因小鼠模式中疲勞分子機制的 特徵。在某些實施例中,可應用calstabinl與PDE4D3剔 除小鼠以進一步探究持續運動狀態時造成細胞内Ca2 +滲漏 的疲勞分子機制與功能失常。在其他態樣中,本發明之化 合物減少鈣激活蛋白酶的活性。在其他態樣中,本發明之 化合物減少血漿肌酸激酶的活性。 本發明其他態樣描述交感神經系統長期活化時(如同 發生於持續運動與/或格鬥中),造成細胞内鈣離子(Ca2 + ) 釋出通道不穩定之機制的特徵。骨骼肌理阿諾鹼受體 (RyRl)有兩種異位調節子,一者為蛋白激酶A而另一者為 通道的穩定性蛋白亞基(calstabinl)(Wehrens et al·, 2004)。本發明其他態樣揭示治療性與預防性測量,其中使 calstabinl再結合的藥劑可藉由使骨骼肌理阿諾鹼受體 (RyRl)閘控正常化而預防骨骼肌疲勞。已知交感神經系統 長期活化時’造成肌漿網ca2+滲漏之RyRl的蛋白激酶 A(PKA)過度磷酸化為疲勞的起因之一(Reiken et al.? 2003),而這現象可由 JTV519 逆轉(Wehrens et al,2〇〇5)。 71 200815381 在某二態樣中,本發明提供:激烈運動對RyRl Ca2 +滲漏 70 特性描述,活體内與活體外(ex Wvo)肌肉表現 與此里代謝;使用RyCal化合物克服肌肉疲勞與在激烈和 /或持績運動時避免肌肉傷害與/或疲勞的方法,以及使用 y 化&物預防與骨絡肌功能不正常或任何疾病症狀相 關之肌肉傷害與/或疲勞的方法。 本發明某些態樣描述造成細胞内鈣離子(Ca2 + )釋出通 道關閉狀態不穩定之機制的特徵,其為肌肉放鬆所必須且 可避免肌原纖維受到不受控制的細胞内肌漿網Ca2+滲漏之 傷害。強迫與持續運動時交感神經系統的長期活化造成 RyRl的蛋白激辦A過度嶙酸化、缺少calstabinl與伴隨著 肌漿網Ca2 +滲漏的通道關閉狀態缺陷。既然格鬥中的壓力 與身體表現明顯比動物使用方案更為嚴厲,可以推斷 的Ca2 +滲漏所引起之肌肉疲勞與萎縮性衰退在作戰者中表 現出更嚴重的表現型。重點在骨骼肌理阿諾鹼受體(RyR1) 的兩種異位調節子’ 一者為蛋白激酶A(為重要的壓力途徑) 而另一者為通道的穩疋性蛋白亞基(calstabinl)。 本發明某些態樣提出潛在的治療與預防測量,其中使 clastabinl再結合的藥劑分子可藉由讓骨骼肌理阿諾鹼受 體(RyRl)閘控正常化而預防骨骼肌疲勞。已知交感神經系 統長期活化時,造成肌漿網Ca2+滲漏之RyRl的蛋白激酶 A(PKA)過度磷酸化為疲勞的起因之一(wehrens XH, Lehnart SE, Reiken S5 et Enhancing calstabin binding 72 200815381 to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA· Jul 5 2005;102(27):9607-9612 ; Ward CW? Reiken S,Phosphorylation of RyRl protein kinase A will lack the stability of the calstabinl subunit ^ into the muscle network Ca2+ leakage and muscle fatigue. Furthermore, these findings can be extended to fatigue animal models in vivo. Therefore, sustained activation of the sympathetic nervous system during sustained muscle performance contributes to an increase in fatigue development and atrophic skeletal muscle injury. Since the skeletal muscle RyRl Ca2 + release channel is excessively sulphated by protein A and lacks the stable calstabinl subunit after 21 days of intense exercise, similar changes in the pot can cause intracellular Ca2+ leakage in heart failure animals. So long (more than 1 week) form of exercise can cause harmful intracellular Ca2+ leakage (via defective RyRl channels). In one aspect, the present invention establishes a molecular mechanism by which muscle fatigue occurs over a long period of time. In another aspect, the invention provides a method of treating or preventing deleterious intracellular Ca2+ leakage and muscle damage by administering a novel 1,4-benzothiazepine derivative. The skeletal muscle anodine receptor (RyR1) channel system forms a macromolecular signal complex from four RyRl subunits and related proteins (binding to the cytoplasmic region of the channel). Certain aspects of the invention examine the mechanism by which the function of RyR1 is regulated via an allosteric modulator. Examination of two specific forms of ectopic regulation\1) eAMp-dependent protein kinase A (PKA) regulation of the channel, which effectively activates channel gating; 2) long-term activation of the sympathetic nervous system (due to intense, sustained motion) When the protein kinase A phosphorylation is increased for a long time, the RyRl channel lacks the stable subunit calstabinl. RyRl's protein kinase A dysregulation during continuous exercise can cause intracellular Ca2+ leakage and may be a mechanism for increased muscle fatigue and atrophic recombination. In some aspects, the present invention measures the effects of fatigue on the following: 1) RyRl protein kinase A acid cleavage; 2) RyRl channel function, assayed by reconstituting RyRl channels in a double lipid membrane; 3) Calstabinl Binding to RyRl; 4) intracellular Ca2+ spark waves in isolated myofibrils; 5) isolated skeletal muscle function; 6) granular gland integrity; 7) in vivo motor performance; 8) skeletal muscle Histology, fiber composition type and oxidative capacity; 9) Creatine kinase (CK) plasma content; 10) Protein kinase A structuring of RyR1 in white blood cells and lack of calstabinl. Calstabinl deficiency and prolonged phosphorylation of protein kinase A cause prolonged activation of RyR1, intracellular Ca2+ leakage, decreased sarcoplasmic reticulum Ca2+ storage, accelerated fatigue, and muscle atrophic reorganization. In certain embodiments, treatment with any RyCal compound can normalize RyR dysfunction and intracellular Ca2+ leakage. In heart failure mode and intense exercise, RyRl is hyperphosphorylated by protein kinase A (PKA) and is "leakage". RyRl can recombine calstabinl after treatment with RyCal compounds, a single channel in heart failure. Normalize and improve muscle performance. RyCals may prevent intracellular Cah leakage during continuous exercise and normalize RyRl channel function in cells treated with RyCais in vivo. By preventing Ca2+ leakage from RyRl, RyCal compounds can improve skeletal muscle fatigue and atrophic recombination of Y during intense exercise (like fighting) by applying two muscle-fatigue animal models in mice and rats (swim with: Running on the car, some aspects of the invention show that treatment with RyCal compounds can be pre-70 200815381 anti-RyRl lacks calstabinl, which reduces muscle fatigue, improves performance and inhibits muscle atrophic reorganization. The molecular mechanism of muscle fatigue in Type 1 atrophic myotonia is confirmed in certain aspects of the present invention. In certain embodiments, the Ry Cal compound improves skeletal muscle fatigue time and atrophic recombination in atrophic myotonic mouse mode by preventing Ca2+ leakage of RyRl. Other aspects of the invention describe the characteristics of the molecular mechanism of fatigue in a mouse model of genes. In certain embodiments, calstabinl and PDE4D3 knockout mice can be applied to further explore the fatigue molecular mechanisms and dysfunctions that cause intracellular Ca2+ leakage during sustained motion. In other aspects, the compounds of the invention reduce the activity of calcium activating proteases. In other aspects, the compounds of the invention reduce plasma creatine kinase activity. Other aspects of the invention characterize the mechanism by which the intracellular calcium ion (Ca2+) release channel is unstable during long-term activation of the sympathetic nervous system (as occurs in continuous motion and/or combat). The skeletal muscle anodine receptor (RyRl) has two ectopic regulators, one being protein kinase A and the other being the channel-stable protein subunit (calstabinl) (Wehrens et al., 2004). Other aspects of the invention disclose therapeutic and prophylactic measurements in which an agent that recombines calstabinl prevents skeletal muscle fatigue by normalizing the skeletal muscle aromatine receptor (RyRl). It is known that the hyperphosphorylation of protein kinase A (PKA) of RyR1, which causes sarcoplasmic reticulum ca2+ leakage, is one of the causes of fatigue during long-term activation of the sympathetic nervous system (Reiken et al.? 2003), and this phenomenon can be reversed by JTV519 (Reiken et al.? 2003) Wehrens et al, 2〇〇5). 71 200815381 In a second aspect, the present invention provides: a description of RyRl Ca2 + leakage 70 characteristics of intense exercise, in vivo and ex vivo (ex Wvo) muscle performance and metabolism therein; use of RyCal compounds to overcome muscle fatigue and is intense And/or methods of avoiding muscle damage and/or fatigue during exercise, and methods of preventing muscle damage and/or fatigue associated with abnormal skeletal muscle function or any disease symptoms using y chemical & Certain aspects of the invention characterize the mechanism by which the intracellular calcium ion (Ca2+) release channel is unstable, which is necessary for muscle relaxation and avoids uncontrolled intracellular sarcoplasmic reticulum Ca2+ leakage damage. Long-term activation of the sympathetic nervous system during forced and sustained exercise caused RyRl's protein to over-cyanate, lack of calstabinl and channel closure state defects associated with sarcoplasmic reticulum Ca2+ leakage. Since the stress and physical performance in combat are significantly more severe than those in animal use, it can be inferred that the muscle fatigue and atrophic decline caused by Ca2+ leakage show a more serious phenotype among the fighters. One of the two ectopic regulators of the skeletal muscle alkaloid receptor (RyR1) is protein kinase A (which is an important stress pathway) and the other is the channel-stable protein subunit (calstabinl). Some aspects of the present invention suggest potential therapeutic and prophylactic measurements in which clastabinl recombined agents can prevent skeletal muscle fatigue by normalizing skeletal muscle receptors (RyRl). It is known that when the sympathetic nervous system is activated for a long time, the hyperphosphorylation of protein kinase A (PKA) of RyR1 causing sarcoplasmic reticulum Ca2+ leakage is one of the causes of fatigue (wehrens XH, Lehnart SE, Reiken S5 et Enhancing calstabin binding 72 200815381 to Ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA· Jul 5 2005;102(27):9607-9612 ; Ward CW? Reiken S,

Marks AR,et al. Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats. Aug 2003; 17(1 1):1517-1 519)。本發明某些態 樣係關於激烈運動對 RyRl Ca2+滲漏影響的完整特性描 述;活體内與活體外(d W v ο)肌肉表現與能量代謝;以及 使用RyCal化合物以改善肌肉疲勞時間、提高運動能力與 預防激烈、持續運動時與/或之後的運動傷害。 心臟衰竭患者的生活品質與預後(prognosis)由於骨骼 肌功能失常(例如,由於橫隔肌虛弱的呼吸短促以及由於四 肢骨赂肌疲勞的運動不耐性)而減低(Harrington et al· 1997)。近期研究已經確認細胞内Ca2 +釋出(自肌漿網)的調 控失常為造成心臟衰竭中骨骼肌功能失常的病理機制 (Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol· Mar 17 20 03; 160(6) :919-92 8.; Ward, 2003 ; Perreault CL,Marks AR, et al. Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats. Aug 2003; 17(1 1): 1517-1 519). Some aspects of the invention are described in terms of the full characterization of the effects of intense exercise on RyRl Ca2+ leakage; in vivo and in vitro (d W v ο) muscle performance and energy metabolism; and the use of RyCal compounds to improve muscle fatigue time and exercise Ability and prevention of intense, sustained exercise and/or subsequent sports injuries. The quality of life and prognosis of patients with heart failure are reduced by skeletal muscle dysfunction (eg, shortness of breath due to weak diaphragm muscles and exercise intolerance due to muscle fatigue in the quadrilateral muscles) (Harrington et al. 1997). Recent studies have confirmed that intracellular Ca2+ release (from sarcoplasmic reticulum) is a pathological mechanism that causes skeletal muscle dysfunction in heart failure (Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release). Channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol· Mar 17 20 03; 160(6): 919-92 8.; Ward, 2003; Perreault CL,

Gonzalez -Serratos H,Litwin SE,et al. Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure· iies· Aug 1 993 ;73 (2) :405-4 1 2)。心肌梗 73 200815381 塞(myocardial infarct)動物中的心臟衰蝎造成明顯加速的 疲勞,疲勞係骨骼肌固有的,測量方式為強直性力量低於 最大收縮力50%的時間(Reiken,2003)。 骨胳肌RyRl經蛋白激酶A過度磷酸化且缺少 calstabin1 先前研究已經在節律器引起的心臟衰竭犬科模式與心 肌梗塞後大鼠模式中證實骨骼肌RyRl通道係經蛋白激酶 A 過度構酸化並缺少 calstabinl(Reiken et ai 2003 ; Ward et al·,2003)。再者,在心肌梗塞後心臟衰竭的小鼠模式 中’比目魚肌中的RyRl係經蛋白激酶A過度磷酸化。在 某些實施例t,以RyCal化合物治療可使calstabinl再結 合於RyRl (即便處於激烈的長時間運動)。 當運動或壓力(攻擊或逃避反應)需要提高的肌肉表現 時,沒-腎上腺素刺激可提高所獲得的興奮收縮耦聯。兒茶 酚胺結合於沒-腎上腺素受體可活化G·蛋白耦聯的細胞内 訊號傳遞(signaling cascade),其導致細胞内cAMp濃度的 提高並活化蛋白激酶A (PKA)。蛋白激酶A經由mAKAP 結合於RyRl,其與骨骼肌Ca2+釋出通遒形成一訊號複合 體(Reiken et al. 2003)。蛋白激酶A填酸化RyRl可提高通 道開啟率與肌漿網Ca2 +釋出(Reiken et ai.,2003; Wehrens et al·,2004)。 74 200815381 骨骼肌肌原纖維的數據已經證實激烈運動後RyR 1活 性提高造成的細胞内Ca2+滲漏與肌漿網Ca2 +釋出最大速 度的提高相符。蛋白激酶A過度磷酸化RyR 1造成通道複 合體因對 calstabinl結合親合力的減少而缺少 calstabinl (FKBP12)。RyRl通道複合體長期缺少calstabinl在持續高 腎上腺素狀態時減輕通道的内生性抑制並引起不受控制的 細胞内Ca2 +滲漏與減少疲勞耐受性。心臟衰竭患者與心臟 衰竭動物模式中的骨胳肌疲勞係增加的(Reiken et al.5 ( 2003 ; Harrington et al.,1 997 ; Perreault et al., 1 993; Lunde et al. 2001 ; Lunde et al. 1 99 8)。在具有心臟衰竭的患者與 動物兩者中,發現骨骼肌RyRl通道等型係經蛋白激酶A 過度磷酸化並缺少穩定性calstabinl亞基(Reiken et al., 2003 ; Wehrens et al·,2004)。疲勞提高與 RyRl 過度麟酸 化伴隨著心臟衰竭動物的骨骼肌原纖維中Ca2+火花波頻率 的提高以及Ca2+火花波振幅的減少,這符合於細胞内Ca2 + 滲漏與肌漿網Ca2+濃度的減少(Reiken et al·,2003)。因 此,長期高腎上腺素狀態所造成的肌肉疲勞最有可能經由 i RyRl通道缺陷造成細胞内的 Ca2+滲漏(Reiken et al., 2003) 〇 然而,需了解哺乳類骨骼肌收縮中外部Ca2 +離子的作 用尚未完全清楚。骨絡肌與心肌中的LTCC與RyR等型係 不同的,其中骨骼肌表現LTCC ocls亞基(Tanabe et al.5 1988)與 RyRl (Marks et al·,1 989)而心肌表現 LTCC alc 亞 基(Mikami et al·,1989)與 RyR2(Nakai et al·,1990)。骨絡 75 200815381 肌中的RyRl並不依賴經由LTCC als的Ca2+流入即可活 化肌漿網Ca2 +釋出,證據為當移除外部以卜或Ca2 +通道阻 擔劑存在時骨絡肌細胞中持續的興奮收縮耦聯(Armstr〇ng et al.5 1972 ; Dulhunty et al.5 i 988 ; Gonzalez-Serratos et al·,1982)。之後的實驗發現支持RyRi的活化係經由與 LTCC als 物理耦聯(Ri〇s et al·,1987 ; Tanabe et al·, 1 9 90)。RyRl的Ca2 +滲漏可能提高細胞的能量需求,補償 性肌漿網Ca2+ ATP酶消耗更多ATP,可能造成早期的骨骼 肌疲勞。在收縮肌肉表面上直接測量氧氣,估計心臟衰竭 中肌聚網Ca2+ ATP酶消粍之ATp整體含量的明顯提高 (Meyer et al·,1 998)可能係由於細胞内的ca2 +滲漏。符合 因為RyRl的Ca2 +滲漏而降低的肌漿網ca2+濃度,專一性 剔除肌肉的calstabinl提高LTCC Ca2 +流入並減少電壓閘 控式細胞内Ca2 +釋出的最大量(Tang et al.,2004)。 近期研究已經證實心臟衰竭時骨骼肌中RyRl通道的 功能缺陷,相似於衰弱心肌中RyR2通道發現的現象:RyR1 的蛋白激酶A過度構酸化與缺少calstabinl (Marx et al·, 2000 ; Reiken et al·,2003 ; Wehrens et al·,2005)。這些發 現證實RyRl功能的缺陷改變細胞内的Ca2 +處理,因而造 成骨骼肌的早期疲勞。RyRl大分子複合物缺少calstabinl 亦可使通道與另一通道解輕聯(uncouple)並容許與耦聯閘 控相反的隨機(opposed)閘控(Marx et al·,1998),因此提供 引人注目的假說以解釋低疲勞财性骨絡肌中變樣的C a 2 +火 化波行為(Ward et al.,2003)。因此,RyRl中的改變可在 76 200815381 骨骼肌特定的力量減少 模式中所見之)中扮演重 與運動耐性的降低(机肉疲 要角色。 勞提而 友法 有氧運動可定絲4a古 OI ^ 疋義為一種k咼心跳速率以及辦 入以改善表現的身體運動形式。有氧運 ; 騎腳踏車與游泳。在某些實施例中…0分鐘有氧 迫性游泳)每天要求小鼠兩次。動物在初步培訓課程 泳二開始前3天,30分兩次;開始前2天,45分兩Gonzalez -Serratos H, Litwin SE, et al. Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure· iies· Aug 1 993 ;73 (2) :405-4 1 2). Myocardial infarction 73 200815381 Heart failure in myocardial infarct animals causes significantly accelerated fatigue, which is inherent in fatigue skeletal muscle and measured in a manner that the tonic force is less than 50% of the maximum contractile force (Reiken, 2003). Skeletal muscle RyR1 is hyperphosphorylated by protein kinase A and lacks calstabin1. Previous studies have demonstrated that skeletal muscle RyR1 channel is over-acidified by protein kinase A in rat model of heart failure induced by rhythm and in rat model of myocardial infarction Calstabinl (Reiken et ai 2003; Ward et al., 2003). Furthermore, in the mouse model of heart failure after myocardial infarction, the RyR1 line in the soleus muscle is hyperphosphorylated by protein kinase A. In certain embodiments t, treatment with a RyCal compound allows calstabinl to recombine with RyRl (even in intense prolonged exercise). When exercise or stress (attack or escape response) requires improved muscle performance, no-adrenalin stimulation increases the excitatory contraction coupling obtained. The catechol phenolamine binds to the no-adrenergic receptor to activate the intracellular signalling cascade of G-protein coupling, which leads to an increase in intracellular cAMp concentration and activation of protein kinase A (PKA). Protein kinase A binds to RyRl via mAKAP, which forms a signal complex with skeletal muscle Ca2+ release (Reiken et al. 2003). Protein kinase A is acidified by RyRl to increase channel opening rate and sarcoplasmic reticulum Ca2+ release (Reiken et ai., 2003; Wehrens et al., 2004). 74 200815381 Data on skeletal muscle myofibrils have confirmed that intracellular Ca2+ leakage caused by increased RyR 1 activity after intense exercise is consistent with the maximal rate of sarcoplasmic reticulum Ca2+ release. Protein kinase A hyperphosphorylation of RyR 1 results in a lack of calstabinl (FKBP12) in the channel complex due to a decrease in calstabinl binding affinity. The long-term lack of calstabinl in the RyRl channel complex alleviates endogenous inhibition of the channel and causes uncontrolled intracellular Ca2+ leakage and reduced fatigue tolerance in the sustained high adrenaline state. Increased skeletal muscle fatigue in heart failure patients and heart failure animal models (Reiken et al. 5 (2003; Harrington et al., 1 997; Perreault et al., 1 993; Lunde et al. 2001; Lunde et Al. 1 99 8). In both patients with heart failure and animals, the skeletal muscle RyR1 channel isoform was found to be hyperphosphorylated by protein kinase A and lacks the stable calstabinl subunit (Reiken et al., 2003; Wehrens Et al., 2004). Fatigue improvement and RyRl over-linarization are accompanied by an increase in the Ca2+ spark wave frequency and a decrease in the Ca2+ spark wave amplitude in skeletal muscle fibrils of heart failure animals, which is consistent with intracellular Ca2+ leakage and muscle. Reduced Ca2+ concentration in the plasma network (Reiken et al., 2003). Therefore, muscle fatigue caused by long-term high adrenergic state is most likely to cause intracellular Ca2+ leakage via i RyRl channel defects (Reiken et al., 2003) However, it is not fully understood that the role of external Ca2+ ions in the contraction of mammalian skeletal muscle is not clear. The LTCC and RyR lines in the skeletal muscle and myocardium are different, and the skeletal muscle exhibits the LTCC ocls subunit. Tanabe et al. 5 1988) and RyRl (Marks et al., 1 989) and myocardium exhibit LTCC alc subunit (Mikami et al., 1989) and RyR2 (Nakai et al., 1990). Bone collateral 75 200815381 In muscle RyRl does not rely on Ca2+ influx through LTCC als to activate sarcoplasmic reticulum Ca2+ release, evidenced by persistent excitatory contraction coupling in skeletal muscle cells when externally removed or Ca2+ channel inhibitors are removed (Armstr〇ng et al. 5 1972; Dulhunty et al. 5 i 988; Gonzalez-Serratos et al., 1982). Subsequent experiments found that the activation system supporting RyRi is physically coupled to LTCC als (Ri〇s et al ·, 1987; Tanabe et al., 1 9 90). Ca2+ leakage from RyRl may increase the energy requirement of cells, compensating sarcoplasmic reticulum Ca2+ ATPase consumes more ATP, which may cause early skeletal muscle fatigue. Oxygen was measured directly on the muscle surface, and a significant increase in the overall content of ATp in the myoglobin Ca2+ ATPase in heart failure (Meyer et al., 1 998) was estimated to be due to intracellular Ca2+ leakage. Consistent with the decrease in sarcoplasmic reticulum ca2+ concentration due to Ca2+ leakage from RyRl, calstabinl, which specifically removes muscle, increases LTCC Ca2+ influx and reduces the maximum amount of Ca2+ release in voltage-gated cells (Tang et al., 2004) ). Recent studies have demonstrated functional deficits in the RyR1 channel in skeletal muscle during heart failure, similar to those found in the RyR2 channel in debilitated myocardium: protein kinase A over-acidification of RyR1 and lack of calstabinl (Marx et al., 2000; Reiken et al. , 2003; Wehrens et al., 2005). These findings confirm that defects in RyRl function alter intracellular Ca2+ treatment, resulting in early fatigue of skeletal muscle. The lack of calstabinl in the RyRl macromolecular complex also allows the channel to be uncoupled from the other channel and allows for the opposite of the gated control (Marx et al., 1998), thus providing compelling attention. Hypothesis to explain Ca 2 + cremation wave behavior in low-fatigue skeletal muscle (Ward et al., 2003). Therefore, the changes in RyRl can be reduced in weight and exercise tolerance in the skeletal muscle-specific power reduction mode of 76 200815381 (the machine is tired of the role of the body. The Latitude and the aerobic exercise can be fixed 4a ancient OI ^ Derogatory is a k咼 heart rate and a form of body movement that is done to improve performance. Aerobic; riding a bicycle and swimming. In some embodiments... 0 minutes aerobic swimming) requires twice a day for mice . Animals in the initial training course 3 days before the start of the swimming 2, 30 points twice; 2 days before the start, 45 points two

始刖1天,60分兩汝·叫从A 啊人,開始當天與接下來均為9〇 ^ 接著小鼠每天運動分鐘兩次持續卜7或21天ρ 游泳課程之間…時休息期間,使小鼠保持溫暖 食物與水分。使用可調式流動水箱藉由游泳使小鼠 以水充填丙烯酸製水箱(長90公分;寬45公分;$ 刀)至25公分的深度。以泵浦產生水箱中的流動。 ί時的水流速度維持在1升/分的流速。以加熱器將 持在3 4 〇使用適當年紀與重量的小鼠以排除身體 力的差異。 使用強迫式游泳作為一有效方案以提高小鼠骨 有氧運動能力(Evangelista et al·,2003),研究骨骼 複合體的組成與磷酸化狀態。意外地,每天游泳90 長達3周之後,C57B16野生螌小鼠顯示明顯提高s 磷酸化(藉由蛋白激酶A)然而CaMKII磷酸化並無 氧氣吸 跑步、 I動(強 適應游 次;開 兩次。 上。在 並給予 運動。 ί 45公 游泳課 水温維 脂肪浮 骼肌的 肌通道 分兩次 RyR2 改變。 77 200815381One day, 60 minutes, two 汝, called from A, the beginning of the day and the next are 9 〇 ^ Then the mice exercise twice a day for 2 or 21 days ρ swimming between classes... during the break, Keep mice warm and watery. Using a tunable mobile water tank, the mice were filled with water in an acrylic water tank (90 cm long; 45 cm wide; $knife) to a depth of 25 cm. Pumping creates a flow in the tank. The water flow rate at ί is maintained at a flow rate of 1 liter/min. Use a heater to hold the appropriate age and weight of the mice at 3 4 以 to rule out differences in physical strength. Forced swimming was used as an effective protocol to improve the aerobic exercise capacity of mice (Evangelista et al., 2003) to study the composition and phosphorylation status of skeletal complexes. Unexpectedly, after swimming for 90 weeks for 3 weeks, C57B16 wild sputum mice showed a significant increase in s phosphorylation (by protein kinase A), whereas CaMKII phosphorylation did not have oxygen to absorb running, I move (strongly adapt to the tour; open two On. And give exercise. ί 45 public swimming class water temperature fat fat skeletal muscle muscle channel divided into two RyR2 changes. 77 200815381

RyRl蛋白表現穩定,但是RyRl通道缺少穩定性亞基 calstabinl (FKBP 1 2)。RyRi 過度磷酸化與缺少 calstabin 1 與造成細胞内Ca2 +滲漏的滲漏型RyRi通道相符。 爲了研究持續運動的持續時間對RyRl Ca2 +釋出通道 缺陷的影響,小鼠接受游泳長達丨、7或21天之後立即犧 牲(sacrifice)。接受較長的持續運動顯示RyRl的蛋白激酶 A過度磷酸化明顯的提高,開始於第7天益在第2 1天達到 飽和。 此外’研究已知造成細胞内Ca2+滲漏與萎縮性肌肉變 化的肌肉萎縮症小鼠模式。令人意外地,缺少肌縮蛋白 (dystrophin)之 m办小鼠的比目魚肌顯示其在The RyR1 protein is stable, but the RyRl channel lacks the stable subunit calstabinl (FKBP 1 2). RyRi hyperphosphorylation and lack of calstabin 1 are consistent with leaky RyRi channels that cause intracellular Ca2+ leakage. To investigate the effect of duration of continuous exercise on RyRl Ca2+ release pathway defects, mice received swimming for up to 7 days, immediately after 7 or 21 days of sacrification. Acceptance of longer sustained exercise showed a significant increase in RyRl's protein kinase A hyperphosphorylation, which began on day 7 and reached saturation on day 21. In addition, studies have been conducted on mouse models of muscle wasting that are known to cause intracellular Ca2+ leakage and atrophic muscle changes. Surprisingly, the soleus muscle lacking dystrophin showed that it was

RyRl_Ser2844構酸化沒有提高的情況下缺少calstabinl。 這些結果證實RyRl-Ser2844的蛋白激酶A過度磷酸化為 運動引起的RyRl功能失常之特定結果。 同時,描述接受3周運動(游泳)小鼠之快縮肌 (fast-twitch muscle)中組織學變化的特徵。小鼠伸趾長肌 (M. exiewor心/Mgw, EDL)的橫切面顯示組織學 變化符合於細胞内Ca2+過度負载(起因於RyRl通道缺陷) 造成的肌原纖維衰退。因此,每天兩次9〇分的持續運動引 起正常C57B16小鼠伸趾長肌中的萎縮表現型。 cAMP依賴性訊號途徑提高(Up-regUiati〇n)細胞内肌 漿網Ca2+釋出可增加肌肉尖端表現時所獲得的興奮收縮耦 78 200815381 聯(Reiken,2003)。因此,骨骼肌RyR1 Ca2 +釋出通道暫時 的蛋白激酶A構酸化作為攻擊或逃避反應的重要機制。研 究已經證實RyRl Ca2 +釋出通道的功能失常發生於激烈疲 勞性運動。接受嚴厲運動長達3週的小鼠顯示RyR 1的蛋 白激酶A磷酸化程度明顯提高、RyRi通道活性的提高以 及萎縮性的組織變化。長期RyR1過度磷酸化造成缺少穩 定性calstabinl、通道功能性缺陷,暗示著細胞内的Ca2 + 滲漏。在肌肉細胞水平上,這模式最近證實於肌疲勞運動 之後小鼠骨骼中Ca2+火花波頻率提高之報導(Wang et al·, 2005)。再者,長時間運動的細胞内Ca2+滲漏在哺乳類骨骼 肌中扮演著營養不良的訊號(Wang,2005)。這證實先前心 肌中的發現,其中荷爾蒙與構造的改變促成引發興奮收縮 耦聯缺陷的細胞内 Ca2+滲漏(Gomez,1997)。由這些研究 (Wehrens et al·,2005; Reiken etal.,2003)與疲勞肌肉中 的〇&2+火花波數據(冒&1^61&1.,20 05)可推斷,細胞内〇&2 + 滲漏可能為促進肌肉疲勞與造成肌肉萎縮性重組的重要病 變。因此,擴大疲勞模式研究於活體内、分離的肌肉、肌 肉細胞、粒腺體與單一 RyRl通道的程度,將描述尖端表 現時在肌肉疲勞與萎縮性重組上有害效應的特性。 1,4 -苯弁硫氮呼衍生物在交感神經糸統持續活化(發 生於心臟衰竭)的狀態下,可預防肌肉功能失常免於細胞内 Ca2 +滲漏(Wehrens et al·,2005)。在某些態樣中,本發明提 供RyCal化合物與其用途以在持續壓力(如同發生於袼鬥 狀態)時提高骨骼肌表現並減少肌肉功能失常。由於蛋白激 79 200815381 酶A的調控失常造成的RyRi Ca2+釋出通道中之缺陷使一 種治療概念合理化:可藉由能提高穩定性calstabul亞基 對RyRi通道複合體結合力的藥劑預防細胞内肌漿網Ca2+ 滲漏與肌肉功能失常,並因此抑制起因於持續壓力或運動 的肌漿網Ca2 +滲漏與肌肉萎縮性重組。施用藥劑以預防肌 漿網Ca2+滲漏可因此提高許多種重要生理能力(這些能力 易於在壓力下功能失常)。在某些態樣中,本發明提供以 Rycai化合物提高caistabinl對RyR1的結合來預防肌肉疲 《,勞。使用生理性(游泳與踏車上跑步)與/或藥理性(卜腎上腺 素:體興奮劑)活化交感神經系統搭配不同程度運動的動 物模式’可試驗RyCal化合物是否能改善骨骼肌功能並預 防肌肉萎縮性衰退。這可導向以異位調節RyR 1為基礎的 藥物學方法,該調節造成持續壓力時人類表現的改善並預 防有害的組織傷害因而縮短回復時間。在其他態樣中,本 發明k供以異位調節RyRl為基礎的藥物學方法,該調節 ^成持續壓力時人類表現的改善並預防有害的組織傷害因 而縮短回復時間。 \ · gj.R 1的胥白激酶A嶙化:利用兩種獨立技術(藉 由專一性抗體偵測RyRl的蛋白激酶A含磷抗原決定基 (epitope);藉由後磷酸化(backphosphorylation)試驗將放射 性標記的磷酸鹽併入)定量持續運動長達2天、1周與3周 之後的骨路肌RyRl通道受到蛋白激酶A(PKA)磷酸化的程 度。 80 200815381 磁酸化:利用發明者實驗室開發的 專一性抗體偵測RyRl的CaMKII含磷抗原決定基以定量 持續運動長達2天、1周與3周之後的骨骼肌RyRl通道受 到Ca •攜辦蛋白(calmodulin)蛋白激酶II (CaMKII)磷酸 化的程度。這可描述長期蛋白激酶A磷酸化與/或CaMKII 訊號(起因於細胞内Ca2 +滲漏機制)的二級活化造成之特定 缺陷的特性。RyRl_Ser2844 lacks calstabinl without acidification. These results confirm the hyperphosphorylation of protein kinase A of RyRl-Ser2844 into a specific result of dysfunction of RyRl caused by exercise. At the same time, the characteristics of histological changes in the fast-twitch muscle of a 3-week exercise (swim) mouse were described. The cross-section of the mouse toe long muscle (M. exiewor heart/Mgw, EDL) showed histological changes consistent with myofibril regression caused by intracellular Ca2+ over-loading (caused by RyRl channel defects). Therefore, a continuous exercise of 9 minutes per day caused atrophy phenotype in the long toe muscle of normal C57B16 mice. Increased cAMP-dependent signaling pathway (Up-regUiati〇n) intracellular sarcoplasmic reticulum Ca2+ release increases excitatory contraction coupling when muscle tip performance is achieved. 200815381 (Reiken, 2003). Therefore, the skeletal muscle RyR1 Ca2+ release pathway transient protein kinase A acidification is an important mechanism for attack or escape response. Studies have confirmed that dysfunction of the RyRl Ca2+ release channel occurs during intense fatigue. Mice that received severe exercise for up to 3 weeks showed a significant increase in the degree of phosphorylation of protein kinase A by RyR 1, an increase in RyRi channel activity, and atrophic tissue changes. Long-term RyR1 hyperphosphorylation results in a lack of stable calstabinl, a functional deficit in the channel, suggesting intracellular Ca2+ leakage. At the muscle cell level, this pattern has recently been reported to increase the frequency of Ca2+ spark waves in mouse bone after muscle fatigue exercise (Wang et al., 2005). Furthermore, long-term intracellular Ca2+ leakage plays a role in malnutrition in mammalian skeletal muscle (Wang, 2005). This confirms the findings in previous cardiac muscles in which changes in hormones and tectonics contribute to intracellular Ca2+ leakage that triggers excitatory contraction coupling defects (Gomez, 1997). From these studies (Wehrens et al., 2005; Reiken et al., 2003) and 〇 & 2+ sparklet data in fatigue muscles (Fal & 1^61 & 1, 20 05), it can be inferred that intracellular sputum & 2 + leakage may be an important lesion that promotes muscle fatigue and causes muscle atrophic reorganization. Therefore, expanding the fatigue pattern to study the extent of in vivo, isolated muscle, muscle cells, granulocytes, and a single RyRl channel will characterize the detrimental effects of the tip on muscle fatigue and atrophic recombination. 1,4 - benzoquinone thiopurine derivatives prevent muscle dysfunction from intracellular Ca2+ leakage in the state of continuous activation of sympathetic nervous system (occurring in heart failure) (Wehrens et al., 2005). In some aspects, the present invention provides a RyCal compound and its use to increase skeletal muscle performance and reduce muscle dysfunction under sustained stress (as occurs in a fighting state). A therapeutic concept is rationalized by a defect in the RyRi Ca2+ release channel caused by aberrant regulation of the enzyme A: 200815381. The intracellular sarcoplasmic cytoplasm can be prevented by an agent that enhances the binding of the stable calstabul subunit to the RyRi channel complex. Net Ca2+ leakage and muscle dysfunction, and thus inhibition of sarcoplasmic reticulum Ca2+ leakage and muscle atrophic reorganization resulting from sustained pressure or exercise. The administration of agents to prevent sarcoplasmic reticulum Ca2+ leakage can thus enhance a number of important physiological abilities (these abilities are dysfunctional under stress). In some aspects, the invention provides for the use of a Rycai compound to increase the binding of caistabinl to RyR1 to prevent muscle fatigue. Using physiological (swim and treadmill running) and/or pharmacological (adrenalin: stimulant) to activate the sympathetic nervous system with animal models of varying degrees of exercise 'can test whether RyCal compounds can improve skeletal muscle function and prevent muscle Atrophic decline. This can lead to a pharmacological approach based on ectopic regulation of RyR 1 that results in improved human performance during sustained stress and prevents harmful tissue damage and thus reduces recovery time. In other aspects, the invention provides a pharmacological method based on ectopic regulation of RyRl, which is an improvement in human performance at sustained stress and prevents harmful tissue damage and thus reduces recovery time. \ · gj.R 1 胥 white kinase A deuteration: using two independent techniques (detection of RyRl protein kinase A phosphorus-containing epitope by specific antibody; by postphosphorylation test The radiolabeled phosphate was incorporated) to quantify the extent to which the skeletal muscle RyRl channel was phosphorylated by protein kinase A (PKA) for 2 days, 1 week, and 3 weeks. 80 200815381 Magnetic acidification: detection of the CaMKII phosphorus-containing epitope of RyR1 using a specific antibody developed by the inventor's laboratory to quantify the continuous movement of skeletal muscle RyRl channels for 2 days, 1 week and 3 weeks. The degree of phosphorylation of the protein (calmodulin) protein kinase II (CaMKII). This may characterize specific defects caused by long-term activation of protein kinase A phosphorylation and/or CaMKII signaling (caused by intracellular Ca2+ leakage mechanisms).

RyRl藉合體中缺少calstabinl :以免疫沉澱技術定量 持續運動長達2天、1周與3周之後的RyRl通道複合體上 缺少之通道穩定性亞基calstabinl (FKBP12)數量。蛋白激 酶A磷酸化Ser2843造成calstabinl缺少的發生。 民yRl功能性缺陷-發展活體内的「滲漏型」RyRl通 道:持續運動長達2天、1周與3周之後,描述RyRl單一 通道活性與開啟率的電流生理學特性。這可綜合與靈敏地 評估已知能促成肌肉疲勞的肌漿網Ca2+釋出通道缺陷與 滲漏機制。再者,這些數據將發展出一原理以利用少數 RyCal前導化合物預防性治療RyRl的Ca2 +滲漏。 持續運動之疲勞改善利用兩個獨立性運動表現試驗 (游泳與踏車上跑步)定量活體内的疲勞程度。踏車試驗將 於動物子群中搭配心電圖遙測設備(electrocardiogram telemetry)以客觀評估運動時心跳速率提高與疲勞症狀的 關係。再者,將測定血衆與肌肉的兒茶酴胺含量以證實交 感神經系統的持續活化。三週的最大疲勞性游泳運動在i 81 200815381The lack of calstabinl in the RyRl complex: quantitation of the number of channel-stable subunits calstabinl (FKBP12) lacking on the RyRl channel complex for up to 2 days, 1 week and 3 weeks by immunoprecipitation. Phosphorylation of Ser2843 by protein kinase A caused the absence of calstabinl. Functional yRl Functional Defect - Development of a "leakage" RyRl channel in vivo: Current physiologic properties describing the activity and opening rate of RyRl single channel after 2 days, 1 week and 3 weeks of continuous exercise. This provides a comprehensive and sensitive assessment of the sarcoplasmic reticulum Ca2+ release channel defects and leakage mechanisms known to contribute to muscle fatigue. Furthermore, these data will develop a principle to prophylactically treat Ca2+ leakage of RyRl using a small number of RyCal lead compounds. Continuous exercise fatigue improvement quantifies fatigue in the living body using two independent athletic performance tests (swim and treadmill running). The treadmill test will be used in the animal subgroup with electrocardiogram telemetry to objectively assess the relationship between increased heart rate during exercise and fatigue symptoms. Furthermore, the catechin content of the blood and muscles will be determined to confirm the continued activation of the sympathetic nervous system. Three-week maximum fatigue swimming in i 81 200815381

升紛(底線狀態,可避免小氣被動地漂浮)之低流速時引起 漸進式RyRl功能失常與骨骼肌萎縮性變化。爲了 定量游泳運料的疲勞時間,運關料蹤系統(vide。 tracking system)(San Diego Instruments Inc〇rporated) , A 自動地追蹤並將8隻小鼠的時間_空間移動數字化。以到達 疲累的時間評估疲勞的改善度(定義成時間上2d距離或活 動的明顯增加)。 I木運動能力上為了測定運動能力的最大耐久 性(即,到達精疲力盡的時間),一週内反覆測量三次流速 7升/分時的最長游泳時間。為了減少游泳能力的内在性差 異,將排除最大平均游泳時間變動超出平均游泳時間4〇% 以上的小鼠。當小鼠無法浮出水面呼吸將其稱作疲勞並在 此時間點挽救之。為了證實游泳之後的全身性精疲力盡, 將在肝素處理的(heparinized)動脈血管樣本中測定血漿乳 酸與PH值。為了客觀地定量強迫式游泳運動過程中的疲 勞時間’運用錄影追蹤系統(vide〇 tracking syst⑽)(8心The low flow rate of the ascending (bottom line state, which can prevent the small air from floating passively) causes progressive RyRl dysfunction and skeletal muscle atrophy. In order to quantify the fatigue time of the swimming material, the tracking system (San Diego Instruments Inc〇rporated), A automatically tracked and digitized the time_space of 8 mice. The degree of improvement in fatigue (defined as a 2d distance in time or a significant increase in activity) was assessed by the time of fatigue. In order to determine the maximum durability of exercise capacity (ie, the time to reach exhaustion), I wood exercise ability measured the longest swimming time at three flow rates of 7 liters/min. In order to reduce the intrinsic difference in swimming ability, mice with a maximum average swimming time variation exceeding the average swimming time of 4% or more will be excluded. When a mouse is unable to breathe out of the water, it is called fatigue and is saved at this point in time. To confirm systemic exhaustion after swimming, plasma lactate and pH values were determined in heparinized arterial samples. In order to objectively quantify the fatigue time during forced swimming, use video tracking system (vide〇 tracking syst(10)) (8 hearts)

Diego Instruments Incorporated),其自動地追蹤並將 8 隻 小鼠在2D平面上的時間 '空間移動數字化。 丝分離^^骨絡肌的功能:持續運動搭配安慰劑或 RyCal化合物治療長達2天、1周與3周之後,活體外 VZVC>)描述肌肉對疲勞刺激或單一牽搦(single-twitch)收縮 方案的内生抵抗性之特性。將試驗兩種不同形式經分離的 骨絡肌·伸趾長肌(exiewwr山·g/Mrwm /owgws)代表快縮肌 82 200815381 而比目魚肌猶代表慢縮肌(si〇w_twitch muscle)。此試驗可測定RyCal化合物對處於疲勞運動或疾 病狀態之骨絡肌的影響。骨骼肌收縮與舒張係重要地取決 於細胞内Ca2 +新陳代謝與RyR1功能,因此是一個高度敏 感的試驗。 星立離_ _冬骨路机原纖維中細滲漏與肌漿絪 &2 +含量:利用細胞内的Ca2+火花波評估帶有flu〇_4 Ca2 + 指示劑的經分離之骨骼肌肌原纖維的靜止期肌漿網的Ca2 + 滲漏。利用造成肌漿網自由Ca2 +群全部釋出的咖啡因脈衝 方案(caffeine pulse protocol)評估肌漿網的Ca2 +含量。先 前研究已經證實小鼠(患有心臟衰竭)肌原纖維中鈣離子滲 漏係起因於長期高腎上腺素狀態(Reiken 2003 ; Ward 2003 ; Gomez 2001 ; Cheng 1996) 〇 肌漿網的Ca2+滲漏造成粒線體完整性的改變:小鼠骨 骼肌中的粒線體在激烈生理肌肉刺激的情況下拿取Ca2+, 造成持續性提高粒線體的Ca2 +含量而刺激粒線體新陳代謝 (Rudolf et al·,2004) 〇然而,萎縮性m心小鼠的肌小管顯 示 Ca2 +攝入明顯的提高(Robert V,Massimino ML,Tosello V,et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem. Feb 16 2 001; 276(7) :464 7-465 1)。細胞質過度負載Ca2 +係一高毒性 事件,相當於細胞死亡常見的最終途徑。粒線體在細胞死 亡中扮演重要角色,且RyRl的Ca2 +釋出與粒線體Ca2 +攝 83 200815381 入的空間性鄰近關係暗示著,激烈運動時的肌漿網Ca2+滲 漏可造成粒線體Ca2 +過度負載,其對粒線體構造與功能產 生影響並可能促使細胞死亡。C a s p a s e -1 2位於肌聚網上、 受到Ca2+的調控並參與肌漿網壓力引起的細胞凋亡 (apoptosis)途逕(Y〇ne da et al·,2001)。在某些態樣中,本 發明描述疲勞運動對下列影響的特性:粒線體的膜電位, 耩由攝入若丹明123(rhodamine 123)研究之;粒線體膨脹 (表示粒線體的暫時通透性),藉由520 nm分光光度儀與光 學散射研究之;粒線體内的Ca2 +含量,藉由以45Ca2 +培養 胞器接著以液體閃爍計數器定量放射性活性而研究之;由 釋出之粒線體共同活化(coactivating)的caspase酵素測量 細胞色素 c(cytochrome c);以及肌肉標本(muscle preparation)的染色,針對TUNEL-陽性的細胞核。將評估 RyCal化合物治療對粒線體完整性與功能的活體内效應。 細胞内蛋白酶的活化使RyRl碎片化:細跑管Ca2 +水平 與細胞内目樣物的蛋白質水解之間的直接關聯係透過Ca2 + 依賴性蛋白酶(包括妈激活蛋白酶與caspase酵素)的活化 而存在。鈣激活蛋白酶活性係細胞凋亡機制的一部份。已 經在杜氏肌肉萎縮症(DMD)的小鼠模式中發現到處存在之 #5激活蛋白酶活性的提高,但肌肉專一性的鈣激活蛋白酶 無義突變(null mutation)造成 2A型肢帶型肌肉萎縮症 (LGMD2A) (Tidball et al·,2000)。這些發現指出鈣激活蛋 白酶活性的調節失常藉由破壞正常調控機制與藉由蛋白質 84 200815381 水解能力的全身性、非特定性提高促成肌肉疾病的發展。 RyRl與Ca循環機制的其他成份係caspase與辦激活蛋白 酶的目標物並由其切割之(J〇hns〇n et al, ;Diego Instruments Incorporated), which automatically tracks and digitizes the 'space' of the 8 mice on the 2D plane. Silk Separation ^^ The function of the osseous muscle: continuous exercise with placebo or RyCal compound for up to 2 days, 1 week and 3 weeks, in vitro VZVC> describes muscle to fatigue stimulation or single-twitch The endogenous resistance of the shrinkage regimen. Two different forms of isolated skeletal muscle and long toe long muscle (exiewwr mountain g/Mrwm / owgws) will be tested to represent the fast-twisting muscle 82 200815381 and the soleus muscle represents the si〇w_twitch muscle. This test measures the effect of RyCal compounds on skeletal muscles in a state of fatigue or disease. Skeletal muscle contraction and diastolic system are importantly dependent on intracellular Ca2+ metabolism and RyR1 function and are therefore highly sensitive assays.星立离___冬骨路机中纤维中细漏漏和肌浆絪&2 + content: using the intracellular Ca2+ spark wave to evaluate the isolated skeletal muscle with flu〇_4 Ca2 + indicator Ca2+ leakage from the sarcoplasmic reticulum of the fibrils. The Ca2+ content of the sarcoplasmic reticulum was assessed using a caffeine pulse protocol that caused the complete release of the free Ca2+ group of the sarcoplasmic reticulum. Previous studies have confirmed that calcium leakage in myofibrils in mice (with heart failure) is caused by long-term high adrenaline status (Reiken 2003; Ward 2003; Gomez 2001; Cheng 1996) Ca2+ leakage from the sarcoplasmic reticulum Changes in mitochondrial integrity: The mitochondria in mouse skeletal muscle take Ca2+ under intense physiological muscle stimulation, resulting in sustained increase in granulocyte Ca2+ content and stimulation of mitochondrial metabolism (Rudolf et al ·, 2004) However, the myotubes of atrophic m-heart mice show a significant increase in Ca2+ intake (Robert V, Massimino ML, Tosello V, et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem. Feb 16 2 001; 276(7): 464 7-465 1). Cytoplasmic over-loading of Ca2+ is a highly toxic event that is equivalent to the common pathway of cell death. Granulocyte plays an important role in cell death, and the spatial proximity of RyRl Ca2+ release to granulocyte Ca2+ captures 200815381 suggests that sarcoplasmic reticulum Ca2+ leakage during intense exercise can cause grain lines. Excessive Ca2+ loading, which has an effect on mitochondrial structure and function and may contribute to cell death. C a s p a s e -1 2 is located on the myopolynet, regulated by Ca2+ and involved in the apoptosis pathway induced by sarcoplasmic reticulum stress (Y〇ne da et al., 2001). In some aspects, the present invention describes the characteristics of fatigue movements on the membrane potential of mitochondria, which is studied by ingestion of rhodamine 123; mitochondrial expansion (representing mitochondria) Temporary permeability), studied by 520 nm spectrophotometer and optical scattering; Ca2+ content in the mitochondria was studied by culturing the cell with 45Ca2+ and then quantifying the radioactivity with a liquid scintillation counter; The mitochondria coactivating caspase enzyme measures cytochrome c; and the muscle preparation stains against TUNEL-positive nuclei. The in vivo effects of RyCal compound treatment on mitochondrial integrity and function will be assessed. Activation of intracellular proteases causes fragmentation of RyRl: a direct link between the level of Ca2+ and the proteolysis of intracellular substances in the cell is through the activation of Ca2+-dependent proteases, including mom activating proteases and caspase enzymes. . Calcium-activated protease activity is part of the mechanism of apoptosis. An increase in #5 activating protease activity has been observed in the mouse model of Duchenne muscular dystrophy (DMD), but the muscle-specific calcium-activating protease non-mutation mutation causes type 2A limb-type muscular dystrophy. (LGMD2A) (Tidball et al., 2000). These findings indicate that dysregulation of calcium-activated protease activity contributes to the development of muscle disease by disrupting normal regulatory mechanisms and systemic, non-specific increases in the ability to hydrolyze protein 84 200815381. The other components of the RyRl and Ca cycling mechanisms are caspase and the target of the activin enzyme and are cleaved by it (J〇hns〇n et al, ;

Shevchenko et al·,1 998)。因此,發明者將研究激烈運動 後Ca2 +依賴性蛋白酶與/或caspase的活性是否造成心以 的斷裂,以及JTV519藉由抑制肌漿網Ca2+滲漏是否可避 免、非特定性蛋白質水解的活化。 勞性運動之骨骼肌的組織學# 續運動 的萎縮性變化可造成肌肉纖維壞死與漸進式肌肉衰弱與虛 弱。骨胳肌的組織學研究包括下列之分析:嗜依紅性 (eosinophilic)過度收縮的肌肉纖維、壞死纖維、進行中的 肌肉再生、以及肌肉組織中的纖維母細胞增殖,因為肌肉 組織被結締組織取代(纖維化)係永久性肌肉虛弱的主因。 因此’可試驗Ry Cal化合物對這些變化的抑制性。傳統的 組織學技術可評估纖維大小、裂膜纖維(split fiber)與集中 型細胞核内的變化性。 藉由組總化學分析分類骨骼肌中的纖錐:歷史上,最 廣泛使用的纖維類型分類法係根據mATP酶(肌原纖維腺 核苷三磷酸酶)活性,藉由組織化學方法可分辨第I型(低 活性)與第II型(高活性)纖維(Brooke et al.,1970)。藉由描 述mATP酶pH不穩定性之特徵,進一步將第II型纖維區 分為IIA型與ΠΒ型纖維。生理學、組織化學與超顯微結 構方法的額外纖維類型特徵描述顯示了 ··第I型,中型慢 85 200815381 縮氧化纖維;第IIA型,紅色快縮氧化醣解纖維;以及第 ΙΙΒ型,白色快縮醣解纖維。可用定量型組織化學測定持 續運動與/或RyCal化合物治療造成氧化與醣解能力中 mATP 8¾、號 j白酸去氫酶(succinate dehydrogenase)與 α 甘 油構酸去氫酶(a-glycerophosphate dehydrogenase)與肌凝 蛋白重鏈(MHC)型纖維橫切面區域的變化。爲了測定肌原 纖維ATP酶的活性,可以使用運用1〇 μηι厚冷凍切片(先 在酸性環境下培養5分鐘或是在鹼性環境下培養1 2分鐘) 的方案。琥珀酸去氫酶染色將可描述肌肉纖維之間活性與 差異的特性。先前已經在小鼠中描述肌強直(myotonia)治 療後氧化肌肉纖維類型中的變化與改善(Reininghaus et al·,1 988) 〇Shevchenko et al., 1 998). Therefore, the inventors will investigate whether the activity of Ca2+-dependent protease and/or caspase after intense exercise causes a cardiac rupture, and whether JTV519 can avoid the activation of non-specific proteolysis by inhibiting sarcoplasmic reticulum Ca2+ leakage. Histology of Skeletal Muscles in Labor Exercises #Continuing Exercise Atrophic changes can cause muscle fiber necrosis and progressive muscle weakness and weakness. Histological studies of skeletal muscle include the following analyses: eosinophilic over-contracted muscle fibers, necrotic fibers, ongoing muscle regeneration, and fibroblast proliferation in muscle tissue because muscle tissue is connected to connective tissue Substitution (fibrosis) is the main cause of permanent muscle weakness. Therefore, the inhibition of these changes by the Ry Cal compound can be tested. Traditional histological techniques can assess fiber size, split fiber, and variability in concentrated nuclei. Classification of mitochondria in skeletal muscle by total chemical analysis: Historically, the most widely used fiber type classification was based on mATPase (myofibrillar adenosine triphosphatase) activity, which was resolved by histochemical methods. Type I (low activity) and type II (high activity) fibers (Brooke et al., 1970). The Type II fiber is further classified into a Type IIA type and a ΠΒ type fiber by describing the characteristics of the pH instability of the mATPase. Additional fiber type characterizations for physiology, histochemistry, and ultra-microstructural methods show · Type I, medium-sized slow 85 200815381 oxidized fiber; Type IIA, red fast-reducing oxidized glycolytic fiber; and ΙΙΒ-type, White fast shrinking sugar fiber. Quantitative histochemistry can be used to determine oxidative and glycolytic abilities of mATP 83⁄4, succinate dehydrogenase and a-glycerophosphate dehydrogenase in sustained motility and/or RyCal compound therapy. Changes in the cross-sectional area of the myosin heavy chain (MHC) fiber. In order to determine the activity of myofibrillar ATPase, a cryosection using 1 μ μm thick cryopreservation (first culture in an acidic environment for 5 minutes or in an alkaline environment for 12 minutes) may be used. Succinate dehydrogenase staining will characterize the activity and differences between muscle fibers. Changes and improvements in oxidized muscle fiber types after myotonia treatment have previously been described in mice (Reininghaus et al., 1 988)

疫由免疫細胞化學分析分類骨骼肌中的纖維:為了定 量肌肉細胞核數目與位置上的變化以及與間質細胞 (interstitial cell)細胞核區分,將應用對細胞核(DAPI)與基 底膜(basement membrane)(層黏蛋白(laminin)抗體)的螢光 染色顯微技術進行形態學測量(morphometry)。這技術對準 確測定肌肉纖維的橫切區域與細胞核數目來說係特別重要 的。再者,該技術可搭配下列親合式純化抗體 (affinity-purified antibodies)進行聯合式免疫細胞化學分 析:C-端RyR2-5 029抗體、RyRl-p2844含磷抗原決定基專 一性抗體(Wehrens et al·,2004)、calstabinl (FKBP12)抗體 (Jayaraman et al·,1992)、肌凝蛋白重鏈等型專一性抗體 (Rivero et al. 1 999)與 α-辅肌動蛋白(actinin) (Ruehr et al·, 86 200815381 2 0 03),利用事先制定的方案搭配l〇 μιη厚的伸趾長肌或比 目魚肌之低溫切片(Moschella et al·,1 995)。這方法使發明 者根據發生於持續運動與/或Ry Cal化合物治療時的肌凝 蛋白重鏈含量、新陳代謝活性、纖維大小、RyR 1的蛋白激 酶A構酸化程度與cal stab ini結合,分類肌原纖維與表現 型變化。再者,將纖維類型與免疫細胞化學分析數據與下 列建立聯繫:分離的骨骼肌功能、一般組織學數據、組織 化學法、RyR 1單一通道功能與粒線體數據。利用免疫組織 化學染色,可在α-輔肌動蛋白陽性分室(compartment) (Z-盤)中存在或不存在Ry Cal化合物或Ry Cal化合物治療之 後,測定calstabinl對RyRl的結合與RyRl的蛋白激酶A 磷酸化之纖維類型特定性改善,以及在肌肉纖維的肌原纖 維區域(Z盤;含有RyRl通道的分室)中測定#5激活蛋白酶 表現的提高。 骨骼肌氧化能力:肌肉氧化能力與骨骼肌採用有氧運 動的能力有關。作為一種普通的試驗,藉由分光光度評估 肌肉均漿質中檸檬酸循環與檸檬酸合成酶活性以評估快縮 骨骼肌與慢縮骨骼肌氧化酵素的活性。如同一研究團體利 用相似方案描述辅酶A與草醯乙酸的複合物預期會增加般 測量其活性(Evangelista et al·,2003)。將用此試驗來證實 組織化學分析所觀察到的氧化能力變化。 肌酸激酶(CK)血漿含量的改善:可測定肌酸激酶(CK) 與乳酸去氫酶(LDH)的血漿濃度(Santos et al·,2004 ; 87 200815381Classification of skeletal muscle fibers by immunocytochemical analysis: In order to quantify changes in the number and position of muscle nuclei and to distinguish between interstitial cell nuclei, the application of the nuclear to the nucleus (DAPI) to the basement membrane ( Fluorescence staining microscopy of laminin antibodies for morphometry. This technique is particularly important in determining the cross-sectional area of muscle fibers and the number of nuclei. Furthermore, this technique can be combined with the following affinity-purified antibodies for combined immunocytochemical analysis: C-terminal RyR2-5 029 antibody, RyRl-p2844 phosphorus-containing epitope-specific antibody (Wehrens et al ·, 2004), calstabinl (FKBP12) antibody (Jayaraman et al., 1992), myosin heavy chain isotype specific antibody (Rivero et al. 1 999) and α-actinin (Ruehr et Al·, 86 200815381 2 0 03), using a pre-established protocol with l〇μιη thick long toe muscles or low-temperature sections of soleus muscle (Moschella et al., 995). This method allows the inventors to classify myogens based on the myosin heavy chain content, metabolic activity, fiber size, and the degree of protein kinase A morphogenesis of RyR 1 in combination with cal stab ini during continuous exercise and/or Ry Cal compound treatment. Fiber and phenotypic changes. Furthermore, fiber type and immunocytochemical analysis data were linked to the following: isolated skeletal muscle function, general histological data, histochemical method, RyR 1 single channel function and mitochondrial data. Immunohistochemical staining was used to determine the binding of calstabin1 to RyRl and the protein kinase of RyRl after treatment with or without Ry Cal compound or Ry Cal compound in α-actinin positive compartment (Z-disc). A fiber type specificity of phosphorylation was improved, and an increase in the expression of #5 activating protease was measured in the myofibrillar region of the muscle fiber (Z disk; compartment containing RyRl channel). Skeletal muscle oxidizing capacity: Muscle oxidizing ability is related to the ability of skeletal muscle to use aerobic exercise. As a general experiment, the citric acid cycle and citrate synthase activity in muscle homogenate were evaluated by spectrophotometry to evaluate the activity of fast-shrinking skeletal muscle and slow-shrinking skeletal muscle oxidase. A similar protocol was used by the same research group to describe that the complex of coenzyme A and oxaloacetate is expected to increase its activity as measured (Evangelista et al., 2003). This test will be used to confirm the change in oxidative capacity observed in histochemical analysis. Improvement in plasma levels of creatine kinase (CK): plasma concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH) can be determined (Santos et al., 2004; 87 200815381)

Thompson et al·,2004),以作為衰竭性運動後肌肉傷害與 發炎作用的指標並用以測定RyCal化合物治療的效應。 胞中RyRl的成分與功能:B細胞或T細胞 受體刺激性活化時,免疫細胞中的RYR1作為Ca2 +釋出通 道(Sei t al·,2002 ; Kraev et al·,2003)。為了功能性分 析’措由離心小鼠金球樣本好離析周邊白血球細胞。藉由 在25C下培養30分鐘使白血球(1〇6個/亳升)負載1 μΜ fluo-3 的乙醯氧基-曱基酯類(Molecular Pr〇bes,EUgene, l OR)並試驗細胞内Ca2 +釋出的咖啡因敏感性。將描述RyRi 通道複合體之成分與蛋白激酶A磷酸化的特性。研究白血 球細胞中的RyRl,可活體内監測持續運動與RyCal化合 物治療時的時間性變化。 基因修飾小鼠Thompson et al., 2004), as an indicator of muscle damage and inflammation after debilitating exercise, and used to determine the effects of RyCal compound therapy. Composition and function of RyR1 in cells: When stimulatory activation of B cells or T cell receptors, RYR1 in immune cells acts as a Ca2+ release channel (Sei t al., 2002; Kraev et al., 2003). For functional analysis, the peripheral mouse white blood cells were isolated by centrifugation of the mouse gold ball sample. White blood cells (1〇6/μl) were loaded with 1 μΜ fluo-3 of ethoxylated-mercapto esters (Molecular Pr〇bes, EUgene, l OR) by incubation at 25 ° for 30 minutes and tested in cells. The caffeine sensitivity of Ca2+ release. The properties of the components of the RyRi channel complex and protein kinase A phosphorylation will be described. Studying RyR1 in white blood cells can be used to monitor temporal changes in continuous exercise and RyCal compound therapy in vivo. Genetically modified mouse

RyRl大分子訊號複合物在調控通道活化與經由交感 神經系統的興奮收縮耦聯上扮演重要的角色。RyR 1複合體 中,mAKAP將蛋白激酶A與磷酸二酯酶PDE4D3結合於 I 通道而填酸酶pp 1經由指向性蛋白spinophilin結合於通 道。這訊號模組調控蛋白激酶A在RyR2 Ser 2 8 43上的磷 酸化並作為「攻擊或逃避」壓力反應的一部分。正常運動 時,各個四聚型RyRl通道中四個Ser2843蛋白激酶A磷 酸化位置的其中2至3個係短暫地經由蛋白激酶A磷酸 化,造成RyRl通道活性的提高。 88 200815381 蛋白激酶A磷酸化發生造成RyRl的 激酶A磷酸化降低穩定性蛋白calstabilU 的結合親合力,造成通道對Ca2+依賴性 高。RyR1大分子訊號複合物中的PDE4D3 色以防備蛋白激酶A過度磷酸化,並在蛋 形成一負向反饋迴路。RyRl複合體中的磷 為快速降低局部性cAMP濃度因此終止經 通道活化。可試驗RyRl複合體中缺 calstabinl之小鼠的加速肌肉疲勞。因此 的calstabinl與PDE4D3兩者均可視為「 過度運動或壓力時的肌肉功能失常。因此 子複合物的額外成分可潛在地為新穎治决 別有害的藥學製劑以預防作戰者強烈壓力 分子為保護性以預防疲勞。 第1型萎縮性肌強直(D Μ 1)的肌肉專 式丑MLR的表現型類似萎縮性肌強直。重 強直表現型包栝肌肉衰退與不同修復程度 徵,其相當於較具毒性的長型複製變異體 短型複製變異艘之表現。除了野生型小鼠 泳與踏車跑步方案研究肌肉疲勞的敏感 中,小鼠接受所述般的運動-壓力方案兩個 式遙測裝置植入小鼠内。實驗完成後,將 態氮中快速冷凍肌肉或進一步處理以用於 立體視鏡視覺中小心地切割特定類型肌肉 活化係因為蛋白 (FKBP12)對通道 活化敏感度的提 扮演一保護性角 白激酶A活化時 酸二酯酶的作用 由蛋白激酶A的 少 PDE4D3 或 ,RyR2複合體中 保護性」以防備 ,當RyRl大分 务標地物與/或識 時的疲勞,這些 一性基因小鼠模 要地,丑SdLR肌 的組織病理學特 與較不具毒性的 之外,將利用游 性。在小鼠子群 星期之前將植入 犧牲小鼠並在液 組織學試驗。在 並在液態氮中快 89 200815381 速冷束或藉由組織學分析與免疫組織化學分析檢驗之。在 所有組織樣本中,將檢驗RyRl的蛋白激酶A磷酸化程度、 RyR2大分子複合物成份(包括caistabinl、蛋白激酶A、 RII、mAKAP、ppi、spinophilin、PDE4D3、CaMKII)的含 量以及單一通道的特性。測定下列特性:活化與抑制的Ca2 + 敏感度、Mg2 +抑制以及活體内RyCal治療的變化。在各個 單一通道實驗的結尾,將理阿諾鹼應用於通道上以證實 RyR的身分。小鼠將可試驗RyCal化合物在肌肉疲 勞與肌肉萎縮的極端基因模式中的有利效應。 可利用游泳與踏車跑步方案研究肌肉疲勞的敏感性。 在小鼠接受運動-壓力方案兩個星期前將植入式遙測裝置 植入小鼠内。實驗完成後,將犧牲小鼠並在液態氮中快速 冷凍肌肉。各個實驗完成後,切割肌肉並亦藉由組織學與 西方墨點法檢驗之。在所有組織樣本中,將檢驗RyRl的 蛋白激酶A磷酸化程度、RyR2大分子複合物成份(包括 calstabinl、蛋白激酶 A、RII、mAKAP、ppi、Spin〇philin、 PDE4D3、CaMKII)的含量以及單一通道的特性。測定下列 特性:活化與抑制的Ca2 +敏感度、Mg2 +抑制以及蛋白激酶 A鱗酸化的反應。在各個單一通道實驗的結尾,將理阿諾 鹼應用於通道上以證實RyR的身分。The RyRl macromolecular signal complex plays an important role in regulating channel activation and coupling with excitatory contraction via the sympathetic nervous system. In the RyR 1 complex, mAKAP binds protein kinase A to phosphodiesterase PDE4D3 to the I channel and ligase pp 1 binds to the channel via the directional protein spinophilin. This signal module regulates the phosphorylation of protein kinase A on RyR2 Ser 2 8 43 as part of an “attack or escape” stress response. During normal exercise, two to three of the four Ser2843 protein kinase A phosphorylation sites in each tetrameric RyR1 channel are transiently phosphorylated via protein kinase A, resulting in an increase in RyRl channel activity. 88 200815381 Protein kinase A phosphorylation causes RyR1 kinase A phosphorylation to decrease the binding affinity of the stable protein calstabilU, resulting in a high Ca2+ dependence of the channel. The PDE4D3 color in the RyR1 macromolecular signal complex is protected against protein kinase A hyperphosphorylation and forms a negative feedback loop in the egg. Phosphorus in the RyRl complex rapidly reduces localized cAMP concentration and thus terminates channel activation. Accelerated muscle fatigue in mice lacking calstabinl in the RyRl complex can be tested. Therefore, both calstabinl and PDE4D3 can be regarded as "muscle dysfunction during excessive exercise or stress. Therefore, the extra component of the sub-complex can potentially be a novel drug for the treatment of harmful pharmaceutical agents to prevent the strong pressure molecules of the combatants. To prevent fatigue. Type 1 atrophic myotonia (D Μ 1) muscle-specific ugly MLR phenotype similar to atrophic muscle rigidity. Heavy and strong phenotypic sacral muscle regression and different repair degree signs, which is equivalent to The performance of a toxic long-form replicating variant of a short replicating variant. In addition to the sensitivity of the wild-type mouse swimming and treadmill running program to study muscle fatigue, the mice received the same motion-pressure protocol. Into the mouse. After the experiment is completed, the muscles are rapidly frozen in the nitrogen or further processed for stereoscopic vision to carefully cut a specific type of muscle activation system because the protein (FKBP12) plays a protective role in channel activation sensitivity. The role of acid diesterase in the activation of leukokinin A is protected by the lesser PDE4D3 or RyR2 complex of protein kinase A. RyRl scores the ground and/or the fatigue of the time. These single-sex mice are simulated, and the histopathology of the ugly SdLR muscle is less toxic than the less toxic. Sacrificial mice will be implanted in the subgroup of mice and tested in liquid histology. In the case of liquid nitrogen, the cold-cooled bundle was examined by histological analysis and immunohistochemical analysis. In all tissue samples, the degree of phosphorylation of protein kinase A in RyRl, the content of RyR2 macromolecular complexes (including caistabinl, protein kinase A, RII, mAKAP, ppi, spinophilin, PDE4D3, CaMKII) and the characteristics of a single channel will be examined. . The following characteristics were determined: activation and inhibition of Ca2+ sensitivity, Mg2+ inhibition, and changes in in vivo RyCal treatment. At the end of each single-channel experiment, the Ranol base was applied to the channel to confirm the identity of RyR. Mice will be able to test the beneficial effects of RyCal compounds in extreme genetic patterns of muscle fatigue and muscle wasting. The sensitivity of muscle fatigue can be studied using a swimming and treadmill running program. Implanted telemetry devices were implanted into mice two weeks before the mice received a exercise-pressure regimen. After the experiment is completed, the mice will be sacrificed and the muscles will be rapidly frozen in liquid nitrogen. After each experiment was completed, the muscles were cut and examined by histology and Western blotting. In all tissue samples, the degree of protein kinase A phosphorylation of RyRl, the content of RyR2 macromolecular complexes (including calstabinl, protein kinase A, RII, mAKAP, ppi, Spin〇philin, PDE4D3, CaMKII) and single channel will be examined. Characteristics. The following characteristics were measured: activation and inhibition of Ca2+ sensitivity, Mg2+ inhibition, and protein kinase A squaring. At the end of each single channel experiment, the linoreline was applied to the channel to confirm the identity of the RyR.

RyCal化合物可預防肌肉疲勞與肌肉衰退 在某些態樣中,本發明提供可恢復過度磷酸化RyR 1 正常功能的RyCal化合物。再者,應用PDE4D剔除與 90RyCal Compounds Prevent Muscle Fatigue and Muscle Depression In some aspects, the invention provides RyCal compounds that restore the normal function of hyperphosphorylated RyR1. Furthermore, applying PDE4D culling with 90

200815381 FKBP12 單配體不足性(haploinsufficient) J RyCal化合物是否可預防肌肉疲勞。 上述討論建立肌肉功能失常與疲勞(起因 的運動)的兩種動物模式(小鼠與大鼠)。該模式 運動與壓力造成的交感神經系統長期活化是空 Ca2 +釋出通道中關鍵性缺陷的重要線索。造成 期高度活化的心臟衰竭模式中之先前實驗,已 肌肉疲勞加速之RyRl的關鍵性缺陷。RyCal 制持續運動能力時的肌肉疲勞、以及研究疲勞 離的慢縮骨骼肌與快縮骨骼肌功能具有良好的 已經在大鼠與小鼠心臟衰竭模式中確定兒茶酌 肉疲勞,因此發明者將應用相似技術以檢驗持 動方案之後的肌肉疲勞。 在交感神經系統持續活化時(例如,但不 持肌肉表現需要最大速度的細胞内肌漿網Ca2 交感神經系統永久性活化的長期最大壓力 KyR 1過度磷酸化與細胞内Ca2+滲漏。在骨黯 内Ca2+滲漏逐漸地引起肌病變,該肌病變的特 現持續時間與最大力量的明顯降低,以及肌漿 酶果浦額外的ATP消耗量(以補償不受控制的 渗漏)所造成之疲勞加速。肌漿網Ca2 +滲漏係 為其是肌原纖維内在的肌肉疲勞直接原因且在 為不可逆的。因此,可藉由將calstabinl結 ;、鼠可測定 於持續形式 可提供持續 ί造成RyRl 交感神經長 經確定促成 化合物對抑 模式中經分 效應。先前 •胺引起的肌 續性動物運 限於格鬥)維 +循環。造成 可能會造成 •肌中,細胞 徵為尖端表 網 Ca2+ ATP 肌漿網Ca2 + 獨特的原因 激烈環境下 於通道並且 91 200815381 甚至在麗力下穩定通道關閉狀態而修復肌襞網Ca2 +滲漏的 藥劑(如任何一個RyCal化合物),儘管壓力持續存在,有 助於預防疲勞加速發展並促進較長時間的表現(Wehrens, 2 0 05)。該藥物治療法為獨特的原因為其針對主要的疲勞機 制並可能地預防細胞内Ca2 +滲漏的有毒效應。再者,這藥 物治療法的分子機制為獨特的,因為其治療促成肌肉疲勞 的特定缺陷,且既然RyCal作用的機制為藉由提高 calstabinl結合親合力而穩定正常的RyFU通道關閉,這與 阻擋離子通道功能的傳統方法明顯不同。 最近,在激烈運動之後的肌原纖維與肌肉萎縮症模式 (Wang et al·,2005)中證實肌漿網以2 +滲漏可能係由於骨 胳肌理阿諾鹼受體(RyR1)缺陷所造成。再者,心臟衰竭中 父感神經系統(SNS)的長期活化促使體内骨骼肌(SM)由於 下列原因而產生疲勞·· RyRl複合體缺少磷酸二酯酶、200815381 FKBP12 Single ligand deficiency (haploinsufficient) Whether J RyCal compounds prevent muscle fatigue. The above discussion establishes two animal models (mouse and rat) of muscle dysfunction and fatigue (cause of cause). This pattern of long-term activation of the sympathetic nervous system caused by exercise and stress is an important clue to critical defects in the empty Ca2+ release channel. Previous experiments in the heart failure mode that caused high levels of activation have been critical defects in RyRl that accelerate muscle fatigue. RyCal system for muscle fatigue during sustained exercise capacity, as well as research on fatigue-induced slow-shrinking skeletal muscle and fast-shrinking skeletal muscle function have been well established in rat and mouse heart failure patterns to determine categorical meat fatigue, so the inventors will Similar techniques were applied to test muscle fatigue after the immobilization protocol. During the continuous activation of the sympathetic nervous system (eg, but not the muscles that require maximal velocity, the long-term maximum pressure of intracellular sarcoplasmic reticulum Ca2 sympathetic nervous system is permanently activated by KyR 1 hyperphosphorylation and intracellular Ca2+ leakage. Internal Ca2+ leakage gradually causes muscle lesions, the specific duration of the myopathy and the significant decrease in maximum strength, and the additional ATP consumption of the sarcoplasmic reticulum (to compensate for uncontrolled leakage) Acceleration. The sarcoplasmic reticulum Ca2+ leakage is the direct cause of muscle fatigue inherent in myofibrils and is irreversible. Therefore, by calstabinl knot; the rat can be determined in continuous form to provide continuous ί to cause RyRl The sympathetic longitude is determined to contribute to the compounding effect of the compound in the mode of inhibition. Previously, the amine-induced muscle-sustaining animal is limited to fighting) dimension + circulation. Caused by possible • In the muscle, the cell sign for the superficial surface of the Ca2+ ATP sarcoplasmic reticulum Ca2+ is unique in the intense environment under the channel and 91 200815381 even under the Lili stable channel closed state to repair the tendon network Ca2+ leakage The agent (such as any RyCal compound), despite the constant stress, helps prevent fatigue from accelerating and promotes longer-term performance (Wehrens, 2000). This drug treatment is unique because of its toxic effects against major fatigue mechanisms and possibly preventing intracellular Ca2+ leakage. Furthermore, the molecular mechanism of this drug therapy is unique because its treatment contributes to specific defects in muscle fatigue, and since the mechanism of action of RyCal is to stabilize the normal RyFU channel by increasing the binding affinity of calstabinl, this is in contrast to blocking ions. The traditional method of channel function is significantly different. Recently, in the myofibrils and muscle wasting model after intense exercise (Wang et al., 2005), it was confirmed that the sarcoplasmic reticulum 2+ leakage may be caused by defects in the skeletal texture of the alkaloid receptor (RyR1). . Furthermore, long-term activation of the paternal nervous system (SNS) in heart failure causes the skeletal muscle (SM) in the body to fatigue due to the following reasons: · The RyRl complex lacks phosphodiesterase,

Serine 2844的蛋白激酶a過度鱗酸化、RyR1複合體缺少Serine 2844 protein kinase a over-scalage, lack of RyR1 complex

CalStaMnl以及功能增加的通道缺陷(Reiken et al·, 2 03)月絡肌的RyRi功能失常造成變樣的局部細胞内 以釋出情況以及受損的整體鈣離子瞬間電流(Ward et al·, 2 0 03)。在長時間運動的情況下,有證據指出大分子 複°物中的變化’即為RyRl複合體缺少PDE4D3、RyRl S 44的蛋白激酶a過度磷酸化、RyR1複合體缺少 cal stab in 1,係盘、自秘丄、1 Λ 一〗鼠模式中反覆型激烈運動以時間依賴性 與活性依賴性方式有所關_ ' ^ 々A !所關聯。長時間運動之後,RyRl大分 子複合物調節盘功能由、▲ 、力此中的這些生化改變係穩定的且長達數 92 200815381 天至數星期緩慢地恢復。因此,RyR1的Ca2+滲漏限制肌 肉的尖端表限並造成長時間、緊張運動中的肌肉傷害。 肌肉疲勞的分子機制 已經幾乎將肌肉疲勞係起因於細胞質的乳酸累積與橫 小管中的鉀離子累積之假說放在一旁,而將注意力轉移至 長時間運動時的新陳代謝與粒線體調控與訊號途徑之研究 (Lin, Wu et al. 2002; Wu? Kanatous et al. 2002 ; Wang, Zhang et al· 2004)。這些替代的解釋雖然重要,但不太可 能直接解釋疲勞肌肉中發現之興奮收縮耦聯的根本性異常 (Beirchtold,Brinkmeier et al· 2000)。在此描述長時間或高 強度運動時骨絡肌鈣離子釋出通道(RyR1)的調控。長時間 運動時RyRl大分子複合物的重組係由蛋白激酶a在CalStaMnl and increased functional channel defects (Reiken et al., 2 03) RyRi dysfunction of the collateral muscle causes localized intracellular release and impaired global calcium current transients (Ward et al., 2 0 03). In the case of prolonged exercise, there is evidence that the change in macromolecular complexes is the lack of PDE4D3 in the RyRl complex, the hyperphosphorylation of protein kinase a in RyRl S 44, and the lack of cal stab in 1 in the RyR1 complex. From the secret, 1 Λ a rat model of repeated intense exercise in a time-dependent and active-dependent manner related to _ ' ^ 々 A ! After prolonged exercise, the RyRl macromolecular complex disk function is stabilized by these, biochemical changes in ▲, and the number is up to 92 200815381 days to weeks slowly recovering. Therefore, Ca2+ leakage of RyR1 limits the tip of the muscle and causes muscle damage during prolonged, intense exercise. The molecular mechanism of muscle fatigue has almost put the hypothesis that muscle fatigue is caused by lactic acid accumulation in the cytoplasm and potassium accumulation in the transverse tubules, and shifts attention to metabolism and mitochondrial regulation and signaling during prolonged exercise. Pathway research (Lin, Wu et al. 2002; Wu? Kanatous et al. 2002; Wang, Zhang et al. 2004). Although these alternative explanations are important, they are unlikely to directly explain the underlying abnormalities of excitatory contraction coupling found in fatigue muscles (Beirchtold, Brinkmeier et al. 2000). Here, the regulation of the skeletal muscle calcium release channel (RyR1) during long-term or high-intensity exercise is described. The recombination of the RyRl macromolecular complex during prolonged exercise is regulated by protein kinase a.

Ser2 8 44的過度磷酸化、缺少ρ〇Ε4〇3以及caistabinl所 組成’其可能在長時間運動時決定肌肉疲勞中扮演某種角 色。 運動促進生物的許多正向效應,從改善心血管表現至 提兩葡萄糖攝入以及使燃料新陳代謝正常化(G〇〇dyear and Kahn 199 8 ; Pollock,Franklin et al· 2〇〇〇)。心臟衰竭 中’已經顯示輕微運動訓練可改善骨骼肌強度並減少疲 勞 了月匕係透過適應更有氧的肌肉特性(Minotti,Johnson et al· 1990; Lunde,Sjaastad et al· 2〇〇1 ; Meyer 2〇〇6)。另 方面,高強度運動(諸如,馬拉松跑者或長距離腳踏車騎 士所表現)可在單一事件後造成明顯的肌肉傷害且損害工 93 200815381 作表現長達數天至數星期(O’Reilly,Warhol et al. 1 987 ; Balnave and Thompson 1 993 , Komulainen and Vihko 1994)。 在此亦描述強烈生理運動的小鼠模式,用以檢驗運動 員精英、軍人或其他處於強烈壓力活動下人士所經歷之 RyR 1功能與興奮收縮耦聯的變化。每天游泳搭配等級式踏 車(level treadmill)跑步試驗,可建構不排除包含後肢等張 (isometric)或離心(eccentric)收縮的生理運動方式。雖然 比起完全離心收縮(所呈現的數據更易推論)來說,這方式 之運動引起肌肉傷害的證據較不明顯。The over-phosphorylation of Ser2 8 44, the lack of ρ〇Ε4〇3, and the composition of caistabin' may play a role in determining muscle fatigue during prolonged exercise. Many positive effects of exercise-promoting organisms range from improving cardiovascular performance to taking two glucose intakes and normalizing fuel metabolism (G〇〇dyear and Kahn 199 8; Pollock, Franklin et al. 2). In heart failure, 'slight exercise training has been shown to improve skeletal muscle strength and reduce fatigue. The menstrual system adapts to more aerobic muscle characteristics (Minotti, Johnson et al. 1990; Lunde, Sjaastad et al. 2〇〇1; Meyer 2〇〇6). On the other hand, high-intensity exercises (such as those performed by marathon runners or long-distance bicycle riders) can cause significant muscle damage and damage to workers in a single event. 93 200815381 Performance for several days to weeks (O'Reilly, Warhol Et al. 1 987 ; Balnave and Thompson 1 993 , Komulainen and Vihko 1994). A mouse model of intense physiological movement is also described herein to examine changes in RyR 1 function and excitatory contraction coupling experienced by athlete elites, military personnel, or other individuals under intense stress. Daily swimming with a level treadmill running test can be constructed without excluding the physiological movements that include isometric or eccentric contractions of the hind limbs. Although the evidence of muscle injury in this type of exercise is less pronounced than the complete eccentric contraction (the data presented is easier to infer).

RyRi大分子複合物中識別的生化改變係與滲漏型鈣 離子釋出通道相符。單一通道的雙層膜數據證實RyR1通 道(來自長時間運動的後肢肌肉)的滲漏表現型,在長時間 運動組中的靜止期鈣離子數量上(相對於久坐的對照組), 該通道具有提高的開啟率。複製RyR 1複合體之生化改變 態樣的兩種基因小鼠模式中,即肌肉專一性缺少 calstabinl (call /)與缺少 PDE4D3 (PDE4D-/-),可發現運 動缺陷。在另一方法中,藉由Ca2 +通道穩定劑Si〇7藥理 上地將穩定性亞基再結合於RyR1來評估calstabinl缺少 的作用。由S107所引起之caistabin 1再結合RyR 1,可造 成運動能力(由踏車失敗時間所測得)的改善,高於相同2 i 天時間進程中以載劑治療缺少calstabinl的小鼠。a//·/· 94 200815381 小鼠缺少S107的效應提供S107確實透過calstabinl再結 合於RyRl而作用之分子機制證據。 完整經分離的肌肉之活體外疲勞方案受到力量衰退 (其主要受限於組織缺氧)的限制(zhang,Brut0I1 et al. 2006)。因此,自久坐與長時間運動小鼠(搭配或不搭配 S 1〇7)分離單一屈趾短肌(Fdb)肌肉纖維以評估疲勞時強 直性Ca〇的減少 。具有重新結合之calstabin的運動過纖 維相對可免於疲勞(第13圖)。S1 07的效應似乎不是由於識 維動力學轉移至較慢的鈣離子循環。 S 107改正RyRl (來自長時間運動小鼠)中的滲漏,如 同在脂質雙層膜中測得的靜止期低含量Ca2 +。辦離子火花 波在所有試驗狀態下不常出現,其與骨絡肌中火花波係罕 見的多數報告相符’除非處於高度病理狀態,諸如低滲透 型休克(hypoosmotic shock)或肌肉萎縮症(Isaeva, Shkryl et al. 2005 ; Rios 2005 ; Wang, Weisleder et al. 2005),所以經分離的肌肉纖維中無法直接觀察到骨絡肌 理阿諾鹼受體高度活性造成的Ca2 +滲漏。 許多假說呈現RyRl Ca2 +滲漏中的變化如何造成肌肉 傷害。然而,這些數據並沒有發現可單獨對所觀察到的生 理結果負責的肌肉傷害途徑,其暗指長時間與/或高強度運 動時鈣激活蛋白酶活化的作用。許多團隊已經證實辦激活 蛋白酶活化係運動引起之肌肉傷害的主要機制(Belcasu〇 1 993 ; Spencer and Mellgren 2002)。如本文所述,經分離 95 200815381 的伸趾長肌中鈣激活蛋白酶活性在長時間運動後係提高的 (但可用S107治療降低),指出滲漏型RyRl的改正可防止 鈣激活蛋白酶的活化(第15圖)。而其他Ca2 +依賴性途徑 (諸如,caspase、攜妈蛋白或攜鈣蛋白依賴性激酶)可能促 進滲漏型理阿諾驗受體所引起之傷害,本發明數據提出細 胞質Ca2 +局部性提高可能造成傷害的機制。理阿諾鹼受體 引起的滲漏可造成肌肉傷害的假說,進一步受到 S 1 0 7治 療小鼠中肌肉傷害減少(如血清肌酸激酶所測得般)之證據 所支持(第15圖)。此處所述的數據顯示RyRl大分子複合 物中的變化在長時間、高強度運動引起滲漏表現型,進而 損害運動表現。 化合物 在一態樣中,本發明提供包括施用式I化合物的方法 與用途:The biochemical changes identified in the RyRi macromolecular complex are consistent with the leakage-type calcium ion release channel. The single channel bilayer membrane data confirmed the leakage phenotype of the RyR1 channel (from the long-moving hind limb muscle), the number of resting calcium ions in the long-term exercise group (relative to the sedentary control group), the channel Has an increased turn-on rate. Reproduction of the RyR 1 complex biochemical changes in the two models of the mouse model, muscle specificity lacking calstabinl (call /) and lack of PDE4D3 (PDE4D-/-), can be found in motion defects. In another method, the absence of calstabinl is assessed by pharmacologically recombining the stabilizing subunits to RyR1 by the Ca2+ channel stabilizer Si〇7. Caistabin 1 caused by S107 recombined with RyR 1 resulted in an improvement in exercise capacity (measured by treadmill failure time), which was higher than that of mice lacking calstabinl by vehicle treatment in the same 2 day course. a//·/· 94 200815381 The lack of S107 effect in mice provides evidence of the molecular mechanism by which S107 does bind to RyRl via calstabinl. The in vitro fatigue protocol for intact isolated muscles is limited by the strength of the decline (which is mainly limited by tissue hypoxia) (zhang, Brut0I1 et al. 2006). Therefore, single-peg short muscle (Fdb) muscle fibers were isolated from sedentary and prolonged mice (with or without S 1〇7) to assess the reduction in tonic Ca 疲劳 during fatigue. The moving fibers with the recombined calstabin are relatively free of fatigue (Fig. 13). The effect of S1 07 does not appear to be due to the shift in characterization dynamics to the slower calcium ion cycle. S 107 corrects leakage in RyRl (from long-moving mice) as measured in the stationary phase of the lipid bilayer membrane for low levels of Ca2+. Ion spark waves do not occur frequently in all test conditions, which is consistent with most rare reports of spark waves in the skeletal muscle 'unless in a highly pathological state, such as hypoosmotic shock or muscular atrophy (Isaeva, Shkryl et al. 2005; Rios 2005; Wang, Weisleder et al. 2005), Ca2+ leakage caused by the high activity of the skeletal muscle receptors is not directly observed in the isolated muscle fibers. Many hypotheses show how changes in RyRl Ca2+ leakage cause muscle damage. However, these data do not reveal a muscle injury pathway that is solely responsible for the observed physiological outcome, which implies the effect of calcium-activated protease activation over prolonged and/or high-intensity exercise. Many teams have confirmed the primary mechanism by which the activation of protease-activated muscles causes muscle damage (Belcasu〇 1 993; Spencer and Mellgren 2002). As described herein, calcium-activated protease activity in the long toe muscles isolated 95 200815381 was increased after prolonged exercise (but reduced by S107 treatment), indicating that correction of the leaky RyRl prevents activation of calpain ( Figure 15). While other Ca2+-dependent pathways (such as caspase, gamma-promoting or calcitonin-dependent kinases) may contribute to the damage caused by leakage-type Arano receptors, the data of the present invention suggest a local increase in cytoplasmic Ca2+ The mechanism that causes harm. The hypothesis that leakage caused by Arano base receptors can cause muscle damage is further supported by evidence of reduced muscle damage in S 7 7 treated mice (as measured by serum creatine kinase) (Figure 15) . The data presented here show that changes in the RyRl macromolecular complex cause leakage phenotypes during prolonged, high-intensity exercise, which in turn impairs motor performance. Compounds In one aspect, the invention provides methods and uses comprising administering a compound of formula I:

其中, η係0、1或2 ; 96 200815381 q 係 0、1、2、3 或 4; 各個R係分別地由下列所構成的群組中選出:Η、鹵素、 -ΟΗ、-ΝΗ2、-Ν02、-CN、-CF3、-〇CF3“N3、-S03H、-S( = 〇)2Wherein, η is 0, 1 or 2; 96 200815381 q is 0, 1, 2, 3 or 4; each R is selected from the group consisting of: Η, halogen, -ΟΗ, -ΝΗ2, - Ν02, -CN, -CF3, -〇CF3 "N3, -S03H, -S( = 〇)2

烷基、-S( = 0)烧基、-0S( = 0)2CF3、醯基、-〇-醯基·、烷基、 烷氧基、烷胺基、烷基芳胺基、烷硫基、環烷基、烷芳基、 芳基、雜芳基、雜環基、雜環烷基、烯基、炔基、(雜_)芳 基、(雜_)芳硫基與(雜-)芳胺基;其中可選擇性取代各個醯 基、-0-醯基、烷基、烷氧基、烷胺基、烷基芳胺基、烷硫 基'環烷基、烷芳基、芳基、雜芳基、雜環基、雜環烷基、 烯基、炔基、(雜-)芳基、(雜_)芳硫基與(雜_)芳胺基;Alkyl, -S(=0)alkyl, -0S(=0)2CF3, fluorenyl, -fluorenyl-alkyl, alkoxy, alkylamino, alkylarylamine, alkylthio , cycloalkyl, alkaryl, aryl, heteroaryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (hetero) aryl, (hetero) arylthio and (hetero-) An arylamine group; wherein each fluorenyl group, -0-fluorenyl group, alkyl group, alkoxy group, alkylamino group, alkylarylamino group, alkylthio 'cycloalkyl group, alkylaryl group, aryl group can be optionally substituted , heteroaryl, heterocyclic, heterocycloalkyl, alkenyl, alkynyl, (hetero-)aryl, (hetero)arylthio and (hetero-)arylamine;

Ri係由下列所構成的群組中選出:H、酮基、烷基、烯基、 方基、烷方基、環烷基、雜芳基與雜環基;其中可選擇性 取代各個烷基、烯S、芳基、烷芳基、環烷基、雜芳基與 雜環基; ~ R2 係由下列 Η 、-C(=0)R5 、 -(CH2)m-Ri〇、院基 烷基烷基與雜環基 烷芳基、雜芳基、 所構成的群組中選出: -C卜S)R6、-S〇2R7、一 P( = 〇)R8R9、 、芳基、烷芳基、雜芳基、環烷基、環 ;其中可選擇性取代各個烷基、芳基、 環燒基、環烷基烷基與雜環基·, R3係由下列所構成的 的群組中選出:H、-C02Y、-C( = 0)NHY、 酿基、-O -SS基、、户发 ^ 疋土、烯基、芳基、烷芳基、環烷基、雜 方基與雜環基;复中 ^ # * /、 1選擇性取代各個醯基、烷基、烯基、 方基、烷芳基、環焓发 π暴、雜芳基與雜環基;且其中γ係由 97 200815381 下列所構成的群組中選出:Η、烷基、芳基、烷芳基、環 燒基、雜芳基與雜環基,而其中可選擇性取代各個烷基、 芳基、烧芳基、環烷基、雜芳基與雜環基; R4係由下列所構成的群組中選出:Η、烷基、烯基、芳基、 烷芳基、環烷基、雜芳基與雜環基;其中可選擇性取代各 個烷基、烯基、芳基、烷芳基、環烧基、雜芳基與雜環基; r5係由下列所構成的群組中選出:—NRi5Ri6、 -(CH2)zNR"Ri6、-NHNR15R16、-NHOH、-〇r15、 -C(-0)NHNR15r16、_c〇2r15、_c( = o)nr15r16、_ch2x、酿 基、烷基、烯基、芳基、烷芳基、環烷基、環烷基烷基、 雜芳基、雜環基與雜環烷基;其中可選擇性取代各個醢基、 烧基、烯基、芳基、烧芳基、環院基、環烧基燒基、雜芳 基、雜壤基與雜環烧基,而其中z係1、2、3、4、5或6; R6係由下列所構成的群組中選出:一〇R15、_nhnr15r16、 -ΝΗΟΗ、_NR15R16、-CH2X、醯基、烯基、烷基、芳基、 烧芳基、環烧基、環烧基烧基、雜芳基、雜環基與雜環烧 基;其中可選擇性取代各個醯基、烯基、烷基、芳基、燒 芳基、環烷基、環烷基烷基、雜芳基、雜環基與雜環燒基; R7係由下列所構成的群組中選出:—〇r15、-NR15r16、 -NHNR15R16、-ΝΗΟΗ、-CH2X、烷基、烯基、炔基、芳基、 烷芳基、環烷基、環烷基烷基、雜芳基、雜環基與雜環烧 基;其中可選擇性取代各個烷基、烯基、炔基、芳基、烧 芳基、環:¾¾基、環烧基烧基、雜芳基、雜環基與雜環燒基; 98 200815381 R8與R9係分別地由下列所構成的群組中^ 稀基、烧氧基、烧基、燒胺基、芳基、^> 烧基烧基、雜方基、雜壤基與雜環燒^ 取代各個醯基、烯基、烷氧基、燒基、燒 芳基、環烷基、環烷基烷基、雜芳基、雜環Ri is selected from the group consisting of H, keto, alkyl, alkenyl, aryl, alkyl, cycloalkyl, heteroaryl and heterocyclic; wherein each alkyl can be optionally substituted , alkene S, aryl, alkaryl, cycloalkyl, heteroaryl and heterocyclic; ~ R2 consists of the following Η, -C(=0)R5, -(CH2)m-Ri〇, alkane Selected from the group consisting of an alkyl group and a heterocycloalkylaryl group, a heteroaryl group: -CBuS)R6, -S〇2R7, a P(=〇)R8R9, an aryl group, an alkylaryl group a heteroaryl group, a cycloalkyl group, a ring; wherein each alkyl group, aryl group, cycloalkyl group, cycloalkylalkyl group and heterocyclic group are optionally substituted, and R3 is selected from the group consisting of the following: :H, -C02Y, -C( = 0)NHY, aryl, -O-SS, 户, 烯基, alkenyl, aryl, alkaryl, cycloalkyl, heterocyclyl and heterocycle a compound; an intermediate group, an alkyl group, an alkenyl group, a aryl group, an alkaryl group, a ring fluorene, a heteroaryl group and a heterocyclic group; and wherein the γ system is 97 200815381 Selected from the group consisting of hydrazine, alkyl, aryl, alkaryl, cycloalkyl a heteroaryl group and a heterocyclic group, wherein each alkyl group, aryl group, aryl group, cycloalkyl group, heteroaryl group and heterocyclic group are optionally substituted; R4 is selected from the group consisting of: Η , an alkyl group, an alkenyl group, an aryl group, an alkylaryl group, a cycloalkyl group, a heteroaryl group and a heterocyclic group; wherein each alkyl group, alkenyl group, aryl group, alkylaryl group, cycloalkyl group, hetero group can be optionally substituted An aryl group and a heterocyclic group; r5 is selected from the group consisting of: -NRi5Ri6, -(CH2)zNR"Ri6, -NHNR15R16, -NHOH, -〇r15, -C(-0)NHNR15r16, _c〇 2r15, _c(=o)nr15r16, _ch2x, aryl, alkyl, alkenyl, aryl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl and heterocycloalkyl; Wherein the thiol group, the alkyl group, the alkenyl group, the aryl group, the aryl group, the ring-based group, the cycloalkyl group, the heteroaryl group, the hetero-based group and the heterocyclic group are optionally substituted, and wherein the z-line 1 , 2, 3, 4, 5 or 6; R6 is selected from the group consisting of: R15, _nhnr15r16, -ΝΗΟΗ, _NR15R16, -CH2X, fluorenyl, alkenyl, alkyl, aryl, pyrene Aryl, cycloalkyl, cycloalkyl a pyridyl group, a heteroaryl group, a heterocyclic group and a heterocyclic group; wherein each of the fluorenyl, alkenyl, alkyl, aryl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl groups may be optionally substituted a group, a heterocyclic group and a heterocyclic group; R7 is selected from the group consisting of: 〇r15, -NR15r16, -NHNR15R16, -ΝΗΟΗ, -CH2X, alkyl, alkenyl, alkynyl, aryl An alkaryl group, a cycloalkyl group, a cycloalkylalkyl group, a heteroaryl group, a heterocyclic group and a heterocyclic group; wherein each alkyl group, alkenyl group, alkynyl group, aryl group, aryl group, Ring: 3⁄43⁄4 group, cycloalkyl group, heteroaryl group, heterocyclic group and heterocyclic group; 98 200815381 R8 and R9 are respectively composed of the following groups: a dilute group, an alkoxy group, a pyridyl group , an amine group, an aryl group, a hydrazine group, a heterocyclic group, a heterobasic group, and a heterocyclic ring to replace each fluorenyl group, alkenyl group, alkoxy group, alkyl group, aryl group, cycloalkyl group , cycloalkylalkyl, heteroaryl, heterocyclic

Rio係由下列所構成的群組中選出 OH、-SO2R11、-NHSC^Ru、c( = 〇)(r12)、 -0 00(1112)與—?( = 0)11131114; R 1 1、R 1 2、R 1 3、與R 1 4係分別地由下列所 出:Η、OH、NH2、-NHNH2、-NHOH、醯 基、烧基、烧fee基、方基、烧芳基、環燒基 雜芳基、雜環基與雜環烷基;其中可選擇怡 烯基、烷氧基、烷基、烷胺基、芳基、院 環烷基烷基、雜芳基、雜環基與雜環烷基 X係由下列所構成的群組中選出··鹵素、 -C( = 0)NR15R16、_NR15R16、一〇r15、_so2r7 以及 R15與R16係分別地由下列所構成的群紐 基、烯基、烷氧基、OH、NH2、烷基、烷 芳基、環烷基、環烷基烷基、雜芳基、雜環 其中可選擇性取代各個醯基、烯基、烷氧 基、芳基、烷芳基、環烷基、環烷基烷基 基與雜環烷基;以及選擇性地,化15與R10 I出:〇H、釀基、 芳基、環烷基、 ;其中可選擇性 胺基、芳基、燒 基與雜環烷基; :-NR15R16、 、nhc = 〇(r12)、 構成的群組中選 基、稀基、烧氧 •、環烷基烷基、 •取代各個醯基、 方基、壤烧基、 -CN、-C02R15、 與-p(=o)r8r9 ; -中選出:Η、醯 胺基、芳基、燒 基與雜環烷基; 基、烧基、烧胺 '雜芳基、雜環 可和其所結合的 99 200815381 氮共同形成一個雜環,該雜環可以含有取代基; 苯并硫氮呼環中的氮可選擇性地為一四級氮;以及 其鏡像異構物、非鏡像異構物、互變異構物、藥學上可接 受之鹽類、水:合物、溶劑合物、複合物與前藥。 在式I的某些實施例中,若當q是〇且n是〇時,那 麼 R2 就不是 Η、Et、·€( = 0)ΝΗ2、( = 〇)NHPh、-C( = S)NH-正 丁基、-C( = 0)NHC( = 0)CH2C1、-C( = 0)H、-C( = 0)Me ' -C( = 〇)Et、-C( = 0)CH = CH2、-S( = 〇)2Me 或-S( = 0)2Et; 再者若當q是0且η是1或2時,那麼R2就不是 -C( = 0)Me、,C( = 0)Et、-S( = 0)2Me 或 _S( = 0)2Et ; 再者若當q是1且R是苯并硫氮呼環第6號位置的甲基、 氯或氟時,那麼R2就不是Η、Me、-C( = 0)H、-C( = 0)Me、 -C( = 〇)Et、-C( = 0)Ph、-S( = 0)2Me 或-S( = 0)2Et ;以及 再者若當q是1、n是〇且r是笨并硫氮呼環第7號位置 的OCT3、經基或Ci-Cs烷氧基時,那麼R2就不是Η、 -c(=〇)ch=ch2 或Rio is selected from the group consisting of OH, -SO2R11, -NHSC^Ru, c(= 〇)(r12), -0 00(1112) and -? ( = 0) 11131114; R 1 1 , R 1 2, R 1 3, and R 1 4 are respectively derived from the following: Η, OH, NH2, -NHNH2, -NHOH, sulfhydryl, alkyl, and burned a base group, a aryl group, a aryl group, a cycloalkylheteroaryl group, a heterocyclic group and a heterocycloalkyl group; wherein an alkenyl group, an alkoxy group, an alkyl group, an alkylamino group, an aryl group, a cyclyl group can be selected. The alkyl group, the heteroaryl group, the heterocyclic group and the heterocycloalkyl group X are selected from the group consisting of halogen, -C(=0)NR15R16, _NR15R16, 〇r15, _so2r7, and R15 and R16. The group consisting of the following group of neoyl, alkenyl, alkoxy, OH, NH2, alkyl, alkaryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclic optionally substituted Each of a mercapto group, an alkenyl group, an alkoxy group, an aryl group, an alkylaryl group, a cycloalkyl group, a cycloalkylalkyl group, and a heterocycloalkyl group; and optionally, a 15 and R10 I are produced: 〇H, brewed a aryl group, an aryl group, a cycloalkyl group, a selective amine group, an aryl group, an alkyl group and a heterocycloalkyl group; :-NR15R16, , nhc = 〇(r12), a selected group, a dilute group , oxygenated •, cycloalkylalkyl, • substituted each a thiol group, a aryl group, a calcyl group, -CN, -C02R15, and -p(=o)r8r9; - selected from the group consisting of hydrazine, hydrazino, aryl, alkyl and heterocycloalkyl; The base, the amine amine 'heteroaryl, the heterocyclic ring may form a heterocyclic ring with the 99 200815381 nitrogen to which it is combined, and the heterocyclic ring may have a substituent; the nitrogen in the benzothiazepine ring may be optionally a four Grade nitrogen; and its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, water complexes, solvates, complexes and prodrugs. In certain embodiments of Formula I, if q is 〇 and n is 〇, then R2 is not Η, Et, ·€( = 0)ΝΗ2, (= 〇)NHPh, -C( = S)NH - n-Butyl, -C( = 0)NHC( = 0)CH2C1, -C( = 0)H, -C( = 0)Me ' -C( = 〇)Et, -C( = 0)CH = CH2, -S( = 〇)2Me or -S( = 0)2Et; and if q is 0 and η is 1 or 2, then R2 is not -C( = 0)Me, C( = 0 ) Et, -S( = 0)2Me or _S( = 0)2Et; in addition, if q is 1 and R is methyl, chloro or fluorine at position 6 of benzothiazepine, then R2 It is not Η, Me, -C( = 0)H, -C( = 0)Me, -C( = 〇)Et, -C( = 0)Ph, -S( = 0)2Me or -S( = 0) 2Et ; and further, if q is 1, n is 〇 and r is OCT3, thiol or Ci-Cs alkoxy at position 7 of the stupid and sulphur ring, then R2 is not Η, - c(=〇)ch=ch2 or

在一實施例中,本發明提供包括施用式1(如上述)化合 物的方法與用途’但該化合物不是S24或S68。 在一實施例中’本發明提供包括施用式ha化合物的 方法與用途: 100 200815381In one embodiment, the invention provides methods and uses comprising the application of a compound of formula 1 (as described above] but the compound is not S24 or S68. In one embodiment, the invention provides methods and uses comprising the administration of a compound of formula ha: 100 200815381

其中: η係0、1或2 , q 係 0、1、2、3 或 4; 各個R係分別地由下列所構成的群組中選出:Η、鹵素、 -OH、-ΝΗ2、_n〇2、-CN、-CF3、-〇Cf3、N3、_s〇3H、s( = 〇)2 烷基、-s(=〇)烧基、-〇s(=o)2CF3、醯基、烷基、烷氧基、 烷胺基、烷硫基、環烧基、芳基、雜環基、雜環烷基、烯 基、炔基、(雜_)芳基、(雜-)芳硫基與(雜-)芳胺基;其中可 取代或不取代各個醢基、烷基、烷氧基、院胺基、烧硫基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 基、(雜-)芳硫基與(雜-)芳胺基; r2 係由下列所構成的群組中選出 : Η、—C = 0(R5)、-C = S(R6)、-s〇2R7、-P( = 〇)R8R9、 -(CH2)m-Ri〇、烷基、芳基、雜芳基、環烷基、環烷基烷基 與雜環基;其中可取代或不取代各個烷基、芳基、雜芳基、 環烷基、環烷基烷基與雜環基; R5係由下列所構成的群組中選出:一NRl5Rl6、 101 200815381 -(CH2)zNRi 5R16 、 -NHNRi 5R16 、 -NHOH 、 -OR15 、 -c(=o)nhnr15r16、-C〇2r15、-C(=0)NR15R16、-CH2X、醯 基、烧基、嫦基、炔基、芳基、環貌基、環烧基烧基、雜 環基與雜環烷基;其中可取代或不取代各個醯基、烷基、 烯基、炔基、芳基、環烷基、環烷基烷基、雜環基與雜環 烧基,而其中z係1、2、3、4、5或6; R6係由下列所構成的群組中選出:-OR"、-NHNR15R16、 -NHOH、-NRi5R16、-CH2X、醯基、烯基、烧基、芳基、 環烷基、環烷基烷基、雜環基與雜環烷基;其中可取代或 不取代各個醯基、烯基、烷基、芳基、環烷基、環烷基烷 基、雜環基與雜環烷基; R7係由下列所構成的群組中選出·· Η、—〇r15、-NRi5Ri6、 -NHNR15R16、-NHOH、-ch2x、烧基、婦基、炔基、芳基、 環烷基、環烷基烷基、雜環基與雜環烷基;其中可取代或 不取代各個烷基、烯基、炔基、芳基、環烷基、環烷基烷 基、雜環基與雜環烷基;Where: η is 0, 1 or 2, q is 0, 1, 2, 3 or 4; each R is selected from the group consisting of: Η, halogen, -OH, -ΝΗ2, _n〇2 , -CN, -CF3, -〇Cf3, N3, _s〇3H, s(=〇)2 alkyl, -s(=〇)alkyl, -〇s(=o)2CF3, fluorenyl, alkyl, Alkoxy, alkylamino, alkylthio, cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (hetero)aryl, (hetero-)arylthio with a hetero-)arylamino group; which may be substituted or unsubstituted with each fluorenyl group, alkyl group, alkoxy group, amphoteric group, thiol group, cycloalkyl group, aryl group, heterocyclic group, heterocycloalkyl group, alkenyl group , alkynyl, (hetero-)aryl, (hetero-)arylthio and (hetero-)arylamine; r2 is selected from the group consisting of: Η, —C = 0(R5), - C = S(R6), -s〇2R7, -P( = 〇)R8R9, -(CH2)m-Ri〇, alkyl, aryl, heteroaryl, cycloalkyl, cycloalkylalkyl and hetero a cyclic group; wherein each alkyl group, aryl group, heteroaryl group, cycloalkyl group, cycloalkylalkyl group and heterocyclic group may be substituted or unsubstituted; R5 is selected from the group consisting of: NRl5Rl6, 10 1 200815381 -(CH2)zNRi 5R16 , -NHNRi 5R16 , -NHOH , -OR15 , -c(=o)nhnr15r16, -C〇2r15, -C(=0)NR15R16, -CH2X, sulfhydryl, alkyl, hydrazine Alkyl, alkynyl, aryl, cyclopropenyl, cycloalkyl, heterocyclyl and heterocycloalkyl; wherein may be substituted or unsubstituted each fluorenyl, alkyl, alkenyl, alkynyl, aryl, ring An alkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocyclic group, wherein z is 1, 2, 3, 4, 5 or 6; R6 is selected from the group consisting of: -OR", -NHNR15R16, -NHOH, -NRi5R16, -CH2X, decyl, alkenyl, alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl; wherein each may be substituted or unsubstituted Amidino, alkenyl, alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl; R7 is selected from the group consisting of Η, 〇r15, -NRi5Ri6, -NHNR15R16, -NHOH, -ch2x, alkyl, methoxy, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl; wherein each may be substituted or unsubstituted Alkyl, alkenyl, alkynyl, aryl, cycloalkyl, Alkyl group alkyl, heterocyclyl and heterocycloalkyl;

Rs與R9係分別地由下列所構成的群組中選出:_〇Η、醢 基、烯基、烧氧基、烧基、烷胺基、芳基、環烷基、環烷 基燒基、雜環基與雜壤烧基,其中可取代或不取代各個醯 基、婦基、烧氧基、烧基、燒胺基、芳基、環燒基、環烷 基烷基、雜環基與雜環烷基; R10係由下列所構成的群組中選出·· -Nr15r16、 OH 、-NHS02R"、-C( = 〇)r12、_NH(C = 〇)Rl2、 102 200815381 -0(C = 0)Ri2 與-P〇0)r13r14; M 係 0、1、2、3 或 4;The Rs and R9 systems are respectively selected from the group consisting of 〇Η, fluorenyl, alkenyl, alkoxy, alkyl, alkylamino, aryl, cycloalkyl, cycloalkylalkyl, a heterocyclic group and a heterologous alkyl group, which may or may not be substituted for each fluorenyl group, aryl group, alkoxy group, alkyl group, acryl group, aryl group, cycloalkyl group, cycloalkylalkyl group, heterocyclic group and Heterocycloalkyl; R10 is selected from the group consisting of -Nr15r16, OH, -NHS02R", -C(= 〇)r12, _NH(C = 〇)Rl2, 102 200815381 -0 (C = 0) Ri2 and -P〇0)r13r14; M system 0, 1, 2, 3 or 4;

Rn、R!2、Ru與R!4係分別地由下列所構成的群 、丑甲選出·· Η、OH、NH2、-NHNH2、-NHOH、醯基、烯基、烷氧美、 烷基、烷胺基、芳基、環烷基、環烷基烷基、雜環基與雜 環烷基;其中可取代或不取代各個醯基、烯基、燒氧基、 烧基、烧胺基、芳基、環烧基、環院基烧基、雜環基與雜 環烷基; X係由下列所構成的群組中選出:鹵素、-CN、-CO2R15、 -C( = 0)NR15Ri6、-NR15R16、-OR15、-S02R7 與-P( = 0)R8R9 ; 以及Rn, R!2, Ru and R!4 are respectively selected from the group consisting of the following: Η, OH, NH2, -NHNH2, -NHOH, thiol, alkenyl, alkoxy, alkyl An alkylamino group, an aryl group, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocycloalkyl group; wherein the fluorenyl group, the alkenyl group, the alkoxy group, the alkyl group, the acryl group may be substituted or unsubstituted. , aryl, cycloalkyl, cycloalkyl, heterocyclyl and heterocycloalkyl; X is selected from the group consisting of halogen, -CN, -CO2R15, -C( = 0)NR15Ri6 , -NR15R16, -OR15, -S02R7 and -P( = 0)R8R9 ;

Rl 5與Rl6係分別地由下列所構成的群組中選出:H、醯基、 烯基、烷氧基、OH、ΝΗ2、烷基、烷胺基、芳基、環烷基、 環烷基烷基、雜環基與雜環烷基;其中可取代或不取代各 個醯基、烯基、烧氧基、烷基、烷胺基、芳基、環烷基、 環烷基烷基、雜環基與雜環烷基;以及選擇性地,r15與 Rl6可和其所結合的氮共同形成一個雜環,該雜環可以含 有取代基; 苯并硫氮呼環中的氮可選擇性地為一四級氮;以及 其鏡像異構物、非鏡像異構物、互變異構物、藥學上可接 受之鹽類、水合物、溶劑合物、複合物與前藥。 在一實施例中’若當q是0且η是0時,那麼R2就 不是 Η、Et、·〇( = 0)ΝΗ2、( = 〇)NHPh、_C( = S)NH-正 丁基、 103 200815381 _C( = 0)NHC( = 0)CH2C1、-C(,H、_c( = 〇)Me、-c(,Et、 -C( = 〇)CH = CH2、-S( = 0)2Me 或 _s( = 〇)2Et; 再者若當q是0且n是丨或2時,那麼R2就不是 -C( = 0)Me、-C( = 0)Et、-S卜〇)2Me 或 s( = 〇)2Et ; 再者若當q是1且R是苯并硫氮呼環第6號位置的甲基、 氣或氟時,那麼 R2 就不是 H、Me、_CK = C)>H、= -C( = 0)Et、-C( = 0)Ph、-S( = 〇)2Me 或 _s(==0)2Et ;以及Rl 5 and Rl6 are respectively selected from the group consisting of H, decyl, alkenyl, alkoxy, OH, hydrazine 2, alkyl, alkylamino, aryl, cycloalkyl, cycloalkyl An alkyl group, a heterocyclic group and a heterocycloalkyl group; wherein each of a decyl group, an alkenyl group, an alkoxy group, an alkyl group, an alkylamino group, an aryl group, a cycloalkyl group, a cycloalkylalkyl group, or a heterocyclic group may be substituted or unsubstituted. a cyclic group and a heterocycloalkyl group; and, optionally, r15 and R16 may form a heterocyclic ring together with the nitrogen to which they are bonded, the heterocyclic ring may have a substituent; the nitrogen in the benzothiazepine ring may be optionally It is a four-stage nitrogen; and its mirror image isomer, non-image isomer, tautomer, pharmaceutically acceptable salt, hydrate, solvate, complex and prodrug. In one embodiment, 'if q is 0 and η is 0, then R2 is not Η, Et, 〇( = 0) ΝΗ 2, ( = 〇) NHPh, _C( = S)NH-n-butyl, 103 200815381 _C( = 0)NHC( = 0)CH2C1, -C(,H,_c( = 〇)Me, -c(,Et, -C( = 〇)CH = CH2, -S( = 0)2Me Or _s( = 〇)2Et; and if q is 0 and n is 丨 or 2, then R2 is not -C( = 0)Me, -C( = 0)Et, -S 〇)2Me Or s( = 〇)2Et; in addition, if q is 1 and R is methyl, gas or fluorine at position 6 of benzothiazepine, then R2 is not H, Me, _CK = C)&gt ;H, = -C( = 0)Et, -C( = 0)Ph, -S( = 〇)2Me or _s(==0)2Et ;

再者若當q是1、n是0且R是苯并硫氮呼環第7號位置Furthermore, if q is 1, n is 0 and R is the position of benzothiazepine ring No. 7

的OCT3、羥基或C1-C3烷氧基時,那麼R2就不是H -c(=o)ch=ch2 或When OCT3, hydroxy or C1-C3 alkoxy, then R2 is not H -c(=o)ch=ch2 or

在某些實施例中,本發明提供包括施用式化合物 的方法與用途,其中各個R係分別地由下列所構成的群組 中選出:Η、鹵素、-OH、〇Me、-NH2、-N02、-CN、 -CF3、-〇CF3、-Ν3、-SbOhCrC* 烷基、4( = 0)(^-0:4 烷 基、-S-C1-C4 烧基、-OS( = 〇)2CF3、Ph、-NHCH2Ph、 •C( = 〇)Me、-0C( = 0)Me、嗎琳基(morpholinyl)與丙婦基; 且n係0、1或2。 在其他實施例中,本發明提供包括施用式I-a化合物 的方法與用途,其中 R2係由下列所構成的群組中選 出:—C = 〇(R5) 、 -C = S(Rg) 、 -SO2R7 、 一P( = 0)R8R9 與 -(CH2)m-R10。 104 200815381 在又另一實施例中,本發明提供包括施用式I-b化合 物的方法與用途:In certain embodiments, the present invention provides methods and uses comprising a compound of the formula wherein each R line is selected from the group consisting of: hydrazine, halogen, -OH, 〇Me, -NH2, -N02 , -CN, -CF3, -〇CF3, -Ν3, -SbOhCrC* alkyl, 4( = 0)(^-0:4 alkyl, -S-C1-C4 alkyl, -OS( = 〇)2CF3 , Ph, -NHCH2Ph, •C(=〇)Me, -0C(=0)Me, morpholinyl and propyl phenyl; and n is 0, 1 or 2. In other embodiments, the invention Methods and uses are provided comprising the administration of a compound of formula Ia, wherein R2 is selected from the group consisting of: -C = 〇(R5), -C = S(Rg), -SO2R7, a P(=0)R8R9 And -(CH2)m-R10. 104 200815381 In yet another embodiment, the invention provides methods and uses comprising administering a compound of formula Ib:

其中R’與R”係分別地由下列所構成的群組中選出:Η、鹵 素、-OH、-NH2、-N〇2、-CN、-CF3、-OCF3、-N3、-SO3H、 -S( = 0)2 烷基、-S( = 0)烷基、-0S( = 0)2CF3、醯基、烷基、 烧氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜_)芳基、(雜-)芳硫基與(雜-)芳胺基; 其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 基與(雜·)芳硫基; R2與η如上述式I-a化合物中所界定一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學上 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式I-b化合物 的方法與用途,其中R’與R”係分別地由下列所構成的群 組中選出·· Η、鹵素、-OH、OMe、-NH2、-N〇2、-CN、 105 200815381 CF3、-OCF3、-N3、-SpOhCrCU 烷基、-8( = 0)(^-(^4 烷 基、-S-Ci-CU 烷基、-0S( = 0)2CF3、Ph、-NHCH2Ph、 -C( = 0)Me、·0(Ι:( = 0)Μ6、嗎淋基與丙烯基;且 η係 0、1 或3。某些實例中,R’係Η或OMe而R”係Η。 在其他實施例中,本發明提供包括施用式I-b化合物 的方法與用途,其中 R2係由下列所構成的群組中選 出:—c=o(r5) 、 —C = S(R6) 、 -SO2R7 、 -p(=o)r8r9 與 -(CH2)m-R10。 在又另一實施例中,本發明提供包括施用式I-c化合 物的方法與用途:Wherein R' and R" are respectively selected from the group consisting of hydrazine, halogen, -OH, -NH2, -N〇2, -CN, -CF3, -OCF3, -N3, -SO3H, - S(=0)2 alkyl, -S(=0)alkyl, -0S(=0)2CF3, fluorenyl, alkyl, alkoxy, alkylamino, alkylthio, cycloalkyl, aryl a heterocyclic group, a heterocycloalkyl group, an alkenyl group, an alkynyl group, a (hetero-)aryl group, a (hetero-)arylthio group and a (hetero-)arylamino group; wherein the fluorenyl group or the alkane may be substituted or unsubstituted Alkyl, alkoxy, alkylamino, cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (hetero-)aryl and (hetero)arylthio; R2 and η Generally as defined in the above formula Ia; and its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes and prodrugs. In certain embodiments, the invention provides methods and uses comprising administering a compound of Formula Ib, wherein the R' and R" systems are each selected from the group consisting of: hydrazine, halogen, -OH, OMe, -NH2 , -N〇2, -CN, 105 200815381 CF3, -OCF3, -N3, -S pOhCrCU alkyl, -8 (= 0)(^-(^4 alkyl, -S-Ci-CU alkyl, -0S( = 0)2CF3, Ph, -NHCH2Ph, -C( = 0)Me, · 0 (Ι: ( = 0) Μ 6, 淋 基 and propylene groups; and η is 0, 1, or 3. In some instances, R' is Η or OMe and R" is Η. In other embodiments, The invention provides methods and uses comprising the administration of a compound of formula Ib, wherein R2 is selected from the group consisting of: -c=o(r5), -C=S(R6), -SO2R7, -p(=o) R8r9 and -(CH2)m-R10. In yet another embodiment, the invention provides methods and uses comprising administering a compound of formula Ic:

其中各個R、R7、q與η就如上述式I-a化合物中所界定 一般;以及其鏡像異構物、非鏡像異構物、互變異構物、 藥學上可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式I-c化合物 的方法與用途,其中各個R係分別地由下列所構成的群組 106 200815381 中選出·· Η、鹵素、-OH、OMe、_NH2、 -CF3、-OCF3、-N3、-S( = 0)2Ci-C4 燒基、義 基、-S-C1-C4 烧基、-OS( = 〇)2CF3、Ph -C( = 0)Me、-0C( = 0)Me、嗎琳基與丙烯基; 或2 〇 在其他實施例中,本發明提供包括施用 的方法與用途,其中R7係由下列所構成# -OH、-NR15R16、烧基、婦基、芳基、環烧基 雜環基與雜環烷基;其中可取代或不取代各 芳基、環烷基、環烷基烷基、雜環基與雜環 在近一步的實施例中,本發明提供包相 合物的方法與用途: -N〇2、-CN、 SfCOCrC^ 烷 、-NHCH2Ph、 且 n係 0、1 丨式I-c化合物 丨群組中選出: 、環烷基烷基、 個烷基、烯基、 烧基。 施用式I-d化Wherein each R, R7, q and η are as defined in the above formula Ia; and as mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvents Compounds, complexes and prodrugs. In certain embodiments, the present invention provides methods and uses comprising the administration of a compound of Formula Ic, wherein each R is selected from the group consisting of: 106, 2008, 381, respectively, halogen, -OH, OMe, _NH2 -CF3, -OCF3, -N3, -S( = 0)2Ci-C4 alkyl, sulfhydryl, -S-C1-C4 alkyl, -OS( = 〇)2CF3, Ph -C( = 0)Me, - 0C (= 0)Me, morphinyl and propenyl; or 2 〇 In other embodiments, the invention provides methods and uses including administration wherein R7 consists of #-OH, -NR15R16, alkyl, A aryl group, an aryl group, a cycloalkylheterocyclyl group and a heterocycloalkyl group; embodiments in which a aryl group, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocyclic group may be substituted or unsubstituted are further examples. In the present invention, the method and use of the inclusion complex are provided: -N〇2, -CN, SfCOCrC^ alkane, -NHCH2Ph, and n-system 0,1 丨Ic compound Ic is selected from the group consisting of: cycloalkylalkyl , alkyl, alkenyl, alkyl. Application I-d

其中R,與R”係分別地由下列所構成的群組 素、-OH、-NH2、-N〇2、-CN、-CF3、_〇Cf3 s(=o)2 烷基、-s(=〇)烷基、-os(=〇)2CF3 , 中選出:Η、鹵 、-Ν3、-S03H、 醯基、烷基、 107 200815381 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜-)芳基、(雜-)芳硫基與(雜_)芳胺基; 且其中可取代或不取代各個醯基、烷基、烷氧基、烧胺美、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜_)芳 基、(雜-)芳硫基; R7與η就如上述式卜a的化合物中所界定一般;以及其鏡 像異構物、非鏡像異構物、互變異構物、藥學上可接受之 鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中’本發明提供包括施用式化合物 的方法與用途,其中R’與R”係分別地由下列所構成的群 組中選出:Η、鹵素、-OH、OMe、-ΝΗ2、、 CN、 -CF3、-OCF3、-Ν3、-S( = 0)2Ci-C4 烷基、= 烧 基、-S - C1 - C 4 烧基、-0 S (= Ο) 2 C F 3、p h、- n H C Η 2 P h、 -C( = 0)Me、-0C( = 0)Me、嗎淋基與丙婦基;且n係〇、1 或3。某些實例中,R’係Η或OMe而R”係η。 在其他實施例中,本發明提供包括施用式化合物 的方法與用途,其中R?係由下列所構成的群組中選出: -OH、-NRi5Ri6、烷基、烯基、芳基 '環烷基、環烷基烷基、 雜環基與雜環烷基;其中可取代或不取代各個烷基、烯基、 芳基、環烧基、環烧基烧基、雜環基與雜環烧基。 在一實施例中,本發明提供包括施用式I-e化合物的方法 與用途: 108 200815381Wherein R, and R" are respectively composed of the group consisting of -OH, -NH2, -N〇2, -CN, -CF3, _〇Cf3 s(=o)2 alkyl, -s( =〇)alkyl, -os(=〇)2CF3, selected from: oxime, halo, -Ν3, -S03H, fluorenyl, alkyl, 107 200815381 alkoxy, alkylamino, alkylthio, cycloalkyl , aryl, heterocyclic, heterocycloalkyl, alkenyl, alkynyl, (hetero-)aryl, (hetero-)arylthio and (hetero)arylamine; and wherein each may be substituted or unsubstituted Mercapto, alkyl, alkoxy, amphetamine, cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (hetero) aryl, (hetero-) arylthio R7 and η are as defined in the compounds of the above formula a; and mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, Complexes and Prodrugs. In certain embodiments, the invention provides methods and uses comprising a compound of the formula wherein R' and R" are each selected from the group consisting of: hydrazine, halogen, -OH , OMe, -ΝΗ2, CN, -CF3, -OCF3, -Ν3, -S( = 0)2Ci-C4 alkyl, = alkyl, -S - C1 - C 4 alkyl, -0 S (= Ο) 2 CF 3, ph, - n HC Η 2 P h, -C( = 0) Me, -0C (= 0) Me, morphine and propyl group; and n is 〇, 1 or 3. In certain instances, R' is hydrazine or OMe and R" is η. In other embodiments, the invention provides methods and uses comprising a compound of the formula wherein R? is selected from the group consisting of: - OH, -NRi5Ri6, alkyl, alkenyl, aryl 'cycloalkyl, cycloalkylalkyl, heterocyclic and heterocycloalkyl; wherein each alkyl, alkenyl, aryl, ring may be substituted or unsubstituted An alkyl group, a cycloalkyl group, a heterocyclic group and a heterocyclic group. In one embodiment, the invention provides methods and uses comprising the administration of a compound of formula Ie: 108 200815381

其中各個R、Rs、q與n就如上述式k的化合物中所界 定一般;以及其鏡像異構物、非鏡像異構物、互變異構物、 藥學上可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式化合物 的方法與用途,其中各個R係分別地由下列所構成的群組 中選出:Η、鹵素、-OH、〇Me、-ΝΗ2、-N02、-CN、 -CF3、-OCF3、-Ν3、-SpOhCi-CU 烷基、-S( = 0)Ci-C4 烷 基、-S-Ci-C4 烧基、-OS( = 〇)2CF3、Ph、-NHCH2Ph、 -C( = 0)Me、-0C( = 0)Me、嗎琳基與丙烯基;且n係0、1 或2, 在其他實施例中,本發明提供包括施用式I-e化合物 的方法與用途,其中 R5係由下列所構成的群組中選 出:-NR15R16、-(CDzNRuRu、、NHOH、-OR15、-CH2X、 烷基、烯基、芳基、環烷基、環烷基烷基、雜環基與雜環 烷基;其中可取代或不取代各個醯基、烧基、烯基、芳基、 環烷基、環烷基烷基、雜環基與雜環虎基。 109 200815381 在某些實施例中,本發明提供包括施用式I-e化合物 的方法與用途,其中R5係一經至少一標定基(諸如螢光、 生物冷光、化學冷光、呈色以及放射性標定基)取代的烷 基。螢光標定基係從下列中選出:二吼咯曱烷二氟化硼化 合物(bodipy)、丹續醢、螢光素、若丹明、德州紅、花青 素染料、焦油腦、香豆素、卡斯克德藍TM、太平洋藍、馬 力納藍、奥勒崗綠、4’ ,6-二脒基-2-苯吲哚(DAPI)、吲哚 比拉染料、螢光黃、碘化丙啶、吡咯紫質、精胺酸以及上 述之變異物與衍生物。 在另一實施例中,本發明提供包括施用式I-f化合物 的方法與用途:Wherein each R, Rs, q and n are as defined in the compound of formula k above; and mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, Solvates, complexes and prodrugs. In certain embodiments, the present invention provides methods and uses comprising a compound of the formula wherein each R line is selected from the group consisting of: hydrazine, halogen, -OH, 〇Me, -ΝΗ2, -N02 , -CN, -CF3, -OCF3, -Ν3, -SpOhCi-CU alkyl, -S( = 0)Ci-C4 alkyl, -S-Ci-C4 alkyl, -OS( = 〇)2CF3, Ph , -NHCH2Ph, -C(=0)Me, -0C(=0)Me, morphinyl and propenyl; and n is 0, 1 or 2, in other embodiments, the invention provides for the administration of a compound of formula Ie The method and use, wherein R5 is selected from the group consisting of -NR15R16, -(CDzNRuRu, NHOH, -OR15, -CH2X, alkyl, alkenyl, aryl, cycloalkyl, cycloalkyl An alkyl group, a heterocyclic group and a heterocycloalkyl group; wherein each of a fluorenyl group, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocyclic group can be substituted or unsubstituted. 109 200815381 In certain embodiments, the invention provides methods and uses comprising administering a compound of Formula Ie, wherein R5 is at least one calibration group (such as fluorescent, biologically luminescent, chemically luminescent, colored, and irradiated) Substituted alkyl group. The base of the cursor is selected from the following: dioxodecane boron difluoride compound (bodipy), dansui, luciferin, rhodamine, dezhou red, cyanine Dyes, tar brain, coumarin, Cascade BlueTM, Pacific Blue, Molina Blue, Olegang Green, 4', 6-diamidino-2-phenylindole (DAPI), Debbie Dyes, fluorescein, propidium iodide, pyrrole, arginine, and variants and derivatives thereof. In another embodiment, the invention provides methods and uses comprising the administration of a compound of formula If:

(I-f) 其中R’與R”係分別地由下列所構成的群組中選出:Η、鹵 素、-0Η、-ΝΗ2、·Ν〇2、-CN、-CF3、-0CF3、-N3、-S03H、 •s(=o)2 烷基、-s(=o)烷基、-os(=o)2cf3、醯基、烷基、 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 110 200815381 烷基、烯基、炔基、(雜-)芳基、(雜〇芳硫基與(雜-)芳胺基; 而其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 基、(雜-)芳硫基; R5與η就如上述式I-a化合物中所界定一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學上 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式I-f化合物 的方法與用途,其中R’與R”係分別地由下列所構成的群 組中選出·· H v 鹵素、-OH ' OMe、-NH2、-N02、-CN、 -CF3、-OCF3、-N3、烷基、燒 基、-S-Ci-C4 烷基、-〇S( = 0)2CF3、Ph、-NHCH2Ph、 -C( = 0)Me、-0C( = 0)Me、嗎啉基與丙烯基;且n係〇、j 或3。某些實例中,R’係Η或OMe而R”係Η。 在其他實施例中,本發明提供包括施用式I-f化合物 的方法與用途,其中 Rs係由下列所構成的群組中選 出:-NR15R16、-(CH2)ZNR15R16、-NHOH、—OR15、-CH2X、 烷基、烯基、芳基、環烷基、環烷基烷基、雜環基與雜 烷基;其中可取代或不取代各個醯基、烷基、烯基、芳基、 環烷基、環烷基烷基、雜環基與雜環烷基。 在又另一實施例中,本發明提供包括施用式I-g化合 物的方法與用途: 111 200815381(If) where R' and R" are respectively selected from the group consisting of Η, halogen, -0Η, -ΝΗ2, ·Ν〇2, -CN, -CF3, -0CF3, -N3, - S03H, •s(=o)2 alkyl, -s(=o)alkyl, -os(=o)2cf3, fluorenyl, alkyl, alkoxy, alkylamino, alkylthio, cycloalkyl , aryl, heterocyclic, heterocyclic 110 200815381 alkyl, alkenyl, alkynyl, (hetero-)aryl, (heteroarylthio and (hetero-)arylamino); and which may be substituted or unsubstituted Each mercapto group, alkyl group, alkoxy group, alkylamino group, cycloalkyl group, aryl group, heterocyclic group, heterocycloalkyl group, alkenyl group, alkynyl group, (hetero-)aryl group, (hetero-) aryl sulfide R5 and η are as defined in the above formula Ia; and as mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes And certain prodrugs. In certain embodiments, the invention provides methods and uses comprising the administration of a compound of the formula If the R' and R" systems are each selected from the group consisting of: H v halogen, - OH ' OMe, -NH2, -N02, -CN, -CF3, -OCF3 -N3, alkyl, alkyl, -S-Ci-C4 alkyl, -〇S( = 0)2CF3, Ph, -NHCH2Ph, -C( = 0)Me, -0C( = 0)Me, morpholine And propylene; and n is 〇, j or 3. In some embodiments, R' is Η or OMe and R" is Η. In other embodiments, the invention provides methods and uses comprising administering a compound of formula If, Wherein Rs is selected from the group consisting of -NR15R16, -(CH2)ZNR15R16, -NHOH, -OR15, -CH2X, alkyl, alkenyl, aryl, cycloalkyl, cycloalkylalkyl, a heterocyclic group and a heteroalkyl group; wherein each of a fluorenyl group, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocycloalkyl group may be substituted or unsubstituted. In an embodiment, the invention provides methods and uses comprising administering a compound of formula Ig: 111 200815381

nr15r16 α-g)Nr15r16 α-g)

構物、互變異構物、藥學上可接受之鹽類、 物、非鏡像異 水合物、溶劑 合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式化合物 的方法與用途’其中各個R係分別地由下列所構成的^組 中選出:Η、鹵素、-OH、〇Me、-NH2、、_CN、 -CF3、-OCF3、·Ν3、烷基、-s( = 〇)Cl_C4 烷 基、-S-Ci-C4 烷基、-〇S( = 0)2CF3、Ph、-NHCH2Ph、 -C( = 0)Me、-0C( = 0)Me、嗎啉基與丙烯基;且n係〇、i 或2 〇 在其他實施例中,本發明提供包括施用式I-g化合物 的方法與用途,其中Rl 5與Rl6係分別地由下列所構成的 群組中選出:Η、OH、NH2、烷基、烷胺基、芳基、環烷 基、環烷基烷基、雜環基與雜環烷基;其中可取代各個烷 基、烷胺基、芳基、環烷基、環烷基烷基、雜環基與雜環 112 200815381 烷基;以及選擇性地,Ri 5與R16可和其所結合的N共同 形成一個雜環,該雜環可以被取代。 在某些實施例中,本發明提供包括施用式I-g化合物 的方法與用途,其中W係Ο或S。 在又另一實施例中,本發明提供包括施用式I-h化合 物的方法與用途:Constructs, tautomers, pharmaceutically acceptable salts, non-mirromeric hetero hydrates, solvates, complexes and prodrugs. In certain embodiments, the present invention provides methods and uses comprising a compound of the formula wherein each R-line is selected from the group consisting of: hydrazine, halogen, -OH, 〇Me, -NH2, _CN , -CF3, -OCF3, ·Ν3, alkyl, -s( = 〇)Cl_C4 alkyl, -S-Ci-C4 alkyl, -〇S( = 0)2CF3, Ph, -NHCH2Ph, -C( = 0) Me, -0C (= 0)Me, morpholinyl and propenyl; and n is 〇, i or 2 〇 In other embodiments, the invention provides methods and uses comprising administering a compound of formula Ig, wherein Rl 5 And Rl6 are respectively selected from the group consisting of hydrazine, OH, NH2, alkyl, alkylamino, aryl, cycloalkyl, cycloalkylalkyl, heterocyclic and heterocycloalkyl; Wherein each alkyl group, alkylamino group, aryl group, cycloalkyl group, cycloalkylalkyl group, heterocyclic group and heterocyclic group 112 200815381 alkyl group may be substituted; and optionally, Ri 5 and R 16 may be bonded thereto. N together form a heterocyclic ring which can be substituted. In certain embodiments, the invention provides methods and uses comprising administering a compound of Formula I-g, wherein W is oxime or S. In yet another embodiment, the invention provides methods and uses comprising the administration of a compound of formula I-h:

其中R’與R”係分別地由下列所構成的群組中選出:Η、鹵 素、-ΟΗ、-ΝΗ2、-Ν〇2、-CN、-CF3、-OCF3、-N3、-S03H、 -S( = 0)2 烷基、-s( = 0)烷基、-0S( = 0)2CF3、醯基、烷基、 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜-)芳基、(雜-)芳硫基與(雜-)芳胺基; 其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 113 200815381 基、(雜-)芳硫基; R15、R16與11就如上述式1-&的化合物中所界定一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式I-h化合 的方法與用途,其中 R ’與R ”係分別地由下列所構成的 組中選出·· Η、鹵素、-OH、OMe、,NH2、-N〇2、-CN -CF3、-OCF3、-N3、-8( = 0)2(^-(34 烷基、-8( = 0)(^-(^4 基、-S-Ci-C4 烷基、-0S( = 0)2CF3、Ph、-NHCH2Ph -C( = 0)Me、-0C( = 0)Me、嗎啉基與丙烯基;且 n係 0, 或3。某些實例中,R’係Η或OMe而R”係Η。 在其他實施例中,本發明提供包括施用式I-h化合 的方法與用途,其中Ri 5與Ri6係分別地由下列所構成 群組中選出:Η、OH、NH2、烷基、烷胺基、芳基、環 基、環烷基烷基、雜環基與雜環烷基;其中可取代各個 基、烷胺基、芳基、環烷基、環烷基烷基、雜環基與雜 烷基;以及選擇性地,Ri 5與R16可和其所結合的氮共同 成一個雜環,該雜環可以被取代。 在某些實施例中,本發明提供包括施用式I-h化合 的方法與用途,其中W係0或S。 在進一步的實施例中,本發明提供包括施用式I-i 合物的方法與用途: 上 物 群 烷 物 的 烷 烷 環 形 物 化 114 200815381Wherein R' and R" are respectively selected from the group consisting of Η, halogen, -ΟΗ, -ΝΗ2, -Ν〇2, -CN, -CF3, -OCF3, -N3, -S03H, - S(=0)2 alkyl, -s(=0)alkyl, -0S(=0)2CF3, decyl, alkyl, alkoxy, alkylamino, alkylthio, cycloalkyl, aryl a heterocyclic group, a heterocycloalkyl group, an alkenyl group, an alkynyl group, a (hetero-)aryl group, a (hetero-)arylthio group and a (hetero-)arylamino group; wherein the fluorenyl group or the alkane may be substituted or unsubstituted Alkyl, alkoxy, alkylamino, cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (hetero-)aryl 113 200815381, (hetero-)arylthio; R15 , R16 and 11 are as defined in the compound of the above formula 1-&; and their mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates , Complexes and Prodrugs. In certain embodiments, the present invention provides methods and uses comprising the administration of Formula Ih, wherein R' and R" are respectively selected from the group consisting of hydrazine, halogen, -OH, OMe, NH2, -N〇2, -CN -CF3, -OC F3, -N3, -8( = 0)2(^-(34 alkyl, -8( = 0)(^-(^4 base, -S-Ci-C4 alkyl, -0S( = 0)2CF3 , Ph, -NHCH2Ph -C( = 0)Me, -0C( = 0)Me, morpholinyl and propenyl; and n is 0, or 3. In some instances, R' is Η or OMe and R" In other embodiments, the invention provides methods and uses comprising the administration of a compound of Formula Ih, wherein the Ri 5 and Ri6 lines are each selected from the group consisting of hydrazine, OH, NH 2 , alkyl, alkylamine a group, an aryl group, a cyclic group, a cycloalkylalkyl group, a heterocyclic group and a heterocycloalkyl group; wherein each group, an alkylamino group, an aryl group, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group Heteroalkyl; and optionally, Ri5 and R16 may form a heterocyclic ring with the nitrogen to which they are bound, and the heterocyclic ring may be substituted. In certain embodiments, the invention provides a method comprising administering a compound of formula Ih. And use, wherein W is 0 or S. In a further embodiment, the invention provides a method and use comprising the application of a compound of formula I: alkane ring physicochemicals of a mixture of alkane 114 200815381

其中 Rl7係由下列所構成的群組中選出:〜^ nu16、 -NHNR15R16、-ΝΗΟΗ、一OR15、-CH2X、烯基、实 1Wherein Rl7 is selected from the group consisting of: ^^ nu16, -NHNR15R16, -ΝΗΟΗ, one OR15, -CH2X, alkenyl, real 1

方暴、環烷 基、環烷基烷基、雜環基與雜環烷基;其中可取代 〜爽不取 代各個婦基、芳基、環烧基、環烧基烧基、雜環武 土兴雜環 各個R、q與n就如上述式I-a的化合物中所界定— ^ 一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、〜 ^ 、樂學上 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式τ 、 、丨”化合物 的方法與用途,其中各個R係分別地由下列所播 J Γ/τ猶成的群組 中選出:Η、鹵素、-OH ' OMe、-NH2、、N〇2、_CN、 -CF3、_〇CF3、_n3、_s(==〇)2CVC4 烷基、·8( = 〇)(:ι_ε4 烷 基、-S-Ci-CU 烧基、-〇S( = 〇)2CF3、Ph、-NHCH2Ph、 -C( = 〇)Me、-〇C( = 0)Me、嗎琳基與丙烯基;且n係0、1 或2 〇 在其他實施例中,本發明提供包括施用式I-i化合物 的方法與用途,其中R17係—NR15R16與-or15。某些其他實 115 200815381 -NHEt、-NHPh、-NH2 施例中 ’ R1 7 係-Ο Η、- Ο M e、- N E t、 或-NHCH2咣啶基。 在一實施例中,本發明提供包括施用式化合物的 方法與用途:a crater, a cycloalkyl group, a cycloalkylalkyl group, a heterocyclic group and a heterocycloalkyl group; wherein the group can be substituted, the group is not substituted, and the aryl group, the aryl group, the cycloalkyl group, the cycloalkyl group, and the heterocyclic soil are substituted. Each R, q and n of the heterocyclic ring is as defined in the compound of the above formula Ia - generally; and its mirror image isomer, non-image isomer, tautomer, ~ ^, and is acceptable for learning Salts, hydrates, solvates, complexes and prodrugs. In certain embodiments, the present invention provides methods and uses comprising the application of a formula of a τ, 丨" compound, wherein each R is selected from the group of J Γ / τ, respectively: Η, halogen, -OH ' OMe, -NH2, N〇2, _CN, -CF3, _〇CF3, _n3, _s(==〇)2CVC4 alkyl, ·8( = 〇)(:ι_ε4 alkyl, -S-Ci -CU calcination, -〇S( = 〇)2CF3, Ph, -NHCH2Ph, -C( = 〇)Me, -〇C( = 0)Me, morphinyl and propenyl; and n is 0, 1 or 2 In other embodiments, the invention provides methods and uses comprising the administration of a compound of formula Ii, wherein R17 is -NR15R16 and -or 15. Some other solids 115 200815381 -NHEt, -NHPh, -NH2, in the case of 'R1 7 - Ο -, - Ο M e, - NE t, or -NHCH 2 aridinyl. In one embodiment, the invention provides methods and uses comprising a compound of the formula:

其中R’與R”係分別地由下列所構成的群組中選出:Η、鹵 -OCF3、-N3、-SO3H、 素、-OH、-NH2、-N02、-CN、-CF3、 -S( = 0)2 烷基、-s( = o)烷基、-〇S( = 0)2CF3、醯基、烷基、 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜_)芳基、(雜-)芳硫基與(雜-)芳胺基; 且其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 基、(雜-)芳硫基; R17係由下列所構成的群組中選出:-NRl5Rl6、 -NHNRi5Ri6、-NHOH、—〇R15、-CH2X' 烯基、芳基、環院 基、環烷基烷基、雜環基與雜環烷基;其中可取代或不取 116 200815381 代各個埽基、芳基、環烷基、環烷基烷基、雜環基與雜環 烷基; n就如上述式ϊ-a的化合物中所界定一般;以及 其鏡像異構物、非鏡像異構物、互變異構物、藥學上可接 乂之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式I-j化合物 的方法與用途,其中R,與R”係分別地由下列所構成的群 組中選出:Η、鹵素、-OH、OMe、-NH2、-N〇2、-CN、 -CF3、-〇CF3、_N3、-StOhC^CU 烷基、-S( = 0)Ci-C4 烷 基、炫基、-OS( = 0)2CF3、Ph、-NHCH2Ph、 -C( = 〇)Me、-0C( = 0)Me、嗎啉基與丙烯基;且n係〇、1 或3。某些實例中,R’係Η或〇Me而R”係Η。 在其他實施例中,本發明提供包括施用式I-j化合物 的方法與用途,其中R17係-NR1SR16或一 〇r15。某些其他實 施例中,Ri7 係-OH、-OMe、-NEt、-NHEt、-NHPh、-NH2 或-NHCH2吡啶基。 在另一實施例中,本發明提供包括施用式I_k化合物 的方法與用途: 117 200815381Wherein R' and R" are respectively selected from the group consisting of: hydrazine, halogen-OCF3, -N3, -SO3H, -, -OH, -NH2, -N02, -CN, -CF3, -S ( = 0) 2 alkyl, -s( = o)alkyl, -〇S( = 0)2CF3, fluorenyl, alkyl, alkoxy, alkylamino, alkylthio, cycloalkyl, aryl a heterocyclic group, a heterocycloalkyl group, an alkenyl group, an alkynyl group, a (hetero-)aryl group, a (hetero-)arylthio group and a (hetero-)arylamino group; and wherein the thiol group may be substituted or unsubstituted, Alkyl, alkoxy, alkylamino, cycloalkyl, aryl, heterocyclic, heterocycloalkyl, alkenyl, alkynyl, (hetero-)aryl, (hetero-)arylthio; R17 Selected from the group consisting of: -NRl5Rl6, -NHNRi5Ri6, -NHOH, -〇R15, -CH2X' alkenyl, aryl, cyclohexyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl Which may or may not be substituted for each of the fluorenyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl groups of the group 200818381; n is as defined in the compound of the above formula ϊ-a And its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable Classes, hydrates, solvates, complexes and prodrugs. In certain embodiments, the present invention provides methods and uses comprising the administration of a compound of Formula Ij, wherein the R, and R" systems are respectively composed of the following Selected from the group: Η, halogen, -OH, OMe, -NH2, -N〇2, -CN, -CF3, -〇CF3, _N3, -StOhC^CU alkyl, -S( = 0)Ci-C4 alkane Base, thiol, -OS(=0)2CF3, Ph, -NHCH2Ph, -C(= 〇)Me, -0C(=0)Me, morpholinyl and propenyl; and n is 〇, 1 or 3. In certain instances, R' is Η or 〇 Me and R" is Η. In other embodiments, the invention provides methods and uses comprising administering a compound of Formula Ij, wherein R17 is -NR1SR16 or 〇r15. Certain other In an embodiment, Ri7 is -OH, -OMe, -NEt, -NHEt, -NHPh, -NH2 or -NHCH2 pyridyl. In another embodiment, the invention provides methods and uses comprising administering a compound of formula Ik: 117 200815381

其中R’與R”係分別地由下列所構成的群組中選出:Η、鹵 素、-ΟΗ、-ΝΗ2、-N〇2、-CN、一cP3、-OCF3、-N3、-S03H、 -s(=o)2 烷基、-s(=〇)烷基、-0S(=0)2CF3、醯基、烷基、 烷氧基 '烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜-)芳基、(雜-)芳硫基與(雜-)芳胺基; 且其中可取代或不取代各個酿基、烧基、院氧基、烧胺基、 環烷基、芳基、雜環基、雜環烷基、烯基、炔基、(雜-)芳 基、(雜-)芳硫基;Wherein R' and R" are respectively selected from the group consisting of: Η, halogen, -ΟΗ, -ΝΗ2, -N〇2, -CN, one cP3, -OCF3, -N3, -S03H, - s(=o)2 alkyl, -s(=〇)alkyl, -0S(=0)2CF3, fluorenyl, alkyl, alkoxy 'alkylamino, alkylthio, cycloalkyl, aryl a heterocyclic group, a heterocycloalkyl group, an alkenyl group, an alkynyl group, a (hetero-)aryl group, a (hetero-)arylthio group and a (hetero-)arylamino group; and wherein each of the aryl groups may be substituted or unsubstituted, An alkyl group, an alkoxy group, an acryl group, a cycloalkyl group, an aryl group, a heterocyclic group, a heterocycloalkyl group, an alkenyl group, an alkynyl group, a (hetero-)aryl group, a (hetero-) arylthio group;

Rl8係由下列所構成的群組中選出:-NRl5Rl6、 -c(=o)nr15r16、_(c = 〇)〇R15、一0R15、烷基、芳基、環烷 基、雜環基以及一標定基;其中可取代或不取代各個烷基、 芳基、環烷基與雜環基; 其中 p 係 1、2、3、4、5、6、7、8、9 或 10; 且η係0、1或2; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學上 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中,本發明提供包括施用式化合物 的方法與用途,其中R’與R”係分別地由下列所構成的群 118 200815381 組中選出:Η、鹵素、-OH、OMe、-NH2、-N02、-CN、 -CF3、-OCF3、-N3、-S( = 0)2Ci-C4 烧基、-S( = 〇)Ci-C4 烧 基、-S-CrC* 烷基、-0S( = 0)2CF3、Ph、-NHCH2Ph、 -C( = 0)Me、-0C( = 0)Me、嗎啉基與丙烯基;且n係0、1 或3。某些實例中,R’係Η或OMe而R”係Η。 在其他實施例中,本發明提供包括施用式Lk化合物 的方法與用途,其中 Ru係由下列所構成的群組中選 出:一NRi 5R16、-(C = 0)0Ri 5、一ORi 5、院基、芳基以及一標 定基;且其中可取代或不取代各個烷基與芳基。某些實例 中,m 係 1 而 Ris 係 Ph、C( = 〇)〇Me、C( = 0)〇H、胺院基 (aminoalkyl)、NH2、NHOH 或 NHCbz。其他實例中,m 係 〇而Rl8係C1-C4烷基(諸如曱基、乙基、丙基與丁基)。又 其他實例中,m係2而R丨s係〇比洛咬(p y r r 〇 1J d i n e )、六氫°比 啶(piperidine)、 六氫吡肼(piperazine)或嗎福林 (morpholine)。某些實施例中,m 係 3、4、5、6、7 或 8 而Ris係一螢光標定基,該標定基係從下列中選出:二吡 咯曱烷二氟化硼化合物、丹磺醯、螢光素、若丹明、德州 紅、化青素染料、焦油腦、香豆素、卡斯克德藍TM、太平 洋藍、馬力納藍、奥勒崗綠、4, ,6 -二脒基-2 -苯吲蜂 (DAPI)、吲哚比拉染料、螢光黃、破化丙唆、吡略紫質、 精胺酸以及上述之變異物與衍生物。 在又另一實施例中,本發明提供包括施用式I -1化合 物的方法與用途: 119 200815381Rl8 is selected from the group consisting of -NRl5Rl6, -c(=o)nr15r16, _(c = 〇)〇R15, a 0R15, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, and a a calibration group; wherein each alkyl group, aryl group, cycloalkyl group and heterocyclic group may be substituted or unsubstituted; wherein p is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; 0, 1 or 2; and its mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes and prodrugs. In certain embodiments, the invention provides methods and uses comprising a compound of the formula wherein R' and R" are selected from the group consisting of 118, 2008, 15, 381, respectively: hydrazine, halogen, -OH, OMe, - NH2, -N02, -CN, -CF3, -OCF3, -N3, -S(=0)2Ci-C4 alkyl, -S(= 〇)Ci-C4 alkyl, -S-CrC* alkyl, - 0S( = 0)2CF3, Ph, -NHCH2Ph, -C(=0)Me, -0C(=0)Me, morpholinyl and propenyl; and n is 0, 1 or 3. In some instances, R 'System or OMe and R' system. In other embodiments, the invention provides methods and uses comprising administering a compound of formula Lk, wherein Ru is selected from the group consisting of: NRi 5R16, -(C = 0) 0Ri 5, an ORi 5, hospital a base, an aryl group, and a calibration group; and wherein each alkyl group and aryl group may be substituted or unsubstituted. In some instances, m is 1 and Ris is Ph, C( = 〇)〇Me, C( = 0)〇H, aminoalkyl, NH2, NHOH or NHCbz. In other examples, m is hydrazine and Rl8 is a C1-C4 alkyl group (such as decyl, ethyl, propyl and butyl). In still other examples, m is 2 and R丨s is p 洛 洛 (P y r r 〇 1J d i n e ), piperididine, piperazine or morpholine. In some embodiments, m is 3, 4, 5, 6, 7, or 8 and Ris is a cursor-based base selected from the group consisting of dipyrrolidine boron difluoride compound, dansyl , luciferin, rhodamine, texas red, phthalocyanine dye, tar brain, coumarin, casque blue, pacific blue, maolina blue, olere green, 4, , 6 - dimercapto -2 - Benzoin bee (DAPI), Debbie dye, Fluorescent yellow, Cellulose, Pyridine, arginine, and the above variants and derivatives. In yet another embodiment, the invention provides methods and uses comprising the administration of a compound of formula 1-1: 119 200815381

JJ

(1-1) 其中R’與R”係分別地由下列所構成的群組中選出:H、鹵 素、-OH、-NH2、-N〇2、-CN、-CF3、-〇CF3、-N3、-S03H、 -S( = 0)2 烷基、-S( = 0)烷基、-0S( = 0)2CF3、醯基、烷基、 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜芳基、(雜-)芳硫基與(雜-)芳胺基; 且其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烷基、芳基、雜環基、雜環院基、烯基、炔基、(雜-)芳 基、(雜-)芳硫基; R6與η就如上述式卜a的化合物中所界定一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學上 可接受之鹽類、水合物、》谷劑合物、複合物與前藥。 在某些實施例中’本發明提供包括施用式1-1化合物 的方法與用途,其中R’與R”係分別地由下列所構成的群 組中選出:Η、鹵素、-0H、OMe、-NH2、-N02、-CN、 CF3、-OCF3、-N3、-S( = 0)2Cl-C4 烷基、4( = 0)(^-04 烷 基、-S-Ci-C4 烷基、-08…0)】。?”?!!、-:^!^^!〗?!!、 120 200815381 -C( = 0)Me、-0C( = 0)Me、嗎啉基與丙烯基;且ηι 或3 。某些實例中,R係Η或〇Me而R”係Η。 在其他實施例中,本發明提供包括施用式 的方法與用途,其中R6係由下列所構成的群組中 -NR15R16、-NHNR15R16、_〇R15、-NHOH、-CH2X、 烯基、烷基、芳基、環烷基、環烷基烷基、雜環基 烷基;其中可取代或不取代各個醯基、烯基、烷基、 環烷基、環烷基烷基、雜環基與雜環烷基。某些實 R6係-NR15Ri6(諸如,-NHPh、吡咯啶、六氫吡啶、 肼、嗎福林等專)。某些其他實例中,r6係烧氧 如一0_tBu 〇 在進一步的實施例中,本發明提供包括施用式 合物的方法與用途: g 0、1 化合物 選出: 醢基、 與雜環 芳基、 例中, 六氫吼 基,例 I-m化(1-1) wherein R' and R" are respectively selected from the group consisting of H, halogen, -OH, -NH2, -N〇2, -CN, -CF3, -〇CF3, - N3, -S03H, -S(=0)2 alkyl, -S(=0)alkyl, -0S(=0)2CF3, fluorenyl, alkyl, alkoxy, alkylamino, alkylthio, Cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, alkenyl, alkynyl, (heteroaryl, (hetero-)arylthio and (hetero-)arylamino); Each mercapto group, alkyl group, alkoxy group, alkylamino group, cycloalkyl group, aryl group, heterocyclic group, heterocyclic compound group, alkenyl group, alkynyl group, (hetero-)aryl group, (hetero-) aryl sulfide R6 and η are as defined in the compound of the above formula a; and mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, gluten Compounds, Complexes, and Prodrugs. In certain embodiments, the invention provides methods and uses comprising the administration of a compound of Formula 1-1, wherein R' and R" are each selected from the group consisting of: Η, halogen, -0H, OMe, -NH2, -N02, -CN, CF3, -OCF3, -N3, -S( = 0) 2Cl-C4 alkyl, 4 (= 0) (^-04 alkyl, -S-Ci-C4 alkyl, -08...0)]???!!, -:^!^^! ?!!, 120 200815381 -C( = 0)Me, -0C( = 0)Me, morpholinyl and propenyl; and ηι or 3. In some instances, R is Η or 〇Me and R" is Η In other embodiments, the invention provides methods and uses comprising an application formula wherein R6 is selected from the group consisting of -NR15R16, -NHNR15R16, _R15, -NHOH, -CH2X, alkenyl, alkyl , aryl, cycloalkyl, cycloalkylalkyl, heterocyclylalkyl; wherein may be substituted or unsubstituted with each fluorenyl, alkenyl, alkyl, cycloalkyl, cycloalkylalkyl, heterocyclic group and Heterocycloalkyl. Some of the real R6 systems are -NR15Ri6 (such as -NHPh, pyrrolidine, hexahydropyridine, hydrazine, orolin, etc.). In some other examples, the r6 is a calcined oxygen such as a 0_tBu 〇 in a further In the embodiments, the present invention provides methods and uses comprising administering an analog compound: g 0, 1 compound selected: fluorenyl, and heterocyclic aryl, in the case, hexahydroindenyl, exemplified

其中R,與R”係分別地由下列所構成的群組中選出 素、-OH、-NH2、-N〇2、-CN ' -CF3、-〇cf3、-N3、 :Η、鹵 S03H、 121 200815381 -S( = 0)2 烷基、-s( = 〇)烷基、-OS( = 〇)2cf3、醯基、烷基、 烷氧基、烷胺基、烷硫基、環烷基、芳基、雜環基、雜環 烷基、烯基、炔基、(雜芳基、(雜-)芳硫基與(雜-)芳胺基; 且其中可取代或不取代各個醯基、烷基、烷氧基、烷胺基、 環烧基、芳基、雜環基、雜環烧基、埽基、炔基、(雜_)芳 基、(雜-)芳硫基; R8、R9與η就如上述式I-a的化合物中所界定一般; 以及其鏡像異構物、非鏡像異構物、互變異構物、藥學上 可接受之鹽類、水合物、溶劑合物、複合物與前藥。 在某些實施例中’本發明提供包括施用式I-m化合物 的方法與用途’其中R’與R”係分別地由下列所構成的群 組中選出:Η、鹵素、-OH、〇Me、、 -cf3、-ocf3、-n3、-s(=〇)2Cl-C4 烷基…s(=〇)Ci C4 燒 基、-S-Ci.C* 烷基、_0S( = 0)2CF3、Ph、_NHCH2Ph、 -C( = 〇)Me、_〇C( = 0)Me、嗎啉基與丙烯基;且n係〇、! 或3 。某些實例中,R,係Η或〇Me而R”係η。 在其他實施例中,本發明提供包括施用式I-m化合物 的方法與用途,其中R8與R9分別地為烷基、芳基、_〇H、 烷氧基或烷胺基。某些實例中,r8係Ci-C4烷基(諸如甲 基、乙基、丙基與丁基);而R9係芳基,例如苯基。 在其他實施例中,本發明提供包括施用式卜n化合物 的方法與用途: 122 0, 0,200815381Wherein R, and R" are respectively selected from the group consisting of -OH, -NH2, -N〇2, -CN'-CF3, -〇cf3, -N3, :Η, halogen S03H, 121 200815381 -S( = 0)2 alkyl, -s( = 〇)alkyl, -OS( = 〇) 2cf3, decyl, alkyl, alkoxy, alkylamino, alkylthio, cycloalkyl , aryl, heterocyclic, heterocycloalkyl, alkenyl, alkynyl, (heteroaryl, (hetero-)arylthio and (hetero-)arylamino); and wherein each thiol group may be substituted or unsubstituted , alkyl, alkoxy, alkylamino, cycloalkyl, aryl, heterocyclyl, heterocycloalkyl, decyl, alkynyl, (hetero) aryl, (hetero-) arylthio; R8 , R9 and η are as defined in the compound of the above formula Ia; and mirror image isomers, non-image isomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes And certain prodrugs. In certain embodiments, the invention provides methods and uses comprising the administration of a compound of Formula Im, wherein R' and R" are each selected from the group consisting of: hydrazine, halogen, -OH , 〇Me,, -cf3, -ocf3, -n3, -s(= 2Cl-C4 alkyl...s(=〇)Ci C4 alkyl, -S-Ci.C* alkyl,_0S(=0)2CF3, Ph, _NHCH2Ph, -C( = 〇)Me, _〇C( = 0) Me, morpholinyl and propenyl; and n is 〇, ! or 3. In some instances, R, is Η or 〇Me and R" is η. In other embodiments, the invention provides for administration. A method and use of a compound of Formula Im, wherein R8 and R9 are each independently alkyl, aryl, 〇H, alkoxy or alkylamine. In certain instances, r8 is Ci-C4 alkyl (such as methyl, Ethyl, propyl and butyl); and R9 is aryl, for example phenyl. In other embodiments, the invention provides methods and uses comprising a compound of the formula: 122 0, 0, 200815381

s- 其中:S- where:

Rd係CH2或NRa ;以及Rd is CH2 or NRa;

Ra係H、-(CVC6烷基)-芳基,其中該芳基係經雙取代 (disubstituted)的苯基或苯並[13]二氧-5_基基團或胺類保 護基團(例如,B 〇 c基團);以及Ra is H, -(CVC6 alkyl)-aryl, wherein the aryl is a disubstituted phenyl or benzo[13]dioxo-5-yl group or an amine protecting group (eg , B 〇c group);

Rb係烧氧基(例如,曱氧基)的氫。 式I-n的示範性化合物包括(但不限於)S1〇i、S102、 S103 、 S114 〇 在某些其他實施例中,本發明提供式I-o的化合物··Rb is a hydrogen of an alkoxy group (for example, a decyloxy group). Exemplary compounds of Formulas I-n include, but are not limited to, S1〇i, S102, S103, S114. In certain other embodiments, the present invention provides compounds of Formula I-o.

其中:among them:

Re係烷基)-苯基、-(CVC6烷基)-C(0)Rb、或是 經取代或未經取代的-C^Cg烷基;以及 Rb係—OH或一 〇-(Ci-C6烷基),以及 123 200815381 其中該苯基或經取代的烷基可以一或更多下列基團取 代:鹵素、烴基、-CrQ烷基、-0_(Cl_c6烷基)、-NH2、 -NH(Ci-C6烧基)、-N(Ci-C6烧基)2、氰基或二氧戊環 (dioxolane) 〇 式I - 〇的示範性化合物包括(但不限於)S 1 0 7、S 1 1 0、 SI 11、S120 與 S121 〇 在某些其他實施例中,本發明提供式Ι-p的化合物:Re-alkyl)-phenyl, -(CVC6 alkyl)-C(0)Rb, or substituted or unsubstituted -C^Cg alkyl; and Rb-OH or mono-(Ci- C6 alkyl), and 123 200815381 wherein the phenyl or substituted alkyl group may be substituted with one or more of the following groups: halogen, hydrocarbyl, -CrQ alkyl, -0-(Cl-c6 alkyl), -NH2, -NH (Ci-C6 alkyl), -N (Ci-C6 alkyl) 2, cyano or dioxolane Exemplary compounds of the formula I - 包括 include, but are not limited to, S 1 0 7, S 1 1 0, SI 11, S120 and S121 〇 In certain other embodiments, the invention provides a compound of the formula Ι-p:

SS

I-P 其中: R。係—(CrCs 烷基)-nh2、烷基)-0Rf,其中 係 Η 或—(:(0)_((:1<6)烷基或一(Ci_c6 烷基)4HRg,其中 R 係叛苯甲基(carboxybenzyl)。式I-p的示範性化合物包括 (但不限於)S109、S122、S123。 在非限制性實例中,式la、lb、Ie、If、I-P where: R. - (CrCs alkyl)-nh2, alkyl)-0Rf, wherein Η or —(:(0)_((:1<6) alkyl or one (Ci_c6 alkyl) 4HRg, wherein R is a benzene Carboxybenzyl. Exemplary compounds of Formula Ip include, but are not limited to, S109, S122, S123. In a non-limiting example, Formula la, lb, Ie, If,

Ag Ah、 In 係 由化合物SI 01、S102、SI 03所表示。在非限制性實例中1 式1a、lb、le、If、nu係由化合物sl〇4所表示。在 限制性實例中,式la、Ib、1〇係由SI 07所表示。在非 1 你非限制 性實例中,式Ia、Ib、Ie、If係由S108所表示。右 牧非限制 124 200815381 性實例中,式I a、I b、I e、I f、I p係由 S 1 0 9所表示。在非 限制性實例中,式la、lb、Ik、Io係由S 1 1 0所表示。在非 限制性實例中,式la、lb、Ik、Ιο係由S 1 1 1所表示。在非 限制性實例中,式la、lb、Ic、Id係由S 1 1 2所表示。在非 限制性實例中,式la、lb係由S 1 1 3所表示。在非限制性 實例中,式la、lb、Ie、If、Ig、Ih係由S1 14所表示。在 非限制性實例中,式la、lb、Ig、Ih、II係由S 1 1 5所表示。 在非限制性實例中,式la、lb、Ig、Ih係由S 1 1 6所表示。 在非限制性實例中,式la、lb、Ie、If係由S 1 1 7所表示。 在非限制性實例中,式la、lb、Ie、If係由S 1 1 8所表示。 在非限制性實例中,式la、lb係由S 1 1 9所表示。在非限 制性實例中,式la、lb、Ik、1〇係由S120所表示。在非限 制性實例中,式la、lb、Ik、Io、Ip係由S121所表示。在 非限制性實例中,式la、lb、Ie、If、Ip係由S122所表示。 在非限制性實例中,式la、lb、Ie、If、Ip係由S123所表 示0 式 I、I-a、I-b、I-c、I-d、I-e、I-f、I-g、I-h、I-i、 I-j、I-k、1-1、I-m、I-n、I-o 與 I-p 與式 II 的化合物可用 於與RyR受體相關之異常與疾病的治療或預防方法。 上述化合物的實例包括(但不限於)此處所界定的S 1、 S2、S3、S4、S5、S6、S7、S9、Sll、S12、S13、S14、 S19、S20、S22、S23、S24、S25、S26、S27、S36、 S37、 S38 、 S40 、 S43 、 S44 、 S45 、 S46 、 S47 、 S48 、 125 200815381 S49、S50、S51、S52、S53、S54、S55 、 S56、S57、 S58、S59、S60、S61、S62、S63、S64、S66、S67、 S68、S69 > S70、S71 ' S72、S73、S74 > S75 > S76、 S77、S78、S79、S80、S81、S82、S83、S84、S85、 S86、S87、S88、S89、S90、S91、S92、S93、S94、 S95、 S96 ^ S97' S98、 S99、 S100 > S101、 S102、 S103、 S104、S105、S107、S108、S109、S110、S111、SI 12 ' SI 13 > S114、SI 15 > S116、S117、S118、SI 19 > S120、 S 1 2 1、S 1 22與S 1 23。在某些實施例中,該化合物係經分 離的且大致上純淨。 在方法的某一實施例中,該化合物不是S4。在另一實 施例中,該化合物不是S 7。在另一實施例中,該化合物不 是S 8。在另一實施例中,該化合物不是S 1 0。在另一實施 例中,該化合物不是 S20。在另一實施例中,該化合物不 是S24。在另一實施例中,該化合物不是S25。在另一實 施例中,該化合物不是S26。在另一實施例中,該化合物 不是S27。在另一實施例中,該化合物不是S36。在另一 實施例中,該化合物不是JTV-519。 本發明的某些RyCal化合物具有下列構造: S1 126 200815381Ag Ah, In is represented by compounds SI 01, S102, and SI 03. In a non-limiting example, Formula 1a, lb, le, If, nu are represented by the compound sl4. In a limiting example, the formula la, Ib, 1 is represented by SI 07. In a non-limiting example of non-1, the formulas Ia, Ib, Ie, If are represented by S108. Right-wing non-restriction 124 200815381 In the sexual example, the formulas I a, I b, I e, I f, I p are represented by S 1 0 9 . In a non-limiting example, the formulas la, lb, Ik, Io are represented by S 1 1 0 . In a non-limiting example, the formula la, lb, Ik, Ιο is represented by S 1 1 1 . In a non-limiting example, the formula la, lb, Ic, Id is represented by S 1 1 2 . In a non-limiting example, the formula la, lb is represented by S 1 1 3 . In a non-limiting example, the formula la, lb, Ie, If, Ig, Ih is represented by S1 14. In a non-limiting example, the formula la, lb, Ig, Ih, II is represented by S 1 15 . In a non-limiting example, the formula la, lb, Ig, Ih is represented by S 1 16 . In a non-limiting example, the formula la, lb, Ie, If is represented by S 1 17 . In a non-limiting example, the formula la, lb, Ie, If is represented by S 1 18 . In a non-limiting example, the formula la, lb is represented by S 1 1 9 . In a non-limiting example, the formula la, lb, Ik, 1 is represented by S120. In a non-limiting example, the formulas la, lb, Ik, Io, Ip are represented by S121. In a non-limiting example, the formulas la, lb, Ie, If, Ip are represented by S122. In a non-limiting example, the formulas la, lb, Ie, If, Ip are represented by S123. Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, 1- 1. Im, In, Io and Ip Compounds of formula II are useful in the treatment or prevention of abnormalities and diseases associated with the RyR receptor. Examples of the above compounds include, but are not limited to, S 1 , S2, S3, S4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S24, S25 as defined herein. , S26, S27, S36, S37, S38, S40, S43, S44, S45, S46, S47, S48, 125 200815381 S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60 , S61, S62, S63, S64, S66, S67, S68, S69 > S70, S71 'S72, S73, S74 > S75 > S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96^S97' S98, S99, S100 > S101, S102, S103, S104, S105, S107, S108, S109, S110 S111, SI 12 'SI 13 > S114, SI 15 > S116, S117, S118, SI 19 > S120, S 1 2 1 , S 1 22 and S 1 23 . In certain embodiments, the compound is isolated and substantially pure. In a certain embodiment of the method, the compound is not S4. In another embodiment, the compound is not S7. In another embodiment, the compound is not S8. In another embodiment, the compound is not S 1 0. In another embodiment, the compound is not S20. In another embodiment, the compound is not S24. In another embodiment, the compound is not S25. In another embodiment, the compound is not S26. In another embodiment, the compound is not S27. In another embodiment, the compound is not S36. In another embodiment, the compound is not JTV-519. Certain RyCal compounds of the invention have the following construction: S1 126 200815381

127 200815381127 200815381

128 200815381128 200815381

QQ

ch2i S7Ch2i S7

S9S9

OO

129 200815381 s.129 200815381 s.

S12 NS12 N

NHNH

S13S13

\ S14\ S14

S19 130 200815381S19 130 200815381

S23 131 200815381S23 131 200815381

S24 S-24S24 S-24

\\

OO

S25 132 200815381S25 132 200815381

S36S36

133 200815381133 200815381

S40 s S43 134 200815381S40 s S43 134 200815381

S45S45

135 200815381 〇·135 200815381 〇·

NH〇 S46NH〇 S46

S48S48

136 200815381136 200815381

S49S49

137 200815381 S52 〇·137 200815381 S52 〇·

ΟΟ

S33 ΝS33 Ν

S54 ΟS54 Ο

138 200815381138 200815381

139 200815381139 200815381

S60 140 200815381S60 140 200815381

S 一 ΓνS a Γν

ΝΗ〇 S61ΝΗ〇 S61

S ΝΗ 2 S62S ΝΗ 2 S62

s- isS- is

S63 141 200815381S63 141 200815381

S64 K S66S64 K S66

OH S S67OH S S67

142 200815381142 200815381

S70S70

S71 143 200815381S71 143 200815381

S72S72

S73S73

144 200815381 S75144 200815381 S75

S76 〇 S77S76 〇 S77

145 200815381145 200815381

S78S78

146 200815381 Ο146 200815381 Ο

S81S81

147 200815381147 200815381

OCMe3 S85OCMe3 S85

S86 200815381 S87S86 200815381 S87

OCMe3OCMe3

S89 149 200815381S89 149 200815381

S90S90

S91 〇S91 〇

S92 150 200815381S92 150 200815381

PhCH2NHPhCH2NH

χ N OCMe3 S93χ N OCMe3 S93

〇CMe3 S94 S95〇CMe3 S94 S95

OCMe3 151 200815381OCMe3 151 200815381

〇 χ OCMe3〇 OC OCMe3

02N S9702N S97

152 200815381152 200815381

S99 又 〇CMe3 S100 N3 s-S99 again 〇CMe3 S100 N3 s-

153 200815381153 200815381

S102S102

▽ S S103▽ S S103

154 200815381154 200815381

S107S107

MeO S108MeO S108

A^NHCbz 〇A^NHCbz 〇

155 200815381 S110155 200815381 S110

SillSill

S112S112

o IIS-OH II 〇o IIS-OH II 〇

156 200815381156 200815381

S115S115

ΟΟ

A^^^^Bodipy 157 200815381 ο-A^^^^Bodipy 157 200815381 ο-

S119S119

S120S120

S121S121

S122 158 200815381S122 158 200815381

ο S123 在本發明的一實施例中,關於式I的化合物, 係C = 0(R5)或S02R7,那麼R係位於苯環上的2、3 位置。 在本發明的另一實施例中,關於式I的化合物 係C = 0(R5)或S02R7,那麼各個R係分別地由下列 的群組中選出·· Η、鹵素、-OH、-NH2、-N〇2、-CN -S03H、醯基、烷基、烷胺基、環烷基、雜環基、 基、烯基、(雜-)芳基、(雜-)芳硫基與(雜-)芳胺基; 個醯基、烷基、烷氧基、烷胺基、環烷基、雜環基 烷基、烯基、(雜-)芳基、(雜·)芳硫基與(雜-)芳胺基 或多個分別地由下列構成的群組選出之基團進行取 素、N、Ο、-S-、-CN、-N3、-SH、硝基、酮基、醯 基、烷氧基、烷胺基、烯基、芳基、(雜-)環烷基 環基。 在本發明的另一實施例中,關於式I的化合物 係C = 0(R5)或S02R7,那麼至少有兩個R基團連結 上。此外,至少有兩個R基團連結於苯環上,且兩 團均連結於苯環上的2、3或5號位置。再者,各 若 R2 或5號 ,若R2 所構成 、-N 3、 雜環烧 其中各 、雜環 可用一 代:鹵 基、烧 與(雜-) ,若R2 於苯環 個R基 個R係 159 200815381 为別地由下列所構成的群組中選出:Η、鹵素、-OH、-NH2、 _M〇2、、_n3、_s〇3H、醯基、烷基、烷胺基、環烷基、 雜環基"、雜環燒基、烯基、(雜-)芳基、(雜-)芳硫基與(雜 -)芳胺基;其中各個醯基、烷基、烷氧基、烷胺基、環烷 基、雜環基、雜環烷基、烯基、(雜-)芳基、(雜〇芳硫基與 (雜-)芳胺基可用一或多個分別地由下列構成的群組選出 之基團進行取代:鹵素、N、Ο、-S-、-CN、-N3、-SH、硝 基、酮基、醯基、烷基、烷氧基、烷胺基、烯基、芳基、(雜 , -)環烷基與(雜-)環基。 t · 在本發明的另一實施例中,關於式I的化合物,若r2 係 c=o(r5),那麼 r5係由下列所構成的群組中選出: -NRi6、_(CH2)zNRi5Ri6、NHNHR16、NHOH、-ORi5、 CONH2NHRi6、CONR16、ch2x、醯基、芳基、環烧基、環 烷基烷基、雜環基與雜環烷基;其中各個醯基、芳基、環 烷基、環烷基烷基、雜環基與雜環烷基可用一或多個分別 地由下列構成的群組選出之基團進行取代:鹵素、N、Ο、 -s-、-CN、-N3、硝基、酮基、醯基、烷基、烷氧基、烷胺 v 基、嫦基、芳基、(雜-)環烧基與(雜-)環基。 在另一實施例中,本發明提供式II化合物的用途: 160 200815381ο S123 In one embodiment of the invention, with respect to the compound of formula I, C = 0 (R5) or S02R7, then R is located at positions 2 and 3 on the phenyl ring. In another embodiment of the invention, wherein the compound of formula I is C = 0 (R5) or S02R7, then each R is selected from the group consisting of Η, halogen, -OH, -NH2, respectively. -N〇2, -CN-S03H, fluorenyl, alkyl, alkylamino, cycloalkyl, heterocyclyl, benzyl, alkenyl, (hetero-)aryl, (hetero-)arylthio and (hetero -) arylamino; fluorenyl, alkyl, alkoxy, alkylamino, cycloalkyl, heterocyclylalkyl, alkenyl, (hetero-)aryl, (hetero)arylthio with a hetero-)arylamino group or a plurality of groups selected from the group consisting of: N, Ο, -S-, -CN, -N3, -SH, nitro, keto, fluorenyl An alkoxy group, an alkylamino group, an alkenyl group, an aryl group, a (hetero-)cycloalkyl ring group. In another embodiment of the invention, wherein the compound of formula I is C = 0 (R5) or S02R7, then at least two R groups are attached. Further, at least two R groups are bonded to the benzene ring, and both groups are bonded to the 2, 3 or 5 position on the benzene ring. Further, if R2 or No. 5, if R2 is formed, -N3, a heterocyclic ring is burned, and a heterocyclic ring may be used in one generation: a halogen group, a calcination and a (hetero-) group, and if R2 is a benzene ring, R groups are R. 159 200815381 is otherwise selected from the group consisting of hydrazine, halogen, -OH, -NH2, _M〇2, _n3, _s〇3H, fluorenyl, alkyl, alkylamino, cycloalkyl , heterocyclyl", heterocycloalkyl, alkenyl, (hetero-)aryl, (hetero-)arylthio and (hetero-)arylamine; wherein each thiol, alkyl, alkoxy, An alkylamino group, a cycloalkyl group, a heterocyclic group, a heterocycloalkyl group, an alkenyl group, a (hetero-)aryl group, a (heteroquinone arylthio group and a (hetero-)arylamine group may be used one or more of the following respectively Substituted groups of selected groups are substituted: halogen, N, oxime, -S-, -CN, -N3, -SH, nitro, keto, decyl, alkyl, alkoxy, alkylamino, Alkenyl, aryl, (hetero, -)cycloalkyl and (hetero-)cyclo. t · In another embodiment of the invention, with respect to the compound of formula I, if r2 is c=o(r5), Then r5 is selected from the following group: -NRi6, _(CH2)zNRi5Ri6, NHNHR16, NHOH, -ORi5, CONH2NHRi6, CONR16, ch2x, fluorenyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl and heterocycloalkyl; wherein each thiol, aryl, cycloalkyl, naphthenic The alkyl group, heterocyclic group and heterocycloalkyl group may be substituted with one or more groups selected from the group consisting of halogen, N, fluorene, -s-, -CN, -N3, nitro a keto group, a decyl group, an alkyl group, an alkoxy group, an alkylamine v group, a fluorenyl group, an aryl group, a (hetero-)cycloalkyl group and a (hetero-) ring group. In another embodiment, the invention provides Use of the compound of formula II: 160 200815381

其中R = OR’、SR’、NR’、烷基或鹵化物而R,==烷基、芳基 或Η,且其中R可位在2、3、4或5號位置。式II亦詳述 於共同申請案1 0/680,988,其所揭露之事在此將全文以參 考資料方式併入本文中。 活性的途輕 本發明之化合物藉由提高FKBP12 (calstabinl)與 FKBP12.6 (calstabin2)各自對經蛋白激酶a磷酸化的RyR 與RyR2之親合力而減少RyR的開啟率。此外,式〗化合 物藉由提高 FKBP12 (calstabinl)與 FKBP12.6 (calstabin2) 的結合親合力而使突變型RyR通道(包括與CPVT相關之 突變型RyR2通道)的閘控能力正常化。因此,本發明之化 合物預防牵涉於RyR受體(特別是尺7111與尺7以2受體)調控 的異常與症狀。上述異常與症狀的實例包括(但不限於)心 臟異常與疾病、骨骼肌異常與疾病、認知異常與疾病、惡 性焉熱綜合症、糖尿病與嬰兒猝死症。心臟異常與疾病包 括(但不限於)不規則心跳異常與疾病、運動引發的不規則 心跳異常與疾病、心因性猝死、運動引發的心因性猝死、 充血性心臟衰竭、慢性阻塞性肺病與高血壓。不規則心跳 異常與疾病包括運動引發的不規則心跳異常與疾病,其包 161 200815381Wherein R = OR', SR', NR', alkyl or halide and R, == alkyl, aryl or hydrazine, and wherein R may be at position 2, 3, 4 or 5. Formula II is also described in detail in the co-pending application Serial No. 10/680,988, the disclosure of which is incorporated herein in its entirety by reference. The lightness of the activity The compound of the present invention reduces the opening ratio of RyR by increasing the affinity of FKBP12 (calstabinl) and FKBP12.6 (calstabin2) for each of protein kinase a phosphorylated RyR and RyR2. In addition, the compound normalizes the gating ability of the mutant RyR channel (including the mutant RyR2 channel associated with CPVT) by increasing the binding affinity of FKBP12 (calstabinl) to FKBP12.6 (calstabin2). Therefore, the compounds of the present invention prevent abnormalities and symptoms involved in the regulation of RyR receptors (especially, the ruler 7111 and the ruler 7 are 2 receptors). Examples of such abnormalities and symptoms include, but are not limited to, cardiac abnormalities and diseases, skeletal muscle abnormalities and diseases, cognitive abnormalities and diseases, malignant fever syndrome, diabetes, and sudden infant death. Cardiac abnormalities and diseases include (but are not limited to) irregular heartbeat abnormalities and diseases, irregular heartbeat abnormalities and diseases caused by exercise, sudden cardiac death, sudden cardiac death caused by exercise, congestive heart failure, and chronic obstructive pulmonary disease hypertension. Irregular heartbeat abnormalities and diseases including irregular heartbeat abnormalities and diseases caused by exercise, its package 161 200815381

括(但不限於)心房與心室心律不整,心房顫動與心室顫 動;心房頻脈心律不整與心室頻脈心律不整;心房頻脈與 心室頻脈;兒茶酴胺多型性心至頻脈(C P V T)與其運動引發 的變異型。骨骼肌異常與疾病包括(但不限於)骨骼肌疲 勞、運動引發的骨骼肌疲勞、肌肉萎縮症、膀胱功能失調 與大小便失禁。認知障礙與疾病包括(但不限於)阿兹海默 症、各種類型記憶喪失與年齡依賴性記憶喪失。本發明之 化合物藉由提高FKBP12 (calstabinl)-RyRl的結合親合力 與提高FKBP12.6 (calstabin2)-RyR2的結合親合力來治療 這些異常與症狀。 依照上文所述,本發明提供限制或避免個體細胞内結 合於RyR的FKBP (calstabin)含量減少的方法。此處「RyR」 包括 RyRl、RyR2 與 RyR3。此外,FKBP 包括 FKBP12 (calstabinl)與 FKBP12.6 (calstabin2)兩者。因此「結合於 RyR 的 FKBP」意指結合於 RyRl 的 FKBP 12 (calstabinl )、 結合於RyR2的FKBP12.6 (calstabin2)以及結合於RyR3的 FKBP12 (calstabinl) 〇 此處「RyR」亦包括「RyR蛋白」與「RyR類似物」。 「RyR類似物」係一具有RyR生物活性的RyR蛋白功能性 變異物(functional variant),其與RyR蛋白質氨基酸序列 的同源性係60%或更高。本發明的RyR可為未填酸化、填 酸化(例如,藉由蛋白激騰A)或過度磷酸化(例如,藉由蛋 白激晦A)。此處「RyR生物活性」一詞在本文的分析狀況 162 200815381 下,意指與c a 1 s t a b i ϋ物理連結或結合能力的蛋白質或胜月太 活性’當 RyR 為 RyRl 與 RyR3 時 calstabin 為 FKBP12 (calstabinl) ’ 而當 RyR 為 RyR2 時 calstabin 為 FKBP12.6 (calstabin2)(即,將近比陰性對照組的背景結合力高出兩倍 或五倍的結合力)。 此處「FKBP」包括「FKBP蛋白」與「FKBP類似物」 兩者’不論 FKBP 是 FKBP12 (calstabinl)或 FKBP12.6 (calstabin2)。除非本文另有明示,否則「蛋白」應包括蛋 白質、蛋白結構區(protein domain)、多肽或胜肽,以及任 何上述之片段。「FKBP類似物」係一具有FKBP生物活性 的F K B P蛋白功能性變異物,不論f K B P是F κ B P 1 2 (calstabinl)或 FKBP12.6 (calstabin2),其與 FKBP 蛋白氨 基酸序列的同源性係 6 0 %或更高。此處進一步的r ρ Κ B P 生物活性」一詞在本文的分析狀況下,意指與未磷酸化的 RyR2或未過度磷酸化的RyR2物理連結或結合能力之蛋白 質或胜肽活性(即,將近比陰性對照組的背景結合力高出兩 倍或五倍的結合力)。 FKBP結合至RyR通道,且每一 RyR亞基相對一 ρΚΒΡ 分子。因此,此處「結合於RyR的FKBP」一詞包括結合 於一 RyRl蛋白亞基的一 FKBP12 (calstabinl)蛋白質分 子’或結合於RyRl四聚物的FKBP12四聚物;結合於一 RyR2蛋白亞基的一 FKBP12.6 (calstabin2)蛋白質分子,或 結合於RyR2四聚物的FKBP12.6四聚物;結合於一 RyR3 163 200815381 蛋白亞基的一 F KB P12 (cal stab ini)蛋白質分子,或結合於 RyR3四聚物合的FKBP12四聚物。因此,「結合於RyR 的FKBP」思指「結合於RyRi的fkbpi2」、「結合於RyR2 的FKBP12.6」以及「結合於RyR3的FKBP12」。 依照本發明之方法,個體細胞内結合於RyR的Fkbp 含$之「減少」或「異常」,意指個體細胞内與RyR結合 的FKBP含量可偵測的減少、降低或縮小。當藉由施用本 發明化合物以任何方式來限制、妨礙、阻止、阻礙或縮小 此種減少時,可限制或預防個體細胞内上述之減少,以致 個體細胞内結合於RyR的FKBP含量高於其他沒有施用化 合物的實例。 可用標準分析與技術測定個體内結合於RyR的FKBP 含量’這些技術包括那些習知技術中簡易的測定方法(例 如’免疫技術、雜合分析、免疫沉澱、西方墨點分析、螢 光影像技術與/或輻射偵測等等),以及任何本文所揭露的 分析與偵測方法。例如,以技術中習知的標準方法由個體 細胞中分離與純化蛋白質,這些方法包括(但不限於)··必 需性細胞萃取(例如,利用一可溶解蛋白質的介面劑);接 著管柱上的親和純化;諸如流動式薄層層析技術(FTLC)與 高效液相層析技術(HPLC)的層析技術;免疫沉澱(利用抗 體);與沉澱(例如,利用異丙醇與例如「Trizol」的試劑)。 蛋白質的分離與純化接著為電泳分析(例如,在十二基硫酸 鈉丙婦醯胺「SDS-polyacrylamide」凝膠上)。可藉由比 164 200815381 較施用本發明式I化合物(依照下述方法)前與施用化合物 一段適當時間後所偵測到結合於RyR的FKBP含量,來確 定個體内結合於RyR之FKBP含量的減少;或上述之限制 或預防。 可藉由下述方式限制或預防個體細胞内結合於RyR之 FKBP含量的減少:例如,抑制個體細胞内FKBP與RyR 的分離;提高個體細胞内FKBP與RyR之間的結合;或穩 定個體細胞内的RyR-FKBP複合體。此外,可藉由下述方 式限制或預防個體細胞内結合於RyR之FKBP含量的減 少:直接減少個體細胞内經填酸化的RyR含量;或間接減 少細胞内經填酸化的RyR含量,例如以調節或調控細胞内 經磷酸化的RyR功能或含量之酵素(例如,蛋白激酶A)或 另外的内生性分子為目標。在一實施例中,本發明的方法 至少減少細胞内1 0%經磷酸化的 RyR含量。另一實施例 中,至少減少20%經磷酸化的RyR含量。 本發明的個體可為活體外與活體内系統,包括(不限於) 經分離或培養的細胞或組織;非細胞活體外分析系統 (non_cell WWo assay systems);與動物(例如,兩樓類、 鳥類、魚類、哺乳類、有袋類、人類、寵物(諸如,描、犬、 猴、馬、小鼠或大鼠)或經濟動物(諸如,乳牛或豬))。 個體的細胞包括橫紋肌細胞。橫紋肌為一種肌肉類 型,其中收縮肌原纖維的重覆單位(肌原纖維節)整齊排列 於整個細胞,導致光學顯微鏡下觀察到的橫向或斜條紋配 165 200815381 置。橫紋肌細胞的實例包括(但不限於)隨意(骨骼)肌細胞 與心肌細胞。在一實施例中,用於本發明方法中的細胞係 人類心肌細胞。此處「心肌細胞」一詞包括例如發現於心 臟心肌内的心肌纖維。心肌纖維係由一連串連續性心臟肌 肉細胞或心肌細胞於心間盤(i n t e r c a 1 a t e d d i s k s )處以端對 端連接方式所構成。這些心間盤具有兩種細胞連接點:沿 其檢向部分延展的長形橋粒(expanded desmosomes)以及 最大處沿著其縱向部分延展的間隙接合(gap junctions)。 藉由對個體施用本發明的化合物,可限制或預防該個 體細胞内結合於RyR之FKBP含量的降低;此亦可適用於 該個體細胞與本發明化合物之間的接觸。本發明化合物係 鈣離子通道調節劑。除了調節心肌細胞内的Ca2+濃度之 外,本發明化合物亦調節例如天竺鼠心室細胞内的Na+離 子流和内向整流性(inward-rectifier)的K +離子流,以及抑 制例如天竺氡心房細胞内的延遲整流性(deUyed_rectifia) 的K+離子流。 _藥學組合物 本發明化合物配製成適合活體内施用之生物相容形式 的藥學組合物,以對人類個體施用。據另— 》 〜像,本發 明提供含有本發明化合物與藥學上可接受稀釋劑和/ 劑混合的藥學組合物。該藥學可接受載劑在與該組合^栽 他成分的相=性上必需為「可接受的」並且不傷害用,、 此處使用的藥學上可接受載劑係選自用於藥學 予%万内的各 166 200815381 種有機或無機物質’其包括止痛劑、緩衝劑、黏合劑、崩 散劑、稀釋劑、乳化劑、賦形劑、增量劑、滑動劑、助溶 劑、穩定劑、懸浮劑、張力劑、載劑和增掮劑。有需要時 亦可加入藥學上的添加劑,例如芳香劑、著色劑、風味劑、 防腐劑和甜味劑。可接受之藥學載劑的實例包括繞甲基纖 維素(carboxymethyl cellul〇se)、微晶纖維素 cellulose)、甘油、阿拉伯膠、乳糖、硬脂酸鎂、甲基纖維 素、粉末、食鹽水、褐藻酸鈉、蔗糖、澱粉·、滑石粉和水 等等。 藉由製藥技術中習知的方法製備本發明的藥學配方。 例如,將本發明化合物結合载劑和/或稀釋劑而製成懸浮液 或溶液。或者,亦可加入一或多種輔助成分,例如緩衝劑、 風味劑、表面活性劑等。載劑的選擇取決於化合物的溶解 度和化學性質、投藥途徑及標準藥學實施方式。 藉由使化合物接觸一個體體内之標的細胞(例如,心肌 細胞)而對個體施用本發明化合物。利用導入和浐遞蛋白 質、核酸和W藥物等習#技術使本發明丨合物接觸(例 如,導入)個體細胞。使細胞接觸本發明化合物(即,治療 該細胞)之方法的實例包括(不限於)吸收作用、電穿透法 (electroporation)、浸潤法(immersi〇n)、注射導入法微 脂粒傳遞法、轉染法(transfecti〇n)、輸注法(transfusi〇n)、 載體(vector)和其他藥物傳遞载劑和方法。當標的細胞坐落 在個體一特定部位時,較佳為利用注射或其他方法(例如, 167 200815381 將化合物導入血液或其他體液内)將本發明化合物直接送 至該細胞。藉由習知技術中的標準偵測法檢測個體組織内 之標的細胞,這些偵測的實例包括(不侷於):免疫學技術 (例如,免疫組織化學染色法)、螢光成像技術和顯微技術。 此外,可藉由習知步驟將本發明化合物施用至人類或 動物個體’該步驟包括(不限於)口服、舌下或頰内、腸道 外、經皮、吸入或鼻内、陰道内、直腸内和肌肉内施用。 本發明化合物之腸道外投藥法包括藉由肌膜外 (epifascial)、囊内、顱内、皮内、椎鞘内(intrathecal)、肌 肉内、眼内、腹腔内、脊髓内、胸骨内、血管内、靜脈内、 基質組織、皮下或舌下之注射,或藉由導管(catheter)注 入。在一實施例中’藉由傳遞至該個體肌肉(包括,但不限 於該動物的心肌)而將該藥物施用至該個體。在一實施例 中’經由插入至個體心臟中的導管針對心肌細胞進行藥物 遞送而將該樂物施用給個體。在其他實施例中,經由皮下 泵浦施用該藥劑。 關於口服’本發明化合物的配方可製成膠囊、錠劑、 粉末、顆粒、懸浮液或溶液。該配方含有一常見的添加物, 諸如乳糖、甘露糖醇(mannitol)、玉米澱粉或馬鈴薯澱粉。 該配方亦含有黏合劑,諸如微晶纖維素、纖維素衍生物、 阿拉伯膠(acacia)、玉米澱粉或凝膠。此外,該配方亦含有 崩散劑’諸如玉米澱粉、馬鈴薯澱粉或羧甲基纖維素鈉。 該配方亦含有無水碟酸氫飼(dibasic calcium phosphate 168 200815381 最 投 〇 氯 衝 方 瓿 配 脈 臟 吡 皮 化 丙 啶 膠 接 anhydrous)或叛曱基澱粉納(sodium starch glycolate)。 後,配方可含有潤滑劑,諸如滑石粉或硬脂酸鎂。 關於腸道外投藥(即,經由消化道之外途徑導入的 藥),本發明化合物結合於與個體血液等張的滅菌水溶液 此類配方的製備係藉由將固態活性成分溶解於含有諸如 化鈉、甘油等生理相容物質且具有與生理條件相容之緩 pH値的水中而製成的水溶液,然後將該溶液滅菌。該配 可置於單劑量或多劑量的容器内,諸如密封的安 (ampoules)或藥水瓶。可藉由任何注射模式來遞送該 方,包括(不限於)肌膜外、囊内、顱内、皮内、椎鞘内 肌肉内、眼内、腹腔内、脊髓内、胸骨内、血管内、靜 内、基質組織、皮下或舌下之注射,或藉由插入個體心 内的導管方式。 關於經皮投藥,本發明化合物結合於皮膚助滲透劑 諸如丙二醇、聚乙二醇、異丙醇、乙醇、油酸、N-甲基 咯咬酮(iV-methylpyrrolidone)等而提高本發明化合物對 膚的滲透性並允許化合物穿透皮膚進入血液中。本發明 合物/助滲透劑組合物亦進一步結合諸如乙基纖維素、羥 基纖維素、乙烯/乙酸乙烯酯(vinylacetate)、聚乙烯吡咯 酮(polyvinyl pyrrolidone)等聚合物,而使組合物成為 狀,並可使該膠狀組合物溶解於如二氯甲烷等溶劑内, 著蒸發至所需的黏度然後塗佈於背襯材料上而形成貼片 169 200815381 在某些實施例中,該組合物係製成單劑量型、 錠劑、膠囊或單劑量藥水瓶。視所需臨床效果,式’諸如 選定化合物之各疾病而設計的臨床試驗期間來決2照施用 單位劑量,即有效治療劑量。本發明亦提供、弋適當的 於治疼 防一個體異常(例如,心臟異常)之製品。該等製’、u預 一或多種如此文描述的本發明化合物所 包括由 •母刀λ的藥幾仝 物。該製品與用以指示該藥學組合物所治療 、、且合 和/或預防之ι 種疾病的說明書共同包裝。例如,該製品含 令 ☆为本文所揭示 能治療或預防一肌肉性疾病的單位劑量化人 …王口切,以及指示 該單位劑量所能治療或預防特定疾病(如, s Μ 、佯不整)的說 明書。 依據本發明的方法,將可有效限制或預防一個體體内 (特別是指個體體内細胞中)結合於RyR之FKBp含量降低 的本發明化合物施用至一個體(或接觸該個體的細胞)。熟 悉技術者可根據習知程序輕易地測定出此有效劑量,該程 序包括活體内所建立之滴定曲線(titrati〇n cUrves)分析以 及本文所揭示的方法和試驗。可有效限制或預防一個體内 結合於RyR之FKBp含量降低的本發明化合物用量係介於 約5毫克/公斤/天至約2〇毫克/公斤/天之間,以及/或足以 達到介於約3〇〇奈克/毫升至約10〇〇奈克/毫升之血漿濃度 的化合物用量。一實施例中,本發明化合物的用量介於约 1〇宅克/公斤/天至約2〇毫克/公斤/天之間。 170 200815381 用途 本發明提供一種用以治療罹患與RyR受體調節相關的 各種異常(特別指骨骼肌肉異常(RyRl))之患者的新穎治療 方法。本說明書亦提供用以治療患者肌肉疲勞的新穎治療 方法,該肌肉疲勞起因於與RyR有關之各種疾病狀態與異 常,包括但不限於心臟異常(RyR2)與/或認知異常(RyR3)。 本發明的一實施例中,該個體仍未發展出肌肉疲勞的 症狀(例如,運動引起的肌肉疲勞)。本發明的另一實施例 中,該個體亟需治療與肌肉疲勞(包括骨骼肌異常)相關之 異常。 本發明化合物治療或預防的各種異常包括(但不限於) 心臟異常和疾病、骨骼肌異常與疾病、認知障礙與疾病、 惡性高熱綜合症、糖尿病與嬰兒猝死症。心臟異常與疾病 包括(但不限於)不規則心跳異常與疾病、運動引發的不規 則心跳異常與疾病、心因性猝死、運動引發的心因性猝死、 充血性心臟衰竭、慢性阻塞性肺病與高血壓。不規則心跳 異常與疾病包括運動引發的不規則心跳異常與疾病,其包 括(但不限於)心房與心室心律不整;心房顫動與心室顫 動;心房頻脈心律不整與心室頻脈心律不整;心房頻脈與 心室頻脈;兒茶酚胺多型性心室頻脈(CPVT)與其運動引發 的變異型。骨骼肌異常與疾病包括(但不限於)骨骼肌疲 勞、運動引發的骨骼肌疲勞、肌肉萎縮症、膀胱功能失調 與大小便失禁。認知障礙與疾病包括(但不限於)阿兹海默 171 200815381 症、各種類型記憶喪失盘主獻彳 仗大一平齡依賴性記憶喪失。熟習本技 術之人士將可依據本文中提供的資料進一步確認可利用本 發明化合物有效治療的其他疾病(包括但不限於肌肉和心 臟異常)。 可有效限制或預防一個體内結合於RyRl之FKBP12 含量降低的本發明化合物用量,係可有效預防個體肌肉疲 勞的用藥量。熟悉該項技術者可根據習知程序輕易地決定 其用量’該程序包括臨床試驗及本文所揭示的方法。 由於本發明化合物能穩定結合於RyR的FKBP以及維 持和恢復RyR之蛋白激酶A磷酸化和去磷酸化作用的動態 平衡,故本發明化合物亦可有效治療已經體驗過這些不同 異常之臨床症狀的個體。例如,若早期發現該個體的異常 症狀,則本發明化合物可有效限制或預防該個體内結合於 RyR之FKBP含量進一步的降低。 此外,本發明之個體可為肌肉疲勞異常(包括# 不限 於,與肌肉疲勞相關之慢性疾病或是壓力或運勤 %動弓丨起的肌 肉疲勞)的候選患者。 因此,本發明又另一實施例中,該個體已運叙+ u磲勠或正在 運動並已發展成運動引起的異常。在此病例中,沐士 犯有效限 制或預防個體體内結合於RyR之FKBP含量降低的士抄 -v |發明 化合物用量為可有效治療個體之運動引發異常的介八1 J1匕合物用 量。此處「有效治療運動引起之異常」的本發明仆人^ a化合物用 172 200815381 量包括可有效減輕或改善運動引起異常(其特徵為肌肉 勞)之臨床損傷或症狀的本發明化合物用量。有效治療個疲 之運動引起異常的本發明化合物用量將視各病例的特:體 子而定,該因子包括該運動引起異常的類型、個體的體^因 該個體症狀的嚴重程度以及本發明化合物的投藥模式。: 悉該項技術者可根據習知程序輕易地決定其用量,該程嘁 包括臨床試驗及本文所揭示的方法。在一實施例:序 明化合物能治療個體的運動引起之異常。 本發明更提供治療個體内與運動引起的異常與症狀相 關之肌肉疲勞的方法。該方法包括將可有效治療個體内運 動引起的異常之本發明化合物用量施用於該個體。例如, 有效治療個體内運動引起的心律不整之適當化合物用量介 於約5亳克/公斤/天至約2〇毫克/公斤/天之間,和/或足夠 達到介於約300奈克/亳升至約1〇〇〇奈克/亳升間之血漿濃 度的用量。本發明亦提供一種預防個體内運動引起之異常 的方法。該方法包括將有效預防個體内運動引引起的異常 之本發明化合物用量施用於該個體上。有效預防個體内運 動引起的異常之本發明化合物適當用量介於約5毫克/公 斤/天至約20宅克/公斤/天之間,和/或足夠達到介於約3〇〇 奈克/宅升至約10 00奈克/毫升間之血漿濃度的用量。此 外,本發明提供一種預防個體内運動引起之異常的方法。 該方法包括將一有效預防個體内運動引起之異常的本發明 化合物用量施用於個體上。有效預防個體内運動引起之異 吊的本發明化合物適當用量介於約5亳克/公斤/天至約2〇 173 200815381 宅克/公斤/天之間,和/或足夠達到介於約300奈克/毫升至 約1000奈克/亳升間之血漿濃度的用量。 本發明化合物可單獨使用、相互結合使用,或結合其 他具有心血管活性的藥物使用,具有心血管活性的藥物包 括(但不限於)利尿劑、抗凝血劑、抗血小板劑、防心律不 整劑、強心劑(inotropic agent)、心率劑(chr〇n〇tr〇pic agents)、α和β阻斷劑、血管收縮素抑制劑和血管擴張劑。 再者’可分開施用或共同施用本發明化合物與其他心血管 藥劑的上述組合。此外’可在施用該藥物組合物中的其他 藥物之前、同時或之後施用該組合物中之一種成分。 有鑑於上述的方法,本發明亦提供利用本發明化合物 來限制或預防一異常候選患者體内結合於RyR之FKBP含 量降低的方法。本發明亦提供利用本發明化合物來治療或 預防個體之肌肉異常的方法。再者,本發明提供利用本發 明化合物來治療或預防個體内運動引起之肌肉異常的方 法。 細胞内Ca2 +滲漏被視為肌肉表現低落和萎縮性肌肉重 組作用的主要調節因子。肌肉萎縮症為具有無力與漸進性 肌肉萎縮等特徵的異源性遺傳病(heterogeneous hereditary disease)。所有牵涉於肌縮蛋白-相關之蛋白複合 體(dystrophin-associated protein complex)的肌肉萎縮症 形式中,亦稱為肌縮蛋白病變(dystrophinopathies),杜氏 肌肉萎縮症(DMD)為此類疾病最常見遺傳病中的一種(性 174 200815381 聯遺傳 歲以前 一種較 減少或 肉萎縮 氏和貝 胞骨架 增長, 患有心 例高發 縮症, 萎縮症 杜氏肌 主要致 之細胞 已 縮蛋白 關鍵機 的增加 Ca2 + -依 小鼠之 以及鈣 肉萎縮 鈣-依賴 ,3,500位小孩中出現一位),且多數病人通常在3〇 死於呼吸與/或心臟衰竭。貝氏肌肉萎縮症(BMD)係 輕微的疾病形式,其與肌縮蛋白(dystr〇phin)表現量 截短型(truncated)肌縮蛋白的表現相關,而杜氏肌 症患者則完全缺乏或具有極少含量的肌縮蛋白。杜 氏肌肉萎縮症(DMD/BMD)係起因於編碼427-kDa細 蛋白-肌縮蛋白之基因中發生突變。然而,隨著年齡 貝氏肌肉萎縮症患者較杜氏肌肉萎縮症患者更常見 臟症狀且與骨骼肌肉症狀無關聯性。由於耦發性病 生率的緣故,無法藉由遺傳篩檢法除去杜氏肌肉萎 因此亟需一種有效的治療法。已知杜氏和貝氏肌肉 與細胞内鈣的代謝作用不正常有關。由於一般認為 肉萎縮症患者肌纖維細胞内Ca2+濃度的改變為一種 病機制’因此亟需發展一種可預防造成骨骼肌退化 内Ca2+異常的治療法。 知杜氏和貝氏肌肉萎縮症主要的基因缺陷係缺乏肌 的表現。然而,仍無法得知導致漸進性肌肉損傷的 制°目前認為靜止期狀態下細胞内Ca2+濃度([Ca2·^) 將直接導致有害的肌細胞(肌纖維)損傷並同時活化 賴性蛋白 6# (Ca2 + -dependent proteases)。由於 wdx 壞死肌纖維内的鈣激活蛋白酶(calpain)活性的升高 激活蛋白酶功能異常將導致肢帶型 症’因此藉由抑制細胞内Ca2+濃度升高以預防活化 丨性蛋白酶可作為預防杜氏肌肉萎縮症患者肌肉萎 175 200815381 縮的一種方法。已在肌管(myotubes)和動物4 肌縮蛋白的所心小鼠)内顯不正常和萎縮肌 的明顯差異。藉由施用含有本發明化合物的 預防細胞内Ca2+濃度的升高。 本發明之化合物可以製備成不同形式, 合物、溶劑合物、複合物、前藥或前藥的鹽 包括該化合物的所有不同开少式。 本發明更提供包括經放射性標記之本發 合物。利用技術中已知的多種不同放射性標 一標記本發明之化合物。例如,本發明的放 放射性同位素。該同位素係任何放射可測得 素,包括(不限於)35s、125i、3h或14c。可 的方法偵測同位素所放射的放射性。例如’ 術(特別是指閃爍造影)偵測同位素的T射線< 經由非限制性實例,以下述方式製備本 標§己化合物。利用B B r 3在本發明之化合物的 基。接著在鹼類(例如,NaH)存在下以放射 化助劑(methylating agent)(例如,3H-硫酸二 的酚化合物重新甲基化以提供3H_標記的化名 利用強迫式游泳作為提高小鼠骨骼肌有 有效方案,研究骨骼肌RyRl通道複合體的 狀態。意外地,每天游泳90分兩次長達3周 莫式(包括缺少 肉之間[Ca2、 藥學組合物可 諸如鹽類、水 類,且本發明 明化合物的組 記方法其中之 射性標記為一 之輻射的同物 以技術中常見 利用7造影技 > 發明之放射性 苯環上去除甲 線標記的甲基 L曱酯)將得到 ‘物。 氧運動能力的 成分與磷酸化 之後,C57B16 176 200815381 野生型小鼠顯示明顯提高的 RyR2填酸化(藉由蛋白激酶 A)然而Ca2、攜鈣蛋白激酶II (CaMKII)磷酸化並無改變, 指出壓力途徑的明確性,其中RyR 1蛋白表現穩定,但是 RyRl通道缺少穩定性亞基calstabinl (FKBP12)。已經顯 示RyRl過度磷酸化與缺少calstabinl和造成細胞内Ca2 + 滲漏的滲漏型RyRl通道相符。 每天游泳90分兩次長達3周之後,RyRl通道係經蛋 白激酶A過度磷酸化並缺少穩定性calstabinl亞基。經免 疫沉澱的RyR 1大分子通道複合物顯示蛋白激酶A磷酸化 Ser-2 844(對應於人類RyRl-Ser-2843)的提高,然而CaMKII 磷酸化 Ser-2849(對應於人類 RyRl-Ser-2848)則沒有改 變。伴隨著 RyRl-Ser-2844蛋白激酶 A過度磷酸化的提 高,通道複合物開始缺少 calstabinl。將磷酸化與含量以 四聚體通道複合物的四個亞基標準化後,可顯示蛋白激酶 A填酸化明顯的提高且缺少穩定性calstabinl亞基。 實施例1:S36的效應 如共同申請案 USSN 1 1/212,309 與 PCT/US2006/32405 所述般合成名為S36、S107的RyCal化合物。 第1-6圖顯示導致肌肉疲勞之分子機制與S36在肌肉 疲勞上效應的某些態樣。 : 將同一窩出生(littermate)八週大重量適當 的野生型C57BL/6J小鼠隨機接受36或載劑治療任一者。 177 200815381 在開始前兩天,經由一正好位在頸呰 1隹磺月的水平切口將裝有 200 ul的磷酸鹽緩衝液(PBS)或2〇〇 W 的 S36 (以 10 pg/ul 濃度稀釋於PBS中)任一者的滲透灌 处/隹庄幫浦(Alzet Model 2004,Durect,Cupertino,CA;總體穑1 认 版檟20〇μΐ,輸送速率0.25 μΐ/小時)皮下植入小鼠的背部表面。 開始運動之前讓小鼠 恢復三天。任意地供應標準食物與水分。 運_動方案: 開始於第1天,小竄脾、蚕紅Ρ 土 J既將運動長達3週; 每週游泳5天以及每週額外1天的踏車上跑步。(but not limited to) atrial and ventricular arrhythmia, atrial fibrillation and ventricular fibrillation; atrial frequency arrhythmia and ventricular pacing arrhythmia; atrial frequency and ventricular frequency; catecholamine polymorphic heart to frequency ( CPVT) is a variant caused by its movement. Skeletal muscle abnormalities and diseases include, but are not limited to, skeletal muscle fatigue, exercise-induced skeletal muscle fatigue, muscular dystrophy, bladder dysfunction, and incontinence. Cognitive disorders and diseases include, but are not limited to, Alzheimer's disease, various types of memory loss, and age-dependent memory loss. The compounds of the present invention treat these abnormalities and symptoms by increasing the binding affinity of FKBP12 (calstabinl)-RyRl to increase the binding affinity of FKBP12.6 (calstabin2)-RyR2. In accordance with the above, the present invention provides a method of limiting or avoiding a decrease in the amount of FKBP (calstabin) bound to RyR in an individual cell. Here "RyR" includes RyRl, RyR2 and RyR3. In addition, FKBP includes both FKBP12 (calstabinl) and FKBP12.6 (calstabin2). Therefore, "FKBP bound to RyR" means FKBP 12 (calstabinl) which binds to RyR1, FKBP12.6 (calstabin2) which binds to RyR2, and FKBP12 (calstabinl) which binds to RyR3. Here, "RyR" also includes "RyR protein". And "RyR analogues". The "RyR analog" is a functional variant of RyR protein having RyR biological activity, which is 60% or more homologous to the amino acid sequence of the RyR protein. The RyR of the present invention may be un-acidified, acidified (e.g., by protein stimulating A) or hyperphosphorylated (e.g., by protein A). Here, the term "RyR biological activity" is used in the analysis status of 162 200815381, which means the protein or Shengyuetai activity that physically binds or binds to ca 1 stabi ' ' when RyR is RyRl and RyR3, calstabin is FKBP12 (calstabinl And 'calstabin is FKBP12.6 (calstabin2) when RyR is RyR2 (ie, nearly twice or five times more binding than the negative control group). Here, "FKBP" includes both "FKBP protein" and "FKBP analog", regardless of whether FKBP is FKBP12 (calstabinl) or FKBP12.6 (calstabin2). Unless otherwise indicated herein, a "protein" shall include a protein, a protein domain, a polypeptide or a peptide, and any such fragments. "FKBP analog" is a functional variant of FKBP protein with FKBP biological activity, whether f KBP is F κ BP 1 2 (calstabinl) or FKBP12.6 (calstabin2), its homology to the FKBP protein amino acid sequence 60% or higher. The term "r ρ Κ BP biological activity" as used herein, in the context of the analysis herein, refers to a protein or peptide activity that physically binds or binds to unphosphorylated RyR2 or RyR2 that is not hyperphosphorylated (ie, near The background binding force of the negative control group was twice or five times higher than the binding strength). FKBP binds to the RyR channel and each RyR subunit is relative to a ρΚΒΡ molecule. Thus, the term "FKBP conjugated to RyR" herein includes a FKBP12 (calstabinl) protein molecule that binds to a RyR1 protein subunit or an FKBP12 tetramer that binds to a RyRl tetramer; binds to a RyR2 protein subunit a FKBP12.6 (calstabin2) protein molecule, or a FKBP12.6 tetramer that binds to a RyR2 tetramer; a FKB P12 (cal stab ini) protein molecule that binds to a RyR3 163 200815381 protein subunit, or a combination FKBP12 tetramer of RyR3 tetramer. Therefore, "FKBP combined with RyR" means "fkbpi2 combined with RyRi", "FKBP12.6 combined with RyR2", and "FKBP12 combined with RyR3". According to the method of the present invention, Fkbp which binds to RyR in an individual cell contains a "reduction" or "abnormality" of $, meaning that the amount of FKBP bound to RyR in an individual cell is detectably reduced, decreased or reduced. When such a reduction is restricted, hindered, prevented, hindered or reduced in any way by administration of a compound of the invention, the above-described reduction in the cells of the individual can be limited or prevented such that the FKBP content of the intracellular binding to RyR in the individual is higher than that of the other. Examples of compounds are administered. Standard analysis and techniques can be used to determine the FKBP content of an individual that binds to RyR. These techniques include simple assays in the prior art (eg, 'immunity techniques, heterozygous assays, immunoprecipitation, Western blot analysis, fluorescent imaging techniques and / or radiation detection, etc.), as well as any of the analysis and detection methods disclosed herein. For example, proteins are isolated and purified from individual cells by standard methods well known in the art, including, but not limited to, essential cell extraction (eg, using a soluble protein intercalating agent); Affinity purification; chromatographic techniques such as flow thin layer chromatography (FTLC) and high performance liquid chromatography (HPLC); immunoprecipitation (using antibodies); and precipitation (eg, using isopropanol with, for example, "Trizol Reagents). The isolation and purification of the protein is followed by electrophoretic analysis (e.g., on a sodium sulfosyl sulfate "SDS-polyacrylamide" gel). The reduction in FKBP content bound to RyR in an individual can be determined by administering a compound of formula I according to the invention (in accordance with the method described below) to a FKBP content that binds to RyR after a suitable period of time, as compared to 164 200815381; Or the above limitation or prevention. The reduction of FKBP content bound to RyR in an individual cell can be restricted or prevented by, for example, inhibiting the isolation of FKBP from RyR in an individual cell; increasing the binding between FKBP and RyR in an individual cell; or stabilizing intracellular cells in an individual. RyR-FKBP complex. In addition, the reduction of FKBP content in the intracellular binding of RyR in an individual can be limited or prevented by: directly reducing the acidified RyR content in the individual cells; or indirectly reducing the intracellular acidified RyR content, for example, to regulate Or an enzyme that regulates the phosphorylation of RyR function or content (eg, protein kinase A) or another endogenous molecule. In one embodiment, the method of the invention reduces at least 10% of the phosphorylated RyR content in the cells. In another embodiment, at least a 20% phosphorylated RyR content is reduced. Individuals of the invention may be in vitro and in vivo systems, including, without limitation, isolated or cultured cells or tissues; non-cell WWo assay systems; and animals (eg, two-story, birds) , fish, mammals, marsupials, humans, pets (such as tracing, dogs, monkeys, horses, mice or rats) or economic animals (such as cows or pigs). Individual cells include striated muscle cells. The striated muscle is a muscle type in which the repetitive unit of contractile myofibrils (myofibril) is neatly arranged throughout the cell, resulting in lateral or diagonal stripes observed under an optical microscope. Examples of striated muscle cells include, but are not limited to, random (skeletal) muscle cells and cardiomyocytes. In one embodiment, the cell line used in the methods of the invention is a human cardiomyocyte. The term "cardiomyocyte" as used herein includes, for example, myocardial fibers found in the heart muscle. The myocardial fibrosis consists of a series of continuous cardiac muscle cells or cardiomyocytes connected end to end in the intervertebral disc (i n t e r c a 1 a t e d d i s k s ). These intervertebral discs have two types of cell junctions: expanded desmosomes that extend along their direction of detection and gap junctions that extend along their longitudinal portion. By administering a compound of the invention to an individual, a reduction in the FKBP content of the RyR bound to the somatic cell can be limited or prevented; this also applies to contact between the individual cell and the compound of the invention. The compounds of the invention are calcium ion channel modulators. In addition to modulating Ca2+ concentration in cardiomyocytes, the compounds of the invention also modulate, for example, Na+ ion flux and inward-rectifier K+ ion flux in guinea pig ventricular cells, as well as inhibition of, for example, intraventricular atrial cell delay. R+ (deUyed_rectifia) K+ ion current. Pharmaceutical Compositions The compounds of the present invention are formulated into pharmaceutical compositions suitable for in vivo administration in a biocompatible form for administration to human subjects. According to another embodiment, the present invention provides a pharmaceutical composition comprising a compound of the present invention in admixture with a pharmaceutically acceptable diluent and/or agent. The pharmaceutically acceptable carrier must be "acceptable" in the phase of the combination with the ingredients and is not deleterious. The pharmaceutically acceptable carrier used herein is selected from the group consisting of pharmaceutically acceptable carriers. Each of 166 200815381 organic or inorganic substances' includes analgesics, buffers, binders, disintegrating agents, diluents, emulsifiers, excipients, extenders, slip agents, solubilizers, stabilizers, suspending agents , tonicity agent, carrier and augmentation agent. Pharmaceutical additives such as fragrances, colorants, flavors, preservatives, and sweeteners may also be added as needed. Examples of acceptable pharmaceutical carriers include carboxymethyl cellulose, microcrystalline cellulose, glycerin, acacia, lactose, magnesium stearate, methylcellulose, powder, saline, Sodium alginate, sucrose, starch, talc, water, and the like. The pharmaceutical formulations of the present invention are prepared by methods well known in the pharmaceutical art. For example, a compound or a diluent of the compound of the present invention is combined with a carrier and/or a diluent to form a suspension or solution. Alternatively, one or more accessory ingredients such as buffers, flavors, surfactants and the like may also be added. The choice of carrier will depend on the solubility and chemical nature of the compound, the route of administration, and standard pharmaceutical practice. A compound of the invention is administered to an individual by contacting the compound with a subject cell (e.g., a cardiomyocyte) within a body. The present invention is contacted (e.g., introduced) into individual cells using a technique such as introduction and transfer of proteins, nucleic acids, and W drugs. Examples of methods of contacting a cell with a compound of the invention (ie, treating the cell) include, without limitation, absorption, electroporation, infiltration, immersion, liposome delivery, Transfection methods, transfusi〇n, vectors, and other drug delivery vehicles and methods. When the target cell is located in a particular part of the individual, the compound of the invention is preferably delivered directly to the cell by injection or other means (e.g., 167 200815381 to introduce the compound into blood or other body fluids). Detection of target cells in individual tissues by standard detection methods in the prior art, examples of such detection include (not to be): immunological techniques (eg, immunohistochemical staining), fluorescent imaging techniques, and display Microtechnology. In addition, the compounds of the invention can be administered to a human or animal subject by conventional procedures. This step includes, without limitation, oral, sublingual or buccal, parenteral, transdermal, inhalation or intranasal, intravaginal, intrarectal. And intramuscular administration. Parenteral administration of a compound of the invention includes by epithelial, intracapsular, intracranial, intradermal, intrathecal, intramuscular, intraocular, intraperitoneal, intraspinal, intrasternal, vascular Injection into the inside, vein, stromal tissue, subcutaneous or sublingual, or by catheter. In one embodiment, the drug is administered to the individual by delivery to the muscle of the individual (including, but not limited to, the myocardium of the animal). In one embodiment, the music is administered to the individual via drug delivery to the cardiomyocytes via a catheter inserted into the individual's heart. In other embodiments, the agent is administered via subcutaneous pumping. Formulations for oral administration of the compounds of the invention may be in the form of capsules, lozenges, powders, granules, suspensions or solutions. The formulation contains a common additive such as lactose, mannitol, corn starch or potato starch. The formulation also contains a binder such as microcrystalline cellulose, cellulose derivatives, acacia, corn starch or gel. In addition, the formulation also contains a disintegrating agent such as corn starch, potato starch or sodium carboxymethylcellulose. The formulation also contains anhydrous disc acid hydrogenation (dibasic calcium phosphate 168 200815381, the most chloramphenic acid 瓿 瓿 瓿 脏 ) ) ) ) ) ) ) )) or sodium starch glycolate. Thereafter, the formulation may contain a lubricant such as talc or magnesium stearate. For parenteral administration (ie, a drug introduced via a route other than the digestive tract), the compound of the present invention is incorporated into a sterile aqueous solution that is isotonic with the blood of the individual. Such a formulation is prepared by dissolving the solid active ingredient in a solution containing, for example, sodium. An aqueous solution prepared from a physiologically compatible substance such as glycerin and having pH-reducing water compatible with physiological conditions, and then sterilizing the solution. The formulation can be placed in a single or multiple dose container, such as a sealed amoules or vial. The party can be delivered by any mode of injection, including (not limited to) extramuscular, intracapsular, intracranial, intradermal, intrathecal intramuscular, intraocular, intraperitoneal, intraspinal, intrasternal, intravascular, Intravenous, stromal tissue, subcutaneous or sublingual injection, or by means of a catheter inserted into the heart of an individual. For transdermal administration, the compound of the present invention is conjugated to a skin penetration aid such as propylene glycol, polyethylene glycol, isopropanol, ethanol, oleic acid, i-methylpyrrolidone or the like to enhance the compound of the present invention. The permeability of the skin and allows the compound to penetrate the skin into the blood. The composition/permeabilizer composition of the present invention is further combined with a polymer such as ethyl cellulose, hydroxy cellulose, vinyl acetate, polyvinyl pyrrolidone, etc., to make the composition And allowing the gelled composition to be dissolved in a solvent such as dichloromethane, evaporated to the desired viscosity and then applied to the backing material to form a patch 169 200815381. In certain embodiments, the composition It is made into a single-dose, lozenge, capsule or single-dose vial. Depending on the desired clinical effect, a unit dose, i.e., a therapeutically effective dose, will be administered during a clinical trial designed to treat each disease of the selected compound. The present invention also provides an article suitable for treating a body abnormality (e.g., cardiac abnormality). The compounds of the present invention, or one or more of the compounds of the invention as described herein, comprise a drug analog of the mother knife λ. The article is co-packaged with instructions for indicating the condition of treatment, combination, and/or prevention of the pharmaceutical composition. For example, the article contains a unit dosed human that is capable of treating or preventing a muscle disease as disclosed herein, and indicates that the unit dose can treat or prevent a particular disease (eg, s Μ, 佯 )) Instructions. According to the method of the present invention, a compound of the present invention which is effective for limiting or preventing a decrease in the FKBp content of RyR bound to a body (especially in cells of an individual) is administered to a body (or a cell contacting the individual). The skilled artisan can readily determine this effective dose according to conventional procedures, including titrations (titrati〇n cUrves) analysis established in vivo, and the methods and assays disclosed herein. An amount of a compound of the invention effective to limit or prevent a decrease in the amount of FKBp bound to RyR in vivo is between about 5 mg/kg/day to about 2 mg/kg/day, and/or sufficient to achieve between The amount of the compound in the plasma concentration of 3 〇〇N/ml to about 10 〇〇N/ml. In one embodiment, the compound of the invention is used in an amount between about 1 oz/kg/day to about 2 mg/kg/day. 170 200815381 Use The present invention provides a novel therapeutic method for treating patients suffering from various abnormalities associated with modulation of RyR receptors, particularly skeletal muscle abnormalities (RyRl). The present specification also provides novel therapeutic methods for treating muscle fatigue in a patient resulting from various disease states and abnormalities associated with RyR including, but not limited to, cardiac abnormalities (RyR2) and/or cognitive abnormalities (RyR3). In one embodiment of the invention, the individual has not developed symptoms of muscle fatigue (e.g., muscle fatigue caused by exercise). In another embodiment of the invention, the individual is in need of treatment for an abnormality associated with muscle fatigue, including skeletal muscle abnormalities. Various disorders of treatment or prevention by the compounds of the invention include, but are not limited to, cardiac abnormalities and diseases, skeletal muscle abnormalities and diseases, cognitive disorders and diseases, malignant hyperthermia syndrome, diabetes and sudden infant death. Cardiac abnormalities and diseases include (but are not limited to) irregular heartbeat abnormalities and diseases, irregular heartbeat abnormalities and diseases caused by exercise, sudden cardiac death, sudden cardiac death caused by exercise, congestive heart failure, and chronic obstructive pulmonary disease hypertension. Irregular heartbeat abnormalities and diseases include irregular heartbeat abnormalities and diseases caused by exercise, including (but not limited to) atrial and ventricular arrhythmia; atrial fibrillation and ventricular fibrillation; atrial frequency arrhythmia and ventricular arrhythmia; atrial frequency Pulse and ventricular frequency; catecholamine polymorphic ventricular pulsation (CPVT) and its motor-induced variants. Skeletal muscle abnormalities and diseases include, but are not limited to, skeletal muscle fatigue, exercise-induced skeletal muscle fatigue, muscular dystrophy, bladder dysfunction, and incontinence. Cognitive disorders and diseases include (but are not limited to) Alzheimer's 171 200815381 syndrome, various types of memory loss discs, 仗 仗 平 平 平 平 。 。 。 。. Those skilled in the art will be able to further identify other conditions (including but not limited to muscle and cardiac abnormalities) that may be effectively treated with the compounds of the present invention, based on the information provided herein. It is effective to limit or prevent the amount of the compound of the present invention which is reduced in the amount of FKBP12 bound to RyR1 in vivo, and is effective for preventing the amount of muscle fatigue in an individual. Those skilled in the art can readily determine the amount thereof according to conventional procedures. The procedure includes clinical trials and methods disclosed herein. Since the compounds of the present invention are capable of stably binding to FKBP of RyR and maintaining a dynamic balance of phosphorylation and dephosphorylation of protein kinase A of RyR, the compounds of the present invention are also effective for treating individuals who have experienced clinical symptoms of these different abnormalities. . For example, if an abnormal condition of the individual is detected early, the compound of the present invention can effectively limit or prevent a further decrease in the FKBP content bound to RyR in the individual. Furthermore, the individual of the present invention may be a candidate for muscle fatigue abnormalities (including #not limited to chronic diseases associated with muscle fatigue or muscle or muscle fatigue caused by stress or hard work). Thus, in yet another embodiment of the invention, the individual has been or is in motion and has developed an anomaly caused by exercise. In this case, Muss is effective in limiting or preventing the reduction of FKBP content in RyR in an individual. The amount of the compound used in the invention is an amount effective for treating an exercise-induced abnormality in an individual. Here, the servant of the present invention "effectively treats abnormalities caused by exercise" comprises a compound of the present invention in an amount of 172 200815381 which comprises an amount of the compound of the present invention which is effective for reducing or ameliorating the clinical damage or symptom of a motor-induced abnormality characterized by muscle labor. The amount of the compound of the present invention which is effective in treating an exercise caused by fatigue will depend on the specificity of each case, including the type of abnormality caused by the exercise, the body of the individual, the severity of the symptoms of the individual, and the compound of the present invention. Dosing mode. : The skilled artisan can readily determine its dosage according to conventional procedures, including clinical trials and the methods disclosed herein. In one embodiment: the prodrug compound is capable of treating an abnormality caused by exercise in an individual. The present invention further provides a method of treating muscle fatigue associated with abnormalities and symptoms caused by exercise in an individual. The method comprises administering to the individual an amount of a compound of the invention effective to treat an abnormality caused by movement in the individual. For example, an effective amount of a compound effective to treat arrhythmia caused by exercise in an individual is between about 5 g/kg/day to about 2 mg/kg/day, and/or sufficient to reach about 300 Ng/亳. Increase to a plasma concentration of about 1 〇〇〇 Nike / liter. The present invention also provides a method of preventing an abnormality caused by movement in an individual. The method comprises administering to the individual an amount of a compound of the invention effective to prevent abnormalities caused by exercise in the individual. An effective amount of a compound of the invention effective to prevent an abnormality caused by exercise in an individual is between about 5 mg/kg/day to about 20 Ng/kg/day, and/or sufficient to reach between about 3 Nike/House Increase to a plasma concentration of approximately 100 ng/ml. Further, the present invention provides a method of preventing an abnormality caused by motion in an individual. The method comprises administering to a subject an amount of a compound of the invention effective to prevent abnormalities caused by movement within the individual. The effective amount of the compound of the present invention effective to prevent the sling caused by the movement in the individual is between about 5 g/kg/day to about 2〇173 200815381 克/kg/day, and/or sufficient to reach about 300 奈The amount of plasma concentration between gram/ml and about 1000 ng/liter. The compounds of the present invention can be used alone or in combination with each other or in combination with other cardiovascular active drugs including, but not limited to, diuretics, anticoagulants, antiplatelet agents, and antiarrhythmic agents. , inotropic agents, heart rate agents (chr〇n〇tr〇pic agents), alpha and beta blockers, angiotensin inhibitors and vasodilators. Further, the above combination of the compound of the present invention and other cardiovascular agents can be administered separately or in combination. Further, one of the components of the composition may be administered before, simultaneously with or after the administration of the other drug in the pharmaceutical composition. In view of the above methods, the present invention also provides a method of using the compounds of the present invention to limit or prevent a decrease in the FKBP content bound to RyR in an abnormal candidate patient. The invention also provides methods of using the compounds of the invention to treat or prevent muscle abnormalities in an individual. Furthermore, the present invention provides a method of using the compounds of the present invention to treat or prevent muscle abnormalities caused by exercise in an individual. Intracellular Ca2+ leakage is considered to be a major regulator of muscle degeneration and atrophic muscle reorganization. Muscular atrophy is a heterogeneous hereditary disease characterized by weakness and progressive muscle atrophy. All forms of muscular dystrophy involved in the dystrophin-associated protein complex, also known as dystrophinopathies, are the most common form of Duchenne muscular dystrophy (DMD). One of the genetic diseases (sex 174 200815381 singularity before the age of a reduced or meat atrophy and shell cell growth, suffering from high-systolic heart disease, atrophy Duchenne muscle mainly caused by the increase of Ca2 + - According to the mouse and calcium meat atrophy calcium-dependent, one out of 3,500 children), and most patients usually die of respiratory and/or heart failure at 3 weeks. Bayesian muscular dystrophy (BMD) is a mild form of disease that is associated with the performance of truncated myosin in dystr〇phin, but is completely absent or minimal in patients with Duchenne. The content of myosin. Duchenne muscular atrophy (DMD/BMD) is caused by a mutation in the gene encoding 427-kDa fine protein-myotrophin. However, with age, patients with Bayesian muscular dystrophy have more common visceral symptoms than those with Duchenne muscular dystrophy and are not associated with musculoskeletal symptoms. Due to the incidence of confinement, it is not possible to remove Duchenne muscles by genetic screening. Therefore, an effective treatment is needed. It is known that Duchenne and Bayesian muscles are associated with abnormal metabolism of intracellular calcium. Since it is generally believed that the change of Ca2+ concentration in muscle fiber cells of patients with atrophy is a disease mechanism, it is urgent to develop a treatment for preventing Ca2+ abnormality in skeletal muscle degeneration. The main genetic defect of Duchenne and Bayesian muscular dystrophy is the lack of muscle performance. However, it is still unknown that the intracellular Ca2+ concentration ([Ca2·^) will directly cause damage to harmful myocytes (muscle fibers) and simultaneously activate lysin 6# ( Ca2+-dependent proteases). Activation of proteolytic dysfunction due to elevated calpain activity in wdx necrotic muscle fibers will lead to limb-type disease. Therefore, prevention of activation of sputum protease by inhibiting intracellular Ca2+ concentration can be used as a preventive for Duchenne muscular atrophy. Patients with muscle wasting 175 200815381 A method of contraction. Significant differences in abnormal and atrophic muscles have been observed in the myotubes and the hearts of the animal 4 myosin. The increase in intracellular Ca2+ concentration is prevented by administration of a compound containing the present invention. The compounds of the invention may be prepared in various forms, as well as the salts of the compounds, solvates, complexes, prodrugs or prodrugs, including all of the different formulas of the compound. The invention further provides for the inclusion of a radiolabeled present invention. The compounds of the invention are labeled using a variety of different radiolabels known in the art. For example, the radioisotope of the present invention. The isotope is any radiometric measurable, including (not limited to) 35s, 125i, 3h or 14c. A method can be used to detect the radioactivity emitted by the isotope. For example, 'technique (especially referred to as scintigraphy) detects T-rays of isotopes<by way of non-limiting example, the standard compound is prepared in the following manner. The base of the compound of the present invention is utilized as B B r 3 . Next, in the presence of a base (eg, NaH), a methylating agent (eg, a 3H-sulfuric acid phenolic compound is remethylated to provide a 3H-labeled pseudonym using forced swimming as a booster mouse bone The muscle has an effective program to study the state of the skeletal muscle RyRl channel complex. Unexpectedly, swimming 90 minutes twice a day for up to 3 weeks Mo (including lack of meat between [Ca2, pharmaceutical compositions such as salts, water, and The method for grouping the compounds of the present invention, wherein the radioactive label is a radiation of the same substance, which is commonly used in the art, 7 angiography technology is used to remove the methyl ketone methyl ether from the radioactive benzene ring of the invention) After the component of oxygen motility and phosphorylation, C57B16 176 200815381 wild-type mice showed significantly increased RyR2 acidification (by protein kinase A) whereas Ca2, cadherin kinase II (CaMKII) phosphorylation did not change, Point out the clarity of the pressure pathway, in which the RyR 1 protein is stable, but the RyR1 channel lacks the stable subunit calstabinl (FKBP12). RyRl hyperphosphorylation and lack of calst have been shown Ablin is consistent with the leaky RyRl channel that causes intracellular Ca2+ leakage. After swimming for 90 minutes twice for up to 3 weeks, the RyRl channel is hyperphosphorylated by protein kinase A and lacks the stable calstabinl subunit. The RyR 1 macromolecular channel complex showed an increase in protein kinase A phosphorylation of Ser-2 844 (corresponding to human RyRl-Ser-2843), whereas CaMKII phosphorylation of Ser-2849 (corresponding to human RyRl-Ser-2848) did not change. With the increase in RyRl-Ser-2844 protein kinase A hyperphosphorylation, the channel complex begins to lack calstabinl. Phosphorylation and normalization of the four subunits of the tetrameric channel complex can show protein kinase A filling. A significant increase in acidification and a lack of stability of the calstabinl subunit. Example 1: Effect of S36 A common name for the RyCal compound named S36, S107 was synthesized as described in PCT/US2006/32405, as described in the co-pending application USSN 1 1/212,309. Figure 6 shows some of the molecular mechanisms that cause muscle fatigue and the effects of S36 on muscle fatigue. : The same litterate eight-week-old wild-type C57BL/6J mice were randomly received 36 or Carrier treatment of either. 177 200815381 Two days before the start, a horizontal incision in the neck of the neck will be filled with 200 ul of phosphate buffered saline (PBS) or 2 〇〇W of S36 ( Diluted in PBS at a concentration of 10 pg/ul) osmotic irrigation / 隹庄帮浦 (Alzet Model 2004, Durect, Cupertino, CA; total 穑1 槚20〇μΐ, delivery rate 0.25 μΐ / hr) subcutaneous Implanted into the back surface of the mouse. The mice were allowed to recover for three days before starting exercise. Standard food and moisture are supplied arbitrarily.运动动: Starting on the first day, Xiaoyan spleen, silkworm red scorpion soil J will exercise for up to 3 weeks; swim 5 days a week and run 1 hour a week on the treadmill.

览-式:-每日游泳方案由每天間隔一小時休息期間 的兩次游泳課程所構成。長達5天的初步訓練方式中由4〇 分鐘每次增加1〇分鐘到達80分鐘,之後每個游泳課程持 續90分鐘。30公分長30公分寬的不透光丙烯酸製水箱以 自來水填充至少20公分的深度◊利用具有加熱元件、恆溫 器與泵浦的分離儲水槽循環並加熱水分至32_34〇c。由置 於水槽底部具有小型針狀孔的Tyg0n管道冒出壓縮氣體以 攪動水平面。與治療群體成耦配對(pair-wise〜丨11〇的4隻 適當小鼠可在任何一個時間點於水槽中游泳。將同一窩生 但沒有運動的小鼠保留以作為陰性對照組。 爲了追蹤每個單獨識別小鼠的游泳活動,利用一錄影 追蹤系統(San Diego Instruments,San Diego,CA),其包括 Sony CCD錄影紀錄器、DVD/Hard Drive、影像擷取卡以及 具由在良好狀況下能夠同時追蹤8隻小鼠之社交行為套件 (Social Behavior package)定製的 SMART 2.0 軟體。利用氧 178 200815381 氣内1.5%的異氟烧(isoflurane)麻醉小鼠,並將小型 0.75 公分的微可牢(Velcro)硬幣以 5.0尼龍縫合線缝合於各個 小鼠的頭皮上。黏合於V e 1 c r 〇的釣面側(h ο 〇 k s i d e)的 1 公分有色塑膠點狀物,可牢固地附著於小鼠上並在適當的 光線情況下用於多個體追蹤。分析以X軸、Y軸與時間追 蹤之小鼠結果並得到2、5與1 0分鐘間隔的平均速率以及 游泳距離。View-style: - The daily swimming program consists of two swimming sessions during a one-hour break every day. The initial training method for up to 5 days is increased by 1 minute from 4 minutes to 80 minutes, and each swim course lasts 90 minutes. An opaque acrylic water tank 30 cm long and 30 cm wide is filled with tap water to a depth of at least 20 cm. The water is circulated by a separate water storage tank with heating elements, a thermostat and a pump to heat the water to 32_34 〇c. The Tyg0n pipe, which has a small needle-shaped hole at the bottom of the tank, emits compressed gas to agitate the horizontal plane. Paired with the treatment population (4 pairs of appropriate mice with pair-wise ~ 丨 11 可 can swim in the sink at any one time point. The same litter but not exercised mice were retained as a negative control group. Each individually recognized mouse swimming event utilizes a video tracking system (San Diego Instruments, San Diego, CA) that includes a Sony CCD video recorder, a DVD/Hard Drive, an image capture card, and a good condition. The SMART 2.0 software customized for the social behavior package of 8 mice can be tracked at the same time. The mice were anesthetized with oxygen 178 200815381 1.5% isoflurane in the gas, and the small 0.75 cm micro-can be used. The Velcro coin is sewn to the scalp of each mouse with a 5.0 nylon suture. The 1 cm colored plastic dot adhered to the fishing surface side of the Ve 1 cr 〇 (h ο 〇kside) can be firmly attached to Multiple body tracking on mice and under appropriate light conditions. Analysis of mouse results tracked by X-axis, Y-axis and time and averaged 2, 5 and 10 minute intervals and swimming distance .

Instruments(Columbus,0H)踏車(型號:Exer-6M Treadmill with Treadmill Shock Detection Unit)讓小鼠跑步。以最低 速率(7米/为)且關掉驚嚇設備(sh〇cking apparatus)將小鼠 置於各自跑道上,並讓其適應環境6分鐘。踏車的前半部 以鋁箔覆蓋以阻擋光線。桌燈照射踏車後端的驚嚇區域。 k應P自段之後,打開電流並紀錄接下來二個三分鐘間隔(訓 =期)時輸送的驚嚇次數。接著重設驚嚇計數器,將速度 提间至10米/分,並以三分鐘間隔觀察驚嚇區域與紀錄輸 :給各個小鼠的驚嚇直到實驗結束。…的距離下,踏 =由最初的〗〇米/分上升至36米,分…分鐘速度 ==:過2米,分。對特定曰子的所有小鼠應用-高。去、 一 實驗時程上該方案的困難度提 已經接典g接 、 避開$嚇區域並放棄或當小鼠 有膏你丨由 義為任務失敗。在幾乎所 有貝例中,這兩者時間近乎相同。 179 200815381 塑^座分離:運動第21天與第2 2天之後,以難以相信 的課程表讓小鼠進行最後一次游泳。游泳9 〇分鐘之後,立 即以吸入二氧化碳與頸部脫臼(cervical disl〇cati〇n)方法 犧牲各個小鼠。藉由心臟内吸引移出血液並離心,洗提出 血漿並冷凍於液態氮中。揭露兩個伸趾長肌並以泰氏液 (Tyrode’s solution)潤濕,並將4.0的絲線綁在近側與遠端 的肌腱上,而將肌肉自由地切開。以含有2.0 mM CaCl2 並以100 % 〇2冒泡且加熱至35 °C的泰氏液佈滿(perfuse)肌 肉’並將肌肉懸掛於等張收縮力量轉換器(isonletric force transducers)(F-30,Harvard Apparatus,Cambridge, MA)。 在1 cN靜止張力(resting tension)平衡l〇分鐘與短暫增益 (potentiation)方案後,測量力量-頻率的關係,在40-1 50 Hz 頻率下800 ms刺激之間具有60秒延遲。以每兩秒50 Hz(每 次長達600 ms)持續120秒的強直性方案來產生疲勞。利 用 DMC ν4·1·6 (Aurora Scientific,Canada)來刺激並紀錄 肌肉反應,而利用 DMA v3.2(Aurora Scientific,Canada) 來分析得到的數據。 刺激之後,在靜止張力(resting tension)下測量肌肉長 度並紀錄肌肉乾重(dry weight)。將一伸趾長肌冷凍於異戊 烷(·8(TC )中以用於組織學分析而將另一者冷凍於液態N2 中以用於生化分析。 此外,切下兩個比目魚肌且同樣地一者冷凍於異戊烷 中以用於組織學分析而一者冷凍於液態 N2中以用於生化 180 200815381 分析。亦自各個動物切下外股肌(vastus lateralis)、心臟與 橫隔膜並冷凍於液態N2中以用於生化分析。 生化分析:以0.5 ml緩衝液(50 mM Tris HC1缓衝液, pH 7.4,0.9% NaCl,5.0 mM NaF, 1.0 mM Na3V04,0.5% Triton X-100 +蛋白酶抑制劑)中的RyR抗體在4。(:下培養 1小時自骨骼肌均漿質中免疫沉澱RyR通道。樣本接著以 蛋白質 A瓊脂糖凝膠微珠(Protein A sepharose beads) (Amersham Pharmacia)在4°C下培養1小時,之後這些微 珠以緩衝液清洗三次。為了偵測RyR2,蛋白質在6%十二 基硫酸鈉-聚丙烯醯胺凝膠(SDS-PAGE)上分離大小,而為 了偵測calstabin2,蛋白質在15% SDS-PAGE上分離大小, 並以整晚時間轉移至硝化纖維膜(SemiDry transfer blot, Bio-Rad)。以5%脫脂牛奶培養好避免非專一性抗體結合以 及在具有 0.1% Tween-20 的 Tris 緩衝食鹽水溶液 (Tris-buffered saline)清洗之後,在室溫下以下列一級抗體 培養膜 1 _2 小時:calstabin 抗體(1:1,000) ; RyR 抗體(5029 ; 1:5,000);或 RyR2-pSer2809 磷基抗體(1:5,000),其偵測經 蛋白激酶 A 構酸化的小鼠 RyR 1 -pSer2844 與 RyR2-pSer2 808 〇經過三次沖洗後,以山葵過氧化酶標記的 兔類 IgG 抗體(1:5,000, Transduction Laboratories, Lexington,KY)培養膜,並以增進式化學發光(enhanced chemiluminescent)摘測系統(Amersham Pharmacia)顯影。 利用QUANTITY ONE軟體(Bio-Rad)定量條帶(band)密度。 181 200815381 實施例2 ·· S107的敔蹲 第7-20圖顯示肌肉疲勞的分子機制與的效應。 藥物輪送:將同一窩出生八週大重量適當的 C57BL/6J小鼠隨機接受S107或載劑(H2〇)任一者。在每 個試驗開始前三天,經由一頸上的水平切口將裝有2〇〇 ul 的磷酸鹽緩衝液(PBS)或200 μΐ的S107(以10 μβ/ιι1濃度 稀釋於H2O中)任一者的渗透灌注幫浦(Alzet Model 2004,The Instruments (Columbus, 0H) treadmill (model: Exer-6M Treadmill with Treadmill Shock Detection Unit) allowed the mice to run. The mice were placed on their respective runways at the lowest rate (7 m/y) and the sh〇cking apparatus was turned off and allowed to acclimate to the environment for 6 minutes. The front half of the treadmill is covered with aluminum foil to block light. The table lamp illuminates the scared area at the back end of the treadmill. k should be P after the segment, turn on the current and record the number of frights sent during the next two three-minute intervals (training = period). Then reset the startle counter, lift the speed to 10 m/min, and observe the scared area and record loss at three-minute intervals: the fright of each mouse until the end of the experiment. The distance of ..., step = from the initial 〗 〇 / / min rise to 36 meters, minutes ... minutes speed ==: over 2 meters, points. Apply to all mice of a specific scorpion - high. Going, the difficulty of the program on the experimental schedule has been picked up, avoiding the scare area and giving up or when the mouse has anointed you as a mission failure. In almost all cases, the two are almost the same. 179 200815381 Separation of plastic seats: After the 21st and 2nd days of exercise, the mice were given the last swim with an unbelievable curriculum. After 9 minutes of swimming, each mouse was sacrificed immediately by inhaling carbon dioxide and cervical dislocation (cervical disl〇cati〇n). The blood is removed by centrifugation in the heart and centrifuged, and the plasma is eluted and frozen in liquid nitrogen. Two toe longissimus muscles were exposed and wetted with Tyrode's solution, and a 4.0 thread was tied to the proximal and distal tendons, and the muscles were freely cut. Perfuse muscles with 2.0 mM CaCl2 and 100% 〇2 bubbling and heating to 35 °C, and suspending the muscles in isoletric force transducers (F-30) , Harvard Apparatus, Cambridge, MA). The force-frequency relationship was measured after 1 cN resting tension was balanced for 10 minutes and a short-term gaining scheme with a 60 second delay between 800 ms stimulation at 40-1 50 Hz. Fatigue is generated with a tonicity regimen of 50 Hz every two seconds (600 ms each) for 120 seconds. DMC ν4·1·6 (Aurora Scientific, Canada) was used to stimulate and record muscle response, and DMA v3.2 (Aurora Scientific, Canada) was used to analyze the data. After the stimulation, the muscle length was measured under resting tension and the dry weight was recorded. A long toe long muscle was frozen in isopentane (·8 (TC ) for histological analysis and the other was frozen in liquid N 2 for biochemical analysis. In addition, two soleus muscles were cut and the same One was frozen in isopentane for histological analysis and the other was frozen in liquid N2 for biochemical 180 200815381 analysis. The outer muscles (vastus lateralis), heart and diaphragm were also cut from each animal and frozen. Used in liquid N2 for biochemical analysis. Biochemical analysis: inhibition with 0.5 ml buffer (50 mM Tris HC1 buffer, pH 7.4, 0.9% NaCl, 5.0 mM NaF, 1.0 mM Na3V04, 0.5% Triton X-100 + protease) The RyR antibody in the agent was immunoprecipitated from the skeletal muscle homogenate at 4 hours (the culture was followed by Protein A sepharose beads (Amersham Pharmacia) at 4 Incubate for 1 hour at ° C, after which the beads were washed three times with buffer. To detect RyR2, the protein was separated on a 6% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), and Calstatab2, protein on 15% SDS-PAGE Divided in size and transferred to nitrocellulose membrane (SemiDry transfer blot, Bio-Rad) overnight. Cultured in 5% skim milk to avoid non-specific antibody binding and in Tris buffered saline solution with 0.1% Tween-20 ( Tris-buffered saline) After washing, the membrane was incubated for 1 _2 hours at room temperature with the following primary antibody: calstabin antibody (1:1,000); RyR antibody (5029; 1:5,000); or RyR2-pSer2809 phospho-based antibody ( 1:5,000), which detects a protein kinase A-mediated mouse RyR 1 -pSer2844 and RyR2-pSer2 808 〇 after three washes with wasabi peroxidase-labeled rabbit IgG antibody (1:5,000, Transduction Laboratories) , Lexington, KY) cultured membranes and developed with an enhanced chemiluminescent extraction system (Amersham Pharmacia). Band density was quantified using QUANTITY ONE software (Bio-Rad) 181 200815381 Example 2 · Figures 7-20 of S107 show the molecular mechanisms and effects of muscle fatigue. Drug delivery: C57BL/6J mice of the same litter size of eight weeks of age were randomized to receive either S107 or vehicle (H2). Three days before the start of each test, 2 ul of phosphate buffered saline (PBS) or 200 μM of S107 (diluted in H 2 O at a concentration of 10 μβ/ι1) was placed through a horizontal incision on the neck. Permeation perfusion pump (Alzet Model 2004,

Durect,Cupertino,CA ;總體積 200μ1,輸送速率 〇 25 μΐ/ 小時)皮下植入小鼠的背部表面。運動開始前讓小鼠恢復 三天。整個實驗過程中任意地供應標準食物與水分。 長時間運動模式=每日游泳方案由每天間隔四小時休 息期間的兩次游泳課程所構成。長達5天的初步訓練方式 中游泳課程由40分鐘每次增加1 〇分鐘到達8〇分鐘,之 後每個游泳課程持續90分鐘。30公分長30公分寬的不 透光丙烯酸製水箱以自來水填充至少20公分的深度。利 用具有加熱元件、恆溫器與泵浦的分離儲水槽循環並加熱 水溫至3 2 - 3 4 °C 。與基因型和/或治療群體成柄配對 (pair-wise with)的 8隻小鼠可在任何一個時間點於水槽 中游泳。將同一窩生但沒有運動的小鼠保留以作為陰性對 照組。 爲了確認達到一致的運動環境,執行利用一錄影追縱 系統(San Diego Instruments, San Diego,CA)追蹤各個獨 182 200815381 立識別小氣之移動的初步實驗(pilot experiment)。利用具 有社交行為套件(Social Behavior package)的 SMART 2.0 軟體(San Diego Instruments)分析獨立紀錄之各個90分鐘 游泳的縱跡,以取得游泳距離、從頭到尾的平均速度。並 無發現明顯差異的運動程度。 踏_車表現: 利用具有六個跑道的 Columbus Instruments(Columbus,OH)踏車(型號:Exer-6M Treadmill with Treadmill Shock Detection Unit)來讓小鼠跑步。關掉 驚嚇設備將小鼠置於各自跑道上,並讓其適應環境1 〇分 鐘。踏車的前半部以鋁箔覆蓋以阻擋光線,且桌燈照射踏 車後端的驚嚇區域。適應階段之後,將踏車設定在1 〇米/ 分並在輕微刺激下訓練小鼠跑步6分鐘。接著打開電流並 紀錄接下來二個三分鐘間隔(訓練時期)時輸送的驚嚇次 數。接著重新設定驚嚇計數器,並以三分鐘間隔觀察驚嚇 區域與紀錄輸送給各個小鼠的驚嚇直到實驗結束。在固定 的距離下,踏車速度由最初的10米/分上升至24米/分。 每6分鐘速度提高程度不會超過2米/分。當小鼠無法持續 跑步(即便輕微刺激)時,定義為任務失敗。 完整肌肉標本L強迫式運動課程之後,立即以吸入_ 氧化碳與頸部脫臼方法犧牲各個小鼠。藉由心臟内吸弓丨移 出血液並離心,洗提出血漿並冷珠於液態氮中。將4·〇的 絲線綁在完整伸趾長肌與比目魚肌近側與遠端的肌腱上, 以及將肌肉自由地切開並置於以1 00〇/〇 〇2冒泡的改良型林 183 200815381 格氏液(Ringer’s solution) (140 mM NaCl,5 mM KC1,2·0 mM CaCl2,2 mM MgCl2,10 mM HEPES,10 mM 葡萄糖, pH 7.4)。將肌肉垂直地懸掛於50 mL Radnoti外罩式玻璃 室(jacketed glass chamber)中,以4.0絲線將一肌腱附著於 等張收縮力量轉換器(F-30,Harvard Apparatus,Cambridge, ΜΑ),而另一肌腱則以縫合線附著於内建白金刺激性電極 板的固定臂上。以3 5 QC的林格氏液佈滿肌肉且以1 cN靜 止張力平衡1 0分鐘與短暫增益(potentiation)方案後,測量 力量-頻率的關係,在40-150 Hz頻率下800 ms刺激之間具 有 60 秒延遲。利用 DMC ν4·1·6 (Aurora Scientific,Canada) 來刺激並紀錄肌肉反應,而利用 D M A v 3.2 (A u r 〇 r a Scientific,Canada)來分析得到的數據。刺激之後,在靜止 張力下測量肌肉長度並紀錄肌肉乾重。 共軛焦顯微分析:藉由標準方法酵素分離單一屈趾短 肌(flexor digitorum brevis, FDB)纖維(Reiken, Lacampagne et al· 2003)。簡單的說,由腳爪切下該肌肉並 置於改良型林格氏液中,並去除所有筋膜(fascia)。將第1 型膠原蛋白酶(2 mg/ml,Sigma)新鮮配置於林格氏液中, 並在37°C培養器(以1 25 rpm搖晃)中分解肌肉兩小時。將 肌肉置於新鮮的林格氏液中並小心地磨碎。收集單一纖維 並使其附著在塗覆層黏蛋白(laminin)(Sigma L-2020)的蓋 玻片上。以2μΜ fluo4-AMg旨(Invitrogen)裝载細胞20分 鐘,將其置於Zeiss Live 5顯微鏡臺並以林格氏液佈滿15 分鐘。在呈現纖維基本特性前以i Hz頻率調整纖維丨〇分 184 200815381 鐘。在1 0 0 Η z頻率的3 0 0 m s刺激構成之強直性順序(具有 2 Hz訓練速度)時以1 ms掃描速度持續取得線性掃描影 像。在ImageJ中分析影像並計算各個纖維的F/FO比值。 人類運動方案:試驗課程三個星期前,個體向人類表 現實驗室(Human Performance Laboratory, Appalachian State Univeristy)描述心肺適能(cardiorespiratory fitness) 與身體組成的基本量測值。在三個連續試驗課程日上,個 體食用標準的早餐(早上7 - 8:00)與午餐(下午12:30前吃 完),接著在下午2:00向ASU人類表現實驗室描述概況。 個體自下午 3:00-6:00以 70% V02max在運動腳踏車上運 動。試驗課程日為星期一、星期二與星期三下午。利用配 有吹口與鼻夾的間接量熱計(metabolic cart)每3 0分鐘測量 耗氧量與其他新陳代謝參數,以及每6 0分鐘測量血液乳酸 與葡萄糖含量(經由指尖)以證實個體遵守規定的運動量。 個體運動每小時喝下〇·5-1·0升的水分同時避免所有形式 的吸入能量(例如,酒類、飲料)。而靜止對照組個體在運 動試驗課程時靜坐於實驗室内。對三試驗課程的各者在運 動/靜坐前15-30分鐘以及接著在運動後5-10分鐘内收集 灰液、尿液與唾液樣本。在第1與第3天利用細針切片 (needle bi〇pSy)步驟在運動/靜坐前15-30分鐘以及接著在 運動後5-10分鐘内取得肌肉切片樣本。以約2英吋間隔 取出四個樣本(各股取出兩個)。將切片急速冷凍於液態氮 中並錯存於-80 °C下。 185 200815381 單一通道紀錄輿數據取得:如先前所述般自久坐小鼠 與長時間運動小鼠(以载劑或S107任一者治療)製備肌漿網 囊泡(Reiken,Lacampagne et al. 2003)。藉由微粒體自發性 融合成平面脂質雙層膜(planar lipid bilayers)而再度構成 RyRl 通道,平面脂質雙層膜係填脂醢乙醇胺 (phosphatidyl ethanol amine) 與 構 脂 絲 胺 酸 (phosphatidylserine)比例 3:1 的混合物(Avanti Polar Lipids)。平面脂質雙層膜形成於聚續酸酯(polysulfonate) 杯(Warner Instruments,Inc·)中的 200 μιη 孔洞,其分離兩 種浸泡液(1 mM EGTA,250/125 mM HEPES/Tris,50 mM KC1,0·5 mM CaCl2,pH 7·35 作為同側(ch)溶液而 53 mM Ba(0H)2,50 mM KC1,250 mM HEPES,pH 7·35 作為反側 溶液)。併入之後,持續紀錄 RyRl通道活性至少 10 分鐘。以 WinMaxC 程式(2.50 版)(Bers,Patton et al· 1994)計算cb室的自由Ca2 +濃度。利用Axopatch 200A膜 片箝制(patch-clamp)放大器(Axon Instruments,USA)以無 間隙模式(gap-free mode)紀錄0 mV下的單一通道電流,以 1 kHz頻率濾波並以10 kHz頻率數位化。利用Digidata 1322A 與 Axoscope 9 軟體(Axon Instruments, USA)執行 數據取得。利用 Clampfit 10· 1 (Molecular Devices, USA) 與 Origin 軟體(6.0 版,Microcal Software,Inc.,USA)分析 紀錄。 理阿諾鹼受體禮合體的分析:等張式(isotonically)溶解 10 mg的肌肉樣本。藉由將250 gg均漿質與0.5 ml改良式 186 200815381 RIPA 緩衝液(50 mM Tris-HCl (pH 7.4),0.9% NaCl,5.0 mM NaF,1·0 mM Na3V〇4,1.0% Triton-Xl〇〇 與蛋白酶抑制 劑)中之RyR抗體(2 μΐ 5 029 Ab)在4°C下培養1小時而免 疫沉澱理阿諾鹼受體RyR 1。樣本接著與蛋白質A瓊脂糖 凝膠微珠 (Ammersham Pharmacia)在4°C下培養1小時, 之後這些微珠以緩衝液清洗三次。蛋白質在4-20%濃度梯 度的十二基硫酸鈉-聚丙烯醯胺凝膠(SDS-PAGE)上分離大 小並以整晚時間轉移至石肖化纖維膜上(SemiDry transfer blot,Bio-Rad)。以阻隔液(LICOR Biosciences,Lincoln NE) 培養以避免非專一性抗體結合並在具有0.1%Tween-20的 Tris緩衝食鹽水溶液中清洗之後,在室溫下以下列一級抗 體培養膜1-2小時:calstabin抗體(1:2500於阻隔液中); RyR 抗體(5029 ; 1:5,000);或 RyR2-pSer2809 磷基抗體 (1:5,000),其偵測經蛋白激酶 A 磷酸化的小鼠 RyRl-pSer2844 與 RyR2-pSer2808 ;以及 PDE4D3 抗體 (1:1 000)。經過三次沖洗後,以紅外線標記的二級抗體 (1:10,000 稀釋,LICOR Biosystems)培養。利用 Odyssey Infrared Imaging System (LICOR Biosciences)定量條帶密 度。 舞激活蚤白酶與肌酸激酶試驗:利用鈣激活蛋白酶活 性試驗套組(C a 1 b i 〇 c h e m,S a n D i e g 〇,C A)測量組織的#5激 活蛋白酶活性。此試驗係根據螢光胜肽基質 Suc-LLVY-AMC (Calbiochem)的分解而成。將肌肉均聚質 稀釋成600 pg/ml的最終濃度並按照製造商說明書測量均 187 200815381 漿質中鈣激活蛋白酶的活性。利用試劑套組(Pointe Scientific,Inc·,Canton,MI)試驗血漿肌酸激酶(CK)活 性。將血漿樣本(每個5 μ 1的複本)加入2 0 0 μ 1的肌酸 激酶試劑,並利用盤式偵測儀(plate reader)紀錄340 nm 下吸光值4分鐘的變化。根據製造商說明書將每分鐘 的平均吸光值變化用以測定CPK程度。 分析將數據表現成平均士標準機差(SEM)。利 用具有0.05明顯程度的獨立卜試驗以檢驗cair/_與野生 型、PDE4D小與野生型、以及運動+載劑與運動+ si〇7之間 的差異’除了下述。在許多實例中發現踏車失敗數據的分 佈為不對稱的。因此,利用威爾克森檢定(wilc〇x〇n rank sum test)以便比較所有此類數據。 也強度運身一引起RyRl的蛋白激醢A過度磷酸化上| 您—通4農合體U calstabinl奧PDE4D3 :已經將小鼠中 的運動模式分為兩種類型:υ自主性運動,包括跑輪圈; 以及2)非自主性運動,包括游泳或強迫式踏車跑步至精疵 力竭。為了達到高強度運動,每天兩次的游泳方案適以在 數天至數星期使小鼠達到一致的運動。此小鼠運動方案 並不以離心或等張任一者為特性而設計,反而為離心成 等張運動的生理混合型。強迫式運動後,由後肢肌肉的整 個肌肉均漿質中免疫沉澱RyRi,且在十二基硫酸鈉-聚丙 烯醯胺凝膠(SDS-PAGE)上使RyR1通道複合體以大小分離 並針對通道複合體成分進行免疫墨點分析。小鼠中的高強 188 200815381 度運動造成RyRl在蛋白激酶A作用位置Ser2844上逐漸 磷酸化(RyRl-pS2844),而這現象在每天游泳兩次(9〇分鐘 課程,例如第8A圖)進行14天時達到飽和。 此外,伸趾長肌(EDL)的RyRi大分子複合物進行重 組,包括將近14天時通道缺少calstabinl與PDE4D3 (第 8A與8B圖)。自相同小鼠分離的所有其他後肢骨骼肌(包 括比目魚肌、前脛肌(tibialis anterior)與腓腸肌 (gastrocnemius))中可觀察到相同的生化改變型態。RyRi 蛋白激酶A過度磷酸化與缺少caistabinl和PDE4D3取決 於運動強度,而僅有相當高強度的運動可造成明顯的通道 改變(第8C與8D圖)。再者,RyRl通道複合體的重組在 運動後仍持續且在長時間運動後休息三天僅有部分恢復 (第16A圖)。RyRl的蛋白激酶A過度磷酸化不因結合於 RyRl複合體之蛋白激酶A與PP1的含量而有所改變,因 為這些含量並不受到運動狀態的影響(第16A與16B圖)。 運動過程中,以免疫墨點分析測量的整個肌肉均漿質中之 calstabinl含量並無改變(第16C圖)。因此,每天高強度 運動長達數星期會造成RyRl通道複合體的重組’主要有: 通道缺少磷酸二酯酶PDE4D3 ;蛋白激酶A過度磷酸化; 以及RyRl通道複合體缺少穩定性亞基ealstabinl ° 人類運動睹發生的RvRl通道敏為了驗證運動之 小鼠中發現的RyRl通道大分子複合物重組對人類生理學 是否具有意義(relevant),在高強度運動方案(以57%的 189 200815381Durect, Cupertino, CA; total volume 200 μl, delivery rate 〇 25 μΐ/hr) was implanted subcutaneously into the dorsal surface of the mouse. The mice were allowed to recover for three days before the start of the exercise. Standard food and moisture were arbitrarily supplied throughout the experiment. Long-term exercise mode = The daily swimming program consists of two swimming sessions during a four-hour break every day. Up to 5 days of initial training The swimming course is increased by 1 minute from 40 minutes to 8 minutes, and each swim course lasts 90 minutes. An opaque acrylic water tank 30 cm long and 30 cm wide is filled with tap water to a depth of at least 20 cm. Use a separate water storage tank with heating element, thermostat and pump to circulate and heat the water to 3 2 - 3 4 °C. Eight mice paired with the genotype and/or treatment population can swim in the sink at any one time point. Mice that were born in the same place but did not exercise were retained as a negative control group. In order to confirm that a consistent exercise environment was achieved, a pilot experiment using a video tracking system (San Diego Instruments, San Diego, CA) to track the movement of each individual 182 200815381 was performed. Use the SMART 2.0 software with Social Behavior package (San Diego Instruments) to analyze the individual records of each 90-minute swim track to get the distance traveled and the average speed from start to finish. There was no significant difference in the degree of exercise. Tread_Car Performance: The mice were run using a Columbus Instruments (Columbus, OH) treadmill (Model: Exer-6M Treadmill with Treadmill Shock Detection Unit) with six runways. Turn off the scare device and place the mice on their respective runways and let them adjust to the environment for 1 〇 minutes. The front half of the treadmill is covered with aluminum foil to block light, and the table lamp illuminates the scared area at the rear of the treadmill. After the adaptation phase, the treadmill was set at 1 cm/min and the mice were trained to run for 6 minutes with mild stimulation. The current is then turned on and the number of intimidation delivered during the next two three minute intervals (training period) is recorded. The frightening counter was then reset and the scare area and the shock of the record delivered to each mouse were observed at three minute intervals until the end of the experiment. At a fixed distance, the treadmill speed increased from the initial 10 m/min to 24 m/min. The speed increase will not exceed 2 m/min every 6 minutes. When a mouse is unable to continue running (even if it is slightly irritated), it is defined as a mission failure. Immediately after the complete muscle specimen L forced exercise course, each mouse was sacrificed by inhalation _ carbon monoxide and neck dislocation. The blood was removed by centrifugation in the heart and centrifuged to elute the plasma and cool the beads in liquid nitrogen. Attach the silk thread of 4·〇 to the tendon near the distal and distal ends of the long toe and the soleus muscle, and cut the muscle freely and place it in a modified forest with a bubble of 100 〇/〇〇2 183 200815381 Ringer's solution (140 mM NaCl, 5 mM KC1, 2.0 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7.4). The muscles were suspended vertically in a 50 mL Radnoti jacketed glass chamber, and one tendon was attached to the isotonic contraction force transducer (F-30, Harvard Apparatus, Cambridge, ΜΑ) with 4.0 threads, and the other The tendon is attached to the fixed arm of the built-in platinum irritating electrode plate with a suture. The force-frequency relationship was measured after the muscles were filled with 3 5 QC Ringer's solution and equilibrated with 1 cN static tension for 10 minutes with a short-term potentiation protocol, between 800 ms and 40 ms at 150-150 Hz. Has a 60 second delay. The muscle response was stimulated and recorded using DMC ν4·1·6 (Aurora Scientific, Canada), and the data was analyzed using D M A v 3.2 (A u r 〇 r a Scientific, Canada). After stimulation, muscle length was measured under static tension and muscle dry weight was recorded. Conjugated focal microscopy: Fibro digitorum brevis (FDB) fibers were isolated by standard method enzymes (Reiken, Lacampagne et al. 2003). Briefly, the muscle is cut from the paw and placed in a modified Ringer's solution, and all fascia is removed. Type 1 collagenase (2 mg/ml, Sigma) was freshly placed in Ringer's solution, and the muscle was decomposed for two hours in a 37 ° C incubator (shake at 1.25 rpm). Place the muscles in fresh Ringer's solution and carefully grind them. A single fiber was collected and attached to a cover glass of laminin (Sigma L-2020). The cells were loaded with 2 μΜ fluo4-AMg (Invitrogen) for 20 minutes, placed on a Zeiss Live 5 microscope stage and filled with Ringer's solution for 15 minutes. The fiber enthalpy was adjusted at i Hz frequency before the presentation of the basic properties of the fiber 184 200815381. The linear scan image is continuously taken at a scan rate of 1 ms at a linear order of 300 s s z stimuli (with a 2 Hz training speed) at a frequency of 1 0 0 Η z. The images were analyzed in ImageJ and the F/FO ratio of each fiber was calculated. Human Exercise Program: Three weeks prior to the pilot course, the Individual to the Human Performance Laboratory (Appalachian State Univeristy) described the basic measurements of cardiorespiratory fitness and body composition. On three consecutive trial day, the individual consumed standard breakfast (7-8:00 in the morning) and lunch (before 12:30 pm), followed by an overview of the ASU Human Performance Lab at 2:00 pm. Individuals move on a sports bike with a 70% V02max from 3:00 pm to 6:00 pm. The test course day is Monday, Tuesday and Wednesday afternoon. Oxygen consumption and other metabolic parameters were measured every 30 minutes using an indirect calorimeter with a mouthpiece and nose clip, and blood lactate and glucose levels were measured every 60 minutes (via fingertips) to confirm individual compliance The amount of exercise. Individual movements drink 5-1·0 liters of water per hour while avoiding all forms of inhaled energy (eg, alcohol, beverages). Individuals in the resting control group were sitting in the laboratory during the exercise test. Each of the three trial sessions collected ash, urine, and saliva samples 15-30 minutes before exercise/quiet sitting and then 5-10 minutes after exercise. Muscle section samples were taken on days 1 and 3 using the needle bi〇pSy procedure 15-30 minutes before exercise/quiet sitting and then 5-10 minutes after exercise. Take four samples at intervals of about 2 inches (two out of each strand). The sections were snap frozen in liquid nitrogen and staggered at -80 °C. 185 200815381 Single channel recording data acquisition: Preparation of sarcoplasmic reticulum vesicles from sedentary mice and long-term exercise mice (treated with either vehicle or S107) as previously described (Reiken, Lacampagne et al. 2003) ). The RyRl channel is reconstituted by spontaneous fusion of microsomes into planar lipid bilayers. The ratio of phosphatidyl ethanol amine to phosphatidylserine is 3 Mixture of :1 (Avanti Polar Lipids). The planar lipid bilayer membrane was formed in a 200 μιη hole in a polysulfonate cup (Warner Instruments, Inc.), which separated the two soaks (1 mM EGTA, 250/125 mM HEPES/Tris, 50 mM KC1). , 0.5 mM CaCl 2 , pH 7·35 as the ipsilateral (ch) solution and 53 mM Ba(0H) 2 , 50 mM KC1, 250 mM HEPES, pH 7.35 as the reverse solution). After the incorporation, the RyRl channel activity was continuously recorded for at least 10 minutes. The free Ca2+ concentration in the cb compartment was calculated using the WinMaxC program (version 2.50) (Bers, Patton et al. 1994). A single channel current at 0 mV was recorded in a gap-free mode using an Axopatch 200A patch-clamp amplifier (Axon Instruments, USA), filtered at 1 kHz and digitized at 10 kHz. Data acquisition was performed using the Digidata 1322A and Axoscope 9 software (Axon Instruments, USA). The records were analyzed using Clampfit 10·1 (Molecular Devices, USA) and Origin software (version 6.0, Microcal Software, Inc., USA). Analysis of Argonine Receptor Etiquette: Isotonically dissolved 10 mg muscle samples. By 250 gg homogenate with 0.5 ml modified 186 200815381 RIPA buffer (50 mM Tris-HCl (pH 7.4), 0.9% NaCl, 5.0 mM NaF, 1.0 mM Na3V 〇 4, 1.0% Triton-Xl The RyR antibody (2 μΐ 5 029 Ab) in sputum and protease inhibitor was incubated at 4 ° C for 1 hour to immunoprecipitate the RyR receptor RyR 1 . The samples were then incubated with Protein A Sepharose microbeads (Ammersham Pharmacia) for 1 hour at 4 ° C, after which the beads were washed three times with buffer. The protein was separated on a 4-20% concentration gradient of sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) and transferred to the stone pathological fiber membrane overnight (SemiDry transfer blot, Bio-Rad). ). After incubation with a blocking solution (LICOR Biosciences, Lincoln NE) to avoid non-specific antibody binding and washing in Tris buffered saline solution with 0.1% Tween-20, the membrane was incubated for 1-2 hours at room temperature with the following primary antibody: Calstabin antibody (1:2500 in a blocking solution); RyR antibody (5029; 1:5,000); or RyR2-pSer2809 phospho-based antibody (1:5,000), which detects protein kinase A phosphorylated mouse RyRl-pSer2844 With RyR2-pSer2808; and PDE4D3 antibody (1:1 000). After three washes, they were incubated with infrared-labeled secondary antibody (1:10,000 dilution, LICOR Biosystems). Band density was quantified using an Odyssey Infrared Imaging System (LICOR Biosciences). Dance-activated chymase and creatine kinase assays: Tissue #5-activated protease activity was measured using a calcium activating protease activity test kit (C a 1 b i 〇 c h e m, Sa n D i e g 〇, C A). This test was based on the decomposition of the fluorescent peptide matrix Suc-LLVY-AMC (Calbiochem). The muscle homogenate was diluted to a final concentration of 600 pg/ml and the activity of calcium activating protease in the plasma of 187 200815381 was measured according to the manufacturer's instructions. Plasma creatine kinase (CK) activity was tested using a kit of reagents (Pointe Scientific, Inc., Canton, MI). Plasma samples (each 5 μl copy) were added to 200 μl of the creatine kinase reagent and the change in absorbance at 340 nm for 4 minutes was recorded using a plate reader. The change in average absorbance per minute was used to determine the degree of CPK according to the manufacturer's instructions. The analysis presented the data as a mean standard deviation (SEM). An independent experiment with a significant degree of 0.05 was used to test the difference between cair/_ and wild type, PDE4D small and wild type, and exercise + carrier versus exercise + si〇7 except for the following. The distribution of treadmill failure data is found to be asymmetrical in many instances. Therefore, the Wilcson x 〇 rank rank test is used to compare all such data. Also intensive to cause RyRl protein stimulating A hyperphosphorylation | You - Tong 4 agricultural complex U calstabinl Austrian PDE4D3: The movement patterns in mice have been divided into two types: υ autonomous movement, including the running wheel Circle; and 2) involuntary movements, including swimming or forced treadmills to exhaustion. In order to achieve high-intensity exercise, the twice-daily swimming program is designed to achieve consistent exercise in mice for days to weeks. This mouse exercise regimen is not designed with either centrifugation or isotonic characteristics, but rather a physiologically mixed type that is centrifuged into isotonic motion. After forced exercise, RyRi was immunoprecipitated from the entire muscle of the hind limb muscles, and the RyR1 channel complex was separated by size and directed against the channel on sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). The complex components were subjected to immunological dot analysis. High-intensity 188 in 200815381 degrees of exercise caused RyRl to gradually phosphorylate at the protein kinase A site Ser2844 (RyRl-pS2844), and this phenomenon was performed twice a day (9 minutes course, eg Figure 8A) for 14 days. When it reaches saturation. In addition, the RyRi macromolecular complex of the long toe longus muscle (EDL) was recombined, including the lack of calstabinl and PDE4D3 (Figures 8A and 8B) for nearly 14 days. The same biochemical alterations were observed in all other hind limb skeletal muscles isolated from the same mouse, including the soleus muscle, tibialis anterior and gastrocnemius. RyRi protein kinase A hyperphosphorylation and lack of caistabinl and PDE4D3 depend on exercise intensity, while only relatively high intensity exercise can cause significant channel changes (8C and 8D). Furthermore, recombination of the RyRl channel complex continued after exercise and only partially recovered after three days of rest after long periods of exercise (Fig. 16A). Protein kinase A hyperphosphorylation of RyRl is not altered by the amount of protein kinase A and PP1 bound to the RyRl complex, as these levels are not affected by the state of motion (Figures 16A and 16B). During exercise, there was no change in the calstabinl content in the whole muscle pulp measured by immunoblot analysis (Fig. 16C). Therefore, high-intensity exercise for several weeks per day causes recombination of the RyRl channel complex's main: channel lacking phosphodiesterase PDE4D3; protein kinase A hyperphosphorylation; and RyRl channel complex lacking stability subunit ealstabinl ° human RvRl channel sensitivity in exercise sputum in order to verify whether the recombination of RyRl channel macromolecular complexes found in exercised mice is significant for human physiology, in high-intensity exercise programs (57% of 189 200815381)

V〇2m ax騎腳踏車3小時/天)第1天與第3天的運動前與 後自受訓練的運動員取得人類腿部肌肉切片(Nieman, Henson et al. 2006)。自肌肉均漿質中免疫沉澱人類 RyRl大分子複合物,並以十二基硫酸鈉-聚丙烯醯胺凝 膠(SDS-PAGE)分離大小並經免疫墨點分析,以評估 RyRl的蛋白激酶 A磷酸化程度與 RyRl 複合體内 calstabinl與PDE4D3的含量。高強度運動造成RyRl的蛋 白激酶A過度填酸化並缺少cal stab ini (與未曾運動的對照 組相比)(第9圖)。第3天運動前,訓練過的腳踏車騎士 中的 RyRl蛋白激酶 A磷酸化係處於或接近靜止期的程 度,且並無發現RyRl複合體明顯缺少calstabinl,然而, 在高強度運動第 3天開始時 RyRl複合體穩定地缺少 PDE4D3 (第9B圖)。因此,在長時間運動小鼠.中發現之 RyRl通道複合體的相同重組可發生於接受強烈運動的高 度訓練運動員中。 肌肉專一性calstabinl^小鼠具有高強度運動缺陷: 先前已經顯示肌肉專一性缺少calstabinl與經分離的肌肉 樣本之力量-頻率關係的改變以及C a v 1 · 1電流中的減少有 關(Tang,Ingalls et al· 2004)。為 了確定 calstabinl 結合於V〇2m ax bicycles for 3 hours/day) Human muscles were taken from trained athletes before and after the first and third days of exercise (Nieman, Henson et al. 2006). Human RyRl macromolecular complex was immunoprecipitated from muscle homogenate and separated by SDS-PAGE and immunoblot analysis to evaluate RyRl protein kinase A. The degree of phosphorylation and the content of calstabinl and PDE4D3 in RyRl complex. High-intensity exercise caused excessive proteination of RyRl's protein kinase A and lacked cal stab ini (compared to the non-exercised control group) (Fig. 9). Before the third day of exercise, the RyRl protein kinase A phosphorylation system in the trained bicycle knight was at or near the stationary stage, and the RyRl complex was not found to be significantly lacking calstabinl, however, at the beginning of the third day of high-intensity exercise The RyRl complex stably lacks PDE4D3 (Fig. 9B). Therefore, the same recombination of the RyRl channel complex found in long-lived mice can occur in highly trained athletes who receive intense exercise. Muscle-specific calstabinl^ mice have high-intensity motor deficits: muscle-specific loss of calstabinl has previously been shown to be associated with changes in the force-frequency relationship of isolated muscle samples and reduction in C av 1 · 1 current (Tang, Ingalls et Al· 2004). In order to determine calstabinl binding to

RyRl是否對運動表現有所影響,發明者評估肌肉專一性 缺少 calstabinl小鼠踏車跑步到精疲力竭的時 間。call·厂小鼠相對於同一窩生的野生型對照組而言,在 高強度運動能力上有明顯缺陷(第丨〇 A圖)。雄性與雌性中 的運動缺陷為相似的(第10B圖),且儘管call·/·小鼠的體 190 200815381 重有稍微減少(第1 oc圖),但失敗時間與體重減少之間並 無關聯(第10D獨)。運動缺陷在高強度運動(踏車速度等於 或咼於24米/分)或離心運動(例如,14。的下坡踏車跑步) 中最為明顯。0/2隻call-/-小鼠能夠完成30分鐘的下坡 踏車運動方案,但2/2隻同一窩生的野生型小鼠能夠完成 該方案。 下坡運動方式(如本文所述)之後2 4小時,血漿肌酸激 酶(CPK)’在ca/厂小鼠(相對於同一窩生的野生型對照組) 中隨著肌肉傷害的提高而提高(第10E圖)。每天運動訓練 數生期之後’野生型小鼠的運動能力接近ea// -八小鼠的 運動能力可能係因4 RyRl複合體逐漸缺少…心―!(發 生於野生型小鼠的長時間運動中)(第8圖),其造成運動引 起的RyRl通C複合體缺少caistabini,這與小鼠 運動前發現的現象相妨 πι、 π, ^ 々曰似(第10F圖)。因此,肌肉專一性缺 少 calstabinl 小竄 ^ &顯示疲勞隨著 RyRl複合體缺少 calstabinl而增加,而、上丄 L _ @每在肌肉疲勞中扮演某種角色。 PDE4D +小鼠二一 - 動缺陷:全身缺少 PDE4D造成 年齡依賴性的漸進性心肌症(Lehnart,Wehrens Μ & 2005)。然而,3個月去a / ) 乃大之前,PDE4D-/·小鼠並無顯示可由 〜臟超曰波或導管;ί爾入術(cardiac catheterization)所 測得的心臟缺。兩個月大的PDE4D·/-小鼠之運動能力 可與同-窩生的野生型小鼠相比。可發現運動能力的明顯 下降(第ΠΑ圖)且與體重沒有任何關聯(第iib、c、d圖)。 191 200815381 明顯地,靜止PDE4D·/-小鼠g口咖 ㈤(相對於同一窩生的野生型對照 組)的高CPK含量符合肌肉傷 、 j場害,且PDE4D+小鼠的單一 離心運動(由 3 0分鐘下城诚由 皮踏車跑步構成)插曲後24小時 CPK含量明顯的提高(第丨〗p E圖)。僅一天輕微運動後的 P D E 4 D /小鼠顯示,其缺少姓 ,、咐夕結合PDE4D3的RyRl、基本Whether RyRl has an effect on athletic performance, the inventors assessed muscle specificity and lacked calstabinl mice to run to exhaustion. The call·plant mice had significant defects in high-intensity exercise ability relative to the wild-type control group of the same litter (Fig. A). The motor deficits in males and females are similar (Fig. 10B), and although there is a slight decrease in body 190 200815381 in call·/· mice (1 oc map), there is no association between failure time and weight loss. (10D alone). Motor deficits are most pronounced in high-intensity exercise (tachometer speed equal to or at 24 m/min) or centrifugal motion (for example, a downhill treadmill run of 14.). 0/2 call-/- mice were able to complete a 30-minute downhill treadmill program, but 2/2 wild-type mice of the same litter could complete the program. 24 hours after the downhill movement (as described herein), plasma creatine kinase (CPK) increased in the ca/plant mice (relative to the wild-type control group of the same litter) as muscle damage increased (Fig. 10E). After exercise for several days after exercise, the ability of wild-type mice to move close to ea// - the ability of eight mice to move may be due to the gradual lack of 4 RyRl complexes... heart-! (long-term exercise in wild-type mice) (in Figure 8), the RyRl-passing C complex caused by exercise lacks caistabini, which is similar to the phenomenon found before the movement of mice (p. 10F). Therefore, the lack of muscle specificity calstabinl 窜 ^ & shows that fatigue increases with the lack of calstabinl in the RyRl complex, whereas the upper 丄 L _ @ plays a role in muscle fatigue. PDE4D + mouse two-one-dynamic defects: systemic lack of PDE4D causes age-dependent progressive cardiomyopathy (Lehnart, Wehrens Μ & 2005). However, before 3 months of a/), PDE4D-/. mice did not show a deficiency in the heart that could be measured by ~scene supercavitation or catheter; cardiac catheterization. The exercise capacity of two-month-old PDE4D·/- mice can be compared to wild-type mice that are homogenous. A significant decrease in exercise capacity (Fig. 3) can be found and is not associated with body weight (graphs iib, c, d). 191 200815381 Obviously, the high CPK content of resting PDE4D·/- mice g (5) (relative to the wild-type control group of the same litter) is consistent with muscle injury, j field damage, and single centrifugation of PDE4D+ mice (by 30 minutes, Xiachengcheng consists of running on a treadmill.) The CPK content is significantly improved 24 hours after the insertion (Division p p E). P D E 4 D / mice after only one day of light exercise showed that they lacked the surname, RyRl combined with PDE4D3, basic

RyRl蛋白激酶A磷酸化的些微提高、以及缺少 的明顯提高(第UF圖)。這些數據顯示剛彻藉由調控 RyRl的蛋白激酶A磷酸化程度而在RyR1複合體中扮演 重要角色,而運動時通道複合體缺少pDE4D3將促進 的蛋白激酶A磷酸化,其接著促成運動時的肌肉傷害與 骨骼肌疲勞。 复物學上再結合calstabinl於RVR1可改善县時問 表^二已經證明calstabinl的缺少與運動缺陷有關且長時 間或兩強度運動可造成RyRl缺少calstabinl,亦確定藥物 學上再結合calstabinl於RyRl對長時間或高強度運動表 現的影響。篩選1,4-苯并硫氮呼衍生物(RyCal化合物), 以發現在改善運動能力方面具有高目標活性、高專_性 (沒有針對其他已知離子通道的活性)與活體内效力。發現 化合物S107在500 nM濃度下不會影響L-型鈣離子通道電 流或hERG鉀離子電流。 年齡與性別符合的野生型小鼠將隨機接受含有si 〇7 或載劑任一者的滲透式幫浦。在開始2 1天強迫式游泳運動 方式之前,以2.5 ug/小時劑量的S107或载劑開始注入四 192 200815381 天。藉由小鼠夜間週期·時精疲力竭程度的踏車跑步 可礙評 估運動能力一次。小鼠不會在踏車評估的同一天運動。第 12A圖顯示以S107造成的calstabinl再結合並不會對野生 型運動表現造成嚴重影響,但隨著時間下來S 1 〇 7治療的野 生型小鼠較能抵抗踏車運動能力的下降(發生於載劑治療 小鼠上)(第2 1天S 1 0 7相對载劑,威爾克森檢定p < 〇 〇 ^' 這些研究由於重複運動的訓練效應(因肌肉組織增大而導 致表現的改善)而變得複雜。第丨2B圖顯示第2 1天的加 八呵彳固別 踏車失敗時間。在電場刺激(field stimulation)時,於έ 組織 水浴槽(tissue bath)中的伸趾長肌内測量產生之等張力旦 S 1 07治療小鼠的伸趾長肌在刺激頻率高於8〇 Hz下時 顯示力量產生的提高,這符合於力量-頻率關係圖的左移 (第12C圖)。藥物治療不會造成體重(第12D圖)或肌肉重 量的改變。在小鼠缺少calstabinl的相似長時間運動試驗 中,S107無法改善踏車表現(第12E圖)。長時間運動方案 造成大量的RyRl蛋白激酶A磷酸化與經免疫沉殿之RyRi 缺少calstabinl。S107治療幾乎全部逆轉RyRl缺少 calstabinl的現象(第12F圖)。將這些數據放在一起可顯 示,以提高calstabinl對通道結合的藥物來預防因為蛋白 激酶A過度磷酸化RyRl通道造成的肌漿網Ca2+渗漏,可 在疲勞方案中預防肌肉傷害、肌肉疲勞、提高肌肉功能並 改善運動表現。 193 200815381 再結合趾短虮鑰錐中疲勞性的滅少: 長時間運動方案後自小鼠上以酵素分離屈趾短肌(FDB)纖 維並載入鈣離子指示劑flu〇_4。在1 Hz的電場刺激與在疲 勞方案(由每兩秒300 ms長反覆型、頻率120 Hz的強直性 刺激長達400秒所構成)過程中,在zeiss Live5共軛焦顯 微鏡上呈現各個肌肉纖維。顯示載劑治療小鼠(第丨3 A圖) 與S 107治療小鼠(第13B圖)分離之屈趾短肌纖維在疲勞方 案時的代表性F/F0蹤跡。si 07治療小鼠的屈趾短肌纖維 顯示強直性#5離子瞬間電流波峰下降的延遲(第丨3 C圖)。 已知Ca2+釋出與再吸收動力學較慢的肌肉纖維較不易疲 勞。評估1 Hz頻率下單一收縮時的Ca2 +釋出與再吸收動力 學。50%再吸收時間(τ)的分佈在載劑與S107治療中並無 明顯差異(第1 7圖),表示屈趾短肌纖維的鈣離子再吸收動 力學並無變動。這些數據指出以S107治療可改善疲勞方案 時肌肉纖維内的Ca2+管理。 長時間運動造成的滲漏刮RvRl通道可藉由calstabinl 是結合而逆轉:關鍵性的爭論為運動時RyR 1大分子複合 物中發現的生化改變是否造成RyR 1通道活性的改變。為 了直接研究此問題,自下列小鼠的後肢肌肉製備肌漿網微 粒體:久坐的小鼠、長時間運動並以載劑治療的小鼠以及 長時間運動並以S 1 0 7治療的小鼠。利用標準技術,將嚢泡 融合成平面脂質雙層膜並在90 nM [Ca2 + ]e/i下持續測量併 入之RyRl通道的單一通道活性長達10分鐘(第14A圖)。 符合先前發表的數據(Meissner,1994,Reiken,2003),久坐 194 200815381 小鼠的RyRl活性在靜止助 期鈣離子濃度下非常的低,造成 長期時間中僅有少數打開(在 、仕系些實驗中,需要長達20分 的紀錄以計算該通道的開啟 闹段率)。相對的,長時間運動並 以載劑治療之小鼠的RyRl播 通道顯示活性提高以及明顯較 咼的開啟率(運動+載劑組(n = 、1 9)相對久坐組(n = 9),p < 0.005),這係由於開啟頻率的担古,姑 及手的兩(第14Β圖)。施用S107 造成RyRl開啟率明顯減少( 人乂 動+ S107組(η = 12)相對運 動+載劑(n = 9),ρ < 0.00 5)至可盥# J主1與久坐小鼠通道相比的程A slight increase in phosphorylation of RyRl protein kinase A, as well as a marked increase in deficiency (Fig. UF). These data show that R.R. plays an important role in the RyR1 complex by regulating the degree of phosphorylation of protein kinase A by RyRl, whereas the lack of pDE4D3 during exercise-time channel complex phosphorylation promotes protein kinase A, which in turn contributes to muscles during exercise. Injury and skeletal muscle fatigue. Complexology combined with calstabinl in RVR1 can improve the county time table ^2 has proved that the lack of calstabinl is related to motor defects and long-term or two-intensity exercise can cause RyRl lack of calstabinl, also confirmed pharmacologically combined calstabinl in RyRl pair The effect of long-term or high-intensity exercise performance. The 1,4-benzothiazepine derivative (RyCal compound) was screened to find high target activity, high specificity (no activity against other known ion channels) and in vivo efficacy in improving exercise performance. Compound S107 was found to not affect L-type calcium channel current or hERG potassium current at 500 nM. Age- and sex-matched wild-type mice will be randomized to receive a osmotic pump containing either si 〇7 or any of the carriers. Before the start of the 21-day forced swimming mode, a dose of 2.5 ug/hour of S107 or vehicle was used to inject four 192 200815381 days. Treadmill running with the exhaustion of the mouse at night and in the exhaustion can hinder the assessment of exercise capacity once. Mice will not exercise on the same day as the treadmill assessment. Figure 12A shows that calstabinl recombination caused by S107 does not have a serious effect on wild-type exercise performance, but wild-type mice treated with S 1 〇7 are more resistant to treadmill exercise ability over time (occurring in Vehicle-treated mice) (Day 21st S 1 0 7 relative vehicle, Wilkerson assay p < 〇〇 ^' These studies are due to the training effect of repetitive motion (performance due to increased muscle tissue) It is complicated and complicated. Figure 2B shows the time of the treadmill failure on the 21st day. In the field stimulation, the toe in the tissue bath is in the tissue bath. The long toe long muscles of the isotonic S1 07 treated mice in the long muscle showed an increase in power generation at a stimulation frequency higher than 8 Hz, which corresponds to the left shift of the force-frequency relationship map (12C) Figure). Drug treatment does not cause weight (Fig. 12D) or changes in muscle mass. In similar long-term exercise tests in which mice lack calstabinl, S107 does not improve treadmill performance (Fig. 12E). Long-term exercise regimen a lot of RyRl Protein kinase A phosphorylation and the lack of calstabinl in the RyRi of the immunization hall. S107 treatment almost completely reverses the phenomenon that calytabin is absent in RyRl (Fig. 12F). Putting these data together can be shown to improve calstabinl to channel-bound drugs to prevent Because protein kinase A hyperphosphorylates the sarcoplasmic reticulum Ca2+ leakage caused by the RyRl channel, it can prevent muscle damage, muscle fatigue, improve muscle function and improve exercise performance in a fatigue program. 193 200815381 Recombination with fatigue in the short toe Destruction: After long-term exercise regimen, the fibroblast short muscle (FDB) fibers were separated from the mice by enzymes and loaded with the calcium ion indicator flu〇_4. The electric field stimulation at 1 Hz was in the fatigue program (by every two In the process of 300 ms long repetitive type, 120 Hz tonic stimulation for up to 400 seconds), each muscle fiber was presented on a zeiss Live5 conjugated focus microscope. Vehicle-treated mice were shown (Grade 3 A) Representative F/F0 traces of flexor short muscle fibers isolated from S107 treated mice (Fig. 13B) during the fatigue protocol. The short flexor fibers of si 07 treated mice showed rigidity #5 Ion transient current peak drop delay (Fig. 3 C). It is known that muscle fibers with slower Ca2+ release and resorption kinetics are less prone to fatigue. Evaluation of Ca2+ release during single contraction at 1 Hz frequency Resorption kinetics. The distribution of 50% resorption time (τ) was not significantly different between vehicle and S107 treatment (Fig. 17), indicating that there was no change in the calcium resorption kinetics of flexor short fibers. These data indicate that treatment with S107 improves Ca2+ management in muscle fibers during fatigue regimens. The leakage of the RvR1 channel caused by prolonged exercise can be reversed by the binding of calstabinl: a key debate is whether the biochemical changes found in the RyR 1 macromolecular complex during exercise cause a change in RyR 1 channel activity. To directly investigate this problem, sarcoplasmic reticulum microsomes were prepared from hind limb muscles of the following mice: sedentary mice, mice that were exercised for a long time and treated with vehicle, and small animals that were exercised for a long time and treated with S 107. mouse. The blister was fused into a planar lipid bilayer membrane using standard techniques and the single channel activity of the RyRl channel was continuously measured for up to 10 minutes at 90 nM [Ca2 + ]e/i (Fig. 14A). Consistent with previously published data (Meissner, 1994, Reiken, 2003), sedentary 194 200815381 mice's RyRl activity is very low at the stationary helper calcium ion concentration, resulting in only a few open in long-term time (in, In the experiment, a record of up to 20 points is required to calculate the opening period of the channel). In contrast, the RyR1 broadcast channel of mice that were exercised for a long period of time and treated with vehicle showed an increase in activity and a significantly higher rate of opening (sports + vehicle group (n = , 19) relative to sedentary group (n = 9) , p < 0.005), this is due to the opening frequency of the ancient, the two hands of the hand (Figure 14). S107 was applied to cause a significant decrease in RyRl opening rate (human sway + S107 group (η = 12) relative motion + carrier (n = 9), ρ < 0.00 5) to 盥 # J master 1 and sedentary mouse channel Comparison process

度。長時間運動或S107任—者均對通道存在時間長短無任 何影響,這意指開啟率中發現的變化係由於開啟事件數目 的變化所造成(第14B圖)。這些數據顯示運動動物的RyRi 通道表現「滲漏型」通道行為(高開啟率)而以sl〇7治療之 動物的通道則不是「滲漏型」。 c_alstabin 1_再I.·合造成肌肉組織中與激活蛋白酶活性 減少與肌肉組織傷害減少:资RyRl通道釋出之約離 子損害運動表現的一可能機制為Ca2 + -依賴性中性蛋白酶 的鈣激活蛋白酶家族之一成員的活化,而已知Ca2 + -依賴 性中性蛋白酶為許多病生理症狀中肌肉傷害的起因 (Belcastro 1 993 ; Berchtold, Brinkmeier et al. 2000)。以 合成式鈣激活蛋白酶基質Suc-LLVY-AMC(在鈣激活蛋白 酶切割時可發出螢光)的分解來評估肌肉均漿質中的鈣激 活蛋白酶活性。長時間運動的伸趾長肌相對久坐對照組顯 示較高的鈣激活蛋白酶活性。在S 1 07治療與長時間運動小 鼠中,鈣激活蛋白酶活性明顯降低(第1 5 A圖)。近一步由 195 200815381 血漿CPK活性程度的測量提供防護肌肉傷害的證據,在長 時間運動小鼠中血漿CPK活性程度為提高的,但在S107 治療小鼠中則降低至接近久坐對照組中發現的程度(第 1 5 B圖)。肌肉組織學顯示長時間運動小鼠内帶有某些發 炎以及損害纖維散亂分布之肌肉肥大證據,而在任一治療 群組中沒有大規模細胞壞死的證據。 實ϋ 3 : 肌肉萎縮症與S107的效應degree. Long-term exercise or S107-free has no effect on the length of the channel, which means that the change found in the open rate is caused by the change in the number of open events (Fig. 14B). These data show that the RyRi channel of the sport animal exhibits a "leakage" channel behavior (high opening rate) and the channel of the animal treated with sl7 is not "leakage type". C_alstabin 1_再I.·Coincided to reduce the activity of activating proteases in muscle tissue and reduce the damage of muscle tissue: a possible mechanism of ionic damage in the release of RyRl channel is a Ca2+-dependent neutral protease calcium activation Activation of a member of the protease family, whereas Ca2+-dependent neutral proteases are known to be the cause of muscle damage in many physiological conditions (Belcastro 1 993; Berchtold, Brinkmeier et al. 2000). The calcium-activated protease activity in the muscle homogenate was evaluated by decomposition of the synthetic calcium-activated protease matrix Suc-LLVY-AMC (fluorescence upon calcitonin cleavage). The prolonged toe long muscles of long-term exercise showed higher calcium activating protease activity than the sedentary control group. Calcium-activated protease activity was significantly reduced in S 1 07 treated and long-running mice (Fig. 15A). A further step by 195 200815381 measures the degree of plasma CPK activity to provide evidence of protection against muscle damage, with elevated levels of plasma CPK activity in prolonged exercise mice, but reduced to near sedentary controls in S107 treated mice. The degree (Fig. 1 5 B). Muscle histology showed evidence of muscle hypertrophy in long-moving mice with some inflammation and impaired fiber-distributed distribution, while there was no evidence of massive cell necrosis in any of the treatment groups. ϋ 3 : Muscle atrophy and the effect of S107

RyRl鈣離子釋出通道在運動時變成過度磷酸化(蛋白 激酶A造成)與缺少穩定性蛋白calstab ini。本發明之化合 物提高cal stab ini對蛋白激酶a過度磷酸化之RyRl的結 合親合力。這些化合物(稱為「鈣離子通道穩定劑」或 「RyCal」)為1,4 -苯并硫氮呼類與其衍生物。以這些化合 物治療可改善踏車上跑步之小鼠的運動表現。經由蛋白激 酶A過度構酸化之RyRl通道的鈣離子滲漏造成鈣離子依 賴性蛋白酶活化所導致的肌肉傷害,而RyCal可預防長時 間運動時的詞離子滲漏並抑制肌肉傷害。可應用RyCa][來 改善慢性疾病(包括心臟衰蝎、愛滋病、癌症、腎臟衰竭) 中的肌肉疲勞且可用來治療肌肉萎縮症。 杜氏肌肉萎縮症(DMD)為性聯遺傳(X-Hnked)的肌肉 疾病,其特徵為肌縮蛋白基因的突變。肌纖維膜 (sarcolemma membrane)中鈣離子活化之鈣激活蛋白酶蛋 白質水解的提高被視為杜氏肌肉萎縮症病生理的主要機 196 200815381 制。在肌縮蛋白基因第2 3個外顯子内帶有終止編碼 ^ ^ mdx 小鼠,提供研究不同治療策略對治療此疾病效應的有效$ 統。 一種RyCal化合物,S107 ’可減少mi/jx:小氣運動 的 鈣激活蛋白酶活性(第7、18、19、20圖)。這指出RyCai 有用於治療肌肉相關疾病(包括,但不限於肌肉萎縮症)。 動物模式:利用可植入的滲透式幫浦以Sl〇7 (〇 125 毫克/公斤/小時)或載劑治療Ux小鼠(21天大)長達^ 天。治療之後,小鼠接受18米/分的下坡(14°)踏車跑步長 達30分鐘。運動之後,立即犧牲動物並取得骨骼肌。 伸趾長肌均漿質的製備:在0·5 ml的均質化緩衝液 (20 mM NaF,10 mM Tris-maleate,ρΗ7·2 + 蛋白酶抑制劑) 中製備伸趾長肌均聚質。以50,000xg離心30分鐘而取得 心臟肌漿網(CSR)部分。以4000 xg離心均漿質20分鐘並 以10000 X g離心上清液20分鐘。為了蛋白濃度試驗均聚 質的等量樣本(Aliquot)並儲存於- 80°C下。 鈣_與i舌蛋白酶生試驗:利用鈣激活蛋白酶活性試驗 套組(Calbiochem)測量伸趾長肌均漿質(3〇 μ§)的鈣激活蛋 白酶活性。該試驗利用合成式鈣激活蛋白酶基質 suc-LLVY-AMC。鈣激活蛋白酶切割後釋出amC並以螢光 測量之。以活化與抑制缓衝液兩者來執行試驗以測定樣本 中明確的#5激活蛋白醉活性。 197 200815381 血清肌酸激酶:利用4-20% PAGE分離血清(1 0 μΐ)蛋 白。將蛋白轉移至硝化纖維膜之後,利用肌酸激酶抗體 (Research Diagnostics,1:1000 dilution)顯影免疫墨點。利 用光密度分析(densitometry)定量條帶。 理阿諾鹼受體的免疫沉澱:將250 的伸趾長肌均漿 質與RyR抗體(2 μΐ 5 029 Ab)在4°C下共同培養1小時而 自樣本中免疫沉澱理阿諾鹼受體(RyRl),其中該RyR抗體 位於改良型 RIPA 緩衝液(50 mM Tris-HCl (pH 7.4),0.9% ( NaCl,5·0 mM NaF,1.0 mM Na3 V04,〇·5% Triton-ΧΙΟΟ 與 蛋白酶抑制劑)中。將樣本與蛋白質A瓊脂糖凝膠微珠 (Ammersham Pharmacia Biotech,Piscatawy,NJ)在 4〇C 下 培養1小時,之後以RIPA清洗微珠三次。將樣本加熱至 95°C並以PAGE區分大小。 分析:將樣本(免疫沉澱物或10 pg的心臟 肌漿,)加熱至95°C並在6%SDS P A G E (針對R γ R)與1 5 % PAGE(針對calstabin)上以大小區分蛋白。利用RyR抗體 ( (5029,稀釋比例1:5〇〇〇)、蛋白激酶A磷酸化RyR抗體 (1:100〇〇)或calstabiri抗體(1:2000)顯影免疫墨點。這些抗 體稀釋於TBS-T 5%牛奶中。 198 200815381 參考資料列表=The RyRl calcium ion release channel becomes hyperphosphorylated (caused by protein kinase A) and lacks the stable protein calstab ini during exercise. The compounds of the invention increase the binding affinity of cal stab ini to RyRl, which is hyperphosphorylated by protein kinase a. These compounds (referred to as "calcium channel stabilizers" or "RyCal") are 1,4 -benzothiazepines and their derivatives. Treatment with these compounds improves the performance of mice running on a treadmill. Calcium ion leakage through the RyRl channel, which is over-acidified by protein kinase A, causes muscle damage caused by calcium-dependent protease activation, while RyCal prevents word leakage and inhibits muscle damage during long-term exercise. RyCa] can be applied to improve muscle fatigue in chronic diseases including heart failure, AIDS, cancer, and kidney failure and can be used to treat muscular dystrophy. Duchenne muscular atrophy (DMD) is a muscle disease of X-Hnked, characterized by mutations in the myosin gene. The increase in calcium-activated calcium-activated protease protein hydrolysis in the sarcolemma membrane is considered to be the main mechanism of Duchenne muscular dystrophy physiology 196 200815381. In the 23rd exon of the myosin gene, a stop coding for ^^mdx mice was provided, providing an effective study of the effects of different treatment strategies on the treatment of this disease. A RyCal compound, S107', reduces mi/jx: calcine-activated calpain activity (Figs. 7, 18, 19, 20). This indicates that RyCai is used to treat muscle-related diseases (including, but not limited to, muscular dystrophy). Animal model: Ux mice (21 days old) were treated with an implantable osmotic pump with Sl7 (〇 125 mg/kg/hr) or vehicle for up to 2 days. After treatment, the mice were subjected to a downhill (14°) treadmill running at 18 m/min for 30 minutes. Immediately after the exercise, the animals are sacrificed and the skeletal muscles are obtained. Preparation of the toe long muscle homogenate: The toe long muscle homopolymer was prepared in 0.5 ml of homogenization buffer (20 mM NaF, 10 mM Tris-maleate, ρΗ7·2 + protease inhibitor). The heart sarcoplasmic reticulum (CSR) fraction was obtained by centrifugation at 50,000 xg for 30 minutes. The slurry was homogenized at 4000 xg for 20 minutes and the supernatant was centrifuged at 10,000 x g for 20 minutes. For the protein concentration test, an equal amount of the sample (Aliquot) was stored and stored at -80 °C. Calcium- and i-protease bioassay: Calcium-activated protease activity assay kit (Calbiochem) was used to measure the calcium-activated protease activity of the toe-long muscles (3 μ μ§). This assay utilizes the synthetic calcium activating protease matrix suc-LLVY-AMC. Calcium-activated protease cleaves amyl and is measured by fluorescence. The assay was performed with both activation and inhibition buffers to determine the definitive #5 activating protein intoxication activity in the sample. 197 200815381 Serum creatine kinase: serum (10 μΐ) protein was separated by 4-20% PAGE. After transferring the protein to the nitrocellulose membrane, the immunoblots were developed using a creatine kinase antibody (Research Diagnostics, 1:1000 dilution). Bands were quantified using densitometry. Immunoprecipitation of the Arino base receptor: 250 samples of the long toe muscle of the toe and the RyR antibody (2 μΐ 5 029 Ab) were co-cultured at 4 ° C for 1 hour to immunoprecipitate the Arino base from the sample. (RyRl), wherein the RyR antibody is located in a modified RIPA buffer (50 mM Tris-HCl (pH 7.4), 0.9% (Nas., 5.0 mM NaF, 1.0 mM Na3 V04, 〇·5% Triton-ΧΙΟΟ and In the protease inhibitor), the sample was incubated with Protein A Sepharose microbeads (Ammersham Pharmacia Biotech, Piscatawy, NJ) for 1 hour at 4 ° C, after which the beads were washed three times with RIPA. The sample was heated to 95 ° C. And size by PAGE. Analysis: Heat the sample (immunoprecipitate or 10 pg of heart sarcoplasm,) to 95 ° C and on 6% SDS PAGE (for R γ R) and 15 % PAGE (for calstabin) Proteins were differentiated by size. Immunological spots were developed using RyR antibodies (5029, dilution ratio 1:5〇〇〇), protein kinase A phosphorylated RyR antibody (1:100〇〇) or calstabiri antibody (1:2000). The antibody was diluted in TBS-T 5% milk. 198 200815381 Reference list =

Wang X, Weisleder N, Collet C, et al· Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol. May 2005;7(5):525-530.Wang X, Weisleder N, Collet C, et al· Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol. May 2005;7(5):525-530.

Wehrens XH, Lehnart SE, Reiken S, et al. Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA· Jul 5 2005;102(27):9607-9612.Wehrens XH, Lehnart SE, Reiken S, et al. Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA· Jul 5 2005;102(27):9607-9612.

Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol. Mar 17 2003 ; 1 60(6): 9 1 9-92 8.Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol. Mar 17 2003 ; 1 60(6): 9 1 9 -92 8.

Gaburjakova M,Gaburjakova J,Reiken S,et al. FKBP12 binding modulates ryanodine receptor channel gating. J Biol Chem, May 1 8 200 1 ;276(20): 1 693 1 - 1 693 5 .Gaburjakova M, Gaburjakova J, Reiken S, et al. FKBP12 binding modulates ryanodine receptor channel gating. J Biol Chem, May 1 8 200 1 ; 276(20): 1 693 1 - 1 693 5 .

Brillantes AB,Ondrias K,Scott A,et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell· May 20 1994;77(4):5 13-523.Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell· May 20 1994;77(4):5 13-523.

Wehrens XH, Lehnart SE, Huang F, et al. FKBP 12.6 deficiency and defective calcium release channel 199 200815381 (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell· Jun 2 7 2003;1 1 3(7):829-840.Wehrens XH, Lehnart SE, Huang F, et al. FKBP 12.6 deficiency and possible calcium release channel 199 200815381 (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell· Jun 2 7 2003;1 1 3(7): 829-840.

Wehrens XH,Lehnart SE,Reiken SR, et al. Protection from cardiac arrhythmia through ryanodine receptor -stabilizing protein calstabin2. Science. Apr 9 2004;304(5668):292-296.Wehrens XH, Lehnart SE, Reiken SR, et al. Protection from cardiac arrhythmia through ryanodine receptor - stabilizing protein calstabin2. Science. Apr 9 2004;304(5668):292-296.

Westerblad H,Bruton JD,Lannergr en J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. Apr 1 1997;500 (Pt 1):193-204.Westerblad H, Bruton JD, Lannergr en J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. Apr 1 1997;500 (Pt 1): 193-204.

Hill AV,Kupalo v P. Anaerobic and aerobic activity in isolated muscle. Proc R Soc Lond Series B · 1929;105:3 13-322.Hill AV, Kupalo v P. Anaerobic and aerobic activity in isolated muscle. Proc R Soc Lond Series B · 1929; 105:3 13-322.

Pedersen TH, Nielsen OB? Lamb GD5 et al. Intracellular acidosis enhances the excitability of working muscle. Science· Aug 20 2004;3 05(5 6 8 7): 1 1 44-1 1 47.Pedersen TH, Nielsen OB? Lamb GD5 et al. Intracellular acidosis enhances the excitability of working muscle. Science· Aug 20 2004; 3 05(5 6 8 7): 1 1 44-1 1 47.

Allen DG,Westerblad H. Role of phosphate and calcium stores in muscle fatigue. J Physiol· Nov 1 2001;536(Pt 3):657-665.Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. J Physiol· Nov 1 2001;536(Pt 3):657-665.

Eberstein A,Sandow A. Fatigue mechanisms in muscle fibers. In: Gutman E, Hink P (eds). the Effect of Use and Disuse on the Neuromuscular Functions· Elsevier, 200 200815381Eberstein A, Sandow A. Fatigue mechanisms in muscle fibers. In: Gutman E, Hink P (eds). the Effect of Use and Disuse on the Neuromuscular Functions· Elsevier, 200 200815381

Amsterdam· 1963:515-526.Amsterdam· 1963: 515-526.

Cooke R? Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. Nov 1 985;48(5):789-798.Cooke R? Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. Nov 1 985; 48(5): 789-798.

Warren GL,Lowe DA, Hayes DA, et al. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Physiol. Aug 1993;468:487-499.Warren GL, Lowe DA, Hayes DA, et al. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Physiol. Aug 1993;468:487-499.

Balnave CD, Allen DG. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol· Oct 1 1 995 ;48 8 (Pt 1):25-36.Balnave CD, Allen DG. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol· Oct 1 1 995 ;48 8 (Pt 1): 25-36.

Lamb GD, Junankar PR, Stephenson DG. Raised intracellular [Ca2 + ] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol. Dec 1 1995;489 ( Pt 2):349-362.Lamb GD, Junankar PR, Stephenson DG. Raised intracellular [Ca2 + ] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol. Dec 1 1995;489 (Pt 2):349-362.

Chin ER,Allen DG. The role of elevations in intracellular [Ca2 + ] in the development of low frequency fatigue in mouse single muscle fibres. J Physiol· Mar 15 1996;491 ( Pt 3):813-824.Chin ER, Allen DG. The role of elevations in intracellular [Ca2 + ] in the development of low frequency fatigue in mouse single muscle fibres. J Physiol· Mar 15 1996;491 (Pt 3): 813-824.

Bruton JD, Lannergren J, Westerblad H. Effects of repetitive tetanic stimulation at long intervals on excitation-contraction coupling in frog skeletal muscle. J Physiol. Aug 15 1996;495 ( Pt 1):15-22.Bruton JD, Lannergren J, Westerblad H. Effects of repetitive tetanic stimulation at long intervals on excitation-contraction coupling in frog skeletal muscle. J Physiol. Aug 15 1996;495 (Pt 1): 15-22.

Marx SO, Reiken S, Hisamatsu Y, et al. 201 200815381Marx SO, Reiken S, Hisamatsu Y, et al. 201 200815381

Phosphorylation -dependent regulation of ryanodine receptors: a novel role for leucine/i so leucine zippers. J Cell Biol. May 14 200 1; 1 53(4):699-708.Phosphorylation -dependent regulation of ryanodine receptors: a novel role for leucine/i so leucine zippers. J Cell Biol. May 14 200 1; 1 53(4): 699-708.

Bachinski LL,Udd B,Meola G,et al. Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Genet. Oct 2003;73(4):835-848.Bachinski LL, Udd B, Meola G, et al. Confirmation of the type 2 myotonic dystrophy (CCTG) n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicating an ancestral founder effect. Am J Hum Genet. Oct 2003;73(4):835-848.

Hamshere MG, Harley H, Harper P, et al. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet· J an 1999;36(1):59-61.Hamshere MG, Harley H, Harper P, et al. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet· J an 1999;36(1) :59-61.

Liquori CL, Ricker K, Moseley ML, et al· Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science · Aug 3 2001 ;293(553 1):864-867.Liquori CL, Ricker K, Moseley ML, et al· Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science · Aug 3 2001 ;293(553 1): 864-867.

Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science · Sep 8 2000;289(5485):1769-1773.Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science · Sep 8 2000;289(5485):1769-1773.

Ebralidze A,Wang Y,Petkova V,et al. RNA leaching of 202 200815381 transcription factors disrupts transcription in myotonic dystrophy. Science · Jan 16 2004;303(5656):383-387.Ebralidze A, Wang Y, Petkova V, et al. RNA leaching of 202 200815381 transcription factors disrupts transcription in myotonic dystrophy. Science · Jan 16 2004; 303(5656): 383-387.

Jacobs AE,Benders A A, Oosterhof A,et al. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta. Nov 14 1990;1096(1):14-19.Jacobs AE, Benders A A, Oosterhof A, et al. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta. Nov 14 1990;1096(1):14-19.

Kimura T,Nakamori M,Lueck JD,et al· Altered mRNA Splicing of the Skeletal Muscle Ryanodine Receptor and Sarcoplasmic/Endoplasmic ReticulumKimura T, Nakamori M, Lueck JD, et al· Altered mRNA Splicing of the Skeletal Muscle Ryanodine Receptor and Sarcoplasmic/Endoplasmic Reticulum

Ca2 + -ATPase in Myotonic Dystrophy Type 1· Hum Mol Genet. Jun 22 2005.Ca2 + -ATPase in Myotonic Dystrophy Type 1· Hum Mol Genet. Jun 22 2005.

Wappler F,Fiege M,Steinfath M,et al· Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis.Wappler F, Fiege M, Steinfath M, et al· Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis.

Anesthesiology. Jan 200 1;94(1): 95-1 00.Anesthesiology. Jan 200 1;94(1): 95-1 00.

Monnier N5 Romero NB, Lerale J5 et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. Nov 1 2000;9(1 8):2599-2608.Monnier N5 Romero NB, Lerale J5 et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. Nov 1 2000;9(1 8):2599 -2608.

MacLennan DH,Phillips MS. The role of the skeletal muscle ryanodine receptor (RYR1) gene in malignant hyperthermia and central core disease. Soc Gen 203 200815381MacLennan DH, Phillips MS. The role of the skeletal muscle ryanodine receptor (RYR1) gene in malignant hyperthermia and central core disease. Soc Gen 203 200815381

Physiol Ser. 1 9 9 5;50:89-1 00.Physiol Ser. 1 9 9 5; 50:89-1 00.

Loke JC,Kr ae v N,Sharma P,et al. Detection of a novel ryanodine receptor subtype 1 mutation (R328W) in a malignant hyperthermia family by sequencing of a leukocyte transcript. Anesthesiology· Aug 2003;99(2):297-302.Loke JC, Kr ae v N, Sharma P, et al. Detection of a novel ryanodine receptor subtype 1 mutation (R328W) in a malignant hyperthermia family by sequencing of a leukocyte transcript. Anesthesiology· Aug 2003;99(2):297- 302.

Goldspink DF? Burniston J G? Ellison GM, et al. Catechol amine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol· Jul 2004;89(4):407-416.Goldspink DF? Burniston JG? Ellison GM, et al. Catechol amine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol· Jul 2004;89(4):407- 416.

Tan LB,Burniston JG,Clark WA,et al. Characterization of adrenoceptor involvement in skeletal and cardiac myotoxicity Induced by sympathomimetic agents: toward a new bioassay for beta-blockers. J Cardiovasc Pharmacol. Apr 2003 ;4 1 (4):5 1 8-525 .Tan LB, Burniston JG, Clark WA, et al. Characterization of adrenoceptor involvement in skeletal and cardiac myotoxicity Induced by sympathomimetic agents: toward a new bioassay for beta-blockers. J Cardiovasc Pharmacol. Apr 2003 ;4 1 (4): 5 1 8-525 .

Ward CW,Reiken S,Marks AR,et al· Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rat s. Faseb J · Aug 2003;17(11):1517-1519.Ward CW, Reiken S, Marks AR, et al· Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rat s. Faseb J · Aug 2003; 17(11): 1517-1919.

Harrington D,Anker SD,Chua TP,et al· Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. Dec 1997;30(7):1758-1764. 204 200815381Harrington D, Anker SD, Chua TP, et al· Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. Dec 1997; 30(7): 1758-1764. 204 200815381

Perreault CL, Gonzalez -Serratos H, Litwin SE, et al. Alterations in contractility and intracellular Ca2 + transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ Res. Aug 1 993;73(2):405-412.Perreault CL, Gonzalez -Serratos H, Litwin SE, et al. Alterations in contractility and intracellular Ca2 + transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ Res. Aug 1 993;73(2):405- 412.

Gomez AM, Valdivia HH, Cheng H, et al· Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science· May 2 1997;276(53 13):800-806.Gomez AM, Valdivia HH, Cheng H, et al· Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science· May 2 1997;276(53 13):800-806.

Lindegger N,Niggli E· Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2 + . J Physiol. Jun 1 5 2005;565(Pt 3):801-813.Lindegger N, Niggli E. Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2 + . J Physiol. Jun 1 5 2005;565 (Pt 3): 801-813.

Rockman HA, Koch W J? Lefko witz RJ.Rockman HA, Koch W J? Lefko witz RJ.

Seven-transmembrane -spanning receptors and heart function. Nature. Jan 10 2002;4 1 5 (6 8 6 8): 206-2 1 2 .Seven-transmembrane -spanning receptors and heart function. Nature. Jan 10 2002; 4 1 5 (6 8 6 8): 206-2 1 2 .

Lunde PK,Sejersted OM. Intracellular calcium signalling in striated muscle cells. Scand J Clin Lab Invest. Nov 1997;57(7):559-568.Lunde PK, Sejersted OM. Intracellular calcium signalling in striated muscle cells. Scand J Clin Lab Invest. Nov 1997;57(7):559-568.

Lunde PK,Verburg E,Vollestad NK,et al. Skeletal muscle fatigue in normal subjects and heart failure patients. Is there a common mechanism? Acta Physiol Scand· Mar 1998;162(3):215-228. 205 200815381Lunde PK, Verburg E, Vollestad NK, et al. Skeletal muscle fatigue in normal subjects and heart failure patients. Is there a common mechanism? Acta Physiol Scand· Mar 1998;162(3):215-228. 205 200815381

Lunde PK,Dahlstedt AJ,Bruton JD,et al· Contraction and intracellular Ca(2 + ) handling in isolated skeletal muscle of rats with congestive heart failure. Cire Res. Jun 22 200 1; 8 8(1 2): 1 299-1 3 05 .Lunde PK, Dahlstedt AJ, Bruton JD, et al· Contraction and intracellular Ca(2 + ) handling in isolated skeletal muscle of rats with congestive heart failure. Cire Res. Jun 22 200 1; 8 8(1 2): 1 299- 1 3 05 .

Tanabe T,Beam KG,Powell JA,et al. Restoration of excitation-contraction coupling and slow calcium current in dy sgenic muscle by dihydropyridine receptor complementary DN A. Nature. Nov 10 1988;336(61 95):1 34-139.Tanabe T, Beam KG, Powell JA, et al. Restoration of excitation-contraction coupling and slow calcium current in dy sgenic muscle by dihydropyridine receptor complementary DN A. Nature. Nov 10 1988;336(61 95):1 34-139.

Marks AR,Tempst P,Hwang KS,et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDN A from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA. Nov 1 989;86(22):8683-8687.Marks AR, Tempst P, Hwang KS, et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDN A from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA. Nov 1 989;86(22):8683-8687 .

Mikami A,Imoto K,Tanabe T, et al. Primary structure and functional expression of the cardiac dihydro pyridine-sensitive calcium channel. Nature. Jul 20 1989;340(6230):230-233.Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydro pyridine-sensitive calcium channel. Nature. Jul 20 1989;340(6230):230-233.

Nakai J,Imagawa T,Hakamat Y,et al. Primary structure and functional expression from cDN A of the cardiac ryanodine receptor/calcium release channel. FEBS Lett· Oct 1 1990;271(1-2):169-177.Nakai J, Imagawa T, Hakamat Y, et al. Primary structure and functional expression from cDN A of the cardiac ryanodine receptor/calcium release channel. FEBS Lett· Oct 1 1990;271(1-2):169-177.

Armstrong CM,Bezanilla FM,Horowicz P. Twitches in the presence of ethylene glycol bis( -aminoethy1 206 200815381 ether)-N,N*-tetracetic acid. Biochim Biophys A eta. Jun 23 1972;267(3):605-608.Armstrong CM, Bezanilla FM, Horowicz P. Twitches in the presence of ethylene glycol bis ( -aminoethy1 206 200815381 ether)-N,N*-tetracetic acid. Biochim Biophys A eta. Jun 23 1972;267(3):605-608 .

Dulhunty AF,Gage PW. Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J Physiol· May 1 988;399:63-80.Dulhunty AF, Gage PW. Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J Physiol· May 1 988; 399: 63-80.

Gonzalez -Serratos H,Valle-Aguilera R,Lathrop DA,et al. Slow inward calcium currents have no obvious role in muscle excitation -contraction coupling. Nature· Jul 1 5 1982;298(5871):292-294.Gonzalez -Serratos H, Valle-Aguilera R, Lathrop DA, et al. Slow inward calcium currents have no obvious role in muscle excitation -contraction coupling. Nature· Jul 1 5 1982;298(5871):292-294.

Rios E,Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle Nature. Feb 1 9-25 1 987;325(61 06):7 1 7-720.Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle Nature. Feb 1 9-25 1 987; 325 (61 06): 7 1 7-720.

Tanabe T,Beam KG,Adams BA,et al· Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature · Aug 9 1990;346(6284):567-569.Tanabe T, Beam KG, Adams BA, et al · Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature · Aug 9 1990;346 (6284): 567-569.

Meyer M, Ke weloh B, Guth K, et al. Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations. J Mol Cell Cardiol. Aug 1998;30(8):1459-1470.Meyer M, Ke weloh B, Guth K, et al. Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations. J Mol Cell Cardiol. Aug 1998;30( 8): 1459-1470.

Tang W, Ingalls CP, Durham WJ, et al· Altered 207 200815381 excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency. Fase b J· Oct 2004;1 8(13):1597-1 599.Tang W, Ingalls CP, Durham WJ, et al. Altered 207 200815381 -Contraction coupling with skeletal muscle specific FKBP12 deficiency. Fase b J· Oct 2004;1 8(13):1597-1 599.

Reiken S? Wehrens XH? Vest JA? et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation· May 20 2003 ; 1 07(1 9) :245 9-2466.Reiken S? Wehrens XH? Vest JA? et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation· May 20 2003 ; 1 07(1 9) :245 9-2466.

Marx SO, Reiken S, Hisamatsu Y, et al. PK A phosphorylation dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell· May 12 2000;1 0 1 (4):365-376.Marx SO, Reiken S, Hisamatsu Y, et al. PK A phosphorylation dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell· May 12 2000;1 0 1 (4):365-376 .

Marx SO,Ondrias K,Marks AR. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science· Aug 7 1998;281(5378):818-821.Marx SO, Ondrias K, Marks AR. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science· Aug 7 1998;281(5378):818-821.

Evangelista FS,Brum PC,Krieger JE. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz J Med Biol Res· Dec 2003;36(12):1751-1759.Evangelista FS, Brum PC, Krieger JE. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz J Med Biol Res· Dec 2003;36(12):1751-1759.

Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. Oct 3 2003 ;93 (7): 5 92-5 94. 208 200815381Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca 2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. Oct 3 2003 ;93 (7): 5 92-5 94. 208 200815381

Lehnart SE,Wehrens XH,Laitinen PJ,et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak* Circulation, Jun 29 2004;109(25):3208-3214.Lehnart SE, Wehrens XH, Laitinen PJ, et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak*, Circulation, Jun 29 2004; 109(25): 3208-3214.

Berchtold MW, Brinkmeier H,Muntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. Jul 2000;80(3):121 5-1265.Berchtold MW, Brinkmeier H, Muntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol, and disease. Physiol Rev. Jul 2000;80(3):121 5-1265.

Gomez AM, Guatimosim S, Dilly KW5 et al. Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation· Aug 7 2001 ;104(6):688-693. Cheng H, Lederer MR, Xiao RP, et al. Excitation-contraction coupling in heart: new insights from Ca2 + sparks. Cell Calcium, Aug 1996;20(2):129-140.Gomez AM, Guatimosim S, Dilly KW5 et al. Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation· Aug 7 2001 ;104(6):688-693. Cheng H, Lederer MR, Xiao RP, et al. Excitation-contraction coupling in heart: new insights from Ca2 + sparks. Cell Calcium, Aug 1996;20(2):129-140.

Rudolf R, Mongillo M, Magalhaes PJ, et al. In vivo monitoring of Ca(2 + ) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell BioL Aug 16 2004;166(4):527-536.Rudolf R, Mongillo M, Magalhaes PJ, et al. In vivo monitoring of Ca(2 + ) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell BioL Aug 16 2004;166(4):527-536.

Robert V,Massimino ML,Tosello V,et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem. Feb 16 209 200815381 2001;276(7):4647-4651.Robert V, Massimino ML, Tosello V, et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem. Feb 16 209 200815381 2001;276(7):4647-4651.

Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12 5 an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. Apr 27 2001;276(17):13935-13940. muscular Biol. J an calpain-1 0 pancreatic Jun 4Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12 5 an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. Apr 27 2001;276(17):13935-13940. muscular Biol. J an calpain-1 0 pancreatic Jun 4

Tidball JG, Spencer M J. Calpains andTidball JG, Spencer M J. Calpains and

dystrophies. Int J Bio chem Cell 2000;32(l):l-5.Dystrophies. Int J Bio chem Cell 2000; 32(l): l-5.

Johnson JD,Han Z,Otani K,et al. RyR2 and delineate a novel apoptosis pathway in islets. J Biol Chem· 2004;279(2 3): 24 794-24 802.Johnson JD, Han Z, Otani K, et al. RyR2 and delineate a novel apoptosis pathway in islets. J Biol Chem· 2004;279(2 3): 24 794-24 802.

Shevchenko S,Feng W,Varsanyi M,et al. Identification,Shevchenko S, Feng W, Varsanyi M, et al. Identification,

characterization and partial purification of a thiol-protease which cleaves specifically the skeletal muscle ryanodine receptor/Ca2+ release channel. JCharacterization and partial purification of a thiol-protease which cleaves specifically the skeletal muscle ryanodine receptor/Ca2+ release channel. J

Membr Biol· Jan 1 1 99 8 ; 1 6 1 ( 1): 3 3-43 .Membr Biol· Jan 1 1 99 8 ; 1 6 1 ( 1): 3 3-43 .

Brooke MH? Kaiser KK. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhy dry 1 dependence. J Hist o chem Cytochem. Sep 1 970; 1 8(9):670-672.Brooke MH? Kaiser KK. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhy dry 1 dependence. J Hist o chem Cytochem. Sep 1 970; 1 8(9): 670-672.

Moschella MC, Watras J, Jay araman T, et al. Inositol 210 200815381 1,4,5-trisphosphate receptor in skeletal muscle: differential expression in myofibres. J Muscle Res Cell Motil. Aug 1 995 ; 1 6(4):390-400.Moschella MC, Watras J, Jay araman T, et al. Inositol 210 200815381 1,4,5-trisphosphate receptor in skeletal muscle: differential expression in myofibres. J Muscle Res Cell Motil. Aug 1 995 ; 1 6(4):390 -400.

Reininghaus J,Fuchtbauer EM, Bertram K? et al. The myotonic mouse mutant ADR: physiological and histochemical properties of muscle. Muscle Nerve. May 1988;1 1(5):433-439.Reininghaus J, Fuchtbauer EM, Bertram K? et al. The myotonic mouse mutant ADR: physiological and histochemical properties of muscle. Muscle Nerve. May 1988;1 1(5):433-439.

Wehrens XH, Lehnart SE, Reiken SR, et al.Wehrens XH, Lehnart SE, Reiken SR, et al.

Ca2 + /calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. Apr 2 2004;94(6):e6 1-70.Ca2 + /calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. Apr 2 2004;94(6):e6 1-70.

Jayaraman T,Brillantes AM,Timerman AP,et al· FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem· May 15 1992;267(14):9474-9477.Jayaraman T, Brillantes AM, Timerman AP, et al. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem· May 15 1992;267(14):9474-9477.

Rivero JL,Talmadge RJ,Edgerton VR. Interrelationships of myofibrillar ATPase activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. Histochem Cell Biol. Apr 1999;lll(4):277-287.Rivero JL, Talmadge RJ, Edgerton VR. Interrelationships of myofibrillar ATPase activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. Histochem Cell Biol. Apr 1999;lll(4):277-287.

Ruehr ML,Russell MA, Ferguson DG, et al. Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J 211 200815381Ruehr ML, Russell MA, Ferguson DG, et al. Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J 211 200815381

Biol Chem· Jul 4 2003 ;278(27):2483 1 -24836.Biol Chem· Jul 4 2003 ;278(27):2483 1 -24836.

Santos RV,Bassit RA,Caperuto EC,et al. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 3 0km race. Life Sci. Sep 3 2004;75(16):1 917-1 924.Santos RV, Bassit RA, Caperuto EC, et al. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 3 0km race. Life Sci. Sep 3 2004;75(16):1 917-1 924.

Thompson D,Bailey DM,Hill J,et al. Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Ap pi Physiol· Jun 2004;92(1-2):133-138.Thompson D, Bailey DM, Hill J, et al. Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Ap pi Physiol· Jun 2004;92(1-2):133-138.

Sei Y,Brandom BW,Bina S,et al· Patients with malignant hyperthermia demonstrate an altered calcium control mechanism in B lymphocytes. Anesthesiology· Nov 2002;97(5):1 052-1 058.Sei Y, Brandom BW, Bina S, et al· Patients with malignant hyperthermia demonstrate an altered calcium control mechanism in B lymphocytes. Anesthesiology· Nov 2002;97(5):1 052-1 058.

Kraev N, Loke JC, Kraev A,et al· Protocol for the sequence analysis of ryanodine receptor subtype 1 gene transcripts from human leukocytes. Anesthesiology. Aug 2003 ;99(2):289-296.Kraev N, Loke JC, Kraev A, et al· Protocol for the sequence analysis of ryanodine receptor subtype 1 gene transcripts from human leukocytes. Anesthesiology. Aug 2003;99(2):289-296.

Allen, D.5 J. Lee, et al. (\1 989). "Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis.11 J Physiol (Lond) 415(1): 433-458.Allen, D.5 J. Lee, et al. (\1 989). "Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis.11 J Physiol (Lond) 415(1): 433-458.

Allen, D. G. and H. Westerblad (2001). ffRole of phosphate and calcium stores in muscle fatigue,” J, Phvsiol 536(Pt 3): 657-65. 212 200815381Allen, D. G. and H. Westerblad (2001). ffRole of phosphate and calcium stores in muscle fatigue,” J, Phvsiol 536(Pt 3): 657-65. 212 200815381

Avila,G·,Ε· H. Lee,et al· (2003)· "FKBP12 Binding to RyR1 Modulates Excitation-Contraction Coupling in Mouse Skeletal Myotubes·’’ J. Biol· Chem. 278(25): 22600-22608.Avila, G·, Ε·H. Lee, et al· (2003)· "FKBP12 Binding to RyR1 Modulates Excitation-Contraction Coupling in Mouse Skeletal Myotubes·'' J. Biol· Chem. 278(25): 22600-22608 .

Balnave,C. D. and M. W. Thompson (1 9 9 3). "Effect of training on eccentric exercise-induced muscle damage." J Appl Physiol 75(4): 1545-1551.Balnave, C. D. and M. W. Thompson (1 9 9 3). "Effect of training on eccentric exercise-induced muscle damage." J Appl Physiol 75(4): 1545-1551.

Belcastro, A. N. (1993). 丨’Skeletal muscle calcium -activated neutral protease (calpain) with exercise.f, J Appl Physiol 7 4(3): 1381-1386.Belcastro, A. N. (1993). 丨'Skeletal muscle calcium -activated neutral protease (calpain) with exercise.f, J Appl Physiol 7 4(3): 1381-1386.

Berchtold, M. W·, H. Brinkmeier, et al. (2000). ’’Calcium ion in skeletal muscle: its crucial role for muscle function,plasticity,and disease." Physiol Rev 80(3): 1215-65.Berchtold, M. W., H. Brinkmeier, et al. (2000). ''Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease." Physiol Rev 80(3): 1215-65 .

Bers,D. M·,C. W. Patton,et al· (1994). "A practical guide to the preparation of Ca2+ buffers." Methods Cell Biol 40:3-29·Bers, D. M., C. W. Patton, et al. (1994). "A practical guide to the preparation of Ca2+ buffers." Methods Cell Biol 40:3-29·

Brillantes, A. B·, K. Ondrias, et al. (1 994). "Stabilization of calcium release channel (ryanodine receptor) function by FK5 06-binding protein.M CeJ1 77(4): 5 1 3-23.Brillantes, A. B., K. Ondrias, et al. (1 994). "Stabilization of calcium release channel (ryanodine receptor) function by FK5 06-binding protein.M CeJ1 77(4): 5 1 3-23 .

Eberstein, A. and A. Sandow ( 1 9 6 3). "Fatigue mechanisms in muscle fibers." In: Gutman E,Eberstein, A. and A. Sandow (1 9 6 3). "Fatigue mechanisms in muscle fibers." In: Gutman E,

Hink P (eds). the Effect of Use and Disuse on the 213 200815381Hink P (eds). the Effect of Use and Disuse on the 213 200815381

Neuromuscular Functions. Elsevier, Amsterdam.: 515-526.Neuromuscular Functions. Elsevier, Amsterdam.: 515-526.

Goodyear,P. L. J. and M. D. B. B. Kahn (1 998). 丨1EXERCISE,GLUCOSE TRANSPORT,AND INSULIN SENSITIVITY." Annual Review of Medicine 49(1): 235-261.Goodyear, P. L. J. and M. D. B. Bahn Kahn (1 998). 丨1EXERCISE, GLUCOSE TRANSPORT, AND INSULIN SENSITIVITY." Annual Review of Medicine 49(1): 235-261.

Isaeva, E. V·, V. M. Shkryl, et al. (2005). "Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle." J. Phvsiol 565(3): 855-872.Isaeva, E. V., V. M. Shkryl, et al. (2005). "Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle." J. Phvsiol 565(3): 855-872.

Jayaraman,T·,A. M. Brillantes,et al· (19 92). "FK506 binding protein associated with the calcium release channel (ryanodine receptor)*" J Biol Chem 267(14): 9474-7.Jayaraman, T., A. M. Brillantes, et al. (19 92). "FK506 binding protein associated with the calcium release channel (ryanodine receptor)*" J Biol Chem 267(14): 9474-7.

Komulainen,J. and V. Vihko (19 94). HExercise-induced necrotic muscle damage and enzyme release in the four days following prolonged submaximal running in rats·*’ Pflugers Arch 428(3-4): 346-3 5 1.Komulainen, J. and V. Vihko (19 94). HExercise-induced necrotic muscle damage and enzyme release in the four days following prolonged submaximal running in rats·*’ Pflugers Arch 428(3-4): 346-3 5 1.

Lamb,G. D. and D. G. Stephenson (1 9 9 6). "Effects of FK506 and rapamy cin on excitation-contraction coupling in skeletal muscle fibres of the rat·’’ J_ Phvsiol 494: 569-576.Lamb, G. D. and D. G. Stephenson (1 9 9 6). "Effects of FK506 and rapamy cin on excitation-contraction coupling in skeletal muscle fibres of the rat·’’ J_ Phvsiol 494: 569-576.

Lehnart, S·, X. H. Wehrens, et al. (2005). n Phosphodiesterase 4D deficiency in the 214 200815381 ryanodine- receptor complex promotes heart failure and arrhythmias·’’ Cell 123(1): 25-35.Lehnart, S., X. H. Wehrens, et al. (2005). n Phosphodiesterase 4D deficiency in the 214 200815381 ryanodine-receptor complex promotes heart failure and arrhythmias·’’ Cell 123(1): 25-35.

Lin, J·, H. Wu, et al. (2002). "Transcriptional co-activator PGC-1 [alpha] drives the formation of slow-t witch muscle fibres·" Nature 418(6899): 797-801.Lin, J., H. Wu, et al. (2002). "Transcriptional co-activator PGC-1 [alpha] drives the formation of slow-t witch muscle fibres·" Nature 418(6899): 797-801 .

Lunde,P. K·,I. Sj aastad, et al. (2001). "Skeletal muscle disorders in heart failure." Acta Phvsiolo gica Scandinavica 171(3): 277-294.Lunde, P. K., I. Sj aastad, et al. (2001). "Skeletal muscle disorders in heart failure." Acta Phvsiolo gica Scandinavica 171(3): 277-294.

Marx ? S. 0·,K. Ondrias,et al. (1 9 9 8). "Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors)·’’ Science 281(5378): 818-21.Marx ? S. 0·, K. Ondrias, et al. (1 9 9 8). "Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors)·’’ Science 281(5378): 818-21.

Marx, S. 0·, S · Reiken, et al. (200 1 ) · ’’Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers." J Cell Biol 153(4): 699-708.Marx, S. 0·, S · Reiken, et al. (200 1 ) · ''Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers." J Cell Biol 153(4): 699- 708.

Marx, S. 0., S. Reiken, et al. (2000)· "PKA phosphorylation dissociates FKBP 1 2.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts.M Cell 101(4): 365-76· 215 200815381Marx, S. 0., S. Reiken, et al. (2000)· "PKA phosphorylation dissociates FKBP 1 2.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts.M Cell 101(4): 365 -76· 215 200815381

Meyer, K. (2006). ’’Resistance exercise in chronic heart failure--landmark studies and implications for practice." Clin Invest Med· 29(3): 1 6 6-1 69.Meyer, K. (2006). ’’Resistance exercise in chronic heart failure--landmark studies and implications for practice." Clin Invest Med· 29(3): 1 6 6-1 69.

Minotti,J. R·,E. C. Johnson, e t al. (1 9 9 0). "Skeletal muscle response to exercise training in congestive heart failure.,f J Clin Invest 8 6(3): 75 1 -758.Minotti, J. R., E. C. Johnson, e t al. (1 9 9 0). "Skeletal muscle response to exercise training in congestive heart failure., f J Clin Invest 8 6(3): 75 1 -758.

Nieman, D. C., D. A. Henson, et al. (2006). ’’Blood Leukocyte mRNA Expression for IL-10,IL-IRa,and IL-8, but Not IL-6, Increases After Exercise.” Journal of Interferon & Cytokine Research 2 6(9): 668-674. 0,Reilly,K. P·,M. J. Warhol, et al· (1 987). "Eccentric exercise-induced muscle damage impairs muscle glycogen repletion.M J Appl Physiol 63(1): 252-256.Nieman, DC, DA Henson, et al. (2006). ''Blood Leukocyte mRNA Expression for IL-10, IL-IRa, and IL-8, but Not IL-6, Increases After Exercise.' Journal of Interferon & Cytokine Research 2 6(9): 668-674. 0, Reilly, K. P., MJ Warhol, et al. (1 987). "Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. MJ Appl Physiol 63 ( 1): 252-256.

Pollock, M. L·, B. A. Franklin, et al. (2000). f, Resistance Exercise in Individuals With and Without Cardiovascular Disease : Benefits,Pollock, M. L., B. A. Franklin, et al. (2000). f, Resistance Exercise in Individuals With and Without Cardiovascular Disease : Benefits,

Rationale, Safety, and Prescription An Advisory From the Committee on Exercise,Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association.” Circulation 101(7): 828-833.Rationale, Safety, and Prescription An Advisory From the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association.” Circulation 101(7): 828-833.

Reiken, S·, A. Lacampagne, et al. (2003). "PKA phosphorylation activates the calcium release 216 200815381 channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure.” J Cell Biol 160(6): 919-28.Reiken, S., A. Lacampagne, et al. (2003). "PKA phosphorylation activates the calcium release 216 200815381 channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure.” J Cell Biol 160(6): 919-28.

Rios,E. (2005). ’’The Ca2+ spark of mammalian muscle. Physiology or pathology ?n J_ Physiol 5 65(3): 705-.Rios, E. (2005). ’’The Ca2+ spark of mammalian muscle. Physiology or pathology ?n J_ Physiol 5 65(3): 705-.

Shou,W., B. Aghdasi, et al. (1998). "Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12.11 Nature 391 : 489-492.Shou, W., B. Aghdasi, et al. (1998). "Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12.11 Nature 391 : 489-492.

Spencer, M. J. and R. L, Mellgren (2002). ’’Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology." Hum · Mol. Genet. 1 1Γ2Π: 2645- 2655.Spencer, M. J. and R. L, Mellgren (2002). ’’Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology." Hum · Mol. Genet. 1 1Γ2Π: 2645-2655.

Stamler, J. S. and G. Meissner (2001). "Physiology of nitric oxide in skeletal muscle." Physiol Rev 81(1): 209-237.Stamler, J. S. and G. Meissner (2001). "Physiology of nitric oxide in skeletal muscle." Physiol Rev 81(1): 209-237.

Stange,M·,L. Xu,et al· (2003)· "Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants." J Biol Chem 278(5 1): 51693-702.Stange, M., L. Xu, et al. (2003)· "Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants." J Biol Chem 278(5 1 ): 51693-702.

Tang, W·, C. P. Ingalls, et al. (2004). "Altered excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency." Faseb J 18(13): 1597-9· 217 200815381Tang, W., C. P. Ingalls, et al. (2004). "Altered excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency." Faseb J 18(13): 1597-9· 217 200815381

Wang, X·,N. Weisleder,et al· (2005)· "Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle.n Nat Cell Biol 7(5): 525-30.Wang, X·, N. Weisleder, et al· (2005)· "Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle.n Nat Cell Biol 7(5): 525-30.

Wang,Y.-X.9 C.-L. Zhang, et al. (2004). "Regulation of Muscle Fiber Type and Running Endurance by PPAR&#948.,! PLoS Biology 2(10): e294.Wang, Y.-X.9 C.-L. Zhang, et al. (2004). "Regulation of Muscle Fiber Type and Running Endurance by PPAR&#948.,! PLoS Biology 2(10): e294.

Ward,C. W·,S· Reiken,et al· (2003)·丨,Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats." Faseb J 17(11): 1517-9.Ward, C. W., S. Reiken, et al. (2003)·丨, Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats." Faseb J 17(11): 1517-9.

Wehrens,X · H·,S · E. Lehnart,et al. (2005). "Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure·,,Proc Natl Acad Sci U S A 1 02(27): 9607-12.Wehrens, X · H·, S · E. Lehnart, et al. (2005). "Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure·,,Proc Natl Acad Sci USA 1 02(27) : 9607-12.

Wehrens, X. H.,S · E. Lehnart, et al· (2 0 04). ’’Protection from cardiac arrhythmia through ryanodine receptor -stabilizing protein calstabin2.M Science 304(5668): 292-6.Wehrens, X. H., S. E. Lehnart, et al. (2 0 04). ''Retection from cardiac arrhythmia through ryanodine receptor - stabilizing protein calstabin2.M Science 304(5668): 292-6.

Westerblad, H. and D. G. Allen (1991). "Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.n J Gen Physiol 98(3): 615-35· 218 200815381Westerblad, H. and D. G. Allen (1991). "Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.n J Gen Physiol 98(3): 615-35· 218 200815381

Westerblad, H·,J. D. Bruton, et al. (2000). ” Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle." Eur J Appl Physiol 8 3(2-3): 166-74·Westerblad, H., J. D. Bruton, et al. (2000). ” Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle." Eur J Appl Physiol 8 3(2-3): 166-74·

Wu,H·,S · B. Kanatous,et al. (2002). ,! Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK.f, Science 296(5566): 3 4 9-3 52.Wu, H·, S · B. Kanatous, et al. (2002). ,! Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK.f, Science 296(5566): 3 4 9-3 52.

Zhang, S.-J·, J· D. Bruton, et al· (2006)·丨,Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle.M J Physiol (Lond) 572(2): 551-559. 【圖式簡單說明】 第1A與IB圖顯示載劑(PBS)治療小鼠對照組與S3 6 治療小鼠運動第1天游泳時的追蹤數據。第1 A圖顯示各 個小鼠間隔五分鐘的速度而第1 B圖顯不各個治療組的平 均速度(η = 4 P B S,η = 4 S 3 6)。運動一天後,治療群組之 間並無重要差異。Fg-l〇〇、fg-l〇3、fg-105、fg-i〇6代表以 S36 治療的小鼠。Fg-1〇1、fg_1〇2、fg-1〇4、fg l〇7 代表以 P B S治療的小鼠。 第2A-2F圖顯示運動7天後不同治療群組之間沒有重 要的差異。第2A與2B圖顯示PBS與S36治療小鼠游泳 運動的結果。第2A圖顯示各個小鼠五分鐘間隔的速度而 第2B圖顯示各個治療群組的平均速度(n = 3 PBS,n = 4 219 200815381 S3 6)。第2C-2F圖顯示踏車跑步運動第7天的結果。如同 描述般,小鼠以強度增加(以左側灰色標記的速度(米/分) 顯示)的運動方案在踏車上跑步。第 2 C圖顯示個別的蹤 跡,其顯示每三分鐘間隔到達踏車尾部驚嚇區域的次數。 可由到達驚嚇區域次數快速的提高(因為小鼠衰退)明顯得 知任務失敗。第2D圖顯示每三分鐘間隔傳送給各個小鼠 的驚嚇數目(軸為顛倒的),以三個數字移動平均(m 〇 v i n g average)内插法得到之數字標緣各個小鼠。第 2E圖描述 PB S與S 3 6治療群組失敗前總共跑步距離(米)的數量(η = 3 PBS,η = 4 S36),而第2F圖描述PBS與S36治療群組疲 勞時間的數量,定義為任務失敗的時間(n = 3 PBS,η = 4 S3 6)。在不同治療群組之間並無發現明顯不同。 第3A-3F圖顯示游泳14天之後,不同治療群組的游 泳速度並無明顯差異。第3Α圖顯示各個小鼠速度而第3Β 圖顯示各個治療群組(n = 3 PBS,η = 4 S36)的平均速度。 踏車跑步第1 4天顯示改進之表現偏向S 3 6治療小鼠的趨 勢。利用強度增加的運動方案,以左側灰色標記的速度(米 /分)顯示。第3 C圖顯示各個蹤跡,其表現每三分鐘間隔到 達踏車尾部驚嚇區域的次數。第3D圖顯示每三分鐘間隔 傳送給各個小鼠的驚嚇數目(軸為顛倒的),以三個數字移 動平均内插法得到之數字標繪各個小鼠。第3Ε圖描述PBS 與 S 3 6治療群組失敗前總共跑步距離(米)的數量(η = 3 PBS,η = 4 S36),而第3F圖描述PBS與S36治療群組疲 220 200815381 勞時間的數量,定義為任務失敗的時間(η = 3 PBS,η = 4 S36) 〇 第4Α、4Β、4C與4D圖顯示運動過程第1 6天的數據 分析。第4A與4B圖顯示踏車跑步第16天的結果,其再 現改進之表現朝向s 3 6治療小鼠的趨勢。利用強度增加的 運動方案,以左側黑色標記的速度(米/分)顯示。第4 A圖 顯示各個蹤跡,其表現每三分鐘間隔到達踏車尾部驚嚇區 域的次數。第4B圖顯示每三分鐘間隔傳送給各個小鼠的 ( 驚嚇數目(軸為顛倒的),以三個數字移動平均内插法得到 之數字標繪各個小鼠。第4C圖描述PBS與S36治療群組 失敗前總共跑步距離(米)的數量(n = 3 PBS,η = 4 S3 6)。第 4D圖描述PBS與S36治療群組疲勞時間的數量,定義為 任務失敗的時間(n = 3 PBS,η = 4 S3 6)。第4圖顯示S3 6 治療小鼠中改進之表現趨勢在1 6天仍然持續。 第5圖顯示相同環境各個天數下S 3 6治療小鼠相對於 PBS载劑治療小鼠之跑步距離與疲勞時間的改善比例(由 踏車試驗測得)。 第6圖顯示用S36 (ARM036)的活體内治療即便在激 烈長時間運動情況下仍可讓RyRl再結合calstabirU。自運 動21天搭配或不搭配同時皮下微滲透式幫浦S36治療之 後的小鼠比目魚肌均漿質免疫沉澱RyR 1,接著西方墨點分 析RyRl、含磷-抗原決定基專一性RyR卜pS2844以及結合 於RyRi大分子複合物的calstabini。 221 200815381 第7C與7D圖提供RyCal化合物Sl〇7^,丨、 ,我少肌肉萎縮 症模式mc/x小鼠運動時的鈣激活蛋白酶活性 、数據,並指 出RyCal有用於治療肌肉相關疾病(例如,肌 叫要縮症)。 第7A與7B係故意留下空白。 第8A - 8D圖顯示運動之後RyRi大分子 '卞嘅合物進行 實質上的重組。第8A圖)藉由免疫沉澱RyRi * | 1並免疫墨點 分析RyR、RyRl-pS2844與PDE4D3以及蛀人 夂〜合於受體的 calstabinl,顯示運動方案(由每天兩次游泳槿 甥1成)持續所示 之天數後伸趾長肌(EDL)中RyRl複合物的成分。第8B圖) 第8A圖的光密度定量,其各個數值係相對於整體免疫沉 澱的RyRl。第8C圖)低強度與高強度運動五天之後伸趾 長肌中RyRl複合物的成分。第8D圖)第8C圖的光密度定 量。所有實例中,各個RyR 1免疫沉澱產物在4-20%梯度聚 丙烯醯胺凝膠上分離大小、轉移並探測整體RyR i與一或 更多標記的變型。顯示之墨潰圖為三個獨立實驗的代 表。 第9A-9D圖顯示人類中高強度腳踏車運動造成RyRl 的蛋白激酶A磷酸化並缺少calstabinl與PDE4D3。第9A 圖)在高強度(在57% V〇2 max下三小時)腳踏車方案第1 天與第3天(第9C圖)運動之前與之後,自100 ug人類大 腿切片的肌肉均漿質免疫沉澱之RyR 1複合體的免疫墨點 分析。腳踏車騎士對照組坐在運動間内但並無運動。免疫 墨點分析顯示整體RyRl、RyRl-S2844的蛋白激酶A墙酸 222 200815381 化、結合的calstabinl與結合的PDE4D3。第9B圖)與第 9D圖)分別為第9A圖與第9C圖的光密度分析定量。長條 圖描述各天對照(η = 6)與運動(n = 1 2)組切片以整體ryri 標準化之RyRl複合體内蛋白激酶Α磷酸化、calstabinl 與PDE4D3含量。 第10A-10F圖顯示肌肉-專一性Call々·小鼠具有高強 度運動缺陷。第10A圖)2個月大cal 小鼠與野生型同一 窩生小鼠在單一程度踏車試驗時的失敗時間。第丨〇 B圖) 以性別區分之各個小鼠的個別踏車失敗時間。第丨〇c圖) cal 1·/_小鼠的體重減少。第10D圖)失敗時間與體重的散佈 圖並無在任一小鼠群組中顯示相關性。第1 〇 E圖)底線 (baseline)與單一下坡離心踏車跑步後的血漿肌酸激酶 (CPK)含量。第i〇f圖)自伸趾長肌免疫沉澱RyR1並免疫 墨點分析 RyR、RyRl_pS2844、PDE4D3 與 calstabinl。*, ρ<0·01,威爾克森檢定。 第11A-11F圖顯示?]^4〇-/-小鼠具有運動缺陷。第11八 圖)2個月大call-/-小鼠與野生型同一窩生小鼠在單一程度 踏車試驗時的失敗時間。第11B圖)各個小鼠的個別踏車 失敗時間。第11C圖)PDE4D·/·小鼠的體重。第11D圖)失 敗時間與體重的散佈圖並無在任一小鼠群組中顯示相關 性。第11E圖)底線與單一下坡離心踏車跑步後的血漿肌 酸激酶(CPK)含量。第丨1F圖)自伸趾長肌免疫沉澱RyRl 223 200815381 並免疫墨點分析 RyR、RyRl_pS2844、PDE4D3與 calstabinl。*,ρ < 0·01,威爾克森檢定。 第12A-12F圖顯示藥理學上再結合caistabin;[於RyRi 可改善活體内運動表現。第12a圖)在28天S1 07治療試驗 的特定天數上踏車試驗時的失敗時間。第12B圖)第21天 各個小鼠的個別踏車失敗時間。第12C圖)運動第21天之 後立即分離並在充氧肌肉水槽中等張刺激之伸趾長肌的力 量-頻率曲線圖。以肌肉橫切區物標準化力量(eN)數值。第 12D圖)整個試驗的體重並無顯現治療效應。第UE圖) 肌肉專一性(^11小小鼠相似實驗的踏車失敗時間。第ΐ2ρ 圖)自伸趾長肌免疫沉澱RyRl並免疫墨點分析RyR、 RyRl-pS2844、PDE4D3 與 calstabinl。*,p < 〇 〇1,咸爾 克森檢定。 第13A-13C圖顯示長期sl〇7治療可減少經分離之屈 趾短肌纖維的疲勞可能性。第ΠΑ圖)將載劑治療屈趾短肌 纖維之flU〇_4螢光值(AF/FO)的代表紀錄以0.5 Hz詞練 度下12〇 Hz頻率電場-刺激強直性3〇〇 _長重覆標的波略 標準化。持續以室溫下的ΗΕΡΡς μ I主 < > ,丄 今 nWES綾衝泰氏液佈滿分離 肉。第13B圖)S107治瘆屈似士一 Λ 肌 縻屈趾短肌纖維的典型強直性矣 錄。第13C圖)將以flU0-4罄伞、Β! θ 、、、己 4營先測量(AF/FO)的強質性 子平均波峰以疲勞刺激時的波峰 tl ^ ^ 雕 J故蜂軚準化(n=11載劑;n S107)。*,獨立樣本t_試驗 13 224 200815381 第1 4 A -1 4 B圖顯示經運動之肌肉的RyR 1係渗漏型, 靜止期鈣離子的Po提高。第14A圖)在90 nM [Ca2 + ]c^下 RyRl通道活性的典型紀錄,其來自久坐小鼠(左攔的坐广、 長時間運動並以載劑治療的小鼠(中攔的運動+載劑)以及 長時間運動並以S 1 0 7治療的小鼠(右攔的運動+ S 1 〇 7)。以 向上的偏向量繪製單一通道開啟;以紀錄開端的水平條狀 物指出通道的開啟與關閉(c)狀態。在紀錄各組上顯示相 應的通道開啟率(P〇)、平均開啟時間(To)與開啟頻率 (Fo),並顯示所有實驗的平均數值。第14B圖)久坐小鼠 (坐;η = 9)與長時間運動並以載劑治療的小鼠(運動+载 劑;η = 9)以及長時間運動並以s 1 07治療的小鼠(運動+ S107 ; η = 12)之RyRl活性的平均開啟率(左側)、平均開 啟時間(中間)與開啟頻率(右側)。誤差長條度代表標準機 差;*,與坐組相比p < 0.005 ; #,與運動+ S107相比p < 0.005 〇 第15A-15B圖顯示S107避免長時間運動引起的肌肉 傷害與鈣激活蛋白酶活化。第15A圖)久坐小鼠與搭配和 不搭配以S 1 07再結合calstabin 1的長時間運動小氣之血 漿肌酸激酶(CPK)活性程度。第15B圖)利用鈣激活蛋白酶 螢光基質試驗測量伸趾長肌均漿質中的鈣激活蛋白酶活性 程度。*,獨立樣本t·試驗p< 〇.〇1,S107相對載劑。 第16A-16C圖顯示運動對RyRi複合體成份的影響。 225 200815381 第 肉纖維 第 RyRl ^ 第 小鼠之 第 S107 治 【主要 17A-17B圖顯示S107治療存在或不存在情況下肌 中50%再吸收時間(τ)的分佈。 18A-18C圖顯示mdx小鼠模式中隨著時間因素的 f進性構酸化與缺少calstabin 1。 19A-19F圖顯示S107對野生型(未受影響)與所心 運動耐性、體重、CPK與鈣激活蛋白酶含量的影響。 20圖顯示野生型(未受影響)與以S 107治療或未以 療之mdx小鼠的組織學切片。 元件符號說明】 226Zhang, S.-J·, J. D. Bruton, et al. (2006)·丨, Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. MJ Physiol (Lond) 572(2): 551-559. Brief Description of the Formulas Figures 1A and IB show the tracking data of the vehicle-treated (PBS)-treated mouse control group and the S3 6-treated mice on the first day of exercise. Figure 1A shows the speed of each mouse at five minutes and Figure 1B shows the average speed of each treatment group (η = 4 P B S, η = 4 S 3 6). There was no significant difference between treatment groups after one day of exercise. Fg-l〇〇, fg-l〇3, fg-105, and fg-i〇6 represent mice treated with S36. Fg-1〇1, fg_1〇2, fg-1〇4, and fg l〇7 represent mice treated with P B S. Figure 2A-2F shows no significant differences between the different treatment groups after 7 days of exercise. Figures 2A and 2B show the results of swimming in PBS and S36 treated mice. Figure 2A shows the speed of the five-minute interval for each mouse and Figure 2B shows the average speed for each treatment group (n = 3 PBS, n = 4 219 200815381 S3 6). Figure 2C-2F shows the results of the 7th day of the treadmill running. As described, the mice ran on a treadmill with an exercise program that increased in intensity (shown at the speed of the gray mark on the left (m/min)). Figure 2C shows individual traces showing the number of trips to the taut zone at the end of the treadmill every three minute interval. A rapid increase in the number of arrivals in the scare area (because of a mouse decline) clearly indicates that the task failed. Figure 2D shows the number of frights transmitted to each mouse every three minutes (the axis is reversed), and the mice were digitally labeled with three numerically moving averages (m 〇 v i n g average). Figure 2E depicts the total number of running distances (meters) before the failure of the PB S and S 3 6 treatment groups (η = 3 PBS, η = 4 S36), while Figure 2F depicts the number of fatigue times in the PBS and S36 treatment groups. , defined as the time the task failed (n = 3 PBS, η = 4 S3 6). No significant differences were found between the different treatment groups. Figures 3A-3F show that there is no significant difference in swimming speed between the different treatment groups after 14 days of swimming. Figure 3 shows the speed of each mouse and the third panel shows the average speed of each treatment group (n = 3 PBS, η = 4 S36). The 14th day of treadmill running showed improved performance biased towards the trend of S 3 6 treated mice. Use the increased intensity motion scheme to display the speed (m/min) marked on the left side of the gray. Figure 3C shows the various traces showing the number of trips to the tail scared area every three minutes. Figure 3D shows the number of scares (inverted) transmitted to each mouse every three minute intervals, and each mouse was plotted as a number obtained by three numerically moving average interpolation. Figure 3 depicts the total running distance (m) before failure of the PBS vs. S 3 6 treatment group (η = 3 PBS, η = 4 S36), while Figure 3F depicts the PBS vs. S36 treatment group fatigue 220 200815381 labor time The number of times, defined as the time of task failure (η = 3 PBS, η = 4 S36) 〇 The 4th, 4th, 4th and 4D graphs show the data analysis of the 16th day of the exercise process. Figures 4A and 4B show the results of the 16th day of treadmill running, which reproduces the improved performance towards the trend of s 3 6 treated mice. Use the motion scheme with increased intensity, displayed at the speed (m/min) of the black mark on the left side. Figure 4A shows the individual traces showing the number of trips to the terror zone at the end of the treadmill every three minute interval. Figure 4B shows the transmission to each mouse every three minute interval (the number of scares (the axis is reversed), and the numbers obtained by three digital moving average interpolations plot each mouse. Figure 4C depicts PBS and S36 treatment The total number of running distances (m) before the group failed (n = 3 PBS, η = 4 S3 6). Figure 4D depicts the number of fatigue times for the PBS and S36 treatment groups, defined as the time of task failure (n = 3) PBS, η = 4 S3 6). Figure 4 shows that the improved performance trend in S3 6 treated mice persisted at 16 days. Figure 5 shows S 3 6 treated mice versus PBS vehicle for the same environment on each day. The ratio of the running distance to the fatigue time of the treated mice (measured by the treadmill test). Figure 6 shows that in vivo treatment with S36 (ARM036) allows RyRl to recombine calstabirU even under intense prolonged exercise. Self-slurry immunoprecipitation of RyR 1 in mouse soleus after 21 days of exercise with or without subcutaneous micro-osmotic pump S36, followed by Western blot analysis of RyRl, phosphorus-antigenic specificity RyR, pS2844, and Binding to RyRi macromolecules Calstabini. 221 200815381 Figures 7C and 7D provide RyCal compounds for Sl〇7^, 丨, , I have less muscle atrophy pattern in mc/x mice when exercised with calcium-activated protease activity, data, and pointed out that RyCal is used Treatment of muscle-related diseases (eg, muscle contraction). Sections 7A and 7B intentionally leave blanks. Figures 8A - 8D show RjRi macromolecules 'genetic complexes undergoing substantial reorganization after exercise. Figure 8A) Immunoprecipitation of RyRi* | 1 and immunological dot analysis of RyR, RyRl-pS2844 and PDE4D3, and 蛀 human 夂 ~ combined with calstabinl of the receptor, showing exercise regimen (from twice a day swimming 槿甥 10%) for the indicated number of days The component of the RyRl complex in the long toe muscle (EDL). Fig. 8B) The optical density quantification of Fig. 8A, the respective values of which are relative to the RyR1 of the whole immunoprecipitation. Figure 8C) The composition of the RyRl complex in the long toe of the toe after five days of low-intensity and high-intensity exercise. Fig. 8D) Optical density measurement of Fig. 8C. In all of the examples, each RyR 1 immunoprecipitated product was sized, transferred and probed for a whole RyR i and one or more labeled variants on a 4-20% gradient polyacrylamide gel. The displayed ink collapse map is representative of three independent experiments. Figure 9A-9D shows that protein kinase A phosphorylation of RyR1 is caused by high-intensity bicycle exercise in humans and lacks calstabinl and PDE4D3. Figure 9A) Mud-slurry immunity from 100 ug human thigh sections before and after high-intensity (three hours at 57% V〇2 max) bicycles on days 1 and 3 (Fig. 9C) Immunoblot analysis of precipitated RyR 1 complex. The bicycle rider control group sat in the exercise room but did not exercise. Immune dot analysis showed that the overall RyRl, RyRl-S2844 protein kinase A wall acid 222 200815381, bound calstabinl and bound PDE4D3. Fig. 9B) and Fig. 9D) are quantitative analysis of optical density analysis of Figs. 9A and 9C, respectively. The bar graph depicts the levels of protein kinase Α phosphorylation, calstabinl and PDE4D3 in the RyRl complexes normalized by ryri in each day of control (n = 6) and exercise (n = 1 2) sections. Figures 10A-10F show that muscle-specific CallC mice have high-intensity motor deficits. Figure 10A) The failure time of a 2-month-old cal mouse in the same level as a wild-type mouse in a single-degree treadmill test. Dijon B) Individual treadmill failure time for each mouse by gender. Figure c) Cal 1, 1 / / mice lost weight. Figure 10D) The distribution of failure time and body weight does not show correlation in any of the mouse groups. Figure 1 〇 E) Baseline and plasma creatine kinase (CPK) levels after running on a single downhill centrifugal treadmill. i i f map) self-extended toe long muscle immunoprecipitation RyR1 and immune dot analysis RyR, RyRl_pS2844, PDE4D3 and calstabinl. *, ρ<0·01, Wilkerson check. Figure 11A-11F shows? ]^4〇-/- mice have motor deficits. Figure 11 shows the failure time of a 2-month-old call-/- mouse and a wild-type same litter in a single-degree treadmill test. Figure 11B) Individual treadmill failure time for each mouse. Figure 11C) Body weight of PDE4D··· mice. Figure 11D) The scatter plot of time to weight and weight did not show a correlation in any of the mouse groups. Figure 11E) Plasma creatinine kinase (CPK) content after running on the bottom line and a single downhill centrifugal treadmill. Fig. 1F) Self-extended toe long muscle immunoprecipitation RyRl 223 200815381 and immune dot analysis RyR, RyRl_pS2844, PDE4D3 and calstabinl. *, ρ < 0·01, Wilkerson check. Figures 12A-12F show pharmacological recombination of caistabin; [RyRi improves in vivo motor performance. Figure 12a) Failure time on a treadmill test on a specific number of days of the 28-day S1 07 treatment trial. Figure 12B) Day 21 Individual treadmill failure time for each mouse. Figure 12C) Force-frequency plot of the long toe muscles that were separated immediately after the 21st day of exercise and stimulated in the oxygenated muscle sink. The strength (eN) value is normalized by the cross-cutting area of the muscle. Figure 12D) The body weight of the entire trial did not show a therapeutic effect. The first UE map) Muscle specificity (^11 small mouse similar test treadmill failure time. Fig. 2p map) self-extension toe long muscle immunoprecipitation RyRl and immune dot analysis RyR, RyRl-pS2844, PDE4D3 and calstabinl. *,p < 〇 〇1, Salter kesen check. Figures 13A-13C show that long-term sl7 treatment reduces the likelihood of fatigue in isolated short flexor fibers. Figure )) The representative record of the flU〇_4 fluorescence value (AF/FO) of the carrier for the treatment of flexor short muscle fibers with a frequency of 12 Hz at a frequency of 0.5 Hz vocabulary - stimulating tonicity 3 〇〇 long weight The standardization of the overlying standard is standardized. Continue to ΗΕΡΡς μ I main at room temperature <> , 今 Today nWES 泰 泰 泰 液 布 布 布 布 布 布 布 布 布 布Figure 13B) S107 treatment of 瘆 似 似 一 Λ 肌 肌 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型Figure 13C) The average peak of the strong mass of the flU0-4 罄 umbrella, Β! θ, 、, 4 camp first measurement (AF/FO) is the peak of the fatigue stimulus tl ^ ^ (n=11 carrier; n S107). *, independent sample t_test 13 224 200815381 1 4 A -1 4 B shows the RyR 1 system leakage type of the moving muscle, and the Po increase of the calcium ion in the stationary phase. Figure 14A) A typical record of RyRl channel activity at 90 nM [Ca2 + ]c^ from sedentary mice (left-staying, long-term exercise, and vehicle-treated mice) + vehicle) and mice that exercised for a long time and were treated with S 107 (right movement + S 1 〇 7). Single channel opening was plotted with an upward bias vector; horizontal strips were indicated at the beginning of the record Turn on and off (c) state. Display the corresponding channel open rate (P〇), average turn-on time (To) and turn-on frequency (Fo) on each record group, and display the average value of all experiments. Figure 14B) Sedentary mice (sit; η = 9) with long-term exercise and vehicle-treated mice (sports + vehicle; η = 9) and mice that were chronically exercised and treated with s 1 07 (sport + S107 ; η = 12) The average opening rate (left side), average opening time (middle) and opening frequency (right side) of RyRl activity. The error bar indicates the standard machine difference; *, compared with the sitting group p <0.005;#, compared with the exercise + S107 p < 0.005 〇 15A-15B shows S107 to avoid muscle damage caused by prolonged exercise Calcium activated protease activation. Figure 15A) The degree of plasma creatine kinase (CPK) activity in sedentary mice with long-term exercise and small gas with sate and without calstabin 1. Figure 15B) Measurement of the level of calpain activity in the homoplasmate of the long toe muscle using the calcin activating protease fluorescent matrix assay. *, independent sample t · test p < 〇. 〇 1, S107 relative carrier. Figures 16A-16C show the effect of motion on the composition of the RyRi complex. 225 200815381 The first meat fiber RyRl ^ The first S107 of the mouse [Main 17A-17B shows the distribution of 50% resorption time (τ) in the muscle in the presence or absence of S107 treatment. The 18A-18C plot shows f-induced acidification and lack of calstabin 1 over time in the mdx mouse model. Figure 19A-19F shows the effect of S107 on wild-type (unaffected) and cardiac tolerance, body weight, CPK and calpain levels. Figure 20 shows histological sections of wild type (unaffected) versus mdx mice treated with or without S107. Component Symbol Description] 226

Claims (1)

200815381 十、申請專科範圍: 1 · 一種治療或預防一個體内肌肉疲勞的方法,該方法包括 對該個體施用一治療有效劑量的一化合物,該化合物係以 式 I-a、I-b、I-c、I_d、I-e、I-f、I-g、I-h、I-i、、I-k、 1-1' I-m、I-n、Ι·ο或I-ρ之結構所表示,或是上述之鏡像 異構物(enantiomers)、非鏡像異構物(diastereomers)、互變 異構物(tautomers)、藥學上可接受之鹽類、水合物、溶劑 合物、複合物(complexes)、代謝物或前藥,或任何上述之 組合, 其中該化合物不是SI、S2、S3、S4、S5、S6、S7、S9、 Sll、S12、S13、S14、S19、S20、S22、S23、S2 4、S25、 S26> S27' S36、S37、S38' S40、S43、S44、S45' S46' S47、S48、S4 9、S50、S51、S52、S53、S54、S55、S56、 S57、S58、S59、S60、S61、S62、S63、S64、S66、S67' S68、S69' S70、S7 卜 S72、S73' S74' S75' S76' S77、 S78、S79、S80、S81' S82、S83、S84、S85、S86、S87、 S88、S89' S90、S91' S92' S93' S94〜S95、S96、S97' S98、S99、S100 或 JTV-519 〇 2 ·如申請專利範圍第1項所述之方法,其中該化合物係以 式I-n、1-〇或I-p之結構所表示,或上述之鏡像異構物、 非鏡像異構物、互變異構物、藥學上可接受之鹽類、水合 物、溶劑合物、複合物、代謝物或前藥,或任何上述之組 227 200815381 合0 3 ·如申請專利範圍第i項所述之方法,其中該化合物係選 自下列所構成之群組:S101、S102、S103、S104、S107、 S108、S109、S110、Sm、S112、S113、S114、S115、S116、 S117、 S118、 S119、 S120、 S121、 S122 與 S123,以及上 述之任何鹽類、水合物、溶劑合物、多型體(polymorph)、 複合物、代謝物或前藥,或任何上述之組合。 4·如申請專利範圍第丨或2或3項中任何一項所述之方 法,其中該肌肉疲勞係由於一骨骼肌疾病或異常所造成。 5·如申請專利範圍第4項所述之方法,其中該骨骼肌疾病 或異常係與一第1型理阿諾鹼受體(RyRl)的功能異常有 關。 6·如申請專利範圍第4項所述之方法,其中該骨骼肌疾病 或異常係一肌病變(myopathy)。 7 ·如申請專利範圍第6項所述之方法,其中該肌病變係一 肌肉萎縮症(muscular dystrophy)、中央軸空病(central core disease)或惡性高熱綜合症(malignant hyperthermia)。 228 200815381 8 ·如申请專利範圍第1或2或3項中任何一項所述之方 法,其中該肌肉疲勞係由於一選自下列所構成之群組的疾 病或症狀所造成·神經性病變(neur〇pathy)、神經疾病或異 常、癲癇症狀(seizure condition)、遺傳疾病或異常、心臟 疾病或異常、傳染病、愛滋病病毒感染、愛滋病、癌疲、 營養不良、腎臟疾病與腎臟衰竭。 9 ·如申請專利範圍第8項所述之方法,其中該心臟疾病或 異常係選自下列所構成之群組:一不規則心跳症狀、一運 動引起的不規則心跳、充血性心臟衰竭、慢性阻塞性肺病 (chronic obstructive pulmonary disease)、高血壓或任何上 述之組合。 10 ·如申請專利範圍第9項所述之方法,其中該不規則心 跳症狀係選自下列所構成之群組··心房或心室心律不整 心房或心室顫動(atrial or ventricular fibrillation);心房或 心 室 頻 脈 心 律不整 (atrial or ventricular tachyarrhythmia);心房或心室頻脈(atrial or ventricular tachycardia);兒茶齡胺多型性心室頻脈(catecholaminergic polymorphic ventricular tachycardia,CPVT)與其運動引起 的變異型。 229 200815381 士申凊專利範圍弟1或2或3項中任何一項所述之方 法,其中該肌肉疲勞係運動引起的肌肉疲勞。 1 2 ·如申請專利範圍第1 1項所述之方法,其中該運動引起 的肌肉疲勞係由於長時間運動或高強度運動所造成。 1 3 ·如申請專利範圍第1項所述之方法,其中該個體係選 自下列所構成之群組的一非人類動物··一犬科、一馬科、 一貓科、一豬類、一鼠科、一牛科、一鳥類與一綿羊類動 物0 14 ·如申請專利範圍第i項所述之方法,其中該個體係一 人類而該化合物係包含於一藥學組合物内,該藥學組合物 包括至少一藥學可接受的賦形劑(excipient)。 1 5 ·如申請專利範圍第1 4項所述之方法,其中該至少一藥 學可接受的賦形劑係選自下列構成的群組:芳香劑 (aromatics)、缓衝劑、黏著劑(binders)、著色劑(colorants)、 崩解劑(disintegrants)、稀釋劑、乳化劑(emulsifiers)、增 量劑(extenders)、氣味改善劑(flavor-improving agents)、 膠凝劑(gellants)、滑動劑(glidants)、防腐劑、皮膚滲入促 進劑(skin-penetration enhancers)、助溶劑(solubilizers)、 230 200815381 安定劑(stabilizers)、懸浮劑(suspending agents)、甜味劑 (sweeteners)、張力劑(tonicity agents)、載劑(vehicles)、 黏度增強劑(viscosity-increasing agents)或任何上述之組 合〇 16·如申請專利範圍第15項所述之方法,其中該藥學組合 物更包括一第二活性製劑。 1 7 ·如申請專利範圍第1 6項所述之方法,其中該第二活性 製劑係一止痛劑。 18.如申請專利範圍第17項所述之方法,其中該組合物係 以一膠囊形式、一粒狀形式(granule form)、一粉末形式、 一溶液形式、一懸浮形式(suspension form)或一錠片形式 (tablet form)而存在。 1 9 ·如申請專利範圍第1 8項所述之方法,其中該組合物係 經由一藥物釋出支架(stent)或一植入管或經由一滲透式幫 浦而口服、非腸道式(parenterally)、腸道式(enterally)、靜 脈内、動脈内、皮下、肌肉内(intramuscularly)施用。 231 200815381 20.如申請專利範圍第1項所述之方法,其中 以足以減少躬激活蛋白酶(c a 1 p a i η )活性之一 個體上。 21 ·如申請專利範圍第1項所述之方法,其中 以足以減少血漿肌酸激酶(creatine kinase)活 一劑量施用於該個體上。 、 22. —種一治療有效劑量之一化合物的用途, 物係以式1-牡、1-13、1-〇、1-(1、1-6、1-£、1-8、1-I-k、1-1、Ι-η、1-〇或Ι-ρ之結構所表示,或是 異構物、非鏡像異構物、互變異構物、藥學上 類、水合物、溶劑合物、複合物、代謝物或前 上述之組合;以製備治療一個體内肌肉疲勞之 其中該化合物不是 SI、S2、S3、S4、S5 S9、Sll、S12、S13、S14 ' S19、S20 ' S24、S25 > S26 > S27、S36、S37、S38、 S44 - S45 > S46 ' S47、S48、S49、S50、 S53、S54、S55、S56、S57、S58、S59、 S62 - S63 ' S64 ' S66、S67、S68、S69 ' S72 > S73 > S74 > S75、S76、S77 ' S78 > S81、S82 > S83、S84、S85、S86、S87、 該化合物係 量施用於該 該化合物係 性或含量之 其中該化合 h 、 I-i 、 I-j 、 .上述之鏡像 .可接受之鹽 '藥,或任何 一組合物, 、S6 ' S7 ' S22 ' S23 ^ S40 > S43 ^ S51 、 S52 、 S60 ^ S6卜 S70 ' S71 > S79 、 S80 -S88 、 S89 、 232 200815381 S90、S91、S92 > S93、S94 > S95 ' S96、S97 ' S98、 S99、S100 或 JTV-519。 2 3 · —種一治療有效劑量之一化合物的用途,其中該化合 物係以式Ι-ll、1-〇或I-p之結構所表示,或是上述之鏡像 異構物、非鏡像異構物、互變異構物、藥學上可接受之鹽 類、水合物、溶劑合物、複合物、代謝物或前藥,或任何 上述之組合;以製備治療一個體内肌肉疲勞之一組合物。 24·如申請專利範圍第22項或23項任一項所述之用途, 其中該化合物係選自下列所構成之群組:S 1 0 1、S 1 0 2、 S103、 S104、 S107、 S108、 S109、 S110、 Sill、 S112、 S113 、 S114、 S115、 S116、 S117、 S118、 S119、 S120、 S121、 S122 與S 1 2 3 ’以及上述之任何鹽類、水合物、溶劑合物、多型 體、複合物、代謝物或前藥,與任何上述之組合。 233200815381 X. Application for a specialist: 1 · A method of treating or preventing muscle fatigue in a body, the method comprising administering to the individual a therapeutically effective amount of a compound of the formula Ia, Ib, Ic, I_d, Ie , If, Ig, Ih, Ii, Ik, 1-1' Im, In, Ι·ο or I-ρ, or the above-mentioned enantiomers, non-image isomers ( Diastereomers), tautomers, pharmaceutically acceptable salts, hydrates, solvates, complexes, metabolites or prodrugs, or any combination thereof, wherein the compound is not SI, S2, S3, S4, S5, S6, S7, S9, S11, S12, S13, S14, S19, S20, S22, S23, S2 4, S25, S26> S27' S36, S37, S38' S40, S43, S44 , S45' S46' S47, S48, S4 9, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S66, S67' S68, S69' S70, S7, S72, S73' S74' S75' S76' S77, S78, S79, S80, S81' S82, S83, S84, S85, S86, S87, S88, S89' S90, S91' S92' S93' S94~S95, S96, S97' S98, S99, S100 or JTV-519 〇2. The method of claim 1, wherein the compound is of the formula In, 1- Illustrated by the structure of hydrazine or Ip, or the above-described mirror image isomer, non-image isomer, tautomer, pharmaceutically acceptable salt, hydrate, solvate, complex, metabolite or prodrug Or any of the above-mentioned groups 227, 2008, 158, 381, and the method of claim 1, wherein the compound is selected from the group consisting of: S101, S102, S103, S104, S107, S108, S109 , S110, Sm, S112, S113, S114, S115, S116, S117, S118, S119, S120, S121, S122 and S123, and any of the above salts, hydrates, solvates, polymorphs, A complex, metabolite or prodrug, or a combination of any of the foregoing. 4. The method of any of claims 2 or 3, wherein the muscle fatigue is caused by a skeletal muscle disease or abnormality. 5. The method of claim 4, wherein the skeletal muscle disease or abnormality is associated with a functional abnormality of a type 1 anaphytic receptor (RyRl). 6. The method of claim 4, wherein the skeletal muscle disease or abnormal myopathy. 7. The method of claim 6, wherein the myopathy is a muscular dystrophy, a central core disease, or a malignant hyperthermia. The method according to any one of claims 1 to 2, wherein the muscle fatigue is caused by a disease or a symptom selected from the group consisting of: Neur〇pathy), neurological disease or abnormality, seizure condition, genetic disease or abnormality, heart disease or abnormality, infectious disease, HIV infection, AIDS, cancer fatigue, malnutrition, kidney disease and kidney failure. 9. The method of claim 8, wherein the heart disease or abnormality is selected from the group consisting of: an irregular heartbeat, an irregular heartbeat caused by exercise, congestive heart failure, chronic Chronic obstructive pulmonary disease, hypertension, or any combination of the above. The method of claim 9, wherein the irregular heartbeat symptom is selected from the group consisting of: atrial or ventricular arrhythmia or atrial fibrillation; atrial or ventricular Atrial or ventricular tachyarrhythmia; atrial or ventricular tachycardia; catecholaminergic polymorphic ventricular tachycardia (CPVT) and its motor-induced variants. 229. The method of any one of the preceding claims, wherein the muscle fatigue is caused by exercise-induced muscle fatigue. 1 2 The method of claim 11, wherein the muscle fatigue caused by the exercise is caused by prolonged exercise or high-intensity exercise. The method of claim 1, wherein the system is selected from the group consisting of a non-human animal, a canine family, a horse family, a cat family, a pig class, A method of the invention, wherein the system is a human and the compound is contained in a pharmaceutical composition, the pharmaceutical composition of the invention. The composition includes at least one pharmaceutically acceptable excipient. The method of claim 14, wherein the at least one pharmaceutically acceptable excipient is selected from the group consisting of: aromatics, buffers, adhesives (binders) ), colorants, disintegrants, thinners, emulsifiers, extenders, flavor-improving agents, gellants, slip agents (glidants), preservatives, skin-penetration enhancers, solubilizers, 230 200815381 stabilizers, suspending agents, sweeteners, tonicity The method of claim, the vehicle, the viscosity-enhancing agent, or any combination of the above, wherein the pharmaceutical composition further comprises a second active agent. . The method of claim 16, wherein the second active agent is an analgesic. 18. The method of claim 17, wherein the composition is in the form of a capsule, a granule form, a powder form, a solution form, a suspension form or a It exists in the form of a tablet. The method of claim 18, wherein the composition is administered orally or parenterally via a drug release stent or an implant or via a osmotic pump ( Parenterally), enteral, intravenous, intraarterial, subcutaneous, intramuscularly administered. 231. The method of claim 1, wherein the method is one of an activity sufficient to reduce sputum activating protease (c a 1 p a i η ) activity. The method of claim 1, wherein the method is administered to the individual in a dose sufficient to reduce plasma creatine kinase. 22. The use of a therapeutically effective dose of a compound of the formula 1- um, 1-13, 1-〇, 1-(1, 1-6, 1-£, 1-8, 1- The structure of Ik, 1-1, Ι-η, 1-〇 or Ι-ρ, or an isomer, a non-image isomer, a tautomer, a pharmaceutically, a hydrate, a solvate, a compound, a metabolite or a combination of the foregoing; for the preparation of a muscle fatigue in the body wherein the compound is not SI, S2, S3, S4, S5 S9, S11, S12, S13, S14 'S19, S20 'S24, S25 > S26 > S27, S36, S37, S38, S44 - S45 > S46 'S47, S48, S49, S50, S53, S54, S55, S56, S57, S58, S59, S62 - S63 'S64 ' S66, S67, S68, S69 'S72 > S73 > S74 > S75, S76, S77 'S78 > S81, S82 > S83, S84, S85, S86, S87, the compound is applied to the compound system Or the content of the compound h, Ii, Ij, the above image. Acceptable salt 'drug, or any composition, S6 'S7 ' S22 ' S23 ^ S40 > S43 ^ S51 , S52 , S60 ^ S6 Bu S70 ' S71 > S79 , S80-S88, S89, 232 200815381 S90, S91, S92 > S93, S94 > S95 'S96, S97 'S98, S99, S100 or JTV-519. 2 3 · A therapeutically effective dose of one of the compounds Use, wherein the compound is represented by the structure of Ι-ll, 1-〇 or Ip, or the above-mentioned mirror image isomer, non-image isomer, tautomer, pharmaceutically acceptable salt, a hydrate, solvate, complex, metabolite or prodrug, or a combination of any of the foregoing; for the preparation of a composition for treating an in vivo muscle fatigue. 24. If the patent application is in claim 22 or 23 The use, wherein the compound is selected from the group consisting of: S 1 0 1 , S 1 0 2, S103, S104, S107, S108, S109, S110, Sill, S112, S113, S114, S115, S116, S117, S118, S119, S120, S121, S122 and S 1 2 3 'and any of the salts, hydrates, solvates, polymorphs, complexes, metabolites or prodrugs thereof, and any of the foregoing combination. 233
TW096119821A 2006-06-02 2007-06-01 Methods for treating or reducing muscle fatigue TW200815381A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81074806P 2006-06-02 2006-06-02
PCT/US2006/032405 WO2007024717A2 (en) 2005-08-25 2006-08-17 Agents for preventing and treating disorders involving modulation of the ryr receptors
US90434807P 2007-02-28 2007-02-28

Publications (1)

Publication Number Publication Date
TW200815381A true TW200815381A (en) 2008-04-01

Family

ID=39722534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096119821A TW200815381A (en) 2006-06-02 2007-06-01 Methods for treating or reducing muscle fatigue

Country Status (2)

Country Link
AR (1) AR061173A1 (en)
TW (1) TW200815381A (en)

Also Published As

Publication number Publication date
AR061173A1 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
Bymaster et al. Muscarinic receptors as a target for drugs treating schizophrenia
JP2009521408A (en) Modulator of Cdc2-like kinase (CLK) and method of use thereof
JP6854766B2 (en) Compositions and Methods Using Tyrosine Kinase Inhibitors
US11547706B2 (en) Methods and compositions for reducing tactile dysfunction and anxiety associated with autism spectrum disorder, Rett syndrome, and Fragile X syndrome
WO2008060332A2 (en) Methods for treating or reducing muscle fatigue
TW200918542A (en) Sirtuin modulating compounds
US20100286166A1 (en) Compositions for the treatment of hyperphenylalaninemia
EA015010B1 (en) Novel anti-arrhythmic and heart failure drugs
US10478436B2 (en) Application of 5-HT6 receptor antagonists for the alleviation of cognitive deficits of down syndrome
SG188144A1 (en) Alpha 7 nicotinic agonists and antipsychotics
BR112019020798A2 (en) methods and compositions for treating age-related damage using ccr3 inhibitors
WO2012037105A1 (en) Methods of treating, ameliorating or preventing stress-induced neuronal disorders and diseases
US20140187536A1 (en) Agents for preventing and treating disorders involving modulation of the ryanodine receptors
CN116075302A (en) Combinations of GABAA α5 agonists and SV2A inhibitors and methods of use in the treatment of cognitive impairment
JP2024012483A (en) Treatment of tachycardia
US20150141438A1 (en) Methods for delaying or preventing the onset of type 1 diabetes
US20100273769A1 (en) Composition and method for the treatment of parkinson's disease
JP6629464B2 (en) Three combinations of pure 5-HT6 receptor antagonist, acetylcholinesterase inhibitor and NMDA receptor antagonist
AU2017353446A1 (en) Inhibitors of gangliosides metabolism for the treatment of motor neuron diseases
US10149860B2 (en) Compositions and methods for treating alzheimer's disease and other tauopathies
TW200815381A (en) Methods for treating or reducing muscle fatigue
US20210379061A1 (en) Balipodect for treating or preventing autism spectrum disorders
WO2014165701A1 (en) Application of 5-ht6 receptor antagonists for the alleviation of cognitive deficits of down syndrome
US9364479B2 (en) Use of a receptor-type kinase modulator for treating polycystic kidney disease
US20110294835A1 (en) Muscarinic Agonists as Cognitive Enhancers