TW200810732A - Pulse output apparatus for simultaneously outputting pulse waveform and pulse-related information - Google Patents

Pulse output apparatus for simultaneously outputting pulse waveform and pulse-related information Download PDF

Info

Publication number
TW200810732A
TW200810732A TW96124441A TW96124441A TW200810732A TW 200810732 A TW200810732 A TW 200810732A TW 96124441 A TW96124441 A TW 96124441A TW 96124441 A TW96124441 A TW 96124441A TW 200810732 A TW200810732 A TW 200810732A
Authority
TW
Taiwan
Prior art keywords
waveform
output
pulse wave
unit
full
Prior art date
Application number
TW96124441A
Other languages
Chinese (zh)
Inventor
Hironori Sato
Kazunobu Itonaga
Takashi Inagaki
Toshihiko Ogura
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Publication of TW200810732A publication Critical patent/TW200810732A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist

Abstract

In a display unit (3) of the pulse sensing apparatus, pulse signals sensed during a measurement period are inputted by pressing a pulse sensor located on a measuring position of a wrist, the full waveform during the measurement period is obtained according to the inputted pulse signals. A waveform abstractor (84) abstracts the waveform of each heartbeat from the acquired full waveform. An AI calculator (88) calculates an AI value associated with the abstracted waveform of each heartbeat. The full waveform and the AI value pertinent to each waveform of a heartbeat of the full waveform calculated by the AI calculator (88) are simultaneously outputted to a display or a printer through an output (94).

Description

200810732 九、發明說明: 【發明所屬之技術領域】 本發明係關於輸出脈波相關資訊的脈波輸出裝置,尤 其是關於同時輸出脈波波形和脈波相關資訊的脈波輸出裝 置。 【先前技術】 當使用脈波計測定被測定者(患者等)的脈波時,可使 用測定出之脈波來推定心血管風險。即,利用測定脈波所 含之來自心臟的血流的擠壓壓力波(驅出波)、及來自末端 之反射壓力波(反射波),可算出該被測定者之血管的硬化( 老化)的程度以作爲AI(Augmentation Index)値。因此,脈波 之測定,對瞭解該被測定値之健康狀態而言非常重要。在 習知之脈波計中,一般而言,連續地測定波形,從測出之 波形的一個波形計算AI値。通常,爲了減少測定誤差而連 續地進行AI値之測定,並進行將其値之平均作爲最終的測 定値的處理。從多數値綜合後之結果、即獲得波形的方法 ,多利用數學的波形處理的方法或平均化方法來進行。 但是,測定出之所.有波形係測定結果,每一節拍的波 形所出現之變化,可認爲是重要之測定結果。有關此點, 在專利文獻1(日本特開2005-02 1 477號公報)提供一種對此 脈波波形本身連續地進行印字的功能。另外,在非專利文 獻1(製品負攜帶型多用途身體放大·收錄裝置Polymate API 132/AP1532.[online]· TEAC(股)Business Solutions Company· [retrieved on 2006-06-16]. Retrieved from the Internet: < 200810732 URL: http://www.tic.teac.co.jp/jp/products/medical/polymate-det. html> .)提供一種使用監測脈波等之各種身體資訊的軟體 ,連續地監視輸出所檢測到之脈波等的身體資訊的功能。 專利文獻1:日本特開2005-02 1 477號公報 非專利文獻1:製品資訊攜帶型多用途身體放大·收 錄裝置 Polymate AP1132/AP1532.[online].TEAC(股) Business Solutions Company. [retrieved on 2006-06-16].Retrieved from the Internet: < URL:http://www.tic.teac.co.jp/jp/products/medical/ polymate-det.html > . 【發明内容】 (發明所欲解決之課題) 以往,雖提供一種輸出經測定而獲得之脈波的全波形 之功能,但無法提供著眼於每一節拍的波形所出現之變化 ,依每一波形輸出從該波形獲得之身體相關的資訊的功能 。爲此,要求使用者本身從各波形讀取(推定)資訊,所以 ’不易進行基於脈波波形之正確診斷或預後預測。 根據上述,本發明之目的在於,提供一種可於每一節 拍的脈波,輸出從波形計算出之値的脈波輸出裝置。 (解決課題之手段) 根據本發明之一局面的脈波輸出裝置,其具備:·全波 形取得部,係輸入藉由按壓在測定部位上之脈波感測器於 200810732 測定期間所感測到之脈波訊號,並根據輸入之脈波訊號來 取得測定期間之全波形;波形抽出部,係從取得後之全波 形抽出每一節拍之波形;値計算部,係於藉由波形抽出部 所抽出之一節拍的每一波形,計算根據該波形之指定値; 及波形輸出部,係同時輸出取得之全波形、及於全波形之 一節拍的每一波形藉由値計算部所計算出的指定値。 其較佳態樣在於:波形輸出部係將取得之全波形、及 於全波形之一節拍的每一波形藉由値計算部所計算出的指 定値同時進行印字。或加以顯示。 其較佳態樣在於:指定値係指判定心血管風險用的値。 其較佳態樣在於:指定値係包含驅出波與反射波之振 幅的比率値、血壓値、中樞血壓推定値及脈波傳播速度關 聯資訊中至少一個値。 其較佳態樣在於:波形輸出部係於全波形之一節拍的 每一波形中,與該波形相關聯地將指定値輸出。 其較佳態樣在於:波形輸出部係於全波形之一節拍的 每一波形中與該波形並列地將指定値輸出。 其較佳態樣在於:波形輸出部係於全波形之一節拍的 每一波形,針對相鄰之波形而使指定値之輸出位置相異。 其較佳態樣在於:脈波輸出裝置係於一節拍的每一波 形之指定値中,僅輸出超過預定之臨界値的値。 其較佳態樣在於:脈波輸出裝置係於一節拍的每一波 形之指定値中,超過預定臨界値的値,係以與其他之指定 200810732 値相異的態樣輸出。 其較佳態樣在於:脈波輸出裝置更具備統計輸出部, 係輸出對全波形經統計每一節拍之指定値後的資訊。並根 據從外部供給之切換指示進行波形輸出部及統計輸出部之 中一方的輸出。 根據本發明之一局面的程式產品,係於電腦中用以執 行波形輸出方法之程式產品,而波形輸出方法具備:從在 測定期間預先取得之脈波的全波形抽出每一節拍之波形的 步驟;在抽出一節拍之每一波形,計算根據該波形之指定 値的步驟;及同時輸出取得之全波形、及於全波形之一節 拍的每一波形所計算出的指定値之步驟。 其較佳態樣在於:在波形輸出步驟中,將取得之全波 形、及於全波形之一節拍的每一波形藉由値計算部所計算 出的指定値同時進行印字。或加以顯示。 其較佳態樣在於:指定値.係指判定心血管風險用的値 〇 其較佳態樣在於:指定値係包含驅出波與反射波之比 率値、血壓.値、中樞血壓推定値及脈波傳播速度關聯資訊 中至少一個値。 其較佳態樣在於:在波形輸出步驟中,於全波形之一 節拍的每一波形中,與該波形相關聯地將指定値輸出。 其較佳態樣在於:在波形輸出步驟中,於全波形之一 節拍的每一波形中,與該波形並列地將指定値輸出。 其較佳態樣在於:在波形輸出步驟中,於全波形之一 200810732 節拍的每一波形,針對相鄰之波形而使指定値之輸出位置 相異。 其較佳態樣在於:波形輸出方法係一節拍的每一波形 ^ 之指定値中,僅輸出超過預定之臨界値的値。 — 其較佳態樣在於·波形輸出方法,一^節拍的每一波形 之指定値中,超過預定臨界値的値,係以與其他之指定値 相異的態樣輸出。 其較佳態樣在於:波形輸出方法更具備統計輸出步驟 ,係輸出對全波形經統計每一節拍之指定値後的資訊。並 根據從外部供給之切換指示進行波形輸出步驟及統計輸出 步驟之中一方的輸出。 根據本發明,在連續地輸出測定出之全波形時,從每 一節拍之波形的各個計算出的値,係與全波形同時輸出。 利用觀察輸出內容(波形及計算値),可把握藥劑投放之實 際時間藥效狀況、呼吸性變動及不整脈搏造成的心臟負荷 的變化等。 【實施方式】 以下,參照圖式詳細說明本發明之實施形態。又,各 圖中的相同符號表示相同或相當之部分。 第1及第2圖顯示具有相當於本實施形態之脈波輸出 裝置的功能之脈波檢測裝置的硬體構成。第3圖顯示包含 感測器單元及固定台之各部分的連接關係。第4圖顯示將 感測器單元安裝於身體上之狀態。 參照第3及第4圖,脈波檢測裝置具備:用以檢測手 200810732 腕之動脈的脈波而安裝於脈波測定部位之手腕表面的感測 器單元1、爲了進行脈波檢測而固定手腕用之固定台2、及 執行包含脈波檢測及血壓測定用之運算的各種處理用的顯 示單元3。在第3圖中,感測器單元1係收容於框體100 內,在第4圖中,顯示被槽9引導(參照第3圖)並從框體 100內滑行移動至外部,而位於手腕上之狀態。 固定台2內建有固定台單元7。固定台單元7及感測 器單元1係間隔著通信纜線5及氣管6而相連接。另外, 安裝於血壓測定部之袖袋52及顯示單元3係間隔著氣管53 而相連接。在此,固定台單元7及顯示單元3係爲了進行 通信而間隔著U S B (U n i v e r s a 1 S e r i a 1 B u s)纜線4相連接,但 亦可用無線連接。 在脈波檢測時,如第4圖所示,使用者在將手腕載置 於周定台2的指定位置的狀態下,藉由滑行移動而使感測 器單元1位於手腕之動脈側表面,並間隔著皮帶8而將感 測器單元1之框體1 〇〇及固定台2收緊,用以固定手腕上 之感測器單元1而不使其偏移。作爲測定態樣係假定僅爲 使用感測器單元1之脈波測定、僅爲使用袖袋52之血壓測 定、或此雙方之測定的3種類。 脈波檢測用之感測器單元1係安裝於手腕上。用以血 壓測定之袖袋52係捲繞(安裝)在上腕部。安裝之態樣係如 下。例如,亦可將感測器單元1安裝於左腕上,且將袖袋 52安裝於右腕上,而在左右之腕上同時檢測脈波及血壓。 或是,如第4圖所示,亦可將感測器單元1及袖袋52安裝 -10- 200810732 於相同的腕上,脈波檢測之後,進行血壓測定。 參照第1圖,感測器單元1具有:壓力感測器陣列11 ,係將由檢測脈壓用之複數個隔膜及電阻橋接電路所構成 、 的壓力感測器,單一方向地排列於由單晶矽等構成之半導 ^ 體晶片的後述之按壓面40上而成;多工器1 2,係選擇性地 導出壓力感測器陣列11中的複數個壓力感測器所分別輸 出之響應檢測出的脈壓的電壓訊號;及按壓袖袋1 3,其包 含空氣袋,係爲了將壓力感測器陣列1 1按壓於手腕上而進 行加壓調整。 固定台單元7具有:對按壓袖袋(空氣袋)13之內壓( 以下,稱爲袖袋壓)進行加壓用之加壓泵1 4及進行減壓用 之負壓泵1 5 ;切換閥1 6,係用以選擇性地將加壓泵14及 負壓泵15之任一方切換連接於氣管6;控制這些用之控制 電路 17 ;連接著 USB纜線 4的通信電路 18 ;及 A/D(Analog/Digital)轉換器1 9,係用以將從感測器單元1 t 導出之輸出訊號轉換爲數位資料。 顯示單元 3 具有:CPU(Central Processing,Unit)20,係 爲了集中性地控制脈波檢測裝置而執行包含運算在內之各 種處理;R〇M(Read Only Memory)21 及 RAM(Random Access Memory)22,係對控制脈波檢測裝置用的資料及程式進行記 憶;操作部23,係設置爲可從外部操作,以進行輸入各種 資訊用的操作;顯示器24,係由LCD (Liquid Crystal Disply) 等所構成,以進行脈波檢測結果及血壓測定之結果等各種 資訊的外部輸出;外部I/F(Interface)41,係可從外部拆卸 -11- 200810732 自由地安裝 CD-ROM(Compact DiskRead Only Memory)42; 定時器4 3,係對現在時刻進行計時而作爲時間資料加以輸 出;血壓測定單元50;藉由通信連接血壓測定單元50與 、 CPU20用之通信電路71;藉由通信連接固定台單元7與 ^ CPU20用之通信I/F72 ;及印刷輸出測定結果等之資訊用的 印字部10。血壓測定單元50係隔著氣管53連接安裝於上 腕之袖袋52。 又,在此,固定台2之固定台單元7及顯示單元3係 個別地設置,但亦可爲將兩功能內建於固定台2內的構成 。在內建之情況,操作部23及顯示器24係安裝於固定台2 之框體上,而可從外部操作或是可從外部確認顯示內容。 參照第3圖,顯示單元3之操作部23具有:爲了指示 測定之開始而可按下之開關231;爲了指示測定之結束(停 止)而可操作之開關232 ;爲了指示輸出之切換而可操作之 開關23 3 ;操作之開關234,係爲了切換顯示於顯示器24 f 之畫面上之、或是藉由印字部1 〇進行印刷之脈波波形的範 圍;操作之開關23 5,係爲了翻捲顯示於顯示器24之畫面 上之脈波波形;操作之開關群236,係爲了指示根據顯示器 24畫面之游標(未圖示)的移動而對資訊的選擇或操作內、容 之決定;操作之開關237、23 8及239,係在顯示器24之畫 面上或是在印字部1 0的紙面上,指示從與脈波之每一節拍 的波形同時輸出之該脈波的波形計算出之値、例如A:[値、 表示脈波傳播速度關聯資訊之公知指標的TR(Traveling time to Reflected wave)値、及表示中樞血壓推定値之 SBP2 -12- 200810732 (second Systolic Blood Pressure)之値;及爲 了對印字部 10 指示資訊之印刷而可操作用之開關240。 第2圖顯示血壓測定單元50及其關聯部分之構成。參 • 照第2圖,血壓測定單元50具備:壓力感測器54,係藉由 一 內建於袖袋52之空氣袋51內的壓力(以下稱爲「袖袋壓」 )而使容量變化;振盪電路55,係間隔著I/F60而將響應壓 力感測器54之容量値的振盪頻率的訊號輸出於通信電路 7 1 ;用以調整袖袋壓之位準之泵5 6及閥5 8 ;驅動泵5 6之 泵驅動電路57 ;及用以調整閥58之開閉程度的閥驅動電路 59。空氣袋51與壓力感測器54、泵56及閥58係經由氣管 53而相連接。I/F60係將從振盪電路55所獲得之訊號轉換 爲壓力訊號(顯示動脈之容積變化的壓脈波的訊號),輸出 至通信電路7 1。 第5圖顯示感測器單元1之構成。第5(B)圖顯示第5(A) 圖之感測器單元1的截面構造,係在感測器單元1安裝於 手腕時之手腕的橫向截斷方向之截面構造。第5(C)圖放大 顯示第5(B)圖之虛線框內的一部分。當第5(B)圖之按壓袖 袋13藉由加壓泵14及負壓泵15而被調整袖袋壓時,隔著 藉由陶瓷或樹脂所成型之塊體而被安裝之壓力感測器陣列 11,於第5(C)圖所示之箭頭25方向自由移動僅響應該袖袋 壓位準之量。壓力感測器陣列11係藉由移動於箭頭25之 下方向而從框體100之預設的開口部突出並按壓於手腕表 面。如第5(D)及第5(E)圖所示.,壓力感測器陣列11之複數 個壓力感測器2 6的排列方向,係在將感測器單元1安裝於 '13- 200810732 手腕上時對應於與動脈大致正交(交叉)的方向,其排列長 度至少比動脈之直徑更長。當各壓力感測器26分別由按壓 袖袋1 3之袖袋壓所按壓時,則將屬從動脈所產生而傳遞至 • 身體表面的壓力振動波(脈壓)的壓力資訊作爲電壓訊號加 _ 以輸出。壓力感測器26係在指定大小(5.5mmx8.8mm)的按 壓面40上,例如排列有40個。導引第5(A)圖之感測器單 元1的滑行移動方向的槽9的延伸方向,係對應於壓力感 測器陣列11之壓力感測器26的排列方向。 第6圖表示顯示單元3之功能構成。顯示單元3具備 :對應於RAM22之資料儲存部78 ;輸入依開關235之操作 的指示之輸出速度輸入部79 ;藉由開關234所指示之波形 的範圍的輸入部81 ;具有範圍切換部821之顯示控制部82 ;具有範圍切換部83 1之印字控制部83;抽出每一節拍之 脈波波形用的波形抽出部84;從資料儲存部7 8讀出後述之 統計資訊99用的統計資訊讀出部85;比較從脈波計算出之 値與指定之臨界値並根據比較結果進行判定用之臨界値判 定部86 ;依照血壓計算部87、AI計算部88、SBP計算部 89、TR計算部90及開關237、238及239之操作來選擇輸 出於每一波形之計算値的種類的輸出値選擇部9 1 ;切換輸 出內容用之切換部92;及作成後述之統計資訊99並儲存於 資料儲存部78內之統計部93。 藉由輸出速度輸入部79、波形範圍輸入部81、輸出値 選擇部91及切換部92來構成輸出部94。 在本實施形態中,第6圖之各部的功能,係藉由CPU20 -14- 200810732 從ROM21讀出對應之程式,並藉由cpu20執行所讀出的程 式,而可實現其功能。但是,此些功能之實現方法並不特 疋於此。例如’此些功能之一部分或全部亦可藉由硬體(電 路)來實現。 第7圖顯示第6圖之資料儲存部78之內容例。參照第 7圖,資料儲存部78包含記憶區域El、E2、E3及E4。在 S己憶區域E 1內儲存由感測器單元1所檢測出之脈波的指定 期間內的波形之資料TWD。波形之資料TWD係指對應於藉 由定時器43所計測之測定時間經過,連續地與各脈波之位 準(振幅MmmHg)的資料相關聯者。 在届己憶區域E2內儲存有記錄Ri(i=:l、2、3、…、m) 。記錄Ri具有··根據全波形資料TWD所抽出之每節拍的 波形資料WDi(i = l、2、3、…、m);根據該波形資料 WDi(i = l,2,3,…、m)算出之最高血壓(收縮期血壓:Systolic B1 ο 〇 d P r e s s u r e)資料 S Y S i (i = 1、2、3、…、m)、最低血壓( 擴張期血壓:Diastolic Blood Pressure)資料 DIAi(i=l、2、3 .....m)、顯示AI値之資料AIi(i = l、2、3.....m)、指 j 不驅出波所不最局壓値之資料SBPl(i)(i = l、2、3、…、m) 、指示反射波所示最高壓値之資料S B P 2 (i) (i = 1、2.、3、… 、m)、顯示脈搏數之資料PLi(i=l、2、3、…、m)、及資料 TRi(i=l、2、3.....m)。在此,波形資料WDi及根據該波 形資料WDi算出之各種値(資料SYSi、資料DIAi、資料Ali 、資料SBPl(i)、資料SBP2(i)、資料PLi及資料TRi),係 以記錄Ri單位所儲存,並賦予關聯地儲存於資料儲存部78 -15- 200810732 內。但若是使波形資料WDi及資料SYS i〜TRi相互關聯的 態樣的話,其儲存方式並不限定於使用記錄Ri的方式。 在記憶區域E3內儲存有顯示臨界値之資料70〜73, 此臨界値係指判定心血管風險之有或無用的指定之基準値 。臨界値亦可爲具有指定範圍之値。臨界値判定部86係比 較資料70〜73之値、根據計測出之脈波資料算出的最高血 壓之資料SYS、資料AI、資料SBP2及資料TR的各値,以 判定其比較結果。 在記憶區域E4內儲存有由統計部93所算出之統計資 訊99。 第8圖模式地顯示AI値之計算步驟。脈波係由與心臟 之收縮同時產生之驅出波、及藉由驅出波在末梢血管或動 脈之分歧部反射而產生之反射波所構成。如第8圖所示, 在一節拍之脈波中,檢測出具有振幅爲位準P 1的驅出波及 具有位準P2之反射波。在此種脈波中,驅出波及反射波之 振幅之比率(八1値),可根據人1 = ?2/?1\100(%)所算出。 第9圖爲沿著第4圖之IX-IX線之剖面圖。在第9圖 中,按壓袖袋13之袖袋壓係藉由負壓泵15而被充分地減 壓(具有比大氣壓充分低之壓力位準),所以,壓力感測器 陣列11成爲被收容於感測器單元1之框體1 00內的狀態, 而未接觸於脈波測定部位之手腕表面。 在手腕上存在脈波檢測用之橈骨動脈27、及腱29等 之硬物。當在硬物上之手腕表面進行脈波檢測時,會在檢 測脈波內含有假象脈波。因此,利用來启位於橈骨動脈27 -16- 200810732 上之壓力感測器26的壓力資訊,可檢測出最適之脈波。 依照第1 0圖之流程說明本實施形態之脈波檢測用之 處理步驟。依照該流程之程式及執行該程式時所參照之資 ^ 料,係預先保存在ROM21或RAM22內,由CPU20 —面適 ^ 宜參照該資料一面讀出並執行程式,來進行脈波檢測處理 。又,在此顯示單元3係當電源導通時被供給電源而成爲 可動作狀態,固定台單元7亦假定從顯示單元3側被供給 電源而成爲可動作狀態。 另外,在此假定不同時進行根據血壓測定單元50之血 壓測定,而是另外進行。 首先,使用者將顯示單元3之電源開關(未圖示)打開 (ON)。回應該ON操作,CPU20將指示訊號供給於控制電路 17。控制電路17根據所供給之指示訊號,將切換閥16切 換至負壓泵1 5側,驅動負壓泵1 5 (步驟S 1)。 當負壓泵1 5被驅動時,其隔著切換閥1 6進行作用以 使袖袋壓比大氣壓充分低,所以,壓力感測器陣列1 1朝第 5(C)圖之箭頭25的上箭頭方向移動。其結果,可避免壓力 感測器陣列11不小心突出而被誤動作或產生故障。 其後,當使用者將感測器單元1例如第4圖所示安裝 於手腕上並打開(ON)開始鍵(未圖示)時,判定壓力感測器 陣列11是否有移動、即感測器單元1是否沿滑槽9滑行移 動至位於手腕表面上(步驟S2)。在感測器單元1之框體100 內設有檢測滑行移動用之未圖示的微型開關,控制電路1 7 根據該微型開關之檢測訊號來判定壓力感測器陣列1 1是 -17- 200810732 否有移動。 在未判定有移動之期間(在步驟S2爲否),則反複進行 步驟S1之處理。當判定爲有移動時(在步驟爲是),控 制電路17根據從操作部23所供給的操作訊號,判定開關 231是否有被操作(步驟S2a)。在判定結果表示開關23丨未 被操作、即未指示測定之開始的情況(在步驟S 2 a爲否),則 返回步驟S 1之處理,以後,直到開關23 1被操作爲止,反 複地進行步驟S 1及S 2之處理。 另一方面’在步驟S 2 a之判定結果表示開關2 3 1有被 操作、即指示測定之開始的情況(在步驟S2a爲是),控制電 路17將切換閥16切換至加壓泵14側,驅動加壓泵14(步 驟S3)。藉此,袖袋壓上昇,壓力感測器陣列1 1朝第5(C) 圖之箭頭25的下箭頭方向移動,而將壓力感測器陣列11 按壓於手腕表面。爲了簡單地說明,假定在此時點,壓力 、感測器陣列11之壓力感測器26係位於橈骨動脈27上。 在此,藉由加壓泵1 4之驅動,直到爲了脈波檢測而預 先實驗求得之指定的按壓位準爲止,將壓力感測器陣列1 1 按壓於手腕表面。 在壓力感測器陣列11以指定之按壓位準按壓於手腕 表面的狀態(參照第9圖),從各壓力感測器26輸出之電壓 訊號的壓力資訊(脈壓的資訊),隔著多工器1 2而依排列順 序依序被導出,並由A/D轉換器19轉換爲數位資訊後’經 由通信電路1 8傳輸至顯示單元3。在此’從壓力感測器陣 列11之各壓力感測器26所輸出的數位資訊’係由該壓力 -18- 200810732 感測器26之位於壓力感測器陣列1 1上的資料及該壓力感 測器26所輸出之壓力資訊的組所構成。 CPU20係經由通信I/F72而輸入從固定台單元7傳輸 ^ 來之各壓力感測器26的數位資訊(步驟S10)。另外,當 . CPU20經由通信I/F72而開始輸入從固定台單元7傳輸來之 各壓力感測器26的數位資訊時,首先,解析輸入後之數位 資訊,選擇性地輸入振幅最大之脈壓資訊,並將選擇輸入 之數位資訊的脈壓資訊與從定時器43輸入的時間資料賦 予關聯,而作爲全波形資料TWD儲存於資料儲存部78之 區域E 1內。此時,對藉由數位資訊所指示之位置資料加以 特定,而此數位資訊係指最大振幅之脈壓資訊。其後,至 在後述之步驟S 1 1判定爲脈波檢測結束爲止,反複地進行 步驟S10之處理,但於此每次反複之步驟,選擇由通信I/F72 所輸入之各壓力感測器26的數位資訊中指示特定之位置 資料的數位資訊的脈壓資訊,並與從定時器43輸入的時間 資料賦予關聯,而作爲全波形資料TWD儲存於資料儲存部 7 8之區域E 1內。 其次,CPU20判定脈波檢測結束之指定條件是否成立( 步驟S 1 1)。在判定爲不成立之期間(在步驟S 1 1爲否),則 反複進行步驟S 1 0之傳輸處理。又,指定條件表示已在指 定期間(例如,3分鐘)內完成對顯示與時間資料相關聯壓力 資訊之全波形資料TWD的儲存。 在脈波檢測結束之指定條件成立時(在步驟S 11爲是) ,CPU20將指示訊號輸出於控制電路17。控制電路17根據 -19- 200810732 該指示訊號進行控制,,並間隔著切換閥1 6以驅動負壓泵 15(步驟S 12)。藉此,壓力感測器陣列11對手腕之按壓狀 態被解放’結束一系列之脈波檢測處理。在此時點,在記 憶區域E1內完成指定期間內之所有波形資料(全波形資料 TWD)的儲存。 其後’於一節拍之每一脈波之値被算出(步驟S 1 3),然 後’與測定出之全脈波波形同時算出之値係從顯示器24或 印字部Γ0輸出(步驟S 1 4)。這些之處理的詳細,容待後述 。以上,結束一系列之處理。 (每一脈波波形之値的計算) 第1 1圖顯示步驟S 1 3中的每節拍之每一脈波波形之値 的計算步驟。在本實施形態中,計算成爲心血管風險之判 斷基準之値。 首先,波形抽出部84係從資料儲存部7 8之記憶區域 E1讀出全波形資料TWD(步驟S30),將讀出後之全波形資 料TWD所示的脈波波形進行N次微分,並根據此微分結果 來區.劃脈波波形,抽出每一節拍之脈波波形資料WDi。然 後,針對抽出後之脈波波形資料的各個,生成記錄Ri ,並 將抽出後之各脈波的波形資料WDi儲存於生成後之各記錄 Ri內(步驟S35)。 其次’血壓計算部87係針對抽出後之脈波波形資料 WDi的各個’依照公知之步驟檢測或計算出最高血壓、最 低血壓及脈搏數’並作爲資料SYSi、DIAi及PLi,儲存於 儲存有該脈波波形資料WDi的記錄Ri內(步驟S37)。例如 -20- 200810732 ,最高血壓係指該脈波波形之振幅的波峰値,而最低血壓 係指該脈波波形之上昇點附近的振幅位準。 然後,AI計算部88係針對抽出後之脈波波形資料wDi 的各個,依照前述之步驟計算AI値,作爲資料Ali,儲存 於儲存有該脈波波形資料WDi的記錄Ri內(步驟S39)。此 時,亦可根據在步驟S37算出之脈搏數,計算出將AI値換 算爲脈搏數75分的AI値(AIP75)。 然後,SBP計算部89係針對抽出後之脈波波形資料 WDi的各個,計算中樞動脈血壓的推定値,作爲資料SBP2(i) 儲存於儲存有該脈波波形資料WDi的記錄Ri內(步驟S41) 。計算之詳細方法,在本案申請人提出之日本特開 2 006-000 1 76號公報中有詳細記載,在此簡單加以說明。 在此,求取中樞動脈之收縮期血壓作爲中樞動脈血壓 。中樞動脈之收縮期血壓,係使用藉由反射波所產生之收 縮期後方成份(在末梢動脈之壓脈波所檢測出的收縮期後 方成份)、以及在步驟S37取得之資料SYSi所指的收縮期 血壓及資料DAIi所指的擴張期血壓,藉由使用指_定運算式 之線型轉換來計算資料SBP2(i),即可加以推定。另外,使 用藉由驅出波所產生之收縮期後方成份(在末梢動脈之壓 脈波所檢測出的收縮期後方成份)、以及在步驟S37取得之 資料SYSi所指的收縮期血壓及資料DAIi所指的擴張期血 壓,藉由使用指定運算式之線型轉換來計算資料SBPl(i) ,即可加以推定。資料SBP l(i)亦儲存於儲存有該脈波波形 資料WDi的記錄Ri內。其中任一推定均可應用依線型轉換 -21- 200810732 之簡單運算。 然後,TR計算部90係針對抽出後之脈波波形資料WDi 的各個,計算TR的推定値,作爲資料TRi儲存於儲存有該 脈波波形資料WDi的記錄Ri內(步驟S43)。TR係表示驅出 波上昇點與反射波上昇點之時間間隔的指標。計算之詳細 方法,在本案申請人提出之日本特開2005-34911 6號公報中 有詳細記載,在此,簡單加以說明。 TR計算部90首先對脈波波形資料WDi進行微分處理 而計算4次微分波。然後,藉由4次微分波之極小點求取 驅出波上昇點與反射波上昇點。具體而言,將在從脈波開 始點直到脈波最大振幅點之間的上昇腳的區間所檢測出的 4次微分波之極小點中的最小點決定爲驅出波上昇點。另 外,將在從最大振幅點直到切痕點之間的下降腳的區間所 撿測出的4次微分波之極小點中的最小點決定爲反射波上 昇點。藉由依此求得之驅出波上昇點與反射波上昇點來計 算 TR。 * 藉此,在抽出後之每一脈波波形生成記錄Ri,以儲存 該脈波波形資料WDi及從該脈波波形算出之各種値。然後 ,CPU20將生成後之記錄Ri儲存於資料儲存部78之記憶 區域E2內。 (輸出處理) 參照第12圖之流程說明第10圖之步驟S14爲主之輸 出部94的處理。 首先,使用者操作對應之開關2 3 7〜2 3 9而選擇性地指 -22 - 200810732 定需要輸出之種類的計算値。輸出値選擇部91輸入藉由此 種開關操作所指定的輸出値之種類(步驟S51)。 另外,使用者操作開關234以指定輸出之脈波波形的 範圍。波形範圍輸入部8 1輸入藉由開關操作所指定的範圍 (步驟S53)。例如,輸出之脈波波形係在表示測定時間之時 間軸方向,對脈波之振幅値連續地繪製所形成。範圍係指 在時間軸方向使波形壓縮或延長的比例或是將振幅位準壓 縮或延長的比例。 另外,使用者操作開關23 5以指定脈波波形之所需的 輸出速度(顯示速度或印字速度)。輸出速度輸入部79係輸 入指定之輸出速度(步驟S55)。 其後,輸出部94將波形等輸出於顯示器24或印字部 10(步驟 S57、S59)。 具體而言,輸出部94從資料儲存部7 8讀出全波形資 料TWD,並從記憶區域E2之各記錄Ri讀出輸出値選擇部 9 1所輸入之種類的値,將此些讀出之資料供給於顯示控制 部82。 另外,輸出部94將波形範圍輸入部8 1輸入之指定範 圍的資料供給於顯示控制部82。顯示控制部82將供給之脈 波等的資料顯示於顯示器24上。此時,藉由範圍切換部821 ,將根據所顯示之全波形資料TWD的脈波波形之範圍,切 換爲指定之範圍。顯示控制部82將供給之脈波等的資料顯 示於顯示器24上。 此時,在有操作開關240之情況,輸出部94將從資料 -23- 200810732 儲存部78所讀出之全波形資料TWD及從各記錄Ri讀出之 輸出値選擇部9 1所輸入的種類的値,供給於印字控制部83 。將波形範圍輸入部8 1所輸入之指定範圍的資料供給於印 - 字控制部83。印字控制部83係間隔著印字部10對供給之 . 脈波等的資料進行印字輸出。此時,藉由範圍切換部83 1 ,將根據所印字之全波形資料TWD的脈波波形之範圍,切 換爲指定之範圍。 第13及第14圖顯示在步驟S5 9所表示或印字之內容 例。在此,雖有示出顯示器24之表示例,但在印字部1 〇 中亦做同樣地輸出。在第1 3及第14圖中顯示例如,將指 定之AI値作爲每一節拍之計算値的狀態。根據全波形資料 TWD之脈波波形,係依指定之範圍輸出。另外,表示與每 一節拍之脈波波形相關聯而對應之AI値。在此,與脈波波 形之時間軸並列地輸出計算値。另外,在此,有關各脈波 波形,顯示如在第8圖中說明之驅出波位準與反射波位準 〇 顯示控制部82或印字控制部83,係當從全脈波波形 之開始點檢測出波形上昇點時,判斷爲一節拍之波形,並 與此計算値相關聯地加以輸出。在此,計算値(例如,資料BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse wave output device for outputting pulse wave related information, and more particularly to a pulse wave output device for simultaneously outputting a pulse wave waveform and pulse wave related information. [Prior Art] When a pulse wave of a subject (patient or the like) is measured using a pulse wave meter, the measured pulse wave can be used to estimate the cardiovascular risk. In other words, it is possible to calculate the hardening (aging) of the blood vessel of the subject by using a squeeze pressure wave (discharge wave) for measuring blood flow from the heart included in the pulse wave and a reflected pressure wave (reflected wave) from the end. The degree is taken as the AI (Augmentation Index). Therefore, the measurement of the pulse wave is very important for understanding the health status of the measured sputum. In the conventional pulse wave meter, generally, the waveform is continuously measured, and AI 计算 is calculated from one waveform of the measured waveform. Usually, in order to reduce the measurement error, the measurement of AI 连 is continuously performed, and the averaging of the 値 is performed as the final measurement 値. The method of obtaining the waveform from the result of the synthesis of the majority is mostly performed by a mathematical waveform processing method or an averaging method. However, it is considered that the change in the waveform of each beat is considered to be an important measurement result. In this regard, a function of continuously printing the pulse waveform itself is provided in the patent document 1 (JP-A-2005-02 1 477). In addition, Non-Patent Document 1 (Product Negative Portable Multi-Purpose Body Amplifying and Recording Device Polymate API 132/AP1532. [online]· TEAC (Business) Company Solutions [retrieved on 2006-06-16]. Retrieved from the Internet: < 200810732 URL: http://www.tic.teac.co.jp/jp/products/medical/polymate-det. html> .) Providing a software for monitoring various body information such as pulse waves, continuously monitoring The function of outputting body information such as pulse waves detected. Patent Document 1: Japanese Laid-Open Patent Publication No. 2005-02 No. 477 Non-Patent Document 1: Product Information Portable Multi-Purpose Body Amplification and Recording Device Polymate AP1132/AP1532. [online].TEAC (share) Business Solutions Company. [retrieved on 2006-06-16].Retrieved from the Internet: <URL: http://www.tic.teac.co.jp/jp/products/medical/polymate-det.html > . [Disclosure] (Problems to be solved by the invention) In the past, an output is provided. The function of the full waveform of the pulse wave obtained by the measurement, but cannot provide a function of outputting the body-related information obtained from the waveform according to the change of the waveform of each beat. For this reason, the user is required to read (estimate) information from each waveform, so that it is difficult to perform correct diagnosis or prognosis prediction based on the pulse waveform. In view of the above, it is an object of the present invention to provide a pulse wave output device which can output a pulse wave calculated from a waveform at each beat. (Means for Solving the Problem) A pulse wave output device according to one aspect of the present invention includes: a full waveform acquisition unit that receives a pulse wave sensor pressed against a measurement site and is sensed during measurement in 200810732 The pulse wave signal acquires the full waveform during the measurement period according to the input pulse signal; the waveform extraction unit extracts the waveform of each beat from the acquired full waveform; and the calculation unit is extracted by the waveform extraction unit. Each waveform of one beat is calculated according to the specified 値 of the waveform; and the waveform output unit outputs the obtained full waveform at the same time, and the waveform calculated by the 値 calculation unit for each waveform of one beat of the full waveform value. Preferably, the waveform output unit simultaneously prints the obtained full waveform and each waveform of one beat of the full waveform by the reference unit calculated by the calculation unit. Or show it. The preferred aspect is that the designated sputum refers to the sputum used to determine cardiovascular risk. Preferably, the specified tether contains at least one of the ratio of the amplitude of the evoked wave to the reflected wave, the blood pressure 値, the central blood pressure 値, and the pulse wave velocity association information. Preferably, the waveform output portion is associated with each of the waveforms of one of the full waveforms, and the designated chirp is output in association with the waveform. Preferably, the waveform output unit outputs a designated chirp in parallel with the waveform in each of the waveforms of one of the full waveforms. Preferably, the waveform output portion is tied to each waveform of one beat of the full waveform, and the output positions of the designated chirps are different for adjacent waveforms. Preferably, the pulse output device is in a designated frame of each waveform of a beat, and only outputs a chirp exceeding a predetermined threshold. Preferably, the pulse output device is in a designated 每一 of each waveform of a beat, and the 超过 exceeding a predetermined threshold 输出 is outputted in a manner different from the other specified 200810732 。. The preferred aspect is that the pulse wave output device further has a statistical output unit, and outputs information for specifying the full waveform after each beat is counted. The output of one of the waveform output unit and the statistical output unit is performed in accordance with the switching instruction from the external supply. A program product according to one aspect of the present invention is a program product for executing a waveform output method in a computer, and the waveform output method includes the steps of extracting a waveform of each beat from a full waveform of a pulse wave obtained in advance during measurement. The step of extracting each waveform of a beat, calculating a step according to the specified chirp of the waveform; and simultaneously outputting the obtained full waveform and the specified chirp calculated for each waveform of one beat of the full waveform. Preferably, in the waveform outputting step, the obtained full waveform and each waveform of one beat of the full waveform are simultaneously printed by the designation calculated by the calculation unit. Or show it. The preferred aspect is: designation refers to the determination of cardiovascular risk. The preferred aspect is that the specified sputum contains the ratio of the evoked wave to the reflected wave, blood pressure, 中, central blood pressure estimation, and The pulse wave velocity is associated with at least one of the information. Preferably, in the waveform output step, in each waveform of one of the full waveforms, a specified chirp is output in association with the waveform. Preferably, in the waveform outputting step, in each of the waveforms of one of the full waveforms, the designated chirp is output in parallel with the waveform. The preferred aspect is that in the waveform output step, each waveform of one of the full waveforms 200810732 beats the output position of the designated chirp for the adjacent waveform. The preferred aspect is that the waveform output method is a specified one of each waveform ^ shot, and only outputs a threshold exceeding a predetermined threshold. — The preferred aspect is the waveform output method. In the specified 値 of each waveform of a beat, the 超过 exceeding the predetermined threshold 输出 is output in a different manner from the other specified 値. The preferred aspect is that the waveform output method has a statistical output step, and outputs the information after the specified waveform is counted for each full waveform. And outputting one of the waveform output step and the statistical output step according to the switching instruction from the external supply. According to the present invention, when the measured full waveform is continuously output, the enthalpy calculated from each of the waveforms taken in each section is simultaneously outputted with the full waveform. By observing the output content (waveform and calculation 値), it is possible to grasp the actual time effect of the drug, the change in respiratory function, and the change in cardiac load caused by the irregular pulse. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Further, the same reference numerals in the drawings denote the same or equivalent parts. The first and second figures show the hardware configuration of the pulse wave detecting device having the function equivalent to the pulse wave output device of the present embodiment. Figure 3 shows the connection relationship between the sensor unit and the various parts of the fixed station. Figure 4 shows the state in which the sensor unit is mounted on the body. Referring to Figs. 3 and 4, the pulse wave detecting device includes a sensor unit 1 for detecting a pulse wave of a wrist artery of the hand 200810732 and attached to the wrist surface of the pulse wave measuring portion, and fixing the wrist for detecting the pulse wave. The fixed table 2 is used, and the display unit 3 for various processes including the pulse wave detection and the blood pressure measurement calculation is executed. In Fig. 3, the sensor unit 1 is housed in the casing 100, and in Fig. 4, the display is guided by the groove 9 (see Fig. 3) and is slidably moved from the inside of the casing 100 to the outside, and is located at the wrist. The state of the upper. A fixed table unit 7 is built in the fixed table 2. The fixed stage unit 7 and the sensor unit 1 are connected to each other via a communication cable 5 and a gas pipe 6. Further, the cuff 52 and the display unit 3 attached to the blood pressure measurement unit are connected to each other with the air tube 53 interposed therebetween. Here, the fixed station unit 7 and the display unit 3 are connected to each other with a U S B (U n i v e r s a 1 S e r i a 1 B u s) cable for communication, but may be connected wirelessly. At the time of pulse wave detection, as shown in FIG. 4, the user places the wrist on the side surface of the artery of the wrist by sliding movement while placing the wrist in the designated position of the fixation table 2, and is spaced apart. The belt 8 is used to tighten the frame 1 and the fixed table 2 of the sensor unit 1 for fixing the sensor unit 1 on the wrist without shifting it. The measurement state is assumed to be only three types of pulse wave measurement using the sensor unit 1, blood pressure measurement using only the cuff 52, or measurement of both. The sensor unit 1 for pulse wave detection is attached to the wrist. The cuff 52 for blood pressure measurement is wound (mounted) on the upper wrist. The installation is as follows. For example, the sensor unit 1 can also be mounted on the left wrist, and the cuff 52 can be attached to the right wrist, and the pulse wave and blood pressure can be simultaneously detected on the left and right wrists. Alternatively, as shown in Fig. 4, the sensor unit 1 and the cuff 52 may be attached to the same wrist as -10- 200810732, and blood pressure measurement may be performed after the pulse wave detection. Referring to Fig. 1, the sensor unit 1 has a pressure sensor array 11 which is a pressure sensor composed of a plurality of diaphragms and a resistance bridge circuit for detecting pulse pressure, arranged in a single direction from a single crystal. The embossing surface 40 of the semi-conductive wafer formed by the cymbal is formed on the pressing surface 40; the multiplexer 12 selectively extracts the response of the output of the plurality of pressure sensors in the pressure sensor array 11 The voltage signal of the pulse pressure is output; and the cuff 1 3 is pressed, which includes an air bag for pressure adjustment in order to press the pressure sensor array 11 against the wrist. The fixing table unit 7 includes a pressurizing pump 14 for pressurizing the internal pressure of the cuff (air bag) 13 (hereinafter referred to as a cuff pressure), and a negative pressure pump 15 for decompressing; The valve 16 is for selectively connecting one of the pressurizing pump 14 and the negative pressure pump 15 to the air pipe 6; controlling the control circuit 17 for these; the communication circuit 18 connected to the USB cable 4; The /D (Analog/Digital) converter 197 is for converting the output signal derived from the sensor unit 1 t into digital data. The display unit 3 includes a CPU (Central Processing, Unit) 20 for performing various processes including calculations in order to control the pulse wave detecting device intensively; R〇M (Read Only Memory) 21 and RAM (Random Access Memory) 22. The data and the program for controlling the pulse wave detecting device are memorized; the operation unit 23 is configured to be externally operable to perform operations for inputting various kinds of information; and the display 24 is provided by an LCD (Liquid Crystal Disply) or the like. It is configured to externally output various information such as pulse wave detection results and blood pressure measurement results; external I/F (Interface) 41 can be removed from the outside -11- 200810732 Freely install CD-ROM (Compact DiskRead Only Memory) a timer 4 3 that counts the current time and outputs it as time data; a blood pressure measuring unit 50; a communication circuit 71 for connecting the blood pressure measuring unit 50 and the CPU 20 by communication; and a fixed station unit by communication 7 and ^ Communication communication I/F 72 for CPU 20; and printing unit 10 for printing information such as measurement results. The blood pressure measuring unit 50 is connected to the cuff 52 of the upper wrist via the air tube 53. Here, the fixed stage unit 7 and the display unit 3 of the fixed table 2 are separately provided, but the two functions may be built in the fixed table 2. In the case of built-in, the operation unit 23 and the display unit 24 are attached to the casing of the fixed table 2, and can be operated from the outside or can be externally confirmed. Referring to Fig. 3, the operation unit 23 of the display unit 3 has a switch 231 that can be pressed to instruct the start of measurement, a switch 232 that is operable to instruct the end of the measurement (stop), and is operable to indicate switching of the output. The switch 23 3 is operated to switch the range of the pulse waveform displayed on the screen of the display 24 f or printed by the printing unit 1 ;; the switch 23 5 is operated for scrolling The pulse waveform on the screen of the display 24; the switch group 236 for operation is for instructing the selection or operation of the information according to the movement of the cursor (not shown) of the screen of the display 24; the operation switch 237 , 23 8 and 239, on the screen of the display 24 or on the paper surface of the printing unit 10, indicating the waveform of the pulse wave outputted from the waveform simultaneously with each beat of the pulse wave, for example, A : [値, the Traveling time to Reflected wave (TR) indicating the known information of the pulse wave velocity, and the SBP2 -12-200810732 (second Systolic Blood Pressure) indicating the central blood pressure estimation. Zhi; and 10 of the print instruction information to the print portion of the switch 240 is operable. Fig. 2 shows the configuration of the blood pressure measuring unit 50 and its associated portions. According to Fig. 2, the blood pressure measuring unit 50 includes a pressure sensor 54 that changes the capacity by a pressure (hereinafter referred to as "sleeve pressure") built into the air bladder 51 of the cuff 52. The oscillating circuit 55 outputs the signal of the oscillating frequency responsive to the capacity 値 of the pressure sensor 54 to the communication circuit 7 1 via the I/F 60; the pump 5 6 and the valve 5 for adjusting the position of the sleeve pressure 8; a pump drive circuit 57 for driving the pump 56; and a valve drive circuit 59 for adjusting the degree of opening and closing of the valve 58. The air bladder 51 is connected to the pressure sensor 54, the pump 56, and the valve 58 via the air tube 53. The I/F 60 converts the signal obtained from the oscillation circuit 55 into a pressure signal (a signal indicating a pulse wave in which the volume of the artery changes), and outputs it to the communication circuit 71. Fig. 5 shows the construction of the sensor unit 1. Fig. 5(B) shows the cross-sectional configuration of the sensor unit 1 of Fig. 5(A), which is a cross-sectional configuration of the wrist in the lateral cutting direction when the sensor unit 1 is attached to the wrist. Figure 5(C) is an enlarged view showing a part of the dotted line frame of Figure 5(B). When the compression cuff 13 of the fifth (B) diagram is adjusted by the pressure pump 14 and the negative pressure pump 15, the pressure is sensed by the block formed by ceramic or resin. The array 11 is free to move in the direction of the arrow 25 shown in Fig. 5(C) only in response to the amount of the cuff pressure level. The pressure sensor array 11 protrudes from the predetermined opening of the casing 100 by pressing in the downward direction of the arrow 25 and is pressed against the wrist surface. As shown in Figures 5(D) and 5(E), the arrangement of the plurality of pressure sensors 26 of the pressure sensor array 11 is performed by mounting the sensor unit 1 to '13-200810732. The wrist corresponds to a direction that is substantially orthogonal (intersecting) to the artery, and the length of the arrangement is at least longer than the diameter of the artery. When the pressure sensors 26 are respectively pressed by the cuff pressure of the pressing cuffs 13, the pressure information of the pressure vibration waves (pulse pressure) generated from the artery and transmitted to the body surface is added as a voltage signal. _ to output. The pressure sensor 26 is attached to the pressing surface 40 of a specified size (5.5 mm x 8.8 mm), for example, 40. The direction in which the grooves 9 for guiding the sliding movement direction of the sensor unit 1 of Fig. 5(A) is oriented corresponds to the direction in which the pressure sensors 26 of the pressure sensor array 11 are arranged. Fig. 6 shows the functional configuration of the display unit 3. The display unit 3 includes a data storage unit 78 corresponding to the RAM 22, an output speed input unit 79 that inputs an instruction for the operation of the switch 235, an input unit 81 that has a range of waveforms indicated by the switch 234, and a range switching unit 821. The display control unit 82; the print control unit 83 having the range switching unit 83 1; the waveform extracting unit 84 for extracting the pulse waveform of each beat; and the statistical information for reading the statistical information 99 described later from the data storage unit 78. The output unit 85; the threshold 値 determination unit 86 for determining the 计算 calculated from the pulse wave and the specified threshold 値 and determining the result based on the comparison result; the blood pressure calculation unit 87, the AI calculation unit 88, the SBP calculation unit 89, and the TR calculation unit. 90 and the operations of the switches 237, 238, and 239 to select the output 値 selection unit 9 1 for the type of calculation 每一 of each waveform; the switching unit 92 for switching the output content; and the statistical information 99 to be described later and stored in the data The statistical unit 93 in the storage unit 78. The output unit 94 is configured by the output speed input unit 79, the waveform range input unit 81, the output 値 selecting unit 91, and the switching unit 92. In the present embodiment, the functions of the respective units of Fig. 6 are realized by the CPU 20 - 14 - 200810732 reading the corresponding program from the ROM 21 and executing the read program by the CPU 20 to realize the function. However, the implementation of these features is not specific to this. For example, part or all of such functions may also be implemented by hardware (circuitry). Fig. 7 shows an example of the contents of the data storage unit 78 of Fig. 6. Referring to Fig. 7, the data storage unit 78 includes memory areas E1, E2, E3, and E4. The data TWD of the waveform in the designated period of the pulse wave detected by the sensor unit 1 is stored in the S-remembered area E1. The waveform data TWD refers to a data that is continuously associated with the level of each pulse wave (amplitude MmmHg) in accordance with the measurement time period measured by the timer 43. A record Ri (i =: 1, 2, 3, ..., m) is stored in the area E2. The record Ri has waveform data WDi (i = l, 2, 3, ..., m) of each beat extracted from the full waveform data TWD; according to the waveform data WDi (i = l, 2, 3, ..., m) ) Calculated the highest blood pressure (systolic blood pressure: Systolic B1 ο 〇d P ressure) data SYS i (i = 1, 2, 3, ..., m), minimum blood pressure (Diastolic Blood Pressure) data DIAi (i =l, 2, 3 .....m), display AI値 data AIi (i = l, 2, 3.....m), refer to j does not drive out the wave is not the most compressed data SBPl(i) (i = l, 2, 3, ..., m), the data indicating the highest pressure indicated by the reflected wave SBP 2 (i) (i = 1, 2, 3, ..., m), showing the pulse The data of the number PLi (i = 1, 2, 3, ..., m), and the data TRi (i = 1, 2, 3... m). Here, the waveform data WDi and various types of data (data SYSi, data DIAi, data Ali, data SBP1(i), data SBP2(i), data PLi, and data TRi) calculated based on the waveform data WDi are recorded in the Ri unit. It is stored and stored in association with the data storage unit 78 -15- 200810732. However, if the waveform data WDi and the data SYS i to TRi are correlated with each other, the storage method is not limited to the method of using the record Ri. In the memory area E3, data 70 to 73 indicating critical thresholds are stored, which is a designated reference for determining whether or not cardiovascular risk is present or not. The critical enthalpy can also be a enthalpy with a specified range. The threshold 値 determination unit 86 compares the data SYS, the data AI, the data SBP2, and the data TR calculated based on the measured pulse wave data with respect to the data 70 to 73, and determines the comparison result. The statistical information 99 calculated by the statistical unit 93 is stored in the memory area E4. Figure 8 graphically shows the calculation steps of AI値. The pulse wave system is composed of a drive wave generated at the same time as the contraction of the heart, and a reflected wave generated by the drive wave being reflected at a branching portion of the peripheral blood vessel or the artery. As shown in Fig. 8, in the pulse wave of one beat, the drive wave having the amplitude P 1 and the reflected wave having the level P2 are detected. In such a pulse wave, the ratio of the amplitude of the evoked wave and the reflected wave (eight 値) can be calculated from the person 1 = ?2/?1\100 (%). Fig. 9 is a cross-sectional view taken along line IX-IX of Fig. 4. In Fig. 9, the cuff pressure of the cuff 13 is sufficiently decompressed by the negative pressure pump 15 (having a pressure level sufficiently lower than the atmospheric pressure), so that the pressure sensor array 11 is housed. The state inside the frame 1 00 of the sensor unit 1 is not in contact with the wrist surface of the pulse wave measuring portion. A hard object such as the radial artery 27 for pulse wave detection and the iliac crest 29 is present on the wrist. When the pulse wave is detected on the surface of the wrist on a hard object, an artifact pulse wave is contained in the detected pulse wave. Therefore, the pressure information of the pressure sensor 26 located on the radial artery 27 -16 - 200810732 can be used to detect the optimal pulse wave. The processing procedure for pulse wave detection of this embodiment will be described in accordance with the flow of Fig. 10. The program according to the flow and the information referred to when the program is executed are stored in advance in the ROM 21 or the RAM 22, and the CPU 20 is adapted to read and execute the program with reference to the data to perform the pulse wave detecting process. Further, in the display unit 3, when the power source is turned on, power is supplied to be in an operable state, and the fixed station unit 7 is assumed to be supplied with power from the display unit 3 side to be in an operable state. Further, it is assumed here that the blood pressure measurement by the blood pressure measuring unit 50 is not performed at the same time, but is performed separately. First, the user turns on the power switch (not shown) of the display unit 3 (ON). In response to the ON operation, the CPU 20 supplies an instruction signal to the control circuit 17. The control circuit 17 switches the switching valve 16 to the side of the negative pressure pump 15 based on the supplied instruction signal, and drives the negative pressure pump 15 (step S1). When the negative pressure pump 15 is driven, it acts across the switching valve 16 to make the cuff pressure sufficiently lower than the atmospheric pressure, so that the pressure sensor array 11 faces the arrow 25 of the fifth (C) diagram. Move in the direction of the arrow. As a result, the pressure sensor array 11 can be prevented from being accidentally protruded and malfunctioned or malfunctioned. Thereafter, when the user attaches the sensor unit 1 to the wrist as shown in FIG. 4 and turns ON the start key (not shown), it is determined whether the pressure sensor array 11 is moved, that is, sensed. Whether the unit 1 is slid along the chute 9 to be located on the wrist surface (step S2). A micro switch (not shown) for detecting the sliding movement is provided in the housing 100 of the sensor unit 1. The control circuit 17 determines that the pressure sensor array 1 1 is -17-200810732 based on the detection signal of the micro switch. No move. When the movement is not determined (NO in step S2), the processing of step S1 is repeated. When it is determined that there is movement (YES in the step), the control circuit 17 determines based on the operation signal supplied from the operation unit 23 whether or not the switch 231 is operated (step S2a). When the determination result indicates that the switch 23 is not operated, that is, the start of the measurement is not instructed (NO in step S2a), the process returns to step S1, and thereafter, until the switch 23 1 is operated, the process is repeated. Processing of steps S1 and S2. On the other hand, the result of the determination in step S 2 a indicates that the switch 2 3 1 is operated, that is, the start of the measurement is instructed (YES in step S2a), and the control circuit 17 switches the switching valve 16 to the side of the pressurizing pump 14 The pressure pump 14 is driven (step S3). Thereby, the cuff pressure rises, and the pressure sensor array 11 moves toward the downward arrow direction of the arrow 25 of the fifth (C) diagram, and the pressure sensor array 11 is pressed against the wrist surface. For simplicity of explanation, it is assumed that at this point, the pressure sensor 26 of the pressure, sensor array 11 is located on the radial artery 27. Here, the pressure sensor array 1 1 is pressed against the wrist surface by the driving of the pressurizing pump 14 until the predetermined pressing level is experimentally determined for pulse wave detection. In a state in which the pressure sensor array 11 is pressed against the surface of the wrist with a specified pressing level (refer to FIG. 9), the pressure information (pulse pressure information) of the voltage signal output from each pressure sensor 26 is interposed. The processor 12 is sequentially derived in the order of the arrangement, and converted into digital information by the A/D converter 19, and then transmitted to the display unit 3 via the communication circuit 18. Here, the 'digital information outputted from the pressure sensors 26 of the pressure sensor array 11' is the data of the pressure -18-200810732 sensor 26 located on the pressure sensor array 11 and the pressure. The pressure information output from the sensor 26 is composed of a group of pressure information. The CPU 20 inputs the digital information of each of the pressure sensors 26 transmitted from the fixed station unit 7 via the communication I/F 72 (step S10). Further, when the CPU 20 starts inputting the digital information of each of the pressure sensors 26 transmitted from the fixed station unit 7 via the communication I/F 72, first, the digital information after the input is analyzed, and the pulse voltage having the largest amplitude is selectively input. The information, and the pulse pressure information of the digital information selected for input is associated with the time data input from the timer 43, and stored as the full waveform data TWD in the area E1 of the data storage unit 78. At this time, the location data indicated by the digital information is specified, and the digital information refers to the pulse pressure information of the maximum amplitude. Thereafter, the process of step S10 is repeatedly performed until it is determined that the pulse wave detection is completed in step S1 1 described later. However, each time the step is repeated, the pressure sensors input by the communication I/F 72 are selected. The pulse pressure information indicating the digital information of the specific position data in the digital information of 26 is associated with the time data input from the timer 43, and stored as the full waveform data TWD in the area E1 of the data storage unit 78. Next, the CPU 20 determines whether or not the specified condition of the end of the pulse wave detection is established (step S1 1). When it is judged that it is not established (NO in step S1 1), the transmission processing of step S10 is repeated. Further, the specified condition indicates that the storage of the full waveform data TWD for displaying the pressure information associated with the time data has been completed within the specified period (e.g., 3 minutes). When the specified condition for the end of the pulse wave detection is established (YES in step S11), the CPU 20 outputs the instruction signal to the control circuit 17. The control circuit 17 controls according to the indication signal of -19-200810732, and switches the switching valve 16 to drive the negative pressure pump 15 (step S12). Thereby, the pressure sensor array 11 is released from the pressing state of the wrist, and the series of pulse wave detecting processing is ended. At this point, the storage of all the waveform data (full waveform data TWD) in the specified period is completed in the memory area E1. Thereafter, it is calculated after each pulse of one beat (step S1 3), and then the signal calculated simultaneously with the measured full pulse waveform is output from the display 24 or the printing unit (0 (step S1 4) ). The details of these treatments will be described later. Above, the series of processing ends. (Calculation of 値 of each pulse waveform) Fig. 1 1 shows the calculation procedure of 値 of each pulse waveform for each beat in step S 13 . In the present embodiment, the criterion for determining the cardiovascular risk is calculated. First, the waveform extracting unit 84 reads the full waveform data TWD from the memory area E1 of the data storage unit 78 (step S30), and differentiates the pulse waveform shown by the read full waveform data TWD N times, and according to The differential result is zoned. The pulse waveform is drawn, and the pulse waveform data WDi of each beat is extracted. Then, for each of the pulse waveform data after the extraction, a record Ri is generated, and the waveform data WDi of each pulse wave after the extraction is stored in each of the generated records Ri (step S35). Next, the blood pressure calculation unit 87 detects and calculates the highest blood pressure, the lowest blood pressure, and the pulse rate in accordance with a known procedure for each of the pulse waveform data WDi after the extraction, and stores it as the data SYSi, DIAi, and PLi. The inside of the record Ri of the pulse waveform data WDi (step S37). For example, -20-200810732, the highest blood pressure refers to the peak 振幅 of the amplitude of the pulse waveform, and the lowest blood pressure refers to the amplitude level near the rising point of the pulse waveform. Then, the AI calculating unit 88 calculates AI値 for each of the pulse waveform data wDi after the extraction, and stores it as the data Ali in the record Ri in which the pulse waveform data WDi is stored (step S39). At this time, AI 値 (AIP75) in which AI 値 is converted to a pulse rate of 75 minutes can be calculated based on the pulse rate calculated in step S37. Then, the SBP calculating unit 89 calculates the estimated value of the central artery blood pressure for each of the extracted pulse waveform data WDi, and stores it as the data SBP2(i) in the record Ri in which the pulse waveform data WDi is stored (step S41). ). The detailed method of the calculation is described in detail in Japanese Patent Application Laid-Open No. Hei. No. Hei. Here, the systolic blood pressure of the central artery is determined as the central arterial blood pressure. The systolic blood pressure of the central artery uses the systolic component (the systolic component detected by the pulse wave of the peripheral artery) generated by the reflected wave, and the contraction indicated by the data SYSi obtained in step S37. The blood pressure of the period and the diastolic blood pressure referred to by the DAIi can be estimated by calculating the data SBP2(i) by using the linear transformation of the index formula. Further, the systolic component (the systolic component detected by the pulse wave of the peripheral artery) generated by the evoked wave, and the systolic blood pressure and the data DAIi indicated by the data SYSi obtained in the step S37 are used. The indexed blood pressure during the expansion period can be estimated by calculating the data SBP1(i) using the linear transformation of the specified expression. The data SBP l(i) is also stored in the record Ri in which the pulse waveform data WDi is stored. Simple calculations for the line-type conversion -21- 200810732 can be applied to any of the presumptions. Then, the TR calculating unit 90 calculates the estimated 値 of TR for each of the pulse waveform data WDi after the extraction, and stores it as the data TRi in the record Ri in which the pulse waveform data WDi is stored (step S43). The TR system is an index indicating the time interval between the rising point of the wave and the rising point of the reflected wave. The detailed method of the calculation is described in detail in Japanese Laid-Open Patent Publication No. 2005-34911, the entire disclosure of which is hereby incorporated by reference. The TR calculating unit 90 first performs differential processing on the pulse waveform data WDi to calculate the fourth-order differential wave. Then, the rising point of the wave and the rising point of the reflected wave are obtained by the minimum point of the 4th differential wave. Specifically, the minimum point among the minimum points of the four differential waves detected in the section from the pulse start point to the rising foot between the pulse amplitude maximum amplitude points is determined as the drive-out wave rise point. Further, the minimum point among the minimum points of the four differential waves measured in the section of the falling foot from the maximum amplitude point to the incision point is determined as the rising point of the reflected wave. The TR is calculated by extracting the rising point of the wave and the rising point of the reflected wave. * Thereby, a record Ri is generated for each pulse waveform after the extraction to store the pulse waveform data WDi and various flaws calculated from the pulse waveform. Then, the CPU 20 stores the generated record Ri in the memory area E2 of the material storage unit 78. (Output processing) Referring to the flowchart of Fig. 12, the processing of the output unit 94 based on step S14 of Fig. 10 will be described. First, the user operates the corresponding switch 2 3 7 to 2 3 9 and selectively refers to the calculation of the type of output required by -22 - 200810732. The output port selection unit 91 inputs the type of the output port designated by the switching operation (step S51). Additionally, the user operates switch 234 to specify the range of pulse waveforms for the output. The waveform range input unit 81 inputs the range specified by the switching operation (step S53). For example, the output pulse waveform is formed by continuously drawing the amplitude of the pulse wave in the direction of the time axis indicating the measurement time. Range is the ratio of the waveform that is compressed or extended in the direction of the time axis or the ratio at which the amplitude level is compressed or lengthened. In addition, the user operates switch 23 to specify the desired output speed (display speed or printing speed) of the pulse waveform. The output speed input unit 79 inputs the designated output speed (step S55). Thereafter, the output unit 94 outputs a waveform or the like to the display 24 or the printing unit 10 (steps S57 and S59). Specifically, the output unit 94 reads out the full waveform data TWD from the data storage unit 78, and reads out the type of the input from the output selection unit 91 from the respective records Ri of the memory area E2, and reads the same. The data is supplied to the display control unit 82. Further, the output unit 94 supplies the data of the specified range input by the waveform range input unit 81 to the display control unit 82. The display control unit 82 displays the data such as the supplied pulse wave on the display 24. At this time, the range switching unit 821 switches the range of the pulse waveform based on the displayed full waveform data TWD to the specified range. The display control unit 82 displays the data such as the supplied pulse wave on the display 24. At this time, when the operation switch 240 is operated, the output unit 94 inputs the full waveform data TWD read from the data -23-200810732 storage unit 78 and the output 値 selection unit 9 1 read from each record Ri. The 値 is supplied to the print control unit 83. The data of the specified range input by the waveform range input unit 81 is supplied to the print-character control unit 83. The printing control unit 83 prints and outputs the data such as the pulse wave supplied thereto by the printing unit 10. At this time, the range switching unit 83 1 switches the range of the pulse waveform based on the printed full waveform data TWD to the specified range. Figs. 13 and 14 show examples of contents indicated or printed in step S59. Here, although the display example of the display 24 is shown, it is output similarly in the printing part 1A. In the first and fourth figures, for example, the designated AI 値 is used as the state of the calculation 値 of each beat. According to the full waveform data, the pulse waveform of TWD is output according to the specified range. In addition, it indicates the AI 相关 associated with the pulse waveform of each beat. Here, the calculation 値 is output in parallel with the time axis of the pulse waveform. Here, with respect to each pulse waveform, the drive wave level and the reflected wave level display control unit 82 or the print control unit 83 as described in Fig. 8 are displayed, starting from the full pulse waveform. When the point is detected as a rising point of the waveform, it is judged as a one-shot waveform, and is output in association with this calculation 値. Here, calculate 値 (for example, data

Ali)係以i = l、2、3.....m之順序從記憶區域E2讀出,並 以讀出後之順序輸出至顯示控制部82或印字控制部83。因 此,顯示控制部82或印字控制部83,可從全脈波波形之最 前面的一節拍波形依序根據輸入之順序來分配(賦予關聯 地)輸出計算値。 -24- 200810732 第1 4圖顯示將第1 3圖之輸出波形在橫軸之時間軸方 向使範圍延長2倍(將縱軸之振幅位準壓縮於1/2倍)者。 在第13及第14圖中,有關相鄰之脈波,使顯示AI 値之位置相異。即,雖與各脈波波形並列地顯示,但在鄰 接之脈波間,一方之脈波的AI値係表示爲接近於波形之橫 軸,而另一方之脈波的AI値係表示爲離開波形之橫軸。藉 此,使得可容易看各波形之値。 (與臨界値之比較結果的輸出) ,在步驟S57及S59之處理中,亦可依臨界値判定部86 進行處理。臨界値判定部86係比較輸出時從資料儲存部78 讀出之各波形的計算値及從記憶區域E3讀出之對應該計 算値的臨界値,並根據比較結果,判定是否輸出該波形之 計算値。判定爲未輸出之判定結果,係附加於該計算値上 而被供給於顯示控制部82或印字控制部83。因此,顯示控 制部82或印字控制部83,係在與一節拍之波形相關連地輸 出計算値之情況,針對附加有‘未輸出’之資訊的計算値 ,則跳過輸出。因此,根據例如、資料ΑΠ中的比較結果 判定爲超過對應之臨界値資料7 1所表示之値、即比對應之 臨界値資料7 1所表示之値更小或更大的資料ΑΠ,未被輸 出。相反,亦可僅輸出比較結果判定爲超過對應之臨界値 資料7 1所表示之値、即比對應之臨界値資料7 1所表示之 値更小或更大的資料Ali。 根據與上述臨界値資料7 1之比較結果,在如上述,具 有未輸出之資料Ali的情況,亦有使用者誤解爲輸出之誤 -25- 200810732 動作或想知道此爲哪一種値的情況。因此,判定爲超過臨 界値(或超過臨界値所表示之値的範圍)之計算値,亦可經 進行閃爍顯示或改變顏色等,而成爲與其他之計算値相異 之輸出態樣。 或是,亦可取代資料而輸出表示超過臨界値之標記或 信息。 (統計資訊之輸出) 如第7圖所示,在資料儲存部78完成資料之儲存的情 況,亦可藉由統計部93作成統計資訊99,而儲存於資料儲 存部78之記憶區域E4內。 具體而言,統計部93係對波形資料WDi進行平均化 處理以計算出平均的波形資料。另外,針對各波形之計算 値(資料 SYSi、DIAi、ΑΠ、SBPl(i)、SBP2(i)、PLi 及 TRi) ’分別進行平均化處理以計算出平均値。此些之計算値係 作爲統計資訊99被儲存於記憶區域E4內。 在輸出時,使用者可藉由操作開關233來切換第13圖 (或第14圖)之全波形的輸出、及根據第15圖之統計資訊 99的輸出。在藉由開關2 3 3之操作指示根據統計資訊99 的輸出之情況,統計資訊讀出部85從記憶區域E4讀出統 計資訊99,並輸出於顯示控制部82。因此,顯示控制部82 係根據所供給之統計資訊99,將第1 5圖之晝面顯示於顯示 器24上。在有操作開關240之情況,因爲將統計資訊99 供給於印字控制部83,所以,可將與第15圖相同之內容加 以印字輸出。 -26· 200810732 在第15圖之顯示時,當開關233被操作時,切換爲第 13或第14圖之顯示內容,在第13或第14圖之顯示時,當 開關233被操作時,切換爲第15圖之顯示內容。 在統計資訊99內,除此之外,亦包含連續地繪製一節 拍之每一脈波的AI値之曲線或連續地繪製脈搏數之曲線 的資料,亦可同時輸出兩曲線。另外,亦包含每一脈波之 AI値的直方圖(histogram)的資料,而可輸出該直方圖。 又,在本實施形態中,使用根據血壓測定單元50之袖 袋52的血壓測定,係另外進行。即,在脈波檢測前,針對 同一被測定者,進行使用血壓測定單元5 0之血壓測定,先 獲得最高血壓(收縮期血壓)及最低血壓(擴張期血壓)。在脈 波檢測時,在藉由血壓計算部87從每一節拍之脈波波形計 算最高血壓(收縮期血壓)之資料SYSi及最低血壓(擴張期 血壓)之資料DIAi的情況,亦可使用藉由血壓測定單元50 而獲得計算出之値的最高血壓及最低血壓進行校準(校正) ,並將校正後之値儲存於資料儲存部78內。 另外,在本實施形態中,雖在資料儲存部7 8內完成全 波形資料TWD之儲存後,針對每一節拍之波形進行値之計 算.,但計算之時序並不限定於此。例如,亦可在從固定台 單元7輸入一節拍之脈波資料的過程,針對該脈波資料的 波形進行値之計算。在此情況時,在完成將全波形資料TWD 儲存於資料儲存部78之記憶區域E1內時,則成爲完成每 一節拍之波形的全部計算値均儲存於區域E 2內。 在上述實施形態之說明中,雖陳述了使用壓力感測器 -27 - 200810732 以捕捉脈壓的變化,藉以檢測脈波的構成,但脈波之檢測 方法並不限定於上述構成。例如,亦可使用利用捕捉容積 變化來檢測脈波的構成。 又,本發明之脈波檢測裝置所進行的脈波之顯示方法 ,亦可提供作爲程式^此種程式係記錄於附屬於電腦之軟 碟、CD-ROM、ROM、RAM及記憶卡等之電腦可讀取的記錄 媒體,亦可提供作爲程式產品。或是,亦可利用內建於電 腦中之硬碟等的記錄媒體進行記錄而提供程式。另外,亦 可經由網路的下載而提供程式。例如,在第1圖之構成中 ,在具備CPU20且具有電腦之功能的顯示單元3,可使用 CD-ROM42供給該程式。CPU20係間隔著外部I/F41來讀出 並執行儲存於CD-ROM42內之程式。 所提供之程式製品,係裝設於硬碟等之程式儲存部內 並由CPU20所讀出而被執行。又,程式製品包含程式本身 及記錄有程式之記錄媒體。 本次揭示之實施形態,在所有點均爲例示,而並不受 此限制。本發明之範圍不是由上述說明而是由申請專利範 圍所示,凡與申請專利範圍均等之意味及範圍內的所有變 更均包含在內。 【圖式簡單說明】 第1圖爲本發明之實施形態之脈波檢測裝置的硬體構 成圖。 第2圖爲本發明之實施形態之血壓測定單元的硬體構 成圖。 -28- 200810732 第3圖爲本發明之實施形態之操作部的開關配置、感 測器單元及固定台的連接態樣的示意圖。 第4圖爲本發明之實施形態之脈波測定時的使用狀態 的不意圖。 第5圖爲本發明之實施形態之感測器單元的壓力感測 器陣列的構成示意圖。 第6.圖爲本實施形態之脈波檢測裝置的功能構成圖。 第7圖爲本實施形態之資料儲存部之內容例的說明圖 〇 第8圖爲本實施形態之AI的計算步驟的示意圖。 第9圖爲沿著第4圖之IX-IX線所作之截面的示意圖 〇 第1 0圖爲本實施形態之處理流程圖。 第11圖爲本實施形態之計算處理的流程圖。 第1 2圖爲本實施形態之輸出處理的流程圖。 第1 3圖爲本實施形態之輸出的一例之示意圖。 第1 4圖爲本實施形態之輸出的另一例之示意圖。 第15圖爲本實施形態之輸出的再一例之示意圖。 【主要元件符號說明】 2 3 4 5 感測器單元 固定台 顯示單元 USB纜線 通信纜線 -29- 200810732The Ali) is read from the memory area E2 in the order of i = 1, 2, 3, ..., m, and is output to the display control unit 82 or the print control unit 83 in the order after reading. Therefore, the display control unit 82 or the print control unit 83 can sequentially (associated) output the calculation 値 from the top of the full pulse waveform in the order of input. -24- 200810732 Figure 14 shows that the output waveform of Figure 13 is extended by a factor of 2 in the time axis of the horizontal axis (the amplitude of the vertical axis is compressed by 1/2 times). In the 13th and 14th figures, the position of the display AI 相 is different with respect to the adjacent pulse waves. That is, although the pulse waveforms are displayed in parallel with each other, the AI値 of one pulse wave is shown as being close to the horizontal axis of the waveform, and the AI値 of the other pulse wave is represented as leaving the waveform. The horizontal axis. By this, it is easy to see the flaws of each waveform. (The output of the comparison result with the critical enthalpy) may be processed by the threshold 値 determining unit 86 in the processing of steps S57 and S59. The threshold 値 determination unit 86 compares the calculation 各 of each waveform read from the data storage unit 78 at the time of output and the threshold 値 corresponding to the 读出 calculated from the memory area E3, and determines whether or not to output the waveform based on the comparison result. value. The determination result that is determined not to be output is added to the calculation unit and supplied to the display control unit 82 or the print control unit 83. Therefore, the display control unit 82 or the print control unit 83 outputs the calculation 相关 in association with the waveform of one beat, and skips the output for the calculation 附加 to which the information of the "unoutput" is added. Therefore, based on the comparison result in, for example, the data 判定, it is determined that the data indicated by the corresponding critical 値 data 7 1 is smaller or larger than the 表示 indicated by the corresponding critical 値 data 7 1 , Output. Conversely, it is also possible to output only the data Ali which is judged to be larger than the corresponding threshold 値 data 7 1 , that is, smaller or larger than the 表示 indicated by the corresponding critical 値 data 7 1 . According to the comparison with the above-mentioned threshold data, in the case of the above-mentioned data Ali which has not been output, there is also a case where the user misunderstands the error of the output - 25-200810732 operation or wants to know which one is the case. Therefore, it is judged that the calculation of the boundary 値 (or the range exceeding the threshold indicated by the critical )) can be displayed by blinking or changing the color, etc., and becomes an output pattern different from other calculations. Alternatively, it may be substituted for the data and output a mark or information indicating that the critical value is exceeded. (Output of statistical information) As shown in Fig. 7, when the data storage unit 78 completes the storage of the data, the statistical information 99 can be created by the statistical unit 93 and stored in the memory area E4 of the data storage unit 78. Specifically, the statistic unit 93 averaging the waveform data WDi to calculate the average waveform data. Further, the calculation 各 (data SYSi, DIAi, ΑΠ, SBP1(i), SBP2(i), PLi, and TRi)' for each waveform is averaged to calculate the average 値. These calculations are stored as statistical information 99 in the memory area E4. At the time of output, the user can switch the output of the full waveform of Fig. 13 (or Fig. 14) and the output of the statistical information 99 according to Fig. 15 by operating the switch 233. When the output of the statistical information 99 is instructed by the operation of the switch 2 3 3, the statistical information reading unit 85 reads the statistical information 99 from the memory area E4 and outputs it to the display control unit 82. Therefore, the display control unit 82 displays the face of the fifth figure on the display 24 based on the supplied statistical information 99. In the case where the operation switch 240 is operated, since the statistical information 99 is supplied to the print control unit 83, the same content as that of Fig. 15 can be printed and output. -26· 200810732 In the display of Fig. 15, when the switch 233 is operated, switching to the display content of the 13th or 14th, when the display of the 13th or 14th, when the switch 233 is operated, switching It is the display content of Figure 15. In the statistical information 99, in addition, the data of the AI値 curve of each pulse wave of one beat continuously or the curve of the pulse rate continuously drawn is also included, and the two curves can be simultaneously output. In addition, the histogram of the AI 每一 of each pulse wave is also included, and the histogram can be output. Further, in the present embodiment, blood pressure measurement by the cuff 52 of the blood pressure measuring unit 50 is used separately. In other words, before the pulse wave detection, blood pressure measurement by the blood pressure measurement unit 50 is performed for the same subject, and the systolic blood pressure (systolic blood pressure) and the minimum blood pressure (expansion blood pressure) are first obtained. In the case of the pulse wave detection, the blood pressure calculation unit 87 calculates the data SYSi of the systolic blood pressure (the systolic blood pressure) and the data DIAi of the lowest blood pressure (the expansion blood pressure) from the pulse waveform of each beat. The calculated systolic blood pressure and minimum blood pressure are obtained by the blood pressure measurement unit 50 for calibration (correction), and the corrected sputum is stored in the data storage unit 78. Further, in the present embodiment, after the storage of the full waveform data TWD is completed in the data storage unit 78, the waveform of each beat is calculated. However, the timing of the calculation is not limited thereto. For example, the waveform of the pulse wave data may be input from the fixed station unit 7 to calculate the waveform of the pulse wave data. In this case, when the full waveform data TWD is stored in the memory area E1 of the data storage unit 78, all the calculations for completing the waveform of each beat are stored in the area E 2 . In the above description of the embodiment, the pressure sensor -27 - 200810732 is used to capture the change in the pulse pressure, thereby detecting the configuration of the pulse wave. However, the method of detecting the pulse wave is not limited to the above configuration. For example, a configuration in which a pulse wave is detected by utilizing a change in the volume of capture can also be used. Further, the method of displaying the pulse wave by the pulse wave detecting device of the present invention can also be provided as a program such that the program is recorded on a computer attached to a computer such as a floppy disk, a CD-ROM, a ROM, a RAM, a memory card, and the like. A readable recording medium can also be provided as a program product. Alternatively, the program may be provided by recording using a recording medium such as a hard disk built in a computer. In addition, the program can also be provided via the download of the network. For example, in the configuration of Fig. 1, the display unit 3 having the CPU 20 and having the function of a computer can supply the program using the CD-ROM 42. The CPU 20 reads and executes the program stored in the CD-ROM 42 with the external I/F 41 interposed therebetween. The supplied program is installed in a program storage unit such as a hard disk and is read by the CPU 20 to be executed. Further, the program includes the program itself and a recording medium on which the program is recorded. The embodiments disclosed herein are exemplified at all points and are not limited thereto. The scope of the present invention is defined by the scope of the claims and the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the hardware configuration of a pulse wave detecting device according to an embodiment of the present invention. Fig. 2 is a view showing the hardware configuration of the blood pressure measurement unit according to the embodiment of the present invention. -28- 200810732 Fig. 3 is a schematic view showing the switch arrangement of the operation unit, the connection state of the sensor unit, and the fixed stage in the embodiment of the present invention. Fig. 4 is a view showing a state of use in the measurement of pulse waves according to the embodiment of the present invention. Fig. 5 is a view showing the configuration of a pressure sensor array of a sensor unit according to an embodiment of the present invention. Fig. 6 is a view showing the functional configuration of the pulse wave detecting device of the embodiment. Fig. 7 is an explanatory diagram showing an example of the contents of the data storage unit of the embodiment. Fig. 8 is a schematic view showing the calculation procedure of the AI of the present embodiment. Fig. 9 is a schematic view showing a section taken along line IX-IX of Fig. 4 〇 Fig. 10 is a flowchart of the process of the embodiment. Fig. 11 is a flow chart showing the calculation process of the embodiment. Fig. 1 is a flow chart showing the output processing of the embodiment. Fig. 1 is a schematic diagram showing an example of the output of the embodiment. Fig. 14 is a schematic view showing another example of the output of the embodiment. Fig. 15 is a schematic view showing still another example of the output of the embodiment. [Main component symbol description] 2 3 4 5 Sensor unit Fixed station Display unit USB cable Communication cable -29- 200810732

6 氣管 7 固定台單元 8 皮帶 9 槽 10 印字部 11 壓力感測器陣列 12 多工器 13 按壓袖袋 14 加壓泵 15 負壓泵 16 切換閥 17 控制電路 18 通信電路 19 A/D轉換器 20 CPU 21 ROM 22 RAM 23 操作部 24 顯示器 25 箭頭 26 壓力感測器 27 橈骨動脈 29 腱 40 按壓面 41 外部I/F -30- 2008107326 Trachea 7 Stationary unit 8 Belt 9 Slot 10 Printing section 11 Pressure sensor array 12 multiplexer 13 Pressing the cuff 14 Pressurizing pump 15 Negative pressure pump 16 Switching valve 17 Control circuit 18 Communication circuit 19 A/D converter 20 CPU 21 ROM 22 RAM 23 Operation unit 24 Display 25 Arrow 26 Pressure sensor 27 Radial artery 29 腱 40 Pressing surface 41 External I/F -30- 200810732

42 CD-ROM 43 定時器 50 血壓測定單元 51 空氣袋 52 袖袋 5 3 氣管 54 壓力感測器 55 振盪電路 56 泵 57 泵驅動電路 58 閥 59 閥驅動電路 60 I/F 71 通信電路 72 通信I/F 78 資料儲存部 79 輸出速度輸入部 81 輸入部 82 顯示控制部 821 範圍切換部 83 印字控制部 831 範圍切換部 84 波形抽出部 85 統計資訊讀出部 86 臨界値判定部 -31- 200810732 87 88 89 90 91 92 93 94 99 100 231〜235 236 237〜239 240 El 〜E4 TWD Ri WDi SYSi DIAi Ali SBPl(i) SBP2(i) PLi Tri 血壓計算部 AI計算部 SBP計算部 TR計算部 輸出値選擇部 切換部 統計部 輸出部 統計資訊 框體 開關 開關群 開關 開關 記憶區域 波形之資料 記錄 波形資料 最高血壓資料 最低血壓資料 資料 資料 資料 資料 資料 -3242 CD-ROM 43 Timer 50 Blood pressure measuring unit 51 Air bag 52 Sleeve bag 5 3 Air tube 54 Pressure sensor 55 Oscillation circuit 56 Pump 57 Pump drive circuit 58 Valve 59 Valve drive circuit 60 I/F 71 Communication circuit 72 Communication I /F 78 data storage unit 79 output speed input unit 81 input unit 82 display control unit 821 range switching unit 83 print control unit 831 range switching unit 84 waveform extracting unit 85 statistical information reading unit 86 critical parameter determining unit -31- 200810732 87 88 89 90 91 92 93 94 99 100 231~235 236 237~239 240 El to E4 TWD Ri WDi SYSi DIAi Ali SBPl(i) SBP2(i) PLi Tri Blood pressure calculation unit AI calculation unit SBP calculation unit TR calculation unit output値Selection section switching section statistics section output section statistical information frame switch group switch switch memory area waveform data record waveform data systolic blood pressure data minimum blood pressure data data data data -32

Claims (1)

200810732 十、申請專利範圍: 1 · 一種脈波輸出裝置,其具備: 全波形取得部,係輸入藉由按壓在測定部位上之脈波 • 感測器於測定期間所感測到之脈波訊號,並根據輸入之 . 該脈波訊號來取得該測定期間之全波形; 波形抽出部,係從取得後之該全波形抽出每一節拍之 波形; 0 値計算部,係於藉由該波形抽出部所抽出之該一節拍 的每一波形,計算根據該波形之指定値;及 波形輸出部,係同時輸出取得之該全波形、及於該全 波形之該一節拍的每一波形藉由該値計算部所計算出的 該指定値。 2.如申請專利範圍第1項之脈波輸出裝置,其中該波形輸 ;出部係將取得之該全波形、及於該全波形之該一節拍的 每一波形藉由該値計算部所計算出的該指定値同時進行 _ 印字。 3·如申請專利範圍第丨項之脈波輸出裝置,其中該波形輸 出部係同時顯示取得之該全波形、及於該全波形之該一 節拍的每一波形藉由該値計算部所計算出的該指定値。 4·如申請專利範圍第丨項之脈波輸出裝置,其中該指定値 係指判定心血管風險用的値。 5·如申請專利範圍第丨項之脈波輸出裝置,其中該指定値 係包含驅出波與反射波之振幅的比率値、血壓値、中樞 血壓推定値及脈波傳播速度關聯資訊中至少一個値。 -33- 200810732 6 ·如申請專利範圍第1項之脈波輸出裝置,其中該波形輸 出部係於該全波形之該一節拍的每一波形中,與該波形 相關聯地將該指定値輸出。 7 .如申請專利範圍第6項之脈波輸出裝置,其中該波形輸 出部係於該全波形之該一節拍的每一波形中,與該波形 並列地將該指定値輸出。 8·如申請專利範圍第7項之脈波輸出裝置,其中該波形輸 出部係於該全波形之該一節拍的每一波形,針對相鄰之 波形而使該指定値之輸出位置相異。 9 ·如申請專利範圍第1項之脈波輸出裝置,其中僅輸出該 一節拍的每一波形之指定値中超過預定之臨界値的値。 1 〇·如申請專利範圍第1項之脈波輸出裝置,其中該一節拍 的每一波形之指定値中超過預定臨界値的値,係以與其 他之該指定値相異的態樣輸出。 1 1 ·如申請專利範圍第1項之脈波輸出裝置,其中更具備統 計輸出部,係輸出對該全波形經統計該每一節拍之該指 定値後的資訊, 並根據從外部供給之切換指示進行該波形輸出部及該 統計輸出部之中一方的輸出。 12.—種脈波輸出方法,其具備: 從在測定期間預先取得之脈波的全波形抽出每一節拍 之波形的步驟; 在藉由抽出該波形之步驟所抽出的一節拍之每一波形 ,計算根據該波形之指定値的步驟;及 -34- 200810732 同時輸出該取得之脈波的全波形、及於該全波形之該 一節拍的每一波形所計算出的該指定値之步驟。 13. —種程式產品,係使電腦執行波形輸出方法之程式產品 ,其特徵爲該波形輸出方法具備: 從在測定期間預先取得之脈波的全波形抽出每一節拍 之波形的步驟; 在藉由抽出該波形之步驟所抽出的一節拍之每一波形 ,計算根據該波形之指定値的步驟;及 同時輸出該取得之脈波的全波形、及於該全波形之該 一節拍的每一波形所計算出的該指定値之步驟。 14. 一種記錄有程式之可機械式讀取之記錄媒體,係使電腦 執行波形輸出方法之記錄有程式之可機械式讀取之記錄 媒體,其特徵爲該波形輸出方法具備: 從在測定期間預先取得之脈波的全波形抽出每一節拍 / 之波形的步驟; 在藉由抽出該波形之步驟所抽出的一節拍之每一波形 ’計算根據該波形之指定値的步驟;及 同時輸出該取得之脈波的全波形、及於該全波形之該 一節拍的每一波形所計算出的該指定値之步驟。 -35-200810732 X. Patent application scope: 1 . A pulse wave output device comprising: a full waveform acquisition unit that inputs a pulse wave signal sensed during a measurement by a pulse wave sensor that is pressed on a measurement site, And obtaining the full waveform during the measurement period according to the input pulse signal; the waveform extraction unit extracts the waveform of each beat from the acquired full waveform; 0 値 the calculation unit is connected to the waveform extraction unit Each waveform of the extracted one shot is calculated according to the specified 値 of the waveform; and the waveform output unit simultaneously outputs the obtained full waveform, and each waveform of the one shot of the full waveform by the 値The specified 値 calculated by the calculation unit. 2. The pulse wave output device of claim 1, wherein the waveform is obtained by the output unit, and the waveform of the full waveform and the waveform of the full waveform are obtained by the calculation unit. The specified 値 is calculated at the same time as _ printing. 3. The pulse wave output device of claim </ RTI> wherein the waveform output unit simultaneously displays the acquired full waveform, and each waveform of the one shot of the full waveform is calculated by the 値 calculation unit The specified 値. 4. A pulse wave output device according to the scope of the patent application, wherein the designated 値 is used for determining cardiovascular risk. 5. The pulse wave output device of claim </ RTI> wherein the specified lanthanum system comprises at least one of a ratio of a ratio of an amplitude of the evoked wave to the reflected wave, a blood pressure 値, a central blood pressure 値, and a pulse wave velocity. value. -33-200810732 6 - The pulse wave output device of claim 1, wherein the waveform output portion is in each waveform of the one shot of the full waveform, and the designated chirp is output in association with the waveform . 7. The pulse wave output device of claim 6, wherein the waveform output portion is in each waveform of the one beat of the full waveform, and the designated chirp is output in parallel with the waveform. 8. The pulse wave output device of claim 7, wherein the waveform output portion is associated with each waveform of the one shot of the full waveform, and the output position of the designated chirp is different for adjacent waveforms. 9. The pulse wave output device of claim 1, wherein only the predetermined threshold of each of the specified waveforms of the one shot is output. 1 〇· As for the pulse wave output device of the first application of the patent scope, the 値 of the designated 値 of each waveform of the one shot exceeding the predetermined threshold 输出 is output in a different manner from the other specified 値. 1 1 · The pulse wave output device of the first application of the patent scope, wherein the statistical output unit further outputs the information of the designated waveform for each full waveform, and switches according to the external supply. An instruction is made to output an output of one of the waveform output unit and the statistical output unit. 12. A pulse wave output method comprising: a step of extracting a waveform of each beat from a full waveform of a pulse wave obtained in advance during measurement; and each waveform of a beat extracted by the step of extracting the waveform And calculating a step of specifying the 根据 according to the waveform; and -34-200810732 simultaneously outputting the full waveform of the acquired pulse wave and the step of specifying the 値 calculated for each waveform of the one shot of the full waveform. 13. A program product, which is a program product for causing a computer to execute a waveform output method, characterized in that the waveform output method comprises: a step of extracting a waveform of each beat from a full waveform of a pulse wave obtained in advance during measurement; And calculating, according to a specified one of the waveforms of each waveform extracted by the step of extracting the waveform; and simultaneously outputting the full waveform of the acquired pulse wave, and each of the beats of the full waveform The step of specifying the 値 calculated by the waveform. 14. A recording medium capable of mechanically reading a program, wherein the computer executes a waveform output method and records a programmable mechanical recording medium, wherein the waveform output method is: a step of extracting each beat/waveform from a full waveform of the pulse wave obtained in advance; calculating a step of specifying a waveform according to the waveform of each of the beats extracted by the step of extracting the waveform; and simultaneously outputting the waveform The full waveform of the acquired pulse wave and the step of specifying the specified chirp for each waveform of the one shot of the full waveform. -35-
TW96124441A 2006-07-10 2007-07-05 Pulse output apparatus for simultaneously outputting pulse waveform and pulse-related information TW200810732A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189418A JP2008012230A (en) 2006-07-10 2006-07-10 Pulse wave output device and program

Publications (1)

Publication Number Publication Date
TW200810732A true TW200810732A (en) 2008-03-01

Family

ID=38923113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124441A TW200810732A (en) 2006-07-10 2007-07-05 Pulse output apparatus for simultaneously outputting pulse waveform and pulse-related information

Country Status (3)

Country Link
JP (1) JP2008012230A (en)
TW (1) TW200810732A (en)
WO (1) WO2008007549A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163093A1 (en) 2015-04-08 2016-10-13 ニプロ株式会社 Blood pressure measuring device
WO2018168796A1 (en) * 2017-03-15 2018-09-20 オムロン株式会社 Biological information measurement device and method, and program
CN110430806A (en) * 2017-03-15 2019-11-08 欧姆龙株式会社 Human body information measurement device, methods and procedures
DE112018001367T5 (en) * 2017-03-15 2019-11-21 Omron Corporation DEVICE FOR MEASURING BIOLOGICAL INFORMATION AND METHOD AND PROGRAM
US20200138303A1 (en) * 2017-07-07 2020-05-07 The Texas A&M University System System and method for cuff-less blood pressure monitoring
JP6735333B2 (en) * 2018-12-28 2020-08-05 三星電子株式会社Samsung Electronics Co.,Ltd. Blood pressure measuring device, wristwatch terminal, and blood pressure measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309242A (en) * 1987-06-10 1988-12-16 Nippon Koden Corp Apparatus for analyzing propagation of arterial wave
JP3146800B2 (en) * 1993-10-29 2001-03-19 松下電器産業株式会社 Pulse wave measuring device
JP4626250B2 (en) * 2004-10-05 2011-02-02 オムロンヘルスケア株式会社 Pulse wave information display device, program for controlling pulse wave information display device, and pulse wave information display method

Also Published As

Publication number Publication date
WO2008007549A1 (en) 2008-01-17
JP2008012230A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US6592528B2 (en) Biological information evaluation apparatus
JP5098721B2 (en) Blood pressure measurement device, blood pressure derivation program, and blood pressure derivation method
JP5146543B2 (en) Electronic blood pressure monitor and blood pressure measurement method
US7270636B2 (en) Apparatus and method for pulse detection
WO2001095798A2 (en) Method and system for detecting vascular conditions using an occlusive arm cuff plethysmograph
TW200810732A (en) Pulse output apparatus for simultaneously outputting pulse waveform and pulse-related information
JP2007531546A (en) Operation management in high-speed blood pressure measuring device
JPH07136136A (en) Continuous blood pressure monitoring system
KR102303972B1 (en) Blood pressure pulse wave measuring device and program
US6561985B2 (en) Automatic blood-pressure measuring apparatus
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
KR20020092437A (en) Visceral fat meter provided with tonometer
JP2008061824A (en) Medical measuring instrument, biosignal waveform extraction method and biosignal waveform extraction program
CN107106046B (en) Blood vessel elastic modulus evaluation device
US6808497B2 (en) Blood-pressure measuring apparatus and inferior-and-superior-limb blood-pressure-index measuring apparatus
EP2198773A1 (en) System and method for self-validation of arterial pressure measurements
US6730039B2 (en) Arteriosclerosis-degree evaluating apparatus
JP2004313605A (en) Vascular elasticity measuring apparatus
US6878116B2 (en) Blood pressure analyzer
JP5092885B2 (en) Electronic blood pressure monitor
JP2010167181A (en) Electronic manometer, information processor, measuring management system, measuring management program, and measuring management method
JP4563766B2 (en) Blood pressure measurement device, blood pressure measurement method, control program, and computer-readable storage medium
US9022943B2 (en) Method for detecting vascular sclerosis
KR100883679B1 (en) Intelligent blood pressure measurement system and method of adjusting measurement interval thereof
KR200406715Y1 (en) A pulsimeter for auto-conrtolling air-pressure