TW200812393A - Method for data compression of computer-generated video holograms - Google Patents

Method for data compression of computer-generated video holograms Download PDF

Info

Publication number
TW200812393A
TW200812393A TW96101862A TW96101862A TW200812393A TW 200812393 A TW200812393 A TW 200812393A TW 96101862 A TW96101862 A TW 96101862A TW 96101862 A TW96101862 A TW 96101862A TW 200812393 A TW200812393 A TW 200812393A
Authority
TW
Taiwan
Prior art keywords
image
scene
slm
data
holographic
Prior art date
Application number
TW96101862A
Other languages
Chinese (zh)
Inventor
Norbert Leister
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200812393A publication Critical patent/TW200812393A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object
    • G03H2210/454Representation of the decomposed object into planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Method for data compression of a sequence of computer-generated video holograms, which are encoded as complex hologram values of a scene from image data with depth information, for the representation on a display device with a spatial light modulator (SLM), which generates a modulated wave field and thereby reconstructs the desired three-dimensional scene, where changes in limited sections of the image content to be encoded only cause changes in the hologram values in limited sections of the SLM, comprising the steps (S1) definition of a phase matrix with predetermined phase values, (S2) determining the visibility of the scene according to the current position of an observer and considering the depth information of the image content to be encoded, (S3) encoding the scene, where these visible object points are given the same defined phase value in each image of the sequence and irrespective of the actual depth information of the object point during a transformation into hologram values, such that in subsequent images unchanged object points imply unchanged hologram values, thus allowing efficient data compression of the sequence.

Description

200812393 TPPO/PUK206-011 九、發明說明: 【發明所屬之技術領域】 本案為一種資料壓縮電腦產生影像全像術的操作方 法’係用來處理一序列由電腦所產生的全像影像(CGVH, Computer-Generated Video Holograms)之資料壓縮的方 法。 對於標準的全像影像來說,一般而言它們會以照片的 方式或以其他適合的干擾晝面格式來儲存,CGVH會以來 自於某個三維景象一序列的離散全像影像資料的運算結果 存在亚且儲存,舉例來說,在電子元件裡諸如電腦用的電 子儲存媒體,I㈣處理H,連接器,或其他的硬體元 件等都是。 · =修正後能夠產生干擾並且在觀察者眼衫間中傳 種複雜的二維光波前之格式存在,而此光波 此而重組出-個三㈣象。,t歧說此光波前的也將因 個電腦所產生㈣像全像個光調校模組矩陣以某 使得波場將發射自料㈣2全像料值來編碼,則會 因此而被調校修正,並藉幕上侧的像素也將 擾來重組三維景象。 ”憎域需要的干 全像影像的即時重組會你 合應體元件與運算方式來提供::種不同的重要應用並配 影像的主要ϋ難與挑戰在於I的、纟°,。胃、數位全像 -般來說要遠大於傳統的影像二影像的㈣量過於魔大, 很容易損毁儲存媒體與類似。這麼龐Α的資料量 、’路元件與匯流排系統之資料 5 200812393 TPPO/PUK206-011 傳送元件。傳統的影像資料其傳送與處理就已經會造成 資源的嚴重毁損。因此各種不同的嘗試與方法都想要試 著來處理並減小資料量,例如,藉由資料壓所與高效能儲 存媒體之助等方式。本案在此提出一個有效率的資料壓 縮方法,它是一個重要的工具以加強資料的儲存與傳輸並 確保極高的效率。一批可控制的資料量會以提升可接受 度與CGVH系統的分配之形式而存在。 •【先前技術】 經過計算後的全像影像資料會再與一個光調校模組矩 陣編碼在一起,而此光调彳父核組矩陣是一個電子护r制式的 元件以感應整個振幅與相位,簡單的說,就是能夠產生感 應之光的複雜振幅或簡化振幅。 ^ 在本案裡,所謂的“光調校模組矩陣” (Light Modulator Matrix)與“空間光調校模組” (SLM,Spatial Light Modulator)主要是在介紹一個用來控制強度,藉由 ⑩交換,切割,或調校由一或多個獨立光源所發射出來之光 束的色彩與/或相位的裝置。一個全像影像顯器基本上會 包含一個可控式像素的矩陣,它可以藉由調校穿透顯示器 面板之光的振幅與/或相位來重組所有的物件點。舉例來 口兒SLM可以疋一個生光分離模組(αομ,Ae〇ust〇〇〇ptic Discrete Modulator)或是一個連續型式的模組。本案所 提出之利用調校振幅來重組全像影像的具體實施範例就是 液曰曰顯示器(LCD)的優點說明。本案也與其他更多的 可才工式裝置有關,包括用來將足夠連續光調校修正成為一 6 200812393 TPPO/PUK206-011 個光波前或一個光波等高線。 而所謂的“像素” (pixel)指得是一個SLM上可 控制的全像影像像素:它代表了一個全像影像點的離散值 並且能被離散地控制且定址。每一個像素都代表了全像 影像的一個全像影像點。 在數位光處理(DLP,Digital Light Processing)技術的範例裡,一個像素都是一個離散 的可控式微鏡片,或是一小群的離散的可控式微鏡片。 在連續SLM的範例裡,像素則是一個用來表示全像影像 • 點的顯像區域。至於在色彩重建的範例裡,像素基本上 會被細分為多個子像素,用來表現出三原色。 在大多數的全像影像系統中,編碼後的全像影像都是 三維景象的轉換。其中在本案裡所謂的“轉換”可以 作廣義的解釋,包括任何重現或趨近且架構在麥斯威爾 (Maxwellian)波形方程式上之數學或電腦辅助方式。但 最常用的還是富利葉轉換,它可以很輕易地被設計在程式 中,並且能在光學系統裡得到非常精確的瞭解。 ⑩ 在一般傳統的二維影像資料重組中,在全像影像重組 裡三維物件的光波前或景象會透過連續光波的感應與重疊 而被產生出來。這表示對於每一個像素來說全像影像的 值都是可以被測量判定,只需要將波前提供作為每一個物 件點的重建。每一個單一的像素也將因此而將具有相對 應的調校後之光線提供給其餘景象的重組。相反的,景 象的每個點其資訊會分配給其餘的全像影像。如果只有 一個景象的小區域被重組時發生改變,則全像影像的所有 像素之值都會受到影響,而且新的值也都會覆寫到所有的 7 200812393 TPPO/PUK206-011 像素以便能夠正確地重建整個物件,即使這個物件只有很 輕微的改變。在物件中改變也會產生與在影像畫格 (video frame)之影像點中改變有相同的效果,其中SLM 的像素值會被產生出來,並且不同於景象中其他保持不變 的像素。 所以,我們可以很清楚地發現,只有不足的壓縮比能 夠產生像上述這樣具有不同的影像壓縮群組之方法。這 也使得要將這樣的全像影像作充份不同的影像壓縮變得幾 馨乎不可能。 參考文獻 為了解決上述的困難,已經有許多理論與論文都被提 出來作為對策,舉例來說,就如同藉由卡洛變換(KLT, Karhunen-Loeve transformation)來做資料壓縮。 另外,石田佳宏所提出的“在全像影像晝面的轉換 編碼中作位元的定址”也是一個作具有大量資料之全像 影像晝面的有效率壓縮方法。晝面在作壓縮時必需考慮 ® 作影像資料的減少,也就是說,在必要時必需將影像中不 需要的部份從全像影像晝面中捨棄移除,例如藉由帶通濾 波器(bandpass filter)的方式。不需要的部份也將因此 而從必需留下的部份中分離,這樣就能有效地減少資料 量。 由諾夫頓(T· Naughton)所提出的“針對三維物件 重組與認識的數位全像影像壓縮法”中,主要在說明架 構於相位平移全像影像的基礎上作三維物件重組之不可遺 失與可遺失壓縮運用。標準的不可遺失壓縮技術會被用 8 200812393 TPPO/PUK206-011 來儲存分離資料流的即時編碼以便能在鮑羅斯-惠勒編碼 演算法(Burrows-Wheeler encoding algorithm)之前完成數 位全像影像之真實與虛擬的部份。而可遺失壓縮技術則 架構於副取樣,量化,以及離散富利葉轉換之上。 綜合以上的理論,這些在全像影像重組中所造成的品 質誤差損失,其缺點並無法藉由頻繁地援引可遺失資料壓 縮法來復原。 【發明内容】 在本案所提出之理論主張中,主要是為了解決在數為 影像全像的即時重組中針對一序列的全像影像資料作有效 率的壓縮。每個需要儲存或處理的影像畫面之資料量都 必需作相當的減少。另外,全像影像資料的結果也必須 能被簡單地使用,或至少標準化的資料壓縮技術,所以因 此而能夠達到節省資源且經濟運用的壓縮比。 本案所提出之理論為針對電腦所產生的一序列影像全 像資料壓縮方法,其中電腦所產生的一序列影像全像是以 架構在一個影像内容上之複雜全像影像值的格式所編碼, 並且包含具有深度貨訊的影像資料。此時的序列貧料是 由一種裝置來呈現,它包含一個空間光調校模組器,SLM, 以及大量的像素。一個調校後的波場會藉由SLM而自 足夠連續光中產生,且此SLM是由複雜全像影像值所控 制,而且所需要的真實或虛擬三維景象都會在空間中經由 感應而重組。 觀察者視窗將會在重組空間中被產生並且具有和 200812393 TPPO/PUK206-011 μ相同基礎之梯形區間。視窗會位於靠近觀察者眼睛 的,置並且能藉由熟知的位置偵測與追蹤系統來追蹤確實 的觀察者位置。本案的理論架構錢察麵能看到景象 之區,内並且由延展自SLM到觀察者視窗之梯形重組空 ’斤疋義。其中的梯形區域可以整合成一個金字塔狀, 因為觀察者視窗要遠小於SLM的範圍。本案所提出之 較佳具體實施範例裡,觀察者視窗非常的小,如果某個步 ,有了反向的工作進行,則影像内容的細微區段之變化都 會被編碼並且只會造成在SLM之有限區段中複雜全像影 象之之改憂,換句a舌說就是只發生在部份的少數像素裡。 步驟1:相位矩陣 6在傳統方法的第一個步驟中,我們首先定義一個具有 固疋相位值的相位矩陣吣」)。藉由一個簡單的方法,相位 的亂數值將會平均地分饰;然而,我們也可以利用豆他的 分佈方式來對影像品質作更多的改善。如果slm的解 馨=度其列有m個像素而行有n個像素,則相位矩陣將 建議也具有相同的維度。 步驟2:可見度 在本方法的第二個步驟裡,景象的可見度是可以量測 .y景象會則㈣藉著在㈣者位£所看見且具以有影 深度資訊的物件點s(i,j)之架構所組成。透過 固間早的解決方式,在梯形區域⑽景象物件會以具有 離散的架構存在,而且它可以量測判斷出哪-個 厅、象的物件點是可以從觀察者視窗所看到 的運算,景象將會被切片分割成許多虛擬的層次片段,= 200812393 TPPO/PUK206-011 片段都是與SLM相互平行。如* slm的200812393 TPPO/PUK206-011 Nine, invention description: [Technical field of invention] This case is a data compression computer to generate image holography operation method is used to process a sequence of computer-generated hologram images (CGVH, Computer-Generated Video Holograms). For standard holographic images, they are generally stored as photos or in other suitable interference formats. CGVH will use discrete holographic image data from a sequence of 3D scenes. There are sub-and storage, for example, electronic storage media such as computers in electronic components, I (4) processing H, connectors, or other hardware components. • The correction can produce interference and the existence of a complex two-dimensional wavefront pattern in the observer's eyewear, and the light wave recombines a three (four) image. The difference between the light wave and the front of the light wave will also be generated by a computer. (4) The image matrix of the omni-directional light adjustment module is coded so that the wave field will emit the self-material (4) 2 full image material value, which will be adjusted. Correction, and the pixels on the upper side of the screen will also disturb to reorganize the 3D scene. "The real-time reorganization of the dry hologram image required by the 会 domain will provide you with the body components and calculation methods:: The main difficulties and challenges of different important applications and images are I, 纟°, stomach, digital The omni-image is generally much larger than the traditional imagery. The image is too large, and it is easy to damage the storage media and similar. The amount of data, the 'channel components and busbar system' information 5 200812393 TPPO/PUK206 -011 Transmitting components. The transmission and processing of traditional image data has caused serious damage to resources. Therefore, various attempts and methods are trying to deal with and reduce the amount of data, for example, by data compression. The way to help high-performance storage media. This case proposes an efficient data compression method, which is an important tool to enhance the storage and transmission of data and ensure high efficiency. A batch of controllable data will be Increased acceptability and the form of CGVH system allocation. • [Prior Art] The calculated hologram image data will be encoded with a matrix of optical calibration modules. Together, the light-tuning parent-nuclear matrix is an electronically protected element that senses the entire amplitude and phase, in short, the complex amplitude or the simplified amplitude of the induced light. ^ In this case, the so-called "Light Modulator Matrix" and "Spatial Light Modulator" (SLM) are mainly used to control the intensity, by 10 switching, cutting, or adjusting A device for color and/or phase of a beam emitted by one or more independent light sources. A holographic image display device basically comprises a matrix of controllable pixels that can be tuned to penetrate the display panel The amplitude and / or phase of the recombination of all object points. For example, the SLM can be equipped with a raw light separation module (αομ, Ae〇ust〇〇〇ptic Discrete Modulator) or a continuous type of module. The specific implementation example of reorganizing the holographic image using the amplitude of the adjustment is a description of the advantages of the liquid helium display (LCD). This case is also related to other more capable devices. Included, used to correct enough continuous light to be a 6200812393 TPPO/PUK206-011 light wave front or a light wave contour. The so-called "pixel" refers to a controllable holographic image pixel on the SLM. : It represents a discrete value of a holographic image point and can be discretely controlled and addressed. Each pixel represents a holographic image point of a holographic image. In digital light processing (DLP) In the example, a pixel is a discrete, controllable microlens, or a small group of discrete, controllable microlenses. In the continuous SLM example, the pixel is a development area used to represent the holographic image. As for the color reconstruction example, pixels are basically subdivided into multiple sub-pixels to represent the three primary colors. In most hologram systems, the encoded hologram is a three-dimensional scene. The so-called "conversion" in this case can be interpreted broadly, including any mathematical or computer-aided approach that reproduces or approaches and is structured on Maxwellian waveform equations. But the most common is the Fourier transform, which can be easily programmed into the program and has a very accurate understanding of the optical system. 10 In the reorganization of the traditional two-dimensional image data, the light wavefront or scene of the three-dimensional object in the holographic image recombination is generated by the induction and overlap of continuous light waves. This means that the value of the holographic image can be measured and determined for each pixel, and only the wavefront is required to be reconstructed as each object point. Each single pixel will also provide recombination with the corresponding conditioned light to the rest of the scene. Conversely, each point of the scene is assigned its information to the rest of the hologram. If only a small area of a scene is changed when it is reorganized, the values of all pixels of the holographic image will be affected, and the new values will be overwritten to all 7 200812393 TPPO/PUK206-011 pixels for proper reconstruction. The entire object, even if the object has only a slight change. Changes in the object also produce the same effect as changes in the image points of the video frame, where the pixel values of the SLM are generated and are different from other pixels that remain unchanged in the scene. Therefore, we can clearly see that only insufficient compression ratio can produce a method with different image compression groups as described above. This also makes it difficult to compress such holographic images into different images. References In order to solve the above difficulties, many theories and papers have been proposed as countermeasures, for example, as data compression by KLT (Karhunen-Loeve transformation). In addition, Ishida's "addressing the bits in the conversion coding of holographic images" is also an efficient compression method for holographic images with a large amount of data. When compressing the surface, it is necessary to consider the reduction of the image data, that is, if necessary, the unnecessary part of the image must be discarded from the hologram image, for example by a band pass filter ( Bandpass filter) way. Unwanted parts will also be separated from the parts that must be left, which will effectively reduce the amount of data. The digital holographic image compression method proposed by T. Naughton for the reconstruction and recognition of three-dimensional objects mainly describes the three-dimensional object reorganization based on the phase-shifted holographic image. Loss of compression can be used. The standard uncorrupted compression technique will be used to store the real-time encoding of the separated data stream with 8 200812393 TPPO/PUK206-011 so that the true of the digital holographic image can be completed before the Burrows-Wheeler encoding algorithm With the virtual part. Lossable compression techniques are based on subsampling, quantization, and discrete Fourier transforms. Based on the above theory, the loss of quality error caused by the reorganization of holographic images cannot be recovered by frequently invoking the loss of data compression method. SUMMARY OF THE INVENTION In the theoretical claim put forward by the present invention, the main purpose is to solve the effective rate compression for a sequence of holographic image data in the instant recombination of the image hologram. The amount of data for each image that needs to be stored or processed must be substantially reduced. In addition, the results of holographic image data must also be used simply, or at least standardized data compression techniques, so that a resource-saving and economical compression ratio can be achieved. The theory proposed in this case is a sequence of image holographic data compression methods generated by a computer, wherein a sequence of image holograms generated by a computer is encoded in a format of complex holographic image values constructed on an image content, and Contains image data with deep cargo information. The sequence of lean material at this time is presented by a device that includes a spatial light calibration module, SLM, and a large number of pixels. A tuned wavefield is generated by SLM in sufficient continuous light, and the SLM is controlled by complex holographic image values, and the required real or virtual 3D scenes are recombined in space through induction. The Observer window will be generated in the recombination space and have the same trapezoidal interval as the 200812393 TPPO/PUK206-011 μ. The window will be located close to the viewer's eye and can track the exact observer position with a well-known position detection and tracking system. The theoretical framework of the case can see the area of the scene, and the trapezoidal reorganization of the scene from the SLM to the observer window. The trapezoidal area can be integrated into a pyramid shape because the observer window is much smaller than the SLM range. In the preferred embodiment of the case, the observer window is very small. If a step is performed in reverse, the changes in the subtle sections of the image content will be encoded and will only be caused by the SLM. In the finite section, the complex hologram image is changed. In other words, it is only in a few pixels. Step 1: Phase Matrix 6 In the first step of the traditional method, we first define a phase matrix 疋”) with a solid phase value. In a simple way, the random values of the phase will be evenly divided; however, we can also use the distribution of beans to make more improvements in image quality. If the solution of slm = degree has m pixels and n pixels, the phase matrix will suggest the same dimension. Step 2: Visibility In the second step of the method, the visibility of the scene is measurable. The y scene will be (4) by the object point s (i, which is seen in the (4) position and has the depth information. j) The structure of the structure. Through the early solution of the solid solution, the object in the trapezoidal region (10) will have a discrete structure, and it can measure which one, the object point of the image is an operation that can be seen from the observer window. The scene will be sliced into a number of virtual hierarchical segments, = 200812393 TPPO/PUK206-011 segments are parallel to the SLM. Such as * slm

的相掛到成行為m個物件點且列為η個物件點 夠麟在梯形區域内的片段層次也最好能 它們nXm (Π乘以叫之相同數目的點,儘管 之旦复都大不相同。&因此能達到靠近觀察者 :二品段能比較遠離觀察者之景象的區段來得更為清 扨#女二,本衆所提出之簡單具體實施範例將能夠檢查確 匆件點,無論它們是否被隱藏於靠近觀察者之某 制目 的某個點之後。本案所提出之其他具體實施範 例則g在以下的章節中作更詳細的說明。 如果片段層次的矩陣被用來對應於SLM矩陣,則可 見度檢查將會從n*m個可見物件點中減少相當的數量, 以便與第一個步驟中相位值的數量能夠一致。如果我們 I現可見物件點的數量少於n*m的乘積,則所有剩餘的 ”、、占都會被d又疋為零。景象也將因此而以η*πι個可見物 件點的架構存在。SLM矩陣的其他比率,相位矩陣與可 見物件點矩陣都可以彼此相互轉換。 步驟3:編瑪 本案所知1出之方法另外還架構在一個對於序列資料作 更有效率之壓缩理論上,也就是當物件點的振幅在序列資 料的後續影像中並未作改變且持續保持其相位值。在第 二個步驟中所定義的相位矩陣可以使用在每一個序列全像 影像中作運算。在轉換到複雜全像影像值的過程中,可 見物件點會在每一個序列影像中被賦予相同定義的相位值, 11 200812393 TPPO/PUK206-011 而無論物件點的確實深度資訊究竟是什麼值。 卢—維f在相同的後續影像中的話,那 Γ果Γ崎中被賦予_ 像影像值。如果〜個物件點不再在户斗、織〜 王 ::列的彳==二他, 改變。不麵件點就會一以 傳統的處理方式也將因此而提出序列草像= 象值。 壓縮法,並且還額外使用簡單且快 j h貪料 柏 分影像壓縮法。*他的壓縮方==理例h 克哈特編碼方式以及二相位編碼方式會在以下的章 進一步的說明。當然也可以利用其他例如 :作 (kinoform encoding)的方式。 竭石馬 假設某個商用且量產的SLM其解析度已經能 高畫質的全像影像,則其前題是要先能有效地降低目=像 高價且需求的儲存媒體與資料傳輸元件的成本。有^趣 此,本案所提出之具體實施範例就是要能提供高經濟^於 的量產技術。 >彼 當然,本案為一種資料壓縮電腦產生影像全像衡 作方法,係針對電腦所產生的一序列全像影像進行資料巧 縮,主要是將具有深度資訊的影像資料編碼處理成為二雙 景象的複雜全像影像值,以便能重組顯像於一個具有=制 光調校模組(Spatial Light Modulator,SLM)的顯示欺复間 而此一空間光調校模組能夠產生一個調校修正後的故於上, 且重組所需要的三維景象,其中所重組後的景象會固為2 12 200812393 TPPO/PUK206-011 影像内容作編碼以成為全僮旦 m 像值而在SLM的部份地方 有極小&域料差改變,其包含以下的處理步驟. (51) 定義具有預設相位值Wi,j)的相位矩陣; (52) 藉由一觀祭者目前的位置來 老卢脸旦/你咖〜 夏木决疋景象的可見性,並且 T慮將衫像内各的深度資訊作編碼 是以可見物件點吼j)的結構來呈現;象將θ (=將景㈣編碼,其中這些可見物件點吼』)會在這It is better to have nXm (Π multiply by the same number of points, even if it is a big one, The same. & therefore can reach close to the observer: the two sections can be more clear than the section of the observer's scene to get more clear #女二, the simple concrete example proposed by the public will be able to check the rush point, Whether or not they are hidden behind a point close to the viewer's system. Other specific examples presented in this case are described in more detail in the following sections. If the matrix of the slice hierarchy is used to correspond to the SLM Matrix, the visibility check will reduce the amount from n*m visible object points to match the number of phase values in the first step. If we see that the number of object points is less than n*m The product, then all the remaining "," will be d and then zero. The scene will also exist in the structure of η * πι visible object points. The other ratios of the SLM matrix, the phase matrix and the visible object point matrix are It can be converted to each other. Step 3: The method known from the book is also structured in a more efficient compression theory for sequence data, that is, when the amplitude of the object point is not in the subsequent image of the sequence data. Change and maintain its phase value. The phase matrix defined in the second step can be used in each sequence of holographic images. In the process of converting to complex holographic image values, the visible object points will be Each sequence image is given the same defined phase value, 11 200812393 TPPO/PUK206-011 regardless of the exact depth information of the object point. If Lu-V is in the same subsequent image, then the result is Nagasaki It is given _ image value. If ~ object point is no longer in the household, weaving ~ Wang:: column 彳 == two him, change. No face will be treated in a traditional way. The sequence of grass image = image value is proposed. The compression method is also used, and the simple and fast jh grazing image compression method is additionally used. * His compression side == rule case h Kehart coding mode and two-phase coding mode It is further explained in the following chapters. Of course, other methods such as kinoform encoding can be used. Exhausted stone is assuming that a commercial and mass-produced SLM has a high-quality holographic image with a resolution of The premise is to effectively reduce the cost of storage media and data transmission components such as high price and demand. It is interesting to note that the specific implementation example proposed in this case is to provide high-volume mass production technology. > Of course, this case is a data compression computer to generate image holographic method, which is a data condensed for a sequence of holographic images generated by the computer, mainly to encode the image data with deep information into two pairs of scenes. Complex holographic image values so that it can be recombined and displayed in a display bullying with a = Spatial Light Modulator (SLM). This spatial light calibration module can generate a calibration correction. The three-dimensional scene required for reorganization, and the recombined scene will be solid for 2 12 200812393 TPPO/PUK206-011 image content for coding to become a full child m image value and there is a small & field material difference change in some parts of the SLM, which includes the following processing steps. (51) Define a phase matrix with a preset phase value Wi, j); (52) by means of a view The current position of the ritual comes to Lao Lu face Dan / you coffee ~ Xia Mu decides the visibility of the scene, and T considers the depth information of the shirt to be encoded in the structure of the visible object point j); θ (= encoding (4), where these visible objects are clicked) will be here

列貝㈣每—個影像中被設定為相同定義的相位值^ 無論物件點的確實深度#訊是否在轉換到全像影像 值的期間; j,將會顯像包含未曾改變之全像影像值的未曾改變之 物件點,以針對該序列資訊作有效的資料壓縮。 .如所述之資料壓縮電腦產生影像全像術的操作方法, :糸用,梯形重組空間產生之一顯示裝置,其中的slm會 規耗出這個梯形空間的基底,而觀察者視t則至少會涵蓋 親察限睛的瞳孔並且被用來作為追蹤確實觀察者位置的根 i如所述之資料壓縮電腦產生影像全像術的操作方法, $中的觀察者視窗區域面積會很小使得要被編碼的影像内 谷之有限區域的改變都只會造成SLM的有限區域之複雜 全像影像值的改變。 如所述之資料壓縮電腦產生影像全像術的操作方法, 八中的物件疋利用二軸離散化(沿似⑷如丨⑼)之可見景 象點S(i,j)的結構來呈現。 13 200812393 TPPO/PUK206-011 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的物件是利用在重組空間内三軸離散化之可見景象點 S(i,j)的結構來呈現。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的物件是利用在重組空間内三軸離散化之可見景象點 S(i,j)的結構來呈現,而此時的重組空間裡所有用來作離 散化的區段層都會與SLM相互平行並具有相同的行數與 列數。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的可見物件點的數量,SLM的維度,相位矩陣,以及 物件離散化都是怪等的或相同的。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的相位矩陣之維度,SLM的解析度,可見物件點的維 度,以及用來作為離散化的區段層之矩陣,都會與SLM 相互平行,且都是恆等的或相同的。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中如果可見物件點的數量小於所指定的維度,則剩餘的 點都會被指定為零。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中當進行景象編碼處理時我們只需要考慮可見物件點 S(i,j)。 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的物件點S(i,j)其振幅將會維持不變以在一序列的 後續影像中保持恆定不變的相位值。 14 200812393 TPPO/PUK206-011 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的相位矩陣其每一行的值與/或每一列的值平均分佈。’ 如所述之資料壓縮電腦產生影像全像術的操作方法, 其中的複雜全像影像值會被轉換到柏克哈特(Burckhardt) 元件或一相位元件中。 【實施方式】Columns (4) are set to the same defined phase value for each image ^ regardless of the true depth of the object point # whether the signal is converted to the holographic image value; j, the image will contain the omni image value that has not changed. An unaltered object point for effective data compression for the sequence information. As described in the data compression computer to generate image holography operation method: 糸, trapezoidal recombination space to produce a display device, wherein the slm will consume the base of the trapezoidal space, and the observer sees at least t It will cover the pupils who are obsessed with the eye and are used as the root of tracking the position of the actual observer. As described in the data compression computer to generate image holography, the area of the viewer window in $ will be small. Changes in the limited area of the valley within the encoded image will only result in a change in the complex holographic image value of the limited area of the SLM. As described in the data compression computer, the operation method of image holography is performed, and the objects in the eight objects are represented by the structure of the visible scene point S(i, j) of the two-axis discretization (along (4) such as 丨(9)). 13 200812393 TPPO/PUK206-011 As described in the data compression computer to generate image holography operation method, the object is represented by the structure of the visible scene point S (i, j) of the three-axis discretization in the recombination space . The data compression computer generates an image holography operation method, wherein the object is represented by the structure of the visible scene point S(i, j) which is discretized in the recombination space, and the recombination space at this time All of the segment layers used for discretization are parallel to the SLM and have the same number of rows and columns. The data compression computer produces an image holographic operation method as described, wherein the number of visible object points, the SLM dimension, the phase matrix, and the object discretization are all blame or the same. As described in the data compression computer to generate image holography operation method, the phase matrix dimension, SLM resolution, visible object point dimensions, and the matrix used as discretized segment layer, will be with SLM Parallel to each other and all of them are identical or identical. The data compression computer produces an image holographic operation method as described above, wherein if the number of visible object points is less than the specified dimension, the remaining points are designated as zero. The data compression computer generates an image holographic operation method as described above, wherein we only need to consider the visible object point S(i, j) when performing scene coding processing. The data compression computer produces an image hologram operation method in which the object point S(i, j) has its amplitude maintained to maintain a constant phase value in a subsequent sequence of images. 14 200812393 TPPO/PUK206-011 The data compression computer produces an image holographic operation method as described in which the phase matrix has an average value of the value of each row and/or the value of each column. As described in the data compression computer produces image holographic operations, where complex holographic image values are converted to Burckhardt components or a phase component. [Embodiment]

本案所提出之理論技術以及壓縮裝置等都會藉由具體 實施範例在以下段落裡作更進一步的詳細說明。架構在 笔月自所產生之影像全像重組裝置上的範例已經在PCT/EP 20〇5 009604與WO 2004/044659這兩篇專利文件中作了 洋細的u兒明。前述的這兩個方法與顯示器都架構在不重建 整個景象物件的理論基礎之上,其中的景象物件是可以被 觀察者所看見,但是會被投影到兩個小的觀察者視窗中, 以涵蓋觀察者眼睛的瞳孔,而發射自景象物件且實質存在 的波前將會被設定在這個位置。 觀察者可以經由觀察者視窗觀察景象。虛擬的觀察 者視窗會涵蓋觀察者眼睛的瞳孔並且能透過熟知的位置偵 測與追縱系統來追賴察者的確實位置。一個虛擬的梯 形重組景象會在全像影像顯示器的slm與觀察者視窗之 ,延伸’其中的SLM為梯形區域的底而觀察者視窗則為 弟形區域的高。 >果此觀察者視窗非常小,則所形成的 將會變㈣為金字塔狀。觀察者會透過虛擬觀 ^視窗相龍並且錢察者視窗巾接㈣重現景象 的波前,所以觀察者能在重組空間裡看到景象的重組物 200812393 TPPO/PUK206-011 件 在本案所提出之第一個具體實施範例裡,電腦所產生 的影像全像資料會藉由全像影像顯示器而重組呈現,其中 的全像影像顯示器已經在專利文件PCT/EP 2005 009604, 將電腦所產生的影像全像作編碼與重組的方法和裝置,, 中有所定義描述。用來產生傳真效果的水平軸可藉由空 間夕工的方式而獲得,例如使用一個透鏡光罩,並且在 SLM之鄰近列中作全像影像的重組。這表示並非是由景 =本身來作重建,但是重現波前本身或重現景象的波前都 會產生在小小的虛擬觀察者視窗之内。 土 ,察者視窗是如此地渺小,當我們反向來看整個處理 流程時,如果對影像内容的有限區段裡所作的改變作編碼, =只會導致在SLM的有祕段巾之複雜全像影像值的改 、交,也就是只會影響少數的像素而已。 像辛ΞΙΓ兒明是架構在存在某個SLM它的行為m個 2而歹,η個像素的假設前題之上。此時的SLM 為-片LCD面板,它能調校修正足夠連續㈣振幅。 本木所提出之資料壓縮的方法如以 在第一個步驟裡首先定義一個 …、、口 此-相位㈣包含與位值的相位矩陣。 而且相位值會在行與列中作平均的分佈。㈣與列數⑻, 在第二個步驟裡,景象的物件會 見的物件點都是可量測的。 成放化而且可 來量測刹定而甘士 又.以错由觀察者位置 木里而判疋,而其中所謂的觀察者位 微小觀察者視窗的觀察方向,並且^透象物件上 而号慮景象點的深度資 16 200812393 TPPO/PUK206-011 汛。藉由某種簡單的方法,物件將會被切割成許多片段 層次,而這些片段層次都會與SLM相互平行。在梯形 區域内物件的每-區段層次都會被叫固m彳η列的矩 陣所掃描,此時的m 4亍η列矩陣其實是取自於SLM ,解析度。纟考慮觀察者眼睛位置時,無論—個新的點 是隱臧在前-個點之後,每—個在可見層次上的點都必須 被檢查。因為每-筆資料記錄與矩陣的點值有相同數量 所以^疋給個別矩陣關區域會在和觀察者視窗保持相 ^離之處有所改變。▼見度的檢查主要是為了發現或選 仆m j n個可見點,也就是為了作可見物件的 =f本案所㈣之檢單具體實施·裡,區段層次ί :專距雒的,但疋彼此之間的距離可能會透過景象的深声 :訊而個別地連結起來。藉由確實的觀察: 的區段會在每—㈣段層次中被發_且計算點的可2 也將會利用檢查它們是否隱藏在靠近觀家者的見度 ί作判定。程會從最靠近i察者的虛擬= :這些計算點會定義成物件外層與區段層次的内^疋, :於位在硯祭2窗中央的眼睛,某—個景點二 較近層次的第i行第广列之:弟』列’並且隱藏在某個 如果是,則它將會從目前㈣的層:欠中, 則處理中的層次裡刪除。 在第三個步驟裡,也就是編碼 在每一個序列影像中被職予%T,『見物件點會 啤予相同疋義的相位值,並 17 200812393 TPPO/PUK206-011 $件點的確實殊度貢訊是否在轉換到複雜全像影像值的過 私中。如果一個物件點維持在相同的後續影像中,則它 將會自動地在每-個序列影像中賦予相同的複雜全像影像 值L所以我們將可以給予一個微分影像壓縮好讓一序列 的資料量能有效地減少。 在本案所提出之另一具體實施範例中,如果依照一般 ^ 上述的空間多工,則觀察者視窗將會利用時間多工的方式 •馨來產生,如同專利文件W〇 2004/044659 “重組影像全像 =影像全像與裝置”所描述的内容。影像的二個微小位 =透視圖將會利用光源與SLM内容的序列切換方式而投 ,,相對應的觀察者視窗。傳統的資料壓縮方法可以^ 時2供給二個影像圖。儲存的資料量將會利用例如忽視 在背景物件中透視圖的差異再作更多的減少,並且二立 中的背景都是個別獨立的。 ^又… 一與前述的二件具體實施範例一樣所產生的全像影像值 _ 會利用柏克哈特編碼法或是二相位編碼法來作編碼。如 果使用柏克哈特編碼法的話,一個複數值將會以三個離散 、 化的灰階值來表示,其中的灰階值的值域範圍從〇 ^ 255,且255代表著最大的可能元件值。基於一個定義 • 好了的最大可能訊號振幅,確實的訊號振幅會被以最大值 來作標準化,並且以可用的255階來作參考基準。我們 — 會選取最大值並且在資料壓縮的一開始作初始化。合在 處理其他影像的一開始時改變最大值的話,則將會導二在 所有像素中全像影像之值的巨大改變,並且也因二而減少 了可能的序列資料壓縮比率。 〆 18 200812393 影像序列的最大值 TPP〇/PUK2°6'011The theoretical techniques and compression devices proposed in this case will be further elaborated in the following paragraphs by way of specific examples. Examples of image holographic recombination devices that have been constructed in the past month have been made in the patent documents PCT/EP 20〇5 009604 and WO 2004/044659. The foregoing two methods and displays are constructed on the basis of not reconstructing the entire scene object, wherein the scene object can be seen by the observer, but will be projected into two small observer windows to cover The pupil of the observer's eye, and the wavefront emitted from the scene object and substantially present will be set at this position. The observer can observe the scene through the viewer window. The virtual observer window covers the pupil of the observer's eye and is able to track the exact position of the observer through the well-known position detection and tracking system. A virtual ladder recombination scene will be in the slm and observer windows of the holographic image display, where the SLM is the bottom of the trapezoidal area and the viewer window is the height of the disciple area. > If the observer window is very small, the resulting one will change to (4) as a pyramid. The observer will reproduce the wavefront of the scene through the virtual view and the window of the viewer, so the observer can see the recombination of the scene in the reorganization space. 200812393 TPPO/PUK206-011 is proposed in this case. In the first embodiment, the image-wide image generated by the computer is recombined by a holographic image display, and the holographic image display is already in the patent document PCT/EP 2005 009604, and the image generated by the computer The method and apparatus for holographic coding and recombination are described in the definition. The horizontal axis used to generate the fax effect can be obtained by means of a space work, such as using a lens mask and recombining the hologram image in the adjacent column of the SLM. This means that it is not reconstructed by the scene itself, but the wavefront that reproduces the wavefront itself or reproduces the scene will be produced within the small virtual observer window. Earth, the viewer window is so small, when we look back at the entire process, if you make changes to the changes made in the limited section of the image content, = will only lead to the complex hologram of the SML in the SLM The change and intersection of the image values will only affect a small number of pixels. Like Xin Xier Ming is based on the assumption that there is a certain SLM behavior of m 2 and 歹, η pixels. The SLM at this point is a slice LCD panel that can be calibrated to correct enough continuous (four) amplitude. The method of data compression proposed by this wood is to first define a ..., the mouth-phase (four) contains the phase matrix of the bit value in the first step. And the phase values are evenly distributed across the rows and columns. (4) With the number of columns (8), in the second step, the object points of the object of the scene are measurable. It is a radiochemical and can be measured and braked, and the sorrow is judged by the position of the observer. The so-called observer is the observation direction of the tiny observer window, and the object is visible. Consider the depth of the scene point 16 200812393 TPPO/PUK206-011 汛. In a simple way, the object will be cut into a number of fragment levels that are parallel to the SLM. In the trapezoidal region, each level of the object is scanned by the matrix of the fixed m彳η column. The m 4亍η column matrix is actually taken from the SLM and the resolution.纟 When considering the observer's eye position, no matter whether a new point is hidden behind the previous point, each point on the visible level must be checked. Because each pen data record has the same number of points as the matrix, the area to which the individual matrix is closed will change from the observer window. ▼See the inspection is mainly to find or select the servant mjn visible points, that is, for the visible object = f the case (4) the specific implementation of the checklist, the section level ί: special distance, but 疋 each other The distance between them may be connected by the deep sound of the scene: the news. With a tangible observation: the segments will be sent in each of the (four) segments and the calculated points 2 will also be judged by checking whether they are hidden near the view of the housekeeper. Cheng will be from the virtual nearest to the inspector =: These calculation points will be defined as the inner layer of the object and the inner level of the section, : in the eyes of the center of the burnt 2 window, a certain attraction is closer to the level The i-th row is the broadest: the brother column 'and hides in some if it is, then it will be removed from the current (four) layer: owed, then the processing level. In the third step, that is, the code is assigned to %T in each sequence image, "see the object point will be the same phase value of the beer, and 17 200812393 TPPO/PUK206-011 Whether the tribute is in the transition to complex holographic image values. If an object point is maintained in the same subsequent image, it will automatically assign the same complex hologram image value L to each sequence image so we can give a differential image compression so that a sequence of data Can be effectively reduced. In another specific embodiment proposed in the present case, if the spatial multiplexing is performed according to the above general, the observer window will be generated by means of time multiplexing, such as the patent document W〇2004/044659 "Recombined image. The hologram = image hologram and device" content. The two tiny bits of the image = perspective will be cast using the sequence switching between the light source and the SLM content, corresponding to the viewer window. The traditional data compression method can supply two image images at time 2. The amount of data stored will be further reduced by, for example, ignoring the differences in the perspective of the background objects, and the backgrounds in the two are individually independent. ^ Again... A holographic image value _ generated in the same way as the two specific embodiments described above will be encoded using Berkhardt encoding or two-phase encoding. If Berkhardt encoding is used, a complex value will be represented by three discrete, grayscale values, where the grayscale value ranges from 〇^255 and 255 represents the largest possible component. value. Based on a definition • The maximum possible signal amplitude, the true signal amplitude is normalized to the maximum value, and the available 255 steps are used as a reference. We — will pick the maximum value and initialize it at the beginning of the data compression. Changing the maximum value at the beginning of processing other images will lead to a large change in the value of the holographic image in all pixels, and also reduce the possible sequence data compression ratio. 〆 18 200812393 Maximum value of image sequence TPP〇/PUK2°6'011

Distribution)之相對應的量都不斤分佈(Gaussian 就是切除過濾掉一也5 W間早的解決方式,那 並且以最大值來取代^們⑴π所固夂下來的最大值之峰值 高斯分佈量並且提供統計來容忍相對應的 選擇-個較高的最A值將會很自 增長。-般來說,當選擇—個較低的最個較大的 峰值將只能近似於最大值。:此取大值日守,大量的 序的值將無法用對應於輪出自 矩陣的儲衫#,了时儲存相位 象二成,可見物件點(包括 像“計算;件:====_影 資料壓縮時的輸入資料的部份序列個作為 士十曾2文件de ι〇 2_〇63㈣主要在闊述一種用來 =¾所產生之影像全像的方法。藉由此—方法,且 =、准景象之複雜振幅值的物件會被指定到平行虛擬區段 :杜ΐ陣點以使付每—個區段層都會被定義成個別獨立的 =料記錄,並且在矩陣點中具有離散的振幅值,而且 ^作為全像影像顯㈣之糊校馳矩陣的全像影像碼 ^從影像資料記錄中被運算而得。此—文件還說明了 固用來產生前述方法的單一處理裝置。個別的步驟都 19 200812393 TPPO/PUK206-011 會藉由此單一處理裝置的對應元件來逐一產生。詳細步驟 如下: _ (S1)每一個區段層的物件資料記錄轉換到至少一 個虛擬視窗中波場的某個二維分佈之過程,其中的虛擬視 窗必需存在於一個參考層且盡量靠近觀察者眼睛; _(S2)集合所有參考資料記錄中所有區段層之計算後 分佈結果; -(S3)參考資料記錄轉換到一個位於和參考層平行並 且維持某個有限距離的全像影像層之過程,也就是一個 SLM層,所以能夠產生一個用來集合所有電腦產生之全 像影像(CGH)的全像影像資料記錄。 上述用來作編碼的單一處理裝置會被運用在產生一個 傳統方法的簡單具體實施範例之中。相反的,單一處理 裝置也可以藉由修改個別的步驟而得到更多的延伸應用。 由於使用了區段層,某種修正會提供將景象組織成可見物 件點的機會,如同前述本案所提之第一個具體實施範例。 編碼將會利用將相位矩陣之相位值指定給可見物件點而延 伸,就如同前述本案所提出之諸多具體實施範例。電腦 所產生的全像影像將會被分為二相位或三相位的元件而且 被有效率地壓縮,例如在某個微分影像處理巾,它也可以 利用對應的運算元件來產生。 所未技術,得由熟習本技術人士據以實施,而其前 所未有之作法亦具備專利性,爰依 /、引 實施例尚不足以涵蓋本荦#申岣。惟上述之 本木所奴保濩之專利範圍,因此,提出申請 20 200812393 TPPO/PUK206-011 專利範圍如附。The corresponding amount of Distribution) is not evenly distributed (Gaussian is the solution to cut off the 5 W early, and replaces the peak Gaussian distribution of the maximum value of the (1) π with the maximum value and Provide statistics to tolerate the corresponding choices - a higher maximum A value will be self-growth. - Generally speaking, when selecting the lower one, the larger one will only approximate the maximum value: this Take a large value of the day, a large number of sequence values will not be able to use the storage shirt corresponding to the wheel from the matrix, when the storage phase is like 20%, visible object points (including such as "calculation; piece: ====_ shadow data The partial sequence of the input data during compression is used as the method of Shi Shizeng 2 file de ι〇2_〇63 (4) mainly to describe a method for the image full image generated by =3⁄4. By this method, and =, Objects of complex amplitude values of the quasi-view will be assigned to parallel virtual segments: cuckoo arrays so that each segment layer will be defined as individual independent = material records with discrete amplitudes in the matrix points Value, and ^ as the holographic image display (four) The image code ^ is calculated from the image data record. This document also describes a single processing device that is used to generate the aforementioned method. The individual steps are 19 200812393 TPPO/PUK206-011 will be by this single processing device The corresponding components are generated one by one. The detailed steps are as follows: _ (S1) The process of converting the object data record of each segment layer into a two-dimensional distribution of the wave field in at least one virtual window, wherein the virtual window must exist in a reference Layers as close as possible to the observer's eyes; _(S2) aggregates the calculated distribution results for all segment layers in all reference records; - (S3) the reference records are converted to a position parallel to the reference layer and maintaining a finite distance The holographic image layer process, which is an SLM layer, produces a holographic image record that is used to assemble all computer-generated hologram images (CGH). The single processing device used for encoding is used in Producing a simple implementation of a traditional method. Conversely, a single processing device can also be modified by individual steps. To more extended applications. Due to the use of the segment layer, some corrections provide the opportunity to organize the scene into visible object points, as in the first specific implementation example mentioned above. The encoding will utilize the phase matrix The phase value is assigned to the visible object point extension, just like the specific implementation examples proposed in the foregoing. The holographic image generated by the computer will be divided into two-phase or three-phase components and compressed efficiently, for example in A differential image processing towel, which can also be generated by using a corresponding arithmetic component. The prior art is implemented by a person skilled in the art, and its unprecedented practice is also patented, and the embodiment is still It is not enough to cover the application of this article. However, the scope of the above-mentioned patents of the slaves of the woods, therefore, the application for 20 200812393 TPPO/PUK206-011 patent scope is attached.

21 200812393 TPPO/PUK206-01121 200812393 TPPO/PUK206-011

【圖式簡單說明】 無。 元件符號簡單說明: 無0 22[Simple description of the diagram] None. Simple description of component symbols: None 0 22

Claims (1)

200812393 TPPO/PUK206-011 申請專利範圍 1· 一種資料壓縮電腦產生影像全像術的操作方法,係針對電腦所 產生的一序列全像影像進行資料壓縮,主要是將具有深度資訊的 影像資料編碼處理成為某個景象的複雜全像影像值,以便能重組 顯像於一個具有空間光調校模組(Spatial Light Modulator, SLM)的顯示裝置上,而此一空間光調校模組能夠產生一個調校 修正後的波場並且重組所需要的三維景象,射所重組後的景象 會因為將影像内容作編碼以成為全像影像值而在SLM的部份地 方有極小區域的誤差改變,其包含以下的處理步驟: (51) 定義具有預設相位值p(i,j)的相位矩陣; (52) 藉由一觀察者目前的位置來決定景象的可見性,並且考虞 將影像内容的深度資訊作編碼處理,其中的景象將會是以^ 件點S(i,j)的結構來呈現; 广 (53) 將景象作編碼,其中這些可見物件點从丨,〇會在這一 列資訊的每-姆像巾被設定為_定義的相位值 ,物件點的確實深度資訊是否在轉換到全像影像值的期間;’… 糟此’將會顯像包絲f改變之全··的未纽變之物 以針對該序列資訊作有效的資料壓縮。 ”、, 2·如申請專利範圍第1項所述之資料魏電 操作方法,係用於梯形重組空間產生之一二 像術的 會規範出這個梯形空間的基底,而觀察者視二至’中的SLM 眼睛的瞳孔並且彻來作為魏確實_者位置的=涵蓋觀察 23 200812393 TPPO/PUK206-011 =2專^圍第2項所述之資料壓縮產生影像全像術的 二峨察者視窗區域面積會很小使得要被編碼的影 像内谷之有限區域的改變都只會造成則的有限區域之複雜全像 影像值的改變。 圍J3項所述之資料壓_腦產生影像全像術的 操作方法,其中的物件是利用三軸離散化(discretisati⑻之 可見景象點S(i,j)的結構來呈現。 專Γ員所述之資料_電腦產生影像全像術的 在重組空間内三轴離散化之可見景 ====項所述之資料壓_產生影像全像術的 #作方法,/、巾的物件是_在重組空响 象點sa D的結構來呈現,城時的重組㈣ 離散化的區段層都讀SLM相斜行並蝴目_行數有與=作 7.如申請專繼圍第4項所述之:雜壓縮電 操作方法,其中的可見物件點的數量,SLM的維度象^的 以及物件離散化都是恆等的或相同的。 相位矩陣, 8·如申請專繼_丨項所述之㈣壓魏腦產生 操作方法’其中的相位矩陣之維度,SLM的解析度,可見物件丁^ 的維度,以及用來作為離散化的區段層之矩陣,都會與咖相 24 200812393 TPPO/PUK206-011 互平行,且都是恆等的或相同的 9.如申請專利棚第4梢述之·_電_生影像全像術的 操作方法,其心果可見物件關數量切触定的維度,翻 餘的點都會被指定為零。 瓜如申請專娜_ i撕述之#__腦纽影像全像術 rrt方法,.、其中當進打景象編碼處理時我們只需要考慮可見物 1 千點 b|l,j)。 财1撕狀#料壓_職生影像全像術 =作方法,其中的物件點s(i,]·)其振幅將會轉不變 一序列的後續影像中保持恆定不變的相位值。 mu1 _&細_組輸像術 陣其每—行的值與/或每-列的值平 mnr/r述之㈣壓縮細產生影像全像術 繼轉朗柏克哈特 25200812393 TPPO/PUK206-011 Patent Application Scope 1 · A data compression computer produces image holography operation method, which is used for data compression of a sequence of holographic images generated by a computer, mainly encoding and processing image data with depth information. Become a complex holographic image value of a scene so that it can be recombined and displayed on a display device with a Spatial Light Modulator (SLM), and this spatial light calibration module can generate a tone After correcting the wave field and reorganizing the required three-dimensional scene, the reconstructed scene will have a small area error change in some parts of the SLM because the image content is encoded to become a holographic image value, which includes the following Processing steps: (51) defining a phase matrix having a preset phase value p(i, j); (52) determining the visibility of the scene by an observer's current position, and taking into account the depth information of the image content For encoding processing, the scene will be represented by the structure of the point S(i, j); the wide (53) will encode the scene, and these visible objects From 丨, 每 will be set to the _ defined phase value in each column of information in this column, and the true depth information of the object point is in the period of conversion to the holographic image value; '...what this will be imaged The unconformed object of the change of the wrapper f is effective for compressing the data for the sequence information. ",, 2. The application of the Wei-Electric operation method as described in item 1 of the patent application scope, which is used for one of the trapezoidal recombination spaces to produce the base of the trapezoidal space, and the observer sees the second to the ' The pupil of the SLM eye in the eye and the thoroughness of the position as the true _ position = Cover observation 23 200812393 TPPO / PUK206-011 = 2 The data of the second item is compressed to produce the image of the omnipotent window The area of the area will be small so that the change of the limited area of the valley in the image to be encoded will only result in the change of the complex holographic image value of the limited area. The data pressure described in J3 item _ brain image holography The method of operation, in which the object is presented by the structure of the visible view point S(i, j) of the three-axis discretization (discretisati (8). The information of the dedicated staff _ computer generated image holography in the recombination space three The visible data of the axis discretization ==== the data pressure described in the item _ produces the image holographic method #, /, the object of the towel is _ in the structure of the reorganization of the empty sound image sa D, the city time Reorganization (4) Discretized segment layer Read the SLM slanting line and butterfly _ the number of lines has and = for 7. As described in the application of the fourth paragraph: the hybrid compression operation method, the number of visible object points, the dimension of the SLM ^ and The object discretization is constant or the same. Phase matrix, 8 · As applied in the _ 丨 之 ( 四 四 压 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中The dimension of ^, and the matrix used as the discretized segment layer, will be parallel with the coffee phase 24 200812393 TPPO/PUK206-011, and they are all identical or identical. 9. For example, the fourth section of the patent application shed The operation method of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Brain image full image rhrt method, which, when entering the scene coding process, we only need to consider the visible object 1 thousand points b | l, j). Cai 1 tear shape # material pressure _ vocational image hologram = Method, in which the object point s(i,]·) its amplitude will turn unchanged in a sequence of subsequent images Invariant phase value. mu1 _& fine_group imagery array whose value per line and/or value per column is flat mnr/r (4) compression fine to produce image hologram followed by Langekeha Special 25
TW96101862A 2006-01-24 2007-01-17 Method for data compression of computer-generated video holograms TW200812393A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610004299 DE102006004299A1 (en) 2006-01-24 2006-01-24 Computer generated video hologram sequence data compression method, involves underlying all viewable object points in object point of same defined phase value, so that unchanged points of object imply unchanged hologram values

Publications (1)

Publication Number Publication Date
TW200812393A true TW200812393A (en) 2008-03-01

Family

ID=38051006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101862A TW200812393A (en) 2006-01-24 2007-01-17 Method for data compression of computer-generated video holograms

Country Status (3)

Country Link
DE (1) DE102006004299A1 (en)
TW (1) TW200812393A (en)
WO (1) WO2007085233A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69836360T2 (en) * 1997-05-22 2007-08-23 Nippon Telegraph And Telephone Corp. System for displaying computer-controlled holographic images
US6900904B1 (en) * 2000-02-04 2005-05-31 Zebra Imaging, Inc. Distributed system for producing holographic stereograms on-demand from various types of source material
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms

Also Published As

Publication number Publication date
DE102006004299A1 (en) 2007-07-26
WO2007085233A3 (en) 2007-09-13
WO2007085233A2 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP7387193B2 (en) Layered scene decomposition codec system and method
US6456405B2 (en) Method and apparatus for displaying computer generated holograms
TWI351587B (en) Method for encoding a computer-generated hologram
CN1860503A (en) Motion control for image rendering
TW201124805A (en) Method and device for computing computer-generated video holograms
KR100837365B1 (en) Method for generating and reconstructing computer generated hologram using look-up table and apparatus thereof
US20110228365A1 (en) Computer implemented method for generating binary holograms
Agus et al. GPU accelerated direct volume rendering on an interactive light field display
CN106233716A (en) Video display devices, video projection, dynamic illusion present device, video-generating device, their method, data structure, program
CN107526279B (en) A method of expanding holographic reconstructed image and watches vision area
JP2002532771A (en) Computer-assisted three-dimensional image reproduction method and apparatus
GB2261789A (en) Improvements relating to the production of anaglyphs
JPH10500498A (en) Spatial effective image generation method
US7277209B1 (en) Computer-assisted holographic method and device
CN106878692A (en) A kind of method for displaying three-dimensional object thereby that is blocked based on Fourier spectrum
Kartch Efficient rendering and compression for full-parallax computer-generated holographic stereograms
US10996628B2 (en) Apparatus and method for evaluating hologram encoding/holographic image quality for amplitude-modulation hologram
KR101292370B1 (en) Three dimensional image display apparatus using digital hologram
JP3778326B2 (en) Computer generated hologram display method, apparatus, and recording medium on which computer generated hologram display program is recorded
Yamaguchi Ray-based and wavefront-based holographic displays for high-density light-field reproduction
TW200812393A (en) Method for data compression of computer-generated video holograms
CN115373782A (en) Three-dimensional holographic display method and device based on polygon
Bregovic et al. Signal processing methods for light field displays
Shin et al. Improved Viewing Quality of 3‐D Images in Computational Integral Imaging Reconstruction Based on Round Mapping Model
CN109613796A (en) Stealthy true 3 D displaying method and system