TW200811051A - Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof - Google Patents

Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof Download PDF

Info

Publication number
TW200811051A
TW200811051A TW96127427A TW96127427A TW200811051A TW 200811051 A TW200811051 A TW 200811051A TW 96127427 A TW96127427 A TW 96127427A TW 96127427 A TW96127427 A TW 96127427A TW 200811051 A TW200811051 A TW 200811051A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
group
periodic table
nanoparticles
dispersion
Prior art date
Application number
TW96127427A
Other languages
Chinese (zh)
Inventor
Shigeyoshi Nishino
Shuji Yokoyama
Shinya Takigawa
Original Assignee
Ube Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries filed Critical Ube Industries
Publication of TW200811051A publication Critical patent/TW200811051A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles

Abstract

This invention provides periodic table group XI or XII metal chalcogenide nanoparticles including liquid crystal molecules by a method that can be easily carried out in mass production scale. The periodic table group XI or XII metal chalcogenide nanoparticles being useful for industrial application.

Description

200811051 九、發明說明: 【發明所屬之技術領域】 仆物明係闕於一種周期表第n族或第12族金屬硫屬 二奈米粒子及其製造方法。周期表第π族或第㈣金 屬硫屬化物奈米粒子,例如 兩广 T卞例如係為了降低液晶顯示器之驅動 电壓之有用的化合物。 【先前技術】 以在’周期表第11族金屬硫屬化物粒子之製造方法, :如揭不有猎由超音波處理經溶解除去鹼金屬及鹼土族金 奪之至屬離子與硫屬化物前驅體之溶液,而合成金屬硫屬 之膠❹子的方法(例如參照專利文獻1)。然而,在此 会中、由^疋超音波處理而必須使用超音波分散機,不 f:作為工業上大量生產之方法。又,在專利文獻1中, 貫質上並未提到有_期表第12族金屬硫屬化物奈米粒 [專利文獻1]:日本特開2003_1096號公報 【發明内容】 (發明欲解決之問題) 制皮本發明之課題係為了解決上述問題點,乃以容易大量 製造之方法,提供含有液晶分子之周期表第11族或第12 矢1屬&L屬化物奈米粒子,以及提供在工業上一種適宜的 含有液晶分子之周期表第11族或第12族金屬硫屬化物奈 米粒子的製造方法。 (用以解決問題之手段) 5 319452 200811051 本發明之課題係可藉由丨種或2種以上之周期表第η 知或第12族金屬硫屬化物、及含有〗種成2種以上之液晶 刀子的周期表第π族或第12族金屬硫屬化物奈米粒子 解決。 本發明之課題係可使:丨種成2種以上之液晶分子、工 種或2種以上之周期表第11族或第12族金屬鹽、及!或 2,以上之硫屬化物前驅體在溶劑中反應,藉由上述周期 表第11族或第12族金屬硫屬化物奈米粒子之製造方 解決。 (發明之效果) —依本發明,乃提供一種可容易以大量製造之方法,提 =有液晶分子之周期表第u族或第12族金屬硫屬化物200811051 IX. Description of the invention: [Technical field to which the invention pertains] The servant is a group n or 12 group metal chalcogenide nanoparticle of the periodic table and a method for producing the same. The π-group or (iv) metal chalcogenide nanoparticles of the periodic table, for example, the two-tune T, for example, are useful compounds for lowering the driving voltage of the liquid crystal display. [Prior Art] In the method of manufacturing the Group 11 metal chalcogenide particles in the periodic table, the ionic and chalcogenide precursors are obtained by dissolving and removing the alkali metal and alkaline earth gold by ultrasonic treatment. A method of synthesizing a metal chalcogenized hazelnut (for example, refer to Patent Document 1). However, in this case, it is necessary to use an ultrasonic disperser by the processing of ultrasonic waves, and not f: as a method of mass production in the industry. Further, in Patent Document 1, there is no mention of the group 12 metal chalcogenide nanoparticle of the _ period table [Patent Document 1]: JP-A-2003_1096 [Summary of the Invention] (Problem to be solved by the invention) The problem of the present invention is to solve the above problems, and to provide a liquid crystal molecule containing a liquid crystal molecule of Group 11 or a 12th 1 genus & L gene nanoparticle, and to provide an industrial A preferred method for producing a Group 11 or Group 12 metal chalcogenide nanoparticle of the periodic table containing liquid crystal molecules. (Means for Solving the Problem) 5 319452 200811051 The subject of the present invention is to obtain two or more kinds of liquid crystals by using 丨 or two or more kinds of metal chalcogenides of the periodic table or two or more kinds thereof. The π or 12 group metal chalcogenide nanoparticles of the periodic table of the knife are solved. The subject of the present invention is to produce two or more liquid crystal molecules, a work type, or two or more kinds of metal salts of Group 11 or Group 12 of the periodic table, and Or 2, the above chalcogenide precursor is reacted in a solvent, and is solved by the manufacture of the Group 11 or Group 12 metal chalcogenide nanoparticles of the above periodic table. (Effect of the Invention) - According to the present invention, there is provided a method which can be easily produced in a large amount, and a metal chalcogenide of the group u or 12 of the periodic table having liquid crystal molecules

本發明也提供一種在工業上適宜的含有液晶分子之周 期表第11族或第12族金屬硫屬化物奈米粒子的f 【實施方式】 不發明之 裡成2種以上之周别 :屬硫屬化物、及含有i種或2種以上之液晶分子的周期 表弟11族或第12族金屬硫屬化物奈米粒子, ^種或2種以上之液晶分子q種或2種以上之周= 弗11無或第12族金屬鹽及硫屬化物前驅體在溶劑中反廡 而適宜地製造。 w 在本發明之反應中所使用之液晶分子,可舉例如:4, 正戊基氰基聯苯、4,·正己基氧·4_氰基聯苯等的氰基聯 319452 6 200811051 苯類;4·(反式-4-正戊基環己基)苯曱腈等之環己基苯甲腈 犬員,4 -正戊基-4-乙氧基·2,3-二氟聯苯、乙氧基_23__ ‘领式I正戍基環己基)苯等之氣苯類;4_1安息= 、(4-亂基苯基)酯、4-庚基安息香酸(心氰基苯基)醋等之苯基 醋類;4-羧苯基乙基碳酸酯、4邊苯基正丁基碳酸醋類等 之碳酸醋;4-(4-正戊基苯基乙烯基)氰基苯、4_(4_正戊基 苯基乙烯基)氟基苯等之苯基乙块類;2_(4_氛基苯基)_5_二 戊基哺咬、2_(4•氰基苯基)_5_正辛基㈣#之苯基㈣ 犬員’ 4,4 -雙(乙氧基缓基)偶氮苯等之偶氮苯類;(4,4,·氧 化偶氮基茴香驗、4, 4,_二己基氧化偶氮基苯等之氧化偶 氮^類,· N_(4_甲氧基苯叉基正丁基苯胺、N♦乙氧 基It正丁基苯胺等之席夫鹼類;N,N、雙苄叉基聯 等之膽固醇基酉旨類;聚(Λ^Λ曰、膽固醇基苯甲酸醋 w ν λ κ(本撐基對駄酿胺)等之液晶高分 二:,此專之液晶分子可單獨或混合2種以上而使用, 液曰曰/刀子混合物係可直接使用市售品者。 12族全之使用相對於周期表第11族或第 12教金屬鹽!莫耳,較佳 200莫耳。 1至5⑽莫耳,更佳是!至 全屬反應中所使用的周期表第11族或第&矣 子盥對籬门J表弟11族或第12族金屬鹽的離 于兵對離子所構成之鹽。前述周 例如是選自由AU、Au3+、A + 1 2私孟屬之離子, 中至少一锸沾入斤私 § CU、CU所構成之群組 中至,種的金屬離子。前述周期表第⑴矣金屬之離子, 319452 7 200811051 可舉例如:選自由Zn2+、Cd2+、 至少一種之入屋雜2 § g所構成之群組中 離早二: 對離子可舉例如:齒素離子、齒酸 ;、匕仏離子、亦可被取代之羧酸離子、乙醯丙嗣其 ί Γ ^_子、硫酸離子、餐離子、四氟職離子、 酸離子,周期表第11族金屬之離子的對離子時,亦 可舉例如氫化物(hydride)離子。H等之金屬鹽係中性 之配位基(可舉例如:一氧化碳、三苯基磷、對韻 基=·啊叫等)亦可進行配位。又,此等之周期表:第、!] 無或弟12族金屬鹽,係可單獨或混合2種以上而使用。 在本發明之反應中所使用的周期表第u族或第12族 金屬硫屬化物’係表示周期表第u族或第12族金屬與周 ,表之氧的下面之元素(硫、石西、碲)之化合*,可舉例如: 爪化物石西化物、碲化物。又,硫屬化物前驅體係藉由盘 金屬化合物(例如先前所示之金屬鹽)反應而生成之金屬硫 屬化物(例如金屬硫化物、金屬硒化物、金屬碲化物)之化 5物的總稱。又,此等之硫屬化物前驅體係可單獨或混合 2種以上而使用。 ° 用以合成前述金屬硫化物的硫屬化物前驅體(硫化 劑).,可舉例如:硫乙醯胺、Ν,Ν_二甲基硫乙醯胺等之硫醯 胺類;硫黃;硫化氩;硫尿素、Ν,Ν•二甲基硫尿素等之硫 ^素類;硫化鈉、硫化鉀等之鹼金屬硫化物類;硫化氫鈉、 硫化氫鉀等之鹼金屬氫硫化物類。較佳係硫醯胺類、硫尿 素類、鹼金屬硫化物類,尚且,合成周期表第12族金屬硫 化物時亦可使用硫化氫,更佳係硫醯胺類、硫尿素類,尚 319452 8 200811051 且口成=期表第12族金屬硫化物時是亦可使用硫化氫。 又,此等之硫屬化物前驅體(硫化劑)是可單獨或混合2 以上而使用。 從 用以合成丽述金屬硒化物的硫屬化物前驅體(硒化 =])’可舉例如··硒;硒化氫,·硒乙醯胺、N,N_二甲基硒乙 醯^等之《胺類;硒尿素、N展二甲基砸尿素等之碼尿 素類/硒化鈉、硒化鉀等之鹼金屬硒化物類;硒化氫鈉、 >硒化氫鉀等之鹼金屬氫硒化物類。較佳係硒、硒醯胺類、 硒尿素類,尚且,合成周期表第12族金屬硒化物時亦可使 用硒化氫,更佳是硒、硒尿素類,尚且合成周期表第Η =金屬魏物時是亦可使崩化氫。又,此等之硫屬化物 前驅體(硒化劑)係可單獨或混合2種以上而使用。 用以合成箱述金屬碲化物的硫屬化物前驅體(碲化劑) ^舉例如:碲;碲化氫;碲乙醯胺、N,队二甲基碲乙酸胺 等之碲醯胺類;碲尿素、N,N-二曱基碲尿素等之碲尿素 丨類;碲化鈉、碲化鉀等之鹼金屬碲化物類;碲化氳鈉、碲 化氫鉀等之鹼金屬氫碲化物類。較佳係碲、碲尿素類、鹼 金屬氫碲化物類,尚且,合成周期表第12族金屬碲化物時 係亦可使用碲化氫,更佳係碲、鹼金屬氫碲化物類,尚且 合成周期表第12族金屬碲化物時亦可使用碲化筒。 >Μτ 4 人’此 寻之硫屬化物前驅體(碲化劑)係可單獨或混合2 使用。 Μ上而 前述硫屬化物前驅體之使用量,相對於周期表第夏 族或第12族金屬鹽1莫耳,宜為〇3至5莫耳, 、 、 尺且為 319452 9 200811051 0.2至3莫耳。 在本發明之反應中所使用之溶劑,只要不阻礙反 即可亚無特別限定,可舉例如:水;丙嗣、甲乙嗣、甲其 異丁基酉同等之酮類,·酷酸甲酯、黯酸乙酯、酷酸丁酉旨、二 酸甲酯等之酯類;N,N_二甲基甲醯胺、N,N_二甲基乙醉 胺、N-甲基料咬酮等之釀胺類、_,_二甲基味唾喻二^ ^ &素# ’ —甲基亞石風等之亞石風類;環丁石風等之石風類; 乙腈、丙腈等之腈類;二乙基_、二異丙基醚、四氫咬喃、 ^惡=之_貞;己院、歧、環己料之絲族烴類; #甲苯—甲苯等之芳香族烴類。較佳係腈類、醚類、 2族煙類,尚且在周期表第u族金屬鹽時亦可使用水, 更“_類,尚且在周期表第η族金屬鹽時亦可使用水。 又’料之溶劑,可單獨或混合2種以上而使用。 ⑽前述溶劑之使用量,相對於液晶分子ig,宜為⑺至 500ml,更佳為 2〇 至 2〇〇ml。 本發明之反應,例如係混合i種或2種以上之液晶分 二1或2種以上之周期表第u族或第12族金屬鹽、! :或2種以上之硫屬化物前驅體及溶劑,依情形,藉由一 ^熱-邊㈣反料之方法來進行。其時之反應溫度宜The present invention also provides an industrially suitable group 11 or group 12 metal chalcogenide nanoparticle of the periodic table containing liquid crystal molecules. [Embodiment] The invention is not invented into two or more types: sulfur a compound, and a periodic epiphany group 11 or a group 12 metal chalcogenide nanoparticle containing one or more liquid crystal molecules, or a seed crystal or two or more kinds of liquid crystal molecules q or more than two kinds of weeks = The phenanthrene-free or Group 12 metal salt and chalcogenide precursor are suitably produced by retanning in a solvent. w The liquid crystal molecule used in the reaction of the present invention may, for example, be a cyano group such as 4, n-pentyl cyanobiphenyl or 4, n-hexyloxy 4 cyanobiphenyl 319452 6 200811051 benzene ;4·(trans-4-n-pentylcyclohexyl)benzonitrile and other cyclohexylbenzonitrile dogs, 4-n-pentyl-4-ethoxy-2,3-difluorobiphenyl, B Oxygen _23__ 'Leading formula I n-decylcyclohexyl) benzene and other gas benzenes; 4_1 resting =, (4-ranyl phenyl) ester, 4-heptyl benzoic acid (cardiocyanophenyl) vinegar, etc. Phenyl vinegar; 4-carboxyphenylethyl carbonate, 4-sided phenyl-n-butyl carbonate vinegar, etc.; 4-(4-n-pentylphenylvinyl) cyanobenzene, 4_( Phenyl E block of 4_n-pentylphenylvinyl)fluorobenzene; 2_(4_ylphenyl)_5_dipentyl, 2_(4·cyanophenyl)_5_正辛基(四)#的phenyl (4) azobenzenes such as 4,4-bis(ethoxylated azo) azobenzene; (4,4,· oxidized azo anion test, 4, 4, _Dihexyl oxyazobenzene, etc., oxidized azo, N_(4_methoxyphenylidene n-butylaniline, N♦ ethoxy, it n-butylaniline, etc. Schiff bases; N, N, bis-benzylidene-based cholesteryl-based genus; poly(Λ^Λ曰, cholesteryl benzoic acid vinegar w ν λ κ (this phenyl group to chelating amine) liquid crystal High score two: This liquid crystal molecule can be used alone or in combination of two or more. The liquid helium/knife mixture can be directly used as a commercial product. The use of the 12-series is relative to the 11th or 12th of the periodic table. Teach metal salt! Moore, preferably 200 m. 1 to 5 (10) Moule, better! To the full range of the periodic table used in the 11th or the & 矣 盥 篱 篱 J J 表 表 11 a salt of a family or a Group 12 metal salt which is formed by a pair of ions. The foregoing week is, for example, selected from the group consisting of AU, Au3+, and A + 1 2 genus, at least one of which is infiltrated into CU, CU a metal ion of the group of the above-mentioned group. The ion of the metal of the above-mentioned periodic table (1), 319452 7 200811051, for example, may be selected from the group consisting of Zn2+, Cd2+, and at least one of the inclusions 2 § g In the middle of the second: the ion can be exemplified by: dentate ion, tooth acid; strontium ion, carboxylic acid ion which can also be substituted, acetamidine嗣其ί Γ ^_子, sulfate ion, meal ion, tetrafluorochemical ion, acid ion, counter ion of the metal of Group 11 of the periodic table, for example, hydride ion, metal such as H Salt-neutral ligands (for example, carbon monoxide, triphenylphosphine, rhyme = ah, etc.) can also be coordinated. Also, the periodic table: the first, !] no or brother The Group 12 metal salt may be used singly or in combination of two or more. The Group 4.5 or Group 12 metal chalcogenide 'character used in the reaction of the present invention means the Group u or Group 12 of the periodic table. The combination of the metal and the elements of the underlying oxygen (sulfur, silli, and samarium) of the table, for example, may be, for example, a claw-like stone carbide or a telluride. Further, the chalcogenide precursor system is a generic term for a metal chalcogenide (e.g., metal sulfide, metal selenide, metal telluride) formed by reacting a disc metal compound (e.g., a metal salt as previously shown). Further, these chalcogenide precursor systems may be used singly or in combination of two or more. ° a chalcogenide precursor (vulcanizing agent) for synthesizing the aforementioned metal sulfide, and examples thereof include thioguanamines such as thioacetamide, hydrazine, hydrazine dimethyl thioacetamide; sulfur; Arsenic sulfide; sulfur compounds such as sulfur urea, hydrazine, hydrazine dimethyl thiourea; alkali metal sulfides such as sodium sulfide and potassium sulfide; alkali metal hydrogen sulfides such as sodium hydrogen sulfide and potassium hydrogen sulfide . Preferably, it is a thiolamine, a sulfur urea, an alkali metal sulfide, and a hydrogen sulfide can also be used in the synthesis of the Group 12 metal sulfide of the periodic table, more preferably a thiourethane or a sulfur urea. 8 200811051 It is also possible to use hydrogen sulfide when it is a metal sulfide of Group 12. Further, these chalcogenide precursors (vulcanizing agents) can be used singly or in combination of two or more. From the chalcogenide precursor used to synthesize Lithium metal selenide (selenization =])', for example, selenium; hydrogen selenide, selenium acetamide, N, N-dimethyl selenide Such as "amines; selenium urea, N-extension dimethyl hydrazine urea, etc. urea / sodium selenide, potassium selenide and other alkali metal selenides; sodium hydrogen selenide, > potassium hydrogen selenide, etc. Alkali metal hydrogen selenide. Preferably, selenium, selenium amide, selenium and urea are used. Further, hydrogen selenide may be used in the synthesis of the 12th metal selenide of the periodic table, more preferably selenium or selenium urea, and the synthesis cycle table Η = metal In the case of Wei Shi, it is also possible to cause hydrogen to collapse. Further, these chalcogenide precursors (selenization agents) may be used singly or in combination of two or more. a chalcogenide precursor (deuteration agent) for synthesizing a metal halide of a box; for example, hydrazine; hydrogen halide; hydrazine, N, dimethylamine indoleamine;碲 urea, N, N-dimercaptopurine, urea, etc.; alkali metal ruthenium such as sodium hydride or potassium hydride; alkali metal hydrazine hydride such as sodium bismuth hydride or potassium hydride class. It is preferred to use hydrazine, hydrazine urea, and alkali metal hydroquinone. Further, in the synthesis of Group 12 metal sulphides of the periodic table, hydrogen halides, more preferably hydrazines, alkali metal hydrazines, and still A vaporization cylinder can also be used for the metal halide of Group 12 of the periodic table. > Μτ 4 people' This chalcogenide precursor (deuterated agent) can be used alone or in combination 2. The amount of the chalcogenide precursor used above is preferably 1 to 5 moles per gram of the metal salt of the Xia or Group 12 metal of the periodic table, and is 319452 9 200811051 0.2 to 3 Moor. The solvent to be used in the reaction of the present invention is not particularly limited as long as it does not inhibit the reverse reaction, and examples thereof include water; ketones such as acetamidine, methyl ethyl hydrazine, and methyl isobutyl hydrazine; Ester of ethyl acetate, succinic acid, methyl diacid, etc.; N,N-dimethylformamide, N,N-dimethyl isopropylamine, N-methyl ketone, etc. Amines, _, _ dimethyl scented sputum II ^ ^ & 素 # ' - methyl slate wind and other sub-stone types; stone stone such as ring stone; acetonitrile, propionitrile and other nitriles Class; diethyl _, diisopropyl ether, tetrahydroanthracene, ^ = = 贞 贞; hexazone, 歧, cyclohexane filament hydrocarbons; #toluene -toluene and other aromatic hydrocarbons. Nitriles, ethers, and Group 2 cigarettes are preferred, and water may also be used in the metal salt of the Group u of the periodic table, and more "_, and water may also be used in the metal salt of the η group of the periodic table. The solvent of the material may be used singly or in combination of two or more kinds. (10) The amount of the solvent to be used is preferably (7) to 500 ml, more preferably 2 to 2 ml, relative to the liquid crystal molecule ig. For example, a mixture of i or two or more kinds of liquid crystals is divided into two or more kinds of metal salts of Group u or Group 12 of the periodic table, :: or two or more kinds of chalcogenide precursors and solvents, depending on the case, It is carried out by a method of heat-side (four) counter-feeding.

Lfc’更佳為4〇至崎,其時之反應壓力並無 碎寸別限制。 硫屬 液, 精由本發明之反應而可得到含有周期表第U族金屬 化物奈米粒子與溶劑之分散液,但藉由濃縮該分散 可取得含有均一之周期表第u族或第Η族金屬硫屬 319452 10 200811051 化物奈米粒子與溶劑的糊劑。又,該分散液之濃縮方法並 無特別限定,在減壓下較佳係可以在20至100°C實施。 ‘[貫施例] ^ 其次,列舉實施例而具體地說明本發明,但本發明之 範圍係不偈限於此等。 實施例1 (硫化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入4’-正戊基-4-氰基聯苯 ⑩ 0.66g(2.64mmol)、四氳吱喊 45,0ml、水0.051111及0.01莫 耳/升硫乙醯胺的四氫吱σ南溶液1.65ml(0.0165mmol),一邊 攪拌該混合溶液一邊加熱至65至75°C。然後,徐缓地滴 下0.01莫耳/升三氟醋酸銀的四氫呋喃溶液3.30ml(銀原子 為0.033mmol),進行反應。反應終了後,使反應液冷卻至 室溫,形成茶褐色之均一液體,而得到硫化銀奈米粒子分 散液50ml。再藉由穿透型電子顯微鏡進行分析的結果,硫 馨化銀奈米粒子之粒徑為10至30nm且為均一(第1圖)。更 且,使含有所得到之硫化銀奈米粒子之分散液在減壓下進 行濃縮,取得茶褐色之均一的硫化銀奈米粒子糊劑〇.67g。 實施例2 (硫化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入4’-正戊基-4-氰基聯苯 0,66g(2.64mmol)、四氫吱喃 45.0ml、水 0.05ml 及 0·01 莫 耳/升硫乙酿胺的四氫吱喃溶液1.65ml(0.0165mmol),一邊 攪拌該混合溶液一邊加熱至65至75 °C。然後,徐缓地滴 11 319452 200811051 下0.01莫耳/升高氯酸銀的四氫呋喃溶液3.30ml(就銀原子 為0.033mmol),進行反應。反應終了後,使混合物冷卻至 . 室溫,形成茶褐色之均一液體,而得到硫化銀奈米粒子分 、 散液50ml。再藉由穿透型電子顯微鏡進行分析的結果,硫 化銀奈米粒子之粒徑係10至30nm且為均一(第2圖)。更 且,使含有所得到之硫化銀奈米粒子之分散液在減壓下進 行濃縮,取得茶褐色之均一的硫化銀奈米粒子糊劑〇.67g。 實施例3 (硫化銅奈米粒子之合成) . 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入4’-正戊基-4-氰基聯苯 0.66g(2.64mmol)、四氫吱喃 43,4ml、水 0.05ml 及 0.01 莫 耳/升硫乙醯胺的四氫,吱喃溶液3.30ml#(0.033mmol),一邊 攪拌該混合溶液一邊加熱至65至75°C。然後,徐緩地滴 下.0.01莫耳/升三氟醋酸銅(II)的四氳呋喃溶液3.30ml(銅 原子為0.033mmol),進行反應。反應終了後,使混合物冷 •卻至室溫,形成茶褐色之均一液體,而得到硫化銅奈米粒 子分散液50ml。再藉由穿透型電子顯微鏡進行分析的結 果,硫化銅奈米粒子之粒徑係約2nm且為均一(第3圖)。 更且,使含有所得到之硫化銅奈米粒子之分散液在減壓下 進行濃縮,取得茶褐色之均一的硫化銅奈米粒子糊劑 0,67g 〇 實施例4(硫化銅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入4、正戊基-4-氰基聯苯 12 319452 200811051 0.66g(2.64mmol)、四氫吱喃 43.4ml、水 0.05ml 及 0·01 莫 耳/升硫乙St胺的四氫咬喃溶液3.30ml(0.033minol),一邊 . 攪拌該混合溶液一邊加熱至65至75°C。然後,徐缓地滴 , 下0.01莫耳/升醋酸銅(II)的四氫呋喃溶液3.30ml(銅原子 為0.033mmol),進行反應。反應終了後,使混合物冷卻至 室溫,形成茶褐色之均一液體,而得到硫化銅奈米粒子分 散液50ml。再藉由穿透型電子顯微鏡進行分析的結果,硫 化銅奈米粒子之粒徑係10至30nm且為均一(第4圖)。更 • 且,使含有所得到之硫化銅奈米粒子之分散液在減壓下進 行濃縮,取得茶褐色之均一的硫化銅奈米粒子糊劑〇.67g。 實施例5 (硫化銅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中’加入4’ -正戍基-4·氣基聯苯 0.66g(2.64mmol)、四氫吱喊 43.4ml、水 0.05ml 及 0·01 莫 耳/升硫乙酸胺的四氫吱喃溶液3.30ml#(0.033mmol),一邊 •攪拌該混合溶液一邊加熱至65至75°C。然後,徐緩地滴 下0.01莫耳/升銅(II)乙醯基丙酮配位基的四氳呋喃溶液 3.3〇1111(銅原子為0.033111111〇1),進行反應。反應終了後,使 混合物冷卻至室溫,形成茶褐色之均一液體,而得到硫化 銅奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行分 析的結果,硫化銅奈米粒子之粒徑係約2nm且為均一(第5 圖)。更且,使含有所得到之硫化銅奈米粒子之分散液在減 壓下進行濃縮,取得茶褐色之均一的硫化銅奈米粒子糊劑 0.67g 〇 13 319452 200811051 實施例6(硫化銅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 - 10 0 m 1的玻璃容中’加入4 ’ -正戍基-4 篆基聯苯 v 0.66g(2.64mmol)、四氫 σ夫喃 43.4ml、水 0.05ml 及 0·01 莫 耳/升硫乙醯胺的四氳°夫喃溶液3.30ml#(0.033mmol),一邊 攪拌該混合溶液一邊加熱至65至75°C。然後,徐緩地滴 下0.01莫耳/升四氟硼酸銅(II)的四氫吱鳴溶液3.30ml(銅 原子為0.033mmol),進行反應。反應終了後,使混合物冷 • 卻至室溫,形成茶褐色之均一液體,而得到硫化銅奈米粒 子分散液50ml。再藉由穿透型電子顯微鏡進行分析的結 果,硫化銅奈米粒子之粒徑約為2nm且為均一(第6圖)。 更且,使含有所得到之硫化銅奈米粒子之分散液在減壓下 進行濃縮,取得茶褐色之均一的硫化銅奈米粒子糊劑 0.67g 〇 實施例7(碲化銀奈米粒子之合成) φ 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入4、正戊基-4-氰基聯苯0.66g (2.64mmol)、四氳吱味 43.4ml、及蹄 4.2mg(0.033mmol), 然後加入〇·〇1莫耳/升三氟醋酸銀的四氳呋喃溶液 6.60ml(銀原子為0.066mmol),一邊攪拌該混合溶液一邊加 熱至65至75°C,進行反應。反應終了後,使混合物冷卻 至室溫,形成灰白色之均一液體,而得到碲化銀奈米粒子 分散液50m卜再藉由穿透型電子顯微鏡進行分析的結果, 碲化銀奈米粒子之粒徑為3至15nm且為均一(第7圖)。更 14 319452 200811051 且,使含有所得到之碲化銀奈米粒子之分散液在減壓下進 行濃縮,取得灰白色之均一碲化銀奈米粒子糊劑〇.67g。 、. 實施例8(碲化銀奈米粒子之合成) - 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(ZLI-5100-100(Merck公司製)0.50g、四氫吱喃 44.0ml、及碲 3.8mg(0.030mmol),然後加入0.01莫耳/升三氟錯酸銀的四 氫吱喃溶液6.00ml(銀原子為0.060mmol),一邊攪拌該混 •合溶液一邊加熱至65至75°C,進行反應。反應終了後, 使混合物冷卻至室溫,形成灰白色之均一液體,而得到碲 化銀奈米粒子分散液50m卜再藉由穿透型電子顯微鏡進行 分析的結果,碲化銀奈米粒子之粒徑為3至15nm且為均 一(第8圖)。更且,使含有所得到之碲化銀奈米粒子之分 散液在減壓下進行濃縮,取得灰白色之均一碲化銀奈米粒 子糊劑0.51g。 φ實施例9(碲化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6054-100(Merck公司製)0.50g、四氳吱口南 44.0ml、及碲 3.8mg(0.030mmol),然後加入0.01莫耳/升三氟酷酸銀的四 氳呋喃溶液6.0〇1111(銀原子為0.06〇111111〇1),——邊攪拌該混 合溶液一邊加熱至65至75°C,進行反應。反應終了後, 使混合物冷卻至室溫,‘形成灰白色之均一液體,而得到碲 化銀奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行 15 319452 200811051 分析的結果,碲化銀奈米粒子之粒徑為3至15nm且為均 一(第9圖)。更且,使含有所得到之碲化銀奈米粒子之分 ^ 散液在減壓下進行濃縮,取得灰白色之均一碲化銀奈米粒 , 子糊劑0.51g。 實施例10(蹄化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6292-100(Merck 公司製)0.50g、四氫吱嚼 44.0ml、及碲3.811^ _ (0.030mmol),然後加入0.01莫耳/升三氟酷g复銀的四氫口夫 喃溶液6·00πι1(銀原子為0.060mmol),一邊攪拌該混合溶 液一邊加熱至65至75°C,進行反應。反應終了後,使混 合物冷卻至室溫,形成灰白色之均一液體,而得到碲化銀 奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行分析 的結果,碲化銀奈米粒子之粒徑為3至15nm且為均一(第 10圖)。更且,使含有所得到之碲化銀奈米粒子之分散液 0在藏壓下進行濃縮,取得灰白色之均一碲化銀奈米粒子糊 劑 0 · 51 g 〇 實施例11(碲化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物 (MLC-6608(Merck公司製)0.50g、四氳呋喃44.0m卜及碲 3.8mg(0.030mmol),然後加入0.01莫耳/升三氟酷酸銀的四 氳呋喃溶液6.00ml(銀原子為0.060mmol),一邊攪拌該混 合溶液一邊加熱至65至75°C,進行反應。反應終了後, 16 319452 200811051 使混合物冷卻至室溫,形成灰白色之均一液體,而得到碲 化銀奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行 - 分析的結果,蹄化銀奈米粒子之粒徑為3至15nm且為均 、 一(第Π圖)。更且,使含有所得到之碲化銀奈米粒子之分 散液在減壓下進行濃縮,取得灰白色之均一的碲化銀奈米 粒子糊劑0.51 g。 實施例12(碲化銀奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 • 100ml的破璃容器中,加入液晶分子混合物(MLC-6692 (Merck公司製)0.50g、四氫吱喃44.0ml、及蹄3.8mg (0.030mmol),然後加入0.01莫耳/升三氟醋酸銀的四氫吱 喃溶液6.00ml(銀原子為0.060mmol),一邊攪拌該混合溶 液一邊加熱至65至75°C,進行反應。反應終了後,使混 合物冷卻至室溫,形成灰白色之均一液體,而得到碲化銀 奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行分析 ⑩的結果,碲化銀奈米粒子之粒徑為3至15nm且為均一(第 12圖)。更且,使含有所得到之碲化銀奈米粒子之分散液 在減壓下進行濃縮,取得灰白色之均一的碲化銀奈米粒子 糊劑0.5lg。 實施例13 (硫化锡奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 10 0 Hi 1的玻璃容中,加入4 ’ -正戍基-4 -氣基聯笨0.7 0 g (2· 81 mmo 1)、四氫吱喃46.3 ml、水0.05 ml及鎘乙酸基丙 酮配位基11.5mg(0.037mmol),一邊攪拌該混合溶液一邊 17 319452 200811051 加熱至65至75°C。然後,徐緩地滴下〇·〇1莫耳/升硫乙醯 胺的四氫吱喃溶液3.70ml,進行反應。反應終了後,使混 - 合物冷卻至室溫,形成淡黃色之均一液體,而得到硫化鎘 . 奈米粒子分散液50ml。再藉由穿透型電子顯微鏡進行分析 的結果,硫化鎘奈米粒子之粒徑為5至10nm且為均一、(第 13圖)。更且,使含有所得到之硫化鎘奈米粒子之分散液 在減壓下進行濃縮,取得淡黃色之均一的硫化鎘奈米粒子 糊劑0.71g〇 ⑩實施例14(硫化鋅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容中’加入4’ -正戍基-4-氣基聯苯 0.66g(2.64mmol)、四氫吱°南 43.4ml、水 0.05ml 及 0·01 莫 耳/升硫乙醯胺的四氳呋喃溶液3.30ml,一邊攪拌該混合溶 液一邊加熱至65至75°C。然後,徐緩地滴下〇·〇1莫耳/ 升鋒乙醯基丙酮配位基的四氫呋喃溶液3.30ml(鋅原子為 肇0.033mmol),進行反應。反應終了後,使混合物冷卻至室 溫,形成無色之均一液體,而得到硫化鋅奈米粒子分散液 50ml。再藉由穿透型電子顯微鏡進行分析的結果,硫化鋅 奈米粒子之粒徑為2至10nm且為均一(第14圖)。更且, 使含有所得到之硫化辞奈米粒子之分散液在減壓下進行濃 縮,取得淡黃色之均一硫化鋅奈米粒子糊劑0.6 7g。 實施例15(硫化鋅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6692 18 319452 200811051 (Merck公司製)0.50g、四氫吱喃47ml、水0.05ml及鋅乙醯 基丙酮配位基7.8mg(0.03mmol),一邊攪拌該混合溶液一 . 邊加熱至65至75T:。然後,徐缓地滴下0·01莫耳/升硫乙 • 醯胺的四氫呋喃溶液3.0ml,進行反應。反應終了後,使 混合物冷卻至室溫,形成無色之均一液體,而得到硫化鋅 奈米粒子分散液50m卜再藉由穿透型電子顯微鏡進行分析 的結果,硫化鋅奈米粒子之粒徑為2至10nm且為均一(第 15圖)。更且,使含有所得到之硫化鋅奈米粒子之分散液 ⑩在減壓下進行濃縮,取得淡黃色之均一硫化鋅奈米粒子糊 劑(K51g 〇 實施例16(硫化鋅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC_6608 (Merck公司製)0.50g、四氫吱鳴47ml、水0·05ηι1及鋅乙醯 基丙酮配位基7.8mg(0.03mmol),一邊攪拌該混合溶液一 響邊加熱至65至75°C。然後,徐缓地滴下0.01莫耳/升硫乙 醯胺的四氫呋喃溶液3.0ml,進行反應。反應終了後,使 混合物冷卻至室溫,形成無色之均一液體,而得到硫化鋅 奈米粒子分散液50m卜再藉由穿透型電子顯微鏡進行分析 的結果,硫化鋅奈米粒子之粒徑為2至10nm且為均一(第 16圖)。更且,使含有所得到之硫化鋅奈米粒子之分散液 在減壓下進行濃縮,取得淡黃色之均一硫化鋅奈米粒子糊 劑 0.50g 〇 實施例17(碲化鋅奈米粒子之合成) 19 319452 200811051 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(ZLI-5100-100 樂 (Merck公司製)0.50g、四氫吱喃44.0ml、鋅乙醯基丙酮配 - 位基 8.1mg(0.030mmol),然後,加入碲 3.8mg(0.030mmol), 一邊攪拌讓混合溶液一邊加熱至65至75°C,進行反應。 反應終了後,使混合物冷卻至室溫,形成無色之均一液體, 而得到碲化鋅奈米粒子分散液50m卜再藉由穿透型電子顯 微鏡進行分析的結果,碲化辞奈米粒子之粒徑為3至15nm ⑩且為均一(第17圖)。更且,使含有所得到之碲化辞奈米粒 子之分散液在減壓下進行濃縮,取得無色之均一的碲化鋅 奈米粒子糊劑〇.51g。 實施例18 (碲化鋅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6054-100 (Merck公司製)0·50g、四氫吱喃44.0ml、鋅乙醯基丙酮配 φ 位基 8.1mg(0.030mmol),然後,加入碌 3.8mg(0.030mmol), 一邊攪拌該混合溶液一邊加熱至65至75=,進行反應。 反應終了後,使混合物冷卻至室溫,形成無色之均一液體, 而得到碲化鋅奈米粒子分散液50ml。再藉由穿透型電子顯 微鏡進行分析的結果,碲化辞奈米粒子之粒徑為3至15nm 且為均一(第18圖)。更且,使含有所得到之碲化辞奈米粒 子之分散液在減壓下進行濃縮,取得無色之均一的碲化鋅 奈米粒子糊劑0.51 g。 實施例19(碲化鋅奈米粒子之合成) 20 319452 200811051 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6292-100 — (Merck公司製)0.50g、四氫呋喃44.0ml、鋅乙醯基丙酮配 • 位基 8.1mg(0.030mmol),然後,加入蹄 3.8mg(0.030mmol), 一邊擾拌該混合溶液一邊加熱至6 5至7 5 °C,進行反應。 反應終了後,使混合物冷卻至室溫,形成無色之均一液體, 而得到碲化鋅奈米粒子分散液50m卜再藉由穿透型電子顯 微鏡進行分析的結果,碲化鋅奈米粒子之粒徑為3至15nm •且為均一(第19圖)。更且,使含有所得到之碲化鋅奈米粒 子之分散液在減壓下進行濃縮,取得無色之均一的碲化鋅 奈米粒子糊劑0.51 g。 實施例20(碲化鋅奈米粒子之合成) 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(MLC-6608 (Merck公司製)0·5Og、四氫咬喃44.0ml、辞乙酿基丙酮配 •位基 8.1mg(0.030mmol),然後,加入碲 3.8mg(0.030mmol), 一邊攪拌該混合溶液一邊加熱至6 5至7 5 °C,進行反應。 反應終了後,使混合物冷卻至室溫,形成無色之均一液體, 而得到碲化鋅奈米粒子分散液50m卜再藉由穿透型電子顯 微鏡進行分析的結果,碲化鋅奈米粒子之粒徑為3至15nm 且為均一(第20圖)。更且,使含有所得到之碲化鋅奈米粒 子之分散液在減壓下進行濃縮,取得無色之均一的碲化鋅 奈米粒子糊劑0.51 g。 實施例21 (蹄化辞奈米粒子之合成) 21 319452 200811051 於具備攪拌裝置、溫度計及回流冷卻器之内容積為 100ml的玻璃容器中,加入液晶分子混合物(Mlc_6692 _ (Merck公司製)〇.5〇g、四氫呋喃44.0ml、鋅乙醯基丙酮配 、位基 8*lmg(0.030mmo1),然後,加入碲 3.8mg(〇.〇3〇mm〇1), 一邊攪拌該混合溶液一邊加熱至65至75〇c,進行反應。 反應終了後,使混合物冷卻至室溫,形成無色之均一液體, 而得到碲化鋅奈米粒子分散液5〇ml。再藉由穿透型電子顯 微鏡進行分析的結果,碲化鋅奈米粒子之粒徑為3至 _且為均一(第21圖)。更且,使含有所得到之碲化鋅奈米粒 子之分散液在減壓下進行濃縮,取得無色之均一的碲化鋅 奈米粒子糊劑〇 · 51 g。 ' [產業上之利用可能性] 本务明係關於一種含有液晶分子之周期表第11族戋 第12族金屬硫屬化物奈米粒子及其製造方法。周期^一第 11族或第12族金屬硫屬化物奈米粒子,例如是為了使液 ⑩晶顯示器之驅動電壓降低之有用的化合物。 彳 【圖式簡單說明】 之硫化銀奈米粒子 之硫化銀奈米粒子 第1圖係以實施例1之方法所合成 的透過型電子顯微鏡照片。 第2圖係以實施例2之方法所合成 的透過型電子顯微鏡照片。 之硫化銅奈米粒子 之硫化銅奈米粒子 第3圖係以實施例3之方法所合成 的透過型電子顯微鏡照片。 第4圖係以實施例4之方法所合成 319452 22 200811051 的透過型電子顯微鏡照片。 第5圖係以實施例5之方法 的透過型電子顯微鏡照片。 °成之硫化銅奈米粒子 第6圖係以實施例6之方 $所合赤 的透過型電子顯微鏡照片。 取之硫化銅奈米粒子 第7圖係以實施例7之方、i .去所 4、 telluride)奈米粒子的透過型電子 / 〇战之碎化銀(silver ”織微鎊日Lfc' is better than 4 〇 to Saki, and the reaction pressure at that time is not limited. a chalcogen liquid, a dispersion containing a Group U metallized nanoparticle of the periodic table and a solvent can be obtained by the reaction of the present invention, but by concentrating the dispersion, a metal containing a uniform periodic group u or a lanthanum can be obtained. Chalcogen 319452 10 200811051 Paste of nanoparticle and solvent. Further, the method for concentrating the dispersion is not particularly limited, and it is preferably carried out at 20 to 100 ° C under reduced pressure. ‘[Examples] ^ Next, the present invention will be specifically described by way of examples, but the scope of the invention is not limited thereto. Example 1 (Synthesis of Silver Sulfide Nanoparticles) 4'-n-pentyl-4-cyanobiphenyl 10 0.66 g was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml ( 2.64mmol), four screams of 45,0ml, water 0.051111 and 0.01 mol / liter of thioacetamide in tetrahydroanthracene sulphur solution 1.65ml (0.0165mmol), heated to 65 to 75 ° while stirring the mixed solution C. Then, 3.30 ml of a tetrahydrofuran solution of 0.01 mol/liter of silver trifluoroacetate (0.033 mmol of a silver atom) was slowly dropped to carry out a reaction. After the completion of the reaction, the reaction solution was cooled to room temperature to form a uniform liquid of brownish brown, and 50 ml of a silver sulfide nanoparticle dispersion was obtained. Further, as a result of analysis by a transmission electron microscope, the silver sulfonated silver nanoparticles have a particle diameter of 10 to 30 nm and are uniform (Fig. 1). Further, the dispersion containing the obtained silver sulfide nanoparticles was concentrated under reduced pressure to obtain a silver brown uniform silver sulfide nanoparticle paste 〇.67 g. Example 2 (Synthesis of Silver Sulfide Nanoparticles) In a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser having an internal volume of 100 ml, 4'-n-pentyl-4-cyanobiphenyl 0,66 g ( 2.64 mmol), 45.0 ml of tetrahydrofuran, 0.05 ml of water, and 1.60 ml (0.0165 mmol) of a tetrahydrofuran solution of 0·01 mol/liter of sulphur, and heated to 65 to 75 while stirring the mixed solution. °C. Then, a reaction was carried out by gently dropping 3.30 ml of a 0.01 mol/l chloroauric acid tetrahydrofuran solution (0.033 mmol of a silver atom) under 11 319452 200811051. After the completion of the reaction, the mixture was cooled to room temperature to form a uniform liquid of brownish brown, and silver sulfide nanoparticles and 50 ml of a dispersion were obtained. Further, as a result of analysis by a transmission electron microscope, the particle size of the silver sulfide nanoparticles was 10 to 30 nm and was uniform (Fig. 2). Further, the dispersion containing the obtained silver sulfide nanoparticles was concentrated under reduced pressure to obtain a silver brown uniform silver sulfide nanoparticle paste 〇.67 g. Example 3 (Synthesis of Copper Sulfide Nanoparticles) . In a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser having an internal volume of 100 ml, 4'-n-pentyl-4-cyanobiphenyl 0.66 g ( 2.64 mmol), tetrahydrofuran, 43, 4 ml, water 0.05 ml, and 0.01 mol/L of thioacetamide in tetrahydrofuran, 3.30 ml # (0.033 mmol), and heated to 65 while stirring the mixed solution. 75 ° C. Then, 3.00 ml (copper atom: 0.033 mmol) of a solution of 0.01 mol/liter of copper(II) trifluoroacetate in tetrahydrofuran was gradually dropped to carry out a reaction. After the completion of the reaction, the mixture was allowed to cool to room temperature to form a uniform liquid of brownish brown, and 50 ml of a copper sulfide nanoparticle dispersion was obtained. Further, as a result of analysis by a transmission electron microscope, the particle size of the copper sulfide nanoparticles was about 2 nm and was uniform (Fig. 3). Further, the dispersion containing the obtained copper sulfide nanoparticles was concentrated under reduced pressure to obtain a brownish-smooth copper sulfide nanoparticle paste 0,67 g. Example 4 (Synthesis of copper sulfide nanoparticles) 4, n-pentyl-4-cyanobiphenyl 12 319452 200811051 0.66g (2.64mmol), tetrahydrofuran 43.4ml in a glass vessel with a stirring device, thermometer and reflux cooler. 0.05 ml of water and 0.10 ml of a tetrahydrogenated solution of 0/01 mol/liter of sulphur ethyl s-amine, while stirring the mixture to 65 to 75 ° C while stirring. Then, 3.00 ml of a tetrahydrofuran solution of 0.01 mol/liter of copper (II) acetate (0.033 mmol of copper atom) was slowly dropped to carry out a reaction. After the completion of the reaction, the mixture was cooled to room temperature to form a uniform liquid of brownish brown, and 50 ml of a copper sulfide nanoparticle dispersion was obtained. Further, as a result of analysis by a transmission electron microscope, the particle size of the copper sulfide nanoparticles was 10 to 30 nm and was uniform (Fig. 4). Further, the dispersion containing the obtained copper sulfide nanoparticles was concentrated under reduced pressure to obtain a copper brown uniform copper sulfide nanoparticle paste 67.67 g. Example 5 (Synthesis of Copper Sulfide Nanoparticles) In a glass vessel having a volume of 100 ml with a stirring device, a thermometer and a reflux condenser, '4'-n-decyl-4·glycolbiphenyl 0.66 g (2.64) was added. Methyl), tetrahydroanthracene 43.4ml, water 0.05ml and 0. 01 mole / liter of thioacetic acid amine tetrahydrofuran solution 3.30ml # (0.033mmol), while stirring the mixed solution heated to 65 to 75 °C. Then, a tetrahydrofuran solution of 0.01 mol/liter of copper (II) ethenylacetone ligand was slowly dropped, 3.3 〇 1111 (copper atom: 0.033111111 〇 1), and the reaction was carried out. After the completion of the reaction, the mixture was cooled to room temperature to form a uniform liquid of brownish brown, and 50 ml of a copper sulfide nanoparticle dispersion was obtained. Further, as a result of analysis by a transmission electron microscope, the particle size of the copper sulfide nanoparticles was about 2 nm and was uniform (Fig. 5). Further, the dispersion containing the obtained copper sulfide nanoparticles was concentrated under reduced pressure to obtain a brownish-smooth copper sulfide nanoparticle paste 0.67 g 〇13 319452 200811051 Example 6 (copper sulfide nanoparticle) Synthesis) Add 4'-n-decyl-4 fluorenylbiphenyl v 0.66g (2.64mmol), tetrahydrogen in a glass container with a stirring device, a thermometer and a reflux cooler with an internal volume of -10 0 m 1 43.4 ml of sigma, 0.05 ml of water, and 3.01 ml of sulphur acetamide were added to 3.30 ml # (0.033 mmol), and the mixture was heated to 65 to 75 ° C while stirring. Then, 3.30 ml (copper atom: 0.033 mmol) of a tetrahydrogen humming solution of 0.01 mol/liter of copper (II) tetrafluoroborate was slowly dropped to carry out a reaction. After the completion of the reaction, the mixture was allowed to cool to room temperature to form a brownish homogeneous liquid, and 50 ml of a copper sulfide nanoparticle dispersion was obtained. Further, by analysis by a transmission electron microscope, the copper sulfide nanoparticles have a particle diameter of about 2 nm and are uniform (Fig. 6). Further, the dispersion containing the obtained copper sulfide nanoparticles was concentrated under reduced pressure to obtain a brownish-smooth copper sulfide nanoparticle paste 0.67 g. Example 7 (Synthesis of silver halide nanoparticles) φ In a glass vessel having a 100 ml inner volume of a stirring device, a thermometer, and a reflux condenser, 4, n-pentyl-4-cyanobiphenyl 0.66 g (2.64 mmol), four flavors 43.4 ml, and 4.mg (0.033 mmol) of hoof, then 6.60 ml of a tetrahydrofuran solution of silver 升·〇1 mol/liter of trifluoroacetic acid (0.066 mmol of silver atom), and heated to 65 to 75 ° C while stirring the mixed solution. , carry out the reaction. After the completion of the reaction, the mixture was cooled to room temperature to form a grayish white uniform liquid, and 50 μm of the silver halide nanoparticle dispersion was obtained, and the result of analysis by a transmission electron microscope was carried out. The diameter is 3 to 15 nm and is uniform (Fig. 7). Further, 14 319452 200811051, and the dispersion containing the obtained silver halide nanoparticle was concentrated under reduced pressure to obtain an off-white uniform silver halide nanoparticle paste 〇.67 g. Example 8 (Synthesis of Silver Telluride Nanoparticles) - A liquid crystal molecular mixture (ZLI-5100-100 (manufactured by Merck) was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. 0.50 g, 44.0 ml of tetrahydrofuran, and 3.8 mg (0.030 mmol) of hydrazine, and then added 6.00 ml of a tetrahydrofuran solution of 0.01 mol/L of trifluoroanthrolate (the silver atom is 0.060 mmol) while stirring The mixed solution is heated to 65 to 75 ° C to carry out the reaction. After the reaction is finished, the mixture is cooled to room temperature to form a grayish white uniform liquid, and a silver halide nanoparticle dispersion liquid is obtained by 50 m. As a result of analysis by a transmission electron microscope, the silver halide nanoparticles have a particle diameter of 3 to 15 nm and are uniform (Fig. 8). Further, the dispersion containing the obtained silver halide nanoparticle is reduced. The mixture was concentrated under pressure to obtain an off-white uniform silver halide nanoparticle paste 0.51 g. φ Example 9 (synthesis of silver halide nanoparticle) The internal volume of the stirring device, the thermometer, and the reflux cooler was 100 ml. In a glass container, liquid crystal molecules are mixed. (MLC-6054-100 (manufactured by Merck) 0.50g, Sikukou South 44.0ml, and 碲3.8mg (0.030mmol), then added 0.01mol / liter of trifluorofuranic acid tetrahydrofuran solution 6.0 〇1111 (the silver atom is 0.06〇111111〇1), and the reaction is carried out while stirring the mixed solution to 65 to 75 ° C. After the reaction is finished, the mixture is cooled to room temperature to form a grayish white uniform liquid. 50 ml of a silver halide nanoparticle dispersion was obtained, and the result of analysis by 15 319452 200811051 by a transmission electron microscope showed that the silver halide nanoparticles had a particle size of 3 to 15 nm and were uniform (Fig. 9). Further, the dispersion liquid containing the obtained silver halide nanoparticle was concentrated under reduced pressure to obtain an off-white uniform silver halide nanoparticle and a sub-paste 0.51 g. Example 10 Synthesis of rice particles) A liquid crystal molecular mixture (MLC-6292-100 (manufactured by Merck), 0.50 g, tetrahydroanthracene, 44.0 ml, was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. And 碲3.811^ _ (0.030mmol), then add 0.01m / liter three The tetrahydrofuran solution of fluorolu-g complex silver is 6·00πι1 (the silver atom is 0.060 mmol), and the mixture is heated to 65 to 75 ° C while stirring the reaction solution to carry out the reaction. After the reaction is finished, the mixture is cooled to room temperature. , a grayish white homogeneous liquid is formed, and 50 ml of a silver telluride nanoparticle dispersion is obtained. The result of analysis by a transmission electron microscope, the silver halide nanoparticle has a particle size of 3 to 15 nm and is uniform (the first) 10)). Further, the dispersion 0 containing the obtained silver halide nanoparticle was concentrated under a storage pressure to obtain an off-white uniform silver halide nanoparticle paste 0 · 51 g 〇 Example 11 Synthesis of rice particles) A liquid crystal molecular mixture (MLC-6608 (manufactured by Merck), 0.50 g, tetrahydrofuran, 44.0 m, and 碲3.8) was placed in a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser. Mg (0.030 mmol), then 6.00 ml (silver atom: 0.060 mmol) of a tetrahydrofuran solution of 0.01 mol/L of trifluorosilic acid was added, and the mixture was heated to 65 to 75 ° C while stirring, and the reaction was carried out. After the end of the reaction, 16 319452 200811051 The mixture was cooled to room temperature to form a grayish white uniform liquid, and 50 ml of a silver telluride nanoparticle dispersion was obtained. The result of the analysis by a transmission electron microscope was analyzed. The particle size of the rice particles is 3 to 15 nm and is uniform (first image). Further, the dispersion containing the obtained silver halide nanoparticle is concentrated under reduced pressure to obtain a uniform grayish white color. Silver nanoparticle paste 0.51 g of the agent. Example 12 (Synthesis of silver halide nanoparticles) A liquid crystal molecular mixture (MLC-6692 (Merck) was added to a glass container containing a stirring device, a thermometer, and a reflux condenser. Preparation) 0.50g, 44.0ml of tetrahydrofuran, and 3.8mg (0.030mmol) of hoof, then add 0.01ml / liter of silver trifluoroacetate in tetrahydrofuran solution 6.00ml (silver atom is 0.060mmol), while stirring The mixed solution was heated to 65 to 75 ° C to carry out a reaction. After the reaction was completed, the mixture was cooled to room temperature to form a grayish white homogeneous liquid, thereby obtaining 50 ml of a silver halide nanoparticle dispersion. As a result of analysis 10 by an electron microscope, the particle size of the silver telluride nanoparticles was 3 to 15 nm and was uniform (Fig. 12). Further, the dispersion containing the obtained silver halide nanoparticles was decompressed. Concentration was carried out to obtain a grayish white uniform silver halide nanoparticle paste 0.5 lg. Example 13 (Synthesis of tin sulfide nanoparticles) The internal volume of a stirring device, a thermometer, and a reflux condenser was 10 0 Hi 1 In the glass, add 4' - n-mercapto-4 - gas-based stupid 0.7 0 g (2·81 mmo 1), tetrahydrofurfuryl 46.3 ml, water 0.05 ml and cadmium acetate acetone ligand 11.5 mg (0.037 mmol), while stirring The mixed solution was heated to 65 to 75 ° C on the side of 17 319452 200811051. Then, 3.70 ml of a tetrahydrofuran solution of 〇·〇1 mol/liter thioacetamide was slowly dropped to carry out a reaction. After the completion of the reaction, the mixture was cooled to room temperature to form a pale yellow homogeneous liquid to obtain cadmium sulfide. The nanoparticle dispersion was 50 ml. Further, as a result of analysis by a transmission electron microscope, the cadmium sulfide nanoparticles have a particle diameter of 5 to 10 nm and are uniform (Fig. 13). Further, the dispersion containing the obtained cadmium sulfide nanoparticles was concentrated under reduced pressure to obtain a light yellow uniform cadmium sulfide nanoparticle paste 0.71 g of hydrazine 10 Example 14 (Zinc sulfide nanoparticle) Synthetic) Add 4'-n-decyl-4-oxylbiphenyl 0.66g (2.64mmol), tetrahydroanthine to south 43.4ml in a glass container with a stirring device, a thermometer and a reflux condenser. 3.50 ml of a solution of 0.05 ml of water and 0. 01 mol/liter of thioacetamide in tetrahydrofuran, and heating to 65 to 75 ° C while stirring the mixed solution. Then, 3.30 ml (zinc atom: 330.033 mmol) of a tetrahydrofuran solution of 〇·〇1 mol/liter acetoxyacetone ligand was slowly dropped, and the reaction was carried out. After the completion of the reaction, the mixture was cooled to room temperature to form a colorless homogeneous liquid, and 50 ml of a zinc sulfide nanoparticle dispersion was obtained. Further, as a result of analysis by a transmission electron microscope, the zinc sulfide nanoparticles have a particle diameter of 2 to 10 nm and are uniform (Fig. 14). Further, the dispersion containing the obtained sulfided nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a pale yellow uniform zinc sulfide nanoparticle paste. Example 15 (Synthesis of Zinc Sulfide Nanoparticles) A liquid crystal molecular mixture (MLC-6692 18 319452 200811051 (manufactured by Merck) 0.50 g was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. 47 ml of tetrahydrofuran, 0.05 ml of water, and 7.8 mg (0.03 mmol) of zinc acetoacetone ligand, while stirring the mixed solution, while heating to 65 to 75 T: Then, slowly dropping 0·01 Mo The reaction was carried out by reacting 3.0 ml of a solution of urethane/limine with tetrahydrofuran. After the reaction was completed, the mixture was cooled to room temperature to form a colorless uniform liquid, and a dispersion of 50 μm of the zinc sulfide nanoparticle was obtained by penetrating. As a result of analysis by a type electron microscope, the particle size of the zinc sulfide nanoparticle was 2 to 10 nm and was uniform (Fig. 15). Further, the dispersion 10 containing the obtained zinc sulfide nanoparticle was subjected to a reduced pressure. Concentration to obtain a pale yellow uniform zinc sulfide nanoparticle paste (K51g 〇 Example 16 (synthesis of zinc sulfide nanoparticle) in a glass containing 100 ml of a stirring device, a thermometer, and a reflux cooler A liquid crystal molecule mixture (MLC_6608 (manufactured by Merck), 0.50 g, tetrahydrofuran 47 ml, water 0.05 ηι1, and zinc acetylacetone ligand 7.8 mg (0.03 mmol) were added, and the mixed solution was stirred. The mixture was heated to 65 to 75 ° C. Then, 3.0 ml of a 0.01 mol/liter thioacetamide tetrahydrofuran solution was slowly dropped to carry out a reaction. After the reaction was completed, the mixture was cooled to room temperature to form a colorless uniform liquid. The obtained zinc sulfide nanoparticle dispersion liquid was analyzed by a transmission electron microscope, and the particle diameter of the zinc sulfide nanoparticle was 2 to 10 nm and was uniform (Fig. 16). The obtained dispersion of zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.50 g of a pale yellow uniform zinc sulfide nanoparticle paste. Example 17 (Synthesis of zinc telluride nanoparticles) 19 319452 200811051 A mixture of a stirring device, a thermometer, and a reflux condenser was placed in a 100 ml glass vessel, and a liquid crystal molecule mixture (ZLI-5100-100 Le (Merck) 0.50 g, tetrahydrofuran 44.0 ml, zinc acetonitrile acetone was added. - Bit base 8.1 mg (0.030 mmol), then 碲3.8 mg (0.030 mmol) was added, and the mixture was stirred while heating to 65 to 75 ° C to carry out the reaction. After the reaction was completed, the mixture was cooled to room temperature to form a colorless uniformity. The liquid was obtained, and 50 μm of the zinc telluride nanoparticle dispersion was obtained, and as a result of analysis by a transmission electron microscope, the particle size of the deuterated nanoparticle was 3 to 15 nm 10 and was uniform (Fig. 17). Further, the dispersion containing the obtained deuterated Nylon particles was concentrated under reduced pressure to obtain a colorless uniform zinc halide nanoparticle paste 〇.51 g. Example 18 (Synthesis of zinc telluride nanoparticles) A liquid crystal molecular mixture (MLC-6054-100 (manufactured by Merck)) was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. 50 g, 44.0 ml of tetrahydrofuran, 3.8 mg (0.030 mmol) of zinc acetylacetone with φ, and then added 3.8 mg (0.030 mmol), and heated to 65 to 75 = while stirring the mixed solution. After the reaction was completed, the mixture was cooled to room temperature to form a colorless homogeneous liquid, and 50 ml of a zinc telluride nanoparticle dispersion was obtained. The result of analysis by a transmission electron microscope was used to deuterate the nanoparticles. The particle size is 3 to 15 nm and is uniform (Fig. 18). Further, the dispersion containing the obtained deuterated Nylon particles is concentrated under reduced pressure to obtain a colorless uniform zinc halide. Particle paste 0.51 g. Example 19 (Synthesis of zinc telluride nanoparticles) 20 319452 200811051 A liquid crystal molecular mixture (MLC-6292) was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. -100 (manufactured by Merck), 0.50 g, tetrahydrofuran (44.0 ml, zinc acetoacetate, 8.1 mg (0.030 mmol), and then 3.8 mg (0.030 mmol) of the hoof, and heated to 6 5 while disturbing the mixed solution. The reaction was carried out at 75 ° C. After the completion of the reaction, the mixture was cooled to room temperature to form a colorless homogeneous liquid, and 50 μm of the zinc telluride nanoparticle dispersion was obtained and analyzed by a transmission electron microscope. The zinc telluride nanoparticle has a particle size of 3 to 15 nm and is uniform (Fig. 19). Further, the dispersion containing the obtained zinc telluride nanoparticles is concentrated under reduced pressure to obtain a colorless color. a uniform zinc halide nanoparticle paste 0.51 g. Example 20 (Synthesis of zinc telluride nanoparticles) Liquid crystal molecules were added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. Mixture (MLC-6608 (manufactured by Merck), 0.50 g, 44.0 ml of tetrahydrocyanate, 8.1 mg (0.030 mmol) of ethyl acetonide, and 3.8 mg (0.030 mmol) of hydrazine, and stirred while stirring The mixed solution is heated to 65 to 75 ° C while being heated. After the reaction is completed, the mixture is allowed to cool to room temperature to form a colorless uniform liquid, and 50 μm of the zinc telluride nanoparticle dispersion is obtained, and the result of analysis by a transmission electron microscope is performed. The particle diameter of the particles is 3 to 15 nm and is uniform (Fig. 20). Further, the dispersion containing the obtained zinc telluride nanoparticles is concentrated under reduced pressure to obtain a colorless uniform zinc phthalide. Rice particle paste 0.51 g. Example 21 (Synthesis of Hoofed Nanoparticles) 21 319452 200811051 A liquid crystal molecular mixture (Mlc_6692 _ (Merck)) was added to a glass vessel having a stirring apparatus, a thermometer, and a reflux condenser in an internal volume of 100 ml. 5〇g, 44.0ml of tetrahydrofuran, zinc acetylacetone, and 8*lmg (0.030mmo1), then 碲3.8mg (〇.〇3〇mm〇1), and heated while stirring the mixture The reaction was carried out at 65 to 75 ° C. After the reaction was completed, the mixture was cooled to room temperature to form a colorless homogeneous liquid, and 5 〇 ml of a zinc telluride nanoparticle dispersion was obtained, which was analyzed by a transmission electron microscope. As a result, the particle size of the zinc telluride nanoparticles is 3 to _ and is uniform (Fig. 21). Further, the dispersion containing the obtained zinc telluride nanoparticles is concentrated under reduced pressure to obtain Colorless uniform zinc halide nanoparticle paste 〇· 51 g. '[Industrial use possibility] This work is about a liquid crystal molecule containing the periodic table 11th 戋 group 12 metal chalcogenide Rice particles and their manufacturing method. The Group 11 or Group 12 metal chalcogenide nanoparticles are, for example, useful compounds for lowering the driving voltage of a liquid 10-crystal display. 彳 [Simplified illustration] Silver sulfide silver nanoparticles of silver sulfide nanoparticles Fig. 1 is a transmission electron micrograph synthesized by the method of Example 1. Fig. 2 is a transmission electron micrograph synthesized by the method of Example 2. Copper sulfide copper nanoparticles of copper sulfide nanoparticles Fig. 3 is a transmission electron micrograph synthesized by the method of Example 3. Fig. 4 is a transmission electron micrograph of 319452 22 200811051 synthesized by the method of Example 4. Fig. 5 is a fifth embodiment. A transmission electron micrograph of the method. The copper sulfide nanoparticle of Fig. 6 is a transmission electron micrograph of the red square of Example 6. The copper sulfide nanoparticle is shown in Fig. 7 Example 7, i. go to 4, telluride) nano-particles of transmissive electrons / smashed silver (silver) weaving micro-pound day

第8圖係以實施例8之方法所人…、片。 的透過型電子顯微鏡照片。 成之碑化銀奈米粒子 第9圖係以實施例9之方法所人、 的透過型電子顯微鏡照片。 成之蹄化銀奈米粒子 第1 〇圖係以實施例1 〇之 子的透過型電子顯微鏡照片。 方法所合成 之碲化銀奈米粒 第11圖係以實施例11之方法 子的透過型電子顯微鏡照片。 所合成 之碲化銀奈米粒 第12圖係以實施例12之方法所人、 子的透過型電子顯微鏡照片。 成之碲化銀奈米粒 第13圖係以實施例13之方法所人、 子的透過型電子顯微鏡照片。 硫化鑛奈米粒 第14圖係以實施例14之方法所人、 子的透過型電子顯微鏡照片。 <琉化鋅奈米粒 第15圖係以實施例15之方法所合成 子的透過型電子顯微鏡照片。 '^硫化鋅奈米粒 第16圖係以實施例16之方法所人 。、之硫化鋅奈米粒 319452 23 200811051 子的透過型電子顯微鏡照片。 第17圖係以實施例17之方法所人 子的透過型電子顯微鏡照片。 ° 第18圖係以實施例18 子的透過型電子顯微鏡照片 第19圖係以實施例J 9 子的透過型電子顯微鏡照片 第2〇圖係以實施例20 子的透過型電子顯微鏡照片 第21圖係以實施例21 子的透過型電子顯微鏡照片 成之蹄化鋅奈米粒 成之碲化鋅奈米粒 成之碲化鋅奈米粒 、之崎化鋅奈米粒 成之,化鋅奈米教 之方法所合 〇 之方法所合 〇 之方法所合 〇 之方法所合Figure 8 is a diagram showing the method of Example 8. Transmission electron micrograph. The deposited silver nanoparticles are shown in Fig. 9 as a transmission electron micrograph of the method of Example 9. The hoofed silver nanoparticles are shown in the first section as a transmission electron micrograph of the Example 1 〇. The silver halide nanoparticle synthesized by the method Fig. 11 is a transmission electron micrograph of the method of Example 11. The synthesized silver halide nanoparticles Fig. 12 is a transmission electron micrograph of the human and the subunits in the method of Example 12.碲 碲 银 奈 第 第 第 第 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Sulfide ore nanoparticle Figure 14 is a transmission electron micrograph of the human and child in the method of Example 14. <Silver zinc nitride nanoparticle Fig. 15 is a transmission electron micrograph of the synthesized product by the method of Example 15. '^Zinc sulfide nanoparticle Figure 16 is taken as the method of Example 16. Zinc sulfide nanoparticle 319452 23 200811051 The transmission electron micrograph of the sub-particle. Fig. 17 is a transmission electron micrograph of the human body by the method of Example 17. Fig. 18 is a transmission electron micrograph of Example 18, and Fig. 19 is a transmission electron micrograph of Example J9. Fig. 2 is a transmission electron micrograph of Example 20 The figure is obtained by using a transmission electron micrograph of Example 21 to form a zinc sulphide nanoparticle into a zinc sulphide nanoparticle, a zinc sulphide nanoparticle, and a method of zinc crystallization. The method of combining the methods of the merged method

24twenty four

Claims (1)

200811051 十、申請專利範圍: 1· 一種周期表第u族或第12族金屬硫屬化物奈米粒子, • 其係含有1種或2種以上之周期表第〗丨族或第12族金 . 屬硫屬化物、及含有1種或2種以上之液晶分子之周期 表第11無或第12族金屬硫屬化物奈米粒子。 2·如申請專利範圍第1項之奈米粒子,其中,粒徑為2至 50nm 〇 3· 一種分散液,其係含有申請專利範圍第1或2項的奈米 馨 粒子及溶劑。 4· 一種糊劑,其係含有申請專利範圍第1或2項的奈米粒 子及1種或2種以上之液晶分子。 5·如申請專利範圍第1或2項的奈米粒子之製造方法,其 係使1種或2種以上之液晶分子、1種或2種以上之周 期表第11族或第12族金屬鹽、及i種或2種以上之硫 屬化物前驅體在溶劑中反應。 _ 6·如申請專利範圍第$項的奈米粒子之製造方法,其係在 4〇至1〇〇。〇下進行反應。 7·如申請專利範圍第3項的分散液之製造方法,其係使工 種或2種以上之液晶分子、1種或2種以上之周期表第 ^族或第12族金屬鹽、及1種或2種以上之硫屬化物 鈉驅體在溶劑中反應。 8·如申請專利範圍第7項的分散液之製造方法,其係在4〇 至100 c下進行反應。 ,、 9·如申請專利範圍第4項之糊劑,其係藉由申請專利範圍 319452 25 200811051 第7或8項的方法所得到之分散液中取得。 10.如申請專利範圍第9項之糊劑,其係藉由濃縮分散液而 . 取得糊劑。200811051 X. The scope of application for patents: 1. A metal chalcogenide nanoparticle of the period u or 12, • It contains one or more of the periodic table of the 丨 或 or the 12th group of gold. It is a chalcogenide and a 11th or 12th metal chalcogenide nanoparticle of the periodic table containing one or more liquid crystal molecules. 2. The nanoparticle according to item 1 of the patent application, wherein the particle diameter is 2 to 50 nm 〇 3 · a dispersion containing the nanoparticle and the solvent of the first or second aspect of the patent application. 4. A paste comprising the nanoparticles of the first or second aspect of the patent application and one or more liquid crystal molecules. 5. The method for producing a nanoparticle according to claim 1 or 2, wherein one or more liquid crystal molecules, one or more metal salts of Group 11 or Group 12 of the periodic table are used. And one or two or more chalcogenide precursors are reacted in a solvent. _ 6· The method for producing nano particles according to the scope of claim patent, which is in the range of 4〇 to 1〇〇. The reaction is carried out under the armpits. 7. The method for producing a dispersion according to item 3 of the patent application, which is a work type or two or more kinds of liquid crystal molecules, one or more metal salts of Group II or Group 12 of the periodic table, and one type Or two or more kinds of chalcogenide sodium precursors are reacted in a solvent. 8. The method for producing a dispersion according to claim 7, which is carried out at 4 to 100 c. 9. The paste of claim 4 of the patent application is obtained by the dispersion obtained by the method of claim 319452 25 200811051, item 7 or 8. 10. The paste according to claim 9 of the patent application, wherein the paste is obtained by concentrating the dispersion. 26 319452 200811051 七、 指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: 無元件符號 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式 31945226 319452 200811051 VII. Designated representative map: (1) The representative representative of the case is: (1). (2) Brief description of the symbol of the representative figure: No component symbol 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: This case does not represent the chemical formula 319452
TW96127427A 2006-07-27 2007-07-27 Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof TW200811051A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006205404 2006-07-27
JP2006205403 2006-07-27

Publications (1)

Publication Number Publication Date
TW200811051A true TW200811051A (en) 2008-03-01

Family

ID=38981559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96127427A TW200811051A (en) 2006-07-27 2007-07-27 Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof

Country Status (3)

Country Link
JP (1) JP5332612B2 (en)
TW (1) TW200811051A (en)
WO (1) WO2008013250A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249469A (en) * 2008-04-04 2009-10-29 Ube Ind Ltd Liquid crystal material containing metal chalcogenide nanoparticle, and liquid crystal display device comprising the same
HU230862B1 (en) * 2008-04-28 2018-10-29 DARHOLDING Vagyonkezelő Kft Device and method for continuous production of nanoparticles
JP2011011956A (en) * 2009-07-03 2011-01-20 Teijin Ltd Chalcopyrite type fine particle and production method thereof
JP2012076976A (en) * 2010-10-06 2012-04-19 National Institute For Materials Science Method for synthesizing powders of sulfide and selenide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104892B2 (en) * 2001-08-31 2008-06-18 直樹 戸嶋 Liquid crystal display
JP3701622B2 (en) * 2002-03-27 2005-10-05 日立ソフトウエアエンジニアリング株式会社 Semiconductor nanoparticle fluorescent reagent and fluorescence measuring method
JP4392186B2 (en) * 2003-04-14 2009-12-24 大日本印刷株式会社 High-speed response liquid crystal device and driving method
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element

Also Published As

Publication number Publication date
JPWO2008013250A1 (en) 2009-12-17
WO2008013250A1 (en) 2008-01-31
JP5332612B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Mourdikoudis et al. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles
Ai et al. One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B
Chen et al. A facile route to ZnO nanoparticle superlattices: synthesis, functionalization, and self-assembly
Xie et al. Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes
Ajibade et al. Group 12 dithiocarbamate complexes: Synthesis, characterization, and X-ray crystal structures of Zn (II) and Hg (II) complexes and their use as precursors for metal sulfide nanoparticles
Jin et al. All-thiolate-protected silver and silver-rich alloy nanoclusters with atomic precision: stable sizes, structural characterization and optical properties
US20060204754A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
CN100525965C (en) Method for preparing cuprum nickle duplex metal nano granule
JP2006256954A (en) Prussian blue-type metal complex ultrafine particle, and its dispersion liquid, and manufacturing method thereof
TW200811051A (en) Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof
Aboutorabi et al. Sonochemical syntheses and characterization of nano-structured three-dimensional lead (II) coordination polymer constructed of fumaric acid
JP2008056552A (en) Method of manufacturing metal sulfide and metal sulfide
Mbese et al. Synthesis, structural and optical properties of ZnS, CdS and HgS nanoparticles from dithiocarbamato single molecule precursors
KR102432090B1 (en) Ultrasmall Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same
TWI658887B (en) Porous structure, manufacturing method thereof, and manufacturing method of composite body
Dutta et al. Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS
Mills et al. Sterically invariant carborane-based ligands for the morphological and electronic control of metal–organic chalcogenolate assemblies
Bera et al. Synthesis of nanocrystalline CdS from cadmium (II) complex of S-benzyl dithiocarbazate as a precursor
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
EP3804886A1 (en) Micro-nanostructure manufactured using amorphous nanostructure and manufacturing method therefor
JP2008081814A (en) Method for producing metal particulate
An et al. Selective synthesis of Ni3S4 nanocrystallites with hollow structures through a solution-phase approach
US20120161076A1 (en) Method for preparing a water-compatible composition of metal oxide nanocrystals and the water-compatible composition obtained
Kim et al. Fabrication of antimony telluride nanoparticles using a brief chemical synthetic process under atmospheric conditions
Chen et al. Structural variation and magnetic properties of tetrakis (μ2-carboxylate)-bridged dicopper (II) complexes of betaines with different axial ligands