TW200812092A - A vertically separated horizontal type double-gate multi-bits SONOS and the method for making the same - Google Patents

A vertically separated horizontal type double-gate multi-bits SONOS and the method for making the same Download PDF

Info

Publication number
TW200812092A
TW200812092A TW95131122A TW95131122A TW200812092A TW 200812092 A TW200812092 A TW 200812092A TW 95131122 A TW95131122 A TW 95131122A TW 95131122 A TW95131122 A TW 95131122A TW 200812092 A TW200812092 A TW 200812092A
Authority
TW
Taiwan
Prior art keywords
layer
insulating layer
gate
forming
wafer
Prior art date
Application number
TW95131122A
Other languages
Chinese (zh)
Other versions
TWI309477B (en
Inventor
Jyi-Tsong Lin
Wei-Ching Lin
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW95131122A priority Critical patent/TWI309477B/en
Publication of TW200812092A publication Critical patent/TW200812092A/en
Application granted granted Critical
Publication of TWI309477B publication Critical patent/TWI309477B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

The present invention relates to a vertically separated horizontal type double-gate multi-bits SONOS and the method for making the same. The method comprises the following steps: (a) providing a substrate having a first wafer layer, an oxidation layer and a second wafer layer; (b) forming a first insulation layer on the first wafer layer; (c) forming an opening on the substrate; (d) forming a second insulation layer on the sidewall of the opening; (e) growing the second wafer layer into the opening to form a bottom gate; (f) forming two discontinuous first dielectric layers on the top surface of the bottom gate; (g) forming a conductive layer; (h) forming two discontinuous second dielectric layers; (i) forming agate; and (j) forming a source and a drain. Whereby, the bottom gate and the gate have the effect of self-alignment.

Description

200812092 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種SONOS記憶體及其製造方法,特別是 一種具水平形狀的儲存單元,且在垂直方向彼此分離的$ 閘極多位元SONOS記憶體及其製造方法。 【先前技術】200812092 IX. Description of the Invention: [Technical Field] The present invention relates to a SONOS memory and a method of fabricating the same, and more particularly to a storage device having a horizontal shape and separated from each other in a vertical direction by a gate multi-element SONOS Memory and its manufacturing method. [Prior Art]

由快閃記憶體(FLASH)及非揮發性記憶體式電子抹除式 唯讀記憶體(EEPROM)技術衍生而出的石夕氧化物-氮化物 或其他具捕獲並留住陷八電子的材料層_氧化物-基扳 (SONOS)記憶體架構,最早由施敏博士等人提出,集合美 國、歐洲、臺灣、日本、韓國的半導體業界及學界廣泛研 究及討論,但此種SONOS仍有不少缺點,如··建造於問極 端的多層架構需消耗較大電壓,以在其下方導引感應出通 道層,儲存的電荷易逸散,對於沒#多層架構,尤^絕 緣《的儲存媒介,電荷極易逸散;另外對於將儲存機構 J方的水平式氧化物-氮化物-氧化物(ΟΝΟ)結構以 改善高操作電壓之元件’在製作上易會產生因多個光罩使 用下上下層結構無法正確對齊的缺點,此外水平式的儲 存σ構易k成7G件無法持續縮小的限制 長度和通道長度_);另外,對於兩位元的其=咖構s 兀件除了需有較高的操作電㈣,在兩電荷儲存區間若 無有效隔離,會使儲存的電荷逐漸從高密度電荷區擴散至 :密度區’造成位元列讀的图難,若要做戚隔離,除無法 只現自我對齊的缺失外,製成步驟亦嫌繁複;另外,建造 111756.doc 200812092 於閘極端的多層架構需消耗較大電壓,以在其下方導引感 應出通道層,即便在讀取模式時仍需有較大電壓操作,亦 會有少數衝擊離子化產生,並影響元件可信賴度及儲存有 效時間;最後,對於水平式ΟΝΟ結構,電荷分布過於分 散,無法感應強電場以對臨界電壓產生較大改變,使其判 讀不易。 論文[Wen-Jer Tsai, Chih-Chieh Yeh, Nian-Kai Zous? Chen-Chin Liu,Shih-Keng Cho,Tahui Wang,Samuel C. Pan,Chih-Yuan Lu,’’Positive Oxide Charge-Enhanced Read Disturb in a Localized Trapping Storage Flash Memory Cell,, in IEEE TRANSACTIONS ON ELELCTRON DEVICES, VOL. 51,NO. 3,MARCH 2004·]為一將水平 ΟΝΟ結構做至閘極端下方的SONOS元件,在水平結構夠長 時,在源極或汲極的高電壓寫入操作會導致電子碰撞游離 現象產生的區域不同,而使穿邃過閘極氧化層爾後陷入儲 存區的電子出現局部化的現象,但此種結構雖有上方ΟΝΟ 和通道完全切合的自我對齊特徵,惟元件在做微縮時,局 部化現象會逐漸消失,位元判讀視窗被壓縮,雙位元的功 能逸失;另外,因在閘極使用多層結構,會使寫入或抹除 的操作電壓過高,可能無法符合主流積體電路電氣要求。 論文[Rossella Ranica,Alexandre Vi 11 aret,PascaleA layer of material derived from flash memory (FLASH) and non-volatile memory electronic erasing read-only memory (EEPROM) technology or other material layer that captures and retains eight electrons _ oxide-based (SONOS) memory architecture, first proposed by Dr. Shi Min and others, the United States, Europe, Taiwan, Japan, South Korea's semiconductor industry and academic circles extensive research and discussion, but there are still many such SONOS Disadvantages, such as the construction of the multi-layer architecture of the extremes, consumes a large voltage to guide the channel layer underneath, and the stored charge is easily dissipated. For the storage medium without the multi-layer architecture, The charge is extremely easy to escape; in addition, for the horizontal oxide-nitride-oxide (ΟΝΟ) structure of the storage mechanism J to improve the high operating voltage of the component, it is easy to produce due to the use of multiple masks. The disadvantage that the underlying structure cannot be properly aligned, in addition to the horizontal storage σ structure is easy to k into 7G pieces can not continue to shrink the limit length and channel length _); In addition, for the two-element of its = s 兀 兀 除了 需high Operating electricity (4), if there is no effective isolation in the two charge storage intervals, the stored charge will gradually diffuse from the high-density charge region: the density region will cause difficulty in reading the bit column, if it is to be isolated, it cannot be In addition to the lack of self-alignment, the manufacturing steps are complicated; in addition, the multi-layer architecture of the 111915.doc 200812092 at the gate extreme consumes a large voltage to guide the channel layer underneath, even in the read mode. A large voltage operation is required, and a small amount of impact ionization is generated, which affects component reliability and storage effective time. Finally, for a horizontal crucible structure, the charge distribution is too dispersed to induce a strong electric field to produce a threshold voltage. Great changes make it difficult to interpret. Paper [Wen-Jer Tsai, Chih-Chieh Yeh, Nian-Kai Zous? Chen-Chin Liu, Shih-Keng Cho, Tahui Wang, Samuel C. Pan, Chih-Yuan Lu, ''Positive Oxide Charge-Enhanced Read Disturb in a Localized Trapping Storage Flash Memory Cell,, in IEEE TRANSACTIONS ON ELELCTRON DEVICES, VOL. 51, NO. 3, MARCH 2004·] is a SONOS component with a horizontal ΟΝΟ structure below the gate extreme, when the horizontal structure is long enough, The high-voltage writing operation at the source or the drain causes the area of the electron collision free phenomenon to be different, and the electrons that have entered the storage area after passing through the gate oxide layer are localized, but the structure has The self-alignment feature of the upper ΟΝΟ and the channel is completely matched. However, when the component is miniaturized, the localization phenomenon will gradually disappear, the bit reading window is compressed, and the function of the double bit is lost. In addition, since the multi-layer structure is used in the gate, The operating voltage for writing or erasing is too high and may not meet the electrical requirements of the mainstream integrated circuit. Paper [Rossella Ranica, Alexandre Vi 11 aret, Pascale

Mazoyer, Stephane Monfray, Daniel Chanemougame, Pascal Masson, Arnaud Regnier, Cyrille N. Dray, Roberto Bez, and Thomas Skotnicki,”A New 40-nm SONOS Structure Based 111756.doc 200812092 on Backside Trapping for Nano-scale Memories’’]為一將水 平ΟΝΟ結構做至閘極端下方的SONOS元件,此結構在操作 電壓上有效改善上篇論文所提及的元件結構,因上方閘極 並非使用多層結構,寫入或抹除的操作電壓不會過高; 但,如同上篇論文提及,在水平結構夠長時,在源極或汲 極的高電壓寫入操作會導致電子碰撞游離現象產生的區域 不同,而使穿邃過下方ΟΝΟ的上部氧化層爾後陷入儲存區 的電子出現局部化的現象,惟元件在做微縮時,局部化現 象會因無有效隔離而互相擴散或干擾而減弱,位元判讀視 窗被壓縮,雙位元的功能逸失。此外,該結構在完成下方 水平ΟΝΟ結構後,欲建構出上方的閘極,會有自我對準的 問題,若閘極無法置於相對下方水平ΟΝΟ結構的中央位 置,會使從源極,及從汲極操作寫入時,局部化的現象不 對稱,位元判讀視窗被壓縮,此外,在一段長時間不做覆 寫(refresh)時,會因電荷逐漸擴散至另一端使在做單端抹 除時,不易完全抹除(under-erase)的缺點。 論文[Laurent Bqreuil,Luc Haspeslagh,Pieter Blomme, Dirk Wellekens,Joeri De Vos, Martino Lorenzini,and Jan Van Houdt, ,fA New scalable Self-Aligned Dual-Bit Split-Gate Charge-Trapping Memory Device’丨 in IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52? NO. 10, OCTOBER 2005·]為一將水平ONO結構做至閘極端下方 的SONOS元件,惟此結構用隔離技術,碡保不同區域儲存 的電荷不會因濃度不同而擴散或因電場交越而形成位元間 111756.doc 200812092 干擾’使閘極的長度恰巧和通道長度相等,但在要做出恰 好位於閘空端的兩側,每個位元的儲存區時,勢必要使用 另一層光罩定義,這樣會造成兩個位元的儲存區長度不 同,甚至在閘控端進一步微縮時,有可能因光罩偏移稍 大,使某一位元的儲存區完全消失,此外,閘極長度是特 徵長度’勢必使此結構在微小化時受到較大限製,再者, 此結構仍有要使用多層結構,會使寫入或抹除的操作電壓 過高’可能無法符合主流積體電路電氣要求。 論文[Hwan Cho, Tai-su Parki,Si Yoimg Choi,jong Duk Lee, and Jong-Ho Lee1 "Body-Tied Double-Gate SONOS Flash (Omega Flash) Memory Device Built on Bulk Si Wafer", in Semiconductor R&D Center, SamsungMazoyer, Stephane Monfray, Daniel Chanemougame, Pascal Masson, Arnaud Regnier, Cyrille N. Dray, Roberto Bez, and Thomas Skotnicki, "A New 40-nm SONOS Structure Based 111756.doc 200812092 on Backside Trapping for Nano-scale Memories''] In order to make the horizontal ΟΝΟ structure to the SONOS component below the gate extreme, this structure effectively improves the component structure mentioned in the previous paper in the operating voltage, because the upper gate is not a multi-layer structure, the writing voltage is written or erased. It is not too high; however, as mentioned in the previous paper, when the horizontal structure is long enough, the high-voltage writing operation at the source or the drain causes the area of the electron collision free phenomenon to be different, so that it passes through the lower side. The electrons in the upper oxide layer of the crucible are localized in the storage area. However, when the components are miniaturized, the localization phenomenon will be weakened by mutual diffusion or interference without effective isolation. The bit interpretation window is compressed, and the double bit is compressed. The function is lost. In addition, after completing the lower horizontal ΟΝΟ structure, the structure will construct the upper gate, and there will be self-right. The quasi-problem, if the gate cannot be placed in the center of the horizontal ΟΝΟ structure, the localization phenomenon is asymmetrical when writing from the source and the drain, and the bit reading window is compressed. When it is not refreshed for a long time, it will spread to the other end due to the gradual diffusion of charge to the other end. It is not easy to completely under-erase. [Laurent Bqreuil, Luc Haspeslagh, Pieter Blomme, Dirk Wellekens, Joeri De Vos, Martino Lorenzini, and Jan Van Houdt, , fA New scalable Self-Aligned Dual-Bit Split-Gate Charge-Trapping Memory Device'丨in IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52? NO 10, OCTOBER 2005·] is a SONOS component that is used to make the horizontal ONO structure below the gate extreme. However, this structure uses isolation technology to ensure that the charge stored in different regions will not diffuse due to different concentrations or form due to electric field crossover. Inter-space 111756.doc 200812092 Interference' makes the length of the gate coincide with the length of the channel, but when it is necessary to make the storage area of each bit just on both sides of the gate end It is necessary to use another layer of mask definition, which will result in different lengths of the storage area of the two bits. Even when the gate is further reduced, there may be a slight offset of the mask, so that the storage area of a certain bit is completely Disappearing, in addition, the gate length is the characteristic length' is bound to make the structure more limited in miniaturization. Moreover, this structure still has to use a multi-layer structure, which will make the writing or erasing operation voltage too high. Can not meet the electrical requirements of the mainstream integrated circuit. Papers [Hwan Cho, Tai-su Parki, Si Yoimg Choi, jong Duk Lee, and Jong-Ho Lee1 " Body-Tied Double-Gate SONOS Flash (Omega Flash) Memory Device Built on Bulk Si Wafer", in Semiconductor R& D Center, Samsung

Electronics Co.,Ltd·]之元件欲利用雙邊閘極,甚至多邊閘 極來增加驅動電流,加強通道末端的空乏區内產生的高速 碰撞解離效果,此立意頗住,但欲形成雙邊閘極,甚至多 邊閘極時,或其他較複雜的閘極結構,不同面的閘極間產 生自我對齊的問題,此問題在元件微縮後更加嚴重,不同 面的閘極的相對幾何位置往往不能因設計者之要求精確達 成’此係因光罩在小刻度的對準時無法達到絕對精準的原 因’這樣會造成不必要的加熱效應,甚至使同一晶圓内的 不同SONOS元件會有不同的臨界電壓,而大大降低該創意 的價值’此在卻製做出雙邊閘極,甚至多邊閘極的S〇n〇s “ a式中會碰到的自我對齊問題。 順文[Rob van Schaijk,Michiel van Duuren,Pierre 111756.doc -10- 200812092The components of Electronics Co., Ltd.] want to use the double-gate or even the multilateral gate to increase the drive current and enhance the high-speed collision dissociation effect in the depletion region at the end of the channel. This is intended to form a bilateral gate. Even at the multi-gate gate, or other more complicated gate structures, the self-alignment problem occurs between the gates of different faces. This problem is more serious after the components are miniature, and the relative geometric positions of the gates of different faces are often not available to the designer. The requirement to accurately achieve 'this is why the reticle cannot be absolutely accurate due to the alignment of the small scale' will cause unnecessary heating effect, and even different thresholds of different SONOS components in the same wafer will be Greatly reduce the value of the idea. 'This is to make a bilateral gate, even the multi-gate S S 〇 〇 s "a type of self-alignment problem will be encountered. Shunwen [Rob van Schaijk, Michiel van Duuren, Pierre 111756.doc -10- 200812092

Goann,Wan Yuet Mei,Kees van der Jeugd,"Reliability 〇f embedded SONOS memories’’,in IEEE 2004·]則為於閘極下 方形成一儲存區域的SONOS元件,此為SONOS元件的雛 形,沒有自我對齊的問題,無論是閘極對通道,或閘極對 做為儲存區的ΟΝΟ結構而言,但此元件僅能做為一位元的 儲存記憶體。 美國專利公開第2006/0,068,546號揭示一每位元皆能完 全隔離的SONOS元件,利用先將0Ν0·疊而成,再以一光 罩定義挖出一井,於井兩側做出保護層,再依次以閘極氧 化層,閘極矽化層依次水平填滿該井,如此的確可以使每 位元皆能完全隔離,但在以一光罩定義挖出一井以分隔兩 個位元儲存區時,會發生儲存區大小不均,此在元件微縮 日守會盈加嚴重,甚至在光罩偏移過大時,會造成某一位元 儲存區完全消失的可能,另外,若填井過程中強調水平, 則會增加製程難度,此外井在側邊保護層(spacer)完成 後,形成一倒三角形,若有少數碰接游離電荷移動至此井 下方尖端,易形成尖端放電,此非預期中之電荷累積可能 會比兩側電荷儲存區電荷改變臨界電壓來得有影響力,此 外’閘極長度是特徵長度’勢必使此結構在微小化時受到 較大限製,再者,此結構仍有要使用多層結構,會使寫入 或抹除的操作電壓過高,可能無法符合主流積體電路電氣 要求。 美國專利公開第2004/0,207,001號揭示一具自我對齊功 能的flash元件’只為—單一位元之flash元件外,但具 111756.doc -11 - 200812092 我對背的效果’惟此種架構無法在幾近相同的光罩使 用數目上而能完成較為複雜的結構,以達成多位元儲存, 而增進效能,位元集積度的功效。 美國專利公開第2002/0,004,291號揭示一每位元皆能完 王隔離的SONOS τΜ牛,和美國專利公開第2〇〇6/〇,〇68,546 5虎相似’ $同是它先以光罩形成閘極,再用閘極當做光罩 功肊去切隔出不每位元皆能完全隔離的s〇n〇s元件,惟一 開始之光罩形成閘極就必須確保能置於該〇N〇架構中央, 否則接下來欲形成兩個位元儲存區時,會發生儲存區大小 不均,此在元件微縮時會益加嚴重,甚至在光罩偏移過大 時,會造成某一位元儲存區完全消失的可能,此外,閘極 長度是特徵長度,勢必使此結構在微小化時受到較大限 製’再者,此結構仍有要使用多層結構,會使寫入或抹除 的操作電壓過高,可能無法符合主流積體電路電氣要求。 美國專利公開第2005/0,106,793號亦為一單一位元之 FLASH元件,此結構大致上和傳統flash元件雛形相同, 利用將閘極氧化層、FLASH層、上方阻絕氧化層及閘控層 一次堆積完成,再以光罩定義蝕刻,雖有良好自我對齊的 效果’惟此種架構無法在幾近相同的光罩使用數目上而能 元成較為複雜的結構,以達成多位元儲存,而增進效能, 位元集積度的功效。 中華民國專利第237349號及第239073號皆為揭示二位元 的SONOS元件,都屬水平式的三層結構,並有效隔離,此 將水平式儲存機構設於閘極下方的元件,仍有二位元儲存 H1756.doc -12- 200812092 區長度在光罩定義時不均,择作+ 7栋作電壓過大,及對元件微縮 造成限制。 美國專利公開第20〇5/〇 285 177铼tκ π 士 ,二0/ /就亦為閘極下方形成一 儲存區域的SONOS元件,作以申門沾供丄 1一以〒間的通道材質去分隔兩個 位元儲存區時,會發生儲存區大小不均,此在元件微縮時 會益加嚴重,甚至在光罩偏移過大時,會造成某一位元儲 存區完全消失的可能,如圖可看到,用光罩在閉極做定義 時’會有對準問題,使位元儲存區在微縮時,會出現問 題。 參考美國專利公開第2〇〇6川,〇23,513號則是做出大閘 極並在大閘極挖出一井,利用側壁殘餘留下兩個位元儲 存區,再利用沉積時井端上方沉陷做自動對齊閘極,此概 念在對準上確有優點,但仍存多層閘極消耗較大電壓,另 外閘極為特徵長度,在微縮過程,因此兩位元逐漸靠近, 會壓縮微縮可能性。 美國專利公開第2005/0,255,657號是利用連續沉積三層 或夕層的結構後,再以光罩定義,蝕刻過程中留下側壁, 但若光罩無法恰好將凸起上方之層狀結構蝕刻掉,而剛好 邊下側壁欲留的多層結構,此元件效能會降低。 美國專利公開第2005/0,242,391號如同上則揭示的專 利’亦先連續沉積三層或多層的結構後,再以光罩定義出 閘極進行切割,使在閘極下方形成一儲存區域的SONOS元 件’此為單一位元S〇N〇S,不具擴充性,此外,如同先前 提及’多層閘極仍需要一較大操作電壓。 111756.doc 13 200812092 由以上例子可以發現,在不同的論文和專利中,都有針 對-開始所提出的,發展S0N0S元件所面臨的困境及問 題’如建造於閘極端的多滑架構需消耗較大電壓;健存的 ^荷易逸散,對於沒有多層架構或無絕緣覆體的儲存媒 介,電荷極易逸散;對於將儲存機構建造於下方的水平式 ΟΝΟ結構以改善高操作電壓之元件的製作上需要多光罩使 用,上下層結構在微縮時會無法正確對齊;水平式的儲存 結構也造纟元件縮小的限制(因&水平結構長度和通道長 度相關);3外對於兩位元的其他s〇N〇s元件,在兩電荷 儲存區間無有效隔離會使儲存的電荷擴散而造成位元判讀 視窗縮減,若要做成隔離’除無法實現自我對齊的缺失 外,製成步驟亦嫌繁複;最後,對於水平式〇N〇結構電 荷刀布7刀散,可能合成電場不對臨界電壓產生大改變或使 雙位元概念減念。 因此,有必要提供一創新且富進步性的具水平形狀的儲 存單元,且在垂直方向彼此分離的雙閘極多位元s〇n〇s記 憶體及其製造方法,以解決上述問題。 【發明内容】 本發明之主要目的係提供一種具水平形狀的儲存單元, 且在垂直方向彼此分離的雙閘極多位元S〇N〇S記憶體之製 造方法,包括以下步驟: ⑷提供一基板’ 基板包括一第一晶圓層、一氧化層及 一第二晶圓層,該氧化層係夾設於該第一晶圓層及該第二 晶圓層之間; 111756.doc -14- 200812092 (b)形成一第一絕緣層於該第一晶圓層上 該凹槽貫穿該第一絕緣層、 且暴露出該第二晶圓層; 凹槽之側壁上’且暴露出該第 (C)於該基板上形成一凹槽 該第一晶圓層及該氧化層, (d)形成一第二絕緣層於該 二晶圓層; ⑷成長該第二晶圓層至該凹槽内,以形成—突出之底部 閘極; —° (〇形成二個分離之第一介電層於該底部閘極之頂面. (g) 形成-導電層於該第-絕緣層及該等第一介電層上, 該導電層之上表面具有一凹口; (h) 形成二個分離之第二介電層於該凹口上; (i) 形成一閘極於該等第二介電層上;及 (j) 形成一源極及一;:及極。 \ / 本發明之另-目的係提供一種具水平形狀的儲存單元, 且在垂直方向彼此分離的雙閘極多位元⑽刪記憶體,其 包括-基板、一第一絕緣層、一第二絕緣層、:底部開 極、二個分離之第-介電層、—導電層、二個分離之第二 介電層、-閘極、-源極及一汲極。該基板包括一第一晶 圓層、-氧化層、-第二晶圓層及—凹槽,該氧化層係夾 設於該第一晶圓層及該第二晶圓層之間。該第一絕緣層係 位於該第-晶圓層±,該基板之凹槽貫穿該第―絕緣層、 該第-晶㈣及該氧化層。該第二絕緣層係位於該基板之 凹槽之側壁。該底部問極孫由該第二晶圓層突出至該凹槽 内。该等第一介電層係分別位於該底部閘極上。該導電層 111756.doc •15· 200812092 係位於該第一絕緣層及該等第一介電層上,該導電層之上 表面具有-凹口。該等第二介電層係分別附著於該凹口 上。該閘極係位於該等第二介電層上,且相對於該凹口中 、“原極及該/及極係形成於該導電層,且分別位於該閘 極之二側。Goann, Wan Yuet Mei, Kees van der Jeugd, "Reliability 〇f embedded SONOS memories'', in IEEE 2004·] is a SONOS component that forms a storage area under the gate, which is the prototype of the SONOS component, without self The problem of alignment, whether it is gate-to-channel or gate-to-storage structure, is only a one-dimensional memory. U.S. Patent Publication No. 2006/0,068,546 discloses a SONOS component that can be completely isolated per bit, by first stacking 0Ν0·, and then dug out a well with a mask definition to make a protective layer on both sides of the well. Then, in turn, the gate oxide layer and the gate deuteration layer fill the well horizontally, so that each bit can be completely isolated, but a well is dug out by a mask definition to separate the two bit storage areas. When the size of the storage area is uneven, this will cause a serious increase in the component's daily shrinkage. Even when the mask is too large, the storage area of a bit can be completely disappeared. In addition, during the filling process. Emphasizing the level will increase the difficulty of the process. In addition, after the side spacer is completed, the well forms an inverted triangle. If a few touches of free charge move to the lower tip of the well, it is easy to form a tip discharge, which is unexpected. The charge accumulation may have an influence on the change of the threshold voltage of the charge storage area on both sides. In addition, the 'gate length is the characteristic length' is bound to make the structure more limited in miniaturization. Furthermore, this knot Still want to use a multi-layer structure, will write or erase operation voltage is too high, it may not meet the electrical requirements of mainstream integrated circuit. U.S. Patent Publication No. 2004/0,207,001 discloses a self-aligning flash component 'only for a single bit flash component, but with 111756.doc -11 - 200812092 my effect on the back' but this architecture cannot Nearly the same number of reticle can be used to complete a more complex structure to achieve multi-bit storage, and to improve the efficiency and the efficiency of the bit accumulation. US Patent Publication No. 2002/0,004,291 discloses a SONOS τ yak that can be isolated from the king, and is similar to the US Patent Publication No. 2/6/〇, 〇68, 546 5 tigers. The gate is used as a reticle to cut off the s〇n〇s components that can be completely isolated without each bit. The only mask that forms the gate must be placed in the 〇N〇. In the center of the architecture, otherwise the storage area will be uneven when the two bit storage areas are to be formed. This will cause serious damage when the components are miniature. Even when the mask is too large, it will cause a bit storage. The possibility of complete disappearance of the zone, in addition, the length of the gate is the characteristic length, which is bound to make the structure more limited in miniaturization. Again, this structure still has to use a multi-layer structure, which will cause the writing voltage to be erased or erased. Too high, may not meet the electrical requirements of the mainstream integrated circuit. U.S. Patent Publication No. 2005/0,106,793 is also a single-bit FLASH component, which is substantially identical to the conventional flash component, and is formed by stacking the gate oxide layer, the FLASH layer, the upper resistive oxide layer and the gate layer. The etch is defined by a mask, although it has a good self-alignment effect. However, this architecture cannot be used in a relatively complicated structure in the same number of reticles to achieve multi-bit storage and improve performance. , the power of the bit set. The Republic of China Patent Nos. 237349 and 239073 all disclose two-dimensional SONOS components, which are horizontal three-layer structures and are effectively isolated. The components of the horizontal storage mechanism located below the gates are still two. Bit storage H1756.doc -12- 200812092 The length of the zone is uneven when the mask is defined. The choice of +7 is too large, and the component is limited. U.S. Patent Publication No. 20〇5/〇285 177铼tκ π, 2/0 is also a SONOS component that forms a storage area under the gate, and is used as a channel material for the door. When the two bit storage areas are separated, the size of the storage area will be uneven, which will be seriously increased when the components are miniature. Even when the mask is too large, the storage area of a bit may disappear completely. As can be seen, when the mask is used to define the closed pole, there will be an alignment problem, which will cause problems when the bit storage area is miniaturized. Referring to U.S. Patent Publication No. 2,6, Chuan, No. 23,513, a large gate is made and a well is dug in the large gate, and two bit storage areas are left by the residual of the side wall, and then the upper end of the well is used for sedimentation. To automatically align the gate, this concept has advantages in alignment, but the multi-layer gate still consumes a large voltage, and the gate is extremely characteristic length. During the miniaturization process, the two elements are gradually approaching, which will compress the possibility of miniaturization. U.S. Patent Publication No. 2005/0,255,657, which utilizes the continual deposition of a three-layer or eve layer structure, is defined by a reticle, leaving a sidewall during the etching process, but if the reticle cannot just etch the layered structure above the bump The effectiveness of this component is reduced by the multi-layer structure that just wants to leave the side wall. U.S. Patent Publication No. 2005/0,242,391, the disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all 'This is a single bit S〇N〇S, which is not scalable. In addition, as mentioned earlier, 'multilayer gates still require a large operating voltage. 111756.doc 13 200812092 It can be found from the above examples that in different papers and patents, there are some difficulties and problems faced in the development of S0N0S components, such as the multi-slide architecture built on the gate extremes. Large voltage; the stored charge is easy to escape, for a storage medium without a multi-layer structure or without insulation, the charge is easily dissipated; for the horizontal ΟΝΟ structure that is built under the storage mechanism to improve the high operating voltage The production requires multiple masks, the upper and lower layers will not be properly aligned during the miniaturization; the horizontal storage structure also limits the component shrinkage (due to & horizontal structure length and channel length); Other s〇N〇s components of the element, without effective isolation in the two charge storage intervals, will cause the stored charge to diffuse and cause the bit reading window to be reduced. If it is to be isolated, except for the lack of self-alignment, the steps are made. It is also complicated; in the end, for the horizontal 〇N〇 structure charge knife cloth 7 knife scattered, it is possible that the synthetic electric field does not change the threshold voltage or make the double bit Concept reduction. Therefore, it is necessary to provide an innovative and progressive storage unit having horizontal shapes, and double gate multi-bit s〇n〇s memory bodies separated from each other in the vertical direction and a method of manufacturing the same to solve the above problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for manufacturing a dual gate multi-bit S〇N〇S memory device having horizontally shaped memory cells separated from each other in a vertical direction, comprising the following steps: (4) providing a memory cell The substrate includes a first wafer layer, an oxide layer and a second wafer layer, the oxide layer being interposed between the first wafer layer and the second wafer layer; 111756.doc -14 - 200812092 (b) forming a first insulating layer on the first wafer layer, the recess penetrating the first insulating layer, and exposing the second wafer layer; on the sidewall of the recess 'and exposing the first (C) forming a recess in the substrate and forming the first wafer layer and the oxide layer, (d) forming a second insulating layer on the two wafer layers; (4) growing the second wafer layer to the recess Inner to form a protruding bottom gate; -° (〇 forming two separate first dielectric layers on the top surface of the bottom gate. (g) forming a conductive layer on the first insulating layer and the like a first dielectric layer, the upper surface of the conductive layer has a recess; (h) forming two separate second dielectric layers in the recess (i) forming a gate on the second dielectric layers; and (j) forming a source and a; and a pole. \ / Another object of the present invention is to provide a horizontally shaped storage a dual gate multi-bit (10) memory device separated from each other in a vertical direction, comprising: a substrate, a first insulating layer, a second insulating layer, a bottom opening, and two separated first-dielectric a layer, a conductive layer, two separated second dielectric layers, a gate, a source, and a drain. The substrate includes a first wafer layer, an oxide layer, a second wafer layer, and a recess, the oxide layer is interposed between the first wafer layer and the second wafer layer. The first insulating layer is located on the first wafer layer ±, and the groove of the substrate penetrates the first An insulating layer, the first crystal (four) and the oxide layer. The second insulating layer is located on a sidewall of the recess of the substrate. The bottom electrode protrudes from the second wafer layer into the recess. a dielectric layer is respectively located on the bottom gate. The conductive layer 111756.doc •15·200812092 is located on the first insulating layer and the first dielectric layer, the guiding The upper surface of the layer has a recess. The second dielectric layers are respectively attached to the recess. The gate is located on the second dielectric layer, and relative to the recess, the "original pole and the / and the poles are formed on the conductive layer and are respectively located on two sides of the gate.

在本發明中,二個做為儲存區的水平ΟΝΟ結構(二個第 一介電層或是二個第二介電層)有效分離,故可抗雙位元 互相電性干擾或彼此電荷擴散。而且每個位元儲存區可分 開進行操作,使寫入抹除較使用局部陷獲(Τη叩的長 水平ONQ更有效率和信賴性,又上下閘極可獨立或合作進 行電壓操作M吏寫入/抹除具加強性及效率性。此外,本 發明具自#對齊的魏’不僅製程步驟簡$,不用應元件 微縮另行開發光罩,而且較傳統利用光罩定義切割出兩儲 存區的SONOS而言,兩儲存區更加對稱,電性更可靠。另 外,本發明符合成熟的金屬氧化半導體(MOS)製造過程, 故不會造成業界成本上的請。再者,在本發明中可調整 上下ΟΝΟ架構的差異性,使位元判讀視窗可被調整。最 後,本發明為類雙層閘極的結構,上下閘極可獨立或合作 進行電£操作,故可以產生兩個通道或其他可能性,可選 擇衝擊離子游離化現象發生的位置。 【實施方式】 參考圖!至圖17,顯示根據本發明具水平形狀的儲存單 元,且在垂直方向彼此分離的㈣極多位元s〇N〇s記憶體 之製造方法之示意圖。首先參考圖i,提供一基板i,在本 111756.doc -16- 200812092 實施例中,言亥基板i係為一石夕覆絕緣(Silic〇n 〇n insuiat〇r, SOI)基板,其包括一第一晶圓層u、一氧化層12及一第二 晶圓㈣,該氧化層12係夹設於該第一晶圓㈣及該第二 晶圓層13之間。接著,形成一第一絕緣層14於該第-晶圓 層11上纟本實施例中,該第一絕緣層14之材質係為氧化 物或其他介電材質,且係利用低壓化學氣相沈積法 (LPCVD)形成該第一絕緣層丨4。 ^參考圖2,於該基板1上形成-凹槽15, g凹槽15貫穿該 第々、在緣層14、該第一晶圓層n及該氧化層12,且暴露出 .亥2 一曰曰圓層13。在本實施例令,在完成標準清洗步驟後 與完成光罩製程後,以隔離技術(L0C0S,STI)配合-光罩 定義該凹槽15,R法丨丨田、工Μ 1 利用活性離子蝕刻該第一晶圓層11以形 成該凹槽1 5。 多考圖 形成第二絕緣層16於該凹槽15之側壁上, *路出β第一曰曰圓層i 3。在本實施例中,該第二絕緣層 16之材質係為氧化物或其他介電材質,其係先利用低壓化 學氣相沈積法形成該第二絕緣層16於該第一絕緣心及該 凹槽15上,再調整適卷鈾 正迥田蝕刻參數以活性離子蝕刻位於該凹 槽15底部及位於該第一 、居緣層14上方之該第二絕緣層丨6, 只留下位於該凹槽15伽辟 土之第二絕緣層16,而暴露出該第 二晶圓層13。 接者,成長位於該^ 〆凹槽15底部之該第二晶圓層13至該凹 槽15内,以形成—穸ψ 犬出之底部閘極17。在本實施例中,係 利用選擇性磊晶成長方法 . ^ ^elective Epitaxy Growth, SEG) 111756.doc -17. 200812092 成長該第二晶圓層13。 面接二I成二個分離之第一介電層於該底部閉極17之頂 只把例中,該等第一介電層之形成方 參考圖4,形士# 一 a 形成一弟三絕緣層18於該底部問極17上。 、 彳中以熱氧化小心處理,使該底部閘極丨7上 成、、田緻的絕緣氧化層(即該第三絕緣層1 8)。In the present invention, two horizontal germanium structures (two first dielectric layers or two second dielectric layers) as storage regions are effectively separated, so that they can resist electrical interference of two bits or mutual charge diffusion. . Moreover, each bit storage area can be operated separately, so that write erasing is more efficient and reliable than using local trapping (Τη叩 long horizontal ONQ, and the upper and lower gates can be independently or cooperatively operated by voltage operation M write The ingress/erase is enhanced and efficient. In addition, the invention has the self-alignment of Wei', not only the process step is simple, but the mask is not separately developed by the component micro-shrinking, and the two storage areas are cut out by the conventional use of the mask definition. In terms of SONOS, the two storage areas are more symmetrical and more reliable. In addition, the present invention conforms to the mature metal oxide semiconductor (MOS) manufacturing process, so that it does not cause cost in the industry. Furthermore, it can be adjusted in the present invention. The difference between the upper and lower ΟΝΟ architecture makes the bit interpretation window adjustable. Finally, the present invention is a double-layered gate structure, and the upper and lower gates can be operated independently or cooperatively, so that two channels or other possibilities can be generated. The position at which the impact ion ionization phenomenon occurs can be selected. [Embodiment] Referring to the drawings! to FIG. 17, a storage unit having a horizontal shape according to the present invention is shown, and is in a vertical direction. Schematic diagram of the manufacturing method of the (four) extremely multi-bit s〇N〇s memory separated from each other. Referring first to FIG. 1, a substrate i is provided. In the embodiment of 111756.doc -16-200812092, the substrate i is a silicon-on-insulator (SCI) substrate comprising a first wafer layer u, an oxide layer 12 and a second wafer (four), the oxide layer 12 is interposed on the first Between a wafer (four) and the second wafer layer 13. Then, a first insulating layer 14 is formed on the first wafer layer 11. In the embodiment, the material of the first insulating layer 14 is oxidized. Or a dielectric material, and the first insulating layer 丨4 is formed by low pressure chemical vapor deposition (LPCVD). Referring to FIG. 2, a groove 15 is formed on the substrate 1, and a g groove 15 is formed therethrough. The first layer, the edge layer 14, the first wafer layer n and the oxide layer 12, and exposed a round layer 13. In this embodiment, after completing the standard cleaning step and completing the mask After the process, the recess 15 is defined by an isolation technique (L0C0S, STI)-mask, and the R method is used to etch the first wafer layer by using reactive ions. 11 to form the recess 15 5. The multi-pattern is formed on the sidewall of the recess 15 to form a second insulating layer 16 on the side wall of the recess 15. In this embodiment, the second insulating layer The material of the layer 16 is an oxide or other dielectric material. The second insulating layer 16 is formed on the first insulating core and the groove 15 by low pressure chemical vapor deposition, and the uranium is adjusted. The etched etching parameter etches the second insulating layer 位于6 at the bottom of the groove 15 and above the first, rim layer 14 with active ions, leaving only the second insulating layer located in the groove 15 16. The second wafer layer 13 is exposed. The second wafer layer 13 is located at the bottom of the recess 15 and extends into the recess 15 to form a bottom gate of the dog. Extreme 17. In the present embodiment, the second wafer layer 13 is grown by a selective epitaxial growth method. ^ ^elective Epitaxy Growth, SEG) 111756.doc -17. 200812092. The first dielectric layer is connected to the top of the bottom closed pole 17 in the case of the second dielectric layer. The formation of the first dielectric layer is as shown in FIG. Layer 18 is on the bottom pole 17. The crucible is carefully treated by thermal oxidation to cause the bottom gate electrode 7 to form an insulating oxide layer (i.e., the third insulating layer 18).

及:Ϊ-':’形成—第一電子儲存層19於該第-絕緣層14 二::邑緣層18上。在本實施例中,該第—電子儲存層 之貝係為氮化物、鋁化物、鋁铪化物或鈕化物等能提 =陷之材質’且其形成方法係為㈣化學氣相沈積法。 離:部分移除該第—電子料層19以形成二個分 ★'刀離電荷儲存區20,且暴露出該第三絕緣層18, 該等第-分離電荷儲存區2〇係分別附著於該第二絕緣層Μ 上。在本實施例中,該第—電子儲存層19之移除方二 活性離子触刻。可以理解的是,在姓刻過程中,該等第j 分離,荷儲存區2G無法完整遮住下方的㈣三絕緣層^, 故該第三絕緣層18中央有可能會被姓刻掉,而暴露出下方 的該底部閘極17。 ^考圖7’形成-第四絕緣層21於該第-絕緣層14、該 等第一分離電荷儲存區2〇及該第三絕緣層18上。在本實施 :中’該第四絕緣層21之材質係為氧化物或其他介電: 質,其形成方法係為低壓化學氣相沈積法。 參考圖8,部分移除該第四絕緣層21至適當厚度。在本 實施例中’該第四絕緣層21之蝕刻方法係為活:離子蝕 111756.doc -18- 200812092 刻。要注意的是,該第四絕緣層21係接觸該第三絕緣層 18。可以理解的是,第一、如果該第三絕緣層“中央已經 被蝕刻掉,則該第四絕緣層21會接觸該第三絕緣層18及該 底部閘極17 ;第二、如果該第四絕緣層21形成時已控制至 適當厚度,則此姓刻步驟為多餘可省略。 在本實施例中,該第三絕緣層18、第一分離電荷儲存區 20及该第四絕緣層21係形成一第一介電層22,亦即在本發 明中具有二個分離之第一介電層22。在本實施例中,該第 一介電層22係為一個三層之〇N〇結構。在其他應用中,該 第四絕緣層21係可以省略,因此該第一介電層22係為一個 二層之ON結構(包括該第三絕緣層18及該第一分離電荷儲 存區20)。 參考圖9,形成一導電層23於該第四絕緣層以上該導 ,層23之上表面具有-凹σ23卜該凹口加係形成於該等 第一介電層22之中間之相對位置。在本實施例中,該導電 層23之材質係為多晶石夕,且係、利用低壓化學氣相沈積法形 成該導電層23之後再蝕刻該導電層23之上表面,經過多次 之沈積及蝕刻後,可形成較圓滑陷入之凹口 231,以加深 槽狀圖形。 接著,形成二個分離之第二介電層’該等第二介電層係 分別附著於該凹口 231上。在本實施例中,該等第二介電 層之形成方式如下: 茶考圖10,形成一苐五絕緣層24於該導電層23上。在本 實施例中,該第五絕緣層24之材質係為氧化物或其他介電 111756.doc -19- 200812092 八I成方去係為低壓化學氣相沈積法或熱氧化法。 "圖11形成一第二電子儲存層25於該第五絕緣層24 K t例中’該第二電子儲存層25之材質係為氮化 、1呂化物、銘給化物或组化物等能提供能陷之材質,且 其形成方法係為低壓化學氣相沈積法。 參考圖12 ’部分移除該第二電子儲存層加形成二個分 離^ ί —刀離電荷儲存區%,且暴露出該第五絕緣層24,And: Ϊ-':' formed - the first electron storage layer 19 is on the first insulating layer 14:: rim layer 18. In the present embodiment, the shell of the first electron storage layer is a material such as a nitride, an aluminide, an aluminum telluride or a button compound, and the method of forming the film is (iv) chemical vapor deposition. Separating: the first electron layer 19 is partially removed to form two sub-zeroes' from the charge storage region 20, and the third insulating layer 18 is exposed, and the first-separated charge storage regions 2 are respectively attached to The second insulating layer is on the top. In this embodiment, the removed first active ion of the first electron storage layer 19 is engraved. It can be understood that, in the process of surname, the jth separation, the storage area 2G can not completely cover the underlying (four) three insulation layer ^, so the center of the third insulation layer 18 may be engraved by the surname, and The bottom gate 17 below is exposed. The fourth insulating layer 21 is formed on the first insulating layer 14, the first separated charge storage region 2, and the third insulating layer 18. In the present embodiment, the material of the fourth insulating layer 21 is an oxide or other dielectric material, and the method of forming the film is a low-pressure chemical vapor deposition method. Referring to Figure 8, the fourth insulating layer 21 is partially removed to a suitable thickness. In the present embodiment, the etching method of the fourth insulating layer 21 is alive: ion etching 111756.doc -18-200812092. It is to be noted that the fourth insulating layer 21 is in contact with the third insulating layer 18. It can be understood that, if the third insulating layer "the center has been etched away, the fourth insulating layer 21 will contact the third insulating layer 18 and the bottom gate 17; second, if the fourth In the embodiment, the third insulating layer 18, the first separated charge storage region 20, and the fourth insulating layer 21 are formed. The insulating layer 21 is formed to a proper thickness. A first dielectric layer 22, that is, two separate first dielectric layers 22 are provided in the present invention. In the present embodiment, the first dielectric layer 22 is a three-layer N〇 structure. In other applications, the fourth insulating layer 21 can be omitted. Therefore, the first dielectric layer 22 is a two-layered ON structure (including the third insulating layer 18 and the first isolated charge storage region 20). Referring to FIG. 9, a conductive layer 23 is formed over the fourth insulating layer. The upper surface of the layer 23 has a concave σ23, and the recess is formed at a relative position between the first dielectric layers 22. In this embodiment, the material of the conductive layer 23 is polycrystalline stone, and the system is reduced in voltage. After the conductive layer 23 is formed by vapor deposition, the upper surface of the conductive layer 23 is etched. After a plurality of deposition and etching, a relatively rounded recess 231 can be formed to deepen the groove pattern. The second dielectric layer is separated from the recess 231. In this embodiment, the second dielectric layer is formed as follows: The fifth insulating layer 24 is on the conductive layer 23. In the embodiment, the material of the fifth insulating layer 24 is oxide or other dielectric 111756.doc -19-200812092 Vapor deposition method or thermal oxidation method. " Figure 11 forms a second electron storage layer 25 in the fifth insulating layer 24 K t 'the material of the second electron storage layer 25 is nitrided, 1 ruthenium The material can be provided with a trapping material, and the forming method is a low-pressure chemical vapor deposition method. Referring to Figure 12, the second electronic storage layer is partially removed to form two separate ^ ί - knives. Deviated from the charge storage area and exposed the fifth insulating layer 24,

該等弟一分離電荷儲存區26係分別附著於該凹口 231之側 在本實知例中,邊第二電子儲存層25之移除方法係為 活性離子蝕刻。 >考圖$成_第六絕緣層27於該第五絕緣層Μ及該 等第二分離電荷儲存區26上。在本實施例中,該第六絕緣 層27之材質係、為氧化物或其他介電材質,其形成方法係為 低壓化學氣相沈積法。該第_絕緣層Μ、該第二絕緣層 16、該第二絕緣層18、該第四絕緣層?!、該第五絕緣層μ 及該第六絕緣層27夕枓供, a _ 層7之材貝可以相同或是不同。要注意的 是,該第六絕緣層27係接觸該第五絕緣層Μ。 在本實施例中,該箆$绍g a。^ 弟五、、色緣層24、第二分離電荷儲存區 26及該第六絕緣層27係形成_第:介電層28,亦即在本發 明中具有二個分離之第二介電層28,該等第二介電層Μ係 分別附著該凹口231之側壁上。在本實施例中,該第二介 電層28係為一個三層之〇]Sf〇結構。 接箸’形成-問極於該等第二介電層28上。在本實施例 中’該閘極之形成方法如下。 111756.doc -20. 200812092 參考圖14,形成一閘極矽層29於該第六絕緣層27上。在 本實施例中,該閘極矽層29之材質係為多晶矽,且係利用 低壓化學氣相沈積法形成該閘極石夕層29。 參考圖15 ’部分移除該閘極矽層29以留下一殘留石夕 291。在本實施例中,係利用活性離子蝕刻該閘極矽層 29。g亥殘留碎2 91係位於該凹口 2 3 1之相對中央位置。 參考圖16,成長該殘留矽291,以形成一閘極3〇。在本 實施例中,係利用選擇性磊晶成長方法成長該殘留石夕 291。由於該殘留矽291係位於該凹口 23 1之相對位置,因 此該閘極30在成長過程中會自然有自我對齊之效果,亦即 該閘極30成長後會形成於該等第二介電層28之中間。接 著,形成一閘極保護層31於該閘極30及該第六絕緣層27 上。在本實施例中,該閘極保護層3 1亦為一氧化層(用來 做為離子佈植散射用氧化層)。接著,利用離子佈植技術 自我對齊形成摻雜之源極32及汲極33。 參考圖17,如果需要的話,移除該閘極保護層3丨,以暴 露出該閘極30、該源極32及該汲極33 ,形成一具水平形狀 的儲存單元,且在垂直方向彼此分離的雙閘極多位元 SONOS記憶體4 〇 再參考圖17,顯示本發明具水平形狀的儲存單元,且在 垂直方向彼此分離的雙閘極多位元S〇n〇s記憶體之示意 圖。該具水平形狀的儲存單元,且在垂直方向彼此分離的 雙閘極多位元SONOS記憶體4包括一基板丨、一苐一絕緣層 14、一第二絕緣層16、一底部閘極17、二個分離之第一介 111756.doc -21 - 200812092 - 電層22 一導電層23、二個分離之第二介電層28、一閘極 3 〇、一源極3 2及一汲極3 3。 在本實施例中,該基板1係為一矽覆絕緣基板,其包括 -第-晶圓層U、-氧化層12、一第二晶圓層13及二凹槽 15,該氧化層12係夾設於該第一晶圓㈣及該第二晶圓層 13之間。該第一絕緣層14係位於該第—晶圓層^,該基 板1之凹槽15貫穿該第一絕緣層14、兮筮 ^ 曰—邊弟一晶圓層11及該 f、 氧化層12。 該第二絕緣層16係位於該基板丨之凹槽15之側壁。該底 部閘極17係由該第二晶圓層13突出至該凹槽。内。該第一 絕緣層U及該第二絕緣層16之材質係為氧化物或其:介電 材質。 該等第一介電層22係分別位於該底部閘極丨7上。在本實 施例中,每一第一介電層22係為一水平型之氧化物-氮化 物-乳化物(0N0)結構,其包括_第三絕緣層18、—第一分 離電荷儲存區20及一第四絕緣層2卜該第三絕緣㈣係位 =底部閘極17上°該第—分離電荷料區20係位於該第 二絕Γ層Γ上,該第—分離電荷儲存區2g剌以儲存電 :::材質係為氮化物、鋁化物、鋁铪化物或钽化物等能 口之材貝。s亥第四絕緣層21覆蓋該等第一分離電荷 厗^區20及該第三絕緣層以。在本實施例中,該第四絕緣 層21係延伸於該第一絕緣層14上方。 絕緣層21係拯細p , 要左思的疋’㈣四 存區心、矣觸弟三絕緣層18,以將該第-分離電荷儲 〇〇匕覆於其中,使得該二個第一分離電荷儲存區20係 lil756.doc -22- 200812092 不接觸。在本實施例中,該第三絕緣層18及該第四絕緣層 21之材質係為氧化物或其他介電材質。 該導電層23係位於該第四絕緣層21上,該導電層23之上 表面具有一凹口 23 1。在本實施例中,該導電層23之材質 係為多晶矽或非晶矽或經再結晶處理過之矽層。 該4苐一介電層28係分別附著於該凹口 23 1上。在本實 施例中,每一第二介電層28係為一水平型之氧化物-氮化 物·氧化物(ΟΝΟ)結構,其包括一第五絕緣層以、一第二分 離電荷儲存區26及一第六絕緣層27。㈣五絕緣層%係位 於》亥導电層23之上。該第二分離電荷儲存區%係位於該第 五,’’巴緣層24上,该第二分離電荷儲存區%係用以儲存電 子,其材質係為氮化物、化物、雀呂給化物或㉟化物等能 提供能陷之材質。該第六絕緣層27覆蓋該等第二分離電荷 错存區26及該第五絕緣層24。要注意的是,該第六絕緣層 27係接觸該第五絕緣層24,以將該第二分離電荷儲存區% 包覆於其中,使得該等第二分離電荷儲存區%係不接觸。 在本實施例中,該第五絕緣層24及該第六絕緣層”之材質 係為氧化物或其他介電材質。該第一絕緣層14、該第二絕 緣層16、該第三絕緣層18、該第四絕緣層。、該第五絕緣 層24及該第六絕緣層27之材質可以相同或是不同。 該閉極30係位於該等第二介電層28上,且相對於該凹口 231中央。在本實施例中,該閛極3〇之材質係為多晶矽。 該源極32及該汲極33係形成於該導電層23,且分別位於該 閘極3 0之二側。 人 H1756.doc -23· 200812092 再參考圖16,在其他應用中,兮 開極30上更包括一閘極 保瘦層31 ’以保護該閘極30。 本發明之優點如下:h二個做為儲存區的水平GNO結構 (二個第—介電層22或是二個第二介電層28)有效分離,故 可抗雙位兀互相電性干擾或彼此電荷擴散。2每個位元儲 存區可分開進行择作,传 呆乍 吏寫入抹除較使用局部陷獲The separate charge storage regions 26 are attached to the side of the recess 231, respectively. In the present embodiment, the second electron storage layer 25 is removed by reactive ion etching. > The image of the sixth insulating layer 27 is on the fifth insulating layer and the second separated charge storage regions 26. In this embodiment, the material of the sixth insulating layer 27 is an oxide or other dielectric material, and the forming method is a low pressure chemical vapor deposition method. The first insulating layer, the second insulating layer 16, the second insulating layer 18, and the fourth insulating layer? ! The fifth insulating layer μ and the sixth insulating layer 27 are provided, and the material of the a_ layer 7 may be the same or different. It is to be noted that the sixth insulating layer 27 is in contact with the fifth insulating layer. In this embodiment, the 箆$ is g a. The fifth layer, the color edge layer 24, the second separated charge storage region 26, and the sixth insulating layer 27 form a dielectric layer 28, that is, two separate dielectric layers in the present invention. 28. The second dielectric layer is attached to the sidewall of the recess 231, respectively. In this embodiment, the second dielectric layer 28 is a three-layer SSf〇 structure. The interface is formed on the second dielectric layer 28. In the present embodiment, the method of forming the gate is as follows. 111756.doc -20. 200812092 Referring to FIG. 14, a gate layer 29 is formed on the sixth insulating layer 27. In the present embodiment, the material of the gate layer 29 is polycrystalline germanium, and the gate layer 29 is formed by low pressure chemical vapor deposition. The gate layer 29 is partially removed with reference to Fig. 15 to leave a residual stone 291. In the present embodiment, the gate ruthenium layer 29 is etched using active ions. The g Hai residual 2 91 is located at a relatively central position of the notch 2 3 1 . Referring to Fig. 16, the residual crucible 291 is grown to form a gate 3?. In the present embodiment, the residual stone 291 is grown by a selective epitaxial growth method. Since the residual 矽 291 is located at the opposite position of the recess 23 1 , the gate 30 naturally has a self-aligning effect during the growth process, that is, the gate 30 is formed in the second dielectric after being grown. In the middle of layer 28. Next, a gate protection layer 31 is formed on the gate electrode 30 and the sixth insulating layer 27. In this embodiment, the gate protection layer 31 is also an oxide layer (used as an oxide layer for ion implantation scattering). Next, the doped source 32 and drain 33 are self-aligned using ion implantation techniques. Referring to FIG. 17, if necessary, the gate protection layer 3 is removed to expose the gate 30, the source 32, and the drain 33 to form a horizontally shaped memory cell and vertically in each other. Separate dual gate multi-bit SONOS memory 4 〇 Referring again to FIG. 17, a schematic diagram of a dual gate multi-bit S〇n〇s memory with horizontal storage cells of the present invention and separated from each other in the vertical direction is shown. . The double-gate multi-element SONOS memory 4 having horizontal storage cells and separated from each other in the vertical direction includes a substrate, an insulating layer 14, a second insulating layer 16, and a bottom gate 17, Two separate first layers 111756.doc -21 - 200812092 - electric layer 22 a conductive layer 23, two separated second dielectric layers 28, a gate 3 〇, a source 3 2 and a drain 3 3. In this embodiment, the substrate 1 is an insulating substrate including a first-wafer layer U, an oxide layer 12, a second wafer layer 13, and two recesses 15. The oxide layer 12 is The first wafer (four) and the second wafer layer 13 are sandwiched between the first wafer (four) and the second wafer layer 13. The first insulating layer 14 is located on the first wafer layer, and the recess 15 of the substrate 1 extends through the first insulating layer 14, the first wafer layer 11 and the f, the oxide layer 12 . The second insulating layer 16 is located on the sidewall of the recess 15 of the substrate. The bottom gate 17 is protruded from the second wafer layer 13 to the recess. Inside. The material of the first insulating layer U and the second insulating layer 16 is an oxide or a dielectric material. The first dielectric layers 22 are respectively located on the bottom gate 丨7. In the present embodiment, each of the first dielectric layers 22 is a horizontal oxide-nitride-emulsion (ONO) structure including a third insulating layer 18, a first separated charge storage region 20. And a fourth insulating layer 2, the third insulating (four) tether = the bottom gate 17; the first separating charge region 20 is located on the second insulating layer, the first separated charge storage region 2g剌In order to store electricity::: The material is a material such as nitride, aluminide, aluminum telluride or telluride. The fourth insulating layer 21 covers the first separated charge regions 20 and the third insulating layer. In this embodiment, the fourth insulating layer 21 extends over the first insulating layer 14. The insulating layer 21 is a thinning p, and the left (4) four memory regions and the third insulating layer 18 are disposed to cover the first separation charge so that the two first separated charges Storage area 20 series lil756.doc -22- 200812092 No contact. In this embodiment, the material of the third insulating layer 18 and the fourth insulating layer 21 is an oxide or other dielectric material. The conductive layer 23 is located on the fourth insulating layer 21, and the upper surface of the conductive layer 23 has a notch 23 1 . In this embodiment, the conductive layer 23 is made of polycrystalline germanium or amorphous germanium or a recrystallized germanium layer. The dielectric layers 28 are attached to the recesses 23 1 , respectively. In this embodiment, each of the second dielectric layers 28 is a horizontal oxide-nitride oxide structure comprising a fifth insulating layer and a second separated charge storage region 26 . And a sixth insulating layer 27. (4) The five insulation layers are located above the conductive layer 23. The second separated charge storage area % is located on the fifth, ''bab edge layer 24, and the second separated charge storage area % is used for storing electrons, and the material thereof is nitride, compound, or ruthenium or 35 compounds can provide materials that can be trapped. The sixth insulating layer 27 covers the second separated charge storage region 26 and the fifth insulating layer 24. It is to be noted that the sixth insulating layer 27 contacts the fifth insulating layer 24 to cover the second separated charge storage region % such that the second separated charge storage regions % are not in contact. In this embodiment, the material of the fifth insulating layer 24 and the sixth insulating layer is an oxide or other dielectric material. The first insulating layer 14, the second insulating layer 16, and the third insulating layer 18, the fourth insulating layer, the material of the fifth insulating layer 24 and the sixth insulating layer 27 may be the same or different. The closed pole 30 is located on the second dielectric layer 28, and relative to the In the present embodiment, the material of the drain 3 is polysilicon. The source 32 and the drain 33 are formed on the conductive layer 23 and are respectively located on the two sides of the gate 30. Human H1756.doc -23· 200812092 Referring again to Figure 16, in other applications, the open pole 30 further includes a gate thin layer 31' to protect the gate 30. The advantages of the present invention are as follows: The horizontal GNO structure (two-dielectric layer 22 or two second dielectric layers 28) as a storage area is effectively separated, so that it can resist mutual electrical interference or charge diffusion of each other. The meta-storage area can be selected separately, and the pass-through 乍吏 write erase is more than the local trap

Opmg)的長水平〇N〇更有效率和信賴性。3.具自我對The long level of Opmg) is more efficient and reliable. 3. Self-right

齊的功能,且製程步驟簡單,不用應元件微縮另行開發光 罩。4·具自我對齊的功能,故較傳統利用光罩定義切割出 兩儲存區W_S而t ’兩儲存區更加對稱,電性更可 靠。5.具擴充性’可使用相同或其他技術擴充單一細胞的 記憶位元數,可達四個或更多。6符合成熟的金屬氧化半 導體_S)製造過程,故不會造成業界成本上的負擔。7 可調整上下ΟΝΟ架構的差異性,使位元判讀視窗更大。& 為類雙層閘極的結構’故可以產生兩個通道,故可選擇衝 擊離子游離化現象發生的位置。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此,習於此技術之人士對上述實施例進 行修改及變化仍不脫本發明之精神。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1至圖1 7顯示根據本發明具水平形狀的儲存單元,且 在垂直方向彼此分離的雙間極多位元S〇n〇S記憶體之製造 方法之示意圖。 111756.doc •24- 200812092 【主要元件符號說明】 I 基板 4 具水平形狀的儲存單元且在垂直方向彼此分 離的雙閘極多位元SONOS記憶體 II 第一晶圓層 12 氧化層 13 第二晶圓層 14 第一絕緣層 15 凹槽 16 第二絕緣層 17 底部閘極 18 第三絕緣層 19 第一電子儲存層 20 第一分離電荷儲存區 21 第四絕緣層 22 第一介電層 23 導電層 24 第五絕緣層 25 第二電子儲存層 26 第二分離電荷儲存區 27 第六絕緣層 28 第二介電層 29 閘極矽層 30 閘極 111756.doc -25- 200812092 31 閘極保護層 32 源極 33 汲極 231 凹口 291 殘留矽The function of the Qi, and the process steps are simple, and the mask is not separately developed by miniaturizing the components. 4. Self-aligning function, so the two storage areas W_S are cut out more traditionally by using the mask definition, and the two storage areas are more symmetrical and more reliable. 5. Expandability 'The number of memory bits for a single cell can be expanded using the same or other techniques, up to four or more. 6 conforms to the mature metal oxide semiconductor _S) manufacturing process, so it will not cause a burden on the industry. 7 The difference between the upper and lower frame structure can be adjusted to make the bit reading window larger. & is a double-layered gate structure' so that two channels can be created, so that the location where the ion freeing phenomenon occurs can be selected. However, the above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Therefore, those skilled in the art can devise modifications and variations of the embodiments described above without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 to Fig. 7 are views showing a manufacturing method of a dual-pole multi-bit S〇n〇S memory having horizontally shaped memory cells in accordance with the present invention and separated from each other in the vertical direction. 111756.doc •24- 200812092 [Description of main component symbols] I Substrate 4 Double-gate multi-element SONOS memory II with horizontally shaped memory cells and separated from each other in the vertical direction First Wafer Layer 12 Oxide Layer 13 Second Wafer layer 14 first insulating layer 15 recess 16 second insulating layer 17 bottom gate 18 third insulating layer 19 first electron storage layer 20 first separated charge storage region 21 fourth insulating layer 22 first dielectric layer 23 Conductive layer 24 fifth insulating layer 25 second electron storage layer 26 second separated charge storage region 27 sixth insulating layer 28 second dielectric layer 29 gate germanium layer 30 gate 111756.doc -25- 200812092 31 gate protection Layer 32 Source 33 Datum 231 Notch 291 Residual 矽

111756.doc 26111756.doc 26

Claims (1)

200812092 十、申請專利範圍: 1· 一種具水平形狀的儲存單元且在垂直方向彼此分離的雙 閘極多位元SONOS記憶體之製造方法,包括以下步驟·· (a) 提供一基板,該基板包括一第一晶圓層、一氧化層 及一第二晶圓層,該氧化層係夾設於該第一晶圓層 及該第二晶圓層之間; (b) 形成一第一絕緣層於該第一晶圓層上; ' (C)於該基板上形成一凹槽,該凹槽貫穿該第一絕緣 層、該第一晶圓層及該氧化層,且暴露出該第二晶 圓層; (d) 形成一第二絕緣層於該凹槽之側壁上,且暴露出該 弟一晶圓層; (e) 成長该第二晶圓層至該凹槽内,以形成一突出之底 部閘極; (f) 形成二個分離之第一介電層於該底部閘極之頂面; V/ (g)形成一導電層於該等第一介電層上,該導電層之上 表面具有一凹口; (h)形成二個分離之第二介電層於該凹口上; , (1)形成一閘極於該等第二介電層上;及 ⑴形成一源極及一汲極。 • ^明求項1之製造方法,其中該步驟⑷中係利用一光罩 疋義該凹槽’且利用活性離子蝕刻該基板以形成該凹 槽。 3· 士明求項1之製造方法,其中每-該第-介電層包括-111756.doc 200812092 、緣層 第一分離電荷儲存區及一第四絕緣層, 其中該步驟(f)包括: (fl)开y成一第二絕緣層於該底部閘極頂面上; ()形成第一電子儲存層於該第一絕緣層及該第三絕 緣層上; (f3)邛刀移除該第一電子儲存層以形成二個分離之第一 分離電荷儲存區,且暴露出該第三絕緣層;及 (f4)形成一第四絕緣層於該第一絕緣層、該等第一分離 電荷儲存區及該第三絕緣層上。 4·如明求項1 2 3之製造方法,其中該步驟(fl)中之形成方法係 為熱氧化法。 、 女明求項3之製造方法,其中該步驟(f2)及(f4)中之形成 方法係為低壓化學氣相沈積法(LPC VD)。 6_如請求項3之製造方法,其中該步驟(f3)中之移除方法係 為活性離子蝕刻。 明求項3之製造方法,其中該第三絕緣層及該第四絕 緣層之材質係為氧化物或其他介電材質。 8.求項3之製造方法,其中該第一電子儲存層之材質 係選自由氮化物、鋁化物、鋁铪化物及鈕化物所組成 群。 之 9·如請求項1之製造方法 為選擇性蠢晶成長方法 其中該步驟(e)中之成長方法係 苐二介電層包括一 及一第六絕緣層, 1 〇·,4求項丨之製邊方法,其申每一該 2 第五絕緣層、一第二分離電荷儲存區 3 H1756.doc 200812092 其中該步驟(h)包括: (hi)形成一第五絕緣層於該導電層上; (h2)形成一第二電子儲存層於該第五絕緣層上; (h3)部分移除該第二電子儲存層以形成二個分離之第二 为離電荷儲存區,且暴露出該第五絕緣層;及 (h4)形成一第六絕緣層於該第五絕緣層及該等第二分離 電荷儲存區上。 11·如請求項10之製造方法,其中該步驟(hl)、(h2)及(h4)中 之形成方法係為低壓化學氣相沈積法。 12·如凊求項1〇之製造方法,其中該步驟(h3)中之移除方法 係為活性離子蝕刻。 13. 如明求項1〇之製造方法,其中該第五絕緣層及該第六絕 緣層之材質係為氧化物或其他介電材質。 14. 如請求項10之製造方法,其中該第二電子儲存層之材質 係選自由氮化物、鋁化物、鋁铪化物及鈕化物所組成之 群。 15. 如請求項丨之製造方法,其中該步驟(b)、(d)及(g)中之形 成方法係為低壓化學氣相沈積法。 16. 如請求項1之製造方法,其中該步驟⑴包括: (i 1)形成一閘極矽層於該等第二介電層及該導電層上; (U)部分移除該閘極矽層以留下一殘留矽於該凹口之相 對位置上;及 剛用選擇性益晶成長方法成長該殘留石夕,以形成該 閘極。 111756.doc 200812092 17.如明求項1之製造方法,其中該步驟⑴包括: (j 1)形成一閘極保護層於該閘極上; (j2)以離子佈植方式形成該源極及該汲極;及 (j3)移除該閘極保護層。 18· —種具水平形狀的儲存單元且在垂直方向彼此分離的雙 問極多位元SONOS記憶體,包括·· -基板,包括-第一晶圓層、一氧化層、一第二晶圓層200812092 X. Patent Application Range: 1. A method for manufacturing a dual gate multi-element SONOS memory device having horizontally shaped storage cells and separated from each other in a vertical direction, comprising the following steps: (a) providing a substrate, the substrate The first wafer layer, the first oxide layer and the second wafer layer are disposed between the first wafer layer and the second wafer layer; (b) forming a first insulation layer Layered on the first wafer layer; '(C) forming a recess on the substrate, the recess penetrating through the first insulating layer, the first wafer layer and the oxide layer, and exposing the second a wafer layer; (d) forming a second insulating layer on the sidewall of the recess and exposing the wafer layer; (e) growing the second wafer layer into the recess to form a a protruding bottom gate; (f) forming two separate first dielectric layers on a top surface of the bottom gate; V/(g) forming a conductive layer on the first dielectric layer, the conductive layer The upper surface has a notch; (h) two separate second dielectric layers are formed on the recess; (1) forming a gate A second dielectric layer; ⑴ and forming a source and a drain. The manufacturing method of claim 1, wherein the step (4) utilizes a mask to disambiguate the recess and the substrate is etched with active ions to form the recess. 3. The method of manufacturing the invention of claim 1, wherein each of the first dielectric layers comprises -111756.doc 200812092, a first separated charge storage region of the edge layer, and a fourth insulating layer, wherein the step (f) comprises: (f) opening a second insulating layer on the top surface of the bottom gate; () forming a first electronic storage layer on the first insulating layer and the third insulating layer; (f3) removing the first An electron storage layer to form two separate first separated charge storage regions and exposing the third insulating layer; and (f4) forming a fourth insulating layer in the first insulating layer, the first separated charge storage regions And the third insulating layer. 4. The manufacturing method according to the item 1 2 3, wherein the forming method in the step (fl) is a thermal oxidation method. The manufacturing method of the present invention, wherein the forming method in the steps (f2) and (f4) is a low pressure chemical vapor deposition (LPC VD). 6_ The manufacturing method of claim 3, wherein the removing method in the step (f3) is reactive ion etching. The manufacturing method of claim 3, wherein the material of the third insulating layer and the fourth insulating layer is an oxide or other dielectric material. 8. The method of claim 3, wherein the material of the first electron storage layer is selected from the group consisting of nitrides, aluminides, aluminum tellurides, and button compounds. 9. The manufacturing method of claim 1 is a selective doping growth method, wherein the growth method in the step (e) is that the second dielectric layer comprises one and a sixth insulating layer, 1 〇·, 4 a method of edge-making, each of which is a second insulating layer and a second separated charge storage region 3 H1756.doc 200812092, wherein the step (h) comprises: (hi) forming a fifth insulating layer on the conductive layer (h2) forming a second electron storage layer on the fifth insulating layer; (h3) partially removing the second electron storage layer to form two separated second-side charge storage regions, and exposing the first a fifth insulating layer; and (h4) forming a sixth insulating layer on the fifth insulating layer and the second separated charge storage regions. 11. The method of claim 10, wherein the forming method in the steps (hl), (h2), and (h4) is a low pressure chemical vapor deposition method. 12. The manufacturing method according to claim 1, wherein the removing method in the step (h3) is reactive ion etching. 13. The method of claim 1, wherein the material of the fifth insulating layer and the sixth insulating layer is an oxide or other dielectric material. 14. The method of claim 10, wherein the material of the second electron storage layer is selected from the group consisting of nitrides, aluminides, aluminum tellurides, and button compounds. 15. The method of claim 1, wherein the forming method in the steps (b), (d) and (g) is a low pressure chemical vapor deposition method. 16. The method of claim 1, wherein the step (1) comprises: (i1) forming a gate layer on the second dielectric layer and the conductive layer; (U) partially removing the gate electrode The layer is left in a relative position to the recess; and the residual stone is just grown by a selective crystal growth method to form the gate. The manufacturing method of claim 1, wherein the step (1) comprises: (j1) forming a gate protection layer on the gate; (j2) forming the source by ion implantation and the Bungee; and (j3) remove the gate protection layer. 18. A double-question multi-element SONOS memory having horizontally shaped memory cells separated from each other in a vertical direction, including a substrate, including a first wafer layer, an oxide layer, and a second wafer Floor 及一凹槽,該氧化層係夾設於該第一晶圓層及該第二 晶圓層之間; 一第一絕緣層,位於該第一晶圓層上,該基板之凹槽貫 穿該第一絕緣層、該第一晶圓層及該氧化層; 一第二絕緣層,位於該基板之凹槽之側壁; 一底部閘極,係由該第二晶圓層突出至該凹槽内; 二個分離之第一介電層,分別位於該底部閘極上; 一導電層,位於該等第一介電層上,該導電層之上表面 具有一凹口; 二個分離之第二介電層,分別附著於該凹口上; 一閘極,位於該等第二介電層上, % /日丄 1相對於該凹口中 央;及 源極及一沒極,形成於該真齋g 风茨導電層,且分別位於該閘極 之二側。 19. 如請求項18之記憶體,其中每一哕笛 人+ β 甘 3弟一介電層包括 一第三絕緣層,位於該底部閘極上; 一第一分離電荷儲存區 位於該第三絕緣層 上,該第一 111756.doc -4- 200812092 分離電荷儲存區係用以儲存電子;及 一弟四絕緣層’覆蓋該莖楚 八抓而^ 復蓋3 4弟一分離電荷儲存區及該第三 絕緣層。 20·如請求項19之記憶體,放由兮势一 其中邊弟二絕緣層及該第四絕緣 層之材質係為氧化物或其他介電材質。 胃长頁19之.己體,其中該第_分離電荷儲存區之材 質係選自由氮化物、紹化物、紹給化物及组化物所組成 之群。 月长員18之。己憶體,其中該第一絕緣層及該第二絕緣 層之材貝係為氧化物或其他介電材質。 23·:請求項18之記憶體,其中每一該第二介電層包括: 一第五絕緣層,位於該導電層之上; 第一刀離電荷儲存區,位於該第五絕緣層上,該第二 刀離電荷儲存區係用以儲存電子;及 "、邑緣層,覆i該等第二分離電荷儲存區及該第五 絕緣層。 24.如請求項23之記憶體,其中該第五絕緣層及該第六絕緣 層之材貝係為氧化物或其他介電材質。 2 5.如言青求頂1,丄 、 C憶體’其中該第二分離電荷儲存區之材 貝係選自士 $ y 鼠化物、紹化物、鋁铪化物及钽化物所組成 之群。 26·如請求jg 、 、8之記憶體,其中該導電層及該閘極之材質係 選自由客g a曰夕、非晶矽及經再結晶處理過之矽層所組成 Ο 111756.doc 200812092 ,位於該閘 27.如請求項18之記憶體,更包括一閘極保護層 極上。 111756.docAnd a recess, the oxide layer is interposed between the first wafer layer and the second wafer layer; a first insulating layer is located on the first wafer layer, and the recess of the substrate penetrates the a first insulating layer, the first wafer layer and the oxide layer; a second insulating layer on a sidewall of the recess of the substrate; a bottom gate protruding from the second wafer layer into the recess Two separate first dielectric layers are respectively located on the bottom gate; a conductive layer is located on the first dielectric layers, the upper surface of the conductive layer has a notch; and the two separated second layers The electric layer is respectively attached to the recess; a gate is located on the second dielectric layer, and the %/day 1 is opposite to the center of the recess; and the source and the pole are formed in the true zig The windshield conductive layers are located on two sides of the gate. 19. The memory of claim 18, wherein each of the whistle + β 甘三弟-dielectric layer comprises a third insulating layer on the bottom gate; a first separate charge storage region is located in the third insulating On the layer, the first 111756.doc -4- 200812092 separate charge storage area is used for storing electrons; and the first four insulation layer 'covers the stem and the other is covered with a separate charge storage area and The third insulating layer. 20. The memory of claim 19 is placed in the form of an oxide or other dielectric material of the second insulating layer and the fourth insulating layer. The body of the stomach has a body, wherein the material of the first separation charge storage region is selected from the group consisting of nitride, sulphate, sulphate and group. The moon is 18 members. The memory of the first insulating layer and the second insulating layer is an oxide or other dielectric material. 23: The memory of claim 18, wherein each of the second dielectric layers comprises: a fifth insulating layer over the conductive layer; a first knife away from the charge storage region, located on the fifth insulating layer, The second knife is away from the charge storage region for storing electrons; and the ", the edge layer, the second separated charge storage region and the fifth insulating layer. 24. The memory of claim 23, wherein the fifth insulating layer and the sixth insulating layer are made of an oxide or other dielectric material. 2 5. For example, the top of the 丄, C, and the memory of the second separated charge storage area are selected from the group consisting of a squirrel, a sulphate, an aluminide, and a sulphide. 26) The memory of the jg, 8 is requested, wherein the conductive layer and the material of the gate are selected from the group consisting of 客 曰 、, amorphous 矽 and recrystallized 矽 756 111756.doc 200812092 , The memory of the gate 27. The memory of claim 18 further includes a gate protection layer. 111756.doc
TW95131122A 2006-08-24 2006-08-24 A vertically separated horizontal type double-gate multi-bits sonos and the method for making the same TWI309477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95131122A TWI309477B (en) 2006-08-24 2006-08-24 A vertically separated horizontal type double-gate multi-bits sonos and the method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95131122A TWI309477B (en) 2006-08-24 2006-08-24 A vertically separated horizontal type double-gate multi-bits sonos and the method for making the same

Publications (2)

Publication Number Publication Date
TW200812092A true TW200812092A (en) 2008-03-01
TWI309477B TWI309477B (en) 2009-05-01

Family

ID=44767921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95131122A TWI309477B (en) 2006-08-24 2006-08-24 A vertically separated horizontal type double-gate multi-bits sonos and the method for making the same

Country Status (1)

Country Link
TW (1) TWI309477B (en)

Also Published As

Publication number Publication date
TWI309477B (en) 2009-05-01

Similar Documents

Publication Publication Date Title
TWI304266B (en) Memory cell and memory cell array
US7205601B2 (en) FinFET split gate EEPROM structure and method of its fabrication
US9312268B2 (en) Integrated circuits with FinFET nonvolatile memory
US8324060B2 (en) NAND flash memory array having pillar structure and fabricating method of the same
US7304343B2 (en) Semiconductor memory device and manufacturing method for the same
US7923769B2 (en) Split gate non-volatile memory cell with improved endurance and method therefor
JP4104133B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
KR100674958B1 (en) Split type flash memory device having self aligned control gate and method for manufacturing the same
TWI606583B (en) Non-volatile memory device method
US20030203572A1 (en) Nonvolatile semiconductor memory device and its manufacturing method
TW200810109A (en) Device for non-volatile memory applications and method for manufacturing such a device
TW200849607A (en) Nonvolatile semiconductor memory devices with charge injection corner
KR20070090375A (en) Nonvolatile memory device and method for forming the same
EP3735705A1 (en) Twin bit non-volatile memory cells with floating gates in substrate trenches
US20100038702A1 (en) Nonvolatile memory device and methods of forming the same
EP1806788A2 (en) Semiconductor memory device and method for producing the same
US7528047B2 (en) Self-aligned split gate memory cell and method of forming
US7355236B2 (en) Non-volatile floating gate memory cells with polysilicon storage dots and fabrication methods thereof
KR20160087736A (en) A silicon nano-tip thin film for flash memory cells
TW201537748A (en) Memory device and method for forming the same
JP4895823B2 (en) Semiconductor device
US6956254B2 (en) Multilayered dual bit memory device with improved write/erase characteristics and method of manufacturing
TW200812092A (en) A vertically separated horizontal type double-gate multi-bits SONOS and the method for making the same
CN108074932B (en) Semiconductor device, manufacturing method thereof and electronic device
US7462896B2 (en) Semiconductor memory device and manufacturing method for semiconductor memory device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees