TW200813096A - Propylene polymers - Google Patents

Propylene polymers Download PDF

Info

Publication number
TW200813096A
TW200813096A TW96126306A TW96126306A TW200813096A TW 200813096 A TW200813096 A TW 200813096A TW 96126306 A TW96126306 A TW 96126306A TW 96126306 A TW96126306 A TW 96126306A TW 200813096 A TW200813096 A TW 200813096A
Authority
TW
Taiwan
Prior art keywords
propylene
polymer
polymerization
propylene polymer
gas
Prior art date
Application number
TW96126306A
Other languages
Chinese (zh)
Inventor
Claudio Cavalieri
Enrico Beccarini
Camillo Cagnani
Original Assignee
Basell Poliolefine Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41040490&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200813096(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basell Poliolefine Srl filed Critical Basell Poliolefine Srl
Publication of TW200813096A publication Critical patent/TW200813096A/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Propylene polymers having specific values of total comonomer content and melting temperature, articles obtained therefrom, in particular extrusion blow molded articles, and gas-phase process for obtaining said propylene polymers.

Description

200813096 九、發明說明: 【發明所屬之技術領域】 本發明關於有特定共聚單體含量値和特定熔化 丙烯聚合物,及從其得到的產品,特別是擠壓吹氣 品,和得到該丙烯聚合物的製程。 【先前技術】 在廣泛已知的技術中,丙烯共聚物因爲其物理-性的良好平衡性,可便利地使用在押出製程中,且 用來得到擠壓吹氣模製產品。常使用在押出製程之 聚物具有令人滿意的剛度、在低溫時有良好的衝擊 良好的光學特性,即低霧度値。在適合用於押出製 烯共聚物中,其特性所需的平衡性一般藉由小心地 烯共聚物之共聚單體的含量得到。通常增加在目前 中共聚單體的含量,會使該共聚物的衝擊耐性獲得 但同時不可避免地破壞了其剛度;降低共聚單體的 則必然導致剛度改善且惡化衝擊耐性。共聚單體含 化對丙烯共聚物之熔化和結晶溫度也有強烈的影響 Tc可藉由增加共聚單體含量來降低且藉由減少共聚 量來增加。例如,可從W002/05 1 9 1 2知道有總乙 1 . 4 wt %之丙烯共聚物的熔化溫度高於1 6 1 °C ’且在未 專利申請PCT/EP2006/062152中揭露有乙嫌含量範E 到7.0 wt%之丙烯-乙烯共聚物的熔化溫度低於143 °C 一申請人之歐洲專利EP 1 2 0649 9知道有乙儲含量約5 之丙烯聚合物的熔化溫度較高。然而該揭露於實施 溫度之 模製產 機械特 特別是 丙烯共 特性及 程之丙 給予丙 共聚物 改善, 含量, 量的變 ,T m和 單體含 烯含量 公開的 圍在4.5 。從同 .0 w t % 例1和2 200813096 的熔化溫度値,爲2000ppm二苯亞甲基山梨醇 (dibenzilydenesorbitol)作核心之丙嫌聚合物。 在某些押出製程中,例如擠壓吹氣模製,冷卻步驟會 強烈地影響到生產率,因此,對生產率來說最重要的是樹 脂之熔化和結晶溫度。 【發明內容】 本發明的目的係提供有良好物理-機械特性平衡性的 丙烯聚合物,其可改善押出製程,特別是對擠壓吹氣模製 製程的生產率。 因此,本發明提供之丙烯聚合物由非丙烯之至少一個 2到8個碳原子的線性或分枝的α -烯烴衍生出總單元含量 範圍從4 · 5到6.0 wt%,較佳從4.7到5 . 5 wt%,更佳從4.8 到5.2 wt%,且熔化溫度Tm (藉由DSC量測如反應器之聚 合物(as-reactor polymer))範圍從 148 °C 到 160 °C,較佳從 1 5 0 °C到1 5 8 °C,更佳從1 5 3 °C到1 5 6 °C。本發明以Tm値爲 特徵的丙烯聚合物應該在“如反應器之聚合物”時量測, 即在該聚合物尙未添加任何添加劑或塡料,特別是沒有加 入晶核劑時。 丙烯聚合物同時最少還有一項下列之特徵: -熔融流率(MFR)的範圍爲〇.1到25g/10min,較佳從 〇·5到5g/10min,更佳從1.2到2.5g/10min。可直接由“如 反應器”之等級的聚合物得到該期望的MFR,特別是可藉 由依據已知技術減黏裂煉“如反應器”之等級的聚合物, 得到高於5 g /1 0 m i η之M F R。 200813096 -在2 5 °C時,二甲苯可溶解部分小於1 5 w t %,更佳小 於1 2 wt% ;和/或 -多分散性指數(Polydispersity Index)(PI)値範圍從 3.0到9 · 0,更佳從4 · 0到6.0。 至少一 α -烯烴較佳從包含乙烯、丨_ 丁烯、i _戊烯、1 -己烯、1-庚烯、1-辛烯和4 -甲基-1-戊烯的族群中選擇,其 中以乙烯爲特佳。 本發明之丙烯聚合物係藉由在至少二互相連接的聚合 區進行氣相聚合製程,聚合丙烯和有非丙烯之2到8個碳 原子的至少一線性或分枝的α -烯烴得到,該製程包括在反 應條件下於高度立體特異不勻相戚-乃觸媒系統(highly stereospecific heterogeneous Ziegler-Natta catalyst system)中,供給丙烯和有非丙烯之2到8個碳原子的至少 一線性或分枝的α -烯烴至上述聚合區,且從該聚合區收集 聚合物產物,在該製程中,成長中之聚合物顆粒在快速流 體化條件下,向上流動經過一上述之聚合區(上升管),離 開該上升管且在重力作用下,向下流進至另一聚合區(降流 管),離開該降流管且再次被引入上升管,以此方式建立在 上升管和降流管間的聚合物循環,藉此提供可完全或部分 防止出現在上升管之氣體混合物進入降流管的方法,及引 進在上升管出現組成不同於氣體混合物之氣體和/或液體 混合物入降流管,該製程更進一步的特徵爲: -單體至上升管進料速率cxv(cv + cr)之範圍從0.050 到 0.150mol/mol,較佳從 0.055 到 O.〇7〇mol/mol。 200813096 於聚合製程中,成長中之聚合物在快速流體化條件下 ,流過一第一聚合區,其由上升管表示。該二聚合區適當 地互相連接。離開上升管之成長中的聚合物和氣體狀態的 混合物運送到一分離區,藉以分離氣體狀態的混合物跟成 長中的聚合物。從該分離區,成長中的聚合物進入由降流 管表示的第二聚合區,在該區中,在重力作用下,成長中 的聚合物之流動爲加密形式(Densified form)。該成長中的 聚合物顆粒離開上述之第二聚合區且被重新引入上述之第 一聚合區,以此方式建立在二聚合區間的聚合物循環。藉 由飼入單體和觸媒,以及排出聚合物粉末,維持物質均衡 。一般來說,藉由在低於該第一聚合區之再引入成長中聚 合物的點飼入單體氣體混合物,建立在第一聚合區之快速 流體化條件。引入上升管運送氣體的速率必須高於在操作 條件下之運送氣體速率,且取決於氣體密度和該固體的粒 徑分布。其較佳在0.5和1 5m/s之間,更佳在0.8和5m/s 之間。一般來說,不同的觸媒成分從一較佳配置在上升管 下部之管線飼入至上升管。然而,它們可以從任一點飼入 至上升管中,例如在降流管的任一點或其互相連接部分的 任一點。必須防止全部或部分在分離區從循環固體分離出 的氣體混合物進入降流管,其可藉由從一配置在該降流管 適當位置的管線飼入一氣體和/或液體至降流管來達到,其 管線位置較佳在降流管之上部,穿過一或更多的引入管線 。待飼入降流管之氣體和/或液體混合物應有適合的成分, 且跟出現在上升管之氣體混合物不同。上述之氣體和/或液 200813096 體混合物部分或全部取代跟聚合物顆粒進入至降流管的氣 體混合物。該氣體飼入的流速可被調節,使逆流氣體的流 動到聚合物顆粒的流動源自降流管,特別是其頂端,藉此 形成對從上升管來在聚合物顆粒中氣體之屏障。依據較佳 具體例,跟待飼入降流管成分不同之氣體和/或液體混合物 以部分或全部液化形式飼入。上述氣體和/或液體混合物更 佳由液化丙烯構成。 於聚合區中視情況地一種或多種鈍氣如氮或脂肪族烴 ,維持於一定量,其量較佳爲使鈍氣分壓的總合在氣體總 壓的5至8 0%之間。該操作參數,如溫度,同慣用於氣相 烯烴聚合製程的溫度,例如在5 0 °C到1 2 0 °C之間,較佳從 70°C到90°C。該製程可在操作壓力在0.5到lOMPa之間進 行,較佳在1.5到6MPa之間。適合進行該製程之聚合設備 詳述於國際專利申請案 WO00/02929,特別於第4圖中。 成長中聚合物的分子量分布可藉由量測慣用的分子量調節 器方便地.改,特別是氫,以不同比例進入至少一聚合區 中,特別是進入上升管。 爲了得到本發明的丙烯聚合物,聚合製程必須藉由飼 入單體混合物至上升管來進行,其特徵爲單體進料速率 CX-/(CX_ + C3·)包含從 0.0 5 0 到 1.000mol/mol 的狹小範圍, 較佳從0.0 5 5到0.070mol/mol,而Cx_表示至少一 α -烯烴 ,其有2到8個碳原子,而該碳原子非用於備製丙烯聚合 物共聚單體所使用之丙烯’且C3·表示丙烯。從聚合反應器 排出之聚合物粉末的Tm値藉由D S C量測不斷地監控。 200813096 依據較佳具體例,該製程的進行使於上升管中之滯留 量範圍從3 0到5 0 wt%,更佳從3 5到4 5 wt%,且於降流管 中之滯留量範圍從50到70 wt%,更佳從55到65 wt%。不 論在上升管或降流管的滯留量定義爲出現在一聚合區聚合 物的重重總量;“分別滯留量(s p 1 i t h ο 1 d - u p ) ”爲出現在反 應器中’即在上升管和降流管中,相對於聚合物總量的重 量百分比。出現在反應器中聚合區的聚合物量依據已知技 術測量。於聚合反應時,不斷地監控且維持滯留量在上述 範圍。 依據本發明之特佳具體例,丙烯聚合物可包含一丙烯 共聚物之混合物,該共聚物有不同的共聚單體含量。當本 發明的丙烯聚合物依據上述聚合製程生產時,該丙烯聚合 物可包含(百分比依據成分(I)和(II)之總合): (I) 3 0- 5 0 wt%,較佳爲3 5 -4 5 wt°/〇之丙烯共聚物,其 有非丙烯之2到8個碳原子的至少一線性或分枝的α -烯烴 ’該共聚物包含從3 · 6到1 5.0 w t %,較佳從6 · 0到1 2.0 w t % 之從α -烯烴衍生出單元(稱爲成分(I));且 (II) 50_70 wt%,較佳爲55-65 wt%之丙嫌共聚物,其 有非丙烯之2到8個碳原子的至少一線性或分枝的α -烯烴 ,該共聚物包含從〇·〇1到3.5 wt%,較佳從0.9到2.0 wt % 之(被稱爲成分(II))從α -烯烴衍生出單元, 其中成分(I)的量相當於上升管中之分別滯留量,而成 分(II)的量相當於降流管中之分別滯留量。 成分(I)和成分(II)較佳包含相同之α -烯烴,較佳從前 •10- 200813096 述提及的族群中選擇該α-烯烴。 適合用於生產本發明丙烯聚合物之戚-乃觸媒包含一 固體觸媒成分,其包含至少一鈦化合物,鈦化合物該有至 少一鈦-鹵素鍵結和至少一電子予體化合物(內部予體 (internal donor)),而兩者皆承載於氯化鎂上。該戚-乃觸媒 系統更進一步包含一有機-鋁化合物爲必要之共觸媒和視 情況地一外部有電子予體化合物(external electron-donor compound) 〇 適合之觸媒系統敘述於歐洲專利EP45 977、EP 3 6 1 494 、EP72 8769、EP 1 2725 3 3 和國際專利申請案 WOOO/6 3 2 6 1 中〇 該固體觸媒成分較佳包含Mg、Ti、鹵素和一從單或多 羧酸之酯選擇的電子予體,該羧酸可爲脂肪族或芳香族。 在脂肪族酸之酯中,以丙二酸酯、戊二酸酯和揭露於 W 0 0 0/6 3 2 6 1中之琥珀酸酯爲較佳。在芳香族酸之酯中,以 苯甲酸酯和揭露於EP45 977中之酞酸酯,尤其是酞酸二異 丁酯或酞酸二己酯或酞酸二乙酯和其混合物爲最佳。 依據較佳方法,該固體觸媒成分可以藉由讓分子式爲 Ti(0R)n_yXy2鈦化合物和衍生自分子式爲MgCl2· pROH之 加成物的氯化鎂反應來備製,而在Ti(OR)n_yχy中,n爲鈦之 價數,y係爲1和η之間的數字,較佳爲TiCl4,在MgCl2_pR0H 中,P係爲0.1和6之間的數字,較佳爲2至3.5,且R爲有1到 1 8個碳原子之碳氫化合物團。該加成物可藉由在跟加成物 不互溶之惰性碳氫化合物下,混合醇和氯化鎂,進行於攪 -11- 200813096 拌條件下及加成物之熔化溫度(1 ο 0 -1 3 0 °c ),適合地備製出 球狀形式。然後,快速淬熄乳化,因此使加成物以球狀顆 粒形式固化。依照此程序備製之球狀加成物的粒子敘述於 US 4,3 99,0 5 4和US 4,46 9,64 8中。由此方式得到的加成物可 直接地跟T i化合物反應’或進行熱控去醇作用(t h e r m a 1 controlled dealcoholation)(80-130 °C),以便得到醇莫耳數 大致小於3之加成物,較佳在0·1到2.5之間。跟Ti化合物的 反應可藉由懸浮加成物(去醇後或就其本身)於冷TiC 14(一 般爲〇°C )中進行;加熱該混合物至8 0- 1 3 0 °C並維持此溫度 歷0 · 5到2小時。可進行此T i C 14的處理一或多次。可在τ i c 14 的處理時加入內部予體且與電子予體化合物之處理可重複 一次或多次。一般來說,分子式(I)之琥珀酸使用在對Mg Cl2 之莫耳比率從0.01到1時,較佳從0.0 5到0· 5時。球狀形式觸 媒成分之備製係敘述如歐洲專利申請EP-A- 3 9 5 0 8 3和國際 專利申請案W0 9 8/44009中。依據上述方法得到之固體觸媒 成分一般有在20和500m2/g之間的表面積(藉由B.E.T.方法) ,較佳在5 0和4 0 0 m 2 / g之間,且總孔隙度(藉由B · E · T ·方法) 高於0.2cm3/g,較佳在0.2和0.6cm3/g之間。由於半徑高達 1 0.000A,其孔隙度(Hg法)範圍從〇·3到1 .5cm3/g,較佳從 0.45 到 lcm3/g 〇 有機-鋁化合物較佳爲從選擇如三乙鋁、三異丁鋁、三 正丁鋁、三正己鋁、三正辛鋁之三烷鋁化合物的烷基鋁, 也可使用烷基鋁鹵化物、烷基鋁氫化物或如 AlEt2Cl和 Al2Et3Cl3之烷基鋁倍半氯化物和三烷鋁的混合物。 -12- 200813096 較佳之外部電子予體化合物包括砂化合物、如4 -乙氧 苯甲酸乙酯之酯、雜環化合物’尤其是2,2,6,6_四甲哌啶和 酮。另一種類的外部予體化合物係爲分子式Ra5Rb6Si(OR7)c 的矽化合物,而a和b爲從0到2之整數,c爲從1到3 之整數,且(a + b + c)之總合爲4 ; R5、R6和R7爲有1到1 8 個碳原子視情況雜原子包含之烷基、環烷基或芳基化合物 基,而以甲基環己基二甲氧基矽烷、二苯基二甲氧基矽烷 、甲基三級丁基二甲氧基矽烷、二環戊基二甲氧基矽烷、 2-乙哌啶-2-三級丁基二甲氧基矽烷、1,1,1-三氟丙基-2·乙 哌啶二甲氧基矽烷及 1,1,1-三氟丙基-2-乙基一氮陸圜-美 提-雙甲氧基矽烷爲特佳。外部電子予體化合物之使用量爲 讓有機-鋁化合物和該電子予體化合物之間的莫耳比率從 0 . 1 到 5 0 0。 本發明之丙烯聚合物可更進一步包括至少一晶核劑。 該丙嫌聚合物較佳包括最高2500ppm之至少一晶核劑,更 佳從 5 0 0 到 2 0 0 0 p p m。 該至少一種晶核劑可從無機添加劑中選擇,如滑石、 二氧化矽或高嶺土、單羧酸鹽類或多羧酸鹽類,例如苯甲 酸鈉或二級 丁基苯甲酸錦(aluminum tert-butylbenzoate)、 二苯亞甲基山梨醇或其經Cl_C8烷基取代之衍生物,例如甲 基二苯亞甲基山梨醇、乙基二苯亞甲基山梨醇或二甲基二 苯亞甲基山梨醇、或磷酸二酯鹽,例如2,2,_亞甲基雙(4,6,_ 二-三級-丁苯)磷酸酯的鈉鹽或鋰鹽。特佳之晶核劑爲3,4_ 二甲基二苯亞甲基山梨醇、羥基雙[2,2,_亞甲基-雙(4,6,-二 -13- 200813096 -t-丁苯)磷酸]鋁、2,2,-亞甲基-雙(4,6,-二-三級-丁苯)磷酸 鈉或2,2’-亞甲基-雙(4,6,_二-三級-丁苯)磷酸鋰和雙環 [2.2.1]庚烷-2,3·二羧酸、二鈉鹽類(1!^,211,311,43)。該至少 一種晶核劑可藉由已知方法加入丙烯聚合物,例如在傳統 之押出機中’於剪切狀況下熔化摻合至少一種晶核劑和丙 烯聚合物。 本發明之丙烯聚合物更進一步包括具有結晶溫度Tc( 由D S C量測)較佳等於或高於n 〇 ,更佳範圍從1 1 〇 °C到 120°C,特佳從1 12°C到1 17°C和/或熔化溫度Tm(由DSC量 測)高於1 5 2 °C,較佳範圍從1 5 2 °C到1 6 2 °C的晶核劑。 本發明之丙烯聚合物係特別適合用於製造擠壓吹氣模 製產品。 因此,本發明的進一步目標爲提供一用來製造擠壓吹 氣模製產品的製程,而該產品包括使用從有非丙嫌之2到 8個碳原子的至少一線性或分枝的α -烯烴衍生出總含量 單位範圍從4 · 5到6.0 wt %的丙烯聚合物,較佳從4 · 7到 5.5 wt%,更佳從4.8到5.2 wt%,而熔化溫度Tm(藉由DSC 量測如反應器之聚合物)範圍從148 °C到160 °C,較佳從 1 5 0 °C 到 1 5 8 °C,更佳從 1 5 3 °C 到 1 5 6 °C。 擠壓吹氣模製製程中一中空圓柱(型胚)從熔融塑性材 料被擠出且夾在一模件中。該熔融型胚接著隨氣壓膨脹, 冷卻及噴射出。毛邊爲擠壓吹氣模製製程中不可避免之副 產物,所以需要用工具整修,以從吹氣模製產品移除毛邊 。因此在製程中,冷卻步驟爲速率限制因子,且熔融材料 14- 200813096 的冷卻能力對決定最小循環時間爲最重要之因素。已經發 現藉由使用本發明,擠壓吹氣模製製程的循環時間相對於 使用傳統聚丙烯的相同製程,可顯著地降低。 有總共聚單體含量包括在較佳範圍4.7到5.5 wt%(相 對於丙烯聚合物)之丙烯聚合物被意外的發現,可額外賦予 特別優異的衝擊/剛度平衡,在0°C (依據ISO 180/1A量測) 時艾氏衝擊力之値係高於10kJ/m2,較佳包括在範圍從1〇 到 5 0kJ/m2,更佳從 1 5 到 45kJ/m2。 除了晶核劑,本發明之丙烯聚合物可更進一步包括常 使用在聚烯烴領域之添加劑,其如抗氧化劑、光安定劑、 抗酸劑、著色劑、塡料和製程改良劑,上述之添加劑可依 該領域廣知的方法添加慣用之量於丙烯聚合物中。 【實施方式】 於說明書和實施例中所提及的特性係依照下列方法量 測。該些實施例用於說明但不限制於本發明。 進料氣體的莫耳比率:由氣相層析法決定 共聚單體(C2)含量:IR光譜學 熔融流率(MFR):依墟 ISO 1 1 3 3 (23 0 °C、2.16Kg)決定 熔化和結晶漶度(Tm和Tc):侬據ISO 11357Π,藉由 D S C決定,而溫度變化爲每分鐘2 0 °C。 多分散件指數(P . I.) 在溫度200°C藉由使用由RHEOMETRICS(USA)銷售之 平行板流變儀型號 RMS- 800決定,操作於振盪頻率從 0· lrad/sec增加到1 〇〇rad/sec。從交越模數,可以經由方程 -15- 200813096 式導出該P. I.: P.I. = 105/Gc200813096 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a specific comonomer content 値 and a specific fused propylene polymer, and products obtained therefrom, particularly an extrusion blown product, and the propylene polymerization. The process of the object. [Prior Art] Among the widely known techniques, a propylene copolymer can be conveniently used in an extrusion process because of its good balance of physical properties, and is used to obtain an extrusion blow molded product. Polymers often used in the extrusion process have satisfactory stiffness, good impact at low temperatures, good optical properties, i.e., low haze. In a suitable copolymer for extrusion of a olefinic copolymer, the balance required for its properties is generally obtained by carefully arranging the comonomer of the olefin copolymer. Increasing the amount of comonomer in the current state generally results in the impact resistance of the copolymer being obtained but at the same time inevitably destroying its rigidity; lowering the comonomer inevitably leads to an improvement in stiffness and deterioration of impact resistance. The comonomerization also has a strong influence on the melting and crystallization temperatures of the propylene copolymer. Tc can be reduced by increasing the comonomer content and increased by reducing the amount of copolymerization. For example, it can be known from W002/05 1 9 1 2 that the melting temperature of the propylene copolymer having a total of 1.4 wt% is higher than 161 ° C ' and is disclosed in the unpatent application PCT/EP2006/062152. The melting temperature of the propylene-ethylene copolymer having a content range of from E to 7.0 wt% is lower than 143 ° C. A propylene polymer having a B storage content of about 5 is known to have a higher melting temperature. However, the molding machine disclosed at the implementation temperature is particularly characterized by the propylene co-characteristics and the modification of the propylene copolymer, the content, the amount of change, the T m and the monomer olefin content disclosed in the range of 4.5. From the same melting point of .0 w t % of Examples 1 and 2 200813096, 2000 ppm of dibenzilydenesorbitol was used as the core of the suspected polymer. In some extrusion processes, such as extrusion blow molding, the cooling step strongly affects productivity, so the most important for productivity is the melting and crystallization temperatures of the resin. SUMMARY OF THE INVENTION An object of the present invention is to provide a propylene polymer having a good balance of physical-mechanical properties which can improve the extrusion process, particularly the productivity of the extrusion blow molding process. Accordingly, the propylene polymer provided by the present invention is derived from a linear or branched α-olefin of at least one of 2 to 8 carbon atoms other than propylene in a total unit content ranging from 4 · 5 to 6.0 wt %, preferably from 4.7 to 5 wt%, more preferably from 4.8 to 5.2 wt%, and a melting temperature Tm (as measured by DSC, such as an as-reactor polymer) ranging from 148 ° C to 160 ° C, preferably From 1 50 ° C to 1 5 8 ° C, more preferably from 1 5 3 ° C to 1 5 6 ° C. The propylene polymer characterized by Tm(R) in the present invention should be measured in "polymer such as a reactor", i.e., no additives or dips are added to the polymer crucible, especially when no nucleating agent is added. The propylene polymer also has at least one of the following characteristics: - the melt flow rate (MFR) ranges from 〇.1 to 25 g/10 min, preferably from 〇·5 to 5 g/10 min, more preferably from 1.2 to 2.5 g/10 min. . The desired MFR can be obtained directly from a polymer such as a "reactor" grade, in particular by visbreaking a polymer such as a reactor according to known techniques, resulting in a yield higher than 5 g /1 0 mi η MFR. 200813096 - At 2 5 ° C, the xylene soluble fraction is less than 15 wt%, more preferably less than 12 wt%; and / or - the polydispersity index (PI) ranges from 3.0 to 9 0, better from 4 · 0 to 6.0. Preferably, at least one alpha olefin is selected from the group consisting of ethylene, 丨-butene, i-pentene, 1-hexene, 1-heptene, 1-octene, and 4-methyl-1-pentene. Among them, ethylene is particularly preferred. The propylene polymer of the present invention is obtained by conducting a gas phase polymerization process in at least two interconnected polymerization zones, polymerizing propylene and at least one linear or branched α-olefin having 2 to 8 carbon atoms other than propylene. The process comprises supplying at least one linear or fraction of propylene and 2 to 8 carbon atoms having non-propylene in a highly stereospecific heterogeneous Ziegler-Natta catalyst system under reaction conditions. The α-olefin of the branch to the above polymerization zone, and collecting the polymer product from the polymerization zone, in which the growing polymer particles flow upward through a polymerization zone (rising pipe) under rapid fluidization conditions Leaving the riser and flowing downward into another polymerization zone (downflow pipe) under gravity, leaving the downcomer and being introduced into the riser again, in this way between the riser and the downcomer The polymer circulates thereby providing a means for completely or partially preventing the gas mixture present in the riser from entering the downcomer, and introducing a composition in the riser that is different from the gas mixture The gas and/or liquid mixture of the gas is introduced into the downcomer. The process is further characterized by: - monomer to riser feed rate cxv (cv + cr) ranging from 0.050 to 0.150 mol/mol, preferably from 0.055 To O.〇7〇mol/mol. 200813096 In the polymerization process, the growing polymer flows through a first polymerization zone under rapid fluidization conditions, which is represented by a riser. The two polymerization zones are suitably interconnected. The growing polymer and gaseous state mixture exiting the riser is transported to a separation zone whereby the gaseous mixture is separated from the polymer. From the separation zone, the growing polymer enters a second polymerization zone represented by a downflow tube in which the flow of the growing polymer is in a densified form under the action of gravity. The growing polymer particles exit the second polymerization zone and are reintroduced into the first polymerization zone described above, thereby establishing a polymer cycle in the dipolymerization zone. Material balance is maintained by feeding monomer and catalyst, as well as discharging polymer powder. Generally, rapid fluidization conditions in the first polymerization zone are established by feeding a monomer gas mixture at a point below the reintroduction of the growing polymer below the first polymerization zone. The rate at which the riser is introduced to carry the gas must be higher than the rate of transport gas under operating conditions and depends on the gas density and the particle size distribution of the solid. It is preferably between 0.5 and 15 m/s, more preferably between 0.8 and 5 m/s. Generally, different catalyst components are fed from a line preferably disposed in the lower portion of the riser to the riser. However, they can be fed from any point into the riser, for example at any point of the downcomer or at any point where they are connected to each other. It is necessary to prevent all or part of the gas mixture separated from the circulating solids in the separation zone from entering the downcomer by feeding a gas and/or liquid to the downcomer from a line disposed at the appropriate position of the downcomer. Preferably, the line location is preferably above the downcomer and through one or more of the inlet lines. The gas and/or liquid mixture to be fed into the downcomer should have a suitable composition and be different from the gas mixture present in the riser. The above gas and/or liquid 200813096 body mixture partially or completely replaces the gas mixture with the polymer particles entering the downcomer. The flow rate of the gas feed can be adjusted such that the flow of countercurrent gas to the polymer particles originates from the downcomer, particularly at the top end thereof, thereby forming a barrier to gas in the polymer particles from the riser. According to a preferred embodiment, the gas and/or liquid mixture different from the composition to be fed into the downcomer is fed in part or in whole liquefied form. The above gas and/or liquid mixture is preferably composed of liquefied propylene. One or more of the blunt gases, such as nitrogen or aliphatic hydrocarbons, are optionally maintained in the polymerization zone in an amount such that the sum of the partial pressures of the blunt gas is between 5 and 80% of the total pressure of the gas. The operating parameters, such as temperature, are the same as those used in the gas phase olefin polymerization process, for example, between 50 ° C and 120 ° C, preferably from 70 ° C to 90 ° C. The process can be carried out at an operating pressure of between 0.5 and 10 MPa, preferably between 1.5 and 6 MPa. A polymerization apparatus suitable for carrying out the process is described in detail in International Patent Application WO00/02929, in particular in FIG. The molecular weight distribution of the growing polymer can be conveniently changed, in particular hydrogen, into the at least one polymerization zone, in particular into the riser, by measuring conventional molecular weight regulators. In order to obtain the propylene polymer of the present invention, the polymerization process must be carried out by feeding the monomer mixture to the riser tube, characterized in that the monomer feed rate CX-/(CX_ + C3·) contains from 0.050 to 1.000 mol. a narrow range of /mol, preferably from 0.05 5 to 0.070 mol/mol, and Cx_ represents at least one α-olefin having 2 to 8 carbon atoms, and the carbon atom is not used for preparing a copolymer of propylene polymer Propylene used in the monomer 'and C3· represents propylene. The Tm of the polymer powder discharged from the polymerization reactor was continuously monitored by D S C measurement. 200813096 According to a preferred embodiment, the process is carried out such that the retention in the riser ranges from 30 to 50 wt%, more preferably from 35 to 45 wt%, and the retention in the downcomer From 50 to 70 wt%, more preferably from 55 to 65 wt%. Whether the amount of retention in the riser or downcomer is defined as the total amount of heavy polymer present in a polymerization zone; "separate retention (sp 1 ith ο 1 d - up )" appears in the reactor 'is rising The weight percentage of the tube and downcomer relative to the total amount of polymer. The amount of polymer present in the polymerization zone in the reactor is measured according to known techniques. During the polymerization, the amount of retention was continuously monitored and maintained within the above range. According to a particularly preferred embodiment of the invention, the propylene polymer may comprise a mixture of propylene copolymers having different comonomer contents. When the propylene polymer of the present invention is produced according to the above polymerization process, the propylene polymer may comprise (percentage is based on the total of the components (I) and (II)): (I) 30 to 50% by weight, preferably a 3 5 -4 5 wt °/〇 propylene copolymer having at least one linear or branched α-olefin of 2 to 8 carbon atoms other than propylene. The copolymer comprises from 3.6 to 1 5.0 wt % , preferably from 6 · 0 to 1 2.0 wt % derived from an α-olefin (referred to as component (I)); and (II) 50-70 wt%, preferably 55-65 wt% of a copolymer And having at least one linear or branched α-olefin of 2 to 8 carbon atoms other than propylene, the copolymer comprising from 〇·〇1 to 3.5 wt%, preferably from 0.9 to 2.0 wt% (referred to as The component (II) is derived from an α-olefin, wherein the amount of the component (I) corresponds to the respective retention amount in the riser, and the amount of the component (II) corresponds to the respective retention amount in the downcomer. The component (I) and the component (II) preferably comprise the same α-olefin, and the α-olefin is preferably selected from the group mentioned in the above paragraph 10-200813096. The rhodium-catalyst suitable for use in the production of the propylene polymer of the present invention comprises a solid catalyst component comprising at least one titanium compound, the titanium compound having at least one titanium-halogen linkage and at least one electron donor compound (internal Internal donor), both of which are carried on magnesium chloride. The ruthenium-catalyst system further comprises an organic-aluminum compound as a necessary co-catalyst and optionally an external electron-donor compound. The suitable catalyst system is described in the European patent EP45. 977, EP 3 6 1 494, EP 72 8769, EP 1 2725 3 3 and International Patent Application WO OO/6 3 2 6 1 wherein the solid catalyst component preferably comprises Mg, Ti, halogen and one from mono or polycarboxylate An electron acceptor selected from an acid ester which may be aliphatic or aromatic. Among the esters of aliphatic acids, malonic esters, glutaric esters and succinic esters disclosed in W 0 0 0/6 3 2 6 1 are preferred. Among the esters of aromatic acids, benzoic acid esters and phthalic acid esters disclosed in EP45 977, especially diisobutyl phthalate or dihexyl citrate or diethyl citrate and mixtures thereof are preferred. . According to a preferred method, the solid catalyst component can be prepared by reacting a titanium compound of the formula Ti(0R)n_yXy2 with a magnesium chloride derived from an adduct of the formula MgCl2·pROH, and in Ti(OR)n_yχy n is the valence of titanium, y is the number between 1 and η, preferably TiCl4. In MgCl2_pR0H, P is a number between 0.1 and 6, preferably 2 to 3.5, and R is A hydrocarbon group of 1 to 18 carbon atoms. The adduct can be mixed with the alcohol and magnesium chloride under the inert hydrocarbon which is immiscible with the adduct, and the melting temperature of the adduct is stirred under the mixing condition of -11-200813096 (1 ο 0 -1 3 0 °c), suitable for the preparation of a spherical form. Then, the emulsification is rapidly quenched, so that the adduct is solidified in the form of spherical particles. The particles of the spherical adduct prepared in accordance with this procedure are described in U.S. Patent No. 4,3,99,0,5, and U.S. Patent No. 4,46,64. The adduct obtained in this way can be directly reacted with the Ti compound or subjected to the thermal 1 controlled dealcoholation (80-130 ° C) in order to obtain an addition of the alcohol molar number of substantially less than 3. Preferably, it is between 0.1 and 2.5. The reaction with the Ti compound can be carried out by suspending the adduct (after deco-alcoholization or on its own) in cold TiC 14 (generally 〇 ° C); heating the mixture to 80-130 ° C and maintaining this The temperature is 0 · 5 to 2 hours. This processing of T i C 14 can be performed one or more times. The internal precursor can be added during the treatment of τ i c 14 and the treatment with the electron donor compound can be repeated one or more times. In general, the succinic acid of the formula (I) is used when the molar ratio to MgCl2 is from 0.01 to 1, preferably from 0.05 to 0.5. The preparation of the spherical form of the catalyst component is described in the European Patent Application No. EP-A- 3 905 0 3 and the International Patent Application No. WO 9 8/44009. The solid catalyst component obtained according to the above method generally has a surface area between 20 and 500 m 2 /g (by the BET method), preferably between 50 and 400 m 2 /g, and the total porosity (borrowed) It is higher than 0.2 cm 3 /g by the B · E · T · method, preferably between 0.2 and 0.6 cm 3 /g. Since the radius is as high as 1 0.000 A, the porosity (Hg method) ranges from 〇·3 to 1.5 cm 3 /g, preferably from 0.45 to 1 cm 3 /g. The organic-aluminum compound is preferably selected from, for example, triethyl aluminum, three. Alkyl aluminum of isobutyl aluminum, tri-n-butyl aluminum, tri-n-hexaluminum, tri-n-octane aluminum trialkyl aluminum compound, alkyl aluminum halide, alkyl aluminum hydride or aluminum alkyl such as AlEt2Cl and Al2Et3Cl3 may also be used. a mixture of sesquichloride and trialkylaluminum. -12- 200813096 Preferred external electron donor compounds include sand compounds, such as esters of ethyl 4-ethoxybenzoate, heterocyclic compounds 'especially 2,2,6,6-tetramethylpiperidine and ketones. Another type of external host compound is an indole compound of the formula Ra5Rb6Si(OR7)c, and a and b are integers from 0 to 2, c is an integer from 1 to 3, and (a + b + c) The total is 4; R5, R6 and R7 are alkyl, cycloalkyl or aryl compound groups having 1 to 18 carbon atoms as the case may be, and methylcyclohexyldimethoxydecane, Phenyldimethoxydecane, methyl tertiary butyl dimethoxydecane, dicyclopentyldimethoxydecane, 2-ethylpiperidin-2-tributyldimethoxydecane, 1, 1,1-Trifluoropropyl-2·ethylpiperidine dimethoxydecane and 1,1,1-trifluoropropyl-2-ethyl-alu-nitrogen-Met-dimethoxydecane good. The external electron donor compound is used in an amount such that the molar ratio between the organic-aluminum compound and the electron donor compound is from 0.1 to 500. The propylene polymer of the present invention may further comprise at least one nucleating agent. Preferably, the propylene polymer comprises at least one nucleating agent of up to 2500 ppm, more preferably from 50,000 to 2,000 p pm. The at least one crystal nucleating agent may be selected from inorganic additives such as talc, ceria or kaolin, monocarboxylates or polycarboxylates, such as sodium benzoate or aluminum tert-butylbenzoate. Diphenylmethylene sorbitol or a derivative substituted with a C1-C8 alkyl group, such as methyldibenzylidene sorbitol, ethyldibenzylidene sorbitol or dimethyldiphenylmethylene sorbitol An alcohol or a phosphodiester salt such as a sodium or lithium salt of 2,2,-methylenebis(4,6,di-tertiary-butylbenzene) phosphate. The particularly preferred nucleating agent is 3,4-dimethyldibenzylidene sorbitol, hydroxybis[2,2,_methylene-bis(4,6,-di-13- 200813096-t-butylbenzene) Phosphoric acid] aluminum, 2,2,-methylene-bis(4,6,-di-tris-butylbenzene) sodium phosphate or 2,2'-methylene-bis (4,6,_di-three) Grade - butylbenzene) lithium phosphate and bicyclo [2.2.1] heptane-2,3. dicarboxylic acid, disodium salt (1!^, 211, 311, 43). The at least one crystal nucleating agent can be added to the propylene polymer by a known method, for example, melt-blending at least one crystal nucleating agent and propylene polymer in a conventional extruder. The propylene polymer of the present invention further comprises having a crystallization temperature Tc (measured by DSC) preferably equal to or higher than n 〇, more preferably from 1 1 〇 ° C to 120 ° C, particularly preferably from 1 12 ° C to 1 17 ° C and / or melting temperature Tm (measured by DSC) is higher than 125 ° C, preferably ranging from 15 ° C to 162 ° C of the nucleating agent. The propylene polymer of the present invention is particularly suitable for use in the manufacture of extrusion blow molded products. Accordingly, it is a further object of the present invention to provide a process for making an extrusion blow molded product comprising the use of at least one linear or branched alpha from two to eight carbon atoms. The olefin is derivatized in a total amount ranging from 4 · 5 to 6.0 wt % of the propylene polymer, preferably from 4.7 to 5.5 wt%, more preferably from 4.8 to 5.2 wt%, and the melting temperature Tm (by DSC measurement) For example, the polymer of the reactor ranges from 148 ° C to 160 ° C, preferably from 150 ° C to 158 ° C, more preferably from 1 5 3 ° C to 165 ° C. A hollow cylinder (shaped embryo) is extruded from the molten plastic material and clamped in a mold during the extrusion blow molding process. The molten parison is then expanded with air pressure, cooled and ejected. The burrs are an unavoidable by-product in the extrusion blow molding process and require tool refurbishment to remove the burrs from the blow molded product. Therefore, in the process, the cooling step is a rate limiting factor, and the cooling capacity of the molten material 14-200813096 is the most important factor in determining the minimum cycle time. It has been found that by using the present invention, the cycle time of the extrusion blow molding process can be remarkably reduced as compared with the same process using conventional polypropylene. A propylene polymer having a total comonomer content comprised in the preferred range of 4.7 to 5.5 wt% (relative to the propylene polymer) was unexpectedly discovered, additionally giving a particularly excellent impact/stiffness balance at 0 ° C (according to ISO The 180/1A measurement) has an erbium impact force of more than 10 kJ/m2, preferably in the range of from 1 Torr to 50 kJ/m2, more preferably from 15 to 45 kJ/m2. In addition to the nucleating agent, the propylene polymer of the present invention may further include additives commonly used in the field of polyolefins such as antioxidants, photostabilizers, antacids, colorants, tanning agents, and process modifiers, and the above additives. Conventional amounts can be added to the propylene polymer by methods well known in the art. [Embodiment] The characteristics mentioned in the specification and the examples were measured in accordance with the following methods. These examples are intended to illustrate, but not limit to, the invention. Molar ratio of feed gas: comonomer (C2) content determined by gas chromatography: IR spectroscopy melt flow rate (MFR): determined according to ISO 1 1 3 3 (23 0 °C, 2.16 Kg) Melting and crystallinity (Tm and Tc): According to ISO 11357, determined by DSC, the temperature change is 20 °C per minute. The polydisperse index (P.I.) is determined at a temperature of 200 ° C by using a parallel plate rheometer model RMS-800 sold by RHEOMETRICS (USA), operating at an oscillation frequency from 0·lrad/sec to 1 〇 〇rad/sec. From the crossover modulus, the P.I. can be derived via Equation -15-200813096: P.I. = 105/Gc

Gc爲交越模數,其定義爲在G’ = G”時的値(由pa表示),而 G’係爲儲存模數,G”係爲損失模數。 二甲苯溶解分銮(XS) 引入2.5g的聚合物和2 5 0mL的鄰-二甲苯至配備有冷 凝管和磁性攪拌器之玻璃燒瓶。在3 0分鐘內升溫至溶液的 沸點。然後將由此得到的液體保持回流且再攪拌3 0分鐘。 將該密閉燒瓶保持在冰水浴中3 0分鐘,然後同樣地維持在 2 5 °C之溫度調節裝置的水浴中3 0分鐘。將由此方式得到之 固體用快速過濾紙過濾,且將1 〇〇ml過濾後之液體倒入事 先秤重的鋁容器中,在氮氣流動的狀況下用加熱板加熱該 鋁容器,以藉由蒸發移去溶劑。然後將該容器維持在8 0 °C 之真空烘箱至得到固定重量。秤重該殘餘物以決定二甲苯 溶解聚合物的百分比。 棒曲樽數(MEF):依據ISO 178決定 艾氐衝擊力:在23°C和〇°C時,依據ISO 180/1A決定 征脆件轉移溫度(DBTT):依據此方法,雙軸衝擊耐性 由衝擊一自動化、電腦化之敲擊榔頭決定。圓形的測試樣 品藉由下述得到之硬塊,經由圓形手動打孔機(直徑3 8 m m) 剪割得到。將該圓形的測試樣品置於23 °C和5 0RH中至少 1 2小時,然後置於測試溫度之溫度調節裝置水浴中1小時 。在敲擊榔頭衝擊(5.3kg、半球擊打(hemispheric punch)之 直徑爲1/2”)於一靜止在環形支撐物上之圓形樣品期間偵 -16- 200813096 測其力-時間曲線。所使用之機器係CEAST 675 8/000式型 號2。DBTT係在上述衝擊測試時,50%的樣品受到碎裂破 損的溫度。大小爲1 27x 1 27x 1 .5mm且用於DBTT量測之硬 塊係依據下列方法備製。壓鑄機係爲 N e g r i B 〇 s s i ™式 (NB90),其夾模力爲 90tons。鑄模爲矩形硬塊(127xl27x 1.5mm)。主要之製程參數如下: 背壓 bar 20 噴射時間 sec 3 最大噴射壓力 MPa 14 水噴射壓力 MPa 6-3 第一維持水壓力 MPa 4±2 第一維持時間 sec 3 第二維持水壓力 MPa 3±2 第二維持時間 sec 7 冷卻時間 sec 20 鑄模溫度 °C 60 熔化溫度 °c 220 到 280 霧度(lmm之硬塊) 依據目前方法,將1mm厚之模鑄硬塊切割成5x5 cm之 樣品,使用連接至測霧器型式UX-10或有G.E. 1 209光源 及過濾器“C”之同等儀器的加登納光度裝置(Gardner -17- 200813096 photometric unit)量測霧度。使用已知霧度之參考樣品校準 該儀器。待測之硬塊依據下列方法製造。將7 5 X 7 5 X 1 m m之 硬塊用GBFPlastiniectorG235/90噴射成型機塑型,9〇t〇ns 於下列製程條件: 螺桿旋轉速度 rpm 120 背壓 bar 10 熔化溫度 °C 260 噴射時間 sec 5 轉換至維持壓力 bar 50 第一階段維持壓力 bar 30 第二階段維持壓力 bar 20 維持壓力外形:-第一階段 sec 5 -第二階段 sec 10 冷卻時間 sec 20 模具水溫 °C 40 最高負載=使用備有〇.2gr準確性之天平和0.01mm準 確性之測微計的Instron測力機於本試驗中。在23°±1°C和 5 0 %相對溼度情況下至少1 0小時後,將該瓶子置於測力機 之兩塊夾板間,以5 c m / m i η之應力速度壓緊夾板。紀錄夾 碎瓶子的應力且以單位Ν描述該値。最高負載値係爲從重 複1 〇次瓶子量測得到的平均値。 -18- 200813096 聚合設備 依據本發明之實施例1到3,使用一包括兩個互相連 接聚合區、一上升管、一降流管之氣相聚合反應器,其敘 述於國際專利案WO00/02929中,來備製丙烯聚合物(A)。 將指示之乙烯量和分子量調節劑,即氫氣,全部飼入第一 聚合區中(上升管)。依靠丙嫌屏障進料(propylene barrier feed),造成在兩聚合區中的氣體成分之差異。 實施例1到3 用於備製丙烯聚合物之固體觸媒係依據歐洲專利 EP72 8 769之實施例5第48到55行備製。使用三乙鋁(TEAL) 爲共觸媒及二環戊基二甲氧基矽烷爲外部予體。藉由飼入 單體和觸媒系統至上述提及之聚合設備中,用單一聚合步 驟備製丙烯聚合物。然後將聚合物粉末經過蒸氣處理’以 移去未反應之單體,乾燥後進行分析,連同聚合條件顯示 於表1中。 表2中描述藉由在押出機Werner 53中,混合實施例 1到 3的聚合物粉末和 900ppm的 ADK-NA21(由 Adeka Palm arole供應)所得到成分之特徵値。此外,從上述之成 分,經由吹氣模製技術,備製瓶子(3 5 g),以用來測試衝擊 (4°C )和最高負載特性。 -19- 200813096 表1 實施例1 實施例2 實施例3 TEAL/外部予體 wt/wt 1 3,S 3·9 3.0 TEAL/觸媒 wt/wt 5.0 5·0 5.0 溫度 °C 75 70 75 壓力 barg 24 22 24 分別滯留量 上升管 wt% 38 35 34 降流管 wt% 62 65 66 c3_上升管 mole% 66 70.5 I c2-上升管 mole% 8 4.9 ! h2/cv上升管 mol/mol i 0.030 0.006 C27(C2-+C3_) moi/mol / 0.065 0.050 聚合物粉末之分析 MFR g/10 min 2.0 2.4 0.9 總含量 wt% 4.7 5 4,8 XS wt% 12.8 11.5 】2·1 多分散彳$指數 4.4 4.8 4,2 Tm °C 151.8 151.5 149,0 Tc °C 101 97.4 99.8 比較實施例1 同表2,顯示由Basell在傳統迴路反應器(loop reactor) 中製造出傳統適合用於目前市場上之擠壓吹氣模製丙烯/ 乙細共聚物的特徵値。將該共聚物跟1800ppm之Millad 3988熔化混合於Werner 53押出機中。該共聚物之MFR値 爲 1.5g/10mino -20- 200813096 比較實施例2 依據歐洲EP 1 206499之揭露’丙烯聚合衫 製使用跟實施例2中相同之固體觸媒。使用三 爲共觸媒。該聚合反應進行在如上述提及之養 由飼入單體至操作於溫度70 °C,備有適合轉程 合物和未反應單體及觸媒系統至第二氣相反I 一液相反應器中,於第二氣相反應器中,藉S 之新單體,在溫度80 °C下完成聚合反應。使月 調節劑。如反應器之丙烯聚合物合成物之熔化 °C且包括86 wt %之丙烯-乙烯共聚物,其包含 衍生之單位,且14 wt%之丙烯-乙烯共聚物包 從乙烯衍生之單位。 從第二反應器排出之聚合物粉末經過蒸_ 未反應之單體,乾燥且跟1800PPm之Millad 合於 Berstorff雙螺桿押出機。該合成物 1.3g/10min且總二甲苯溶解分率爲12.6 wt%。 於表2中。 ?合成物之備 .乙鋁(TEAL) f施例中,藉 $成長中之聚 I器設備之第 3飼入適合量 §氫爲分子量 溫度爲1 4 5.4 3 wt%從乙烯 含 1 6 · 3 w t % 民處理以移去 3 9 8 8熔化混 之 MFR 爲 ,其特徵値列 -21- 200813096 表2 實施例1 實施例2 實施例3 比較 實施例1 比較實施例2 Tm °C 154.5 153.8 152 143.2 149.0 Tc °c 116.3 116 112.7 104,9 / 撓曲模數 MPa S70 830 890 S40 790 艾氏於23°C kJ/m2 603 54 59 35,0 NJB, 艾氏於〇°C kJ/m2 34.6 37.3 28.6 6.0 4,0 DBTT °C -5.4 -3.2 -4,6 10,0 •2.0 霧度 % 16.6 14.9 15,4 10.0 1L0 瓶子衝擊(4°C ) cm 126 121 144 62 最高負載 N 270 270 290 275 N.B.=未破損 此外,在成核作用之後,跟傳統包含相同量共聚單體 之丙烯聚合物相比,本發明之丙烯聚合物維持較高之Tm 和Tc値。再者,從表2可明顯地看出如果本發明之共聚物 特別在低溫時顯示出優秀的衝擊特性,會反應到吹氣模製 產品上。 【圖式簡單說明】 〇 j\w 【元件符號說明】 Μ 。 -22-Gc is the crossover modulus, which is defined as 値 (represented by pa) at G' = G", and G' is the storage modulus, and G" is the loss modulus. Xylene-dissolved tiller (XS) 2.5 g of polymer and 250 mL of o-xylene were introduced into a glass flask equipped with a condensing tube and a magnetic stirrer. The temperature was raised to the boiling point of the solution within 30 minutes. The liquid thus obtained was then kept at reflux and stirred for a further 30 minutes. The sealed flask was kept in an ice water bath for 30 minutes, and then maintained in a water bath of a temperature adjusting device at 25 ° C for 30 minutes. The solid obtained in this way was filtered with a fast filter paper, and 1 〇〇 ml of the filtered liquid was poured into a previously weighed aluminum container, and the aluminum container was heated with a hot plate under a nitrogen flow to evaporate. Remove the solvent. The vessel was then maintained in a vacuum oven at 80 ° C until a fixed weight was obtained. The residue was weighed to determine the percentage of xylene dissolved polymer. Bar Ferrule Number (MEF): Determines Ai's impact force according to ISO 178: At 23 ° C and 〇 ° C, the brittle transfer temperature (DBTT) is determined according to ISO 180/1A: According to this method, biaxial impact resistance It is determined by the impact of an automated, computerized tapping. The round test specimens were cut by a circular hand punch (diameter 3 8 m m) by the hard block obtained below. The round test sample was placed in 23 ° C and 50 RH for at least 12 hours and then placed in a water bath of the temperature of the test temperature for 1 hour. The hammer-head impact (5.3 kg, hemispheric punch diameter 1/2") was measured during a round sample resting on the annular support. The force-time curve was measured. The machine used is CEAST 675 8/000 model 2. DBTT is the temperature at which 50% of the sample is subjected to chipping and breaking at the above impact test. The size is 1 27x 1 27x 1.5 mm and the hard block is used for DBTT measurement. The die casting machine is N egri B 〇ssi TM type (NB90) with a clamping force of 90 tons. The mold is a rectangular hard block (127xl27x 1.5mm). The main process parameters are as follows: Back pressure bar 20 Injection time Sec 3 Maximum injection pressure MPa 14 Water injection pressure MPa 6-3 First maintenance water pressure MPa 4±2 First maintenance time sec 3 Second maintenance water pressure MPa 3±2 Second maintenance time sec 7 Cooling time sec 20 Mold temperature °C 60 Melting temperature °c 220 to 280 Haze (1mm hard block) According to the current method, a 1mm thick molded lumps are cut into 5x5 cm samples, connected to the fogger type UX-10 or GE 1 209 Light source and filter "C" The Hadden photometric unit (Gardner -17-200813096 photometric unit) of the equivalent instrument measures the haze. The instrument is calibrated using a reference sample of known haze. The hard block to be tested is manufactured according to the following method. 7 5 X 7 5 X 1 The mm block is molded with GBFPlastiniector G235/90 injection molding machine, 9〇t〇ns in the following process conditions: screw rotation speed rpm 120 back pressure bar 10 melting temperature °C 260 injection time sec 5 conversion to maintenance pressure bar 50 first stage Maintaining pressure bar 30 Second stage maintaining pressure bar 20 Maintaining pressure profile: - first stage sec 5 - second stage sec 10 cooling time sec 20 mold water temperature °C 40 maximum load = use balance with accuracy of .2gr The Instron dynamometer with a 0.01 mm accuracy micrometer is used in this test. After at least 10 hours at 23 ° ± 1 ° C and 50 % relative humidity, the bottle is placed in the dynamometer. Press between the block plates at a stress rate of 5 cm / mi η. Record the stress of the broken bottle and describe the 以 in Ν. The highest load 値 is the average 値 measured from repeated 1 瓶子 bottles. -18- 200813096 Polymerization Apparatus According to Examples 1 to 3 of the present invention, a gas phase polymerization reactor comprising two interconnected polymerization zones, a riser pipe and a downflow pipe is used, which is described in International Patent No. WO00/02929 In order to prepare a propylene polymer (A). The indicated amount of ethylene and the molecular weight regulator, i.e., hydrogen, were all fed into the first polymerization zone (rising tube). The difference in gas composition in the two polymerization zones is caused by the propylene barrier feed. Examples 1 to 3 The solid catalyst used to prepare the propylene polymer was prepared in accordance with Example 5, lines 48 to 55 of European Patent EP 72 8 769. Triethylaluminum (TEAL) was used as the co-catalyst and dicyclopentyldimethoxydecane as the external precursor. The propylene polymer is prepared by a single polymerization step by feeding a monomer and a catalyst system to the above-mentioned polymerization apparatus. The polymer powder was then subjected to steam treatment to remove unreacted monomers, dried and analyzed, together with polymerization conditions shown in Table 1. The characteristics of the components obtained by mixing the polymer powders of Examples 1 to 3 and 900 ppm of ADK-NA21 (supplied by Adeka Palm arole) in the extruder Werner 53 are described in Table 2. Further, from the above components, bottles (3 5 g) were prepared through a blow molding technique to test impact (4 ° C) and maximum load characteristics. -19- 200813096 Table 1 Example 1 Example 2 Example 3 TEAL/external precursor wt/wt 1 3, S 3·9 3.0 TEAL/catalyst wt/wt 5.0 5·0 5.0 Temperature °C 75 70 75 Pressure Barg 24 22 24 Retention capacity riser wt% 38 35 34 Downflow tube wt% 62 65 66 c3_ riser mole% 66 70.5 I c2-rise tube mole% 8 4.9 ! h2/cv riser mol/mol i 0.030 0.006 C27(C2-+C3_) moi/mol / 0.065 0.050 Analysis of polymer powder MFR g/10 min 2.0 2.4 0.9 Total content wt% 4.7 5 4,8 XS wt% 12.8 11.5 】2·1 polydisperse 彳$ index 4.4 4.8 4,2 Tm °C 151.8 151.5 149,0 Tc °C 101 97.4 99.8 Comparative Example 1 Same as Table 2, showing that Basell is traditionally suitable for use in the current market in conventional loop reactors. The characteristics of the extrusion blow molded propylene/ethylene copolymer. The copolymer was melt mixed with 1800 ppm of Millad 3988 in a Werner 53 extruder. The copolymer had an MFR 値 of 1.5 g/10 mino -20 - 200813096. Comparative Example 2 The same solid catalyst as in Example 2 was used in accordance with the disclosure of EP 1 206499. Use three for the common catalyst. The polymerization is carried out by feeding the monomer as mentioned above to a temperature of 70 ° C, and is provided with a suitable transfer compound and an unreacted monomer and a catalyst system to the second gas. In the second gas phase reactor, the polymerization was carried out at a temperature of 80 ° C by means of a new monomer of S. Make a month regulator. For example, the propylene polymer composition of the reactor is melted at °C and comprises 86 wt% of a propylene-ethylene copolymer comprising derivatized units, and 14 wt% of the propylene-ethylene copolymer comprises units derived from ethylene. The polymer powder discharged from the second reactor was subjected to steaming_unreacted monomer, dried and combined with 1800 ppm of Millad in a Berstorff twin screw extruder. The composition was 1.3 g/10 min and the total xylene solubility fraction was 12.6% by weight. In Table 2. Preparation of synthetic materials. Ethyl aluminum (TEAL) f In the example, borrowing the third amount of the growing equipment in the growing device, § hydrogen is the molecular weight temperature of 1 4 5.4 3 wt% from ethylene containing 1 6 · 3 wt % of the treatment to remove the MFR of the 3 9 8 melt blend, which is characterized by a list of -21 - 200813096. Table 2 Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Tm ° C 154.5 153.8 152 143.2 149.0 Tc °c 116.3 116 112.7 104,9 / flexural modulus MPa S70 830 890 S40 790 Ehrlich at 23°C kJ/m2 603 54 59 35,0 NJB, Ehrlich at 〇°C kJ/m2 34.6 37.3 28.6 6.0 4,0 DBTT °C -5.4 -3.2 -4,6 10,0 •2.0 Haze% 16.6 14.9 15,4 10.0 1L0 Bottle impact (4°C) cm 126 121 144 62 Maximum load N 270 270 290 275 NB = unbroken In addition, after nucleation, the propylene polymer of the present invention maintains a higher Tm and Tc 相比 than conventional propylene polymers containing the same amount of comonomer. Further, it is apparent from Table 2 that if the copolymer of the present invention exhibits excellent impact characteristics particularly at a low temperature, it will be reacted to the blow molded product. [Simple description of the diagram] 〇 j\w [Description of component symbols] Μ . -twenty two-

Claims (1)

200813096 十、申請專利範圍: ' 1 ·一種丙烯聚合物,其所具有的衍生自至少一種非丙烯之具 、 有2至8個碳原子的線性或分枝的^ ·燦烴單元之總含量爲 4 · 5至6 · 0 wt°/〇,且該丙烯聚合物之熔點(以d s C量測如反應 器之聚合物(as-reactor polymer)而得)爲 i48°C 至 160。(:。 2 ·如申g靑專利範圍第1項之丙儲聚合物,該α -燒烴爲乙嫌。 3 ·如申請專利範圍第1或2項之丙烯聚合物,更包括上限 爲2500ppm之至少一種晶核劑。 4. 如申請專利範圍第1至3項中任一項之丙烯聚合物,其 具有4.7至5.5wt %之共單體含量。 5. —種製備如申請專利範圍第1至4項中任一項之丙烯聚合 物之氣相聚合方法,其於至少兩相連聚合區進行,係包括 將丙烯與至少一種非丙烯之具有2至8個碳原子之線 性或分枝的α -烯烴於反應條件下飼入含有高度立體特異 不均相戚-乃觸媒系統之該等聚合區; 自該等聚合區收集聚合物產物; J 於此方法中,成長中的聚合物顆粒於快速流體化之情 況下,經由該等聚合區(上升部)之一向上流動,離開該上 升部進入另一反應區域(降流部),於該降流部藉由重力作 用向下流動,離開該降流部並再次導入上升部,藉此建立 聚合物在上升部與下降部之間的循環,也就表示提供其能 夠完全地或部分地防止上升部之氣體混合物進入降流部 ,且具有與存在於上升部之氣體混合物不同組成之氣體及 /或液體混合物係被導入降流部; 本方法的進一步特徵爲: -23- 200813096 -該上升部的單體進料率CxV(c:x- + c3-)介於 1.000mol/mol’其中Cx_表不該至少一種非丙少 至8個碳原子的α-烯烴,係作爲製備丙烯共薄 體,以及C3 _係表示丙烯。 6: —種製備擠壓吹氣模製產品之方法,其係包括 請專利範圍弟1至4項中任一項之丙烯聚合物 7· 一種擠靡吹氣模製產品,其係包括如申請專利 至4項中任一項之丙烯聚合物。 0.〇5〇 ^ ^之具有2 物的共單 使用如申 ) 範圍第1 -24- 200813096 七、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: Φη1 〇 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:200813096 X. Patent application scope: '1 · A propylene polymer having a total content of linear or branched linear hydrocarbons derived from at least one non-propylene having 2 to 8 carbon atoms 4 · 5 to 6 · 0 wt ° / 〇, and the melting point of the propylene polymer (as measured by ds C as an as-reactor polymer) is i48 ° C to 160. (: 2) If the polymer is stored in the first item of the patent range, the α-burning hydrocarbon is B. 3 · The propylene polymer of the first or second aspect of the patent application, including the upper limit of 2500 ppm The propylene polymer according to any one of claims 1 to 3, which has a comonomer content of 4.7 to 5.5 wt%. The method for gas phase polymerization of a propylene polymer according to any one of items 1 to 4, which is carried out in at least two consecutive polymerization zones, comprising linear or branched propylene having at least one non-propylene having 2 to 8 carbon atoms The alpha-olefin is fed under reaction conditions to the polymerization zone containing a highly stereospecific heterogeneous rhodium-catalyst system; the polymer product is collected from the polymerization zones; J. In this process, the growing polymer particles In the case of rapid fluidization, it flows upward through one of the polymerization zones (rising portions), leaves the rising portion and enters another reaction region (downflow portion), and flows downward by gravity in the downflow portion. Leave the downflow section and import it again into the riser. This establishes a circulation of the polymer between the ascending portion and the descending portion, which means that it is provided to completely or partially prevent the gas mixture of the ascending portion from entering the downflow portion and has a different composition from the gas mixture present in the ascending portion. The gas and/or liquid mixture is introduced into the downflow section; the method is further characterized by: -23- 200813096 - the monomer feed rate CxV (c: x - + c3-) of the riser is between 1.000 mol/mol' Wherein Cx_ represents at least one α-olefin having from propylene to 8 carbon atoms as a propylene co-form, and C3 _ represents propylene. 6: A method for preparing an extrusion blow molded product The propylene polymer of any one of the claims 1 to 4, which is a squeezing and blow molding product, which comprises the propylene polymer of any one of the claims 4 to 0. . 〇5〇^ ^ has a total of 2 uses of the same as the application) Scope 1 -24- 200813096 VII, designated representative map: (a) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: Φη1 〇 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96126306A 2006-07-28 2007-07-19 Propylene polymers TW200813096A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06118061 2006-07-28

Publications (1)

Publication Number Publication Date
TW200813096A true TW200813096A (en) 2008-03-16

Family

ID=41040490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96126306A TW200813096A (en) 2006-07-28 2007-07-19 Propylene polymers

Country Status (4)

Country Link
CN (1) CN101516929B (en)
BR (1) BRPI0713834B1 (en)
RU (1) RU2441028C2 (en)
TW (1) TW200813096A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045194A1 (en) 2009-10-13 2011-04-21 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
EP2792692A1 (en) * 2013-04-17 2014-10-22 Basell Poliolefine Italia S.r.l. Nucleated propylene-based polyolefin compositions
US10968291B2 (en) * 2016-11-10 2021-04-06 Basell Polyolefine Gmbh Olefin polymerization process in a gas-phase reactor comprising a riser unit and a downcomer
CN110352203B (en) * 2017-03-27 2022-04-19 巴塞尔聚烯烃意大利有限公司 Propylene ethylene random copolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176287A (en) * 1982-04-12 1983-10-15 Ube Ind Ltd Heat-sealing tape with adhesive layer
IT1282942B1 (en) * 1995-09-15 1998-04-02 Montell North America Inc STRETCH BLOW MOLDING PROCESS FOR THE PREPARATION OF POLYPROPYLENE CONTAINERS
EP1873172B1 (en) * 1998-06-25 2009-06-24 Idemitsu Kosan Co., Ltd. Propylene polymer and composition containing the same, molded object and laminate comprising these, and processes for producing propylene polymer and composition containing the same

Also Published As

Publication number Publication date
BRPI0713834A2 (en) 2013-06-18
BRPI0713834B1 (en) 2018-12-26
CN101516929B (en) 2012-06-20
CN101516929A (en) 2009-08-26
RU2009107036A (en) 2010-09-10
RU2441028C2 (en) 2012-01-27

Similar Documents

Publication Publication Date Title
US10150828B2 (en) Process for producing propylene terpolymers
US8178632B2 (en) Propylene polymers
JP5650229B2 (en) Propylene polymer composition
KR101581076B1 (en) Propylene polymer compositions
WO2006079279A1 (en) Propylene polymer composition and oriented film made therefrom
JP2003535178A (en) Propylene polymer composition having improved impact strength and excellent optical properties
EP2571933B1 (en) Propylene polymer compositions
EP1871832B1 (en) Biaxially oriented propylene polymer films
WO2006082144A1 (en) Propylene polymer composition for injection molding
US20100160540A1 (en) Process for the Nucleation of Polypropylene Resins
EP2566919B1 (en) Propylene polymer compositions
TW200813096A (en) Propylene polymers
US8378028B2 (en) Polyolefin compositions
US8207285B2 (en) High shrink polypropylene films
CN115135682A (en) Propylene-based copolymer for containers
KR20080013956A (en) Propylene polymer composition for thermoforming