TW200810173A - White OLED with high lumen efficacy - Google Patents

White OLED with high lumen efficacy Download PDF

Info

Publication number
TW200810173A
TW200810173A TW096120019A TW96120019A TW200810173A TW 200810173 A TW200810173 A TW 200810173A TW 096120019 A TW096120019 A TW 096120019A TW 96120019 A TW96120019 A TW 96120019A TW 200810173 A TW200810173 A TW 200810173A
Authority
TW
Taiwan
Prior art keywords
light emitting
blue
light
emitting
emitting diode
Prior art date
Application number
TW096120019A
Other languages
Chinese (zh)
Inventor
Hans-Helmut Bechtel
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200810173A publication Critical patent/TW200810173A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to white-emitting OLED (100) comprising a blue-emitting component (10) with a y-color coordinate smaller than 0.15. The OLED may further comprise a yellow, red and/or green light-emitting component (20, 30) and have a color temperature in the range between 2000 and 6000 K. A particular design of the blue-emitting component (10) comprises a layered structure of a glass substrate (40), an ITO anode (11), an Ag-layer (12), a HTL (13), a blue light-emitting layer (14), and a cathode (15). The blue-emitting layer (14) is preferably realized in a micro-cavity to allow a tuning of the wavelength.

Description

200810173 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種包含至少兩不同色彩之發光組件的發 白光有機發光裝置(OLED)。 【先前技術】 從US 6 869 695 B2(其以提及方式併入本申請案),已知 一種發白光有機發光二極體,其在一單一發射區域中包含 兩射極,其中聚合該等射極中的一者。us 2〇〇4 322〇5幻 揭不一種有機發光二極體,其包含複數個含有不同色彩之 發光組件的區域,其中以特定比率選定該等區域之區以提 升裝置之效能。一般而言,有機發光二極體之整體流明效 能部受限於藍光組件,其之表現遠不如商業上可獲得之綠 光與紅光射極。 【發明内容】 基於此情形,本發明之一目的係提供一種具有高流明效 能的發白光有機發光二極體。 此目的係藉由如請求項丨之發白光有機發光二極體來達 成。較佳具體實施例係揭示於隨附申請專利範圍中。 根據本發明之發白光有機發光二極體包含下列組件: a) 一發藍光組件,其具有小於約〇.15之7色座標,其 中此處及以下所提及之色座標指CIE 1931定義且其中術語,, 小於”於此處及以下應理解為具有"小於或等於,,(旬之含 意。該發藍光組件之X座標主要可具有剩餘、實際上可能 之範圍(即,於該CIE 1931色度圖内)的任意值。較佳地, 121375.doc 200810173 該χ座標卻限於小於〇·25之值,較佳地係小於〇2〇。 b)至少一另外的發光組件,其具有不同於該發藍光 組件之色彩的一色彩。另外的發光組件之色彩應選定成可 能結合該發藍光組件而產生整體的白光發射。 儘管白光有機發光二極體之一般發藍光組件之y色座標 通系的範圍介於0.15與0.25之間,然而根據本發明之發藍 光組件之y色座標對彼地具有小於〇.15之較小值。如同根 據圖式將更加詳細顯示,應用一飽和藍光射極能夠顯著改 善整體裝置之效能與功率消耗。 除了該發藍光組件之外,該發白光有機發光二極體可包 含一另外的黃光色彩發光組件。於另一具體實施例中,該 發白光有機發光二極體除了該發藍光組件之外還可包含兩 另外的分別為紅光與綠光色彩之發光組件。於此等具體實 施例中,以合理的努力便可產生令人滿意夠寬的發射光 譜。因此,至少一另外的發光組件較佳地具有下列色彩中 的一者·再光(色座標界定為0·4 S χ幺0.6,0.4幺y幺 0.6)、紅光(0.5 S χ 幺 〇·7,0.25 幺 y 幺 〇·4)、或綠光(〇·ι 幺 x S 0·5 , 0·4 幺 y 幺 〇·8)。 該發藍光組件及/或另外的發光組件較佳地包含發光聚 合物及/或有機分子之非晶性薄膜。可在文獻中找出可運 用之聚合物與有機分子範例(例如,Chihaya Adachi、Marc A· Baldo、Mark Ε· Thompson、與 Stephen R· Forrest、200810173 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a white light-emitting organic light-emitting device (OLED) comprising at least two different color light-emitting components. [Prior Art] A white light-emitting organic light-emitting diode comprising a two-emitter in a single emission region, wherein the polymerization is carried out, is known from US Pat. No. 6,869,695, the disclosure of which is incorporated herein by reference. One of the emitters. Us 2〇〇4 322〇5 Magic Uncovers an organic light-emitting diode that includes a plurality of regions of light-emitting components having different colors, wherein regions of the regions are selected at a particular ratio to enhance the performance of the device. In general, the overall lumens efficiency of organic light-emitting diodes is limited by blue-light components, which are far less performant than commercially available green and red emitters. SUMMARY OF THE INVENTION Based on this situation, it is an object of the present invention to provide a white light emitting organic light emitting diode having high lumen efficiency. This object is achieved by a white light emitting organic light emitting diode as claimed. Preferred embodiments are disclosed in the scope of the accompanying claims. The white-emitting organic light-emitting diode according to the present invention comprises the following components: a) a blue light-emitting component having a color coordinate of less than about 〇.15, wherein the color coordinates referred to herein and below are defined by CIE 1931 and Wherein the term, less than "herein and below" is understood to have " less than or equal to, (indicated by X. The X coordinate of the blue-emitting component may have a remaining, actually possible range (ie, at the CIE) Any value of the 1931 chromaticity diagram. Preferably, 121375.doc 200810173 the χ coordinate is limited to a value less than 〇·25, preferably less than 〇2〇. b) at least one additional illuminating component having A color different from the color of the blue light-emitting component. The color of the other light-emitting component should be selected to produce an overall white light emission in combination with the blue-emitting component. Despite the y-color coordinates of the general blue-emitting component of the white light organic light-emitting diode The range of the system is between 0.15 and 0.25, however, the y-color coordinates of the blue-emitting component according to the present invention have a smaller value than 〇.15 for the ground. As will be shown in more detail according to the figure, A saturated blue light emitter can significantly improve the performance and power consumption of the overall device. In addition to the blue light emitting component, the white light emitting organic light emitting diode can comprise an additional yellow light color light emitting component. In another embodiment The white light emitting organic light emitting diode may further comprise two additional light emitting components, respectively red and green colors, in addition to the blue light emitting component. In such specific embodiments, a reasonable effort may be used to generate the light emitting component. A satisfactory wide emission spectrum is satisfied. Therefore, at least one additional light-emitting component preferably has one of the following colors: re-light (color coordinates are defined as 0·4 S χ幺 0.6, 0.4 幺 y 幺 0.6), red Light (0.5 S χ 幺〇·7, 0.25 幺y 幺〇·4), or green light (〇·ι 幺x S 0·5 , 0·4 幺y 幺〇·8). The blue light component and / Or the additional luminescent component preferably comprises an amorphous film of luminescent polymer and/or organic molecules. Examples of useful polymers and organic molecules can be found in the literature (eg, Chihaya Adachi, Marc A. Baldo, Mark) Ε· Thompson, and Stephen R· Forrest,

Nearly 100% internal phosphorescence efficiency in anNearly 100% internal phosphorescence efficiency in an

organic light emitting device,,、JOURNAL OF APPLIED 121375.doc 200810173 10至 15、(2〇〇1),其 PHYSICS > VOLUME 90,Number 係以提及方式併入本申請案)。 於本發明之-較佳具體實施例中,該發藍光組件之 ,的上限進一步係侷限於小於〇1,較佳地係小於〇的, 最佳地係小於〇.〇5。 可一逕地小,但較佳地係 雖然該發||光組件之y色座標 仍大於0.01。Organic light emitting device,,, JOURNAL OF APPLIED 121375.doc 200810173 10 to 15, (2〇〇1), PHYSICS > VOLUME 90, Number is incorporated herein by reference. In a preferred embodiment of the invention, the upper limit of the blue light-emitting component is further limited to less than 〇1, preferably less than 〇, and most preferably less than 〇.〇5. It may be small in size, but preferably the y color coordinates of the optical component are still greater than 0.01.

以所提出之發白光有機發光二極體可達到之相關色溫 (cct)的較佳範圍介於2〇〇〇與6〇〇〇 κ之間。此外,該有機 發光二極體較佳地就其色溫而言係可調譜的,冑得其可涵 盍所提及之色溫範圍的許多離散值或一連續子區間。 儘管發射組件(即,該發藍光與另外的發光組件)可併入 該有機發光二極體的同一區域中,然而其較佳地係配置於 獨立區域中。該等區域尤其可依整體光發射方向而邊靠邊 或相互堆疊來配置。 於該發白光有機發光二極體之一特定實現中,該發藍光 組件包含一藍光濾光片,即一種抑制38〇 11111至55〇 nm之區 間以外、較佳地係4〇〇 nm至500 nmi區間以外之波長的遽 光片。該濾光片例如可由一色素或由介電層來實現。藉由 該濾、光片,可侷限於以達成該發藍光組件之所需^色座標 的方式來發射一較寬光譜。 於該發白光有機發光二極體之另一實現中,該發藍光組 件包含一微空腔。如同文獻(例如,Τ. Shiga、H· Fujikawa 與丫· TagainDesign of multiwavelength resonant cavities 121375.doc 200810173 for white organic light-emitting diodes-,J. Appl Phys 93 ’ i (2003) 19)中所說明’可藉由將一射極層置放在適當 尺寸的微空腔中以調諧其之波長。 根據本發明之另一具體實施例,該發藍光組件包含一陰 極、一發(藍)光及電子傳輸層、與一電洞傳輸層(以下簡稱 HTL)的依序配置。該發光及電子傳輸層之厚度的較佳範圍 介於50 rnn與70 nm之間。該HTL之厚度的較佳範圍介於咒 nm與200 nm之間。 於前述具體實施例之進一步研發中,該HTL係配置於一 透明陽極,較佳地係一氧化銦錫之陽極(以下簡稱汀⑺之 上。一電洞傳輸層可(例如)包含聚乙烯二氧噻吩(pD〇T)與 聚(苯乙烯磺酸)。 此外,一銀(Ag)層視需要地可佈置於該HTL與前述陽極 之間’其中該Ag層之厚度較佳的範圍介於1〇與4〇 ηηΐ2 間。 。亥發白光有機發光二極體可進一步包含一玻璃基板,其 上配置上述(或其他)結構。 【實施方式】 有機發光裝置(0LED)可在可見範圍中以寬發射光譜來 實現。雖然可應用適當的寬光譜產生白光,但整體流明效 處仍党限於該藍光組件,其之表現遠不如市面上可購得之 、、彔光與紅光射極。本發明因此提出一種有機發光二極體光 源’其具有一飽和藍光射極(即具有一 y色座標< 〇」5)並結 合例如紅光與綠光射極。應用飽和藍光射極提供許多優 121375.doc 200810173 點: -因CCT> 2000 K時提升RGB白光發射光譜之所謂的流 明等效物而使效能提升10% ; -結果演色性指數(Ra)的提升; * -結合一所謂的三重態發綠光射極時效能提升高達 , 40%(註解··結合一單態藍光射極與三重態綠光與紅光目前 為止係唯一在發光應用上能產生白光並具有夠長之壽命的 可行解決方案)。 • 可以適當的微空腔結構,並在該裝置之陽極及陰極附近 結合薄作用有機層與適當反射層來產生所需藍光發射光 譜。或者,可應用藍光濾光片(色素及/或介電層),但其需 以犧牲整體效能增益為代價。 下面,將更加詳細地說明以上之概念。A preferred range of correlated color temperatures (cct) achievable with the proposed white-emitting organic light-emitting diode is between 2 〇〇〇 and 6 〇〇〇 κ. Moreover, the organic light-emitting diode is preferably tunable in terms of its color temperature, so that it can encompass many discrete values or a continuous sub-interval of the range of color temperatures mentioned. Although the emitting component (i.e., the blue emitting light and the additional light emitting component) can be incorporated into the same region of the organic light emitting diode, it is preferably disposed in a separate region. These regions can be arranged, in particular, by being edged or stacked on each other depending on the overall light emission direction. In a specific implementation of the white light emitting organic light emitting diode, the blue light emitting component comprises a blue light filter, that is, a region other than 38〇11111 to 55〇nm, preferably 4〇〇nm to 500. A pupil of a wavelength other than the nmi interval. The filter can be realized, for example, by a pigment or by a dielectric layer. With the filter, the light sheet can be limited to emit a wider spectrum in such a manner as to achieve the desired color coordinates of the blue light emitting component. In another implementation of the white light emitting organic light emitting diode, the blue light emitting component comprises a microcavity. As described in the literature (for example, Τ. Shiga, H. Fujikawa and 丫 TagainDesign of multiwavelength resonant cavities 121375.doc 200810173 for white organic light-emitting diodes-, J. Appl Phys 93 'i (2003) 19) The wavelength is tuned by placing an emitter layer in a suitably sized microcavity. According to another embodiment of the present invention, the blue light emitting component comprises a cathode, a (blue) light and electron transport layer, and a hole transport layer (hereinafter referred to as HTL). The thickness of the luminescent and electron transporting layer is preferably between 50 rnn and 70 nm. The preferred range of thickness of the HTL is between the mantra nm and 200 nm. In a further development of the foregoing specific embodiment, the HTL is disposed on a transparent anode, preferably an indium tin oxide anode (hereinafter referred to as Ting (7). A hole transport layer may, for example, comprise polyethylene II Oxythiophene (pD〇T) and poly(styrenesulfonic acid). Further, a silver (Ag) layer may optionally be disposed between the HTL and the foregoing anode, wherein a preferred range of the thickness of the Ag layer is between Between 1〇 and 4〇ηηΐ2 The mega-white organic light-emitting diode may further comprise a glass substrate on which the above (or other) structure is disposed. [Embodiment] The organic light-emitting device (OLED) can be in the visible range. Wide emission spectrum is achieved. Although a suitable wide spectrum can be used to produce white light, the overall flow efficiency is still limited to the blue component, which is far less than the commercially available, neon and red emitters. The invention therefore proposes an organic light-emitting diode source having a saturated blue emitter (i.e. having a y-color coordinate < 〇 5) combined with, for example, red and green emitters. The application of a saturated blue emitter provides many advantages. 12137 5.doc 200810173 Points: - Increase the performance by 10% due to the so-called lumen equivalent of the RGB white light emission spectrum at CCT > 2000 K - Increase the color rendering index (Ra) of the result; * - Combine a so-called triple When the state emits a green light emitter, the performance is improved by up to 40%. (Notes · Combining a single-state blue emitter and triplet green and red light are the only ones that produce white light and have a long life in lighting applications. Possible solution) • A suitable microcavity structure can be combined and a thin organic layer and a suitable reflective layer can be combined in the vicinity of the anode and cathode of the device to produce the desired blue emission spectrum. Alternatively, a blue filter (color) can be applied. And/or dielectric layer), but at the expense of overall performance gain. The following concepts will be explained in more detail below.

研發生產程序及效能高且壽命長之冷光材料在有機發光 二極體研究中仍為極度重要的主題。磷光三重態射極就達 成高效能而言具有關鍵作用。此種材料的特定範例諸如綠 光射極材料 IRPYY (請參閱 Chihaya Adachi、Marc A· Baldo、Mark E. Thompson、Stephen R. Forrest之’’Nearly 100% internal phosphorescence efficiency in an organic , light emitting device,,,JOURNAL OF APPLIED PHYSICS VOLUME 90、NUMBER 10 (2001))。此材料達到超過 10,000小時的壽命,且現今在市面上可購得。相似地,紅 光光譜範圍之壽命長的磷光射極在市面上亦可購得。 與此相反的,藍光射極材料之壽命通常較短,其中冷光 121375.doc 200810173 射極(單態射極)在藍光範圍中明顯優於目前可購得之該等 三重態射極。此外,磷光藍光射極材料目前所達到的外部 量子效能明顯低於綠光或紅光磷光射極(關於白光有機發 光二極體的進一步細節可在文獻中找到,例如R&D and production processes and high-performance, long-life luminescent materials remain an extremely important topic in the study of organic light-emitting diodes. The phosphorescent triplet emitter plays a key role in achieving high performance. Specific examples of such materials are the green emitter material IRPYY (see Chihaya Adachi, Marc A. Baldo, Mark E. Thompson, Stephen R. Forrest, ''Nearly 100% internal phosphorescence efficiency in an organic , light emitting device, ,, JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 10 (2001)). This material has a life of more than 10,000 hours and is now commercially available. Similarly, phosphorescent emitters with long lifetimes in the red spectral range are also commercially available. In contrast, blue emitter materials typically have a short lifetime, with luminescence 121375.doc 200810173 emitter (single-state emitter) being significantly better in the blue range than the currently available triplet emitters. In addition, phosphorescent blue emitter materials currently achieve significantly lower external quantum performance than green or red phosphorescent emitters (further details on white organic light-emitting diodes can be found in the literature, for example

Mated· 2002,14,ηο·15,1032之”White Light Emission Using Triplet Eximers in Electrophosphorescent OLEDs”)。 基於所說明之情形,本發明之一目的係欲提供效能與演 色性提升的發白光有機薄膜EL (射極層)裝置。如同已提及 的’此目的通常係以一包含藍光射極之發白光有機發光二 極體來達成,其中侷限該藍光射極之色座標使得y係小於 0.15 (參考 CIE 1931 定義)。 圖1顯示此種發白光有機發光二極體1 00的一特定具體實 施例。於此範例中,該有機發光二極體i0()包含三個分別 為藍光、綠光、與紅光之色彩的發光組件1〇、20與30。全 部三個發光組件係佈置於一玻璃基板4〇上,其中僅較詳細 顯示該發藍光組件10的結構。應注意,可視需要地於該玻 璃基板40上佈置另外的發光組件(例如,該等三組件丨〇、 20、30的更多複本)。 從該玻璃基板40之頂部上的最低描述層開始,該發藍光 組件10由下列元件組成: 一 ITO層11,其作為一陽極,其中此層之一般厚度1 例如係140 nm ; -一 Ag層12,其中此層之厚度d2的一般範圍介於約17與 30 nm之間且明確地說在所顯示的範例裡可具有2〇 nmi 121375.doc -10- 200810173 值;該Ag層例如可藉由在該ITO層上進行汽相沉積來製 造; --低指數電洞傳輸層HTL 13,其中此層之一般厚度^ 例如係200 nm ; -一發藍光層14,其中此層之一般厚度&例如係5〇 nm ;該發藍光層14例如可由聚[9,9-(2,-乙基己美) 第](PEHF)組成; -一金屬陰極15。 此設計中,一微空腔係實現於一側上之陰極15的鏡表面 與另一側上之Ag層12加上IT0層11之間。 於該發藍光層14(或一般的有機發光二極體)中可運用的 有機電發光材料包括: (a) 有機分子,如Alq3(8-羥基喹啉化鋁)或對苯伸乙 烯。此專分子經常混雜一電荷傳輸矩陣以增加導電性。存 在許多此類分子化合物,而其之一般特徵係電子激態在衰 變後會發射可見的光子。 (b) 有機共軛聚合物,如ppv(聚(苯伸乙浠))與聚苐。共 軛聚合物可為交聯聚合物、星狀聚合物、樹枝狀聚合物或 一線性鏈狀聚合物。其亦具有會衰變而發射一可見光子的 電子激態’但激發之界定較不明確並可在聚合物鏈之多個 重複單上延伸。電荷傳輸亦發生在該等聚合物中。 (C)有機金屬:此等分子係有機配位基群組與金屬離子 的錯合物,例如鑭系元素原子。此等分子可為光致發光與 電發光且激發係經由一有機配位基傳輸至鑭系元素。該鑭 121375.doc -II - 200810173 系元素會衰變而發射一光子,但屬於一極窄的頻寬。純色 對色彩顯示有益。且激子壽命長許多,進而可使雷射作用 較容易達到。有機鑭化物係過渡金屬磷光物質的子類別。 (d)存在上述分子的許多組合與摻合。 ,圖2於一圖中顯示圖!之發藍光組件1〇的乂色座標(圓圈) 與y色座標(方塊)與發射角度α間的函數關係。此圖的不同 曲線對應Ag層12的不同厚度I,其中該厚度d2依箭頭之方 向從17增加至30 nm。就該人§層12之一給定厚度d2而言,乂 Φ &座;^主要由邊發藍光層14之厚度d4來決定;隨著該發藍 光層14之厚度&的增加,該y色座標亦增加。該發藍光層 14之微空腔設計因而允許在一特定範圍内調諧該y色座 標。在沒有微空腔的情況下,所使用之射極的7色座標將 為約0.22。 圖3顯示根據本發明之一發白光有機發光二極體(例如, 圖1與2的有機發光二極體)的x_y色座標圖。該圖内之曲線 _ 上的點分別在CCT < 5000 K時對應至黑體線並在CCT > 5000 K時對應至CIE白光線,其中描點以5〇〇 κ之段差來指 明相關色溫(CCT)。該圖進一步以黑色方塊分別顯示該發 藍光組件10 (Χ=0·126,y=0.095)、該發綠光組件2〇 (Χ=0·392,y=〇.572)與該發紅光組件 3〇 (χ=〇·644,y=0.355) 之色座標。 圖4描述該發白光有機發光二極體ι〇〇之相對電功率 prei(其係產生一特定光通量(流明)所必須)與該藍光射極1〇 之y色座標間的函數關係。該紅光與綠光射極的色度點係 121375.doc -12· 200810173 假定成以上述圖3中之值來保持恆定。此圖中的不同曲線 如同前頭所指明,係對應於該燈具的不同相關色溫。於此 範例中,該發藍光組件係一單態射極,該綠光組件係一三 重悲射極,而該紅光組件則可為一三重態或一單態射極。 該圖顯示功率消耗會隨y色座標值的減少而減少。 圖5祝明藍光發射對該有機發光二極體1〇〇之演色性指數 的〜曰"亥廣色性指數以Ra值來表示(即,根據國際照明 委員會(CIE)對演色性指數(CRI)的定義為R1至R8值的平 均)。該圖顯示Ra值在大約y = 〇〇5時(即,於該藍光射極y 色座標之較佳區間中)趨近一最大值。 藉由構造一將發射侷限於一小範圍波長之微空腔,該發 藍光組件10之所需y色座標可以一般發藍光材料來達成。 圖6就此方面顯示由一微空腔中之雙極射入該玻璃基板之 功率的波長與角度之相依性(線指相同功率之點)。一微空 腔中之-雙極的發射功率取決於反射陽極與陰極接點間之 • #用層的厚度可具有一或多個最大值。由於該陽極與該陰 極之反射性,於所顯示之範例中幾乎無任何功率係發射成 大於41。之角度(即,玻璃中的全反射角度 總括地說,本發明揭示白光有機發光二極體,其特性在 於以下特徵中的至少一者: •该藍光射極之y色座標在〇〇1與〇15之間; -三個具有紅光、綠光、與藍光之色彩的發射區域; -兩個具有黃光與藍光之色彩的發射區域; -並排配置的不同發射區域; 121375.doc -13- 200810173 •相互堆疊佈置的不同發射區域; -色溫CCT範圍介於2000與6000 K之間; -藍光射極包含一微空腔;Mated· 2002, 14, ηο·15, 1032 "White Light Emission Using Triplet Eximers in Electrophosphorescent OLEDs"). Based on the illustrated circumstances, an object of the present invention is to provide a white light-emitting organic thin film EL (emitter layer) device with improved performance and color rendering. As already mentioned, this purpose is usually achieved by a white-emitting organic light-emitting diode comprising a blue-emitting emitter, wherein the color coordinates of the blue-emitting emitter are limited such that the y-system is less than 0.15 (refer to CIE 1931 definition). Figure 1 shows a specific embodiment of such a white light emitting organic light emitting diode 100. In this example, the organic light-emitting diode i0() includes three light-emitting components 1 , 20 and 30 of blue, green, and red light, respectively. All three light-emitting components are arranged on a glass substrate 4, wherein only the structure of the blue light-emitting component 10 is shown in more detail. It should be noted that additional illumination components (e.g., more replicas of the three components 丨〇, 20, 30) may be disposed on the glass substrate 40 as desired. Starting from the lowest description layer on top of the glass substrate 40, the blue light emitting component 10 is composed of the following elements: an ITO layer 11 as an anode, wherein the general thickness of the layer is, for example, 140 nm; - an Ag layer 12, wherein the thickness d2 of this layer generally ranges between about 17 and 30 nm and specifically has a value of 2〇nmi 121375.doc -10- 200810173 in the example shown; the Ag layer can be borrowed, for example Manufactured by vapor deposition on the ITO layer; - low index hole transport layer HTL 13, wherein the general thickness of the layer is, for example, 200 nm; - a blue light layer 14, wherein the general thickness of the layer & For example, 5 〇 nm; the blue light-emitting layer 14 may be composed, for example, of poly[9,9-(2,-ethylhexyl) ruthenium (PEHF); a metal cathode 15. In this design, a microcavity is realized between the mirror surface of the cathode 15 on one side and the Ag layer 12 on the other side plus the IT0 layer 11. Organic electroluminescent materials usable in the blue light-emitting layer 14 (or a general organic light-emitting diode) include: (a) an organic molecule such as Alq3 (8-hydroxyquinoline aluminum) or p-phenylene terephthalene. This molecule is often mixed with a charge transfer matrix to increase conductivity. There are many such molecular compounds, and their general characteristic is that the electron excited state emits visible photons after decay. (b) Organic conjugated polymers such as ppv (poly(phenylene)) and polyfluorene. The conjugated polymer may be a crosslinked polymer, a star polymer, a dendrimer or a linear chain polymer. It also has an electron excited state that decays to emit a photon', but the definition of the excitation is less clear and can extend over multiple repeats of the polymer chain. Charge transport also occurs in such polymers. (C) Organometallic: a complex of a group of organic ligands of such molecules with a metal ion, such as a lanthanide atom. These molecules can be photoluminescent and electroluminescent and the excitation system is transported to the lanthanide via an organic ligand. The 镧121375.doc -II - 200810173 element will decay and emit a photon, but belongs to a very narrow bandwidth. Solid color is good for color display. And the life of the exciton is much longer, which makes the laser action easier to achieve. A subclass of organic germanium-based transition metal phosphorescent materials. (d) There are many combinations and blends of the above molecules. Figure 2 shows the figure in one figure! The blue coordinate (circle) of the blue light component is a function of the y color coordinate (square) and the emission angle α. The different curves of this figure correspond to different thicknesses I of the Ag layer 12, wherein the thickness d2 increases from 17 to 30 nm in the direction of the arrow. For a given thickness d2 of one of the § layers 12 of the person, 乂Φ &座; ^ is mainly determined by the thickness d4 of the edge blue light layer 14; as the thickness & The y color coordinates have also been increased. The microcavity design of the blue light-emitting layer 14 thus allows tuning of the y-color coordinates within a specific range. In the absence of a microcavity, the 7 color coordinates of the emitter used will be about 0.22. 3 shows an x-y color coordinate plot of a white light emitting organic light emitting diode (eg, the organic light emitting diodes of FIGS. 1 and 2) in accordance with the present invention. The points on the curve _ in the figure correspond to the black body line at CCT < 5000 K and correspond to the CIE white light at CCT > 5000 K, where the line points indicate the correlated color temperature with a step of 5 〇〇 ( CCT). The figure further shows the blue light emitting component 10 (Χ=0·126, y=0.095) in black squares, the green light emitting component 2〇 (Χ=0·392, y=〇.572) and the red light emitting light. The color coordinates of the component 3〇(χ=〇·644, y=0.355). Figure 4 depicts the relative electrical power prei of the white light emitting organic light emitting diode (which is necessary to produce a particular luminous flux (lumens)) as a function of the y color coordinates of the blue emitter. The chromaticity point of the red and green emitters is 121375.doc -12. 200810173 It is assumed to be constant with the value in Fig. 3 above. The different curves in this figure, as indicated at the head, correspond to the different correlated color temperatures of the luminaire. In this example, the blue light emitting component is a single-state emitter, the green light component is a triple sad emitter, and the red light component can be a triplet or a singlet emitter. The figure shows that power consumption decreases as the value of the y color coordinate decreases. Figure 5 shows that the color rendering index of the organic light-emitting diode 1 亥 quot quot; the chromatic color index is expressed by the Ra value (ie, according to the International Commission on Illumination (CIE) color rendering index ( CRI) is defined as the average of the R1 to R8 values). The figure shows that the Ra value approaches a maximum at about y = 〇〇 5 (i.e., in the preferred range of the blue emitter y color coordinates). By constructing a microcavity that limits the emission to a small range of wavelengths, the desired y color coordinates of the blue light emitting component 10 can be achieved with a generally blue light material. Figure 6 shows, in this respect, the wavelength dependence of the power of the bipolar in a microcavity into the glass substrate (the line refers to the point of the same power). The dipole's emission power in a microcavity depends on the thickness of the reflective layer between the anode and the cathode. The thickness of the #layer can have one or more maximum values. Due to the reflectivity of the anode and the cathode, almost no power system emits greater than 41 in the example shown. Angle (ie, Total Reflection Angle in Glass) In summary, the present invention discloses a white organic light emitting diode characterized by at least one of the following features: • The y color coordinate of the blue emitter is at 〇〇1 and Between 15; - three emission areas with red, green, and blue colors; - two emission areas with yellow and blue colors; - different emission areas arranged side by side; 121375.doc -13 - 200810173 • Different emission areas stacked on each other; - CCT range of color temperature between 2000 and 6000 K; - Blue emitter containing a microcavity;

_藍光射極包含一藍光濾光片,例如一色素或介電層。 最後應指出,於本申請書中,術語”包含”並不排除其他 兀件或步驟,” 一”或”一個,,並不排除複數個,且一單一處 理器或其他單元可滿足多個構件的功能。本發明屬於各個 與每個新穎特性特徵以及各個與每個特性特徵之組合。此 外,申請專利範圍中的參考符號不應視為限制其範疇。 【圖式簡單說明】 本發明之此等及其他方面將參考以下所述的(若干)具體 實施例而明白且清楚。此等具體實施例將藉助於附圖以舉 例之方式來加以說明,其中: 圖1示意性顯示根據本發明之一發白光有機發光二極體 的一項具體實施例; 圖2顯示圖丨之有機發光二極體之發藍光組件的χ色座標 (圓圈)與y色座標(方塊)與發射角度間的函數關係; 圖3顯示根據本發明之發白光有機發光二極體的ciE 1931 X、y色座標圖; 圖4顯示針對燈具之不同色溫固定流明輸出之圖3發白光 有機發光一極體之相對電功率與該發藍光組件之y色座標 間的函數關係; 圖5顯示演色性指數^^與圖3及4之有機發光二極體之發 藍光組件的y色座標間的函數關係; 121375.doc •14· 200810173 圖6說明取決於波長與角 射入該玻璃基板的功率。 度藉由一微空腔中之雙極而發The blue emitter includes a blue light filter, such as a pigment or dielectric layer. In the end, it should be noted that in the present application, the term "comprising" does not exclude other components or steps, "a" or "an" does not exclude the plural, and a single processor or other unit can satisfy multiple components. The present invention resides in each and every novel feature and each combination of features. In addition, the reference signs in the claims should not be construed as limiting the scope thereof. The invention will be apparent and apparent from the following detailed description of the preferred embodiments. A specific embodiment of a white light organic light emitting diode; FIG. 2 is a graph showing the relationship between the color coordinates (circles) and the y color coordinates (squares) and the emission angle of the blue light emitting component of the organic light emitting diode of FIG. Figure 3 shows a ciE 1931 X, y color coordinate map of a white light emitting organic light emitting diode according to the present invention; Figure 4 shows a fixed lumen output for different color temperatures of a luminaire The relative electrical power of the white light-emitting organic light-emitting body is a function of the y-color coordinate of the blue-emitting component; FIG. 5 shows the color rendering index ^^ and the blue-emitting component of the organic light-emitting diode of FIGS. 3 and 4 Functional relationship between color coordinates; 121375.doc •14· 200810173 Figure 6 illustrates the power incident on the glass substrate depending on the wavelength and angle. The degree is generated by the bipolar in a microcavity.

相同參考編碼指相同或相似組件 於該等圖式中 【主要元件符號說明】 10 11 12 13 14 15 20 30 40 100 發藍光組件 ITO層/ITO陽極 Ag層 低指數電洞傳輸層HTL 發藍光層 金屬陰極 發綠光組件 發紅光組件 玻璃基板 發白光有機發光二極體 121375.docThe same reference code refers to the same or similar components in the drawings [Major component symbol description] 10 11 12 13 14 15 20 30 40 100 Blue light component ITO layer / ITO anode Ag layer low index hole transport layer HTL Blue light layer Metal cathode green light component red light component glass substrate white light organic light emitting diode 121375.doc

Claims (1)

200810173 十、申請專利範圍: 1· 一種發白光有機發光二極體(100),其包含 a) 一發藍光組件(10),其具有小於〇15之一 y色座 可示, b) 一不同色彩之至少一另外的發光組件(2〇、3〇)。 , 2.如請求項】之發白光有機發光二極體(1〇〇), 其特徵在於該發藍光組件(1〇)之該y色座標係小於 〇·1,較佳係小於〇·〇8,最佳係小於0.05。 • 3·如請求項1或2之發白光有機發光二極體(1〇〇), 其特徵在於該發藍光組件(! 〇)之該y色座標係大於 0·01 〇 4·如請求項1至3中任一項之發白光有機發光二極體(1〇〇), 其特徵在於其相關色溫範圍介於2〇〇〇與6〇〇〇 κ之間。 5·如請求項1至4中任一項之發白光有機發光二極體(1〇〇), 其特徵在於該發藍光組件(1〇)係配置於一第一區域中 而^射其他色彩之另外的發光組件係於一分開的第二區 域中。 6·如請求項5之發白光有機發光二極體(1〇〇), 其特徵在於該等分開區域係依光發射方向而並排或相 互堆疊地配置。 7.如明求項1至6中任一項之發白光有機發光二極體(1〇〇), 其特徵在於該發藍光組件⑽包含一藍光遽光片或一 微空腔。 8·如凊求項1至7中任一項之發白光有機發光二極體(⑽), 121375.doc 200810173 其特徵在於該發藍光組件(ίο)包含一陰極(15)、一發 光層(14)、一 HTL(13)與一陽極(11)的一依序配置。 9·如請求項8之發白光有機發光二極體(1〇〇), 其特徵在於該發光層(14)之厚度(d4)範圍介於50與70 • nm之間及/或該HTL(13)之厚度(d3)範圍介於50與200 nm • 之間。 10·如請求項8或9之發白光有機發光二極體(1〇〇), 其特徵在於一 Ag層(12)係佈置於該HTL(13)與該陽極 • (11)之間。 11·如請求項10之發白光有機發光二極體(1〇〇), 其特徵在於該Ag層(12)之厚度(d2)範圍介於1〇與40 nm 之間。 121375.doc -2 -200810173 X. Patent application scope: 1. A white light emitting organic light emitting diode (100) comprising a) a blue light emitting component (10) having a smaller than 〇15 y color seat, b) a different At least one additional illuminating component (2〇, 3〇) of color. 2. The white light organic light emitting diode (1 〇〇) according to the claim item, wherein the y color coordinate system of the blue light emitting component (1 〇) is smaller than 〇·1, preferably less than 〇·〇 8, the best system is less than 0.05. • A white light emitting organic light emitting diode (1〇〇) according to claim 1 or 2, characterized in that the y color coordinate system of the blue light emitting component (! 大于) is greater than 0·01 〇4. The white light-emitting organic light-emitting diode (1) of any one of 1 to 3, characterized in that the correlated color temperature range is between 2 〇〇〇 and 6 〇〇〇 κ. The white light emitting organic light emitting diode (1) according to any one of claims 1 to 4, characterized in that the blue light emitting component (1〇) is disposed in a first region and emits other colors The additional lighting assembly is in a separate second region. 6. A white light-emitting organic light-emitting diode (1) according to claim 5, characterized in that the separate regions are arranged side by side or stacked one on another in accordance with the light emission direction. 7. The white light emitting organic light emitting diode (1) according to any one of claims 1 to 6, wherein the blue light emitting component (10) comprises a blue light emitting sheet or a microcavity. 8. The white light-emitting organic light-emitting diode (1010) according to any one of claims 1 to 7, characterized in that the blue light-emitting component (ίο) comprises a cathode (15) and a light-emitting layer ( 14), a sequential arrangement of an HTL (13) and an anode (11). 9. The white light-emitting organic light-emitting diode (1) according to claim 8, characterized in that the thickness (d4) of the light-emitting layer (14) ranges between 50 and 70 • nm and/or the HTL ( 13) The thickness (d3) ranges between 50 and 200 nm •. 10. A white light organic light-emitting diode (1) according to claim 8 or 9, characterized in that an Ag layer (12) is arranged between the HTL (13) and the anode (11). 11. A white light organic light emitting diode (1) according to claim 10, characterized in that the thickness (d2) of the Ag layer (12) ranges between 1 〇 and 40 nm. 121375.doc -2 -
TW096120019A 2006-06-07 2007-06-04 White OLED with high lumen efficacy TW200810173A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06115103 2006-06-07

Publications (1)

Publication Number Publication Date
TW200810173A true TW200810173A (en) 2008-02-16

Family

ID=38596379

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096120019A TW200810173A (en) 2006-06-07 2007-06-04 White OLED with high lumen efficacy

Country Status (2)

Country Link
TW (1) TW200810173A (en)
WO (1) WO2007141702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550931B (en) * 2012-05-28 2016-09-21

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028821A1 (en) * 2007-06-20 2009-01-08 Technische Universität Dresden Organic, white light upwards emitting device
EP2239798A1 (en) 2009-04-07 2010-10-13 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Patterning the emission colour in top-emissive OLEDs
MX2012009729A (en) 2010-02-23 2012-10-01 Univ Florida Microcavity oleds for lighting.
CN103258969A (en) * 2013-05-06 2013-08-21 深圳市华星光电技术有限公司 White light organic light-emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112521A1 (en) * 2004-05-18 2005-11-24 Idemitsu Kosan Co., Ltd. Blue-based organic electro-luminescence element and display device
US7023013B2 (en) * 2004-06-16 2006-04-04 Eastman Kodak Company Array of light-emitting OLED microcavity pixels
US8174182B2 (en) * 2004-11-17 2012-05-08 Global Oled Technology Llc Selecting white point for OLED devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550931B (en) * 2012-05-28 2016-09-21

Also Published As

Publication number Publication date
WO2007141702A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4493915B2 (en) High efficiency multicolor electric field phosphorescent OLED
US7329984B2 (en) Organic EL devices
D'Andrade et al. White organic light‐emitting devices for solid‐state lighting
Chang et al. White organic light-emitting diodes for solid-state lighting
CN102292839B (en) By the OLED stability that the hole transmission layer of doping improves
KR100592747B1 (en) Organic electroluminescnet device and method for producing the same
JP4895742B2 (en) White organic electroluminescence device
Duggal et al. Solution-processed organic light-emitting diodes for lighting
TWI633691B (en) Top-emitting white organic light-emitting diodes and method for color tuning the same
TWI488350B (en) Organic electroluminescence element
JP4343511B2 (en) Multicolor light emitting device
CN109076673B (en) Organic electroluminescent element and lighting device
TW200822412A (en) Organic light emitting device having a microcavity
US20090121619A1 (en) OLED Having A Charge Transport Enhancement Layer
WO2012128090A1 (en) Organic electroluminescent element
JP5735162B1 (en) Organic electroluminescent device and lighting device
US9640781B2 (en) Devices to increase OLED output coupling efficiency with a high refractive index substrate
TW200810173A (en) White OLED with high lumen efficacy
Meng et al. White organic light emitting diodes based on a yellow thermally activated delayed fluorescent emitter and blue fluorescent emitter
JP2004152700A (en) Organic light emitting element and its manufacturing method
JP4797247B2 (en) Organic electroluminescence device
JP2012204093A (en) Organic electroluminescent element
JP5180338B2 (en) Organic electroluminescence device
TW200803002A (en) White organic light emitting device
Zhao et al. All-fluorescent white organic light-emitting diodes with EQE exceeding theoretical limit of 5% by incorporating a novel yellow fluorophor in co-doping forming blue exciplex