TW200814238A - Self-aligned stacked gate and method for making the same - Google Patents

Self-aligned stacked gate and method for making the same Download PDF

Info

Publication number
TW200814238A
TW200814238A TW95132828A TW95132828A TW200814238A TW 200814238 A TW200814238 A TW 200814238A TW 95132828 A TW95132828 A TW 95132828A TW 95132828 A TW95132828 A TW 95132828A TW 200814238 A TW200814238 A TW 200814238A
Authority
TW
Taiwan
Prior art keywords
layer
gate
conductive
self
unit
Prior art date
Application number
TW95132828A
Other languages
Chinese (zh)
Inventor
Ko-Hsing Chang
Su-Yuan Chang
Original Assignee
Powerchip Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Semiconductor Corp filed Critical Powerchip Semiconductor Corp
Priority to TW95132828A priority Critical patent/TW200814238A/en
Publication of TW200814238A publication Critical patent/TW200814238A/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A method of making self-aligned stacked gate for a flash memory device is disclosed. The method includes the steps of (a) providing a substrate; (b) sequentially forming a first dielectric layer, a first conductive layer and a mask layer on the substrate; (c) partly etching the mask layer, the first conductive layer and the first dielectriclayer to define a shallow trench; (d) filling the shallow trench with a second dielectric layer to form a shallow trench isolation (STI) unit; (e) entirely forming a second conductive layer; (f) partly etching the second conductive layer to form a spacer on the first conductive, wherein the first conductive layer and the spacer provide a floating gate (FG) unit; (g) partly removing the STI unit to expose a part of side wall of the first conductive layer and the spacer; (h) sequentially forming a third dielectric layer and a third conductive layer; and (i) partly etching the third conductive layer to define a control gate (CG), thereby obtaining the self-aligned stacked gate structure with high coupling ratio.

Description

200814238 九、發明說明: 【發明所屬之技術領域】 本案係關於一種非揮發性記憶體之製造方法,尤指 一種應用於非揮發性記憶體中自我對準堆疊閘極之製 造方法。 【先前技術】200814238 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for manufacturing a non-volatile memory, and more particularly to a method for manufacturing a self-aligned stacked gate in a non-volatile memory. [Prior Art]

在現今工業界中各式記憶體產品中,由於可程式之 非揮發性記憶體(erasable programmable read_only memory, EPROM)具有可進行多次資料之寫入、寫取及 抹除等動作,且存入之資料在斷電後也不會消失之優 點,因此已成為個人電腦和電子設備所廣泛採用的一種 記憶體元件。 典型的可程式非揮發性記憶體係以摻雜的多晶矽 (Polysilicon)製作浮動閘極(fl〇ating gate,FG)盥杵 制閘極(control gate,CG)。*且年動閘極與控制問極 間再以-閘極介電層相隔,而浮動閘極與基板間係以穿 =介電層(tunnel dielectric layer)相隔。當對此記 憶體進行寫入/抹除(write/erase)資料動作時,藉由於 控制閘極與源極/汲極區施加偏壓,以使電荷注入浮動 閘極或使電荷從浮動閘極移出。而在讀取記憶體中的資 料%,則於控制閘極上施加一工作電壓,此時浮動 的啟始電壓(threshold v〇l tage)已因先前的寫入/抹卜 而改變,故可由此啟始電壓之差異判讀資料值。 承 然而在實際應用時,由於浮動閘極為一層連續的半 200814238 導體層(多晶矽層),因此注入浮動閘極的電荷會均勻分 布於整個浮動閘極之中。對於此類的記憶體而言,一個 圮憶胞便只能儲存一位元的資料,所以如何有效定義並 縮短相鄰之多晶矽閘極之間距,以達到縮小晶片尺寸之 目的遂成為一重要課題。而在半導體製程中,自我對準 ,觸Uelf-aligned contact,SAC)製程即可以有效地 疋義並縮短相鄭之多晶矽閘極之間距,以達到縮小晶片 尺寸的目的。 •一第一圖(A)-第-圖⑴揭示-習知技術快閃記憶 早元之堆宜閘極製造流程示意圖。該製造流程揭示於美 國專,案號USP6,171,909號專利。如第一圖(A)所示: 首先提供一具有井、源極/汲極(未揭示)之基板丨〇〇,該 技藝為一熟知技藝,在此不再詳述。而在該基板1〇〇上 方進一步具有—第—介電層1G2、-導電層1G4與一氮 $石夕層· 1G6依序堆疊生成於其上。爾後,再形成一具定 義圖紋之光阻層11〇於該氮化矽層1〇6上。其中該第一 • 介電層102可藉由氧化基層而形成厚度約60至120埃 (angStr〇mS)之氧化層。而該導電層104則可由摻雜多 晶矽層而成;該氮化矽層1〇6則可以 在第一圖⑻中,透過該餘層罩對 该鼠化石夕層106、該導電層1〇4、該第一介電層ι〇2鱼 ^板1GG進行-非等向性㈣,直至該基板1〇〇上形 =溝渠112。而該光阻層11〇則於非等向性姓 後移除。 道φ第狂圖(C)中於該溝渠112、第一介電層102與該 、電s 104之表面形成一襯墊氧化層(liner 〇xide 7 200814238 la^er)114,其中該襯墊氧化層114可藉由熱氧化之方 法形成。在熱氧化的製程中,該溝渠112與該導電層 =表面被氧化形成薄氧化層,同時向外延伸並覆蓋住該 第一介電層102之側壁。其間該氮化矽層並無襯墊氧^ 層之形成。 在第一圖(D)中,於該基板10Q上方再形成一氧化 層116,其中該氧化層116之厚度足以覆蓋住 層 106 。 7In various types of memory products in the industry today, the erasable programmable read-only memory (EPROM) has the functions of writing, writing, and erasing multiple data, and depositing them. The data does not disappear after power-off, so it has become a memory component widely used in personal computers and electronic devices. A typical programmable non-volatile memory system uses a doped polysilicon to fabricate a floating gate (FG) gate (control gate, CG). * The annual gate and the control electrode are separated by a gate dielectric layer, and the floating gate and the substrate are separated by a tunnel dielectric layer. When a write/erase data action is performed on this memory, a charge is injected into the floating gate or the charge is discharged from the floating gate by applying a bias voltage to the control gate and the source/drain regions. Move out. While reading the data % in the memory, an operating voltage is applied to the control gate, and the floating starting voltage (threshold v 〇 tage) has been changed by the previous writing/wiping, so The difference in starting voltage is used to interpret the data value. However, in practical applications, since the floating gate is a continuous layer of semi-200814238 conductor layer (polysilicon layer), the charge injected into the floating gate is evenly distributed throughout the floating gate. For such memory, a memory cell can only store one bit of data, so how to effectively define and shorten the distance between adjacent polysilicon gates to achieve the purpose of reducing the size of the wafer becomes an important issue. . In the semiconductor process, the self-aligned, contact Uelf-aligned contact (SAC) process can effectively deviate and shorten the distance between the gates of the Zhengzhou polycrystalline germanium to reduce the size of the wafer. • A first figure (A) - the first figure (1) reveals - the conventional technology flash memory schematic diagram of the early gate stacking process. This manufacturing process is disclosed in U.S. Patent No. 6,171,909. As shown in the first figure (A): First, a substrate having a well, source/drain (not disclosed) is provided. This technique is a well-known technique and will not be described in detail herein. Further, above the substrate, a first-dielectric layer 1G2, a conductive layer 1G4, and a nitrogen-metal layer 1G6 are sequentially stacked and formed thereon. Thereafter, a photoresist layer 11 having a defined pattern is formed on the tantalum nitride layer 1〇6. The first dielectric layer 102 can form an oxide layer having a thickness of about 60 to 120 angstroms (angStr 〇 mS) by oxidizing the base layer. The conductive layer 104 may be formed by doping a polysilicon layer; the tantalum nitride layer 1〇6 may be in the first figure (8), through the residual layer cover, the ratification layer 106, the conductive layer 1〇4 The first dielectric layer ι〇2 fish plate 1GG is subjected to non-isotropic (four) until the substrate 1 is topped up = trench 112. The photoresist layer 11 is removed after the non-isotropic first name. a pad oxide layer (liner idexide 7 200814238 la^er) 114 is formed on the surface of the trench 112, the first dielectric layer 102, and the electric s 104, wherein the pad The oxide layer 114 can be formed by a method of thermal oxidation. In the thermal oxidation process, the trench 112 and the conductive layer = surface are oxidized to form a thin oxide layer while extending outwardly and covering the sidewall of the first dielectric layer 102. During this period, the tantalum nitride layer has no formation of a pad oxide layer. In the first (D), an oxide layer 116 is formed over the substrate 10Q, wherein the oxide layer 116 has a thickness sufficient to cover the layer 106. 7

^ ,一圖(E)中,以該氮化矽106作為基準終點,對 該氧化層116進行一化學機械研磨 (chemical-mechanical polishing,CMP)製程以達平土日 化之目的。而殘留下之氧化層116與前述之襯墊= -114則構成一絕緣層ι18。 日 、首2第—圖(F)中,㈣該絕緣層118直至暴露出該 層104之上部。而該蝕刻可以乾式蝕刻或濕式蝕刻 ^丁。該絕緣層118由氧切所構成,以作為淺溝渠隔 離 Uhallow trench isolation, STI)單元。 戶12第"圖二)12該餘10°上再形成-導電材料 層12—0,,、中该¥電材料層12〇可藉由推雜多晶石夕製得。 —第一圖〇〇中,非等向蝕刻該導電材料層12〇直至 暴露出該氮化矽層106與該絕緣層U8。於是在該蝕 -導電侧壁層(conductivespacer)12〇a 形成 於该導電層104與該氮切層⑽之側壁,而該導 壁層120a與該導電請則作為第_閘極導電層122。 該氮切層1G6於形成該第—閘極導電層122後即為移 除0 8 200814238 第一圖(i)中,一第二介電層124與一第二閘極導 電層126則依序生成於該基板1〇〇之上。其中該第二介 %層々124 為氧氮氧(oxide/nitride/oxide,0N0)層; 而該第二閘極導電層126則為-摻雜多晶矽層。, 即得以製得一快閃記憶單元之堆疊閘極。 曰 另一方面,美國專利案號USP6,2〇〇,856號專利, 亦揭不另一快閃記憶單元之堆疊閘極製造流程。如第二 圖(A)第一圖(κ),其揭示另一習知快閃記憶單元之堆 疊閘極製造流程示意圖。首先如第二圖⑴所示,於一 矽基板201上形成一座塾氧化層2〇3。接著如帛二圖⑻ 所示,再於該座墊氧化層2〇3上形成一遮罩層2〇5,豆 中該遮罩層205可由一沈積氮化矽所構成。 在弟囷(C )中,在疋義遠遮罩層2 0 5之圖紋後, 刻該遮罩層m、該座墊氧化層2〇3及該 ^11日/著生。藉此,形成一具有開口 207與底部區域 Z11之溝渠。 第圖(D)中,再沈積一介電層213以覆蓋該溝準 與該遮罩層m,並填滿該開口 207。隨後 化製程移除部份該介電層213以獲致一絕緣區挪,如 第:圖(E)所不。移除該遮罩層2〇5則可得如第二圖⑺ 冓:再移除該座墊氧化層203並形成-閘極氧 曰, 同時,於該閘極氧化層231與該絕緣區223 上形成一夕晶矽層(poly_1)233,如第二圖(g)所示。再 以化學,械研磨處理即可得第二圖(H)所示之結構。 在第二圖⑴中,部份飯刻該絕緣1挪 部份該多晶㈣233之側壁。此時,再沈積一側壁層 200814238 (spacer iayer)241即可得圖示結構。而以一 2上一閑極導電(P〇ly-3)請依序生成前述結構I 5示得一快閃記憶單元之堆疊閘極,如第二圖(K) HJ而f述之該等習知技藝在處理快閃記憶體堆疊 雖都引人了自我對準之堆疊閘極產製 =鳴可增加偶合比(c〇upHngrati〇),以降: ‘對準ί 在實際應用時,該等習知技藝所揭示之自 ^準堆豐閘極結構雖都能達到高偶合比之目的,但如 弟-圖(J)與第二圖(L)所示之堆疊閘極單元 壁 (Spacer)結構均係跨座於STI淺溝渠隔離結 此,^^構之縮小是最不利的。有鑑於 月人,犮精心研究,並以其從事該項 提出本案之一種應用於非揮發性記憶 $對準堆豐閘極之製造方法。除了可提供高偶合 ί nrratio)之堆叠閘極結構,進而降低操作電 得之發明。指小化之發展’實為—不可多 【發明内容】 的乂段案的某些特徵,其他特徵將敍述於後續 為::附加的申―^ 本案之主要目的為提供一種應用於非揮發性記憶 200814238 自我對準堆疊閘極之製造方法。藉由簡單製程之組 除了可製得偶合比(coup 1 ing ratio)之堆疊閘 極:構’以降低操作電壓外,更有助於晶片尺寸微小化 之杳展,實為一不可多得之發明。 制生為達别述目的,本案提供一種自我對準堆疊閘極之 方法,包含下列步驟·· a)提供一基板;b)於該基 ^上依序形成—第—介電層、—第—導電層以及一遮罩 g ; c)部份蝕刻該遮罩層、該第一導電層、該第一介 電層以及該基板,以形成一淺溝渠;d)以一第二介電 層填滿4淺溝渠以形成一淺溝渠隔離(shal 1⑽什⑼心 STI)單元,並移除該遮罩層;e)全面形成 :第二導電層;f)部份蝕刻該第二導電層以於該第一 導電f上形成一侧壁;S)部份移除該淺溝渠隔離單元 以暴露部份之該第二導電層與該第一導電層之侧壁;㈧ 依序沈積一第三介電層與一第三導電層;以及υ部份 蝕刻該第三導電層,即可得該自我對準堆疊閘極。 • 根據本案構想,其中該基板為一矽基板。 根據本案構想,其中該基板進一步具有一源極/汲 極主動區。 根據本案構想,其中該第一介電層為一閘極 層。 一根據本案構想,其中該第一導電層為一浮動閘極單 元多晶秒層。 根據本案構想,其中該遮罩層為一氮化矽層。 二根據本案構想,其中該步驟b)進一步包含步"驟:以) 將该基板熱氧化,以形成該第一介電層;b2)於該第一 200814238 :::上沈積該第一導電層;以及b3 上再沈積該遮罩層。 弟 v電層 化層。想,其中該第二介電層為-沈積隔離氧 全面titΐ構想’其中該步驟d)進—步包含步驟:dl) W ® α貝一弟二介電層,以填滿該淺溝渠,並覆蓋該遮^, in Fig. (E), a chemical-mechanical polishing (CMP) process is performed on the oxide layer 116 with the tantalum nitride 106 as a reference end point for the purpose of daily soiling. The remaining oxide layer 116 and the aforementioned pad = -114 constitute an insulating layer ι18. In the first, second, and (F), (iv) the insulating layer 118 until the upper portion of the layer 104 is exposed. The etching can be dry etching or wet etching. The insulating layer 118 is formed by oxygen dicing to isolate the Uhallow trench isolation (STI) unit. The 12th portion of the household 12"Fig. 2) 12 is further formed on the remaining 10° - the conductive material layer 12-0, wherein the layer 12 of the electrical material can be obtained by pushing the polycrystalline stone. In the first figure, the conductive material layer 12 is non-isotropically etched until the tantalum nitride layer 106 and the insulating layer U8 are exposed. Thus, the etch-conducting sidewall 12a is formed on the sidewall of the conductive layer 104 and the nitride layer (10), and the conductive layer 120a and the conductive layer serve as the first gate conductive layer 122. The nitrogen cut layer 1G6 is removed after forming the first gate conductive layer 122. In the first diagram (i), a second dielectric layer 124 and a second gate conductive layer 126 are sequentially It is formed on the substrate 1〇〇. The second layer of germanium 124 is an oxide/nitride/oxide (0N0) layer; and the second gate conductive layer 126 is a doped polysilicon layer. , that is, a stack gate of a flash memory unit is obtained. On the other hand, U.S. Patent No. 6, P, 856, discloses a stack gate manufacturing process for another flash memory cell. As shown in the first figure (κ) of the second figure (A), it discloses a schematic diagram of the manufacturing process of the stacked gate of another conventional flash memory unit. First, as shown in the second figure (1), a tantalum oxide layer 2〇3 is formed on a substrate 201. Next, as shown in Fig. 2 (8), a mask layer 2〇5 is formed on the pad oxide layer 2〇3, and the mask layer 205 is formed of a deposited tantalum nitride. In the sister-in-law (C), after the pattern of the 疋Yiyuan mask layer 205, the mask layer m, the cushion oxide layer 2〇3, and the day/day are engraved. Thereby, a trench having an opening 207 and a bottom region Z11 is formed. In Fig. (D), a dielectric layer 213 is deposited to cover the trench and the mask layer m, and fills the opening 207. Subsequent to the process, a portion of the dielectric layer 213 is removed to obtain an insulating region, as shown in Fig. (E). Removing the mask layer 2〇5 can be obtained as shown in the second figure (7): removing the pad oxide layer 203 and forming a gate erbium oxide, and simultaneously, the gate oxide layer 231 and the insulating region 223 An enamel layer (poly_1) 233 is formed thereon as shown in the second diagram (g). The structure shown in the second figure (H) can be obtained by chemical and mechanical polishing. In the second figure (1), the portion of the insulating layer 1 is partially engraved with the side wall of the polycrystalline (tetra) 233. At this time, a sidewall layer 200814238 (spacer iayer) 241 is deposited to obtain the illustrated structure. The first structure I 5 is sequentially generated by a second and a passive conductive (P〇ly-3), and the stacked gate of a flash memory unit is shown, as described in the second figure (K) HJ. Conventional techniques in the processing of flash memory stacks have attracted self-aligned stack gate production = ringing can increase the coupling ratio (c〇upHngrati〇) to drop: 'align ί in practical applications, such Although the conventional structure disclosed in the prior art can achieve a high coupling ratio, the stacked gate cell walls (Spacer) as shown in Figure-J (J) and Figure 2 (L) The structure is slid across the STI shallow trench isolation, and the reduction of the structure is the most unfavorable. In view of the people of the month, I have carefully studied and applied it to the method of manufacturing the non-volatile memory. In addition to providing a high coupling ί nrratio stack gate structure, the invention of operating power is reduced. Refers to the development of the miniaturization 'actually - not many [inventive content] of some features of the 乂 section, other features will be described in the following:: additional application - ^ The main purpose of this case is to provide a non-volatile application Memory 200814238 Self-aligned stack gate manufacturing method. In addition to the stacking gate of the coupling ratio, which can be used to reduce the operating voltage, it is more conducive to the miniaturization of the wafer size. invention. The production method is a self-aligned stacking gate, and the method comprises the following steps: a) providing a substrate; b) sequentially forming a first-dielectric layer on the substrate; a conductive layer and a mask g; c) partially etching the mask layer, the first conductive layer, the first dielectric layer and the substrate to form a shallow trench; d) using a second dielectric layer Filling 4 shallow trenches to form a shallow trench isolation (sal 1 (10) (9) STI) unit, and removing the mask layer; e) fully forming: a second conductive layer; f) partially etching the second conductive layer Forming a sidewall on the first conductive f; S) partially removing the shallow trench isolation unit to expose a portion of the second conductive layer and sidewalls of the first conductive layer; (8) sequentially depositing a third The self-aligned stacked gate is obtained by the dielectric layer and a third conductive layer; and the third conductive layer is partially etched. • According to the present concept, the substrate is a germanium substrate. According to the present invention, the substrate further has a source/drain active region. According to the present invention, the first dielectric layer is a gate layer. According to the present invention, the first conductive layer is a floating gate unit polycrystalline layer. According to the present invention, the mask layer is a tantalum nitride layer. According to the present invention, wherein the step b) further comprises the step of: thermally oxidizing the substrate to form the first dielectric layer; b2) depositing the first conductive layer on the first 200814238::: The layer; and the mask layer is redeposited on b3. Brother v electric layer. Imagine that the second dielectric layer is a deposition-isolated oxygen full-tit ΐ conception wherein the step d) further comprises the step of: dl) W ® α-Bei Di Di dielectric layer to fill the shallow trench, and Cover the cover

之^而d2)平坦化該第二介電層,直至暴露出該遮罩層 表面,以及d3)移除該遮罩層。 $ 案構想’其中該步驟d2)為-化學機械研磨 或一蝕刻製程。 1保 根據本案構想,其中該第 元侧壁多晶矽層。 一導電層為一浮動閘極單 •根據本案構想,其中該第三介電層為一氧氮氧 (oxide/nitride/oxide, 0Ν0)層。And d2) planarizing the second dielectric layer until the surface of the mask layer is exposed, and d3) removing the mask layer. The case concept 'where the step d2) is - chemical mechanical polishing or an etching process. 1 Guarantee According to the concept of the case, the side wall polycrystalline germanium layer. A conductive layer is a floating gate single. According to the present invention, the third dielectric layer is an oxide/nitride/oxide (0Ν0) layer.

根據本案構想,其中該第三導電層為—控制閉極多 晶石々鳥。 本案再一目的為提供一種應用於非揮發性記憶體 中之自我對準堆疊閘極。藉由將侧壁單元設置於導電門 極之上,以獲致一具高偶合比(c〇uplingrati〇')之堆^ 閘極結構,以降低操作電壓外,更有助於晶片尺寸微小 化之發展’實為一不可多得之發明。 為達前述目的,本案提供一自我對準堆疊閘極,包 含一半導體基板;一第一介電層,設於該半導體基板 上;一第一導電閘極,設於該第一介電質區域上;一侧 壁單兀,设置於該第一導電閘極上方之兩侧,並覆蓋於 12 200814238 1第導電閘極上,以形成一浮動閘極單元;一淺溝渠 隔離(shallow trench isolati〇n,STI)單元設置於;字 兩侧;一氧化介電層,覆蓋於淺溝渠隔離 ㈣閘極單元之表面,並與該侧壁單元與部份 閘極之侧壁接觸;以及—控制閘極,形成於該 虱化;丨笔層之上,以形成該自我對準堆疊閘極。 根據本案構想,其中該半導體基板為一矽基板。 本f構想,其中該半導體基板進—步具有—源 極//及極主動區。 層。根據本案構想’其中該第一介電層為一閘極氧化 成。根據本案構想,其中該第一導電閘極由一多晶矽構 構想’其中該侧壁單元由-多晶矽構成。 化層構成。 久屏木隔離早兀由一沈積氧 根據本案構想,其中該氧化 ~# (oxide/nitride/oxide,0N0)層所構成。曰 乳氮軋 構想’其中該控制閘極由-多晶矽構成。 根據本案構想,其中該侧壁單 電閘極之投影面積内。 化3於邊弟-導 ^發明並不受限於以上所述之特徵。本發 =敍述於下。本發明係以附加的申請專利範“ 13 200814238 【實施方式】 發明本述之實施例係解釋本發明,但不限制本 本么月不限定於特殊材料、處 發明由附加的專利申請範圍定義。々驟或尺寸。本 dtl第三圖(Α)至第三圖⑺,其揭示本案-較佳 :Γ如第:二對準堆疊閘極製造方法流程示意圖。首 上依序ΘF ’ ## —基板3卜並於於該基板 :1電層32、一第-導電層33以及-f第一介電層32於本實施例中為-間 ° «八可藉由一熱氧化製程高溫氧化該芙板31 厚度之氧化層。而該第一導電層33土在本實 為广動閘極單元之用,可為—固有之多晶石夕 ^ ° ^ (conf〇rmal deposlti〇n proc^ss)^^ <<LpcvD„ A。 ; 導電層33亦可藉由非同形沉積 =,(n〇n-COnformal dep〇siti〇n 生成不 袖疋已知的或是即將發明的,均可利用。至於 oxymtnde,SxON)或其他材質所構成;可以如化 相沉積法(CVD)或其他製程沉積於多晶矽厚 度,以抵擋其後之氧化蝕刻。 n而坪 wit三圖^所示’以定義遮罩圖形,部份姓刻該 f罩層34、该弟一導電層33、該第-介電層32以及該 基板31,以形成一淺溝渠311,該製程可以半 之淺溝渠隔離單元(“STI”)技術形成。合適之製 程已見於由Tuan等人發表並於2〇〇2年3月12日核准 200814238 之吳國第6,355,524號專利,^1)_於2〇〇2年1〇月According to the present invention, the third conductive layer is - a controlled closed polycrystalline ostrich. A further object of the present invention is to provide a self-aligned stacked gate for use in non-volatile memory. By placing the sidewall unit on the conductive gate to obtain a stack structure with a high coupling ratio (c〇uplingrati〇') to reduce the operating voltage, the wafer size is further reduced. Development is a rare invention. To achieve the above objective, the present invention provides a self-aligned stacked gate comprising a semiconductor substrate; a first dielectric layer disposed on the semiconductor substrate; and a first conductive gate disposed in the first dielectric region a side wall unit, disposed on both sides of the first conductive gate, and covering the first conductive gate of 12 200814238 1 to form a floating gate unit; a shallow trench isolation (shallow trench isolati〇n , STI) unit is disposed on both sides of the word; an oxidized dielectric layer covers the surface of the shallow trench isolation (4) gate unit, and is in contact with the sidewall of the sidewall unit and a portion of the gate; and—control gate Formed on the deuteration layer; over the layer of the pen to form the self-aligned stack gate. According to the present invention, the semiconductor substrate is a germanium substrate. The present invention contemplates that the semiconductor substrate further has a source//and an active region. Floor. According to the present invention, the first dielectric layer is oxidized by a gate. According to the present invention, wherein the first conductive gate is conceived by a polysilicon structure, wherein the sidewall unit is composed of polysilicon. Composition of layers. Jiupingmu Isolation is composed of a deposited oxygen according to the present invention, in which the oxide ~ nitride/oxide (0N0) layer is formed.乳 Nitrile rolling conception where the control gate consists of polycrystalline germanium. According to the present invention, the side wall of the single electric gate is projected within the projected area. The invention is not limited to the features described above. This issue = described below. The present invention is based on the appended claims. The embodiment of the present invention is to explain the present invention, but the present invention is not limited to the specific materials, and the invention is defined by the scope of the appended patent application. Steps or dimensions. This dtl third figure (Α) to the third figure (7), which reveals the case - preferably: for example: the second: the schematic diagram of the manufacturing process of the stacked gates. The first step is 'F '## - substrate 3, and the substrate: 1 electrical layer 32, a first conductive layer 33 and -f first dielectric layer 32 in this embodiment is - ° ° eight can be oxidized by a thermal oxidation process high temperature The oxide layer of the thickness of the plate 31. The first conductive layer 33 is used for the wide-gated gate unit, and may be an inherent polycrystalline stone ^ ° ^ (conf〇rmal deposlti〇n proc^ss) ^^ <<LpcvD„ A. The conductive layer 33 can also be deposited by non-homomorphism = (n〇n-COnformal dep〇siti〇n can be used for the production of non-cuffed or known to be invented. As for oxymtnde, SxON) or other materials Composition; can be deposited as polycrystalline germanium thickness by chemical phase deposition (CVD) or other processes to withstand subsequent oxidative etching. n and ping wit three figures ^ to define a mask pattern, part of the surname of the f cover layer 34, the brother-conductive layer 33, the first-dielectric layer 32 and the substrate 31 to form a shallow trench 311, the process can be formed by a semi-ditch isolation unit ("STI") technique. A suitable process has been found in the U.S. Patent No. 6,355,524 issued by Tuan et al. and approved on March 12, 2002, 200814238, ^1)_2〇〇2年1〇月

1曰提出之美國專利申請案號1〇/262 785 一案及C 於讀年1G月7日提出之美國專利中請荦號 _’378 -案’在此均併入參考。其他阳案 製程亦具可行性。在本案實施例中,係以—第二介電層 35填滿該淺溝渠以形成一淺溝渠隔離(shaii〇w计㈣乜 ⑽lation,STI)單元312。其細部流程如第三圖⑹所 第二介電層35 ’以填滿該淺溝渠31卜 ί ΓΜΡ^ , 34 ^ ; ?第二介㈣35,直至暴露出該遮罩層 電&quot;5面:可,弟二圖⑻所示之結構。其中該第二介 電層為-氧化層’有時也被稱為”阳 ,),因為其於某些實施例中為一二氧化石夕声。而 本發明並不受限於此類實施例或矽晶積體曰 一完成前述步驟流錢,移除該遮罩層34即可得第 二圖(E )中所示之結構。 -ΐϊ.’ΐ面形成一第二導電層36,如第三圖⑺所 不側::ί弟二導電層36係用以提供後續浮動閘極單 兀側土之夕晶矽層。只要再以一非等向性蝕刻製程 部份蝕刻該第二導電層36 ’即可於該第一導電層 形成一侧壁361如第三圖(G)所示。 曰 敍刻製程部份移除該淺溝渠隔離單元 以暴路邛伤之該第二導電層36與該第一 之側壁以得到一浮動閘極單元33卜如第三 曰一 最後,再依序沈n介電層37(m' 與-第三導電層38;並部份定義峨第-二(= 15 200814238 p可付本案之自我對準堆疊間極, 在本案實施例中,該第三介電屌^^(J)所示。 (⑽ide/nitride/oxide,0N 1 為一氧氮氧 則為-提供控制間極之多晶石夕^亥第三導電層38 根據前述揭示之方法,本案θ 發性記龍巾之自我對準堆㈣極^於非揮 及第四圖(Β),其揭示本宰較佳 。月多閱弟四圖(Α) 關托# ^ 乂仏貝知例之自我對準堆聶U.S. Patent Application Serial No. 1/262, 785, filed on Jan. 1, the priority of the U.S. Patent Application Serial No. </ RTI> </ RTI> </ RTI> </ RTI> Other Yang case processes are also feasible. In the embodiment of the present invention, the shallow trench is filled with a second dielectric layer 35 to form a shallow trench isolation (STI) unit 312. The detailed process is as shown in the third figure (6) of the second dielectric layer 35' to fill the shallow trench 31, ί ΓΜΡ ^, 34 ^; ? second (four) 35, until the mask layer is exposed &quot; 5 sides: Yes, the structure shown in Figure 2 (8). Wherein the second dielectric layer is an -oxide layer 'sometimes referred to as "yang", as it is a sulphur dioxide in some embodiments. The invention is not limited to such implementation For example, the crystallized body is completed by the above steps, and the structure shown in the second figure (E) is obtained by removing the mask layer 34. - The top surface forms a second conductive layer 36, As shown in the third figure (7), the second conductive layer 36 is used to provide a layer of the floating gate of the floating gate. The second layer is etched by an anisotropic etching process. The conductive layer 36' can form a sidewall 361 on the first conductive layer as shown in FIG. 3(G). The second etching process is performed by removing the shallow trench isolation unit from the shallow trench isolation unit. The layer 36 and the first sidewall are used to obtain a floating gate unit 33, such as a third layer, and then sequentially n dielectric layers 37 (m' and - third conductive layer 38; and partially defined - 2 (= 15 200814238 p can be paid for the self-aligned stacking pole of this case, in the case of this case, the third dielectric 屌^^(J) is shown. ((10)ide/nitride/oxide, 0N 1 is an oxygen Oxygen is - a polycrystalline stone providing a control interpole. The third conductive layer 38 is provided according to the method disclosed above, and the self-aligned stack of the θ 性 性 记 记 记 记 记 记 记 记 记 记 记 记), which reveals that the slaughter is better. The monthly reading of the four brothers (Α) Guan Tuo # ^ Mubei knows the self-aligned pile Nie

β 。,、中弟四圖(Α)揭示該自我對且 投影示意圖。而第四圖(β)則揭 隹且閘極之俯視 截㈣構示意圖。另外(於 =意圖則如第三圖⑴所示。如二示本= 3?受閘極’包含有-半導體絲31 第一介電: =;於2導體基板31…第-導電閉極= 第:導雷^層Μ區域上;一側壁單元361,設置於該 、,閘極33上方之兩側,並覆蓋於該第一導電閘 r h η以形成—浮動閉極單元331,·-淺溝渠隔離 ihgall7Jrench isolation, STI)單元 312 設置於浮 巨~極早兀331之兩侧;一氧化介電層37,覆蓋於淺溝 糸隔,單元312與該浮動閘極單元331之表面,並與該 側壁單元361與部份第一導電閘極33之側壁接觸;以 及一控制閘極38,形成於該氧化介電層37之上,以形 成該自我對準堆疊閘極。 1在實際應用時,其中該半導體基板31為一矽基板, ”上進一步具有一源極/汲極主動區301/302,對應設置 於該自我對準堆疊閘極之下方。另外,該第一介電層32 為一閘極氧化層;而該第一導電閘極33、該侧壁單元 16 200814238 361與該控制閘極38均可由多晶矽材質所構成。該淺溝 渠隔離單則由—沈積氧化層構成;該氧化介電層 37 由一氧氮氧(oxlde/nitride/〇xide,讎)層所構 成。而該自我對準堆疊閘極可藉由先前本案所揭示之方 法製得,所得結構之特色分別如第三圖(J)、第四圖(A) ,第四圖⑻所不。除了依前述方法製得之自我對準堆 豐閘極外,其後續進—步包含其他半導體製造流程。在 ,成該控制閘極38結構,其上更包覆有—介電保護層 ,而一導電接觸層40更由頂部穿透至該源極/汲極主 動區301/302而與之接觸,其相對位置如圖所示,在此 ,不再詳述。由於本案浮動閘極單元331所包含之侧壁 = 361位於該第—導電閉極33之上,故由第三圖⑺ 該Ϊ = 中可清楚查知,該侧壁單元361係包含於 ^ =閘極33之投影面積内。相較於習知技藝, 氧,之浮動閘極單元所形成之投影面並非如習知^ =電閘極加上側壁者。雖然習知技藝,如第一圖&amp; 樣圖二7所示之導電間極等’與本案之浮動閘極同 :了 ,由側壁(Spacer)結構之引用而提高其偶合比 upl lng rat 10)。但由於習知技藝之浮動間極所 絲STi &amp;溝渠隔㈣構上’故當欲以 =iSTi淺溝渠隔離結構達到晶片線路尺寸微小化之目 習知技藝將因STi淺溝渠隔離結構 佔’故因而在尺寸縮小時必須受限 :自=準堆疊間極結構,除了第-圖而僅 可七南偶合比(couplingratio),以降低操作電壓 200814238 外。由於本案所㈣之側壁結構係座落於浮動閘極之上,故本 案可以縮小STI淺溝渠隔離結構達到晶片線路尺 化之目的。 綜上所述,本案提供—種應用於非揮發性記憶體中自 我對準堆疊閘極之製造方法。藉由簡單製程之組合引 入可獲致一利於進行晶片線路微小化發展之閘極。而 所獲致之自我對準堆疊閘極結構,除了可提高偶合比 (coupling ratio),進而降低操作電壓外,更有助於晶片 尺寸微小化之發展,此為習知技藝無法達成。本案技術具有實 用性、新穎性與進步性,爰依法提出申請。 縱使本發明已由上述之實施例詳細敘述而可由熟悉本技 藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍 所欲保護者。 200814238 【圖式簡單說明】 第一圖(A)至第一圖(1):其揭示一習知 元之堆疊閘極製造流程示意圖。 竹快閃記憶單 第二圖(A)至第二圖(K) ··其揭示另_ 之堆疊閘極製造流程示意圖。 習知快閃記憶單元 ί三圖(A)至第三圖(J):其揭示本案一較佳實施例之自 ,對準堆疊閘極製造方法流程示意圖。β. , and the four pictures of the younger brother (Α) reveal the self-right and projection diagram. The fourth figure (β) is revealed and the schematic view of the gate is cut. In addition, (indicated as shown in the third figure (1). If the second display = 3? The gate is included - the semiconductor wire 31 is first dielectric: =; on the 2 conductor substrate 31 ... the first - conductive closed polarity = a: a sidewall unit 361 disposed on the two sides above the gate 33 and covering the first conductive gate rh η to form a floating closed-pole unit 331, · shallow The trench isolation ihgall7Jrench isolation, STI) unit 312 is disposed on both sides of the floating giant ~ very early 331; an oxidized dielectric layer 37 covers the shallow trench spacer, the surface of the unit 312 and the floating gate unit 331, and The sidewall unit 361 is in contact with a sidewall of a portion of the first conductive gate 33; and a control gate 38 is formed over the oxide dielectric layer 37 to form the self-aligned stacked gate. In practical applications, the semiconductor substrate 31 is a germanium substrate, and further has a source/drain active region 301/302 disposed correspondingly below the self-aligned stacked gate. In addition, the first The dielectric layer 32 is a gate oxide layer; and the first conductive gate 33, the sidewall unit 16 200814238 361 and the control gate 38 can be made of polycrystalline germanium material. The shallow trench isolation is separated by - deposition oxidation The oxide dielectric layer 37 is composed of a layer of oxonium oxide (oxlde/nitride/〇xide, 雠), and the self-aligned stacked gate can be obtained by the method disclosed in the previous case, and the obtained structure The characteristics are as shown in the third figure (J), the fourth figure (A), and the fourth figure (8). In addition to the self-aligned stack gates obtained by the above method, the subsequent steps include other semiconductor manufacturing. The structure of the control gate 38 is further covered with a dielectric protective layer, and a conductive contact layer 40 is further penetrated from the top to the source/drain active region 301/302. The relative position of the contact is shown in the figure, and will not be described in detail here. The sidewall 361 included in the floating gate unit 331 of the present case is located above the first conductive closed pole 33, so it can be clearly seen from the third figure (7) that the sidewall unit 361 is included in the ^= gate Within the projected area of the pole 33. Compared to the prior art, the projection surface formed by the floating gate unit of oxygen is not as conventionally known as the electric gate plus the side wall. Although the prior art is as shown in the first figure &amp; The conductive interpoles shown in Figure 2-7 are identical to the floating gates of this case: they are increased by the reference of the spacer structure (upl lng rat 10). However, due to the floating poles of the prior art The STi &amp; trench isolation (four) is constructed. Therefore, the skill of using the =iSTi shallow trench isolation structure to achieve miniaturization of the wafer line size will be limited by the STi shallow trench isolation structure. : Since the quasi-stacking pole structure, except for the first figure, only the seven coupling ratio (couplingratio) can be used to reduce the operating voltage of 200814238. Since the sidewall structure of the case (4) is located above the floating gate, this case STI shallow trench isolation structure can be reduced to reach the wafer line ruler In summary, the present invention provides a method for manufacturing self-aligned stacked gates in non-volatile memory, which can be used to facilitate the development of wafer line miniaturization by a combination of simple processes. The resulting self-aligned stacked gate structure, in addition to increasing the coupling ratio and lowering the operating voltage, contributes to the development of wafer size miniaturization, which is not possible with conventional techniques. The technology is practical, novel and progressive, and the application is made according to the law. Even though the invention has been described in detail by the above embodiments, it can be modified by those skilled in the art, and the application is not excluded. The scope of the patent is intended to protect. 200814238 [Simple description of the drawings] The first figure (A) to the first figure (1): it discloses a schematic diagram of the manufacturing process of the stacked gate of a conventional element. Bamboo Flash Memory Single Picture (A) to Figure 2 (K) ···························· The conventional flash memory unit is shown in FIG. 3(A) to FIG. 3(J), which is a schematic diagram showing the flow of the method for manufacturing the stacked gates according to a preferred embodiment of the present invention.

弟四圖(A)及第四圖(b),直福太 對準堆疊閘極。本案較佳實施例之自我 主要元件符號說明】 100 102 104 106 110 112 114 116 118 120 120a 122 124 126 201 • 基板 : 第一介電層 : 導電層 • 氮化石夕層 : 光阻層 : 溝渠 : 襯墊氧化層 : 氧化層 • 絕緣層 : 導電材料層 • 導電侧壁層 • 第一閘極導電層 : 第二介電層 : 第二閘極導電層 • 發基板 200814238In the fourth picture (A) and the fourth picture (b), the straight Fu Tai is aligned with the stack gate. Description of the self-primary components of the preferred embodiment of the present invention 100 102 104 106 110 112 114 116 118 120 120a 122 124 126 201 • Substrate: First dielectric layer: Conductive layer • Nitride layer: Photoresist layer: Ditch: Pad oxide layer: oxide layer • insulating layer: conductive material layer • conductive sidewall layer • first gate conductive layer: second dielectric layer: second gate conductive layer • hair substrate 200814238

203 205 207 211 213 223 231 233 241 243 245 301/302 31 311 312 32 33 331 34 墊氧化層 遮罩層 開口 底部區域 介電層 絕緣區 閘極氧化層 多晶矽層 側壁層 侧壁 ΟΝΟ層 源極/汲極主動區 基板 淺溝渠 淺溝渠隔離單元 第一介電層 第一導電層 浮動閘極單元 遮罩層 35 : 第二介電層 36 : 第二導電層 361 37 38 39 側壁 第三介電層 第三導電層 介電保護層 導電接觸層 20 40203 205 207 213 213 223 231 233 241 243 245 301/302 31 311 312 32 33 331 34 pad oxide layer open layer bottom area dielectric layer insulation area gate oxide layer polysilicon layer sidewall layer side layer layer source / Bungee active area substrate shallow trench shallow trench isolation unit first dielectric layer first conductive layer floating gate unit mask layer 35: second dielectric layer 36: second conductive layer 361 37 38 39 sidewall third dielectric layer Third conductive layer dielectric protective layer conductive contact layer 20 40

Claims (1)

200814238 十、申請專利範圍: 1 · 一種自我對準堆疊閘極之製造方法,包含下列步驟: a) 提供一基板; b) 於该基板上依序形成一第一介電層、一第一導電 層以及一遮罩層; c) 部份蝕刻該遮罩層、該第一導電層、該第一介電 層以及該基板,以形成一淺溝渠; d) 以一第二介電層填滿該淺溝渠以形成一淺溝渠隔 離(shallow trench is〇lati〇n,STI)單元, 除钤 遮罩層·, 1秒降孩 e) 全面形成一第二導電層; 4Ϊ壁部”刻該第二導電層以於該第-導電層上形成 導ΪΛΙΙ除該淺溝渠隔離單元以暴露部份之該第二 電層與忒第一導電層之側壁; h)依序沈積一第三介電層與一第三導電芦; 閘極)。部份蝕刻該第三導電層’即可得該自“準堆疊 2為-如利範圍第1項所述之製造方法,其中該基板 3進:步1有專利=第1項所述之製造方法,其 少吳有一源極/汲極主動區。 土低 ^如申請專利範圍第丨項所述之 介電層為-閘極氧化層。 “方去,其中該第一 5導二申:專利範圍第1項所述之製造方法,其中驾一 €層為1動閘極單元多晶矽層。 -甲該卓- 21 200814238200814238 X. Patent Application Range: 1 · A self-aligned stack gate manufacturing method comprising the following steps: a) providing a substrate; b) sequentially forming a first dielectric layer and a first conductive layer on the substrate a layer and a mask layer; c) partially etching the mask layer, the first conductive layer, the first dielectric layer and the substrate to form a shallow trench; d) filling with a second dielectric layer The shallow trench is formed by a shallow trench is〇lati〇n (STI) unit, and the germanium mask layer is removed, and a second conductive layer is formed. The second conductive layer is formed on the first conductive layer to remove the shallow trench isolation unit to expose a portion of the second electrical layer and the sidewall of the first conductive layer; h) sequentially depositing a third dielectric layer And a third conductive reed; a gate electrode. Partially etching the third conductive layer ' can be obtained from the "quasi-stack 2" - the manufacturing method described in the first item, wherein the substrate 3 is: 1 There is a patent = the manufacturing method described in Item 1, which has a source/drain active region. Soil low ^ The dielectric layer as described in the scope of the patent application is a gate oxide layer. "Where to go, the first 5 guides and two applications: the manufacturing method described in the first paragraph of the patent range, wherein the driving layer is a 1-layer gate unit polycrystalline germanium layer. - A. Zhuo - 21 200814238 t f申請專利範圍第1項所述之製造方法,其中該遮罩 層為一氮化石夕層。2申請專利範圍第1項所述之製造方法,其中該步驟 b) 進一步包含步驟: bl)將該基板熱氧化,以形成該第一介電層; b2)於該第一介電層上沈積該第一導電層;以及 b3)於該第一導電層上再沈積該遮罩層:,2申利範圍第1項所述之製造方法’其中該步驟 c) 為一非等向性蝕刻。 9介::!青專利範圍第1項所述之製造方法,其中該第二 1私層為一沈積隔離氧化層。步驟d)進一步包]::二1項所述之製造方法,其中該 蓋沈積一第二介電屬,以填滿該幾溝渠,並覆 面;1^一化忒第—介電層’直至暴露出該遮罩層之表 d3)移除該遮罩層。 11. 如申請專利範圍第1〇項所述之製造方法 /驟d2)為一化學機械研磨或一儀刻製程。 12. 一,申請專利範圍第i項所述之製造方法 —V電層為一浮動閘極單元側壁多晶矽層。第申請專利範圍第1項所述之製造方法,。 屉。電層為氧氮氧(oxide/nitride/oxide,0N0) 14.如申請專利範圍第i項所述之製造方法,其中該 其中談 其中該 其中該 200814238 第三導電層為一控制閘極多晶矽層。 15· 一種自我對準堆疊閘極,包含·· 一半導體基板; 一,一介電層,設於該半導體基板上; 第導電閘極,設於該第一介電質區域上; 二側壁單元,設置於該第一導電閘極上方之兩侧,並 覆该弟一導電閘極上,以形成一浮動閘極單元; 一 一淺溝渠隔離(shallow trench is〇lati〇n,灯 兀設置於浮動閘極單元之兩侧; …-氧介電層,覆蓋於淺溝渠隔離單元與該浮動間極 及並與該側壁單元與部份第-導電閘極之側 我對極形成於該氧化介電層之上’以形成該自 1亟6.,Λ申Λ專利範圍第15項所述之自我對準堆疊開 β八中该半導體基板為一矽基板。 L7:第15項所述之自我對準堆疊閘 板進一步具有一源極/汲極主動區。 極 19· 極 20. 極 21· 極 151 貝所述之自我對準堆疊問 ,、中該弟一介電層為一閘極氧化層。 如申請專利範圍第15項所述之自我對準堆疊閑 八中戎第一導電閘極由一多晶矽構成。 如申請專難SU 15項料之自 其中該侧壁單元由一多晶矽構成。 竿隹I閘 如申請專㈣圍第15項所述之自我對 /、中該淺溝渠隔離單元由-沈積氧化層構 1。且 200814238 22. 如申請專利範圍第15項所述之自我 極,其中該氧化介電層由一 ^早堆宜閑 (oxide/nitride/oxide,ΟΝΟ)層所構成。 23. 如申請專利範圍第15項所述之自我對 極,其中該控制閘極由一多晶矽構成。 ι闲 24. 如申請專利範圍第15項所述之自我對 極,其中該侧壁單元係包含於該第一 積内。 令電閘極之投影面The manufacturing method of claim 1, wherein the mask layer is a layer of nitride. The manufacturing method of claim 1, wherein the step b) further comprises the steps of: bl) thermally oxidizing the substrate to form the first dielectric layer; b2) depositing on the first dielectric layer The first conductive layer; and b3) redepositing the mask layer on the first conductive layer: 2, the manufacturing method described in claim 1 wherein the step c) is an anisotropic etch. The manufacturing method of claim 1, wherein the second private layer is a deposition isolation oxide layer. The method of claim 2, wherein the cover deposits a second dielectric genus to fill the trenches and cover the surface; The mask layer is removed by exposing the mask layer d3). 11. The manufacturing method / step d2) as described in claim 1 is a chemical mechanical polishing or an inscription process. 12. The manufacturing method described in claim i—the V electrical layer is a floating gate unit sidewall polysilicon layer. The manufacturing method described in the first aspect of the patent application. drawer. The electric layer is oxide/nitride/oxide (0N0). 14. The manufacturing method according to claim i, wherein the second conductive layer of the 200814238 is a control gate polysilicon layer. . 15· A self-aligned stacked gate comprising: a semiconductor substrate; a dielectric layer disposed on the semiconductor substrate; a first conductive gate disposed on the first dielectric region; Provided on both sides of the first conductive gate and covered on the first conductive gate to form a floating gate unit; one shallow trench isolation (shallow trench is〇lati〇n, the lamp is set on the floating The two sides of the gate unit; an oxygen dielectric layer covering the shallow trench isolation unit and the floating interlayer and the side of the sidewall unit and a portion of the first conductive gate are formed on the oxide dielectric Above the layer 'to form the self-aligned stacking of the semiconductor substrate as described in item 15 of the patent application, the semiconductor substrate is a substrate. L7: self-pairing according to item 15 The quasi-stacking gate further has a source/drain active region. The pole 19·pole 20. The pole 21· pole 151 The self-aligned stack described in the shell, wherein the dielectric layer is a gate oxide layer Self-aligned stacking as described in item 15 of the patent application scope The first conductive gate is composed of a polycrystalline germanium. If the application is made of a special material, the side wall unit is composed of a polysilicon. The 竿隹I gate is as self-right, as described in item 15 of the application (4). The shallow trench isolation unit is composed of a -deposited oxide layer. And 200814238 22. The self-electrode according to claim 15 wherein the oxide dielectric layer is made of an oxide/nitride/oxide 23. The layer is composed of a layer of 23. The self-polarization described in claim 15 wherein the control gate is composed of a polycrystalline crucible. ι闲24. Self-polarization as described in claim 15 Wherein the sidewall unit is included in the first product. 24twenty four
TW95132828A 2006-09-06 2006-09-06 Self-aligned stacked gate and method for making the same TW200814238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95132828A TW200814238A (en) 2006-09-06 2006-09-06 Self-aligned stacked gate and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95132828A TW200814238A (en) 2006-09-06 2006-09-06 Self-aligned stacked gate and method for making the same

Publications (1)

Publication Number Publication Date
TW200814238A true TW200814238A (en) 2008-03-16

Family

ID=44768502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95132828A TW200814238A (en) 2006-09-06 2006-09-06 Self-aligned stacked gate and method for making the same

Country Status (1)

Country Link
TW (1) TW200814238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737422B (en) * 2020-07-28 2021-08-21 華邦電子股份有限公司 Semiconductor structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737422B (en) * 2020-07-28 2021-08-21 華邦電子股份有限公司 Semiconductor structure and manufacturing method thereof
US11678484B2 (en) 2020-07-28 2023-06-13 Winbond Electronics Corp. Semiconductor structure and manufacturing method thereof and flash memory

Similar Documents

Publication Publication Date Title
CN107123649B (en) Method for manufacturing semiconductor device
KR100654341B1 (en) Nonvolatile memory device and method for fabricating the same
TW560044B (en) Semiconductor memory device having floating gate and manufacturing method of the same
TW567612B (en) Memory cell, memory cell arrangement and fabrication method
US6461905B1 (en) Dummy gate process to reduce the Vss resistance of flash products
TWI726125B (en) Semiconductor device and method of manufacturing the same
US7186607B2 (en) Charge-trapping memory device and method for production
TWI227544B (en) Nonvolatile memories and methods of fabrication
TW502404B (en) Semiconductor device and its manufacturing method
US20100059808A1 (en) Nonvolatile memories with charge trapping dielectric modified at the edges
US6818510B2 (en) Non-volatile memory device and method for fabricating the same
WO2002058136A1 (en) Nonvolatile semiconductor memory device and its manufacturing method
US20040077147A1 (en) Stacked gate flash memory device and method of fabricating the same
TWI360203B (en) Non-volatile memory and method of manufacturing th
TW200849486A (en) Memory structure and method of making the same
TWI555212B (en) Integrated circuit memory system employing silicon rich layers
TW200527606A (en) Method of manufacturing non-volatile memory cell
TWI251337B (en) Non-volatile memory cell and manufacturing method thereof
TW529134B (en) Method of forming an NROM embedded with mixed-signal circuits
KR20080092249A (en) Method of producing semiconductor memory device
JP2005159361A (en) Method for manufacturing split gate type flash memory device
KR100608376B1 (en) Non-volatile memory cell using state of three kinds and method of manufacturing the same
US6818948B2 (en) Split gate flash memory device and method of fabricating the same
TW586221B (en) Flash memory with selective gate within a substrate and method of fabricating the same
TW399288B (en) Structure of flash memory and the manufacturing method thereof