TW200812915A - System and method of slurry treatment - Google Patents

System and method of slurry treatment Download PDF

Info

Publication number
TW200812915A
TW200812915A TW95132279A TW95132279A TW200812915A TW 200812915 A TW200812915 A TW 200812915A TW 95132279 A TW95132279 A TW 95132279A TW 95132279 A TW95132279 A TW 95132279A TW 200812915 A TW200812915 A TW 200812915A
Authority
TW
Taiwan
Prior art keywords
ion exchange
concentration
honing
copper
metal
Prior art date
Application number
TW95132279A
Other languages
Chinese (zh)
Other versions
TWI393675B (en
Inventor
Michael W Wismer
Richard Woodling
Original Assignee
Siemens Water Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Water Tech Corp filed Critical Siemens Water Tech Corp
Priority to TW95132279A priority Critical patent/TWI393675B/en
Publication of TW200812915A publication Critical patent/TW200812915A/en
Application granted granted Critical
Publication of TWI393675B publication Critical patent/TWI393675B/en

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Wastewater streams from semiconductor processing operations are treated to reduce the concentration therein of one or more metal species to a satisfactory level. The disclosed systems and technique utilize complexing ion exchange media to treat the wastewater streams having a significant concentration of oxidizing species and high solids concentration.

Description

200812915 九、發明說明: 【發明所屬之技術領域】 本發明係關於用於降低來自廢料流之一或多種金屬種 類的濃度之系統和方法,特別係關於用於自化學·機械平面 化廢硏磨劑流中移除一或多種金屬種類之系統和裝置。 【先前技術】 可採用各種技術用於降低來自廢流之一或多種標的種 類之濃度。舉例而言,美國專利第3,3 01,542號中,Medford 等揭示用於處理酸性蝕刻溶液之系統。美國專利第3,428,449 號中,Swanson等揭示使用酚式肟自酸性液中萃取銅。美 國專利第3,440,036號中,Spinney揭示具有銅之溶液中:回 收銅。美國專利第3,912,810號中,Stephens揭示使用環狀 碳酸亞烴酯進料溶劑萃取金屬。美國專利第3,914,374號中 ,Koehler等揭示自鎳溶液中移除殘留之銅。美國專利第 3,923,74 1號中,Asano等揭示丙烯醯胺水溶液精煉方佐。 美國專利第3,941,83 7號中,Asano等另外揭示處理丙烯醯 胺的水溶液之方法。美國專利第4,0 1 0,0 99號中,Leach等 揭示銅液體萃取系統之沈降器。美國專利第4,2 10,5 3 0號中 ,Etzel等揭示使用未膨脹之蛭石陽離子交換柱來處理鍍金 屬之廢料。美國專利第4,231,8 8 8號中,Dalton揭示使用 於自含水銅鹽中萃取銅之組成物。美國專利第 4,23 9,2 10 號中,Merchant等揭示再生蝕刻劑和回收所蝕刻之金屬的 方法。美國專利第4,666,683號中,Brown等揭示用於自螯 合劑和銅的溶液中移除銅之方法。美國專利第5,2 5 6,1 8 7 200812915 號中,Gefvart揭示利用離子交換程序來分離貴重金屬。美 國專利第5,298,1 68號中,Guess揭示用於自水中移除已溶 之重金屬的連二亞硫酸亞鐵方法和組成物。美國專利第 5,3 46,627號中,Siefert等揭示用於自流體流中移除金屬之 方法。美國專利第5,3 4 8,712號中,Marquis等揭示使用碳 酸鹽在金屬離子萃取中。美國專利第 5,464,605號中, Hayden揭示用於分解和移除過氧化物之方法。美國專利第 5,476,883號中,Abe等揭示自純化之丙烯腈製造丙烯醯胺 的方法。美國專利第5,5 99,5 1 5號中,Misira等揭示自溶液 中移除汞的方法。美國專利第6,3 1 5,90 6號中,Sassaman 等揭示自廢水中移除金屬離子。美國專利第6,3 46,1 95號中. ,Filson等揭示自廢水中進行離子交換移除金屬。美國專 利第6,8 1 8,1 2 9號中,K e m p等相似地揭示自廢水中進行離 子交換移除金屬離子。然而,美國專利第6,818, 129號中, Kemp等指明:如果過氧化氫存在,因爲其不相容性,不會泛 有某些樹脂方法。Kemp等進一步指明··可使用離子交換來 附著銅離子,但是因爲存在於其中之固體粒子的存在和數 量(固體粒子典型係矽石、礬土漿體的形式),對於磨光硏 磨劑流很可能無效。 【發明內容】 依照一或數個實施例,本發明係漏於處理硏磨劑流的 方法。該方法可包括提供包含具有至少約50mg/L濃度之至 少一種金屬和至少一種氧化劑之硏磨劑流及將該硏磨劑流 引入離子交換柱中的步驟。 -6- 200812915 依照一或數個實施例,本發明係關於處理化學機械磨 光硏磨劑流的方法。該方法可包括將該硏磨劑流引入主要 由包含螯合離子交換樹脂之至少一個離子交換單元組成之 處理系統中之步驟。 依照另外實施例’本發明係關於製造電子組件之方法 。該方法可包括使用硏磨劑進行化學機械磨光電子組件及 將至少一部分的硏磨劑引至主要由包含其中包含亞胺基二 醋酸酯功能基之離子交換材料之離子交換柱組成之處理系 統。 依照一或數個實施例,本發明係關於用於處理硏磨劑 流之處理系統,此硏磨劑流可包括選自下列所構成之族群: 之至少一種金屬:銅、鉛、鎳、鋅、鈷、鎘、鐵、錳和鎢 ,並包括選自下列所構成之族群之至少一種氧化種類:具 有至少約50m g/L濃度之硝酸、過氧化氫、硝酸鐵和過硫酸、 銨。該處理系統可包括被連接至硏磨劑流的來源之流體進 口及用於降低來自硏磨劑流之至少一種金屬的濃度之設備 〇 依照一或數個實施例,本發明係關於促進處理具有至 少一種金屬種類之硏磨劑流的方法。該方法包括提供一種 處理系、統其主要係由具有經包含在其中之離子交換介質之 離子交換柱組成的步驟。該離子交換介質包括能與至少一 種金屬種類形成錯合物之至少一個側功能基。 【實施方式】 在其應用方面,本發明並不限制爲下列敘述中所揭示 -7« 200812915 細節。本發 予以進行。 的而不應視 1、”包括π及 其同等物以 或至少降低 。某些情況 一或數種流 欲種類例如 除或至少降 募顆粒材料) 渡金屬離子 移除,或至 系統和技術 廢水之銅離 副產物硏磨 他情況下, 。措辭”環境 :排放流,致 >· 5 ppm)之銅 者或圖式中所舉例說明之組件的構造和配置等 明具有其他實施例且能以各種方式予以實施或 又,本文中所使用之措辭和術語係爲了敘述目 爲限制。使用”包括"、”包含π、”具有π、π含有· 本文中其變異係意指包括此後所列出之項目及 及另外之項目。 依照一或數個實施例,本發明提供移除, 來自溶液或液流之金屬離子濃度之系統和技術 中,可利用本發明的方法和系統進行移除來自 體流,一般是一或數種廢水流之一或多種所不 金屬離子。依照另外之實施例,本發明提供移 低來自含有高量的懸浮固體粒子(本文中亦.稱ί 之溶液及/或淬流,例如硏磨劑流之一或多種過 濃度之系統和技術。某些情況中,本發明提供 少降低來自一或多種硏磨劑流之銅離子濃度之 。舉例而言,本發明的方法和系統可移除來自 ,此廢水係來自化學機械硏磨(CMP)積體電路之 的硏磨劑,其方式是經由附著金屬離子或在其 固定金屬離子,因此產生環境清潔排放水產物 清潔^’係述及可被導引至都市廢水處理廠之廢7} 使該廢水排放流含有濃度低於約0.5 m g/L (約< 離子。 依照更另外之實施例,本發明的處理系統和技術可包 括,基本上包含,或包含一或數種離子交換單元操作其可 200812915 自一或多種硏磨劑流中移除一或多種標的種類,且可致使 此等一或多種硏磨劑流適合於排放至外界。依照其他實施 例,本發明的處理系統和技術可包括,基本上包含,或包 含一種離子交換系統和碳支系統。該離子交換系統可利用 一或多個離子交換柱而碳系統可利用一或多個碳床。依照 更另外之實施例,本發明的處理系統和技術可利用一離子 交換柱、一碳床或其組合,並無降低或在其他情況下改變 被處理之硏磨劑流的固體粒子濃度之任何單元操作。經由 利用離子交換柱、碳床或其組合,本發明的系統和技術可 處理CMP硏磨劑流,不致大體上改變CMP硏磨劑流的固 體粒子濃度,如本文中所使用者,措辭”不致大體上改變” 可述及相對於所產生之已處理硏磨劑流中固體粒子濃度, 被處理之CMP硏磨劑流中固體粒子的濃度,致使該等濃度 相同或因爲與被不是故意保持在處理系統中之固體粒子相 關之固體粒子濃度降低在約5 %或1 0 %以內。 如本文中所使用者,措辭”適合於排放”係述及已處理 之液流,其中經包含在其中之一或多種管制種類的濃度是 在不大於政府控制或指令限度之程度。因此,可利用本發 明的系統和技術經由排出符合或超過一或數種所施加規定 約束之可排出之硏磨劑流,來促進製造一或多種半導體裝 置及/或一或多種型式的半導體裝置。依照一或數個實施例 ,本發明之系統和技術可移除或至少降低一或多種標的金 屬種類之濃度至符合環境上排放極限及/或準則的程度或 濃度。依照本發明的一或多個實施例之某些特點,所揭示 200812915 之系統和技術可包括一或多種處理系統,在某些情況 其包括,基本上包含一或多單元操作其接觸硏磨劑流 其中移出一或多種標的種類。 亦可利用本發明之系統和技術來實施污染物的濃 低,例如但不限於,自包含夾雜之顆粒物料的一或多 流中之過渡金屬。固體粒子或顆粒物料本文中之定義 用標準方法2540B,在1 03- 1 05 °C時所乾燥之總固體 ( 1 998,第廿版)。 依照一或數個實施例,本發明的系統和技術自廢 例如副產物磨光硏磨劑流,.自在導向積體電路微晶片 之製造操作期間,一或多個化學機械平面化過程,移 屬離子例如,但不限於銅金屬離子。 半導體製程中,一般係利用一或多種金屬例如, 限於鋁及/或過渡金屬例如銅和鎢在微晶片裝置或組 製造操作期間之一或數操作中。化學機械平面化或硏 此等裝置的製造操作期間可利用之一種技術,可利用 操作來產生平滑表面在此等半導體裝置上。典型CMP 利用一或數種硏磨之硏磨劑來促進平面化過程。一般 ,使用硏磨之硏磨劑與硏磨墊來移動半導體裝置上過 不需要之金屬材料。爲了進一步或促進平面化過程, 磨之硏磨劑一般包括一或數種硏磨材料及在某些情況 包括促進平面化過程之一或數種劑。 在C ΜΡ過程期間,矽和其他金屬通常自半導體裝 移除並轉移入化學機械硏磨之硏磨劑流中。特別,經實 中, 並自 度降 種液 是使 粒子 水流 裝置 除金 但不 件的 磨是 CMP 過程 而言 量或 該硏 中, 置被 施在 -10- 200812915 以銅爲基底之微晶片裝置上之CMP平面化操作可產生副產 物"硏磨"(磨光)硏磨劑廢水流其典型包括金屬種類,一般係 離子其濃度範圍自約lmg/L至約100mg/L。典型CMP工具 可能以約1 Ogpm之流率產生化學機械硏磨劑流,典型包括 洗液流。然而,因爲典型操作複數的此等工具之製造設施 ’充分數量的一或數種金屬銅可能存在於聚集體硏磨劑流 中,如果不經過進一步處理就被排放,其濃度、數量或體 積可形成環境關切。舉例而言,複數銅CMP工具群可產生 約1 0 0 g p m的廢水。 被處理之液流可包括一或數種氧化劑或氧化劑作爲添 加劑。該氧化劑可能是促進金屬種類例如銅溶解之任何物 種。舉例而言,氧化劑可能是硝酸、過氧化氫(H202)、硝 酸鐵和過硫酸銨以及其混合物或組合。氧化劑或先質的其 他非限制實施例包括碘酸鹽、高碘酸鹽、溴酸鹽、高溴酸 鹽、氯酸鹽、高氯酸鹽、過氧化合物、硝酸鹽化合物、過 硫酸鹽化合物、過錳酸鹽化合物及鉻酸鹽化合物。氧化劑 可存在於硏磨劑流中其濃度足夠促進金屬溶解,例如,過 渡金屬溶解。舉例而言,——或數種氧化劑的濃度可能是至 少約50mg/L,典型在自約50mg/L至約l,000mg/L之範圍 內。 一種或多種螯合劑例如檸檬酸或氨亦可存在於被處理 之副產物硏磨劑流中,典型的功能是促進維持其中之一或 數種過渡金屬在溶液中。該硏磨劑廢水流亦可具有固體粒 子或顆粒,典型其大小在自約〇 ·0 01至約1 μ m之範圍內並 200812915 具有自約5 00至約5,000mg/L(約500至約5,000ppm)或甚 至高達20,000ppm之含量或濃度。錯合劑,例如葡糖酸鹽 、酒石酸鹽、、檸檬酸鹽和氫氧化銨,其促進蝕刻或增強 過渡金屬例如銅的腐蝕速率,亦可存在於CMP硏磨劑流中 。表1列出一般CMP硏磨劑流成分以及其典型濃度。 表1 典型CMP硏磨劑組成 成分 濃度 已溶之銅 5-100mg/L 總固體粒子 5 0 0 - 5,0 0 0 m g / L 氧化劑 5 0 -1,0 0 0 m g / L 蝕刻劑 2 0 0 m g/L 錯合劑 1 0-400mg/L D I水背景 9 9 % + pH値 6至7200812915 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to systems and methods for reducing the concentration of one or more metal species from a waste stream, particularly for use in self-chemical/mechanical planarization waste honing A system and apparatus for removing one or more metal species from a stream of agents. [Prior Art] Various techniques can be employed for reducing the concentration of one or more of the target species from the waste stream. For example, in U.S. Patent No. 3,3,01,542, Medford et al. disclose a system for treating an acidic etching solution. In U.S. Patent No. 3,428,449, Swanson et al. disclose the use of phenolic hydrazine to extract copper from an acidic liquid. In U.S. Patent No. 3,440,036, Spinney discloses a solution with copper: copper is recovered. In U.S. Patent No. 3,912,810, Stephens discloses the use of a cyclic alkylene carbonate feed solvent to extract metals. In U.S. Patent No. 3,914,374, Koehler et al. disclose the removal of residual copper from a nickel solution. In U.S. Patent No. 3,923,74, Asano et al. discloses the refining of an aqueous solution of acrylamide. Asano et al., in U.S. Patent No. 3,941,83, discloses a process for treating an aqueous solution of acrylamide. In U.S. Patent No. 4,010,099, Leach et al. disclose a settler for a copper liquid extraction system. In U.S. Patent No. 4,2,10,5,0, Etzel et al. disclose the use of an unexpanded vermiculite cation exchange column to treat metallized waste. In U.S. Patent No. 4,231,8,8, Dalton discloses the use of a composition for extracting copper from aqueous copper salts. In U.S. Patent No. 4,23,2,10, Merchant et al. discloses a method of regenerating an etchant and recovering the etched metal. Brown et al. disclose a method for removing copper from a solution of a chelating agent and copper, in U.S. Patent No. 4,666,683. In U.S. Patent No. 5,25,1,8,7,0,028,129, Gefvart discloses the use of an ion exchange procedure to separate precious metals. In U.S. Patent No. 5,298,1, Guess discloses a ferrous ferrous sulfite process and composition for removing dissolved heavy metals from water. Siefert et al. disclose a method for removing metals from a fluid stream in U.S. Patent No. 5,3,46,627. In U.S. Patent No. 5,344,712, Marquis et al. disclose the use of carbonates in metal ion extraction. Hayden discloses a method for decomposing and removing peroxides in U.S. Patent No. 5,464,605. Abe et al. disclose a process for the manufacture of acrylamide from purified acrylonitrile in U.S. Patent No. 5,476,883. In U.S. Patent No. 5,5,99,5,5, Misira et al. disclose a method for removing mercury from a solution. In U.S. Patent No. 6, 3, 5, 90, Sassaman et al. disclose the removal of metal ions from wastewater. U.S. Patent No. 6,3,46,1, 95, to Filson et al. discloses the removal of metals from ion exchange in wastewater. In US Patent No. 6,8 1 8,1 2 9 , K e m p and the like similarly disclose the removal of metal ions from ion exchange in wastewater. However, in U.S. Patent No. 6,818,129, Kemp et al. indicate that if hydrogen peroxide is present, certain resin methods will not be present because of its incompatibility. Kemp et al. further indicate that ion exchange can be used to attach copper ions, but because of the presence and amount of solid particles present therein (solid particles are typically in the form of vermiculite, alumina slurry), for polishing the honing agent stream Most likely invalid. SUMMARY OF THE INVENTION In accordance with one or more embodiments, the present invention is a method of treating a flow of a honing agent. The method can include the steps of providing a honing agent stream comprising at least one metal and at least one oxidizing agent having a concentration of at least about 50 mg/L and introducing the honing agent stream into an ion exchange column. -6- 200812915 In accordance with one or more embodiments, the present invention is directed to a method of treating a chemical mechanical polishing honing agent stream. The method can include the step of introducing the blush agent stream into a processing system consisting essentially of at least one ion exchange unit comprising a chelating ion exchange resin. According to a further embodiment, the invention relates to a method of manufacturing an electronic component. The method can include chemically polishing the electronic component using a honing agent and introducing at least a portion of the honing agent to a processing system consisting essentially of an ion exchange column comprising an ion exchange material comprising an iminodiacetate functional group. In accordance with one or more embodiments, the present invention is directed to a treatment system for treating a honing agent stream, the honing agent stream comprising a population selected from the group consisting of: at least one metal: copper, lead, nickel, zinc And cobalt, cadmium, iron, manganese and tungsten, and comprising at least one oxidizing species selected from the group consisting of nitric acid having a concentration of at least about 50 m/L, hydrogen peroxide, ferric nitrate, and persulfuric acid, ammonium. The processing system can include a fluid inlet connected to a source of the honing agent stream and an apparatus for reducing the concentration of at least one metal from the honing agent stream. In accordance with one or more embodiments, the present invention has A method of at least one metal type of honing agent stream. The method includes the steps of providing a processing system consisting essentially of an ion exchange column having an ion exchange medium contained therein. The ion exchange medium includes at least one pendant functional group capable of forming a complex with at least one metal species. [Embodiment] In terms of its application, the present invention is not limited to the details of -7 « 200812915 disclosed in the following description. This is to be carried out. Should not be considered 1, "including π and its equivalents at least or at least reduced. In some cases one or several kinds of fluidic species, such as in addition to or at least reduce the particulate material) to remove metal ions, or to system and technical wastewater In the case where the copper is honed by the by-products, the wording "environment: discharge flow, to > 5 ppm) of the copper or the construction and configuration of the components illustrated in the drawings, etc., have other embodiments and can The words and terms used herein are intended to be limiting in terms of a variety of ways. The use of "including "," includes π, "has π, π contains." The variations herein are meant to include the items listed thereafter and the other items. In accordance with one or more embodiments, the present invention provides for removal. In systems and techniques for the concentration of metal ions from a solution or stream, the method and system of the present invention can be utilized to remove one or more non-metal ions from a body stream, typically one or more wastewater streams. By way of example, the present invention provides for the removal of systems and techniques from high concentrations of suspended solids (also referred to herein as solutions and/or quenching streams, such as one or more concentrations of the honing agent stream. In the present case, the present invention provides for a reduction in the concentration of copper ions from one or more honing agent streams. For example, the method and system of the present invention can be removed from a chemical mechanical honing (CMP) complex. A honing agent for a circuit by attaching a metal ion or immobilizing a metal ion therein, thereby producing an environmentally clean discharge water product cleansing system and a waste that can be directed to an urban wastewater treatment plant. } The wastewater discharge stream is contained at a concentration of less than about 0.5 mg/L (about < ion. According to still further embodiments, the treatment systems and techniques of the present invention may comprise, consist essentially of, or comprise one or more ion exchanges Unit Operation It may remove one or more of the target species from one or more of the honing agent streams and may cause the one or more honing agent streams to be suitable for discharge to the outside. According to other embodiments, the processing system of the present invention And techniques can include, consist essentially of, or comprise an ion exchange system and a carbon branch system. The ion exchange system can utilize one or more ion exchange columns and the carbon system can utilize one or more carbon beds. For example, the treatment systems and techniques of the present invention may utilize an ion exchange column, a carbon bed, or a combination thereof, without any unit operation that reduces or otherwise alters the solids concentration of the honing agent stream being processed. The ion exchange column, carbon bed, or a combination thereof, the system and technique of the present invention can process a CMP honing agent stream without substantially altering the solids concentration of the CMP honing agent stream, As used herein, the wording "does not substantially change" may describe the concentration of solid particles in the treated CMP honing agent stream relative to the concentration of solid particles in the treated honing agent stream produced, such that the concentration The same or because the concentration of solid particles associated with solid particles that are not intentionally maintained in the processing system is reduced by about 5% or 10%. As used herein, the wording "suitable for emissions" is described and processed. A flow wherein the concentration of one or more of the regulated species contained therein is at a level not greater than the limits of government control or instruction. Thus, the systems and techniques of the present invention can be utilized to meet or exceed one or more of the imposed regulations. Constraining the dischargeable honing agent stream to facilitate fabrication of one or more semiconductor devices and/or one or more types of semiconductor devices. In accordance with one or more embodiments, the systems and techniques of the present invention may be removed or at least reduced by one The concentration of the various standard metal species to the extent or concentration that meets environmental emission limits and/or guidelines. In accordance with certain features of one or more embodiments of the present invention, the systems and techniques disclosed in 200812915 may include one or more processing systems, in some cases including substantially one or more unit operations in contact with a honing agent. The stream removes one or more of the target categories. Contaminant concentrations can also be utilized using the systems and techniques of the present invention, such as, but not limited to, transition metals from one or more streams comprising particulate materials. Solid Particles or Particulate Materials Definition herein Total solids dried (1 998, 廿) at 1300-105 °C using standard method 2540B. In accordance with one or more embodiments, the systems and techniques of the present invention self-deplete, for example, by-product polishing honing agent streams, during one or more chemical mechanical planarization processes, during the manufacturing operation of the free-oriented integrated circuit microchips The genus ions are, for example, but not limited to, copper metal ions. In semiconductor processes, one or more metals are typically utilized, for example, limited to aluminum and/or transition metals such as copper and tungsten during one or more operations during a microchip device or group fabrication operation. Chemical mechanical planarization or a technique that can be utilized during the fabrication of such devices, operations can be utilized to create a smooth surface on such semiconductor devices. Typical CMP utilizes one or several honed honing agents to facilitate the planarization process. Typically, honing honing agents and honing pads are used to move the unwanted metal material on the semiconductor device. In order to further or facilitate the planarization process, the abrasive honing agent typically comprises one or more honing materials and, in some cases, one or several agents that facilitate the planarization process. During the C ΜΡ process, bismuth and other metals are typically removed from the semiconductor package and transferred into the chemical mechanical honing honing agent stream. In particular, in practice, the self-degrading liquid is used to remove the gold from the particle water flow device, but the grinding is performed in the amount of the CMP process or in the crucible, and is applied to the copper-based microchip of -10-200812915. The CMP planarization operation on the device can produce a by-product "honing &" honing agent wastewater stream typically comprising a metal species, typically having a concentration ranging from about 1 mg/L to about 100 mg/L. A typical CMP tool may produce a chemical mechanical honing agent stream at a flow rate of about 1 Ogpm, typically including a wash stream. However, because of the typical operation of the manufacturing facilities of such tools, a sufficient amount of one or several metallic coppers may be present in the aggregate honing agent stream, which may be discharged without further processing, in a concentration, amount or volume. Form environmental concerns. For example, a plurality of copper CMP tool clusters can produce about 100 g of pm of wastewater. The stream being treated may include one or more oxidizing agents or oxidizing agents as additives. The oxidizing agent may be any species that promotes the dissolution of metal species such as copper. For example, the oxidizing agent may be nitric acid, hydrogen peroxide (H202), iron nitrate, and ammonium persulfate, and mixtures or combinations thereof. Other non-limiting examples of oxidizing agents or precursors include iodate, periodate, bromate, perbromate, chlorate, perchlorate, peroxy compound, nitrate compound, persulfate compound , permanganate compounds and chromate compounds. The oxidizing agent may be present in the honing agent stream at a concentration sufficient to promote dissolution of the metal, e.g., the dissolution of the transition metal. For example, the concentration of - or several oxidizing agents may be at least about 50 mg/L, typically in the range of from about 50 mg/L to about 10,000 mg/L. One or more chelating agents such as citric acid or ammonia may also be present in the by-product honing agent stream being treated, typically functioning to promote maintenance of one or more of the transition metals in solution. The honing agent wastewater stream can also have solid particles or granules, typically ranging in size from about 〇·0 01 to about 1 μm and 200812915 having from about 500 to about 5,000 mg/L (about 500 to about 5,000 ppm) or even up to 20,000 ppm in content or concentration. Mixing agents, such as gluconate, tartrate, citrate, and ammonium hydroxide, which promote etching or enhance the rate of corrosion of transition metals such as copper, may also be present in the CMP honing agent stream. Table 1 lists the general CMP honing agent stream components and their typical concentrations. Table 1 Typical CMP honing agent composition concentration dissolved copper 5-100mg / L total solid particles 5 0 0 - 5,0 0 0 mg / L oxidant 5 0 -1,0 0 0 mg / L etchant 2 0 0 mg/L Miscellaneous Agent 1 0-400mg/LDI Water Background 9 9 % + pH値6 to 7

値得注意的是,離子交換介質及設備製造商支持提前 φ 移除顆粒材料,即,在離子交換和碳等系統的上游,且強 調固體粒子移除操作形成預處理系統的一個主要特點,因 爲粒子可能黏結和阻塞活性介質及操作成爲顆粒過濾器。 因此,若不將其移除,這些不需要的懸浮之固體粒子則積 聚而導致壓降之增加,且越過樹脂及/或碳床。通常所增加 之壓降進一步導致溝流現象,其中將被處理之流體流導引 至最小阻力的流動路徑,有效地避免至少一部分的床,限 制接觸至整體的處理流體。此現象導致高污染物漏洩及不 夠有效之床容量。懸浮之固體粒子及膠態物質亦可能覆蓋 -12-It is important to note that ion exchange media and equipment manufacturers support advanced φ removal of particulate materials, ie upstream of systems such as ion exchange and carbon, and emphasizes that solid particle removal operations form a major feature of pretreatment systems because The particles may stick and clog the active medium and operate as a particulate filter. Therefore, if it is not removed, these unwanted suspended solid particles accumulate resulting in an increase in pressure drop across the resin and/or carbon bed. The increased pressure drop typically results in a channeling phenomenon in which the fluid stream being processed is directed to the least resistive flow path, effectively avoiding at least a portion of the bed, limiting access to the overall process fluid. This phenomenon leads to high contaminant leakage and insufficient bed capacity. Suspended solid particles and colloidal substances may also cover -12-

一或數個功能基可具有任 或數個標的種類,因此自 移除,或至少降低其濃度 一或數個標的種類通過一 緊固至離子交換介質材料 物上或包括離子交換介質 離子交換介質可包括具有 200812915 離子交換介質,減少離子種類擴散至(介質)及自介 的速率。實際上,離子交換介質製造商進一步排斥 欲被處理之液流來移除或中和使離子交換介質降解 成分。舉例而言,此等種類包括氧、臭氧、氯、過 和其他氧化劑或氧化種類或劑。因此’利用離子交 之先前技藝系統包括移除此等顆粒及/或氧化種類 數個預處理單元操作。 相對地,本發明的系統和技術,獨創地消除, 是減少,對於處理顆粒流時,此等附加複雜性的信 亦可含有一或數種氧化種類。 依照一或數個特點,本發明的系統和技術中所 離子交換介質包括,基本上包含或包含一或數種材 與一或數種標的種類形成或促進形成一或數種螯合 。舉例而言,該等離子交換介質可包括一或數個功 與一或數種金屬種類可形成一或數個配位體或錯合 此,依照本發明的某些特點,離子交換介質包括一 配位體或螯合之一部分,典型係基質上之一個側基 何適當功能度其可黏結或 ί專送之流體或被處理之流 °因此,在處理操作期間 或數個功能基結合或用別 。可將一或數個側基支持 材料之其他支撐介質上。 弟~功能度之第一區域及 質擴散 預處理 之可溶 氧化氫 換介質 之一或 如果不 賴,其 利用之 料其可 錯合物 會爸_ 物。因· 或數個 。該等 固定~ 體實施 ,可將 的方法 在聚合 因此, 具有第 -13- 200812915 二功能度之第二區域。此外,離子交換介質可包括在其不 同濃度或密度之任何數目或型式的此等功能基其提供所需 要之負載容量。因此,舉例而言,離子交換介質可具有第 一區域包括具有典型以體積爲基礎之第一密度或濃度之功 能基,及一或數個第二區域包括第二功能基在第二區域, 或其他密度或濃度。第一區域和第二區域在一或數個特點 方面可能不同來提供捕集一或數個標的種類之伸縮性但是 可包括相同功能基。 依照一或數個實施例,本發明的系統和技術可提供硏 磨劑處理系統和方法或至少降低銅離子濃度的方法。該方 法包括使含有銅離子之流與一種處理系統接觸,此處理系· 統包括’基本上包含或包含離子交換介質其包括錯合之離 子交換介質’較佳不實施先前移除固體粒子或顆粒及/或經 由催化曝露至碳,先前移除或減少氧化種類。接觸液流可 包括以向下流動方向或以向上流動方向將液流引入一或數 個離子交換床中。 本發明可與不涉及化學加成之預處理系統有關。舉例 而言,該預處理系統可中和,移除或至少降低可能存在於 被處理之液流中之任何氧化劑的濃度。舉例而言,該預處 理系統可引入能量其促進氧化劑的還原。此等預處理系統 的非限制實施例包括,但不限於電化學-光化學和熱化學等 技術。 電化學技術可利用一或數個電化電池包括經連接至電 源之陽極和陰極(電極)來引導電流入液體中。可將該電池 -14- 200812915 構型成爲整批槽、流動通過管或其他構型其中含有氧化劑 之溶液達到與電極呈電的連通。此種配置中,一或多個電 極耗盡電子,將其通過外部連接被轉移至其他電極。還原 反應可發生在陰極而氧化反應可對應地發生在陽極。所供 應之電流,舉例而言,係爲直流典型地由整流器予以控制 ,所使用之電流量、安培數可視數種因素或狀況而定,例 如溶液特性及/或相關之化學種類的濃度和型式,及實施還 原時之速率或所需要之速率。 光化學技術典型提供光化輻射其促進一或數種反應。 舉例而言,光化學技術可利用紫外光輻射來促進一或數種 還原反應。 熱化學技術可包括加熱含有氧化劑之溶液至促進氧化 種類的分解之溫度。舉例而言,就銅CMP硏磨劑廢水而論 ,溫度可能高達並包括水沸點(約1 0 0 °C )。在昇高之溫度下 ,各種反應,包括還原或分解等反應的速率典型增加,因· 此促進破壞一或數種氧化種類。 錯合之離子交換介質典型包括至少一種錯合或螯合功 能度。該功能度包括任何基團,典型是多配位基基團,其 與標的種類形成錯合物。舉例而言,該等離子交換介質可 包括亞胺二醋酸之功能基在聚合主鏈上。依照本發明的一 或數個實施例,可利用之其他功能基包括,但不限於多元 胺、雙吡啶甲基胺和胺基膦基等基團。功能基的選擇可基 於數個因素,舉例而言,包括對於標的種類之親和力。因 此,舉例而言,被利用之一或數個功能基的選擇可基於標 -15- 200812915 的金屬種類,例如一種過渡金屬其可能是下列元素的任一 者或數種:銅、鉛、鎳、鋅、鈷、鎘、鐵、鉅、銀、金、 鈾、鈀、銥.、铑、釕、錳、鎢和給及/或鎵。 如第1圖中例示顯示,在處理系統4 0中處理之前,可 利用一或多個收集槽30自一或數個CMP系統20收集被處 理之一或數液流。視需要,可將酸或鹼(未圖示)引入(槽30) 中來調節被處理之液流的p Η値。 某些實施例中,該處理系統可包括以並聯或以串聯配 置之兩或數個離子交換床,或其組合。舉例而言,該處理 系統可包括兩系列每系列包括第一離子交換床和第一床的 下游之第二離子交換床。可將第一離子交換床視爲主要床 ,典型移除或降低硏磨劑流中標的金屬種類的濃度並可將 第二,下游離子交換床視爲硏磨床其移除任何殘留之標的 種類。視必要,可將主要床和硏磨床互換。舉例而言,在 一段預定期間之後或於偵測出口之液流中一或多種標的種 類的不能接受之狀況或濃度時可替換該主要泵。然後可將 硏磨床置放在主要位置上,並可將新再生之柱放置在磨光 位置。可將廢離子交換床再修復及/或再生。 離子交換介質典型包括螯合之功能度側基在交聯之聚 合物主鏈上。大多數離子交換樹脂的支撐基質或主鏈典型 係由聚苯乙燒的長鏈組成。樹脂製造商典型改進強度及致 使樹脂不溶於水及/或非水溶劑中,聚苯乙烯鏈典型與交聯 劑例如二乙烯基苯(D V Β )起反應。該反應通過一或數鍵典型 連接聚苯乙烯的複數鏈在一起。氧化劑侵蝕並破壞不僅樹 -16- 200812915 脂上之功能側基而且侵蝕並破壞D V B鍵。 功能基及DVB交聯兩者。當較多DVB交 水將樹脂吸收並膨脹而軟化。於使用時, 膨脹並擠壓在一起其可防止或抑制流體流 化種類較其他者更具有侵略性而較高之氧 質的速率。其他條件,例如低或高pH値, 亦加速變質的速率。某些情況中,過渡金 樹脂的氧化降解,特別在酸條件下。典型 換介質可具有操作容積其範圍是每立方呎 更多的金屬。 離子交換介質通常具有約1.7的最大 本發明的方法和裝置之離子交換樹脂篩選 。本發明的方法和裝置之離子交換樹脂可 之性質。 已處理之硏磨劑流以一種狀態自處理 態係適合於排放如上文所討論。視需要, 在一或數個後處理系統(未圖示)中進一步 ,可將固體粒子在一或數次過濾單元操作 移出,典型係在離子交換及/或碳單元操fj 可利用一或數種劑,例如凝聚劑及/或絮凝 個後處理過程。可被利用在後處理系統中 的實施例包括,但不限於逆滲透程度及可 步減少其他標的種類之其他系統和技術。 所有氧化劑侵飩 聯被破壞時,用 經軟化之樹脂可 經其中。某些氧 化劑濃度加速變 熱和觸媒之存在 屬例如銅可催化 ,螯合之離子交 約1 . 5至2.0磅或 均勻性係數。將 來控制小球大小 具有表2中所列 系統出口,此,狀 可將已處理之流 處理。舉例而言 或系統中自其中 Ξ之後或其下游。 :劑來改進一或數 之其他單元操作 能自液流中進一 -17- 200812915 表2 離子交換樹脂的典型性質 特性 値 小珠大小,m i η,9 0 % 0.4-1.23mm 有效大小 〇.55mm 均勻性係數 1.7 整體重量( + /-5%) 800g/L 密度 1 · 1 8 g / m 1 水保持. 5 0 - 5 5 w t % pH値範圍 0-1 4 功能基 亞胺基二醋酸 結構 巨觀多孔 基體 交聯之聚苯乙烯 最小容量 2.2eq/L量H +形式One or more functional groups may have any or several of the target species, thus self-removing, or at least reducing the concentration of one or more of the target species through a fastening to the ion exchange media material or including ion exchange media ion exchange media It may include an ion exchange medium with 200812915 to reduce the rate at which ion species diffuse to (media) and self-intermediate. In fact, ion exchange media manufacturers further reject the stream to be treated to remove or neutralize the ion exchange medium degradation components. By way of example, such species include oxygen, ozone, chlorine, peroxides, and other oxidizing agents or oxidizing species or agents. Thus prior art systems utilizing ion exchange include the removal of such particles and/or oxidation species by a number of pretreatment unit operations. In contrast, the systems and techniques of the present invention are uniquely eliminated and are reduced. For processing particle streams, such additional complexity may also contain one or more oxidized species. In accordance with one or more features, the ion exchange media of the systems and techniques of the present invention comprise, consisting essentially of or comprising one or more materials forming or promoting the formation of one or more chelating species with one or more of the target species. For example, the plasma exchange medium can include one or several jobs and one or more metal species can form one or several ligands or mismatches. According to certain features of the invention, the ion exchange medium includes a A part of a body or chelation, typically a side group on a substrate, with a suitable degree of functionality, which can be bonded or dispensed with a fluid or treated stream. Therefore, during processing operations or several functional groups are combined or used . One or more of the side support materials may be supported on other support media. The first area of the functional level of the younger brother and the soluble diffusion pretreatment of one of the soluble hydrogen peroxide exchange media or if it is not good, the material it uses can be a compound. Because · or a few. These fixed-body implementations can be combined in a method of polymerization, thus having a second region of degree -13-200812915. In addition, ion exchange media can include any number or type of such functional groups at different concentrations or densities that provide the desired load capacity. Thus, for example, an ion exchange medium can have a first region comprising a functional group having a first density or concentration, typically based on volume, and one or more second regions including a second functional group in the second region, or Other density or concentration. The first region and the second region may differ in one or more features to provide for the scalability of capturing one or more of the target categories but may include the same functional groups. In accordance with one or more embodiments, the systems and techniques of the present invention can provide a honing agent treatment system and method or a method of at least reducing copper ion concentration. The method includes contacting a stream containing copper ions with a processing system comprising 'substantially comprising or comprising an ion exchange medium comprising a mismatched ion exchange medium' preferably not performing prior removal of solid particles or particles And/or previously oxidizing species are removed or reduced via catalytic exposure to carbon. Contacting the liquid stream can include introducing the liquid stream into one or more ion exchange beds in a downward flow direction or in an upward flow direction. The invention may be related to a pretreatment system that does not involve chemical addition. For example, the pretreatment system can neutralize, remove or at least reduce the concentration of any oxidant that may be present in the liquid stream being treated. For example, the pretreatment system can introduce energy to promote reduction of the oxidant. Non-limiting examples of such pretreatment systems include, but are not limited to, electro-optic and photochemical and thermochemical techniques. Electrochemical techniques can utilize one or several electrochemical cells including an anode and a cathode (electrode) connected to a power source to direct current into the liquid. The cell -14-200812915 can be configured to be in a bulk tank, flow through a tube or other configuration in which a solution containing an oxidant is in electrical communication with the electrode. In this configuration, one or more of the electrodes deplete the electrons and are transferred to the other electrodes via an external connection. The reduction reaction can occur at the cathode and the oxidation reaction can occur correspondingly at the anode. The current supplied, for example, is typically controlled by a rectifier. The amount of current used, the amperage can be determined by several factors or conditions, such as the concentration and type of solution characteristics and/or related chemical species. And the rate at which the reduction is performed or the rate required. Photochemical techniques typically provide actinic radiation that promotes one or several reactions. For example, photochemical techniques can utilize ultraviolet radiation to promote one or more reduction reactions. Thermochemical techniques can include heating a solution containing an oxidizing agent to a temperature that promotes decomposition of the oxidized species. For example, in the case of copper CMP honing agent wastewater, the temperature may be as high as and including the boiling point of water (about 1000 ° C). At elevated temperatures, the rate of various reactions, including reduction or decomposition, typically increases, as this promotes the destruction of one or more oxidized species. Mismatched ion exchange media typically include at least one mismatch or chelation function. The degree of functionality includes any group, typically a polyligand group, which forms a complex with the target species. For example, the plasma exchange medium can include a functional group of imine diacetate on the polymeric backbone. Other functional groups that may be utilized in accordance with one or more embodiments of the invention include, but are not limited to, polyamines, bispyridylmethylamines, and aminophosphinyl groups. The choice of functional groups can be based on several factors, including, for example, the affinity for the target species. Thus, for example, the choice of one or more of the functional groups utilized may be based on the metal species of -15-200812915, such as a transition metal which may be any one or more of the following elements: copper, lead, nickel , zinc, cobalt, cadmium, iron, giant, silver, gold, uranium, palladium, rhodium, ruthenium, osmium, manganese, tungsten, and/or gallium. As illustrated in Figure 1, one or more of the streams may be collected from one or more CMP systems 20 using one or more collection tanks 30 prior to processing in processing system 40. An acid or a base (not shown) may be introduced (tank 30) as needed to adjust the p Η値 of the treated liquid stream. In certain embodiments, the processing system can include two or more ion exchange beds in parallel or in series, or a combination thereof. For example, the processing system can include two series of second ion exchange beds each comprising a first ion exchange bed and a downstream of the first bed. The first ion exchange bed can be considered a primary bed, typically removing or reducing the concentration of the metal species in the honing agent stream and the second, downstream ion exchange bed can be considered a honing bed which removes any residual target species. The main bed and the honing machine can be interchanged as necessary. For example, the primary pump can be replaced after a predetermined period of time or when an unacceptable condition or concentration of one or more of the target species is detected in the flow of the outlet. The honing machine can then be placed in the main position and the newly regenerated column can be placed in the polished position. The spent ion exchange bed can be repaired and/or regenerated. Ion exchange media typically comprise a pendant functional group pendant on the crosslinked polymer backbone. The support matrix or backbone of most ion exchange resins typically consists of a long chain of polystyrene. Resin manufacturers typically improve the strength and render the resin insoluble in water and/or non-aqueous solvents, and polystyrene chains typically react with a crosslinking agent such as divinylbenzene (D V Β ). The reaction is linked together by a plurality of chains of typically linked polystyrene. The oxidant erodes and destroys not only the functional side groups on the tree but also erodes and destroys the D V B bond. Both functional groups and DVB cross-linking. When more DVB water is used, the resin absorbs and expands to soften. When in use, expanding and squeezing together prevents or inhibits the fluidized species from being more aggressive and higher in oxygen species than others. Other conditions, such as low or high pH, also accelerate the rate of deterioration. In some cases, the transitional resin is oxidatively degraded, especially under acidic conditions. A typical change medium can have an operating volume that ranges from more metal per cubic foot. Ion exchange media typically have a maximum of about 1.7 ion exchange resin screening of the methods and apparatus of the present invention. The ion exchange resin of the method and apparatus of the present invention may be of a nature. The treated honing agent stream is self-treated in a state suitable for discharge as discussed above. Further, in one or several aftertreatment systems (not shown), the solid particles may be removed in one or more filtration unit operations, typically in ion exchange and/or carbon unit operations. Seeds, such as coagulants and/or flocculation aftertreatment. Embodiments that can be utilized in an aftertreatment system include, but are not limited to, the degree of reverse osmosis and other systems and techniques that can be used to reduce other target categories. When all oxidant intrusion is destroyed, the softened resin can be used. Some oxidant concentrations accelerate the heating and the presence of the catalyst is, for example, copper catalyzed, chelated ions having an exchange weight of 1.5 to 2.0 pounds or a uniformity factor. The size of the ball will be controlled in the future with the system exit listed in Table 2, which handles the processed stream. For example or in the system from after or downstream of it. : Agents to improve one or several other unit operations can be carried out from the liquid stream. -17- 200812915 Table 2 Typical properties of ion exchange resin 値 Bead size, mi η, 90% 0.4-1.23mm Effective size 〇.55mm Uniformity coefficient 1.7 Overall weight ( + /-5%) 800g/L Density 1 · 1 8 g / m 1 Water retention. 5 0 - 5 5 wt % pH値 range 0-1 4 Functional imine diacetate structure Giant polycrystalline matrix crosslinked polystyrene minimum capacity 2.2 eq / L amount H + form

負載之,一般之飽和離子交換介質的再生可經由利用 一或多種礦酸,例如硫酸來移除錯合之金屬種類予以貫施 。某些情況中可利用氫氯酸。 實施例 本發明之此等和其他實施例的功能和優點自下列實施 例可進一步了解,其舉例說明本發明的一或多系統和技術 之利益及/或優點但是並非例不本發明的全部範圍。 各實施例中’溶液中之銅係根據標準方法3丨20B,金 屬經由感應耦合之電漿(ICP)方法或3125B ,感應親合之電 漿/質譜法(ICP/MS)方法( 1 998,第2〇版)予以量計。 -18- 200812915 。 固體粒子含量根據U.S.EPA方法160.3予以量計。 過氧化氫濃度係由使用標準化過錳酸鉀試劑直接滴定 予以量計。 所利用之離子交換樹脂是具有螯合之亞胺基二醋酸基 團之LEWATIT&TP207弱酸性,巨觀多孔離子交換樹脂, 其自Sybron化學有限公司,新澤西,Birmingham市LANXESS 公司獲得。 實施例1 經曝露於氧化劑之離子交換樹脂的性能 ^ 此實施例中,將依照包括利用螯合之離子交換樹脂之 離子交換柱之本發明一或數實施例之處理系統曝露於氧化 劑。使用經曝露之離子交換樹脂的有效容積來表徵變質及 對其性能之影響。 該處理系統示意顯示於第2圖中。該系統主要係由包 括離子交換樹脂在其中之離子交換柱210組成。使用泵214 自進料槽2 1 2之源取出含銅之溶液並引入離子交換柱2 1 0 中。利用流出物貯留槽2 1 6收集來自離子交換柱2 1 0之已 I 處理流體。未實施溶液之循環以便將離子交換材料曝露於 具有相同初始和最後銅濃度之溶液中。在第一次操作之前 ,將樹脂經由將它在去離子水中水合歷至少2 4小時予以預 調節,然後經由曝露於約1 0%氫氯酸溶液中而轉化它完全 成爲酸形式。 該離子父換柱具有樹脂床其是約1 · 5 c m直徑及約1 6 c ηι 深。 經由曝露樹脂床至各種含氧化劑之溶液來實施數次操 -19- 200812915 作。該溶液亦係由約40mg/L的銅種類(係硫酸鹽之鹽類)構 成。曝露係由使各種溶液通經離子交換柱歷約8小時並維 持在靜止之不流動狀況歷每天約1 6小時予以實施。經由添 加充分之硫酸將溶液的pH値調節至約3 pH單位。 所使用之氧化劑是表3中所指明之各種濃度級位之過 氧化氫。表3進一步列出曝光期間不同時間間隔時曝光之 後所量測之離子交換床的容積。床的容積相對於未曝光之 樹脂予以工規化。具體地說,將未曝露於氧化劑之離子交 換樹脂指定爲具有1 · 〇的容積並將曝光期間之樹脂容積相 對於未曝光之容積來指定。因此,舉例而言,將具有被測 定爲約一半的未曝光樹脂之容積的氧化劑曝露之離子交換 樹脂指定爲具有約〇 · 5的容積。測定樹脂容積可經由相對 飽和予以實施。舉例而言,樹脂可經由使用約1 〇%氫氯酸 溶液之再生來除去金屬。使含有約3,000mg Cu/L之2升的 硫酸銅溶液通經約25ml的樹脂以銅種類完全耗盡離子·交 換部位。將過量銅溶液自樹脂沖洗掉。使用約〇 . 5 L的約1 0% 氫氯酸溶液將銅自樹脂上移除。截留此移除溶液並分析總 銅含量。所測定之其中銅的數量直接與每單位體積的離子 交換樹脂,可使用之交換部位的數目有關(原來的樹脂被指 定爲具有1 .〇的値)。咸信曝露於氧化種類或試劑致使一些 交換部位不能使用,因此,每單位體積的樹脂可被負載之 銅量典型隨著降解而減少。因此,與原來樹脂比較,氧化 劑曝露之樹脂,其値是小於1. 〇。 表3中之數據顯示離子交換樹脂的容積可隨著延長曝 -20- 200812915 露而降低。此外,降解的速率在較高之氧化劑濃度時加速Under load, regeneration of a generally saturated ion exchange medium can be carried out by using one or more mineral acids, such as sulfuric acid, to remove the mismatched metal species. Hydrochloric acid can be used in some cases. The functions and advantages of the present invention and other embodiments of the present invention are further understood from the following examples, which illustrate the advantages and/or advantages of one or more systems and techniques of the present invention but are not intended to limit the scope of the present invention. . In each of the examples, the copper in the solution is according to the standard method 3丨20B, the metal via the inductively coupled plasma (ICP) method or the 3125B, inductively affinity plasma/mass spectrometry (ICP/MS) method (1 998, The second edition) is to be measured. -18- 200812915. The solids content is measured according to U.S. EPA Method 160.3. The hydrogen peroxide concentration is quantified by direct titration using a standardized potassium permanganate reagent. The ion exchange resin utilized was a LEWATIT & TP207 weakly acidic, macroscopic porous ion exchange resin having a chelated iminodiacetic acid group available from Sybron Chemical Co., Ltd., LANXESS, Birmingham, NJ. EXAMPLE 1 Properties of an ion exchange resin exposed to an oxidizing agent ^ In this example, a treatment system according to one or several embodiments of the present invention comprising an ion exchange column utilizing a chelated ion exchange resin is exposed to an oxidizing agent. The effective volume of the exposed ion exchange resin is used to characterize the deterioration and its effect on its performance. The processing system is shown schematically in Figure 2. The system consists essentially of an ion exchange column 210 comprising an ion exchange resin therein. The copper-containing solution was taken from the source of the feed tank 2 1 2 using a pump 214 and introduced into the ion exchange column 2 1 0 . The I treated fluid from the ion exchange column 210 is collected using the effluent storage tank 2 16 . The circulation of the solution was not carried out to expose the ion exchange material to a solution having the same initial and final copper concentrations. Prior to the first run, the resin was preconditioned by hydrating it in deionized water for at least 24 hours and then converted to an acid form by exposure to about 10% hydrochloric acid solution. The ion parent column has a resin bed which is about 1 · 5 c m in diameter and about 16 c ηι deep. Several operations were performed by exposing the resin bed to various oxidizing agent-containing solutions -19-200812915. The solution was also composed of about 40 mg/L of copper species (salt salts). The exposure is carried out by passing various solutions through an ion exchange column for about 8 hours and maintaining a static, non-flowing condition for about 16 hours per day. The pH of the solution was adjusted to about 3 pH units by the addition of sufficient sulfuric acid. The oxidizing agents used were hydrogen peroxide at various concentration levels indicated in Table 3. Table 3 further lists the volume of the ion exchange bed measured after exposure at different time intervals during exposure. The volume of the bed is calibrated relative to the unexposed resin. Specifically, the ion exchange resin not exposed to the oxidizing agent is designated to have a volume of 1 · 〇 and the resin volume during the exposure is specified relative to the unexposed volume. Thus, for example, an ion exchange resin having an oxidant exposed to a volume of about half of the unexposed resin is designated to have a volume of about 〇·5. The determination of the resin volume can be carried out via relative saturation. For example, the resin can be removed by regeneration using a solution of about 1% hydrochloric acid. A solution of 2 liters of copper sulfate containing about 3,000 mg of Cu/L was passed through about 25 ml of the resin to completely deplete the ion exchange site with the copper species. Excess copper solution was rinsed away from the resin. Approximately 10% of a hydrochloric acid solution of about 5 L was used to remove copper from the resin. This removal solution was retained and analyzed for total copper content. The amount of copper measured is directly related to the number of exchangeable parts per unit volume of the ion exchange resin which can be used (the original resin is designated as having a 〇 of 〇). Exposure to oxidizing species or reagents renders some exchange sites unusable, so the amount of copper per unit volume of resin that can be loaded is typically reduced with degradation. 〇。 Therefore, compared with the original resin, the oxidizing agent exposed resin, the enthalpy is less than 1. 〇. The data in Table 3 shows that the volume of the ion exchange resin can be reduced with extended exposure -20-200812915. In addition, the rate of degradation accelerates at higher oxidant concentrations

表3 氧化劑曝露對於亞胺基二醋酸酯樹脂的影響 H202 濃度(mg/L) 曝露時間 (小時) 0 50 100 500 1,000 0 1 1 1 1 1 264 1 1 3 84 1 1 1 552 1 0.94 672 0.99 0.97 0.89 936 1.03 0.86 0.77 1056 0.99 0.99 1320 1 0.94 0.91 0.82 0.71 1560 0.99 0.7 0.58 1584 0.94 0.88 1776 1.01 0.95 0.91 0.66 0.5 1 1968 0.92 0.88 2016 0.98 0.58 0.43 2256 0.52 0.38 2280 0.92 0.86 2496 0.87 0.83 2784 0.89 0.82 3144 0.88 0.80 3 3 84 0.82 0.75 實施例2 當將氧化劑化學中和時,離子交換樹脂的性能 此實施例中’評估包括具有化學中和的氧化劑之離子 交換柱之依照本發明一或數實施例之處理系統的金屬處理 能力。該處理系統示意顯示於第2圖中且已大體上敘述於 -21- 200812915 Μ 實施例1中。該中和或還原劑是焦亞硫酸鈉。然而,可利 用其他還原劑,例如亞硫酸氫鈉和亞硫酸鈉。過氧化氫與 亞硫酸鈉、亞硫酸氫鈉或焦亞硫酸鈉的中和導致硫酸鈉 (Na2S04)的形成。在中和之前,被處理之溶液中過氧化氫 的初始濃度列於表4中。亦列出所產生硫酸鈉產物的濃度 。關於每次試驗操作溶液,金屬種類、銅(硫酸鹽)的初始 濃度是約40mg/L。每一溶液的起始pH値是約3pH單位。 離子交換柱具有樹脂床其直徑是約1.5cm而其深度約 16cm ° 包括檸檬酸作爲銅之有機螯合劑且典型被使用於銅 CMP硏磨劑配方中。此有機螯合劑典型錯合銅CMP程序期 間所產生之銅離子以便抑制此等種類的沉澱及/或再吸收 至半導體表面上。有機螯合劑黏合銅至不同之程度。典型 ,結合銅在螯合劑中之力愈強,離子交換樹脂愈難自螯合 劑移出銅並收它在離子交換樹脂上。高鹽背景亦可減少銅 自溶液中吸著至樹脂上,此情況中係經由高離子背景。當 ® 使用化學還原劑例如亞硫酸氫鈉來化學分解氧化劑,例如 過氧化氫時所產生之化學反應增加總溶液離子背景。具體 地說,亞硫酸氫鈉與過氧化氫間之反應可產生鈉和硫酸鹽 等離子在溶液中。氧化劑濃度愈高,需要愈多的亞硫酸鹽 來進行中和,而因此,所產生之離子背景愈大。 表4列出自其中流出之前,通經樹脂床之相當床體積 (BV)的數,發現是約30mg/L,被指定爲突破狀況,或約75% 的流化金屬濃度。表4比較三種情況之離子交換上之銅負 -22- 200812915 載。”空白”或基線情況顯示當螯合劑(例如檸檬酸)不存在且 僅具有小離子背景負載時之銅負載。"檸檬酸”情況顯示當 將定量的螯合劑、檸檬酸’其以在典型存在於銅CMP廢水 中之含量加至基線時之銅負載。此情況中,因爲檸檬酸僅 被部分地離子化在溶液中,少許另外之離子背景產生。”硫 酸鹽"情況顯示當無檸檬酸存在,離子背景顯著增加時之銅 負載。硫酸鈉鹽的量相當於如果將約l,100ppm的過氧化氫 經由亞硫酸氫鈉移除所形成之量(其化兩情況中,該量等於 移除約200ppm的過氧化氫)。結果顯示檸檬酸和硫酸鈉兩 情況作爲基線情況基本上相同且由使用化學還原劑使背景 離子負載增加對於由離子交換樹脂之銅移除並無可察覺之 負面影響,不管是否檸檬酸存在。 表4 高硫酸鹽曝露的效應 試驗溶液組成 銅(mg/L) 40 40 40 BTA(mg/L) 5 00 500 500 Na2S04(mg/L) 800 800 4500 檸檬酸(mg/L) 0 500 0 pH値 3 3 3 處理前之H2〇2 (mg/L) 200 200 1,000 操作 BV突破(至約30mg/L) ”空白" "檸檬酸” "硫酸鹽" 1 2,000 1,920 2,140 2 1,900 1,640 2,320 3 2,080 -23- 200812915 BTA是1,2,3-苯並三唑。BTA是典型目前銅CMP硏磨 劑配方中之一種”烷基/芳基/三唑防銹”成分。BTA典型防止 氧化銅形成在CMP過程期間及其後,保留在半導體裝置上 之磨光的銅上。 實施例3 高總固體粒子流 此實施例顯示於處理來自CMP過程之硏磨劑流時,依 照本發明的一或多個實施例之處理系統的性能。實施評估 歷約20天。此試驗亦顯示經由樹脂、銅吸收的有效性甚至 有氧化劑存在時。 示意舉例說明於第3圖中之該系統由碳柱311的下游 之離子交換柱3 1 0構成。利用泵3 1 2驅動來自進料槽3 1 4 之CMP溶液通過碳柱3 1 1和離子交換柱3 1 0。將一樣品點 3 1 6配置在碳柱3 1 1與離子交換柱3 1 0之間。將來自離子 交換柱3 1 0之已處理流體收集在收集槽3 1 8中。 將該系統每天操作約8至1 2小時,每天終止操作時停 止第二天重新啓動。1 2天之後,停止離子交換試驗並將過 氧化氫利用碳移除,連續實施歷附加之8天。硏磨劑進料 溶液的流經碳槽和離子交換槽均勻且穩定遍及該試驗,指 示無固體粒子聚集在任一介質上。試驗結束時檢查各個介 質顯示無硏磨劑固體粒子積聚在任一介質上。 製備模擬之銅CMP硏磨劑廢水。將整分的商業上製造 之銅CMP硏磨劑濃縮物稀釋至固體粒子試驗狀況。硏磨劑 溶液係由稀釋商業上可供應之銅CMP硏磨劑並添加過氧化 氫和硫酸銅予以製備來模擬銅CMP硏磨劑廢水。將來自德 -24- 200812915 州,休士頓市,C h e m Ο n e有限公司之經計算數量的硫酸 銅(係晶形技術級^11804-51120)及來自俄亥俄州都布林, Ashland Specialty化學公司之過氧化氫(約3 0%H2O2,電子 級)加至流入的硏磨劑溶液。每天將進和出離子交換樹脂床 之硏磨劑流的過氧化氫濃度列於表5中。相似地,亦相對 應列出進口和出口銅濃度連同固體粒子進口濃度。經由添 加硫酸將pH値調節至3pH單位。固體粒子之粒子大小是 在自約0 · 0 0 1 μ m至約1 μ m的範圍內。 離子交換柱3 1 0具有樹脂床其直徑是約8英吋及約40 英寸深。碳柱3 1 1之直徑是約1 4英寸及約40英寸深。所 利用之碳是由賓州匹資堡Calgon碳公司可供售之CENTAUR® 顆粒狀活性碳。 將樣品在表5中所列之指示小時,取回並分析。表5 中數據顯示甚至具有高達約4,500mg/L的總固體粒子負載 ,仍可將銅移除。此外,就有效之銅移除而論,不需要實 施過氧化氫的移除如經由在4、5和7天所實施之操作結果 所示。表5之試驗中之總固體粒子主要係來自硏磨劑顆粒 固體粒子本身,即,使用於硏磨和磨光之矽石和礬土。極 少的固體粒子是來自已溶之離子,像銅和硫酸鹽那樣。 -25- 200812915 表5 高總固體粒子的效應Table 3 Effect of oxidant exposure on iminodiacetate resin H202 Concentration (mg/L) Exposure time (hours) 0 50 100 500 1,000 0 1 1 1 1 1 264 1 1 3 84 1 1 1 552 1 0.94 672 0.99 0.97 0.89 936 1.03 0.86 0.77 1056 0.99 0.99 1320 1 0.94 0.91 0.82 0.71 1560 0.99 0.7 0.58 1584 0.94 0.88 1776 1.01 0.95 0.91 0.66 0.5 1 1968 0.92 0.88 2016 0.98 0.58 0.43 2256 0.52 0.38 2280 0.92 0.86 2496 0.87 0.83 2784 0.89 0.82 3144 0.88 0.80 3 3 84 0.82 0.75 Example 2 Properties of ion exchange resin when chemically neutralized with oxidant In this example, 'evaluation of an ion exchange column comprising a chemically neutralized oxidant according to one or several embodiments of the invention is evaluated The metal handling capacity of the system. The processing system is shown schematically in Figure 2 and is generally described in Example 1 -21-200812915. The neutralizing or reducing agent is sodium metabisulfite. However, other reducing agents such as sodium hydrogen sulfite and sodium sulfite may be used. Neutralization of hydrogen peroxide with sodium sulfite, sodium hydrogen sulfite or sodium metabisulfite results in the formation of sodium sulfate (Na2S04). The initial concentrations of hydrogen peroxide in the treated solution prior to neutralization are listed in Table 4. The concentration of the sodium sulfate product produced is also listed. The initial concentration of the metal species and copper (sulfate) was about 40 mg/L for each test operation solution. The initial pH of each solution is about 3 pH units. The ion exchange column has a resin bed having a diameter of about 1.5 cm and a depth of about 16 cm. Citric acid is included as an organic chelating agent for copper and is typically used in copper CMP honing formulations. The organic chelating agent typically mates the copper ions produced during the copper CMP process to inhibit precipitation and/or reabsorption of such species onto the semiconductor surface. The organic chelating agent binds copper to varying degrees. Typically, the stronger the strength of the combined copper in the chelating agent, the more difficult it is for the ion exchange resin to remove copper from the chelating agent and collect it on the ion exchange resin. The high salt background also reduces copper sorption from the solution onto the resin, in this case via a high ion background. When ® uses a chemical reducing agent such as sodium bisulfite to chemically decompose an oxidizing agent, such as hydrogen peroxide, the chemical reaction increases the total solution ion background. Specifically, the reaction between sodium hydrogen sulfite and hydrogen peroxide produces sodium and sulfate ions in solution. The higher the oxidant concentration, the more sulfite is needed for neutralization, and as a result, the resulting ion background is greater. Table 4 lists the number of equivalent bed volumes (BV) through the resin bed prior to effluent therefrom, which was found to be about 30 mg/L, designated as a breakthrough condition, or a fluidized metal concentration of about 75%. Table 4 compares copper negatives on ion exchange in three cases -22- 200812915. A "blank" or baseline condition shows the copper loading when a chelating agent (e.g., citric acid) is absent and has only a small ion background loading. The "citric acid" condition shows a copper loading when the amount of chelating agent, citric acid, is added to the baseline in the typical copper CMP wastewater. In this case, because citric acid is only partially ionized In the solution, a little additional ion background is produced. The "sulphate" condition shows the copper loading when the ionic background is significantly increased when no citric acid is present. The amount of sodium sulphate is equivalent to the amount formed if about 1,100 ppm of hydrogen peroxide is removed via sodium bisulfite (in both cases, this amount is equal to removing about 200 ppm of hydrogen peroxide). The results show that both citric acid and sodium sulphate are essentially the same as the baseline and that increasing the background ionic loading by using a chemical reducing agent has no appreciable negative effect on copper removal by the ion exchange resin, whether or not citric acid is present. Table 4 Effect of High Sulfate Exposure Test Solution Composition Copper (mg/L) 40 40 40 BTA (mg/L) 5 00 500 500 Na2S04 (mg/L) 800 800 4500 Citric Acid (mg/L) 0 500 0 pH値3 3 3 H2〇2 before treatment (mg/L) 200 200 1,000 Operation BV breakthrough (to approximately 30mg/L) “Blank ""Citrate""Sulphate" 1 2,000 1,920 2,140 2 1,900 1,640 2,320 3 2,080 -23- 200812915 BTA is 1,2,3-benzotriazole. BTA is a typical "alkyl/aryl/triazole rust" component of current copper CMP honing formulations. BTA typically prevents copper oxide formation from remaining on the polished copper on the semiconductor device during and after the CMP process. Example 3 High Total Solids Flow This example shows the performance of a processing system in accordance with one or more embodiments of the present invention when processing a honing agent stream from a CMP process. Implementation evaluation takes about 20 days. This test also shows the effectiveness of absorption through the resin, copper, and even the presence of an oxidizing agent. The system illustrated in Fig. 3 is schematically illustrated by an ion exchange column 3 1 0 downstream of the carbon column 311. The CMP solution from the feed tank 3 1 4 is driven by the pump 3 1 2 through the carbon column 31 1 and the ion exchange column 3 10 . A sample point 3 1 6 is disposed between the carbon column 3 1 1 and the ion exchange column 3 10 . The treated fluid from the ion exchange column 310 is collected in a collection tank 318. The system was operated for about 8 to 12 hours per day, and was restarted the next day when the operation was terminated every day. After 1 2 days, the ion exchange test was stopped and the hydrogen peroxide was removed with carbon for a continuous period of 8 days. The honing agent feed solution flows through the carbon bath and the ion exchange tank uniformly and stably throughout the test, indicating that no solid particles accumulate on either medium. At the end of the test, each medium was examined to show that no honing agent solids accumulate on either medium. A simulated copper CMP honing agent wastewater was prepared. The entire commercially produced copper CMP honing agent concentrate was diluted to the solid particle test condition. The honing agent solution was prepared by diluting a commercially available copper CMP honing agent with the addition of hydrogen peroxide and copper sulfate to simulate copper CMP honing agent wastewater. Calculated quantities of copper sulphate (systematic technical grade ^11804-51120) from De-24-200812915, Houston, Chem, and from Ashland Specialty Chemicals, Dublin, Ohio Hydrogen peroxide (about 30% H2O2, electronic grade) is added to the inflowing honing agent solution. The hydrogen peroxide concentrations of the honing agent streams entering and exiting the ion exchange resin bed per day are listed in Table 5. Similarly, the import and export copper concentrations are also listed in conjunction with the solids inlet concentration. The pH was adjusted to 3 pH units via the addition of sulfuric acid. The particle size of the solid particles is in the range of from about 0·0 0 1 μm to about 1 μm. The ion exchange column 310 has a resin bed having a diameter of about 8 inches and a depth of about 40 inches. The diameter of the carbon column 31 is about 14 inches and about 40 inches deep. The carbon used is CENTAUR® granular activated carbon available from Calgon Carbon, Pennsylvania. The samples were taken at the hours listed in Table 5, retrieved and analyzed. The data in Table 5 shows that even with a total solids loading of up to about 4,500 mg/L, copper can still be removed. Moreover, in the case of effective copper removal, the removal of hydrogen peroxide is not required as shown by the results of the operations performed on days 4, 5 and 7. The total solids in the test of Table 5 are mainly derived from honing agent particles. The solid particles themselves, i.e., used in honing and polishing of vermiculite and alumina. Very few solid particles come from dissolved ions like copper and sulfate. -25- 200812915 Table 5 Effect of high total solid particles

天數 操作 時間 (小時) 累積操 作時間 (小時) 過氧化氫濃度(mg/L) 銅濃度(mg/L) 固體粒子 濃度 (mg/L) IN POST CARBON IN OUT 1 1 8 524 <0.3 26.2 0.052 3,370 8 ΝΑ <0.3 26 0.033 3,680 2 1 16 ΝΑ 28.6 0.024 3,450 . 8 520 <0.3 29.8 0.046 4,515 3 1 24.5 450 27.6 0.032 3,360 8.5 520 <0.3 27.2 0.027 3,180 4 1 32.5 384 29 0.025 4,000 8 ΝΑ 17 28.5 0.027 3,750 5 1 40.5 428 4 29.3 <0.04 3,785 8 410 16.4 31 <0.04 3,980 6 1 48.5 377 <0.3 27.1 0.114 3,870 8 402 <0.3 27.7 <0.04 3,420 7 1 60.5 610 3,5 28.6 <0.04 3,930 12 493 <0.3 25.4 <0.04 3,580 8 1 72.5 503 <0.3 25 <0.04 3,540 12 463 <0.3 31.5 0.053 4,090 9 1 84.5 510 <0.3 28.7 <0.04 3,760 12 517 <0.2 26.9 0.156 3,400 10 1 96.5 500 <0.3 27.1 0.079 3,350 12 524 <0.2 23.2 0.124 2,840 11 1 108.5 525 <0.3 27.1 0.127 3,420 12 502 <0.2 27.1 0.167 3,790 12 1 120.5 563 <0.2 27.6 0.08 3,800 12 510 <0.2 25.1 1.61 3,480 13 1 129 428 4 〜3,500 8.5 410 16.4 〜3,500 14 1 137.3 377 <0.3 〜3,500 8.3 402 <0.3 -3,500 15 1 146.1 610 3.5 〜3,500 8.8 493 <0.3 〜3,500 16 1 155.1 503 <0.3 -3,500 9 463 <0.3 〜3,500 17 1 163.6 510 <0.3 〜3,500 8.5 517 <0.2 〜3,500 18 1 171.8 500 <0.3 -3,500 8.2 524 <0.2 〜3,500 19 1 180.6 525 <0.3 〜3,500 8.8 502 <0.2 〜3,500 20 1 1 Ο Π /C 563 <0.2 〜3,500 9 i〇y.〇 510 <0.2 〜3,500 -26- 200812915 實施例4使用碳和過濾介質來移除過氧化氫 此實施例中,將來自CMP過程之廢硏磨劑 處理支系統之處理系統中處理。第3圖中大體 理系統由預處理系統3 1 1其是碳柱或過濾介質 交換柱3 1 0構成。利用泵3 1 2導引來自進料槽 粒子、氧化劑和含銅之溶液。將已處理之硏磨 集槽3 1 8中並取樣。 硏磨劑流中之過氧化氫經由利用具有賓州 ,Calgon碳公司可供售之CENTAUR®粒狀活性 自維斯康新州,W i n d s 〇 r之C 1 a c k公司可供吉 狀過濾介質之預處理系統予以移除及/或中和。 粒狀活性碳系統主要由直徑約8英寸和深約40 成。BIRM®粒狀過濾介質支系統主要由直徑約 約2 0英寸之柱組成。關·於每次操作,相對應之 具有與各自之碳柱或過濾介質柱約相同因次。 將硏磨劑流中,流入和後處理銅固體粒子 濃度列入表6和7中。該數據顯示兩種預處理 或移除過氧化氫濃度及顯示銅種經由離子交換 移除。 流在包括預 上顯示之處 柱、及離子 3 14之固體 劑收集在收 ,匹資堡市 碳,或具有 之BIRM®粒 CENTAUR® 英寸之柱組 8英寸和深 離子交_柱 及過氧化氫 系統可降低 柱予以有效 -27- 200812915 表6 經由粒狀活性碳移除氧化劑 樣品 經過之時 間 (小時) 銅濃度 (mg/L) 總固體粒子 (mg/L) H2〇2 (mg/L) IN POST RESIN IN POST CARBON POST RESIN IN POST CARBON 1 0 30.8 0.018 2,920 2,100 1,600 204 <1 2 1.5 31.8 0.043 2,810 3,170 2,580 198 <2.6 3 3.5 32.5 <0.016 2,520 2,605 2,400 204 <1.3 4 5.5 31.4 0.021 2,510 2,550 2,390 185 <1.4 5 7.5 34.6 0.021 2,680 2,640 2,550 209 <1Days of operation time (hours) Cumulative operation time (hours) Hydrogen peroxide concentration (mg/L) Copper concentration (mg/L) Solid particle concentration (mg/L) IN POST CARBON IN OUT 1 1 8 524 <0.3 26.2 0.052 3,370 8 ΝΑ <0.3 26 0.033 3,680 2 1 16 ΝΑ 28.6 0.024 3,450 . 8 520 <0.3 29.8 0.046 4,515 3 1 24.5 450 27.6 0.032 3,360 8.5 520 <0.3 27.2 0.027 3,180 4 1 32.5 384 29 0.025 4,000 8 ΝΑ 17 28.5 0.027 3,750 5 1 40.5 428 4 29.3 <0.04 3,785 8 410 16.4 31 < 0.04 3,980 6 1 48.5 377 <0.3 27.1 0.114 3,870 8 402 <0.3 27.7 <0.04 3,420 7 1 60.5 610 3,5 28.6 <;0.04 3,930 12 493 <0.3 25.4 < 0.04 3,580 8 1 72.5 503 <0.3 25 < 0.04 3,540 12 463 <0.3 31.5 0.053 4,090 9 1 84.5 510 <0.3 28.7 < 0.04 3,760 12 517 < 0.2 26.9 0.156 3,400 10 1 96.5 500 <0.3 27.1 0.079 3,350 12 524 <0.2 23.2 0.124 2,840 11 1 108.5 525 <0.3 27.1 0.127 3,420 12 502 <0.2 27.1 0.167 3,790 12 1 120.5 563 <0.2 27.6 0.08 3,800 12 510 <0.2 25.1 1.61 3,480 13 1 129 428 4 to 3,500 8.5 410 16.4 to 3,500 14 1 137.3 377 <0.3 to 3,500 8.3 402 <0.3 -3,500 15 1 146.1 610 3.5 to 3,500 8.8 493 <0.3 to 3,500 16 1 155.1 503 <0.3 -3,500 9 463 <0.3 〜3,500 17 1 163.6 510 <0.3 〜3,500 8.5 517 <0.2 〜3,500 18 1 171.8 500 <0.3 -3,500 8.2 524 <0.2 〜3,500 19 1 180.6 525 <0.3 〜3,500 8.8 502 < 0.2 to 3,500 20 1 1 Ο Π /C 563 < 0.2 〜 3,500 9 i 〇 y 〇 510 < 0.2 〜 3,500 -26 - 200812915 Example 4 uses carbon and a filter medium to remove hydrogen peroxide in this embodiment Processing from the processing system of the waste honing agent treatment branch system of the CMP process. The general system in Fig. 3 consists of a pretreatment system 31 which is a carbon column or a filter medium exchange column 310. The pump 3 1 2 is used to direct the particles from the feed tank, the oxidant and the solution containing copper. The treated honing tank is immersed in the tank 3 1 8 and sampled. The hydrogen peroxide in the honing agent stream is pretreated by the C 1 ack company of Pends, New Jersey, using the CENTAUR® granular activity available from Calgon Carbon Company, Penn. The system is removed and/or neutralized. The granular activated carbon system is mainly composed of a diameter of about 8 inches and a depth of about 40%. The BIRM® Granular Filter Media Branch System consists primarily of columns approximately 20 inches in diameter. Off Each operation corresponds to the same order as the respective carbon column or filter media column. The concentrations of the influent and post-treated copper solids in the honing agent stream are listed in Tables 6 and 7. This data shows two pretreatment or removal of hydrogen peroxide concentrations and shows that copper species are removed via ion exchange. The flow is included in the column including the pre-display, and the solid agent of the ion 3 14 is collected in the collection, the carbon of the Fortune City, or the column of the BIRM® CENTAUR® inch column 8 inches and deep ionized column and peroxidation Hydrogen system can reduce column efficiency -27- 200812915 Table 6 Time to pass oxidant sample removal via granular activated carbon (hours) Copper concentration (mg/L) Total solid particles (mg/L) H2〇2 (mg/L IN POST RESIN IN POST CARBON POST RESIN IN POST CARBON 1 0 30.8 0.018 2,920 2,100 1,600 204 <1 2 1.5 31.8 0.043 2,810 3,170 2,580 198 <2.6 3 3.5 32.5 <0.016 2,520 2,605 2,400 204 <1.3 4 5.5 31.4 0.021 2,510 2,550 2,390 185 <1.4 5 7.5 34.6 0.021 2,680 2,640 2,550 209 <1

表7 經由粒狀過濾介質移除氧化劑 樣品 經過之時間 (小時) 銅濃度 (mg/L) 總固體粒子 (mg/L) H2〇2 (mg/L) IN POST RESIN IN POST BIRM⑧ POST RESIN IN POST BIRM ⑧ 1 0 28.3 0.186 2,920 3,430 2,510 214 95 2 1·5 29.2 0.322 2,750 2,910 2,750 NA 88 3 3.5 29.5 0.844 2,870 2,890 2,840 NA 108 4 5.75 30.6 2.87 2,820 2,895 2,840 NA 161 5 7.75 30.5 2.84 2,790 2,810 2,840 201 170 (N A =未分析) 實施例5離子交換變更之總固體粒子和過氧化氫濃度的性能 使用自市面上可購得之銅CMP過程所獲得之硏磨劑廢 水來評估經由具有碳床之預處理支系統及具有兩個離子交 換床之處理系統的氧化劑和金屬移除,如第4圖中示意舉 -28- 200812915 例說明。碳床510係由約3·6立方呎CENTAUR^:^狀活性 碳構成而離子交換床5 1 2和5 1 4每一者係由具有螯合之亞 胺基二醋酸酯基團之約3.6立方呎LEW ATI T®TP2 0 7弱酸性 巨觀多孔離子交換樹脂構成。硏磨劑液體係由利用泵5 1 8 自進料槽5 1 6引入該系統中。使用所供應之原銅硏磨劑, 來自Ashland Specialty化學公司之約30 %過氧化氫及來自 Chem One公司之硫酸銅五水合物將總固體粒子,過氧化氫 和銅等濃度調節至表8中所示之値。經由添加使用去離子 水以約1 : 1的比率所稀釋之約25 %硫酸溶液將pH値調節 至表8中所示之級位。將來自離子交換柱5 1 2和5 1 4之已 系統液流收集在收集槽5 2 0中。 將用於分析之樣品在樣品點522及在收集槽520取回 。表8列出各種試驗操作之硏磨劑流體的進口和各種性質 。該數據顯示經由活性碳支系統,銅被有效地移除甚至並 未移除過氧化氫,如試驗編號2、4、5和1 0中所示。該數 據亦顯示處理可甚至對於具有固體粒子高達約20,000PPm 之硏磨劑液流予以實施。實際上,在接近20,〇〇〇ppm的固 體粒子負載時,有效移除金屬仍超過9 0 %,因此,該數據 指示對於大於2 〇,0 0 0 p p m之硏磨劑液流,本發明仍可予以 實施。 -29- 200812915 表8 過氧化氫和銅之移除 試驗 號碼 pH値 流率 (gpm) 總固體 粒子 (mg/L) 銅 (mg/L) H2〇2 (mg/L) 所移除 之銅 (%) 所移除 之 H2〇2 (%) 1 3 3.5 12,795 54.9 64.6 99.6 100 2 4 5.4 6,044 8.98 ;43.8 99.4 8.7 3 2 1.6 8,532 9.02 1,632 98.1 94.6 4 4 1.6 4,932 97.6 672 100 88.6 5 4 5.4 15,240 84.5 2,074 99.3 51.6 6 2 5.4 6,140 87.3 663 99.5 100 7 3 3.5 10,305 42.8 1,887 99.5 100 8 3 3.5 10,630 45.3 1,802 99.2 100 9 2 1.6 17,750 83 476 99.7 96.4 10 2 5.4 19,180 7.39 2,142 96.3 74.9 11 4 1.6 18,240 8.86 536 99.1 100Table 7 Time (hours) for removal of oxidant sample via granular filter medium Copper concentration (mg/L) Total solid particles (mg/L) H2〇2 (mg/L) IN POST RESIN IN POST BIRM8 POST RESIN IN POST BIRM 8 1 0 28.3 0.186 2,920 3,430 2,510 214 95 2 1·5 29.2 0.322 2,750 2,910 2,750 NA 88 3 3.5 29.5 0.844 2,870 2,890 2,840 NA 108 4 5.75 30.6 2.87 2,820 2,895 2,840 NA 161 5 7.75 30.5 2.84 2,790 2,810 2,840 201 170 ( NA = not analyzed) The performance of the total solids and hydrogen peroxide concentration of the ion exchange modification of Example 5 was evaluated using a refractory wastewater obtained from a commercially available copper CMP process via a pretreatment branch with a carbon bed. The system and the oxidant and metal removal of the treatment system with two ion exchange beds are illustrated in Figure 4, -28-200812915. The carbon bed 510 is composed of about 3.6 cubic centimeters of CENTAUR^: activated carbon and the ion exchange beds 5 1 2 and 5 1 4 each consist of about 3.6 of chelated iminodiacetate groups. Cubic 呎 LEW ATI T® TP2 0 7 weakly acidic giant porous ion exchange resin. The honing agent system is introduced into the system from the feed tank 5 16 using a pump 5 1 8 . Using the supplied copper honing agent, approximately 30% hydrogen peroxide from Ashland Specialty Chemical Company and copper sulfate pentahydrate from Chem One Company adjusted the concentrations of total solid particles, hydrogen peroxide and copper to Table 8 Show it. The pH was adjusted to the level shown in Table 8 by adding about 25% sulfuric acid solution diluted with a ratio of about 1:1 using deionized water. The system fluid streams from the ion exchange columns 5 1 2 and 5 14 are collected in a collection tank 520. The sample for analysis is retrieved at sample point 522 and at collection tank 520. Table 8 lists the inlets and various properties of the honing fluid for various test operations. This data shows that copper is effectively removed or not removed via the activated carbon branch system, as shown in Runs Nos. 2, 4, 5 and 10. The data also shows that the treatment can be carried out even for a blister stream having solid particles up to about 20,000 ppm. In fact, when nearly 20, 〇〇〇ppm of solid particles are loaded, the effective removal of the metal is still more than 90%, so the data indicates that for a honing agent flow greater than 2 〇, 0 0 0 ppm, the present invention It can still be implemented. -29- 200812915 Table 8 Removal of hydrogen peroxide and copper Test number pH turbulence rate (gpm) Total solid particles (mg/L) Copper (mg/L) H2〇2 (mg/L) Removed copper ( %) H2〇2 (%) removed 1 3 3.5 12,795 54.9 64.6 99.6 100 2 4 5.4 6,044 8.98 ;43.8 99.4 8.7 3 2 1.6 8,532 9.02 1,632 98.1 94.6 4 4 1.6 4,932 97.6 672 100 88.6 5 4 5.4 15,240 84.5 2,074 99.3 51.6 6 2 5.4 6,140 87.3 663 99.5 100 7 3 3.5 10,305 42.8 1,887 99.5 100 8 3 3.5 10,630 45.3 1,802 99.2 100 9 2 1.6 17,750 83 476 99.7 96.4 10 2 5.4 19,180 7.39 2,142 96.3 74.9 11 4 1.6 18,240 8.86 536 99.1 100

實施例6經由電磁照射之光化學預系統 此實施例中,自典型C Μ P硏磨劑液流中移除或減少過 氧化氫係由不具有化學品加成之技術予以實施。該非化學 爲基底之氧化劑減少係由基於光化減少預處理系統包括曝 露於紫外線(U V )電磁輻射予以實施,如表5中大體上所舉 例說明。 該預處理系統610利用來自Kentucky州,Erlanger之 Aquionics有限公司之#AMD150B1/3T模型UV總成,使用約 1·6加侖體積容量,UV單元612其具有185nm波長,#130027- -30- 200812915 1001型,中壓力UV燈613。該燈以約1KW予以操作並由 電源6 1 4供電。將如大體上下述所製備之被處理之溶液使 用泵6 1 8以約0.7 5 gpm的流率自進料槽6 1 6泵經中壓UV 單元612。在此流率時所施加之UV輻射的劑量是約4,0 00 微瓦特-秒/立方厘米。將已照射之流體收集在收集槽 620 中。 , 硏磨劑流係由以約1 : 1 : 40的比,稀釋在去離子中之 以矽石爲基底及以礬土爲基底之市面上可購得的銅CMP硏 磨劑濃縮物的混合物構成。使用硫酸將硏磨劑流的pH値調 節至約3pH單位。將金屬種類,係硫酸銅五水合物加至硏 磨劑流中。使用所計算之整分的約3 0%電子級過氧化氫作 爲氧化劑加至該溶液。在處理之前,氧化劑和金屬種類的 濃度列入表9中。該數據顯示包括UV輻射技術之預處理 系統可降低氧化劑濃度。 此等試驗未使用離子交換樹脂而是集中注意力於光化 學移除或降低氧化種類。然而,如上述各實施例之試驗中 所示,經由利用本發明處理系統的一或數實施例,金屬種 類、銅,可能已被有效地移除。 預期的是,UV劑量能級愈高,UV單元之停留時間愈 久,且其他技術可進一步改良將氧化劑種類減少;然而, 如上述實施例中所特別指明,特別關於實施例4和5,不 須移除全部氧化劑種類來實現金屬移除。 -31- 200812915 表9 經由照射,過氧化氫分解 試驗 pH値 流率 (gpm) 總固體 粒子 (mg/L) 流入之 H2〇2 (mg/L) 流入之 銅 (mg/L) H2〇2 減少 (%) 1 6.6 0.75 3,500 470 30 15 2 3 0.75 3,500 300 30 33 3 3 0,75 3,500 200 30 18 雖然本發明已連同數實施例予以敘述,但是應了解者 按照前面敘述,許多替代、修正和變更將爲精於該項技藝 人士顯然可見。因此,此發明意欲包括所有此等替代、修 正和變更,彼等係屬於附隨之申請專利範圍的要旨和範圍 以內。 現在已經敘述本發明的一些舉例說明之實施例,精於 該項技藝之人士應顯然可見:前述僅是舉例說明而非限制 ,僅經由實施例予以陳述。甚多之修正和其他實施例係在 通常精於該項技藝人士的範圍以內且被考慮係屬於本發明 的範圍以內。特別,雖然本文中所陳述之許多實施例包括 程序條例或系統構成部分的特定聯合,但是應了解那些條 例和那些可以其他方式聯合。舉例而言,本發明考慮利用 流體化床或相似單元操作其中將離子交換介質經由以充分 流動速適當地引導被處理之流體在一或多個底部口而予以 有效地流體化。 此外,僅與一實施例相關所討論之條例,構成部分和 特徵無意在其他實施例中自相似任務被排除。應了解者各 -32- 200812915 種變更、修正和改進可能爲精於該項技藝人士容易想起且 此等變更、修正和改進意欲是公開的發明之一部分且係在 本發明的要旨和範圍以內。 而且,亦應了解者本發明係針對本文中所述之每一特 徵、系統、支系統或技術及本文中所述之兩或數特徵、系 統、支系統或技術的任何組合及兩或數特徵、系統、支系 統及/或方法的任何組合,如果此等特徵、系統、支系統和 Φ 技術並非相互不一致,則被考慮是在本發明的範圍以內如 申請專利範圍中所具體表現者。 使用序數術語例如”第一"、"第二’’等來修飾一個申請 專利範圍構成部分其單獨並不暗示一個構成部分對於另外 構成部分的任何優先、領先或次序、或暫時次序以此次序 實施一方法的步驟或條例,而是僅使用作爲標記來區別具 有一定名稱之一構成部分與具有相同名稱之另外構成部分 (假如沒有使用序數術語)來區別各個構成部分。 • 精於該項技藝之那些人士亦應了解本文中所敘述之參 數和組能是例示而實際之參數及/或組態將基於特定應用 其中使用本發明的系統和技術。那些精於該項技藝之人士 使用不爲過例行實驗,亦應確認或能確定相當於本發明的 特定實施例。因此,應了解者:本文中所述之該等實施例 僅係經由實施例予以陳述且係在附隨之申請專利範圍及其 同義詞的範圍以內;除了如特別地敘述以外,在其他情況 下可實施本發明。 -33- 200812915 【圖式簡單說明】Example 6 Photochemical Pre-System via Electromagnetic Irradiation In this example, the removal or reduction of hydrogen peroxide from a typical C Μ P honing agent stream was carried out by a technique that did not have a chemical addition. The non-chemical substrate oxidant reduction is carried out by an actinic reduction based pretreatment system comprising exposure to ultraviolet (U V ) electromagnetic radiation, as generally illustrated in Table 5. The pretreatment system 610 utilizes the #AMD150B1/3T model UV assembly from Aquionics, Inc. of Erlanger, Kentucky, using a volume capacity of about 1.6 gallons, UV unit 612 having a wavelength of 185 nm, #130027- -30- 200812915 1001 Type, medium pressure UV lamp 613. The lamp is operated at approximately 1 kW and is powered by a power source 161. The treated solution prepared as generally described below was pumped from the feed tank 61 to the medium pressure UV unit 612 using a pump 618 at a flow rate of about 0.75 gpm. The dose of UV radiation applied at this flow rate is about 4,00 micro watt-seconds per cubic centimeter. The irradiated fluid is collected in the collection tank 620. The honing agent flow system is a mixture of commercially available copper CMP honing agent concentrates which are diluted in deionized with a vermiculite base and alumina-based base at a ratio of about 1: 1: 40. Composition. The pH of the honing agent stream is adjusted to about 3 pH units using sulfuric acid. The metal species, copper sulfate pentahydrate, is added to the enamel stream. About 30% of the electronic grade hydrogen peroxide of the calculated aliquot was added to the solution as an oxidant. The concentrations of oxidant and metal species were listed in Table 9 prior to treatment. This data shows that a pretreatment system including UV radiation technology can reduce the oxidant concentration. Instead of using ion exchange resins, these tests focused on photochemical removal or reduced oxidation species. However, as shown in the experiments of the various embodiments described above, metal species, copper, may have been effectively removed via the use of one or more embodiments of the processing system of the present invention. It is expected that the higher the UV dose level, the longer the UV unit residence time, and other techniques may further improve the reduction of the oxidant species; however, as specified in the above examples, particularly with respect to Examples 4 and 5, All oxidant species must be removed to achieve metal removal. -31- 200812915 Table 9 Hydrogen peroxide decomposition test by irradiation, pH turbulence rate (gpm) Total solid particles (mg/L) Inflow of H2〇2 (mg/L) Inflow of copper (mg/L) H2〇2 Reduction (%) 1 6.6 0.75 3,500 470 30 15 2 3 0.75 3,500 300 30 33 3 3 0,75 3,500 200 30 18 Although the invention has been described in connection with several embodiments, it should be understood that many alternatives and modifications are And the changes will be apparent to those skilled in the art. Accordingly, the present invention is intended to embrace all such alternatives, modifications, and variations, which are within the scope and scope of the appended claims. The exemplified embodiments of the present invention have been described by way of example only. Numerous modifications and other embodiments are within the scope of the present invention and are considered to be within the scope of the present invention. In particular, although many of the embodiments set forth herein include specific combinations of procedural regulations or system components, it should be understood that those provisions and those may be combined in other ways. For example, the present invention contemplates utilizing a fluidized bed or similar unit operation in which the ion exchange medium is effectively fluidized by appropriately directing the fluid being treated at one or more bottom ports at a sufficient flow rate. Moreover, only the regulations, components, and features discussed in connection with an embodiment are not intended to be excluded from the like tasks in other embodiments. It is to be understood that the various changes, modifications, and improvements of the present invention are intended to be apparent to those skilled in the art and that such changes, modifications, and improvements are intended to be part of the disclosed invention and are within the spirit and scope of the invention. Moreover, it should be understood that the present invention is directed to any feature, system, branch system or technology described herein, and any combination and two or more features of two or more features, systems, systems or techniques described herein. Any combination of systems, subsystems, and/or methods, if such features, systems, subsystems, and Φ techniques are not mutually inconsistent, are considered to be within the scope of the invention as set forth in the appended claims. The use of ordinal terms such as "first", "second", etc. to modify a patentable scope component does not imply any preference, lead or order, or temporary order of one component for another component. The steps or rules of a method are implemented in order, but only as a mark to distinguish between a component having a certain name and another component having the same name (if no ordinal term is used) to distinguish the components. Those skilled in the art will also appreciate that the parameters and groups described herein can be exemplified and that actual parameters and/or configurations will be based on the particular application in which the systems and techniques of the present invention are used. Those skilled in the art do not use For the purposes of routine experimentation, specific embodiments equivalent to the present invention are also identified or can be determined. Accordingly, it should be understood that the embodiments described herein are set forth by way of example only. Within the scope of the patent scope and its synonyms; in addition to the special description, the hair may be implemented in other cases Ming. -33- 200812915 [Simple description]

V 附隨之圖式無意按比例繪製。各圖式中,各圖中所舉 ^ 例說明之相同或接近相同元件係由相同數字代表。爲了清 晰之故,各圖式中並非每一元件可被標記。圖式中: 第1圖是依照本發明的一或多個實施例,處理系統的 示意舉例說明; 第2圖是依照如實施例1和2中所述,本發明的一或 多個實施例處理系統的示意舉例說明; ^ 第3圖是實施例3和4中所述之處理系統的示意舉例 說明; 第4圖是實施例5中所述之更另外處理系統的示意舉 例說明;及 第5圖是實施例6中所述之預處理系統的示意舉例說 明。 【主要元件符號說明】 20 CMP 系 統 30、 3 18> 520 收 集 槽 40 處 理 系 統 2 10 、3 1 0 離 子 交 換 柱 2 12 、3 14、 5 16 進 料 槽 214 、3 12、 618 泵 2 16 流 出 物 貯 留槽 3 11 碳 柱 3 16 樣 品 點 •34- 200812915 5 10 碳床 512 、 514 離子交換床 5 1 6、6 1 6 進料槽 5 18 所利用之泵 5 22 樣品點 6 10 預處理系統 6 12 紫外光單元 613 紫外光燈 6 14 電源 62 0 收集槽 -35-The accompanying drawings are not intended to be drawn to scale. In the drawings, the same or similar elements are denoted by the same numerals. For the sake of clarity, not every component in the drawings may be labeled. In the drawings: FIG. 1 is a schematic illustration of a processing system in accordance with one or more embodiments of the present invention; FIG. 2 is a diagram of one or more embodiments of the present invention as described in Embodiments 1 and 2 Schematic illustration of a processing system; ^ Figure 3 is a schematic illustration of the processing system described in Embodiments 3 and 4; Figure 4 is a schematic illustration of an additional processing system described in Embodiment 5; Figure 5 is a schematic illustration of the pretreatment system described in Example 6. [Main component symbol description] 20 CMP system 30, 3 18> 520 collection tank 40 treatment system 2 10, 3 1 0 ion exchange column 2 12, 3 14, 5 16 feed tank 214, 3 12, 618 pump 2 16 outflow Storage tank 3 11 Carbon column 3 16 Sample point • 34- 200812915 5 10 Carbon bed 512, 514 Ion exchange bed 5 1 6、6 1 6 Feed tank 5 18 Pump used 5 22 Sample point 6 10 Pretreatment system 6 12 UV unit 613 UV lamp 6 14 Power supply 62 0 Collection tank -35-

Claims (1)

200812915 十、申請專利範圍: 1.一種處理硏磨劑流之方法,包括: 提供包含以至少約5 0毫克/升濃度之至少一種金屬 和至少一種氧化劑之硏磨劑流;以及 引導該硏磨劑流入離子交換柱中。 2·如申請專利範圍第1項之方法,其中該離子交換柱包括 離子交換材料其包含至少一個錯合之基團。 3 ·如申請專利範圍第1項之方法,其中該離子交換柱包括 ^ 離子交換材料其包含選自下列所構成之至少一種側功能 度、亞胺基二醋酸酯、多元胺、雙吡啶甲基胺及胺基膦 酸。 4·如申請專利範圍第2項之方法,其中離子交換材料包括 亞胺基二醋酸酯官能基。 5 ·如申請專利範圍第1至4項中任一項之方法,其中氧化 劑濃度是低於l,5 00mg/L。 6·如申請專利範圍第1至5項中任一項之方法,其中氧化 劑包括選自下列所構成之族群之至少一種類:碘酸鹽、 高碘酸鹽、溴酸鹽、高溴酸鹽、氯酸鹽、高氯酸鹽、過 氧化合物、硝酸鹽化合物、過硫酸鹽化合物、過錳酸鹽 化合物及鉻酸鹽化合物。 7 ·如申請專利範圍第1至5項中任一項之方法,其中氧化 劑包括選自下列所構成之族群之至少一種化合物:硝g変 、過氧化氫、硝酸鐵及過硫酸銨。 8 ·如申請專利範圍第1至7項中任一項之方法,其中至少 -36- 200812915200812915 X. Patent Application Range: 1. A method of treating a honing agent stream, comprising: providing a honing agent stream comprising at least one metal and at least one oxidizing agent at a concentration of at least about 50 mg/liter; and directing the honing The agent flows into the ion exchange column. 2. The method of claim 1, wherein the ion exchange column comprises an ion exchange material comprising at least one miscible group. 3. The method of claim 1, wherein the ion exchange column comprises an ion exchange material comprising at least one side functionality selected from the group consisting of iminodiacetate, polyamine, bispyridylmethyl Amines and aminophosphonic acids. 4. The method of claim 2, wherein the ion exchange material comprises an imidodiacetate functional group. The method of any one of claims 1 to 4, wherein the oxidant concentration is less than 1,500 mg/L. The method of any one of claims 1 to 5, wherein the oxidizing agent comprises at least one selected from the group consisting of iodate, periodate, bromate, perbromate Chlorate, perchlorate, peroxy compound, nitrate compound, persulfate compound, permanganate compound and chromate compound. The method of any one of claims 1 to 5, wherein the oxidizing agent comprises at least one compound selected from the group consisting of nitric acid, hydrogen peroxide, iron nitrate, and ammonium persulfate. 8. The method of any one of claims 1 to 7, wherein at least -36-200812915 一種金屬包括選自下列所 錯、鎳、鋅、鈷、鎘、鐵 錢、釘、鎵、鍤、鎢、給 9·如申請專利範圍第8項之 銅。 1 G ·如申請專利範圍第1至8 材料具有〇·〇〇丨μπι至丨μιη 1 1 ·如申請專利範圍第1 〇項之 材料的濃度係在50mg/L 3 12♦如申請專利範圍第1項之 除碳柱中之至少一種氧化 _柱的步驟之前予以實施 1 3 ·如申請專利範圍第1項之 〜種氧化劑之步驟。 1 4 ·如申請專利範圍第i 3項之 加至少一種還原種屬至硏 1 5 ·如申請專利範圍第1 3項之 化學、電化學、光化學或 性。 1 6 ·如申請專利範圍第1項之 流引入離子交換柱之前, 1 7 · —種用於處理硏磨劑流之 ’濃度爲至少50mg/L之 構成之族群之一種金屬:銅、 、組、銀、金、鉑、把、銥、 及其混合物。 方法,其中該至少一種金屬是 項中任一項之方法,其中顆粒 範圍內之直徑。 .方法,其中硏磨劑流中之顆粒 E 20,000mg/L之範圍內。 方法,其中無預處理步驟來移 劑係在將硏磨劑流引入離子交 〇 ,方法,更進一步包括中和至少 :方法,其中中和的步驟包括添 磨劑流。 :方法,其中中和的步驟包括以 熱化學等方式致使氧化劑成惰 :方法,更進一步包括將硏磨劑 將硏磨劑流引入碳柱中的步驟 處理系統,包括至少一種金屬 至少一種氧化種屬及濃度在自 -37- 200812915 5 0mg/L至20,0 00mg/L範圍內之固體粒子之硏磨劑流,其 中處理系統包括: 流動地連接至硏磨劑流之源的進口;以及 用於降低來自硏磨劑流之至少一種金屬的濃度之設 備。 1 8 ·如申請專利範圍第1 7項之處理系統,其中至少一種金屬 係選自下列所構成之族群之一種金屬:銅、鉛、鎳、鋅 、鈷、鎘、鐵、鉅、銀、金、鉑、鈀、銥、铑、釕、鎵 、錶、給及鶴。 1 9 ·如申請專利範圍第1 7項之處理系統,其中至少一種氧化 劑是選自下列所構成之族群之一種類:過氧化氫、硝酸 鐵及過硫酸銨。 20·如申請專利範圍第丨6項之處理系統,更進一步包括用於 中和至少一種氧化劑之設備。 2 1 ·如申請專利範圍第20項之處理系統,其中用於中和至少 一種氧化劑之該設備以電化學、光化學及/或熱化學等方 式降低至少一種氧化劑的濃度。 2 2 ·如申請專利範圍第1 6至2 1項中任一項之處理系統’其 中用於降低來自硏磨劑流之至少一種金屬的濃度之設備 包括具有介質之離子交換柱其具有能與至少一種金屬形 成錯合物之至少一個功能基。 2 3 ·如申請專利範圍第1 6至2 2項中任一項之處理系統,更 進一步包括經配置在用於降低來自硏磨劑流之至少一種 金屬的濃度之設備上游之碳床。 -38·A metal includes copper selected from the following, nickel, zinc, cobalt, cadmium, iron, nail, gallium, antimony, tungsten, and the like. 1 G · If the patent application range is 1 to 8, the material has 〇·〇〇丨μπι to 丨μιη 1 1 · The concentration of the material in the first paragraph of the patent application is 50 mg/L 3 12♦ as claimed in the patent scope The step of at least one oxidation-column in the carbon removal column of the first item is carried out before the step of the oxidizing agent as in the first aspect of the patent application. 1 4 · As in the scope of patent application, item i 3, add at least one reducing species to 硏 1 5 · Chemical, electrochemical, photochemical or characterization as in Article 13 of the patent application. 1 6 · Before the introduction of the flow of the first paragraph of the patent scope into the ion exchange column, a metal used to treat the honing agent stream at a concentration of at least 50 mg/L: copper, group , silver, gold, platinum, rhodium, ruthenium, and mixtures thereof. The method, wherein the at least one metal is the method of any one of the items, wherein the diameter is within the range of the particles. The method wherein the particles in the honing agent stream are in the range of 20,000 mg/L. The method wherein there is no pretreatment step to transfer the honing agent stream to the ion exchange, the method further comprising neutralizing at least the method, wherein the step of neutralizing comprises adding a grinding agent stream. The method wherein the step of neutralizing comprises causing the oxidizing agent to be inerted by thermochemical means or the like: the method further comprising the step of treating the honing agent into the carbon column by a honing agent, comprising at least one metal at least one oxidizing species And a concentration of a honing agent concentration of solid particles ranging from -37 to 200812915 50 mg/L to 20,00 mg/L, wherein the treatment system comprises: an inlet fluidly connected to a source of the honing agent stream; Apparatus for reducing the concentration of at least one metal from a honing agent stream. 1 8 The processing system of claim 17 wherein at least one of the metals is selected from the group consisting of copper, lead, nickel, zinc, cobalt, cadmium, iron, giant, silver, gold , platinum, palladium, rhodium, ruthenium, osmium, gallium, table, give and crane. A treatment system according to claim 17 wherein at least one oxidizing agent is one selected from the group consisting of hydrogen peroxide, iron nitrate and ammonium persulfate. 20. A processing system as claimed in claim 6 further comprising means for neutralizing at least one oxidizing agent. A treatment system according to claim 20, wherein the apparatus for neutralizing at least one oxidant reduces the concentration of the at least one oxidant in an electrochemical, photochemical and/or thermochemical manner. A treatment system according to any one of claims 6 to 21 wherein the apparatus for reducing the concentration of at least one metal from the honing agent stream comprises an ion exchange column having a medium which is capable of At least one metal forms at least one functional group of the complex. The treatment system of any one of claims 16 to 2, further comprising a carbon bed disposed upstream of the apparatus for reducing the concentration of at least one metal from the honing agent stream. -38·
TW95132279A 2006-09-01 2006-09-01 System and method of slurry treatment TWI393675B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95132279A TWI393675B (en) 2006-09-01 2006-09-01 System and method of slurry treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95132279A TWI393675B (en) 2006-09-01 2006-09-01 System and method of slurry treatment

Publications (2)

Publication Number Publication Date
TW200812915A true TW200812915A (en) 2008-03-16
TWI393675B TWI393675B (en) 2013-04-21

Family

ID=44768205

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95132279A TWI393675B (en) 2006-09-01 2006-09-01 System and method of slurry treatment

Country Status (1)

Country Link
TW (1) TWI393675B (en)

Also Published As

Publication number Publication date
TWI393675B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
TWI389851B (en) System and method of slurry treatment
US6346195B1 (en) Ion exchange removal of metal ions from wastewater
JP2003205299A (en) Hydrogen dissolved water manufacturing system
CA2332880C (en) Removing metal ions from wastewater
TWI444338B (en) Method and apparatus for removing organic matter
TW201821375A (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
CN109293100B (en) Heavy metal sewage treatment method
US20100108609A1 (en) System and method of slurry treatment
KR101216198B1 (en) Method and system for point of use treatment of substrate polishing fluids
TW200812915A (en) System and method of slurry treatment
US20220298045A1 (en) Treatment of Azoles
JP3586165B2 (en) Treatment of wastewater containing selenium
JP2017006854A (en) Wastewater treatment method and wastewater treatment apparatus