TW200811978A - Ranged fault signatures for fault diagnosis - Google Patents

Ranged fault signatures for fault diagnosis Download PDF

Info

Publication number
TW200811978A
TW200811978A TW96116165A TW96116165A TW200811978A TW 200811978 A TW200811978 A TW 200811978A TW 96116165 A TW96116165 A TW 96116165A TW 96116165 A TW96116165 A TW 96116165A TW 200811978 A TW200811978 A TW 200811978A
Authority
TW
Taiwan
Prior art keywords
error
processing
feature
features
contribution
Prior art date
Application number
TW96116165A
Other languages
Chinese (zh)
Inventor
Jerry Lynn Harvey Jr
Alexander T Schwarm
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200811978A publication Critical patent/TW200811978A/en

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

A method and apparatus for diagnosing faults. A fault is detected. One or more process variables that contributed to the fault are determined. A relative contribution of each of the one or more process variables is determined. A determination is made as to which fault signatures match the fault, a match occurring when the relative contributions of the one or more process variables are within relative contribution ranges of the matching fault signature. Each fault signature is associated with at least one fault class.

Description

200811978 九、發明說明: 【發明所屬之技術領域】 本發明之具體實施例係關於錯誤檢測,尤其 用多種錯誤特徵的錯誤檢測。 【先前技術】 許多企業運用包含多重感測器及控制器的精 備,該等感測裔及控制器在處理期間被仔細地監 產品的品質。一種監控該等多重感測器及控制器 統計處理監控(一種執行在感測器測量及處理控, 理變數)上之統計分析的手段),其致能了自動, 錯誤檢測。一「錯誤(fault )」能夠為製造設備 失調(例如與所欲數值的一機器之操作參數的誤 一預防維持所需的一指示來避免一即將發生之 調。因此,統計處理監控之一目標為在產生上述 偵測及/或檢測錯誤。 在處理監控期間,當最近處理資料之一或多 一統計模型偏離一量,且該量足夠大以造成一模 過一個別信任門檻值時,偵測一錯誤。一模型計 量數,其值表示在實際處理監控期間所收集之處 統計特徵及該模型所預測之統計特徵間的偏離量 計量為消去此偏離之一唯一數學方法。常見之模 含平方預測誤差(Squared Prediction Error,其 為 SPE、Qres、或 Q),以及 Hotelling’s T2。 係關於使 密製造設 控以確保 的方法為 Ν數值(處 偵測及/或 的故障或 差),或為 故障或失 缺陷之前 個統計自 型計量超 量為一純 理資料的 。各模型 型計量包 一般指稱 5 200811978 各模型計量具有個別信任門檻值,其也指稱為一 限制或控制限制,其中數值表示該模型計量之一可接 上限。如果一模塑計量在處理監控期間超過其個別信 檻值,應可推斷該處理資料已因為一錯誤而偏離門檻, 一旦偵測錯誤,該等錯誤由忽略各處理變數之一 錯誤貢獻而被檢測。某些錯誤因為缺乏具有一單一處 數之明確(例如直接)相關性而難於檢測。具有對多 理變數之複雜及/或間接相關性的錯誤能夠為特別難 測0 常見檢測錯誤之方法一般需要一錯誤被分類前之 誤的多重發生。這將會是分類具有對多重處理變數之 相關性之錯誤的問題。 【發明内容】 本發明之一態樣係關於一種檢測錯誤之方法, 含:偵測一錯誤;判定貢獻至(contributed to )該錯 一或多處理變數;判定該等一或多處理變數之各者的 應貢獻;及判定複數之錯誤特徵中之何者相符於該錯 一錯誤特徵相符該錯誤,其係為如果該等一或多處理 之相應貢獻在所相符錯誤特徵之相應貢獻範圍内,其 等錯誤特徵之各者係相關於至少一錯誤分類。 本發明之另一態樣係關於一種包含資料之機器可 媒體’其當由一機器所存取時,造成該機器執行一方 該方法包含债測一錯誤;判定貢獻至該錯誤的一或多 信任 受的 任門 直。 相對 理變 重處 於檢 該錯 複雜 其包 誤的 一相 誤, 變數 中該 存取 法, 處理 6 200811978 變數;判定該等一或多處理變數之各者的一相應貢獻 判定複數之錯誤特徵中之何者相符於該錯誤,一錯誤 相符該錯誤,其係為如果該等一或多處理變數之相應 係在所相符錯誤特徵之相應貢獻範圍内,其中該等錯 徵之各者係相關於至少一錯誤分類。 本發明之又另一態樣係關於一種統計處理監控系 其包含一錯誤偵測器,其係與至少一製造機器相耦合 以接收來自該至少一製造機器之處理資料,並用以基 處理資料而偵測一錯誤,該處理資料包含複數之處 數;一資料庫,其係用以儲存複數錯誤特徵,該等錯 徵之各者係與至少一錯誤分類相關聯;及一錯誤檢測 其係與該錯誤偵測器以及該資料庫相耦合,藉以判定 至該錯誤之該等複數之處理變數的一或多者、判定該 或多處理變數之各者的一相應貢獻、以及判定複數之 特徵中之何者相符於該錯誤,一錯誤特徵相符該錯誤 係為如果該等一或多處理變數之相應貢獻係在所相符 特徵之相應貢獻範圍内。 【實施方式】 此中描述係為一種用於檢測錯誤之方法及設備。 具體實施例中,識別貢獻至該錯誤之一或多處理變數 果具有在一控制限制外之一經測量數值,一處理變數 獻至該錯誤。判定該等一或多處理變數之各者的一相 ,·及 特徵 貢獻 誤特 統, ,藉 於該 理變 誤特 器, 貢獻 等一 錯誤 ,其 錯誤 在一 〇如 可貢 應貢 7 200811978 獻。該相應貢獻係被標準化且被安排在一經排列清單中, 其中該排列係基於錯誤貢獻之一量。判定符合該經偵測之 錯誤的一錯誤特徵。在一具體實施例中,如果該經識別處 理變數之相應貢獻係在該所相符錯誤特徵之相應貢獻範圍 内,一錯誤特徵符合該經偵測錯誤。該等錯誤特徵之各者 係與識別一特定錯誤起因之至少一錯誤分類相關聯。 在下列的描述中,提出多個細節。然而,熟悉該項技 藝者將可明瞭本發明可在無下列特定細節中而加以實施。 在特定例證中,已知的結構及裝置係按方塊圖形式而顯示 (而非細節),藉以避免模糊本發明。 所述之部份細節描述係以演算法和在一電腦記憶體中 演算資料位元之代表象徵符號來表現。熟悉資料處理技術 之技藝者使用這些演算法的敍述與呈現以最有效率的方式 傳達本質給其他熟知該項之技藝者。演算法,在此處通常 可視為導向一所要結果之自我一致性的步驟或指令的程 序。該等步驟為那些需要對於物理量有物理性操縱者。雖 然並非必然,但是這些量通常採用能夠在一電腦系統中儲 存、傳送、組合、比較及或以其他方式操作之電氣、磁性 信號的形式。已證實將這些信號表示為位元、數值、元件、 符號、字元、術語、數字等等有時候非常方便,主要係基 於通用用法的因素。 然而,應注意的是,這些以及類似的術語皆與適當的 物理數量有關,而且僅僅是套用至這些量的方便標籤。除 非特別說明,否則可在討論中清楚得知,文中利用術語像 8 200811978 是「處理」、「運糞 「 係代表-電腦系統」或類:算」或「Λ定」或「顯示」等等’ 其操縱及轉換在該電义的電子運异裝置之動作及處理, 表示成物理(電子)量 之暫存器及記憶體中的資料來200811978 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0002] Embodiments of the present invention relate to error detection, particularly error detection using a variety of error characteristics. [Prior Art] Many companies use sophisticated equipment that includes multiple sensors and controllers that are carefully monitored for quality during processing. A means of monitoring statistical processing of such multiple sensors and controllers (a statistical analysis performed on sensor measurements and processing controls, rational variables), which enables automatic, error detection. A "fault" can be used to avoid an impending adjustment for the manufacturing equipment to be out of tune (for example, to maintain a desired indication of the error in the operation of a machine with the desired value. Therefore, one of the statistical processing monitoring targets In order to generate the above detection and/or detection error, during processing monitoring, when one or more statistical models of the most recently processed data deviate by an amount, and the amount is large enough to cause a threshold of another trust threshold, the detection Measure an error. A model metering value whose value indicates the statistical difference between the statistical features collected during the actual processing monitoring period and the statistical characteristics predicted by the model is the only mathematical method to eliminate this deviation. Common models include Squared Prediction Error (SPE, Qres, or Q), and Hotelling's T2. The method for making a tight manufacturing control to ensure that the method is a Ν value (detection and / or fault or poor), or For the fault or loss of defects, the previous statistical self-measurement excess is a purely rational data. Each model-type measurement package is generally referred to as 5 200811978 models. The quantity has an individual trust threshold, which is also referred to as a limit or control limit, where the value indicates that one of the model measures can be connected to an upper limit. If a molding meter exceeds its individual signal value during processing monitoring, the process should be inferred. The data has deviated from the threshold due to an error. Once errors are detected, the errors are detected by ignoring the error contribution of one of the processing variables. Some errors are difficult due to the lack of explicit (eg direct) correlation with a single number of points. Detection. Errors with complex and/or indirect correlations of polymorphic variables can be particularly difficult to measure. 0 Common methods of detecting errors generally require a multiple occurrence of an error before being classified. This will be a classification with multiple processing The problem of erroneous correlation of variables. [Invention] One aspect of the present invention relates to a method for detecting errors, including: detecting an error; determining contribution to the one or more processing variables; The contribution of each of the one or more processing variables; and the determination of which of the complex features of the complex number is consistent with the error The feature conforms to the error, if the respective contributions of the one or more processes are within a corresponding contribution range of the matching error feature, each of the error features is associated with at least one error classification. A system is a machine-readable medium that contains information that, when accessed by a machine, causes the machine to perform a method that includes a debt test error; determines that one or more trusts contributing to the error are subject to any failure. The relative rationality is in the error of detecting the error of the error, the access method in the variable, processing 6 200811978 variables; determining the error characteristics of a corresponding contribution of each of the one or more processing variables Which one is consistent with the error, and an error corresponds to the error, if the corresponding one or more processing variables are within the corresponding contribution range of the matching error feature, wherein each of the errors is related to at least A misclassification. Still another aspect of the present invention relates to a statistical processing monitoring system including an error detector coupled to at least one manufacturing machine for receiving processing data from the at least one manufacturing machine and for processing data Detecting an error, the processing data includes a plurality of points; a database for storing complex error features, each of which is associated with at least one error classification; and an error detection system The error detector and the database are coupled to determine one or more of the processing variables of the complex number to the error, determine a corresponding contribution of each of the or multiple processing variables, and determine a characteristic of the complex number Whichever corresponds to the error, an error signature that matches the error is if the corresponding contribution of the one or more processing variables is within the corresponding contribution range of the matching feature. [Embodiment] This description is a method and apparatus for detecting an error. In a particular embodiment, the identification contributes to one of the errors or the multi-processing variable has a measured value outside of a control limit, and a processing variable is assigned to the error. Determining one phase of each of the one or more processing variables, and the characteristic contribution of the erroneous system, by the rationality of the erroneous device, the contribution, etc., the error is in the same way as the tribute to the tribute 7 200811978 offer. The respective contributions are standardized and arranged in an arranged list, wherein the ranking is based on one of the error contributions. A fault feature is determined that matches the detected error. In a specific embodiment, if the corresponding contribution of the identified processing variable is within a corresponding contribution range of the matched error feature, an error feature conforms to the detected error. Each of the error characteristics is associated with at least one error classification identifying a particular cause of the error. In the following description, a number of details are set forth. However, it will be apparent to those skilled in the art that the present invention may be practiced without the following specific details. In the exemplification, the structures and devices are shown in the form of a block diagram (not a detail) in order to avoid obscuring the invention. Some of the detailed descriptions are represented by algorithms and representative symbolic symbols of the data bits in a computer memory. Those skilled in the art of data processing techniques use the narrative and presentation of these algorithms to convey the essence to other skilled practitioners in the most efficient manner. Algorithms, which are generally referred to herein as procedures for directing a self-consistent step or instruction of a desired result. These steps are for those who need physical manipulation of physical quantities. Although not necessarily, these quantities are typically in the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, or otherwise manipulated in a computer system. It has proven convenient at present to express these signals as bits, values, elements, symbols, characters, terms, numbers, etc., primarily based on general usage factors. However, it should be noted that these and similar terms are related to the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless otherwise stated, it can be clearly seen in the discussion that the terminology used in the article is 8 200811978 is "processing", "transfer" means "computer system" or class: calculation" or "definite" or "display", etc. 'The operation and processing of the electronic transfer device in the control and conversion, which is expressed as the physical (electronic) amount of the register and the data in the memory.

存器或其它這種資二:為在該電腦系統的記憶體、或暫 本發明也係有關“::輸或顯示裝置内的物理量。 置可為因應需求而έ且成=文所述運算之-裝置。該裝 程式所選擇性活化❹新^也可為料於該電腦之電腦 :::存於一電腦可讀媒體,例如(但…),任何種類 匕括軟式磁碟片、光碟、唯讀記憶體(CD-ROMs ) 兹随光碟機、唯讀記憶體(rqMs )、隨機存取記憶體 _ )可’肖除程式化唯讀記憶體(EPROMs )、電子式 可消除程式化唯讀記㈣(EEPR〇Ms)、磁性或光學卡或 任何種類之適用於儲存電子指令的媒體。 : 所述之/貝异法以及模組並不相關於任何特定電腦 〆^他虞置。各式一般用途系統可依據本發明所教示與程 式並行,或者可證實有利於建構更多專門的設備以施行該 舄方法之步驟。這些各式系統所需之架構將於下文詳 'L此外’本發明並非透過任何特定程式語言所描述。應 去各種程式語言可落實本文所述之本發明之揭示。 機器可讀媒體包含在一可由機器所讀取之形式中之 任何用於儲存或傳送資訊的機制。例如,一機器可讀媒體 I含一機器可讀儲存媒體(例如唯讀記憶體(ROM )、隨 機存取記憶體(RAM )、磁碟儲存媒體、光學儲存媒體、 9 200811978 快閃記憶體裝置等等)、機器可讀傳輸媒體(電氣、 音訊或其他形式之可傳播信號(例如載波、紅外線 數位信號等等))等。 該下列描述提供了監控在製造裝置上運作的處 測及/或檢測錯誤(不穩定之製造過程)的一統計處 系統的細節。在一具體實施例中,該統計處理監控 用於電子裝置(例如半導體)之製造。製造這樣的 般需要許多涉及不同類型製造處理的製造步驟。例 刻、濺鍍、化學氣相沉積為三種不同類型之處理, 執行在不同類型之機器上。另者,該統計處理監控 用來監控其他產品之製造(例如汽車)。該其他產品 也需要許多由各式製造機器處理的不同之處理步驟 第1圖描述統計處理監控系統1 00之一具體實 該統計處理監控系統1 00包含一統計處理監控設備 其經由資料通信鏈結1 60與一或多個製造機器1 1 0 或多個處理控制器1 5 0相耦合。該統計處理監控系 可包含在一工廠中(例如一製造工廠)之所有製 11 0。另者,該統計處理監控系統1 0 0可包含工廠中 定的製造機器 1 1 0,例如可在一或多個特定處理上 所有製造機器11 0。 在一具體實施例中,各製造機器11 0為製造電 的機器,例如蝕刻器、化學氣相沉積爐、微影製 (photolithography devices)、佈植機(imp 1 anter ) 另者,該製造機器11 0可為製造其他產品(例如汽 \ 光學、 信號、 理以偵 理監控 糸統係 裝置一 如,14 各者係 系統可 之製造 〇 施例。 105, 以及一 統100 造機器 之僅特 運行之 子裝置 程裝置 等等。 車)之 10 200811978 一類型。在一具體實施例中,該製造機器11 0之各者可為 一單一類型。另者,該製造機器110可包含多種不同類型 之配備,該等配備之各者可執行不同處理。 各製造機器110可包含用於監控在該製造機器110上 運行之多重感測器。包含在該製造機器11 0中之一類型的 感測器可為一溫度感測器。其他感測器之範例包含壓力感 測器、流率感測器、或任何其他監控該製造機器11 0所製 造之一工作部件之物理屬性或一製造處理之物理情況的感 測器。 在一製造機器Π 0上執行的各製造處理係由各種物理 情況及該感測器所偵測之屬性以及各種經收集以關聯作為 處理資料之操作參數而特徵化。各個明確的物理情況或由 該感測器所偵測之屬性,以及各操作參數可為該處理資料 的一具區別性的處理變數。表示偵測器資料之處理變數的 各範例包含處理室壓力、承受器(susceptor )溫度、RF前 向功率、以及RF反射功率。表示操作參數之處理變數的 範例包含(例如化學試劑之)流率設定以及(例如針對一 處理室排氣真空果浦(chamber exhaust vacuum pump)之) 節流闊設定。該感測器、製造機器以及處理控制器可在處 理期間被監控以在連續點上及時收集該處理變數。 在一具體實施例中,各處理變數施加至一特定處理。 另者,一或多個處理變數可施加至一特定處理之僅一部 分。在一具體實施例中,在一處理中之不同步驟的感測器 測量及操作參數表示有區別的處理變數(建模為模空間中 11 200811978 之額外規模)。例如,如果被執行在一機器中之製造處 有含不同操作參數設定之多重步驟,此將為有用。例 在一三步驟製造處理中,在三步驟期間之一承受器溫 被視為三個具區別性的處理變數。將該等處理步驟化 模空間之個別規模是有益的,其係例如當一單一處理 工作部件上沉積多重層時,或當一處理之不同步驟曝 工作部件至不同處理情況時(例如壓力、溫度等等)。 處理控制器1 5 0控制製造機器1 1 0之操作參數。令 處理控制器可控制製造機器11 0之處理室溫度、真 浦、氣體注入系統等等。處理控制器1 50可儲存一或 製程配方170。各配方170定義一處理之各步驟上之 機器11 0的操作參數。在一具體實施例中,配方1 70 由處理控制器150而被載入製造機器110。 資料通信鏈結1 6 0可包含常見的通信鏈結,且其 為無線或有線。資料可按純(raw )或經處理格式在該 機器11 0、該處理控制器1 5 0以及該統計處理監控設備 間作傳遞。在一具體實施例中,可使用一半導體設備 標準(SECS )介面。在其他具體實施例中,可使用一 的通信模型、一高速SECS訊息服務(HSMS )介面等 該統計處理監控設備1 0 5可為一單一伺服器,其 分析自該製造機器11 0、感測器1 5 5以及處理控制器 的進入處理資料。另者,該統計處理監控設備1 0 5可 多重伺服器及/或電腦。在一具體實施例中,該統計處 控設備1 〇 5包含錯誤偵測器1 2 5、錯誤檢測器1 3 0及 理具 如, 度將 分成 在一 露該 |J如, 空泵 多個 製造 可經 也可 製造 105 通信 通稱 等。 用於 150 包含 理監 錯誤 12 200811978 報導器150。該統計處理監控設備1〇5 175。在一具體實施例中,該統計處理監控 在一或多個處理控制器150中。另者,該 備1 0 5也可為一可區分性及/或獨立的設備 該储存裝置1 7 5包含一處理測量資料 個多變量統計模型135、錯誤特徵140及在 一具體實施例中,該儲存裝置1 7 5為該統 105之一電腦或伺服器之一單一儲存裝置 裝置1 75可為外部於該統計處理監控設備 實施例中’該儲存裝置175包含多重儲存 裝置之特定者包含用於備份之資料的冗餘 處理測量資料(處理資料)可被儲存 庫1 20。該經儲存之處理資料可用來顯示 器110之各者及針對在該等製造機器上運 漂移及傾向。在一具體實施例中,該經儲 來產生如下所述之一或多個的多變量統計 經產生,該多變量統計模型丨3 5可被儲存 中。 錯誤檢測器資料庫1 4 〇包含多重伊 徵,其在如下更進一步描述。在一具體實 測器資料庫1 40為一關聯性資料庫。例如 料庫140可包含—錯誤分類表,其可儲存 類,以及包含一相關錯誤特徵,其可儲錯 性0 也包含儲存裝置 設備105被包含 統計處理監控設 〇 庫120、一或多 眘誤分類1 4 5。在 計處理監控設備 。另者,該儲存 105。在一具體 裝置,該等儲存 副本。 在處理測量資料 針對該等製造機 行的處理等等的 存處理資料係用 模型1 3 5。一旦 在儲存裝置175 誤分類及錯誤特 施例中,錯誤檢 ’錯誤檢測器資 —列表之錯誤分 誤特徵之定義特 13 200811978 在一具體實施例中,使用1綠時段來收 多個多變量統計模型的資料。該訓 市產生一或 機器上之已知及/或經控制情況下所完包含一特定製造 理的各處理運行之一收集。在訓練 i 特定製造處 、+又自處理運并把丨 之處理資料可用來產生統計(例如 收集 變數陣列等等)。該等統計可收集性地 瓜⑶1^)、變數、 行在一特定機器上之特定處理的—或、y 奴針對運The memory or other such resources: for the memory in the computer system, or the temporary invention is also related to the physical quantity of the ":: transmission or display device. The operation can be performed according to the demand and the operation described in the text - The device is selectively activated by the device. The computer can also be used in the computer::: stored in a computer readable medium, such as (but...), any kind of floppy disk, CD Read-only memory (CD-ROMs) with CD-ROM, read-only memory (rqMs), random access memory _) can be used to eliminate stylized read-only memory (EPROMs), electronically erasable stylization Read only (4) (EEPR〇Ms), magnetic or optical card or any kind of media suitable for storing electronic instructions. : The described/beautiful method and module are not related to any particular computer. Various general-purpose systems may be in parallel with the program as taught by the present invention, or may prove to facilitate the construction of more specialized equipment to perform the steps of the method. The architecture required for these various systems will be described in detail below. The invention is not through any particular programming language The disclosure of the invention described herein may be implemented in a variety of programming languages.The machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine. For example, a machine readable The media I includes a machine readable storage medium (such as a read only memory (ROM), a random access memory (RAM), a disk storage medium, an optical storage medium, a 9200811978 flash memory device, etc.), and the machine can Read transmission media (electrical, audio or other forms of propagable signals (eg carrier waves, infrared digital signals, etc.)), etc. The following description provides monitoring and/or detection errors that operate on the manufacturing device (unstable Details of a statistical system of the manufacturing process. In a specific embodiment, the statistical processing is monitored for the manufacture of electronic devices, such as semiconductors. Manufacturing such as many manufacturing steps involving different types of manufacturing processes is required. , sputtering, chemical vapor deposition are three different types of processing, performed on different types of machines. In addition, the statistical processing Monitoring is used to monitor the manufacture of other products (such as cars). This other product also requires a number of different processing steps processed by various manufacturing machines. Figure 1 depicts one of the statistical processing monitoring systems 100. 00 includes a statistical processing monitoring device coupled to one or more manufacturing machines 110 or a plurality of processing controllers 150 via a data communication link 160. The statistical processing monitoring system can be included in a factory (eg, Manufacture of a manufacturing plant. In addition, the statistical processing monitoring system 100 may include a manufacturing machine 110 in a factory, for example, all manufacturing machines 110 may be in one or more specific processes. In one embodiment, each manufacturing machine 110 is a machine that manufactures electricity, such as an etcher, a chemical vapor deposition furnace, a photolithography device, an implanter (imp 1 anter), and the manufacturing machine 11 0 can be used to manufacture other products (such as steam, optical, signal, and motion detection systems). 105, and the sub-devices of the special 100-machines, etc. Car) 10 200811978 A type. In a specific embodiment, each of the manufacturing machines 110 can be of a single type. Alternatively, the manufacturing machine 110 can include a number of different types of equipment, each of which can perform different processes. Each manufacturing machine 110 can include multiple sensors for monitoring operation on the manufacturing machine 110. One type of sensor included in the manufacturing machine 110 may be a temperature sensor. Examples of other sensors include a pressure sensor, a flow rate sensor, or any other sensor that monitors the physical properties of a working component made by the manufacturing machine 110 or the physical condition of a manufacturing process. Each manufacturing process performed on a manufacturing machine 特征 is characterized by various physical conditions and attributes detected by the sensor and various operational parameters that are collected to correlate as processing data. Each distinct physical condition or attribute detected by the sensor, as well as each operational parameter, can be a distinct processing variable of the processed data. Examples of process variables representative of detector data include process chamber pressure, susceptor temperature, RF forward power, and RF reflected power. Examples of process variables indicative of operational parameters include flow rate settings (e.g., for chemical reagents) and throttling settings (e.g., for a chamber exhaust vacuum pump). The sensor, manufacturing machine, and process controller can be monitored during processing to collect the process variables in a timely manner at successive points. In a specific embodiment, each process variable is applied to a particular process. Alternatively, one or more processing variables can be applied to only a portion of a particular process. In a specific embodiment, sensor measurements and operational parameters at different steps in a process represent distinct processing variables (modeled as additional scale in the model space 11 200811978). This can be useful, for example, if multiple steps are performed at a manufacturing location in a machine with different operating parameter settings. Example In a three-step manufacturing process, one of the susceptor temperatures during the three-step process is considered to be three distinct processing variables. It may be beneficial to have individual scales of the processing steps, such as when multiple layers are deposited on a single processing work piece, or when different steps of a process are exposed to different processing conditions (eg, pressure, temperature) and many more). The processing controller 150 controls the operating parameters of the manufacturing machine 110. The process controller can control the process chamber temperature of the manufacturing machine 110, the vacuum, the gas injection system, and the like. The process controller 150 can store a one or process recipe 170. Each recipe 170 defines the operational parameters of the machine 110 on each step of the process. In a specific embodiment, recipe 1 70 is loaded into manufacturing machine 110 by process controller 150. The data communication link 160 can include a common communication link and it is wireless or wired. The data can be transferred between the machine 110, the processing controller 150, and the statistical processing monitoring device in a raw or processed format. In one embodiment, a Semiconductor Equipment Standard (SECS) interface can be used. In other embodiments, a statistical model, a high-speed SECS message service (HSMS) interface, etc., may be used. The statistical processing monitoring device 105 may be a single server that is analyzed from the manufacturing machine. The device 1 5 5 and the processing controller enter the processing data. In addition, the statistical processing monitoring device 105 can be a multi-server and/or a computer. In a specific embodiment, the statistical device 1 〇 5 includes an error detector 1 2 5, an error detector 1 30, and a tool such as, and the degree is divided into a plurality of air pumps. Manufacturing can also be manufactured 105 communication general name. For 150 contains Supervised Errors 12 200811978 Reporter 150. The statistical processing monitoring device 1〇5 175. In a specific embodiment, the statistical processing is monitored in one or more processing controllers 150. In addition, the device 105 can also be a distinguishable and/or independent device. The storage device 175 includes a multivariate statistical model 135 for processing measurement data, an error feature 140, and in a specific embodiment, The storage device 175 is one of the computers or servers of the system 105. The single storage device device 1 75 can be external to the statistical processing monitoring device embodiment. The storage device 175 includes multiple storage devices. The redundant processing measurement data (processing data) of the backed up data can be stored in the library 120. The stored processing data can be used for each of the displays 110 and for drift and propensity on such manufacturing machines. In a specific embodiment, the multivariate statistics stored to produce one or more of the following are generated, and the multivariate statistical model 丨3 5 can be stored. The error detector database 1 4 contains multiple signs, which are described further below. In a specific sensor database 1 40 is an associated database. For example, the repository 140 may include a misclassification table, which may store classes, and include a related error feature, which may store faults. 0 also includes the storage device device 105 being included in the statistical processing monitoring device library 120, one or more cautions. Category 1 4 5. In the processing of monitoring equipment. In addition, the storage 105. In a specific device, the storage copies. In the process of processing measurement data for the processing of such manufacturing machines, etc., the model 1 3 5 is used. Once in the misclassification and error specific case of the storage device 175, the error detection 'error detector' - the definition of the error classification feature of the list 13 1311117978 In one embodiment, a green period is used to receive multiple multivariate Statistical model data. The training produces one or a collection of processing operations on the machine that are known and/or controlled to include a particular manufacturing process. In training i specific manufacturing, + self-processing and processing data can be used to generate statistics (such as collecting variable arrays, etc.). These statistics collect collectable melons (3)1^), variables, and specific treatments on a particular machine—or y slaves

135。-初始集之錯誤特徵基於在訓練===計模型 資料也能夠被建立及加入該錯誤檢測器資:1收14集。的處理 誤特徵為表示-(各定錯誤之處理情況的特徵::: 誤:徵可為包含貢獻至一(各)4寺定錯誤之處理資料:二 清單、表單、或其他資料結構。 〃、 在-具體實施例中,各多變量統計模型施加至僅 -製造機器。丨者,來自一所相符機器類型之兩或以上製 造機器110的處理資料可被聚集以建立可施加運行在嗜兩 或以上之製造機器之一或多處理的一單一錯誤檢測模/型 (多變量統計模型)。此外’針對一第一製造機器所發展之 一錯誤檢測模型可被施加至該相同類型之一第二機器(例 如相同模型)。 各多變篁統什椒型1 3 5包含一或多個模型計量。模型 計量為純量值,其特徵化一組處理資料及一模型之間的偏 移量。在一具體實施例中,該模型計量包含平方預測誤差 (Squared Prediction Error,其一般指稱為 SPE、Qres、或 Q ),以及Hotelling’s T2。模型計量也包含组合測量(例 14 200811978 如組合式多變量索引(CMI ))。該等測量之各者相應於估 計被監控之處理資料具有如已用來建立該模型之训練資料 之相同統計之機率的一不同方法。上述的統計及測量可根 據一般的統計演算法而被計算。 一或多個多變量模型可利用主要部件分析(PCA }來 轉換一 M-維度處理變數空間至彼此互相垂直的主要部件 之一 N-維度空間,其中Μ為處理變數之數,且N較小於 Μ。PCA計算一組Μ特徵向量(M eigenvectors )及μ特 徵數值(eigenvalues ),其中各個別的特徵向量轉換處理變 數資料至該主要部件空間之一個別維度,且各特徵數值係 成常比於一相應特徵數值所表示之變量。為了簡化該主要 部件空間(降低該主要部件空間之維度),相應於該N最 大特徵數值之該N特徵向量被保持在該模型中:該其他特 徵向量被放棄或忽略。保持在該模型中之主要部件的數目 N為使用者所選擇之該模型的一參數。該主要部件(n) 之數目可基於在當使用一較小數值N時解釋較少之資料變 化的一模型及當使用一較大數值N時被超過指定之模型間 的交易而被選擇。 一旦一或多個多變量統計模型已經產生,他們可由錯 誤偵測器125所使用來監控在製造機器11〇上所運行之處 理。錯誤偵測器125經由執行各式統計處理監控方法而分 析處理資料,該等方法之各者係基於至少一變量統計模 型。在一具體實施例中,錯誤偵測器125直接接收來自該 製造機器110、感測器155及/或處理控制器15〇之處理測 15 200811978 量資料(處理資料)。在另一具體實施例中,錯誤偵測器 125可接收來自處理測量資料庫1 20之處理資料。在又另 一具體實施例中,該錯誤偵測器1 2 5接收來自該兩者來源 的處理資料。 為了偵測錯誤,錯誤偵測器1 25計算針對被監控之各 處理的處理資料之各統計,且比較該經計算之統計與適當 多變量統計模型之相應統計。該統計針對一模型計量或針 對多重模型計量(例如 T2、SPE、CMI )而比較。如果一 或多個該模型計量超過一預先定義之門檻值(指稱為一信 任限制或控制限制),可偵測一錯誤。在一具體實施例中, 各模型計量具有為使用者選擇之門檻數值。該選擇的門檻 數值可表示一錯誤警告之風險(如果該門檻值太低)及無 法偵測一錯誤之風險(如果該門檻值太高)間的一折衷。 其中多重計量被計算,如果該計量之任何一者超過門檻數 值,則引起錯誤。另者,僅如果特定計量超過門檻數值或 僅如果多重計量超過門檻數值可指出特定錯誤。 一旦一錯誤已經由該錯誤偵測器1 2 5所識別,由錯誤 檢測器1 3 0分析該錯誤。錯誤檢測器1 3 0比較該錯誤與錯 誤特徵之一收集。各錯誤特徵表示代表一(各)特定錯誤 之處理情況。在一具體實施例中,錯誤特徵1 40為具有對 一(各)特定錯誤之一較大統計貢獻之各處理變數的經排 列列表。該處理變數可按其個別貢獻之相應量的順序而被 排列。另者,該錯誤特徵可為基於至一錯誤之統計貢獻而 排列處理變數的一表單、樹狀或其他資料結構。錯誤檢測 16 200811978 最 徵 符 庫 誤 果 誤 該 例 利 含 )、 在 δ又 理 機 1 3 0可比較各個經儲存錯誤特徵與具有針對目前錯誤之 大貢獻之各處理變數之經排列列表。當存在該等錯誤特 之一者與該目前錯誤間的一高層級相似度時,報導出一 合0 各個錯誤特徵係相關聯於儲存在該錯誤檢測資料 140之一或多個錯誤分類。該錯誤分類可指出產生一錯 之一實際問題或者該目前錯誤之可能的造因。例如,如 該錯誤特徵指出該最大貢獻處理變數為矽烷流率,該錯 分類可指出饋給矽烷進入一處理室的一數值已經失常。 錯誤報導1 65產生指示錯誤類別1 45之何者相應至 目前錯誤的錯誤報導。該錯誤報導可被傳送至被網接至 統計處理監控設備1 0 5之一或多客戶端(未顯示,且可 如本地電腦、遠端電腦、個人數位助理(PDAs )、呼叫器 行動電話等等)。錯誤報導1 65也可使製造機器1 1 0關機 警告一機器、或執行其他適當動作。 第2圖描述產生錯誤分類之方法200的一具體實施 之流程圖。該方法可由處理邏輯執行,該處理邏輯可包 硬體(例如電路、專用邏輯、可程式化邏輯、微碼等等 軟體(例如在處理裝置上運行的指令)、或以上之組合。 一具體實施例中,方法200可由第1圖之統計處理監控 備105來執行。 參照第2圖,方法200開始於獲取指出一錯誤的處 資料(方塊205 )。該處理資料能夠自一或多者之製造 器、感測器、處理控制器、及一處理測量資料庫所獲取 17 200811978 該處理資料包含例如處理室溫度、壓力、氣 例如’如果該溫度太高或太低、該氣體流率 力不同於目前處理所需求等等,該處理資 誤。該處理資料可在一訓練時段期間或經製 處理監控期間被收集。可有意地導致該錯誤 資料’或該錯誤可非有意地產生。在一具體 處理資料在一錯誤被發現已經發生之前可被 該處理資料之分析而觸發一錯誤。 在方塊210中’建立一新的錯誤分類( 一具體實施例中,該新的錯誤分類經由館存 錯誤檢測資料庫中之該錯誤分類的一或多 立。該一或多個參數可定義具有充分具體性 個可能性錯誤造因的該錯誤分類。該新的錯 特定錯誤之一單一發生之後而被建立。 在方塊215,判定貢獻至該錯誤之處理 獻。貢獻處理變數可按相應於其個別貢獻之 而被排列,之後指稱為錯誤貢獻。該等處理 錯誤貢獻能夠經由任何常見統計方法而判定 錯誤之判定處理變數之相應貢獻的一範例式 J. Chemometrics 200 1,第 15 章第 7 1 5-742 ) Sergio Valle, Michael J· Piovoso 等人之 Multiblock Analysis with Application to Process Monitoring”,其在此併入以作為參 測錯誤之判定處理變數之相應貢獻之另外的 體流率等等。 不穩定、該壓 钭可指出一錯 造產品之實際 來產生該處理 實施例中,該 獲取,且基於 方塊2 0 5 )。在 收集地定義一 ί固參數而被建 來識別一或多 誤分類可在一 變數的相應貢 相關量的順序 變數之個別的 。對一經偵測 方法係揭示於 [,S · Joe Qin, “On Unifying Decentralized 照。對一經偵 範例性方法係 18 200811978 揭示在 J. Chemometrics 2000,第 14 卷,第 725-736 頁, Α·Κ. Conlin,E.B. Martin,A.J. Morris 等人之“ConHdence Limits For Contribution Plots”,其在此併入以作為參照。 對一經偵測錯誤之判定處理變數之相應貢獻之又另外的範 例性方法係揭示在 Chemometrics and Intelligent Laboratory Systems 2000,第 51 卷,第 95-1 1 4 頁,Johan A· Westerhuis,Stephen Ρ· Gurden,Age K. Smilde 等人之 “Generalized Contribution Plots in Multivariate Statistical Process Monitoring” ,其在此併入以作為參 照。判定相應貢獻之其他方法也可被使用。 在一具體實施例中,該錯誤貢獻可獨立於用來決定該 錯誤貢獻之一統計方法。因此,特定於某統計方法(例如 協方差計量、主要部件特徵向量等等)的各參數不會被併 入該錯誤分類及/或與該錯誤分類相關之錯誤特徵。所以, 該錯誤分類可相等應用至適當統計方法(例如具調適模型 之統計方法(例如超時上調適特定參數之模型))。在該使 用一調適模型之一統計方法的案例中,該模型包含主要部 件分析(p c A ),其中調適主要部件之一數目及/或調適自 處理變數空間至主要部件空間的一轉換。 在一具體實施例中,該處理變數之錯誤貢獻可由兩或 以上不同統計方法(例如以一靜力模型及一調適模型)獨 立地判定。因為不同的統計模型而可助益於較精確地判定 各不同錯誤之錯誤貢獻。 在方塊220中,指派貢獻排名至貢獻處理變數,藉以 19 200811978 產生一新的錯誤特徵。在一具體實施例中,選擇該貢獻處 變數之一子集。該子集可包含錯誤貢獻大於一貢獻門檻 值(之後稱為顯者性界限,significanCe limit)之該等處 理變數。該顯著性界限可根據各種方法而計算,該等方法 包合例如如上討論之Qin、c〇nlin、以及Westerhuis等。 連績編號的排名可接著基於其個別貢獻之相關量的順序而 被指派至該子集中之各處理變數。 該經 界限)可 誤特徵被 限。另者 如用來決 生該新的 由排除一 計地微小 之錯誤特 在一 各處理變 各具有符 數字可被 限可被放 在方 差異至少 限。該變135. - The error characteristics of the initial set are based on the training === model. The data can also be created and added to the error detector: 1 collection of 14 episodes. The processing error is characterized by - (the characteristics of the processing of each error::: error: the levy can be the processing data including the contribution to the (4) 4 temple error: two lists, forms, or other data structures. In a particular embodiment, each multivariate statistical model is applied to a manufacturing-only machine. The processing data from two or more manufacturing machines 110 of a matching machine type can be aggregated to establish an operationally usable Or a single error detection mode/type (multivariate statistical model) of one or more of the above manufacturing machines. Furthermore, one of the error detection models developed for a first manufacturing machine can be applied to one of the same types. Two machines (for example, the same model) Each variable pattern of peppers 1 3 5 contains one or more model measures. The model is measured as a scalar value, which characterizes a set of processing data and an offset between the models. In a specific embodiment, the model metering includes a squared prediction error (generally referred to as SPE, Qres, or Q), and Hotelling's T2. Model metering also includes Combined measurements (Example 14 200811978 such as Combined Multivariate Index (CMI)). Each of these measurements corresponds to an estimate of the probability that the monitored data being processed has the same statistics as the training data used to establish the model. Different methods. The above statistics and measurements can be calculated according to general statistical algorithms. One or more multivariate models can use the main component analysis (PCA } to convert an M-dimensional processing variable space to the main components that are perpendicular to each other. One of the N-dimensional spaces, where Μ is the number of processing variables, and N is smaller than Μ. PCA calculates a set of Μ eigenvectors and μ eigenvalues, where each eigenvector transforms the variables Data to an individual dimension of one of the main component spaces, and each feature value is a variable that is often expressed by a corresponding feature value. To simplify the main component space (reducing the dimension of the main component space), corresponding to the N largest The N eigenvector of the feature value is held in the model: the other eigenvector is discarded or ignored. Staying in the model The number of components to be N is a parameter of the model selected by the user. The number of the main components (n) can be based on a model that interprets less data changes when a smaller value N is used and when using a comparison The large value N is selected by the transaction between the specified models. Once one or more multivariate statistical models have been generated, they can be used by the error detector 125 to monitor the processing run on the manufacturing machine. The error detector 125 analyzes the processed data by performing various statistical processing monitoring methods, each of which is based on at least one variable statistical model. In one embodiment, the error detector 125 receives directly from the manufacturing machine. 110, sensor 155 and / or processing controller 15 processing measurement 15 200811978 quantity data (processing data). In another embodiment, error detector 125 can receive processing data from processing measurement database 120. In yet another embodiment, the error detector 1 25 receives processing data from both sources. In order to detect an error, the error detector 125 calculates various statistics for the processed data of each process being monitored, and compares the calculated statistics with the corresponding statistics of the appropriate multivariate statistical model. This statistic is compared for a model metric or for multiple model metrics (eg T2, SPE, CMI). An error can be detected if one or more of the models are measured beyond a predefined threshold (referred to as a credit limit or control limit). In a specific embodiment, each model meter has a threshold value selected for the user. The threshold value of the selection may indicate a compromise between the risk of an error warning (if the threshold is too low) and the risk of not detecting an error (if the threshold is too high). Where multiple measures are calculated, if any of the measurements exceeds the threshold value, an error is caused. In addition, a specific error can be indicated only if the specific metering exceeds the threshold value or if the multiple metering exceeds the threshold value. Once an error has been identified by the error detector 1 2 5, the error is analyzed by the error detector 130. Error Detector 1 3 0 compares one of the error and error characteristics collected. Each error signature represents the processing of a particular error. In one embodiment, the error signature 140 is a ranked list of processing variables having a larger statistical contribution to one of the specific errors. The processing variables can be arranged in the order of their respective amounts of individual contributions. Alternatively, the error signature can be a form, tree or other data structure that arranges processing variables based on statistical contributions to an error. Error detection 16 200811978 征 库 该 该 该 该 、 、 、 1 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在When there is a high level similarity between the one of the error exceptions and the current error, the report derives a 0. Each error signature is associated with one or more error classifications stored in the error detection material 140. This misclassification can indicate the actual problem that caused one of the errors or the possible cause of the current error. For example, if the error characteristic indicates that the maximum contribution processing variable is a decane flow rate, the misclassification may indicate that a value that feeds decane into a processing chamber has become abnormal. Error Reporting 1 65 produces an error report indicating which of the error categories 1 45 corresponds to the current error. The error report can be transmitted to one or more clients that are networked to the statistical processing monitoring device 105 (not shown, and can be like a local computer, a remote computer, a personal digital assistant (PDAs), a pager mobile phone, etc. Wait). Error Reporting 1 65 can also shut down the manufacturing machine 1 10 0. Warning a machine, or perform other appropriate actions. Figure 2 depicts a flow diagram of one embodiment of a method 200 of generating an error classification. The method can be performed by processing logic, which can include hardware (eg, circuitry, dedicated logic, programmable logic, microcode, etc., such as instructions running on a processing device), or a combination of the above. In an example, method 200 can be performed by statistical processing monitoring device 105 of Figure 1. Referring to Figure 2, method 200 begins by obtaining information indicating an error (block 205). The processing data can be manufactured from one or more. Obtained by the instrument, sensor, processing controller, and a processing measurement database. 17 200811978 The processing data includes, for example, process chamber temperature, pressure, gas such as 'if the temperature is too high or too low, the gas flow rate force is different The processing data is currently processed, etc., and the processing data can be collected during a training session or during processing monitoring. The erroneous data can be intentionally caused or the error can be generated unintentionally. The processing data can be triggered by an analysis of the processing data before an error is found to have occurred. In block 210, 'create a new error. Class (In a specific embodiment, the new misclassification is based on one or more of the misclassifications in the library error detection database. The one or more parameters may define a cause of sufficient specificity error. The error classification is established after one of the new error specific errors is established. At block 215, the contribution contribution to the error is determined. The contribution processing variables may be arranged in accordance with their individual contributions, and then referred to as Error contribution. An example of how the processing error contribution can determine the corresponding contribution of the error decision processing variable via any common statistical method. J. Chemometrics 200 1, Chapter 15 7 1 5-742 ) Sergio Valle, Michael J· "Multiblock Analysis with Application to Process Monitoring" by Piovoso et al., which incorporates additional body flow rates, etc., as a corresponding contribution to the decision processing variables of the test error. Unstable, the pressure may indicate a mistake. The actual product is produced in the processing embodiment, the acquisition, and based on the block 2 0 5). The definition of a solid parameter in the collection Was built to identify one or more of misclassification can be individually Gong related quantity corresponding sequence of the variable of a variable. The method for detecting based upon disclosed in [, S · Joe Qin, "On Unifying Decentralized illuminated. The Detective Model Methodology Department 18 200811978 is disclosed in J. Chemometrics 2000, Vol. 14, pp. 725-736, Conlin, EB Martin, AJ Morris et al., "ConHdence Limits For Contribution Plots", This is incorporated by reference. A further exemplary method for determining the corresponding contribution of a detected error to a detected error is disclosed in Chemometrics and Intelligent Laboratory Systems 2000, Vol. 51, pp. 95-1 1 4, Johan A. Westerhuis, Stephen G Gurden "Generalized Contribution Plots in Multivariate Statistical Process Monitoring" by Age K. Smilde et al., which is incorporated herein by reference. Other methods of determining the corresponding contribution can also be used. In a specific embodiment, the error contribution can be independent of one of the statistical methods used to determine the error contribution. Thus, parameters specific to a statistical method (e.g., covariance measure, primary component feature vector, etc.) are not included in the error classification and/or error characteristics associated with the error classification. Therefore, the error classification can be equally applied to appropriate statistical methods (such as statistical methods with adapted models (such as models that time-adjust to a particular parameter). In the case of a statistical method using one of the adaptation models, the model includes a main component analysis (p c A ) in which the number of primary components is adapted and/or a transition from the processing variable space to the primary component space is adapted. In a specific embodiment, the error contribution of the processing variable can be independently determined by two or more different statistical methods (e.g., using a static model and an adaptive model). Because of the different statistical models, it can help to more accurately determine the error contribution of different errors. In block 220, the assignment contribution ranks to the contribution processing variable, whereby a new error signature is generated by 19 200811978. In a specific embodiment, a subset of the contribution variables is selected. The subset may contain such processing variables that the error contribution is greater than a contribution threshold (hereinafter referred to as the significant limit, significantCe limit). The significance limit can be calculated according to various methods, such as Qin, c〇nlin, and Westerhuis as discussed above. The ranking of the scoring numbers can then be assigned to the respective processing variables in the subset based on the order of the relevant amounts of their individual contributions. The boundary is erroneously limited. In addition, if it is used to determine the new error, the number of errors is limited, and each of the processing variables can be limited to a difference of at least. The change

^擇子集外之處理變數(錯誤貢獻少 被指派排名為無或零之一錯誤貢獻或者可自該錯 省略。在一具體實施例中,預先決定該顯著性界 ’該顯著性界限可在使用一或多個統計方法(例 疋各處理變數之個別錯誤貢獻之一統計方法)產 特徵值之時而被決定。一顯著性界限之使用可經 給疋錯誤(對該錯誤之所有處理變數的貢獻係統 )之檢測增進雜訊抗擾性。包含一顯著性界限 徵的範例係在如下表1及表2中描述。 具體實施例中,可在被包含在一新的錯誤特徵之 數之數子上/又有界限。所以,只要該等處理變數 合該顯著性界限之錯誤貢獻,各處理變數之任何 包含在一新的錯誤特徵中。另者,一上及/或下界 置在貢獻各處理變數至一錯誤特徵的數字上。 鬼2 2 5處理邏輯判定該貢獻處理變數是否具有 於一門檻值之個別錯誤貢獻,之後指稱為變化界 化界限可為‘使用者選定或自動地選定。該變化 20 200811978 界限為一固定值,或其可為一相關值(例如基於該等處理 變數之一者之該錯誤貢獻的一比率)。在一具體實施例中, 一統計信任範圍係針對各處理變數之錯誤貢獻而被計算。 該變化界限可基於該等處理變數之經計算的統計信任範 圍。在一具體實施例中,如果該等處理變數具有重疊信任 範圍,該等處理變數差異至小於該變化界限。 如果該等處理變數差異至小於該變化界限(例如具有 重疊信任範圍),該方法前進至方塊23 0。如果該等處理變 數沒差異至小於該變化界限,該方法前進至方塊2 3 5。在 一具體實施例中,該等處理變數是或否差異至該變化界 限,該方法前進至方塊2 3 5。 在方塊23 0,貢獻排名範圍被指派至一或多個貢獻處 理變數。各貢獻排名範圍包含差異至小於該變化界限之各 處理變數的貢獻排名。該等處理變數之各者被指派一包含 處理變數本身貢獻排名及該其他經包含處理變數之貢獻排 名兩者的一排名範圍。在一具體實施例中,該排名範圍為 一連續數化貢獻排名的一範圍。例如,一排名範圍可為 1-2,其包含一第一處理變數之該貢獻排名1及一第二處理 變數之該貢獻排名 2。不同處理變數可具有同一或重疊排 名範圍。經由替代絕對貢獻排名或除絕對貢獻排名外而排 名各範圍來定義錯誤特徵可增進雜訊抗擾性(例如其中各 處理變數之間之一相關排名可能由預期的統計變動而被交 換)。具有排名範圍之錯誤特徵的範例在如下表 3及表4 中而被描述。 21 200811978 在方塊2 3 5,該新的錯誤特徵被儲存在該錯誤 料庫中。該經儲存的錯誤特徵係關聯於該新的錯誤 在一具體實施例中,對該錯誤特徵之各處理變數之 貢獻值(例如〇 · 9、0.5等等)沒被儲存,且替代地 貢獻排名(例如1、2、3等等)。另者,該實際貢獻 儲存,或該貢獻值及該貢獻排名可被儲存。 處理變數 對錯誤之貢獻 貧獻排名 A 0.9 1 B 0.8 2 C 0.4 3 D 0.2 none E 0.07 none F < 0.02 none G < 0.02 none Η < 0.02 none 表1 :第一錯誤特徵 表1描述根據第2圖之方法200所產生之一第一 特徵。根據一第一統紀錄析方法,該等處理變數A、E D及E之統計貢獻個別被決定為0 · 9 ' 0 · 8、0 · 4、0.2及 該等剩餘處理變數 F、G、Η之統計貢獻被決定為 0.02。該等處理變數按其貢獻至一錯誤之量的順序 名。該第一錯誤特徵具有一 〇 · 3之顯著性界限,因此 變數A、B、C被考慮以貢獻至該錯誤且為該第一錯領 之部分。處理變數D至Η因為他們的錯誤貢獻小於該 性界限而被排除於該第一錯誤特徵。 測資 類。 實際 存該 可被 錯誤 卜C、 0.07° 小於 來排 ,處理 t特徵 :顯著 22 200811978 處理變數 對錯誤之貢獻 貢獻排名 A 0.9 1 B 0.8 2 C 0.4 -3 D 0.2 none E 0.07 none F < 0.02 none G < 0.02 none Η < 0.02 none 表2 :第二錯誤特徵 表2描述根據第2圖之方法200所產生之一第二錯誤 特徵。用於產生該表1之第一錯誤特徵的相同處理資料被 用來產生該第二錯誤特徵。該等處理變數按其貢獻至一錯 誤之量的順序來排名。該第二錯誤特徵具有一 〇 · 1之顯著 性界限,因此處理變數A、B、C、D被考慮以貢獻至該錯 誤。 處理 對錯誤 信任 貢獻 排名 變數 之貢獻 範圍 排名 範圍 A 0.9 0.82-0.98 1 1-2 B 0.8 0.73-0.87 2 1-2 C 0.4 0.45-0.55 3 3 D 0.2 0.15-0.25 4 4 E 0.07 0.06-0.11 none none F < 0.02 N/A none none G < 0.02 N/A none none 23 200811978 Η < 0.02 Ν/Α none none 表3 :具排名範圍之第三錯誤特徵 表3描述根據第2圖之方法200所產生之一第三錯誤 特徵。該第三錯誤特徵包含由該等處理變數之個別信任範 圍所判定之一排名範圍。名為「信任範圍」之行顯示各處 理變數之該錯誤貢獻的該信任範圍之上及下界限。因為該 變數A之信任範圍的下界限(0.8 2 )係低於變數B之信任 範圍的上界限(0 · 8 7 ),處理變數A及B之信任範圍重疊。 因此,處理變數A及B,其根據經計算之錯誤貢獻具有1 及2之個別貢獻排名,並且被指派一包含各其他者之貢獻 排名的一排名範圍(各者被指派一 1 -2的排名範圍)。 該第三錯誤特徵具有一 0 · 1之顯著性界限,且因此處 理變數A、B、C及D被考慮以貢獻至該錯誤且為該第一 錯誤特徵之部分。處理變數E至Η因為他們的錯誤貢獻小 於該顯著性界限而被排除於該第一錯誤特徵。在一具體實 施例中,處理變數Ε因為其信任範圍之上界線大於該0.1 之顯著性界限而被包含在該錯誤特徵中。 在一具體實施例中,貢獻處理變數之至少一列表(由 名稱或其他指示器識別的)及各貢獻處理變數之一排名範 圍被包含在該錯誤特徵。可選擇地,一或多個經計算之錯 誤貢獻、信任範圍及貢獻排名也被包含做為該錯誤特徵之 部分。 24 200811978 處理 對錯誤 信任 貢獻 排名 變數 之貢獻 範圍 排名 範圍 A 0.9 0.82-0.98 1 1-2 B 0.8 0.73-0.87 2 1-3 C 0.7 0.65-0.75 3 2-3 D 0.2 0.15-0.25 4 4 E 0.07 0.06-0.11 none none F < 0.02 Ν/Α none none G < 0.02 Ν/Α none none Η < 0.02 Ν/Α . none none 表4 ··具排名範圍之第四錯誤特徵 表4描述根據第2圖之方法2 00所產生之一第四錯誤 特徵。該第四錯誤特徵係同一於表三之該錯誤特徵,其中 除了處理變數C之經計算錯誤貢獻及排名範圍外。在一具 體實施例中,該處理變數B之錯誤貢獻的信任範圍重疊變 數A之信任範圍及變數C之信任範圍兩者。因此,變數B 之排名範圍包含變數A之貢獻排名(1)及變數C之貢獻 排名(.3 )以及其本身之貢獻排名(2 )。所以,處理變數B 之排名範圍為1-3。因為處理變數A具有重疊處理變數B 之信任範圍的一信任範圍,理變數A具有一 1 -2之排名範 圍。相同地,因為處理變數C之信任範圍重疊處理變數B 之信任範圍,因此處理變數C具有一 2-3之排名範圍。 第3圖描述經由使用錯誤特徵之檢測錯誤之方法3 00 的一具體實施利之流程圖。該方法可由處理邏輯執行,該 處理邏輯可包含硬體(例如電路、專用邏輯、可程式化邏 輯、微碼等等)、軟體(例如在處理裝置上運行的指令)、 25 200811978 或以上之組合。在一具體實施例中,方法300可由第1圖 之統計處理監控設備1 05來執行。 現參照第3圖,方法3 0 0開始於處理邏輯偵測一錯誤 (方塊3 0 5 )。在一具體實施例中,該錯誤係基於自一或多 個製造機器、感測器、處理控制器、以及一處理測量資料 庫所接收的處理資料而被偵測。在方塊3 1 0中,判定貢獻 至該錯誤之處理變數。如果超過一控制界限,一處理變數 可貢獻至一錯誤,否則其貢獻至一未預料及/或未期望的結 果。 在方塊 3 1 5,處理邏輯判定該貢獻處理變數之相關貢 獻。在一具體實施例中,處理邏輯按對該偵測之錯誤的其 個別貢獻的相關量之順序排名該處理變數。該偵測之錯誤 排名可或不包含該處理變數之該錯誤貢獻的數值。在一具 體實施例中,該經偵測的錯誤排名僅為該等處理變數之一 順序列表。例如,如果對處理變數A、B、C、D及E之 bEO之能之無獻該 ο 、 獻獻限 一 貢 且 AD 貢貢界派誤 , 4 , 誤誤性指錯除 0.C錯錯著或果排 5'A'該何顯除如被 0.、 對任該排,將 9'B 定之於名中 E ο 表判下小排例數 卜列也限有誤範變 。 0.序輯界具錯的^ D 為順邏性)°測段&、 別該理著略偵前該 C 分為處顯忽經在D A 獻將,該及該。接、 貢 名中在 C 自名 , B 關排例使性可排.2為 相誤施致小數誤 G 應 該錯實以微變錯為名 之的體限其理測限排 誤測具界到處偵界誤 錯偵一性量各經性錯 的經在著考的的著測 測該 顯被值零顯偵 偵然 一夠一 或之經 26 200811978The processing variables outside the subset are selected (the error contribution is less assigned to one or none of the error contributions or may be omitted from the error. In a specific embodiment, the significance boundary is predetermined] the significant limit may be The use of one or more statistical methods (eg, one of the individual error contributions of each of the processing variables) is used to produce the eigenvalues. The use of a significant limit can be given to the error (all processing variables for the error) The detection of the contribution system) enhances the noise immunity. An example of including a significant limit is described in Tables 1 and 2 below. In a specific embodiment, it can be included in a new number of error features. There are limits on the number. Therefore, as long as the processing variables combine the error contribution of the significant limit, any of the processing variables are included in a new error feature. Alternatively, an upper and/or lower bound is contributed. Each processing variable is on a number of error features. Ghost 2 2 5 processing logic determines whether the contribution processing variable has an individual error contribution to a threshold value, and then refers to the change boundary boundary can be ' The user selects or automatically selects. The change 20 200811978 is a fixed value, or it may be a correlation value (eg, a ratio of the error contribution based on one of the processing variables). In a particular embodiment A statistical trust range is calculated for the error contribution of each processing variable. The change bound may be based on the calculated statistical trust range of the processing variables. In a specific embodiment, if the processing variables have overlapping trust ranges The process variables vary to be less than the change limit. If the process variables differ to be less than the change limit (e.g., have overlapping trust ranges), the method proceeds to block 23 0. If the process variables are not different to less than the change Limit, the method proceeds to block 2 3 5. In a particular embodiment, the process variables are or not different to the change limit, the method proceeds to block 2 3 5. At block 23 0, the contribution ranking range is assigned To one or more contribution processing variables. Each contribution ranking range contains a contribution to each process variable that is less than the variation limit. Each of the processing variables is assigned a ranking range that includes both the processing variable itself contribution ranking and the other contribution ranking including the processing variables. In a particular embodiment, the ranking range is a continuous numbering A range of contribution rankings. For example, a ranking range may be 1-2, which includes a contribution ranking 1 of a first processing variable and a contribution ranking 2 of a second processing variable. Different processing variables may have the same or overlapping rankings. Scope. Defining an error feature by substituting an absolute contribution ranking or ranking in addition to an absolute contribution ranking may improve noise immunity (eg, where one of the correlation variables between the various processing variables may be exchanged by expected statistical changes) An example of an error feature with a range of ranges is described in Tables 3 and 4 below. 21 200811978 At block 2 3 5, the new error signature is stored in the error library. The stored error signature is associated with the new error. In a specific embodiment, the contribution values (e.g., 〇·9, 0.5, etc.) of the processing variables of the error feature are not stored, and the ranking is instead contributed. (eg 1, 2, 3, etc.). Alternatively, the actual contribution is stored, or the contribution value and the contribution ranking can be stored. Dealing with variables contributing to errors Rank A 0.9 1 B 0.8 2 C 0.4 3 D 0.2 none E 0.07 none F < 0.02 none G < 0.02 none Η < 0.02 none Table 1: First error characteristics Table 1 Description One of the first features produced by the method 200 of FIG. According to a first-order record analysis method, the statistical contributions of the process variables A, ED, and E are individually determined to be 0 · 9 ' 0 · 8, 0 · 4, 0.2, and the remaining processing variables F, G, and The statistical contribution was determined to be 0.02. These processing variables are in the order of their contribution to the wrong amount. The first error signature has a significant limit of 〇 · 3, so the variables A, B, C are considered to contribute to the error and are part of the first fault. The variables D to 处理 are excluded from the first erroneous feature because their error contribution is less than the limit. Measurement class. The actual existence can be erroneously C, 0.07° less than the row, processing t characteristics: significant 22 200811978 processing variables contribution to the error contribution A 0.9 1 B 0.8 2 C 0.4 -3 D 0.2 none E 0.07 none F < 0.02 None G < 0.02 none Η < 0.02 none Table 2: Second Error Characteristics Table 2 describes one of the second error characteristics produced by the method 200 of Figure 2. The same processing material used to generate the first error signature of Table 1 is used to generate the second error signature. These processing variables are ranked in the order in which they contribute to the amount of an error. The second error signature has a significant limit of 〇 · 1, so the processing variables A, B, C, D are considered to contribute to the error. The contribution range of the processing contribution to the error trust contribution ranking range is 0.9 0.92-0.98 1 1-2 B 0.8 0.73-0.87 2 1-2 C 0.4 0.45-0.55 3 3 D 0.2 0.15-0.25 4 4 E 0.07 0.06-0.11 none None F < 0.02 N/A none none G < 0.02 N/A none none 23 200811978 Η < 0.02 Ν/Α none none Table 3: Third error feature with ranking range Table 3 describes the method according to Figure 2. 200 produces one of the third error features. The third error signature includes a ranking range determined by the individual trust ranges of the processing variables. The line named "trust range" shows the upper and lower bounds of the trust contribution of the error contribution of the various variables. Since the lower bound (0.8 2 ) of the trust range of the variable A is lower than the upper bound of the trust range of the variable B (0 · 8 7 ), the trust ranges of the processing variables A and B overlap. Thus, variables A and B are processed, which have an individual contribution ranking of 1 and 2 based on the calculated error contribution, and are assigned a ranking range that includes the rankings of the contributions of each of the others (each is assigned a ranking of 1-2) range). The third error signature has a significant limit of 0·1, and thus the processing variables A, B, C, and D are considered to contribute to the error and are part of the first error feature. The variables E to 处理 are excluded from the first erroneous feature because their erroneous contribution is less than the saliency limit. In a specific embodiment, the processing variable is included in the error signature because the boundary above its trust range is greater than the significance limit of 0.1. In a specific embodiment, at least one list of contribution processing variables (identified by a name or other indicator) and a ranking range of each contribution processing variable are included in the error signature. Alternatively, one or more calculated error contributions, trust ranges, and contribution rankings are also included as part of the error feature. 24 200811978 Processing Contributions to Error Trust Contribution Ranking Variables Range of Terms A 0.9 0.82-0.98 1 1-2 B 0.8 0.73-0.87 2 1-3 C 0.7 0.65-0.75 3 2-3 D 0.2 0.15-0.25 4 4 E 0.07 0.06-0.11 none none F < 0.02 Ν/Α none none G < 0.02 Ν/Α none none Η < 0.02 Ν/Α . none none Table 4 ··The fourth error feature with ranking range Table 4 Description The second error feature generated by the method 2 00 of Figure 2. The fourth error signature is the same as the error feature of Table 3, except that the calculated error contribution and ranking range of the variable C are processed. In a specific embodiment, the trust range of the error B of the processing variable B overlaps both the trust range of the variable A and the trust range of the variable C. Therefore, the ranking range of variable B includes the contribution ranking of variable A (1) and the contribution of variable C (.3) and its contribution ranking (2). Therefore, the processing variable variable B has a ranking range of 1-3. Since the processing variable A has a trust range that overlaps the trust range of the variable B, the rational variable A has a ranking range of 1 - 2. Similarly, since the trust range of the processing variable C overlaps the trust range of the processing variable B, the processing variable C has a ranking range of 2-3. Figure 3 depicts a flow chart of a particular implementation of the method 300 of detecting errors via the use of error signatures. The method can be performed by processing logic, which can include hardware (eg, circuitry, dedicated logic, programmable logic, microcode, etc.), software (eg, instructions running on a processing device), 25 200811978 or a combination thereof . In a specific embodiment, method 300 can be performed by statistical processing monitoring device 105 of FIG. Referring now to Figure 3, method 300 begins with processing logic detecting an error (block 3 0 5). In one embodiment, the error is detected based on processing data received from one or more manufacturing machines, sensors, processing controllers, and a processing measurement database. In block 301, the processing variable contributing to the error is determined. If a control limit is exceeded, a process variable can contribute to an error that would otherwise contribute to an unexpected and/or unexpected result. At block 3 15 5, processing logic determines the contribution of the contribution processing variable. In one embodiment, the processing logic ranks the processing variables in the order of the correlation amount of their individual contributions to the detected errors. The detected error ranking may or may not include the value of the error contribution of the processing variable. In a specific embodiment, the detected error ranking is only a sequential list of the processing variables. For example, if you are not able to deal with the abilities of the bEOs of variables A, B, C, D and E, the contribution is limited and the AD tribute is wrong, 4, the error is wrong. The wrong or fruit row 5 'A' should be divided as 0., to the ranks, 9'B is set in the name E ο table, the number of small rows is limited. 0. The sequence of the wrong circle is ^ _ _ _ _ _ _ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° In the name of the tribute, in the name of C, the order of B can make the sex can be ranked. 2 is the miscalculation of the decimal error G should be wrong with the name of the micro-error, the limit of the measurement limit Everywhere in the investigation, the wrongness of the investigation, the amount of each sexual error, the test of the test, the value of the test, the value of the test, the zero-detection, the detection of one or the other. 26 200811978

在方塊3 2 0,處理邏輯判定 4貞測錯誤。其將猎由比較該經债 徵來達成。在一具體實施例中, 全符合該等錯誤特徵之一者,接 為關於該錯誤特徵之一錯誤分類 名與一具有排名範圍之一錯誤特 中之各處理變數的排名落入該錯 之排名範圍内,一確切符合發生 經偵測錯誤可符合多重錯誤特徵 等錯誤特徵之各者被報導。 該錯誤特 測排名與 如果該經 著該經偵 。當比較 徵時,如 誤特徵中 徵何者符 各經建立 偵测錯誤 合該經 錯誤特 排名完 被檢測 經偵測錯誤排 測錯誤 測之錯誤 果該經偵 之相同處理變數 在一具體實施例中,一 在這樣的一發生中,該 如果在該目前錯誤之一錯誤排名及一現存錯誤特徵之 間偵測一符合,該方法前進至方㉟325。如果以一現存錯 誤特徵無偵測到一符合,該方法前進至方塊34〇。 二在一具體實施例中,至少一符合錯誤特徵為一混合錯 誤特徵。一混合錯誤特徵為一包含被針對不同統計模型而At block 3 2 0, the processing logic determines 4 to detect an error. It will be achieved by comparing the debts. In a specific embodiment, one of the error characteristics is one of the error characteristics, and the ranking of the error classification name and one of the processing variables having one of the ranking ranges is one of the wrong rankings. Within the scope, each one that exactly matches the error characteristic that the detected error can meet multiple error characteristics is reported. The error is advertised and ranked if it is the subject of the investigation. When comparing the levies, if the traits of the erroneous features are found to be detected, the error is detected, the error is detected, and the error is detected. The same processing variable is detected in a specific embodiment. In one such occurrence, if a match is detected between one of the current error error rankings and an existing error feature, the method proceeds to square 35325. If no match is detected with an existing error feature, the method proceeds to block 34. In a specific embodiment, at least one of the coincident error features is a mixed error feature. A mixed error feature for an inclusion is targeted to different statistical models

獨立计算之各獨立的貢獻排名及/或排名範圍。例如,一混 σ錯誤特徵之一第一處理變數或具有由一第一統計模型 "周適模型)而計异之為1的一貢獻排名以及具有 2 一第二統計模型(例如一靜力模型)而計算之為2的一 貝獻排名。π ^ . 所以,在處理監控期間,一經偵測之錯誤貢獻 將包含 ’卞斜各處理變數之該等適當統計模型之各者所決定 之一獨: 的排名。這將因為不同的統計模型可較精確決定 回應於;^相 、 +頰型錯誤之該等處理變數的錯誤貢獻而有所助 益。 27 200811978 處理變 數 第一模型 排名範圍 第二模型 排名範圍 A 1-2 3-4 B 1-2 3-4 C 3 1 D none 2 E none none F none none 表5 :混合式錯誤特徵 處理變 第一模型 第二模型 數 排名範圍 排名範圍 A 2 3 B 1 4 C 3 1 D 4 2 E none none F none noneIndependently calculated independent contribution rankings and/or ranking ranges. For example, one of the mixed sigma error features, the first processing variable, or a contribution ranking that is 1 by a first statistical model "circumference model; and has a second statistical model (eg, a static force) The model is calculated as a ranking of 2 beneficiaries. π ^ . Therefore, during processing monitoring, the detected error contribution will include a ranking that is determined by each of the appropriate statistical models of the skewed processing variables. This will be facilitated by the fact that different statistical models can more accurately determine the erroneous contribution of these processing variables in response to the ^ and + cheek errors. 27 200811978 Processing Variables First Model Ranking Range Second Model Ranking Range A 1-2 3-4 B 1-2 3-4 C 3 1 D none 2 E none none F none none Table 5: Hybrid Error Feature Processing A model second model number ranking range of the range A 2 3 B 1 4 C 3 1 D 4 2 E none none F none none

錯誤 之具 偵測 理資 之錯 為各 表6:使用第一及第二統計模型之經偵測錯誤 表5描述根據本發明之一具體實施例之一混合式 特徵的一範例。表6描述一根據本發明另具體實施例 有同步使用兩模型所產生之一混合式錯誤排名的一經 錯誤。如所示,使用兩不同模型而獨立決定該相同處 料之排名範圍及/或貢獻排名可產生不同結果。該表5 誤特徵顯示表6之該經偵測錯誤之一切確符合,其因 28 200811978 模型之各處理變數之表6中的該錯誤貢獻排名係在表5之 該混合式錯誤特徵之模型及該相應處理變數之排名範圍 内。 在特定例證中,可由一第一模型偵測,但不由一第二 模型。因此,該第二模型之該處理變數之錯誤貢獻可能為 微小(例如低於該顯著性界限),從而不有用於分類。在該 案例中,處理邏輯可建立一混合式錯誤特徵,其中該第二 模型之每個處理變數具有一無(none)的排名範圍及/或貢 獻排名。 參照第3圖,在方塊3 2 5中,處理邏輯識別與該符合 錯誤特徵相關的錯誤分類。在一具體實施例中,各錯誤特 徵係關聯於一單一錯誤分類。另者,多重錯誤分類可關聯 於一錯誤特徵。例這將發生於如兩錯誤分類具有相同錯誤 特徵之處。 在方塊 3 3 0,處理邏輯判定該符合錯誤特徵之任者是 否相關聯於多重錯誤分類。如果一錯誤特徵相關聯於多重 錯誤分類,該方法前進至方塊3 3 5。如果無錯誤特徵相關 聯於多重錯誤分類,該方法結束。另者,該方法可因任何 錯誤特徵是否相關聯於多重錯誤分類而結束。 在方塊3 3 5,報導一紀錄(tally ),該包含與該符合錯 誤特徵相關之該等錯誤分類之各者之數次的紀錄為一錯誤 之實際起因。此將有用於協助一使用者識別一目前錯誤之 實際起因。該紀錄可被儲存在該錯誤檢測資料庫中。在一 具體實施例中,在識別該目前錯誤之一實際起因後,該實 29 200811978 際起因被輸入該錯誤檢測資料庫中之紀錄。 在方塊340,建立一新的錯誤分類。在方塊345,產生 一新的錯誤特徵,其可關聯於該新的錯誤分類。該新的錯 誤分類及該新的錯誤特徵可根據第2圖之方法200而被產 生。另者,產生該新的錯誤分類及新的錯誤特徵之其他方 法也可使用。因此,當新的錯誤在實際處理產品期間遭遇 時,可將新的錯誤分類及新的錯誤特徵加入(例如至一多 變量統計模型)。在一具體實施例中,僅一錯誤之一單一範 例被需要來加入一新的錯誤分類及一相關新的錯誤特徵。 第4圖描述經由使用錯誤特徵之檢測錯誤之方法400 的一具體實施利之流程圖。該方法可由處理邏輯執行,該 處理邏輯可包含硬體(例如電路、專用邏輯、可程式化邏 輯、微碼等等)、軟體(例如在處理裝置上運行的指令)、 或以上之組合。在一具體實施例中,方法400可由第1圖 之統計處理監控設備1 0 5來執行。 參照第4圖,方法400開始於處理邏輯偵測一錯誤(方 塊4 0 5 )。在方塊4 1 0,判定貢獻至該錯誤之處理變數。在 方塊4 1 5,判定該貢獻處理變數之相關貢獻。 在方塊 420,判定符合該錯誤之錯誤特徵。在一具體 實施例中,考慮完全符合該錯誤之錯誤特徵。另者,考慮 部分符合一經偵測錯誤的錯誤特徵。例如,當同時發生多 重錯誤時,這將為有用。在這樣的一案例中,雖然一或多 個錯誤特徵可關聯於表示該經偵測錯誤之實際起因之錯誤 分類,無錯誤特徵將完全符合該經偵測之錯誤。在一具體 30 200811978 實施例中,如果無森^ 日―人々产人 “、、發現元全付合,僅考慮到部份符合一經 偵測錯誤的錯誤特冑。另者,是否發現一完全符合,考慮 4刀符合知將有益於例如確保一使用者提防與具有部分 符合之錯誤特徵相關+ Svfeit 4 3之嚴重的錯誤(例如造成嚴重良率損 失之錯誤)。 在方塊425,針對該完全及/或部分符合錯誤特徵判定 相付接近知刀(match cl〇seness s⑶π )。一相符接近得 刀表示 特徵及一經偵測錯誤間的一相似度。相符接近 得分可以各種方式而被計算。在一具體實施射,一相符 接近得分經由針對各處理變數指派一 2之值而判定,其中 該等處理變數的經偵測錯誤排名係在一給定錯誤特徵之一 適當排名範圍Μ,以及經由針對每個其他在該目前經偵測 錯誤之實際排名及該給定錯誤特徵兩者中具有一顯著性錯 誤貢獻U列如在該顯著性界限之上的一錯誤貢獻)之處^ 變數指派-1之值而判定。在其他具體實施例中,該先前 值2及i被乘以一權重因子,該權重因子係針對各處理變 數之排名為較局者而為較高。 在方塊4 3 0,捨棄具最低相符接近得分的錯誤特徵。 在-具體實施例中,除了具有該最高相符接近得分的X錯 誤特徵外’捨棄所有錯誤特徵。在其他具體實施例巾,捨 棄具有低於一門檻值之一錯誤貢獻之所有錯誤特徵。在另 一具體實施例中,沒有符合錯誤特徵被捨棄。 在方塊43 5,識別相關於該符合錯誤特徵之錯誤八 類。在方塊440,該經識別之錯誤特徵連帶 =、刀 工7合錯誤分 31 200811978 類之錯誤嚴重值(fauU severity values )及符合得分而被 報導。在一具體實施例中,各錯誤分類包含一錯誤嚴重值。 具有一低錯誤嚴重值之錯誤分類可造成對一經製造產品之 小至沒有的損害,同時具有高嚴重值之錯誤分類或顯著地 減低產品良率。因此,錯誤嚴重值能夠提示一使用者一錯 誤的重要性為如何。例如,關於具有一高相符接近得分但 一低錯誤嚴重值之一錯誤特徵的一錯誤分類或不被關注。 然而,關於具有一低相符接近得分但一高錯誤嚴重值之一 錯誤特徵的一錯誤分類將造成關注。 机何做 < 合錯誤的新 例證,其期望來劃分該錯誤特徵而成多重錯誤特徵。例如, 如果與該錯誤特徵相關之錯誤分類能夠被化分成較 誤分類’或如果發現到該原始錯誤特徵產生能:錯 該錯誤特徵而被校正的-不正確之錯誤檢測,#ij分= 特徵或可被期望。針對割分一 錯誤 乃主τ奵妇刀錯祆特徵及/或錯誤分翻 方法的一具體實施例於下第5圖中經解釋。 、一 第5圖描述經由使用錯寧特徵之檢測錯誤之方 實施利之流程圖。胃方法可由處理邏輯執行,: 處理邏輯可包含㈣(例如電路、專用邏輯、 》亥 輯、微碼等等)、軟體(例如在處理裝置邏 或以上之組合。在-具體實施例中,方法5。。可由第V、 之統計處理監控設備i 05來執行。 圖 參照第5圖,方法500開始於處理邏輯偵測_ 塊5〇5)。在方塊510,判定貢獻至該錯誤之處理變數、。在 32 200811978 方塊5 1 5,判定該貢獻處理變數之相關貢獻。 仕万塊5 2 0, 判定符合該錯誤之錯誤特徵。 在方塊525,處理邏輯判定該錯誤特徵是否包人 關貢獻範圍。如果該等錯誤特徵之一者確白八, 相 崎巴含一相關貢獻 範圍,該方法前進至方塊535。如果無錯誤牲供—人 饮付傲包含一相 關貢獻範圍,該方法前進至方塊530。 在方塊5 3 0,識別關於該符合錯誤特徵# 蹄秩分類, 該方法接著結束。 在方法5 3 5 ’該經判定之錯誤特徵被化分成多重錯誤 特徵。例如,在一具體實施例中,該經判定之供 吨妖将徵被 劃分成兩具區別性的錯誤特徵。該兩具區別性的錯誤特徵 經由具有至少一處理變數而為不同,其中該至φ 一 乂 處理變 數之在該兩新的錯誤特徵中之個別排名範圍馬在該原始錯 誤特徵中之該變數之排名範圍的不同子集,例如如表7、 8、9中之範例所示。 在方塊540,針對一或多個多重錯誤特徵加入一新的 錯誤分類。該新的錯誤分類可為與被劃分之該原始錯誤特 徵相關之一錯誤分類的子集。例如,如果該原始錯誤分類 為「缺陷靜電座(defective electrostatic chuck)」,該新的 錯誤分類將為「因為晶圓背端上之灰塵的缺陷靜電座 (defective electrostatic chuck because of particles on wafer backside)」。 在方塊5 4 5,該原始錯誤特徵及其相關錯誤分類之至 少一者經更新。更新過程包含窄化一錯誤特徵之一或多處 33 200811978 理變數的排名範圍,以及窄化一錯誤分類描述。例如, 果該原始錯誤分類原始為缺陷靜電座,該原始錯誤分類 被窄化至因為殘餘累積(residue accumulation)的缺陷 電座。 其有用於劃分一錯誤成與最公通影響兩處理變數之 基本錯誤的一錯誤特徵,其中一輕微不同基本起因影響 等兩處理變數之一者。一範例為共通用於保持在一半導 製程室内一陰極上之一半導體工作件之一靜電座的不同 誤模式。較佳被監控以檢測一靜電座中之各錯誤的兩處 變數為注入一工作件及一座間之一穴的氦流率,以及為 示在該陰極及一 RF電源供應器間所連接之一阻抗符合 路中一可調節調諧電容器之一電容的一處理控制參數值 由在該座上之過度殘餘累積所造成之一錯誤一般將被關 於該等處理變數兩者。然而,由該工作件之下面端上之 粒所造成之一錯誤一般僅相關聯於該氦流率。所以,與 義為一缺陷靜電座之一第一錯誤分類相關之一第一錯誤 徵將被化分成與定義為由該工作件之下端上之微粒所造 之一缺陷靜電座之一第二錯誤分類相關之一第二錯誤 徵。該第一錯誤分類將接著重新定義為由該座上之殘餘 積所造成之一缺陷靜電座。 如 或 靜 該 體 錯 理 表 網 〇 聯 微 定 特 成 特 累 處理變數 排名範圍 A 1-2 B 1-2 C 3 34 200811978 D 4 表7:具排名範圍之原始錯誤特徵 處理變數 排名範圍 A 1 B 2 C 3 D 4 表8 .·基於錯誤特徵劃分之新的錯誤特徵 處理變數 排名範圍 A 2 B 1 C 3 D 4 表9 :基於錯誤特徵劃分之經更新的錯誤特徵 表7描述具有一排名範圍之一錯誤特徵。表8及表 描述根據第5圖之方法5 0 0之經由劃分表7之錯誤特徵 產生之兩新的錯誤特徵。在表7之原始錯誤特徵中,處 變數A及B係被指派一 1 -2的排名範圍,且該原始錯誤 徵係關聯於識別為X的一錯誤分類。表8之該新的錯誤 徵係關聯於一新的錯誤分類Y,且分別具有針對處理變 A及B之一貢獻排名1及2。表9之經更新錯誤特徵係 聯於一經更新錯誤分類X且分別具有針對處理變數A及 之一貢獻排名2及1。 第6圖描述一範例性形式之計算系統6 0 0中之一機 9 而 理 特 特 數 關 B 器 35 200811978 之圖式表示,其中具有一組指令可執行且用以造成該機器 執行此中所討論之任何一或多種方法。在各替代式具體實 施例中,可連接(例如網路連接)該機器至一區域網路、 企業網路、或網際網路中之其他機器。該機器可操作在一 客戶-伺服端網路環境中之一伺服器或一客戶端的能力,或 操作為一點對點(或分散式)網路環境中之一點(peer ) 機器。該機器可為一個人電腦、桌上型電腦、一機上盒 (set-top box,STB)、個人數位助理PDA、行動電話、網 路應用器、伺服器、網路路由器、切換器或橋接器、或任 何能夠執行指定由機器所採取之動作的一組指令(序列或 非序列)的機器。再者,當僅描述一單一機器時,該項目 “機器”應也可被採用以包含個別地或連接地執行一組 (多組)指令來執行任合如此中所述之一或多方法的任何 機器集合。 該範例式電腦系統600包含一處理裝置(處理器) 602、主要記憶體604 (例如唯讀記憶體、快閃記憶體、動 態隨機存取記憶體(例如同步動態隨機存取記憶體、或 Rambus動態隨機存取記憶體)等等)、靜態記憶體606 (例 如快閃記憶體、靜態隨機存取記憶體等等)、以及資料儲存 裝置6 1 8,其係透過匯流排63 0與其他者進行通信。 處理器602表示一或多個一般意圖之處理裝置(例如 微處理器、中央處理單元等等)。特別來說,該處理器602 可為一複雜指令集計算(CISC )微處理器、精簡指令集計 算(RISC )微處理器、或超長指令字組(VLIW )微處理 36 200811978 器、或可實作其他指令集之處理器或可實作一組 集之處理器。該處理器602也可為一或多特定意 裝置(例如一應用特定積體電路(appHcati〇n integrated circuit (ASIC))、一現場可程序化邏輯 一數位信號處理器、網路處理器、或以上類似者〕 器602係經組態以執行處理邏輯626以供執行此 操作及步驟。 該電腦糸統6 0 〇更包含一網路介面裝置6 〇 8 系統600也包含一視訊顯示單元61 0 (例如一 (LCD)或陰極射線管(CRT))、字母與數字的 6 1 2 (例如鍵盤)、指標控制裝置(例如滑鼠)、以 產生裝置6 1 6 (例如揚聲器)。 該身料儲存裝置618可包含機器可存取{ 63 1 ’其上可儲存一或多組可運用此中所述之任何 方法或功能的指令。該軟體622也可在經由該電腦 執行期間’被完全或至少部分地駐存在該主要記 及/或處理器602内,該主要記憶體604及該處理 可構成機器可存取儲存媒體。該軟體622更可透 介面裝I d 2 而在一網路620上被傳輸及接收。 ^機器可存取媒體631也可用於儲存定義使 a的負料結構集以及定義使用者目錄的使用 資料結構焦芬冰 再果及使用者喜好也可被儲存在電腦系統 他區2,例如靜態記憶體006。 田η亥機器可存取儲存媒體$ 3丨在一範例性具 合式指令 圖之處理 specific 閘陣列、 I。該處理 中所述之 。該電腦 液晶顯不 輸入裝置 及一信號 諸存媒體 一或多種 i系統600 憶體604 器602也 過該網路 用者使用 者喜好。 600之其 體實施例 37 200811978 中被顯示為一單一媒體,該項目“機器可存取儲存媒 應可被採用以包含可儲存一或多組指令的一單一媒體 重媒體(例如一中央化或分散式資料庫、以及/或相關 及伺服器)。該項目“機器可存取儲存媒體”應也可被 以包含能夠儲存、編碼或承載一組指令的人和媒體, 執行本發明之一或多方法。該項目“機器可存取儲 體”應因此被採用以包含(但不限於)固態記憶體、 及磁性媒體、及載波信號。 應可暸解到以上之描述僅為說明意圖並不引以而 限制。許多其他的具體實施例皆可在熟悉該項技藝者 及暸解上述描述後而加以實作。因此,本發明之範疇 參照如下隨附之申請專利範圍而被決定,並且本發明 含如該等申請專利範圍之各均等物的所有範疇。’ 【圖式簡單說明】 第1圖係描述統計處理監控系統之具體實施例; 第2圖係描述一種產生錯誤分類之方法的一具體 例之流程圖; 第3圖描述一種經由使用錯誤特徵檢測錯誤之方 一具體實施例之流程圖; 第4圖描述一種經由使用錯誤特徵檢測錯誤之方 另一具體實施例之流程圖; 第5圖描述一種經由使用錯誤特徵檢測錯誤之方 又另一具體實施例之流程圖; 體” 或多 快取 採用 用以 存媒 光學 作為 閱讀 應該 亦包 實施 法的 法的 法的 38 200811978 第6圖描述一範例性形式之計算系統中之一機器之圖 式表示,其中具有一組指令可執行且用以造成該機器執行 此中所討論之任何一或多種方法。 【主要元件符號說明】 11 0製造機器 1 5 5感測器 1 7 0配方 1 5 0處理控制器 1 6 0資料通信鏈結 1 2 5錯誤偵測器 1 3 0錯誤檢測器 165錯誤報導器 120處理測量資料庫 1 3 5多變量統計模型 140錯誤檢測資料庫 175儲存裝置 1 0 5統計處理監控設備 205接收指出錯誤之處理資料 2 1 0建立新的錯誤分類 2 1 5判定貢獻處理變數之相應貢獻 220指派貢獻排名至貢獻處理變數以產生新的錯誤特徵 225重疊信任範圍? 39 200811978 23 0指派貢獻排名範圍至貢獻處理變數 235儲存新的錯誤特徵 305偵測錯誤 3 1 0判定貢獻處理變數 3 1 5判定貢獻處理變數之相應貢獻 320符合錯誤特徵? 3 2 5識別關於符合錯誤特徵之錯誤分類 3 3 0關於多重錯誤分類之錯誤特徵? 33 5指示錯誤紀錄(Tally) 3 40加入新的錯誤分類 345加入新的錯誤特徵 405偵測錯誤 4 1 0判定貢獻處理變數 4 1 5判定貢獻處理變數之相應貢獻 420判定何者錯誤特徵符合錯誤 425判定符合錯誤特徵之相符得分 43 0捨棄具最低相符得分之錯誤特徵 43 5識別關於相符錯誤特徵之錯誤分類 440報導錯誤分類、相符得分及嚴重值 5 0 5偵測錯誤 5 1 0判定貢獻處理變數 5 1 5判定貢獻處理變數之相應貢獻 5 20判定相符錯誤特徵 5 2 5錯誤特徵包含相應貢獻範圍? 40 200811978 5 3 0識別關於相符錯誤特徵之錯誤分類 53 5劃分相符錯誤特徵成多重錯誤特徵 5 40針對一或多重錯誤特徵加入新的錯誤分類 545更新經劃分之錯誤特徵及相關錯誤分類 602處理器 626處理邏輯 6 04主記憶體 622軟體 6 06靜態記憶體 608網路介面裝置 620網路 6 1 0視訊顯示 612字母與數字的輸入裝置 6 1 4指標控制裝置 6 1 6信號產生裝置 6 1 8輔助記憶體 631機器可存取儲存媒體 622軟體 41Errors Detecting Logic Errors Table 6: Detected Errors Using First and Second Statistical Models Table 5 describes an example of a hybrid feature in accordance with one embodiment of the present invention. Table 6 describes an error in a hybrid error ranking generated by the simultaneous use of two models in accordance with another embodiment of the present invention. As shown, using two different models to independently determine the ranking range and/or contribution ranking of the same material can produce different results. The error characteristics of Table 5 show that all of the detected errors in Table 6 are true, and the error contribution rankings in Table 6 of the processing variables of the 2008 200811978 model are based on the model of the mixed error feature in Table 5 and The corresponding processing variable is within the ranking range. In a particular illustration, it may be detected by a first model, but not by a second model. Therefore, the error contribution of the processing variable of the second model may be small (e.g., below the significance limit) and thus not used for classification. In this case, the processing logic can establish a hybrid error signature, wherein each processing variable of the second model has a none ranking range and/or a contribution ranking. Referring to Figure 3, in block 3 2 5, the processing logic identifies an error classification associated with the error-compliant feature. In a specific embodiment, each error feature is associated with a single error classification. In addition, multiple error classifications can be associated with an error signature. This will happen if the two error classifications have the same error characteristics. At block 303, processing logic determines whether any of the compliant error characteristics is associated with multiple error classifications. If an error feature is associated with multiple error classifications, the method proceeds to block 3 3 5. If no error features are associated with multiple error classifications, the method ends. Alternatively, the method can end because any error signature is associated with multiple misclassifications. At block 3 3 5, a record (tally) is reported, the record containing the number of times each of the error categories associated with the error signature is the actual cause of the error. This will have the actual cause of assisting a user in identifying a current error. The record can be stored in the error detection database. In a specific embodiment, after identifying the actual cause of the current error, the actual cause of the 200811978 is entered into the record in the error detection database. At block 340, a new error classification is established. At block 345, a new error signature is generated that can be associated with the new error classification. This new misclassification and the new error signature can be generated in accordance with method 200 of FIG. Alternatively, other methods of generating this new misclassification and new error characteristics can be used. Therefore, when new errors are encountered during the actual processing of the product, new misclassifications and new error features can be added (eg to a multivariate statistical model). In one embodiment, only a single instance of a single error is required to incorporate a new error classification and a related new error feature. Figure 4 depicts a flow chart of a particular implementation of a method 400 of detecting errors via the use of erroneous features. The method can be performed by processing logic, which can comprise hardware (e.g., circuitry, special purpose logic, programmable logic, microcode, etc.), software (e.g., instructions executed on a processing device), or a combination of the above. In a specific embodiment, method 400 can be performed by statistical processing monitoring device 105 of Figure 1. Referring to Figure 4, method 400 begins with processing logic detecting an error (block 4 0 5 ). At block 410, the processing variable contributing to the error is determined. At block 4 15 5, the contribution of the contribution processing variable is determined. At block 420, an error signature that matches the error is determined. In a specific embodiment, an error feature that fully complies with the error is considered. In addition, consider some of the error features that match a detected error. This can be useful, for example, when multiple errors occur simultaneously. In such a case, although one or more error signatures may be associated with an incorrect classification indicating the actual cause of the detected error, the error-free feature will fully comply with the detected error. In a specific 30 200811978 embodiment, if there is no forest, the person is born, and the discovery is fully paid, only some of the error characteristics that meet the detected error are considered. In addition, whether a complete match is found Considering a 4-knife compliance would be useful, for example, to ensure that a user is wary of a serious error associated with a partially compliant error feature (eg, a bug that causes a serious yield loss). At block 425, for the complete / or partially conform to the error feature to determine the match close knives (match cl〇seness s (3) π). A match close to the knife represents a similarity between the feature and a detected error. The match close score can be calculated in various ways. Specifically, the one-shot proximity score is determined by assigning a value of 2 to each processing variable, wherein the detected error ranking of the processing variables is within a proper ranking range of one of the given error characteristics, and via Others have a significant error contribution in both the actual ranking of the currently detected error and the given error feature. A erroneous contribution above the sexual limit) is determined by the value of the variable assignment - 1. In other embodiments, the previous values 2 and i are multiplied by a weighting factor for each processing variable. The ranking is higher for the game. At block 430, the error feature with the lowest matching proximity score is discarded. In a particular embodiment, all error features are discarded except for the X error feature with the highest matching proximity score. In other embodiments, all error features having an error contribution of less than one threshold are discarded. In another embodiment, no error features are discarded. At block 43 5, the identification is related to the error. The traits of the traits are classified as eight categories. At block 440, the identified erroneous features are associated with the faulty severity value (fauU severity values) of the 200811978 class and the coincidence scores are reported. In a particular embodiment, Each error classification contains an error severity value. An error classification with a low error severity value can result in little to no damage to the manufactured product, and The misclassification of the severity value or the product yield is significantly reduced. Therefore, the error severity value can indicate the importance of a user's error. For example, an error feature with one high-match close score but one low error severity value A misclassification or not being concerned. However, a misclassification of an error feature with a low match close score but a high error severity value will cause concern. What does the machine do? Dividing the error feature into multiple error features. For example, if the error classification associated with the error feature can be classified into a misclassification 'or if the original error feature is found to be capable of: correcting the error feature and being corrected - no Correct error detection, #ij分=Features or can be expected. A specific embodiment of the method for splitting an error is a main τ 奵 刀 及 及 及 及 及 及 及 及 及 及 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 5 depicts a flow chart for implementing the error by using the error detection feature. The gastric method can be performed by processing logic: The processing logic can include (d) (eg, circuitry, dedicated logic, mega, microcode, etc.), software (eg, in processing device logic or a combination of the above. In a particular embodiment, the method 5. The execution can be performed by the statistical processing monitoring device i 05 of the Vth. Referring to Figure 5, the method 500 begins with processing logic detection_block 5〇5). At block 510, a process variable contributing to the error is determined. At 32 200811978 block 5 1 5, the contribution of the contribution processing variable is determined. Shiwan block 5 2 0, determines the error characteristics that match the error. At block 525, processing logic determines if the error feature includes a contribution range. If one of the error characteristics is ambiguous, and the phase includes a relevant contribution range, the method proceeds to block 535. If there is no error in the supply - the person has a range of related contributions, the method proceeds to block 530. At block 530, the category classification is identified with respect to the erroneous feature # hoof, and the method then ends. The determined error signature is divided into multiple error signatures in method 5 3 5 '. For example, in one embodiment, the determined metrics are divided into two distinct erroneous features. The two distinctive erroneous features are different by having at least one processing variable, wherein the φ 乂 processing variable has an individual ranking range among the two new erroneous features, the variable in the original erroneous feature Different subsets of the ranking range are shown, for example, in the examples in Tables 7, 8, and 9. At block 540, a new error classification is added for one or more multiple error signatures. The new misclassification can be a subset of the misclassification associated with the original error feature being divided. For example, if the original error is classified as a "defective electrostatic chuck," the new misclassification will be "Defective electrostatic chuck because of particles on wafer backside." "." At block 545, at least one of the original error signatures and their associated error classifications is updated. The update process involves narrowing down one of the error characteristics or multiple locations. The ranking range of the 200811978 arguments, and the narrowing-error classification description. For example, if the original misclassification was originally a defective electrostatic seat, the original misclassification was narrowed to a defective electric station due to residual accumulation. It has an error feature for dividing the basic error of the two processing variables into one error and the most common one, wherein one of the two different processing variables affects one of the two processing variables. An example is the common mis-mode for sharing an electrostatic seat of one of the semiconductor workpieces on a cathode in a half-guide chamber. The two variables that are preferably monitored to detect errors in an electrostatic seat are the turbulence rates injected into a workpiece and a hole in between, and one of the connections between the cathode and an RF power supply. An error in a process control parameter value whose impedance meets one of the capacitances of an adjustable tuning capacitor in the path is caused by excessive residual accumulation on the block will generally be related to both of the process variables. However, one of the errors caused by the particles on the lower end of the workpiece is generally only associated with the turbulence rate. Therefore, the first error sign associated with one of the first misclassifications of a defective electrostatic seat will be split into a second error defined as one of the defective electrostatic blocks created by the particles on the lower end of the workpiece. One of the second errors associated with the classification. This first misclassification will then be redefined as one of the defective electrostatic pads caused by the residual product on the seat. Such as or static of the body erroneous table network 微 微 定 特 特 特 特 特 特 特 A A A A A A A A A A A A A A A A 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表1 B 2 C 3 D 4 Table 8 • New error feature based on error feature processing variable ranking range A 2 B 1 C 3 D 4 Table 9: Updated error signature based on error feature partitioning Table 7 description has one One of the wrong range features. Tables 8 and Tables describe two new error characteristics resulting from the error signature of Table 7 in accordance with Method 5 of Figure 5. In the original error signature of Table 7, the variables A and B are assigned a ranking range of 1 - 2, and the original error signature is associated with a misclassification identified as X. The new error in Table 8 is associated with a new error classification Y, and has rankings 1 and 2 for one of the processing changes A and B, respectively. The updated error signatures of Table 9 are linked to the updated error classification X and have rankings 2 and 1 for the processing variable A and one of the contributions, respectively. Figure 6 depicts a diagram of an exemplary form of computing system 600 and a graphical representation of 200811978, in which a set of instructions is executable and used to cause the machine to execute therein. Any one or more of the methods discussed. In alternative embodiments, the machine can be connected (e.g., networked) to a local area network, a corporate network, or other machine in the Internet. The machine can operate as a server or a client in a client-server network environment, or as a peer machine in a peer-to-peer (or decentralized) network environment. The machine can be a personal computer, a desktop computer, a set-top box (STB), a personal digital assistant PDA, a mobile phone, a web application, a server, a network router, a switch or a bridge. Or any machine capable of executing a set of instructions (sequence or non-sequence) specifying the actions taken by the machine. Moreover, when only a single machine is described, the item "machine" should also be employed to include executing a set (sets) of instructions individually or in connection to perform any one or more of the methods described herein. Any collection of machines. The exemplary computer system 600 includes a processing device (processor) 602, a main memory 604 (eg, a read-only memory, a flash memory, a dynamic random access memory (eg, synchronous dynamic random access memory, or Rambus). Dynamic random access memory (etc.), static memory 606 (eg, flash memory, static random access memory, etc.), and data storage device 618, which pass through busbar 63 0 and others Communicate. Processor 602 represents one or more processing devices (e.g., microprocessors, central processing units, etc.) that are generally intended. In particular, the processor 602 can be a Complex Instruction Set Computing (CISC) microprocessor, a Reduced Instruction Set Computing (RISC) microprocessor, or a Very Long Instruction Set (VLIW) microprocessing 36 200811978, or A processor that implements other instruction sets or a processor that can be implemented as a set. The processor 602 can also be one or more specific devices (eg, an application specific integrated circuit (ASIC)), a field programmable logic-digital signal processor, a network processor, or The above similar device 602 is configured to execute processing logic 626 for performing the operations and steps. The computer system 60 includes a network interface device 6 〇 8 The system 600 also includes a video display unit 61 0 (eg one (LCD) or cathode ray tube (CRT)), letters and numbers 6 1 2 (eg keyboard), indicator control devices (eg mouse), to produce device 6 16 (eg speaker). The storage device 618 can include a machine accessible {63 1 'on which can store one or more sets of instructions that can utilize any of the methods or functions described herein. The software 622 can also be 'completed' or during execution via the computer. At least partially resident in the primary memory and/or processor 602, the primary memory 604 and the processing may constitute a machine-accessible storage medium. The software 622 is further permeable to the interface I d 2 in a network 620 It is transmitted and received. ^ Machine Accessible Media 631 can also be used to store a set of negative data structures that define a and a user profile that defines the user directory. The focus and user preferences can also be stored in the computer system in his area 2, such as static. Memory 006. Tian 亥 机器 machine can access the storage medium $ 3 丨 in a sample-specific instruction map processing specific gate array, I. The processing is described in the process. The computer LCD display input device and a signal The storage medium one or more i system 600 memory 604 602 also passed the user preference of the network. The embodiment of the system is shown as a single medium in 200811978, and the item "machine accessible storage medium should be Can be employed to include a single media heavy medium (eg, a centralized or decentralized database, and/or related and server) that can store one or more sets of instructions. The item "machine accessible storage media" should also be One or more methods of the present invention can be performed by a person and media containing a set of instructions capable of storing, encoding or carrying. The item "machine accessible storage" should therefore be employed to include However, it is not limited to solid state memory, magnetic media, and carrier signals. It should be understood that the above description is only intended to be illustrative and not limiting. Many other specific embodiments are known to those skilled in the art. The scope of the present invention is determined by the following description of the invention, and the scope of the invention is to be determined by the scope of the appended claims. 1 is a specific embodiment of a statistical processing monitoring system; FIG. 2 is a flow chart describing a specific example of a method for generating an error classification; FIG. 3 depicts a specific implementation of detecting an error by using an error feature. Flowchart of an example; Figure 4 depicts a flow diagram of another embodiment of detecting errors via the use of error signatures; Figure 5 depicts a flow diagram of yet another embodiment for detecting errors via the use of error signatures; "Body" or more caches using the method of storing media optics as a method of reading should also be implemented in the law 38 200811978 6 The Figure depicts a graphical representation of a machine in an exemplary form of computing system in which a set of instructions is executable and used to cause the machine to perform any one or more of the methods discussed herein. [Main component symbol description] 11 0 manufacturing machine 1 5 5 sensor 1 7 0 recipe 1 5 0 processing controller 1 6 0 data communication link 1 2 5 error detector 1 3 0 error detector 165 error reporter 120 processing measurement database 1 3 5 multivariate statistical model 140 error detection database 175 storage device 1 0 5 statistical processing monitoring device 205 receives processing data indicating error 2 1 0 to establish a new error classification 2 1 5 determination contribution processing variable The corresponding contribution 220 assigns a contribution ranking to the contribution processing variable to generate a new error feature 225 that overlaps the trust range? 39 200811978 23 0 Assignment contribution ranking range to contribution processing variable 235 Store new error characteristics 305 Detection error 3 1 0 Decision contribution processing variable 3 1 5 Determining the corresponding contribution of the contribution processing variable 320 Compliance error feature? 3 2 5 Identify misclassifications that match the characteristics of the error 3 3 0 What are the error characteristics of multiple error classifications? 33 5 indicates the error record (Tally) 3 40 adds a new error classification 345 adds a new error feature 405 detects the error 4 1 0 determines the contribution processing variable 4 1 5 determines the corresponding contribution of the contribution processing variable 420 determines which error feature meets the error 425 Judging the coincidence score that matches the error feature 43 0 discarding the error feature with the lowest match score 43 5 Identifying the misclassification of the coincident error feature 440 Reporting the error classification, coincidence score, and severity value 5 0 5 Detection error 5 1 0 Decision contribution processing variable 5 1 5 Determining the contribution of the contribution processing variable 5 20 Judging the coincidence error feature 5 2 5 The error feature contains the corresponding contribution range? 40 200811978 5 3 0 Identifying misclassifications for coincident error features 53 5 dividing coincidence error features into multiple error features 5 40 adding new error classifications for one or more error signatures 545 updating the partitioned error signatures and associated error classifications 602 processors 626 processing logic 6 04 main memory 622 software 6 06 static memory 608 network interface device 620 network 6 1 0 video display 612 letters and numbers input device 6 1 index control device 6 1 6 signal generating device 6 1 8 Auxiliary memory 631 machine accessible storage medium 622 software 41

Claims (1)

200811978 十、申請專利範圍: 1 · 一種檢測錯誤之方法,其包含: 偵測一錯誤; 判定貢獻至(contributed to)該錯誤的一或多處理變數; 判定該等一或多處理變數之各者的一相應貢獻;及 判定複數之錯誤特徵中之何者相符於該錯誤,一錯誤特 徵相符該錯誤,其係為如果該等一或多處理變數之相應貢 獻在所相符錯誤特徵之相應貢獻範圍内,其中該等錯誤特 徵之各者係相關於至少一錯誤分類。 2. 如申請專利範圍第1項所述之方法,其更包含: 如果該等複數錯誤特徵皆沒有相符於該錯誤,加入針對 錯誤之一新的錯誤特徵。 3. 如申請專利範圍第2項所述之方法,其更包含: 加入一新的錯誤分類;及 將該新的錯誤特徵與該新的錯誤分類相關聯。 4. 如申請專利範圍第2項所述之方法,其中該新的錯誤特 徵係在該錯誤之一單一發生之後而被加入。 5. 如申請專利範圍第1項所述之方法,其更包含: 將包含針對一第一處理變數之一第一相應貢獻範圍的 42 200811978 一第一錯誤特徵劃分成多重錯誤特徵,該多重錯誤特徵之 各者具有該第一處理變數之一不同相應貢獻,且該多重錯 誤特徵之各者與一不同錯誤分類相關聯。 6 ·如申請專利範圍第1項所述之方法,其中該多重錯誤特 徵係與一單一錯誤特徵相關聯。 7·如申請專利範圍第1項所述之方法,其更包含: 紀錄(tallying )各相關聯錯誤分類被確認為針對一特 定錯誤特徵之一實際錯誤的一次數。 8.如申請專利範圍第1項所述之方法,其更包含: 判定該複數之錯誤特徵中之何者部分地相符於該錯 誤,一部分相符發生,其係為如果該等一或多處理變數之 至少一者之相應貢獻不在一錯誤特徵之相應貢獻範圍内; 及 指派一相符接近得分(match closeness score)至該等 複數之錯誤特徵的一或多者。 9·如申請專利範圍第1項所述之方法,其中該等複數之錯 誤特徵的至少一者為一組合式錯誤特徵,該組合式錯誤 特徵係具有基於一第一統計模型之一第一錯誤特徵以 及基於一第二統計模型之一第二錯誤特徵。 43 200811978 10.—種包含資料之機器可存取媒體,其當由一機器所存取 時,造成該機器執行一方法,該方法包含: 偵測一錯誤; 判定貢獻至該錯誤的一或多處理變數; 判定該等一或多處理變數之各者的一相應貢獻;及 判定複數之錯誤特徵中之何者相符於該錯誤,一錯誤特 徵相符該錯誤,其係為如果該等一或多處理變數之相應貢 獻係在所相符錯誤特徵之相應貢獻範圍内,其中該等錯誤 特徵之各者係相關於至少一錯誤分類。 1 1 .如申請專利範圍第1 0項所述之機器可存取媒體,該方 法更包含: 如果該等複數錯誤特徵皆沒有相符於該錯誤,加入針對 錯誤之一新的錯誤特徵。 1 2.如申請專利範圍第1 1項所述之機器可存取媒體,該方 法更包含: 加入一新的錯誤分類;及 將該新的錯誤特徵與該新的錯誤分類相關聯。 1 3·.如申請專利範圍第1 0項所述之機器可存取媒體,該方 法更包含: 44 200811978 將包含針對一第一處理變數之一第一相應貢獻範圍的 一第一錯誤特徵劃分成多重錯誤特徵,該多重錯誤特徵之 各者具有該第一處理變數之一不同相應貢獻,且該多重錯 誤特徵之各者與一不同錯誤分類相關聯。 1 4 ·如申請專利範圍第1 0項所述之機器可存取媒體,該方 法更包含: 判定該複數之錯誤特徵中之何者部分地相符於該錯 誤,一部分相符發生,其係為如果該等一或多處理變數之 至少一者之相應貢獻不在一錯誤特徵之相應貢獻範圍内; 及 指派一相符接近得分至該等複數之錯誤特徵的一或多 者。 1 5 .如申請專利範圍第1 0項所述之機器可存取媒體,其中 該等複數之錯誤特徵的至少一者為一組合式錯誤特 徵,該組合式錯誤特徵係具有基於一第一統計模型之一 第一錯誤特徵以及基於一第二統計模型之一第二錯誤 特徵。 1 6 · —種統計處理監控系統,其包含: 一錯誤偵測器,其係與至少一製造機器相耦合,藉以接 收來自該至少一製造機器之處理資料,並用以基於該處理 45 200811978 資料而偵測一錯誤,該處理資料包含複數之處理變數; 一資料庫,其係用以儲存複數錯誤特徵,該等錯誤特 之各者係與至少一錯誤分類相關聯;及 一錯誤檢測器,其係與該錯誤偵測器以及該資料庫相 合,藉以判定貢獻至該錯誤之該等複數之處理變數的一 多者、判定該等一或多處理變數之各者的一相應貢獻、 及判定複數之錯誤特徵中之何者相符於該錯誤,一錯誤 徵相符該錯誤,其係為如果該等一或多處理變數之相應 獻係在所相符錯誤特徵之相應貢獻範圍内。 1 7 ·如申請專利範圍第1 6項所述之統計處理監控系統, 中如果該複數之錯誤特徵皆沒有相符於該錯誤,該錯 檢測器用以儲存一新的錯誤特徵於該資料庫中。 1 8.如申請專利範圍第1 7項所述之統計處理監控系統, 中該錯誤檢測器用以儲存一新的錯誤分類於該資料 中,並且將該新的錯誤特徵與該新的錯誤分類相關聯 1 9.如申請專利範圍第1 6項所述之統計處理監控系統, 中該錯誤檢測器更用以判定該複數之錯誤特徵中之 者部分地相符於該錯誤,一部分相符發生,其係為如 該等一或多處理變數之至少一者之相應貢獻不在一 誤特徵之相應貢獻範圍内,且指派一相符接近得分至 徵 輕 或 以 特 貢 其 誤 其 庫 〇 其 何 果 錯 該 46 200811978 等複數之錯誤特徵的一或多者。 20.如申請專利範圍第1 6項所述之統計處理監控系統, 中等複數之錯誤特徵的至少一者為一組合式錯誤 徵,該組合式錯誤特徵係具有基於一第一統計模型之 第一錯誤特徵以及基於一第二統計模型之一第二錯 特徵。 其 特 誤 47200811978 X. Patent application scope: 1 · A method for detecting errors, comprising: detecting an error; determining one or more processing variables contributing to the error; determining each of the one or more processing variables a corresponding contribution; and determining which of the complex features of the complex number corresponds to the error, an error characteristic conforming to the error, if the corresponding contribution of the one or more processing variables is within the corresponding contribution range of the matching error feature , wherein each of the error characteristics is related to at least one error classification. 2. The method of claim 1, wherein the method further comprises: if the complex error features are not consistent with the error, adding a new error feature for one of the errors. 3. The method of claim 2, further comprising: adding a new error classification; and associating the new error feature with the new error classification. 4. The method of claim 2, wherein the new error feature is added after one of the errors occurs. 5. The method of claim 1, further comprising: dividing a first error feature including a first corresponding contribution range for a first processing variable into a multiple error feature, the multiple error Each of the features has a different corresponding contribution of the first processing variable, and each of the multiple error features is associated with a different error classification. 6. The method of claim 1, wherein the multiple error feature is associated with a single error feature. 7. The method of claim 1, further comprising: tallying each associated error classification as a number of actual errors for one of the specific error characteristics. 8. The method of claim 1, further comprising: determining which of the complex features of the complex number partially coincides with the error, and a portion of the coincidence occurs if the one or more processing variables are At least one of the respective contributions is not within a corresponding contribution range of the erroneous feature; and assigning a match closeness score to one or more of the erroneous features of the plural. 9. The method of claim 1, wherein at least one of the complex error features is a combined error feature having a first error based on a first statistical model The feature is based on a second error feature of one of the second statistical models. 43 200811978 10. A machine-accessible medium containing data that, when accessed by a machine, causes the machine to perform a method, the method comprising: detecting an error; determining one or more contributions contributing to the error Processing a variable; determining a corresponding contribution of each of the one or more processing variables; and determining which of the complex features of the complex number is consistent with the error, an error characteristic conforming to the error, if the one or more processing The corresponding contribution of the variable is within the corresponding contribution range of the matching error feature, wherein each of the error features is related to at least one error classification. 1 1. The machine-accessible medium of claim 10, wherein the method further comprises: if the complex error features are not consistent with the error, adding a new error feature for one of the errors. 1 2. The machine-accessible medium of claim 11, wherein the method further comprises: adding a new error classification; and associating the new error feature with the new error classification. 1 3: The machine-accessible medium as claimed in claim 10, the method further comprising: 44 200811978 comprising dividing a first error feature for a first corresponding contribution range of a first processing variable A plurality of error features, each of the multiple error features having a different corresponding contribution of the first processing variable, and each of the multiple error features being associated with a different error classification. 1 4 - The machine-accessible medium of claim 10, wherein the method further comprises: determining which of the complex features of the plurality of parts is partially in accordance with the error, and a part of the coincidence occurs if the The corresponding contribution of at least one of the one or more processing variables is not within a corresponding contribution range of the erroneous feature; and one or more of the erroneous features that match the score to the complex number are assigned. The machine-accessible medium of claim 10, wherein at least one of the plurality of complex features is a combined error feature, the combined error feature having a first statistical One of the first error features of the model and a second error feature based on one of the second statistical models. 1 6 - a statistical processing monitoring system comprising: an error detector coupled to at least one manufacturing machine for receiving processing data from the at least one manufacturing machine and for processing based on the processing 45 200811978 Detecting an error, the processing data includes a plurality of processing variables; a database for storing complex error features, each of which is associated with at least one error classification; and an error detector Corresponding to the error detector and the database to determine a plurality of processing variables contributing to the complex number of the error, determining a corresponding contribution of each of the one or more processing variables, and determining a complex number Which of the error characteristics corresponds to the error, an error sign that matches the error, if the corresponding contribution of the one or more processing variables is within the corresponding contribution range of the matching error feature. 1 7 · If the error handling feature of the plural is not consistent with the error in the statistical processing monitoring system described in claim 16 of the patent application, the error detector is configured to store a new error feature in the database. 1 8. The statistical processing monitoring system according to claim 17, wherein the error detector is configured to store a new error classification in the data, and correlate the new error feature with the new error classification. In the statistical processing monitoring system described in claim 16, the error detector is further configured to determine that the error feature of the plurality is partially consistent with the error, and a part of the coincidence occurs. The corresponding contribution to at least one of the one or more processing variables is not within a corresponding contribution range of the erroneous feature, and assigning a match close to the score to levy or to confuse the cumber thereof is what is wrong 46 200811978 One or more of the wrong features of plurals. 20. The statistical processing monitoring system of claim 16, wherein at least one of the intermediate complex error features is a combined error signature, the combined error signature having a first based on a first statistical model The error feature and the second error feature based on one of the second statistical models. Its special mistake 47
TW96116165A 2006-05-07 2007-05-07 Ranged fault signatures for fault diagnosis TW200811978A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74664706P 2006-05-07 2006-05-07
US74664906P 2006-05-07 2006-05-07

Publications (1)

Publication Number Publication Date
TW200811978A true TW200811978A (en) 2008-03-01

Family

ID=44767897

Family Applications (2)

Application Number Title Priority Date Filing Date
TW96116165A TW200811978A (en) 2006-05-07 2007-05-07 Ranged fault signatures for fault diagnosis
TW096116174A TWI370358B (en) 2006-05-07 2007-05-07 Adaptive multivariate fault detection

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW096116174A TWI370358B (en) 2006-05-07 2007-05-07 Adaptive multivariate fault detection

Country Status (1)

Country Link
TW (2) TW200811978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793455B (en) * 2017-01-18 2023-02-21 荷蘭商Asml荷蘭公司 Servers for knowledge recommendation and defect classification and methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881398B2 (en) * 2012-11-06 2018-01-30 Applied Materials, Inc. Trend dynamic sensor imaging using contour maps to visualize multiple trend data sets in a single view
CN104797108B (en) * 2014-01-17 2017-09-22 神讯电脑(昆山)有限公司 Water door and the electronic installation with the water door
TWI639925B (en) * 2017-08-28 2018-11-01 Powerchip Technology Corporation Statistical method from mutiple variables to calculate productivity, to obtain priority and to optimize arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793455B (en) * 2017-01-18 2023-02-21 荷蘭商Asml荷蘭公司 Servers for knowledge recommendation and defect classification and methods thereof

Also Published As

Publication number Publication date
TWI370358B (en) 2012-08-11
TW200817891A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US7596718B2 (en) Ranged fault signatures for fault diagnosis
TWI459487B (en) Metrics independent and recipe independent fault classes
CN110825644B (en) Cross-project software defect prediction method and system
Kim et al. Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing
US7765020B2 (en) Graphical user interface for presenting multivariate fault contributions
JP2022520247A (en) Sensor measurement data integration
US10228678B2 (en) Tool failure analysis using space-distorted similarity
Abreu et al. Diagnosing multiple intermittent failures using maximum likelihood estimation
CN101438249A (en) Ranged fault signatures for fault diagnosis
JP2020198092A (en) Method and system for unsupervised anomaly detection and cause explanation with majority voting for high-dimensional sensor data
US11853042B2 (en) Part, sensor, and metrology data integration
CN109522193A (en) A kind of processing method of operation/maintenance data, system and device
Stoyanov et al. Predictive analytics methodology for smart qualification testing of electronic components
Dong et al. Wafer yield prediction using derived spatial variables
WO2021199227A1 (en) Error cause estimation device and estimation method
TW200811978A (en) Ranged fault signatures for fault diagnosis
de Bie et al. To trust or not to trust a regressor: Estimating and explaining trustworthiness of regression predictions
CN111832880A (en) Computer-implemented determination of quality indicators for ongoing production batch runs
Deutsch et al. Ties matter: Meta-evaluating modern metrics with pairwise accuracy and tie calibration
Hedjazi et al. Sensor placement and fault detection using an efficient fuzzy feature selection approach
CN113127342B (en) Defect prediction method and device based on power grid information system feature selection
Merzah Software quality prediction using data mining techniques
Gunarathna A systematic literature review on cross-project defect prediction
CN117313900B (en) Method, apparatus and medium for data processing
CN117313899B (en) Method, apparatus and medium for data processing