TW200815303A - Use of a pulverulent composition comprising titania and an inorganic binder to increase early strength - Google Patents

Use of a pulverulent composition comprising titania and an inorganic binder to increase early strength Download PDF

Info

Publication number
TW200815303A
TW200815303A TW096115606A TW96115606A TW200815303A TW 200815303 A TW200815303 A TW 200815303A TW 096115606 A TW096115606 A TW 096115606A TW 96115606 A TW96115606 A TW 96115606A TW 200815303 A TW200815303 A TW 200815303A
Authority
TW
Taiwan
Prior art keywords
titanium dioxide
early strength
inorganic binder
strength
weight
Prior art date
Application number
TW096115606A
Other languages
Chinese (zh)
Inventor
Christoph Tontrup
Reinhard Trettin
Michael Geyer
Original Assignee
Degussa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa filed Critical Degussa
Publication of TW200815303A publication Critical patent/TW200815303A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)

Abstract

Use of a pulverulent composition comprising an inorganic binder and, based on the binder, 0.25 to 5% by weight of finely divided titania for the preparation of products having high early strength.

Description

200815303 九、發明說明 【發明所屬之技術領域】 本發明係關於一種粉狀組成物之於增強使用彼所製備 之產物的早期強度上之用途,該粉狀組成物包含二氧化鈦 及無機黏合劑。 【先前技術】 • 利用二氧化鈦之光催化性質於水泥混合物中係已知的 〇 在W098/0560 1中,揭示使用二氧化鈦以獲得特殊混 凝土之色彩及亮度。其特別說明混凝土之壓實強度不受二 氧化鈦之影響。 在wool /0054 1揭示類似之情況,其說明所得之混凝 土之性質是不受影響的。 在 JP2000 1 1 7 1 1 7中,揭示一種混合物,其包含 100 ® 重量份之水泥及1 0至1 5 0重量份之二氧化鈦。 在GB-A-8 49 1 75中,揭示用於混凝土之塗覆組成物是 屬於白水泥且包含最多3重量%之二氧化鈦。 總之,可以說在先前技藝中二氧化鈦僅揭示爲水泥混 合物中之光催化物質。 【發明內容】 現已驚訝地發現:藉包含二氧化鈦及無機黏合劑之粉 狀組成物可以增加包含水硬性黏合劑之產物的早期強度。 200815303 本發明係關於粉狀組成物之於製造具有高早期強度之 產物的用途,該組成物包含無機黏合劑及以黏合劑爲基準 計0.25至5重量%之細分之二氧化鈦。 超過5重量%之二氧化鈦含量原則上使經水處理之組 成物有相當差的加工性(例如新鮮混凝土之低度的驟降); 而少於0.25重量%之含量則僅些微地增加早期強度。 較佳地,二氧化鈦含量是〇 · 2 5至2重量%,特別佳是 0.25至1重量%之含量。 具有高早期強度且包含無機黏合劑之產物在此據了解 是指在產物硬化之第一個48小時內之任何所欲之點的時 間達到比不含二氧化鈦之產物之參考値高至少3 0%的強度 〇 無機黏合劑是指呈塑膠態時可加工之無機物質,其在 一段時間中硬化且同時將其他物質(例如粗的或比較細的 聚集體)彼此堅固地黏合。依本發明之無機黏合劑包括在 水存在時自發性地硬化之水硬性黏合劑(例如水泥、水硬 性石灰),僅在預先處理後顯出固化反應之潛在水硬性黏 合劑,在水及氫氧化鈣存在時反應呈安定產物之凝硬材料 (例如矽石塵),僅在空氣中硬化之非水硬性黏合劑(例如石 膏粉飾、無水黏合劑、二氧化鎂黏合劑、非水硬性灰泥、 磷酸鹽黏合劑及水玻璃)。 較佳地,可以使用水硬性黏合劑,例如水泥及水硬性 石灰。 細分之二氧化鈦據了解是指具有20至400平方公尺/ -6- 200815303 ‘ 40至120平 化鈦是有利的 火焰水解來產 原則上在氫一 機或無機物質 適合的。由此 面具有游離的 是,例如具有 Degussa 的 t也可以使用 徑之極窄分佈 二氧化鈦作爲 這些可以是, -鋁(例如得自 2月23日)或 專利申請案 -A-1138632 中 克之BET表面積者。較佳地,可以利用具有 方公尺/克之BET表面積之二氧化鈦。 另外已證明:利用呈聚集粒子型之二氧 〇 此種形式之粒子可以藉例如火焰氧化或 製。在此,可氧化及/或可水解之起始物質 氧焰中被氧化或水解。適合之起始物質是有 。因其良好的取得性,例如四氯化鈦是特別 所得之二氧化鈦粉末盡可能是無孔的且在表 羥基。 高度適合之商業上可得之二氧化鈦粉末 5〇±15 平方公尺/克之 BET表面積之 AEROXIDE® Ti02 P25。另外,有利 j W02005/0541 36中所揭示之具有一級粒子直 的二氧化鈦。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the use of a powdery composition for enhancing the early strength of a product prepared by using the same, which comprises titanium dioxide and an inorganic binder. [Prior Art] • Photocatalytic properties of titanium dioxide are known in cement mixtures. In W098/0560 1, it is disclosed that titanium dioxide is used to obtain the color and brightness of a particular concrete. It specifically states that the compaction strength of concrete is not affected by titanium dioxide. A similar situation is revealed in wool /0054 1 which illustrates that the properties of the resulting concrete are unaffected. In JP2000 1 1 7 1 17, a mixture comprising 100 ® parts by weight of cement and 10 to 150 parts by weight of titanium dioxide is disclosed. In GB-A-8 49 1 75, it is disclosed that the coating composition for concrete is white cement and contains up to 3% by weight of titanium dioxide. In summary, it can be said that in the prior art, titanium dioxide was only revealed as a photocatalytic substance in a cement mixture. SUMMARY OF THE INVENTION It has now surprisingly been found that the early strength of a product comprising a hydraulic binder can be increased by a powdery composition comprising titanium dioxide and an inorganic binder. 200815303 The present invention relates to the use of a powdered composition for the manufacture of a product having a high early strength, the composition comprising an inorganic binder and 0.25 to 5% by weight of finely divided titanium dioxide based on the binder. More than 5% by weight of the titanium dioxide content in principle results in relatively poor processability of the water treated composition (e.g., a low dip in fresh concrete); while less than 0.25 wt% increases the early strength only slightly. Preferably, the titanium dioxide content is 〇 25 to 2% by weight, particularly preferably 0.25 to 1% by weight. A product having a high early strength and comprising an inorganic binder is herein understood to mean at least 30% higher than the reference enthalpy of the product containing no titanium dioxide at any desired point during the first 48 hours of product hardening. Strength 〇 Inorganic binder refers to an inorganic substance that can be processed in a plastic state, which hardens over a period of time while at the same time strongly bonding other substances (for example, coarse or relatively fine aggregates) to each other. The inorganic binder according to the present invention comprises a hydraulic binder (such as cement, hydraulic lime) which spontaneously hardens in the presence of water, and a latent hydraulic binder which exhibits a curing reaction only after pretreatment, in water and hydrogen. A non-hydraulic binder (such as gypsum powder, anhydrous binder, magnesium dioxide binder, non-hydraulic stucco) that reacts as a stable product of hardened materials (such as gangue dust) in the presence of calcium oxide. , phosphate binders and water glass). Preferably, a hydraulic binder such as cement and hydraulic lime can be used. The subdivision of titanium dioxide is understood to mean having 20 to 400 m ^ 2 / -6 - 200815303 ‘ 40 to 120 flat titanium is advantageous for flame hydrolysis to produce in principle suitable for hydrogen or inorganic substances. The surface is free, for example, t with Degussa can also be used as a very narrow distribution of titanium dioxide as the BET surface area of the aluminum (for example from February 23) or the patent application -A-1138632 By. Preferably, titanium dioxide having a BET surface area of a square meter per gram can be utilized. It has also been demonstrated that particles in the form of dioxins in the form of aggregated particles can be oxidized by, for example, flame oxidation. Here, the oxidizable and/or hydrolyzable starting material is oxidized or hydrolyzed in the oxygen flame. Suitable starting materials are. Due to its good availability, for example, titanium tetrachloride is a particularly obtained titanium dioxide powder which is as non-porous as possible and has a hydroxyl group. Highly suitable commercially available titanium dioxide powder A〇OXIDE® Ti02 P25 with a BET surface area of 5〇±15 m ^ 2 /g. Further, it is advantageous to have titanium dioxide having a first-order particle as disclosed in j W02005/0541.

也可能使用混合之氧化物粉末,其除了 主要成分之外,也含有另外之金屬氧化物。 例如鈦一矽(例如得自 DE_A-423 5996),鈦_ 德國專利申請案102004062104.7,2004年】 鈦-鍩混合氧化物粉末(例如來自德國 1 02004061 702.3,2 0 0 4 年 1 2 月 2 2 日)或 EP 所揭示之摻雜的二氧化鈦粉末。 也可以使用呈表面改良型之二氧化鈦或鈦混合氧化物 粉末。較佳地,可以利用單獨或混合物形式之下列矽烷類 200815303 以供此目的z 有機基矽烷類(R〇)3Si(CnH2n + 1)及(RO)3Si(CnH2n l), 其中R =烷基,例如甲基、乙基、正丙基、異丙基、丁基 且 η = 1 - 2 0 〇 有機基矽烷類R’X(R〇)ySi(CnH2n+1)及 R’^RCOySKCnHh·!),其中 R =烷基,例如甲基、乙基、正 丙基、異丙基、丁基;R’ =烷基,例如甲基、乙基、正丙 基、異丙基、丁基;=環烷基;且 n=l-20 ; x + y = 3,X=1 、2 ; y = 1、2 〇 鹵基有機基矽烷類X3Si(CnH2n+1)及XsSiCCnH^-i),其 中 X = C1、Bra n=l -20。 鹵基有機基矽烷類X2(R’)Si(CnH2n+1)i XHROSUCnHh-i),其中 X = C1、Br ; R’ =烷基,例如甲基 、乙基、正丙基、異丙基、丁基;R’ =環烷基;n=l-20。 鹵基有機基矽烷類 X(R’)2Si(CnH2n+1)及 XCR’hSKCnHh-〗),其中X = C1、Br ; R’ =烷基,例如甲基 、乙基、正丙基、異丙基、丁基;R’ =環烷基且n= 1-20。 有機基矽烷類(R〇hSi(CH2)m-R’,其中R =烷基,例如 甲基、乙基或丙基;m = 0、1-20; ΪΤ =甲基、芳基,例如一 C6H5、經取代之苯基、C4H9、〇CF2-CHF-CF3、C6F13、 OCF2-CHF2、NH2、N3、SCN、ch = ch2、nh-ch2- ch2-nh2-、n-( ch2- ch2- nh2)2、ooc(ch3)c = ch2、och2-CH(0)CH2、NH-CO-N-CO-(CH2)5 、NH-COO-CH3 、NH-COO- CH2- CH3、NH-( CH2)3Si(OR)3、Sx-( CH2)3Si(OR)3 200815303 、SH、NR’R,,R,’’(其中 R’ =烷基、芳基;R’’ = H、烷基、 芳基;R’’’=H、烷基、芳基、苯甲基)、C2H4NR’’’’R’’’’’( 其中烷基且尺’’’’’=11、烷基)。 有機基矽烷類(R’’)X(R〇)ySi(CH2)m-R’,其中R’’ =烷 基,x + y = 3;環院基,x=l、2’ y=l、2; m = 0、1 至 20; R’=甲基、芳基,例如 C6H5、經取代之苯基、C4H9、 OCF2-CHF-CF3、C6Fi3、OCF2-CHF2、NH2、N3、SCN、It is also possible to use a mixed oxide powder which, in addition to the main components, also contains an additional metal oxide. For example, titanium monofluorene (for example from DE_A-423 5996), titanium_German Patent Application 102004062104.7, 2004] Titanium-niobium mixed oxide powder (for example from Germany 1 02004061 702.3, 2004-02-2 2 2 2 Doped titanium dioxide powder as disclosed in EP or EP. It is also possible to use a surface-modified titanium oxide or titanium mixed oxide powder. Preferably, the following decanes 200815303, alone or in a mixture, may be utilized for this purpose: z-organodecanes (R〇) 3Si (CnH2n + 1) and (RO) 3Si (CnH2n l), wherein R = alkyl, For example, methyl, ethyl, n-propyl, isopropyl, butyl and η = 1 - 2 0 〇 organic decanes R'X(R〇)ySi(CnH2n+1) and R'^RCOySKCnHh·!) Wherein R = alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl; R' = alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl; Cycloalkyl; and n = l-20; x + y = 3, X = 1, 2; y = 1, 2 〇 haloorgano-based decanes X3Si(CnH2n+1) and XsSiCCnH^-i), wherein X = C1, Bra n = l -20. Halogenyl organodecanes X2(R')Si(CnH2n+1)i XHROSUCnHh-i) wherein X = C1, Br; R' = alkyl, such as methyl, ethyl, n-propyl, isopropyl , butyl; R' = cycloalkyl; n = 1-20. Halogenyl organodecanes X(R')2Si(CnH2n+1) and XCR'hSKCnHh-), wherein X = C1, Br; R' = alkyl, such as methyl, ethyl, n-propyl, iso Propyl, butyl; R' = cycloalkyl and n = 1-20. Organic decanes (R〇hSi(CH2)m-R', wherein R = alkyl, such as methyl, ethyl or propyl; m = 0, 1-20; ΪΤ = methyl, aryl, for example one C6H5, substituted phenyl, C4H9, 〇CF2-CHF-CF3, C6F13, OCF2-CHF2, NH2, N3, SCN, ch = ch2, nh-ch2-ch2-nh2-, n-(ch2-ch2-nh2 2, ooc(ch3)c = ch2, och2-CH(0)CH2, NH-CO-N-CO-(CH2)5, NH-COO-CH3, NH-COO-CH2-CH3, NH-(CH2 3Si(OR)3, Sx-(CH2)3Si(OR)3 200815303, SH, NR'R,, R, '' (wherein R' = alkyl, aryl; R'' = H, alkyl, Aryl; R''' = H, alkyl, aryl, benzyl), C2H4NR''''R''' (wherein alkyl and s'''''''''''''' Organic decanes (R'') X(R〇)ySi(CH2)m-R', wherein R'' = alkyl, x + y = 3; ring-based, x = 1, 2' y = l , 2; m = 0, 1 to 20; R' = methyl, aryl, such as C6H5, substituted phenyl, C4H9, OCF2-CHF-CF3, C6Fi3, OCF2-CHF2, NH2, N3, SCN,

ch=ch2、nh-ch2- ch2- nh2、n-( ch2- ch2- nh2)2、 ooc(ch3)c = ch2、och2-ch(o)ch2、NH-CO-N-CO-(CH2)5 、NH-COO-CH3、NH-COO- CH2- CH3、NH-( CH2)3Si(OR)3 、Sx-( CH2)3Si(OR)3、SH、NR’R,,R’’’(其中 R,=烷基、芳 基;R’’ = H、烷基、芳基;R’’’ = H、烷基、芳基、苯甲基) 、C2H4NR’’’’R’’’’’(其中 R’’’’=H、烷基且 R’’,’’=H、烷 基)。 鹵基有機基矽烷類X3Si(CH2)m-R’,其中X = C1、Br ; m = 0、1-20 ; R’ =甲基、芳基,例如C6H5、經取代之苯基 ' C4H9 ' OCF2-CHF-CF3 ' C6F13 ' OCF2-CHF2 ' NH2 ' N3 ' SCN、ch = ch2、nh-ch2- ch2- nh2-、n-( ch2- ch2-NH2)2、-00C(CH3)C = CH2、0CH2-CH(0)CH2、NH-C0-N-CO-(CH2)5、-NH-COO-CH3、-NH-COO- CH2- CH3、-NH-( CH2)3Si(OR)3、-Sx-( CH2)3Si(OR)3(其中 R=甲基、乙基、 丙基或丁基且x=l或2)、SH。 鹵基有機基矽烷類RX2Si(CH2)mR’,其中x = Ci、Br ; m = 0、1-20 ; R’ =甲基、芳基,例如C6H5、經取代之苯基 200815303 、C4H9、OCF2-CHF-CF3、C6F13、OCF2-CHF2、NH2、N3、 SCN、ch = ch2、nh-ch2- ch2- nh2-、n-( ch2- ch2-nh2)2、-OOC(CH3)C = CH2、och2-ch(o)ch2、nh-co-n-CO-(CH2)5、-NH-COO-CH3、-NH-COO- CH2- CH3、-NH-( CH2)3Si(OR)3、-Sx-( CH2)3Si(OR)3(其中 R=甲基、乙基、 丙基或丁基且x=l或2)、SH。Ch=ch2, nh-ch2-ch2-nh2, n-( ch2- ch2- nh2)2, ooc(ch3)c = ch2, och2-ch(o)ch2, NH-CO-N-CO-(CH2) 5, NH-COO-CH3, NH-COO-CH2-CH3, NH-(CH2)3Si(OR)3, Sx-(CH2)3Si(OR)3, SH, NR'R,, R''' ( Wherein R, = alkyl, aryl; R'' = H, alkyl, aryl; R''' = H, alkyl, aryl, benzyl), C2H4NR''''R'''' '(wherein R''''=H, alkyl and R'', ''=H, alkyl). Haloorganyl decanes X3Si(CH2)m-R', wherein X = C1, Br; m = 0, 1-20; R' = methyl, aryl, for example C6H5, substituted phenyl 'C4H9' OCF2-CHF-CF3 ' C6F13 ' OCF2-CHF2 ' NH2 ' N3 ' SCN, ch = ch2, nh-ch2- ch2- nh2-, n-( ch2- ch2-NH2)2, -00C(CH3)C = CH2 , 0CH2-CH(0)CH2, NH-C0-N-CO-(CH2)5, -NH-COO-CH3, -NH-COO-CH2-CH3, -NH-(CH2)3Si(OR)3, -Sx-(CH2)3Si(OR)3 (wherein R = methyl, ethyl, propyl or butyl and x = 1 or 2), SH. Haloorganodecyl RX2Si(CH2)mR', wherein x = Ci, Br; m = 0, 1-20; R' = methyl, aryl, for example C6H5, substituted phenyl 200815303, C4H9, OCF2 -CHF-CF3, C6F13, OCF2-CHF2, NH2, N3, SCN, ch = ch2, nh-ch2-ch2-nh2-, n-(ch2-ch2-nh2)2, -OOC(CH3)C = CH2 Och2-ch(o)ch2, nh-co-n-CO-(CH2)5, -NH-COO-CH3, -NH-COO-CH2-CH3, -NH-(CH2)3Si(OR)3,- Sx-(CH2)3Si(OR)3 (wherein R = methyl, ethyl, propyl or butyl and x = 1 or 2), SH.

鹵基有機基矽烷類R2XSi(CH2)mR’,其中X = C1、Br ; m = 0、1-20 ; R’ =甲基、芳基,例如C6H5、經取代之苯基 、C4H9、OCF2-CHF-CF3、C6F13、OCF2-CHF2、NH2、N3、 SCN、CH = CH2、NH-CH2- CH2- NH2-、N-( CH2- CH2- nh2)2、-ooc(ch3)c = ch2、och2-ch(o)ch2、nh-co-n- CO-(CH2)5、-NH-COO-CH3、-NH-COO- CH2- CH3、-NH-( CH2)3Si(〇R)3、-Sx-( CH2)3Si(OR)3(其中 R=甲基、乙基、 丙基、丁基,且X=1或2)、SH。 矽氨烷類 R’R2SiNHSiR2R,,其中 R、R’=烷基、烯基 、芳基。 環聚矽氧烷類D3、D4、D5。 D3、D4、D5據了解是指明具有 3、4、5個-0-Si(CH3)2型之單元的環聚矽氧烷,例如八甲基環四矽氧烷 =D4 〇 10- 200815303Haloorganodecyl R2XSi(CH2)mR', wherein X = C1, Br; m = 0, 1-20; R' = methyl, aryl, for example C6H5, substituted phenyl, C4H9, OCF2- CHF-CF3, C6F13, OCF2-CHF2, NH2, N3, SCN, CH = CH2, NH-CH2-CH2-NH2-, N-(CH2-CH2-nh2)2, -ooc(ch3)c = ch2, och2 -ch(o)ch2, nh-co-n-CO-(CH2)5, -NH-COO-CH3, -NH-COO-CH2-CH3, -NH-(CH2)3Si(〇R)3,- Sx-(CH2)3Si(OR)3 (wherein R = methyl, ethyl, propyl, butyl, and X = 1 or 2), SH. A taxane R'R2SiNHSiR2R, wherein R, R' = alkyl, alkenyl, aryl. Cyclopolysiloxanes D3, D4, D5. D3, D4, and D5 are understood to be cyclic polyoxyalkylenes having units of 3, 4, and 5-0-Si(CH3)2, such as octamethylcyclotetraoxane = D4 〇 10- 200815303

Me2Me2

/〇—si\ Me2Si O/〇—si\ Me2Si O

OO

SiMe〇SiMe〇

•O•O

Me2 D4 以下形式之聚矽氧烷或聚矽烷油類 Y—( R I RT, -Sir-O- -Si—0- I R" 1 Υ 其中 R =烷基,芳基,(CH2)n-NH2,Η R’ =烷基,芳基,(CH2)n-NH2,Η Rn =烷基,芳基,(CH2)n-NH2,Η R”’ =烷基,芳基,(CH2)n-NH2,Η Y = CH3,Η,CzH2z+1,其中 ζ=1-20,Me2 D4 Polyoxane or polydecane oil of the following form Y-( RI RT, -Sir-O- -Si—0- I R" 1 Υ where R = alkyl, aryl, (CH2)n-NH2 , Η R' = alkyl, aryl, (CH2)n-NH2, Η Rn = alkyl, aryl, (CH2)n-NH2, Η R"' = alkyl, aryl, (CH2)n- NH2, Η Y = CH3, Η, CzH2z+1, where ζ=1-20,

Si(CH3)3,Si(CH3)2H,Si(CH3)2OH,Si(CH3)2(OCH3), Si(CH3)2(CzH2z+1) 其中 R|或 R”或 Rf"是(CH2)Z-NH2 且 z= 1 -2 0, m = 0, 1, 2, 3, ..·°° , n = 0, 1 , 2, 3 , .·· 〇〇 -11 - 200815303Si(CH3)3, Si(CH3)2H, Si(CH3)2OH, Si(CH3)2(OCH3), Si(CH3)2(CzH2z+1) wherein R| or R" or Rf" is (CH2) Z-NH2 and z= 1 -2 0, m = 0, 1, 2, 3, ..·°° , n = 0, 1 , 2, 3 , .·· 〇〇-11 - 200815303

u = 0, 較佳使用以下物質以作爲表面改良劑:辛基三甲氧基 矽烷、辛基三乙氧基矽院、六甲基乙矽氨烷、3-甲基丙烯 氧基丙基三甲氧基矽烷、3 -甲基丙烯氧基丙基三乙氧基矽 烷、十六烷基三甲氧基矽烷、十六烷基三乙氧基矽烷、二 甲基聚矽氧烷、縮水甘油氧基丙基三甲氧基矽烷、縮水甘 # 油氧基丙基三乙氧基矽烷 '九氟己基三甲氧基矽烷、十三 氟辛基三甲氧基砂院、十三氟辛基三乙氧基砂院、胺丙基 三乙氧基砂院° 特別較佳可以使用辛基三甲氧基矽烷、辛基三乙氧基 矽烷及二甲基聚矽氧烷。 . 適合之表面經改良二氧化鈦粉末可以是,例如 Degussa 之 AEROXIDE® Ti02 T805,其具有 45±10,平方 公尺/克之BET表面積及2.7至3.7重量%之碳含量。 ® 也可以使用一種粉狀組成物,其中二氧化鈦係噴灑於 無機黏合劑。 在此情況中,若組成物之水含量相較於在噴灑於分散 液之前的組成物的水含量,增加至多5 %,特佳是至多 1 .5 %,則是有利的。例如,在噴灑前,無機黏合劑可以具 有2%之水含量,在噴灑後至多有7%,特佳是至多3 . 5 %之 水含量。因水含量之些微的增加,確保組成物即使在噴灑 後呈粉狀。藉著依照精於此技藝之人士已知之方法霧化水 性分散液以進行噴灑。 -12- 200815303 有利地,分散液是小粒子尺寸之高度塡充的水性分散 液。具有以分散液爲基準計至少3 0重量%之二氧化鈦含量 的二氧化鈦分散液是特別佳的。另外,那些在分散液中二 氧化鈦之平均聚集體直徑不超過2微米的分散液是較佳的 。特別佳地,可以利用平均聚集體直徑小於3 0 0奈米之分 散液。分散液之酸鹼値優先是2至4或9至13。然而,也 可以利用4至9範圍內之分散液。藉添加酸或鹼調節酸鹼 Φ 値。分散液可另外含有妨礙沉澱及再附聚作用之添加劑。 應選擇酸、鹼及/或添加劑以致不與水硬性黏合劑成分發 生不利的交互作用。原則上,分散液之液相是水性的。 表1例示適合之分散液。 表1 :二氧化鈦分散液u = 0, the following materials are preferably used as surface modifiers: octyltrimethoxydecane, octyltriethoxyphthalate, hexamethylacetamid, 3-methylpropoxypropyltrimethoxy Baseline, 3-methoxypropoxypropyltriethoxydecane, cetyltrimethoxydecane, cetyltriethoxydecane, dimethylpolyoxane, glycidyloxypropane Trimethoxy decane, condensed sugar # methoxy propyl triethoxy decane 'nonafluorohexyl trimethoxy decane, tridecafluorooctyl trimethoxy sand, trifluorooctyl triethoxy sand Aminopropyltriethoxysilane is particularly preferably used, and octyltrimethoxydecane, octyltriethoxydecane, and dimethylpolyoxane can be preferably used. Suitable surface modified titanium dioxide powders may be, for example, AEROXIDE® Ti02 T805 from Degussa having a BET surface area of 45 ± 10, m ^ 2 /g and a carbon content of 2.7 to 3.7% by weight. ® A powdery composition can also be used, in which titanium dioxide is sprayed on inorganic binders. In this case, it is advantageous if the water content of the composition is increased by up to 5%, particularly preferably at most 1.5%, as compared with the water content of the composition before being sprayed on the dispersion. For example, the inorganic binder may have a water content of 2% before spraying, and at most 7% after spraying, particularly preferably at most 3.5% water content. Due to the slight increase in water content, it is ensured that the composition is powdered even after spraying. The aqueous dispersion is atomized by spraying in accordance with methods known to those skilled in the art for spraying. -12- 200815303 Advantageously, the dispersion is a highly aqueous dispersion of small particle size. A titanium dioxide dispersion having a titanium dioxide content of at least 30% by weight based on the dispersion is particularly preferred. Further, those dispersions in which the average aggregate diameter of titanium oxide in the dispersion does not exceed 2 μm are preferable. Particularly preferably, it is possible to use a dispersion having an average aggregate diameter of less than 300 nm. The acidity and alkalinity of the dispersion is preferably 2 to 4 or 9 to 13. However, dispersions in the range of 4 to 9 can also be utilized. Adjust acid-base Φ 値 by adding acid or base. The dispersion may additionally contain additives which interfere with precipitation and re-agglomeration. The acid, base and/or additive should be chosen so as not to adversely interact with the hydraulic binder component. In principle, the liquid phase of the dispersion is aqueous. Table 1 illustrates suitable dispersions. Table 1: Titanium Dioxide Dispersion

表面積 Ti02 含量 Ti〇2 d 5 0 pH 安定化 作用 平方公尺/克 重量% 微米 50 40 <2 2-4 HN〇3 90 30 <1.5 2-4 hno3 90 30 <0.05 2-4 hno3 50 40 <0.10 2-4 hno3 50 30 <0.3 10-13 NaOH 90 30 <0.2 10-13 NaOHSurface area Ti02 content Ti〇2 d 5 0 pH stability square meter / gram weight % micron 50 40 < 2 2-4 HN 〇 3 90 30 < 1.5 2-4 hno3 90 30 < 0.05 2-4 hno3 50 40 <0.10 2-4 hno3 50 30 <0.3 10-13 NaOH 90 30 <0.2 10-13 NaOH

粒子尺寸分佈之中値(d5Q)藉由使用Horiba之測量裝 置(LB 5 0 0)之動力光散射來測定。The enthalpy (d5Q) in the particle size distribution was determined by dynamic light scattering using a Horiba measuring device (LB 500).

商業上可得到之二氧化鈦分散液是,例如VP Disp W -13- 200815303 740 X (40重量%之Ti02,d5G <0·2微米,酸鹼値6-9)及 VP Disp W 2730 X (30重量% 之 Ti02,d5G <0·1 微米)。 【實施方式】 所用之二氧化鈦形式 (a) AEROXIDE® Ti02 Ρ25 (Degussa AG), BET 表面積 5 0 土 1 5平方公尺/克,乾燥損失S 1 · 5重量%,酸鹼値 3.5-4.5 。 (b) Ti02-2:依照W02005/054 1 3 6實例 A7之二氧化鈦粉末 ,BET表面積 91平方公尺/克。 (c) 顏料二氧化鈦:BET表面積<10平方公尺/克。 (d) 矽—鈦混合氧化物:依照DE-A- 1 02004001 520實例 12,BET表面積 43平方公尺/克,二氧化鈦含量 49 重量%,矽石含量 51重量%。 (e) Ti02分散液 1 (水性):Ti02表面積 90平方公尺/克, Ti〇2含量 30重量%,d5〇S〇.2微米,酸驗値= 2- 4, 安定化作用hno3。 (f) Ti02分散液 2 (水性):Ti02表面積 50平方公尺/克, Ti〇2含量 30重量%,d5〇S0.3微米,酸驗値=10-13 ,安定化作用NaOH。 實例1 含有1.5重量%之AEROXIDE® Ti02 P25水泥的無機 黏合劑(得自Holcim之CEM I 52.5R HS/NA)在粉末混合 -14- 200815303 機中強烈地混合。使用此粉狀組成物,依照DIN ΕΝ 196 製備標準的灰泥(水-水泥値 0.45)。在24小時及48小時 後,遵循 DIN 1 1 64,在尺寸爲1 X 1 x4公分之稜鏡上測量 灰泥之壓實強度。重複實驗但不使用二氧化鈦。比較結果 顯示於表1中。 表1 ··在2 4小時及4 8小時後之早期強度 含量 壓縮強度 壓縮強度 壓縮強度 Ti〇2 2 4小時 之增加 4 8小時 重量% 牛頓/平方毫米 % 牛頓/平方毫米 0 12.2 - 28.3 1.5 18.1 48 32.5 *)以水泥爲基準計Commercially available titanium dioxide dispersions are, for example, VP Disp W -13- 200815303 740 X (40% by weight of Ti02, d5G < 0. 2 microns, pH 値6-9) and VP Disp W 2730 X (30 Weight% of Ti02, d5G < 0·1 micron). [Embodiment] Titanium dioxide used (a) AEROXIDE® Ti02 Ρ25 (Degussa AG), BET surface area 5 0 soil 1 5 m ^ 2 / g, drying loss S 1 · 5 wt%, acid-base 値 3.5-4.5. (b) Ti02-2: Titanium dioxide powder according to Example 0 of WO2005/054 1 3 6 with a BET surface area of 91 m ^ 2 /g. (c) Pigmented titanium dioxide: BET surface area < 10 m 2 /g. (d) 矽-titanium mixed oxide: According to Example 12 of DE-A-1 02004001 520, the BET surface area is 43 m ^ 2 /g, the titanium dioxide content is 49 wt%, and the vermiculite content is 51 wt%. (e) Ti02 dispersion 1 (aqueous): Ti02 surface area 90 m ^ 2 / g, Ti 〇 2 content 30 wt%, d5 〇 S 〇 2 μm, acid test 値 = 2 - 4, stabilization hno3. (f) Ti02 dispersion 2 (aqueous): Ti02 surface area 50 m ^ 2 / g, Ti 〇 2 content 30 wt%, d5 〇 S 0.3 μm, acid test 値 = 10-13, stabilization NaOH. Example 1 An inorganic binder (CEM I 52.5R HS/NA from Holcim) containing 1.5% by weight of AEROXIDE® Ti02 P25 cement was strongly mixed in a powder mixing -14-200815303 machine. Using this powder composition, a standard plaster (water-cement 値 0.45) was prepared in accordance with DIN 196 196. After 24 hours and 48 hours, the compaction strength of the plaster was measured on a scale of 1 X 1 x 4 cm following DIN 1 1 64. The experiment was repeated but titanium dioxide was not used. The comparison results are shown in Table 1. Table 1 · Early strength content after 24 hours and 48 hours After compressive strength compressive strength compressive strength Ti〇2 2 4 hour increase 4 8 hours weight % Newton / square mm % Newton / square mm 0 12.2 - 28.3 1.5 18.1 48 32.5 *) Based on cement

由表1顯明:因添加二氧化鈦,在24小時後灰泥之 早期強度相較於不含二氧化鈦者幾乎增加50%。在48小 時後之値顯示:二氧化鈦作用在水泥水合作用之早期比在 晚期者更強烈。在7及28日後之強度的測量顯示:相較 於不含二氧化鈦之樣品,強度增加不顯著。二氧化鈦因此 僅對早期強度有作用,但對最終強度則否。 實例2 無機黏合劑(CEM I 42.5 R,Buderus)及不同的二氧化 鈦(參見表2)之粉狀組成物藉著在粉末混合機中強烈混合 而製備。所有的製成物含有佔水泥之0.5重量%之量的二 -15- 200815303 氧化鈦。使用此粉狀組成物,依照DIN ΕΝ 196製備標準 灰泥(水-水泥値 0 · 4 5 )。在2 4小時後,遵循 D IN 1 1 6 4在 尺寸爲1x1x4公分之棱鏡上測量灰泥之壓實強度。重複實 驗但不使用二氧化欽。 表2:不同型式之二氧化鈦對早期強度的影響 實例 二氧化鈦 在24小時之 壓縮強度 壓縮強度 之增加 牛頓/平方毫米 % 2a(比較性) 不含二氧化鈦 12.16 • 2 b (比較性) 顏料Ti02 12.37 2 2c AEROXIDE® Ti02 P25 17.72 46 2d Ti02-2 19.05 57 2e Si-Ti混合氧化物 15.85 30 *)以水泥爲基準計 表2顯示:因使用細分之二氧化鈦,可以達成極顯著 之早期強度之增加。比表面積越高’此變得越高。然而因 使用低表面積的顏料二氧化鈦,僅達成些微之早期強度的 增加。藉使用含細分二氧化鈦之混合氧化物也可以顯著增 加早期強度。 實例3 藉噴灑不同之二氧化鈦分散液(參見表3 )於強烈混合 機(15 升體積,Maschinenfabrik Gustav Eirich GmbH & Co KG)中之CEM I 42·5 R (Buderus)上’首先製備含二氧化鈦 -16- 200815303 之粉狀組成物。使用此粉狀組成物,依照 DIN EN 196 製備標準灰泥(水-水泥値 〇 · 4 5 )。在2 4小時後,遵循d IN 1 164在尺寸爲1x4x4公分之稜鏡上測量灰泥之壓實強度。 重複實驗卻不使用二氧化鈦。 表3 :二氧化鈦分散液之使用 實例 分散液之 Ti02含量 壓縮強度 2 4小時 壓縮強度 之增加 重量%” 牛頓/平方毫米 % 3 a (比較性) Λ /\\\ 12.16 - 3b$) 1.67 18.99 65 3c&) 1.67 17.55 88 $)二氧化鈦分散液; &)二氧化鈦分散液2 ; *)以水泥 爲基準計; 表3顯示:使用包含噴灑上二氧化欽分散液也可使早 馨 期強度顯著增加。 實例4 :在標準灰泥樣品中二氧化鈦添加之強度增加作用 的硏究 起始物質:標準砂,CEM I 42.5 R (Buderus),Ti02P 25 (Degussa),水。 水泥及Aeroxide Ti02 P25首先被強烈地混合。而後 依照DIN EN 196製備測試用物件(水-水泥値:0.45)。依照 DIN 1164在尺寸爲1·5χ1·5χ6.0公分之稜鏡上測定灰泥稜 -17- 200815303 鏡之強度。 表4 :撓曲/壓縮強度(單位爲牛頓/平方毫米)與二氧化鈦添 加量(單位爲重量%)的關係 二氧化鈦添加 0.0 0.1 0.5 1.0 1.5 5.0 Id 3.67/ 3.76/ 4.56/ 4.77/ 6.64/ 4.52/ 12.16 12.48 17.72 18.23 18.25 16.41 2d 7.2 1/ 7.4 9/ 8.29/ 8.03/ 7.3 4/ 5.94/ 29.05 30.03 33.99 38.62 33.08 29.97From Table 1, it is shown that the early strength of the mortar after 24 hours is almost 50% higher than that of the titanium dioxide-free one due to the addition of titanium dioxide. After 48 hours, the effect of titanium dioxide is stronger in the early stage of cement hydration than in the late stage. Measurements of the strength after 7 and 28 days showed that the increase in strength was not significant compared to the sample without titanium dioxide. Titanium dioxide therefore only works for early strength, but not for final strength. Example 2 A powdery composition of an inorganic binder (CEM I 42.5 R, Buderus) and different titanium dioxide (see Table 2) was prepared by intensive mixing in a powder mixer. All of the finished products contained titanium oxide of -15-200815303 in an amount of 0.5% by weight of the cement. Using this powdery composition, standard stucco (water-cement 値 0 · 4 5 ) was prepared in accordance with DIN 196 196. After 24 hours, the compaction strength of the plaster was measured on a prism measuring 1 x 1 x 4 cm following D IN 1 1 6 4 . Repeat the experiment without using dioxins. Table 2: Effect of different types of titanium dioxide on early strength Example Titanium dioxide compressive strength at 24 hours Compressive strength increased Newton/mm 2 % 2a (Comparative) Titanium dioxide free 12.16 • 2 b (Comparative) Pigment Ti02 12.37 2 2c AEROXIDE® Ti02 P25 17.72 46 2d Ti02-2 19.05 57 2e Si-Ti mixed oxide 15.85 30 *) Based on cement Table 2 shows that due to the use of finely divided titanium dioxide, an extremely significant increase in early strength can be achieved. The higher the specific surface area, the higher this becomes. However, due to the use of low surface area pigmented titanium dioxide, only a slight increase in early strength is achieved. Early strength can also be significantly increased by using a mixed oxide containing finely divided titanium dioxide. Example 3 By first spraying a different titanium dioxide dispersion (see Table 3) on a CEM I 42·5 R (Buderus) in an intensive mixer (15 liter volume, Maschinenfabrik Gustav Eirich GmbH & Co KG), the first titanium dioxide-containing 16-200815303 Powder composition. Using this powder composition, standard stucco (water-cement 値 〇 · 4 5 ) was prepared in accordance with DIN EN 196. After 24 hours, the compaction strength of the plaster was measured on a scale of 1 x 4 x 4 cm following d IN 1 164. The experiment was repeated without using titanium dioxide. Table 3: Examples of use of titanium dioxide dispersions Ti02 content of dispersions Compressive strength 2 4 hours of increase in compressive strength %" Newtons per square millimeter % 3 a (comparative) Λ /\\\ 12.16 - 3b$) 1.67 18.99 65 3c&) 1.67 17.55 88 $) Titanium Dioxide Dispersion; &) Titanium Dioxide Dispersion 2; *) Based on Cement; Table 3 shows that the use of a sprayed Dioxin dispersion can also significantly increase the strength of the early sweet phase. Example 4: Study of the strength increase of titanium dioxide addition in standard stucco samples. Starting materials: standard sand, CEM I 42.5 R (Buderus), Ti02P 25 (Degussa), water. Cement and Aeroxide Ti02 P25 were first strongly Mixing the ground. Then test the test object according to DIN EN 196 (water-cement 値: 0.45). Determine the strength of the mirror according to DIN 1164 on a 尺寸1·5χ1·5χ6.0 cm 稜鏡-17- 200815303 Table 4: Relationship between flexural/compressive strength (in Newtons per square millimeter) and titanium dioxide addition (in % by weight) Titanium dioxide addition 0.0 0.1 0.5 1.0 1.5 5.0 Id 3.67/ 3.76/ 4.56/ 4.77/ 6.64 / 4.52/ 12.16 12.48 17.72 18.23 18.25 16.41 2d 7.2 1/ 7.4 9/ 8.29/ 8.03/ 7.3 4/ 5.94/ 29.05 30.03 33.99 38.62 33.08 29.97

表4顯示:0.1重量%之極低濃度之水泥僅引起早期 強度之些微的增加。然而,添加以黏合劑爲基準計〇. 5重 量%之二氧化鈦,則觀察到樣品強度之顯著增加。在表4 中在1日後所測量之強度也清楚地顯示:早期強度無法總 是因二氧化鈦濃度之增加而進一步增加。在2日後(2d)之 強度即使在5 %之濃度下也顯著地降低。總之,可以說: φ 在尙不具活性之二氧化鈦的量與不再增加早期強度之二氧 化鈦之量間有一最佳値。 實例5 :於水泥之水合方法中二氧化鈦之反應性Table 4 shows that a very low concentration of 0.1% by weight of cement only caused a slight increase in early strength. However, a significant increase in the strength of the sample was observed by adding 5% by weight of titanium dioxide based on the binder. The intensity measured after 1 day in Table 4 also clearly shows that the early strength cannot always be further increased by the increase in the concentration of titanium dioxide. The intensity after 2 days (2d) was significantly lowered even at a concentration of 5%. In summary, it can be said that φ has an optimum enthalpy between the amount of non-active titanium dioxide and the amount of titanium dioxide which does not increase the early strength. Example 5: Reactivity of Titanium Dioxide in Cement Hydration Process

一份 3.00 克之 CEM I 42.5 R 及一份 3.00 克之 CEM I 42·5 R與所添加之2重量%之二氧化鈦之粉狀組成物在測 試管中混合且均勻地壓實且水合作用所需之蒸餾水(1.20 克)被吸入一具有針之注射器中。隨後,測試管及注射器 被插入恆溫25 °C用之熱流卡計之樣品空間中。在達到溫度 平衡時,水噴灑入粉末床且開始測量。 -18- 200815303A 3.00 g of CEM I 42.5 R and a 3.00 g of CEM I 42·5 R and the added 2 wt% titanium dioxide powder composition were mixed in the test tube and uniformly compacted and required for hydration Distilled water (1.20 grams) was drawn into a syringe with a needle. Subsequently, the test tube and syringe were inserted into the sample space of a heat flow card meter for a constant temperature of 25 °C. When the temperature equilibrium is reached, water is sprayed into the powder bed and measurement begins. -18- 200815303

圖 1 顯示:CEM 42·5 R I (曲線 a)及 CEM 42.5 R I 與所添加2重量%之二氧化鈦之粉狀組成物(曲線 b)之水 合過程。據所見:在添加二氧化鈦之樣品的起初峰中每段 時間之熱發展顯著較高。另外,見到由於較短之誘發時間 所致之加速期中熱釋出之早期增加及降低,藉此說明因二 氧化鈦之添加所致之水泥之水合作用之加速及因此早期強 度增加的作用。Figure 1 shows the hydration process of CEM 42·5 R I (curve a) and CEM 42.5 R I with the powdery composition of 2% by weight of titanium dioxide added (curve b). It can be seen that the thermal development of each of the initial peaks of the titanium dioxide added sample is significantly higher. In addition, the early increase and decrease of the heat release during the acceleration period due to the shorter induction time is seen, thereby illustrating the acceleration of the hydration of the cement due to the addition of titanium dioxide and the effect of the early strength increase.

Φ 圖 2 顯示:CEM 42.5 R I (曲線 a)及 CEM 42.5 R I 與所添加2重量%之二氧化鈦之粉狀組成物(曲線 b)之水 合過程。在24小時後熱釋出之量在二樣品中幾乎一致。 然而,在添加二氧化鈦之樣品之情況中在加速期中早期熱 發展也清楚地被見到。 【圖式簡單說明】 圖 1 顯示:CEM 42.5 R I (曲線 a)及 CEM 42·5 R 】 Φ 與所添加2重量%之二氧化鈦之粉狀組成物(曲線b)之水 合過程。 圖 2 顯示:CEM 42.5 R I (曲線 a)及 CEM 42.5 R ] 與所添加2重量%之二氧化鈦(曲線 b)之水合過程。 -19-Φ Figure 2 shows the hydration process of CEM 42.5 R I (curve a) and CEM 42.5 R I with the powdered composition of 2% by weight of titanium dioxide added (curve b). The amount of heat release after 24 hours was almost identical in the two samples. However, in the case of the addition of a sample of titanium dioxide, early thermal development during the acceleration period was also clearly seen. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the hydration process of CEM 42.5 R I (curve a) and CEM 42·5 R 】 Φ with the powdery composition of 2% by weight of titanium dioxide added (curve b). Figure 2 shows the hydration process of CEM 42.5 R I (curve a) and CEM 42.5 R ] with 2% by weight of titanium dioxide added (curve b). -19-

Claims (1)

(1) 200815303 十、申請專利範圍 1· 一種粉狀組成物之於製備具有高早期強度的產物上 的用途,該粉狀組成物包含無機黏合劑及以黏合劑爲基準 計0.25至5重量%之細分的二氧化鈦。 2.如申請專利範圍第1項之用途,其中該二氧化鈦粒 子之BET表面積是40至120平方公尺/克。 3 .如申請專利範圍第1或2項之用途,其中該粉狀組 # 成物含有噴灑在無機黏合劑上之二氧化鈦。(1) 200815303 X. Patent Application No. 1 1. Use of a powdery composition for preparing a product having high early strength, the powdery composition comprising an inorganic binder and 0.25 to 5% by weight based on the binder Subdivided titanium dioxide. 2. The use of claim 1, wherein the titanium dioxide particles have a BET surface area of from 40 to 120 square meters per gram. 3. The use of claim 1 or 2, wherein the powder group comprises titanium dioxide sprayed on an inorganic binder. -20--20-
TW096115606A 2006-05-05 2007-05-02 Use of a pulverulent composition comprising titania and an inorganic binder to increase early strength TW200815303A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006020878A DE102006020878A1 (en) 2006-05-05 2006-05-05 Use of a powdery preparation containing titanium dioxide and inorganic binder for increasing the early strength

Publications (1)

Publication Number Publication Date
TW200815303A true TW200815303A (en) 2008-04-01

Family

ID=38134203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096115606A TW200815303A (en) 2006-05-05 2007-05-02 Use of a pulverulent composition comprising titania and an inorganic binder to increase early strength

Country Status (4)

Country Link
EP (1) EP2018355A1 (en)
DE (1) DE102006020878A1 (en)
TW (1) TW200815303A (en)
WO (1) WO2007128630A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014600C5 (en) 2009-03-24 2015-04-02 Dyckerhoff Gmbh Photocatalytically activated components made from a matrix bound with a mineral binder and method for producing the components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU996366A1 (en) * 1981-07-10 1983-02-15 Государственный Всесоюзный Институт По Проектированию И Научно-Исследовательским Работам "Южгипроцемент" Binder for plugging mortars
US5183710A (en) * 1990-08-30 1993-02-02 U-Sus Distributors, Inc. Hydrophobic inorganic materials and process for making same
IT1286492B1 (en) * 1996-08-07 1998-07-15 Italcementi Spa HYDRAULIC BINDER WITH IMPROVED COLOR CONSTANCE PROPERTIES
AU2001258236A1 (en) * 2000-05-12 2001-11-26 Densit A/S Method for producing cement-based composite structures
ITMI20030291A1 (en) * 2003-02-18 2004-08-19 Italcementi Spa SOLID FOR CEMENTITIOUS PHOTOCATALYTIC FLOORING
EP1607378A1 (en) * 2004-06-18 2005-12-21 Degussa AG Cement composition comprising fumed metal oxide powder

Also Published As

Publication number Publication date
DE102006020878A1 (en) 2007-11-08
EP2018355A1 (en) 2009-01-28
WO2007128630A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
RU2577864C2 (en) Curable mixture
Sun et al. 3D extrusion free forming of geopolymer composites: Materials modification and processing optimization
RU2519020C2 (en) Hydrophobising powder and its application
Collodetti et al. Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties
CN107129283A (en) High-solid-content ceramic slurry for photocuring 3D printing and preparation process thereof
JP5687716B2 (en) Hydraulic lime composition
EP1982964A1 (en) Preparation containing organosilicium compound and its use
US20100266470A1 (en) Titanium dioxide based photocatalytic composites and derived products on a metakaolin support
TWI363047B (en) Process for the preparation of products of high early strength comprising hydraulic binders
JP2019534232A (en) Hydrophobized fiber cement product, process for its production and use thereof
WO2005012203A2 (en) Method for preparing materials containing binder systems derived from amorphous silica and bases
Sébaıbi et al. A study of the viscosity of lime–cement paste: influence of the physico-chemical characteristics of lime
Borja et al. Synthesis of nano-silica as a promising route of recycling phosphate waste rocks and its incorporation in mortars
Zhang et al. A comprehensive review of cementitious composites modified with nano silica: Fabrication, microstructures, properties and applications
CN107531568A (en) The method for preparing the hardening accelerator comprising calcium silicate hydrate of powder type
TW200815303A (en) Use of a pulverulent composition comprising titania and an inorganic binder to increase early strength
AU2009281324B2 (en) Method of dedusting a pulverulent building material composition
CA2824915A1 (en) Sulphur cement products
Chen et al. Functional hydrophobic coating for phosphogypsum via stoichiometric silanization, hydrophobic characterization, microstructure analysis, and durability evaluation
TWI360531B (en) Use of pyrogenic metal oxide for the manufacture o
Shakhmenko et al. UHPC containing nanoparticles synthesized by sol-gel method
CN101437773A (en) Pulverulent composition comprising a hydraulic binder and a pyrogenic metal oxide
JP2013136484A (en) Pozzolanic reactive admixture
JP6204481B2 (en) Wetting and hydrophobizing additives
JP2008184485A (en) Filler-containing aqueous slurry composition