TW200809864A - Cycle count storage methods and systems - Google Patents

Cycle count storage methods and systems Download PDF

Info

Publication number
TW200809864A
TW200809864A TW96110825A TW96110825A TW200809864A TW 200809864 A TW200809864 A TW 200809864A TW 96110825 A TW96110825 A TW 96110825A TW 96110825 A TW96110825 A TW 96110825A TW 200809864 A TW200809864 A TW 200809864A
Authority
TW
Taiwan
Prior art keywords
block
memory
count value
count
heat
Prior art date
Application number
TW96110825A
Other languages
Chinese (zh)
Inventor
Emilio Yero
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/404,672 external-priority patent/US7451264B2/en
Priority claimed from US11/404,454 external-priority patent/US7467253B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200809864A publication Critical patent/TW200809864A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • G11C16/3495Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5644Multilevel memory comprising counting devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

A hot count records the number of erase operations experienced by a block. The hot count is stored in an overhead data area of the block and is updated by circuits located on the same substrate as the block. Where a memory has two or more planes, each plane has circuits for updating hot counts.

Description

200809864 九、發明說明: 【發明所屬之技術領域】 本發明一般而言倍關於# 關非揮發性記憶體系統及其操作。 本申㈣中1 斤引用之所有專利案、公佈專利申請案及其他 材枓全:内谷係出於各種目的而以引用方式併入本文。 【先前技術】 如今有許多商用上較成功的非揮發性記憶體產品被使 用,尤其採用小形狀因數卡之形式,其採用形成於一或多 :積體電路。晶片上的—快閃EEpR〇M(電可抹除可程式化唯 ^己體)早70陣列。_記憶體控制器(其通常但不一定位 於分離積體電路晶片上)介接—可移除連接卡的主機並控 料内記憶體陣列的操作。此類控制器-般包括-微處理 ;某一非揮七!·生唯5買§己憶體(r〇m)、一揮發性隨機存取 記憶體(RAM)以及-或多個特殊電路,例如在資料程式化 與讀取期間當資料通過該控制器時從資料計算一錯誤校正 碼(ECC)的特殊電路。某些市售卡係CompactFlashTM㈣ 卡、多媒體卡师C)、安全數位(SD)卡、智慧媒體卡、個 人標戴(P-標藥)盘記橋;I:矣本 _v h、& 棒卡。主機包括個人電腦、筆記型 Μ 電腦、個人數位助理(PDA)、各種資料通信裝置、數位相 機蜂巢式電活、可攜式音頻播放器、汽車聲音系統與類200809864 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a non-volatile memory system and its operation. All patents, published patent applications and other materials cited in 1 jin of this application (4) are incorporated herein by reference for various purposes. [Prior Art] Many commercially available non-volatile memory products are used today, especially in the form of small form factor cards, which are formed in one or more: integrated circuits. On the wafer - flash EEpR 〇 M (electrically erasable and programmable only) array of 70 early. The memory controller (which is typically, but not necessarily located on the split integrated circuit die) interfaces - the host of the connected card can be removed and the operation of the memory array within the control. Such controllers generally include - microprocessing; some non-swinging seven! · Sheng Wei 5 buys § 己 体 (r〇m), a volatile random access memory (RAM) and / or a number of special circuits, such as when data is passed through the controller during data stylization and reading A special circuit for calculating an error correction code (ECC) from the data. Some commercially available cards are CompactFlashTM (four) card, multimedia card player C), secure digital (SD) card, smart media card, personal standard (P-standard) inventory bridge; I: 矣 _ _vh, & . Hosts include personal computers, notebooks, computers, personal digital assistants (PDAs), various data communication devices, digital camera cellular, portable audio players, car sound systems and classes.

似類型設備。除^己恃+每A 八 思卡只^方案之外,可替代性地將此類 記憶體嵌入各類主機系統中。 兩種通用記憶體單.元陣列架構已得到商業應用,即崎 與NAND。在典型的N〇R陣列中,記憶體單元係連接於相 119630.doc 200809864 鄰的位元線源極與汲極擴散區之間,汲極擴散區會在行方 向上延伸,其中控制閘極係連接至沿單元列延伸的字元 線。一 e憶體單元包括至少一儲存元件,其位於該源極與 /及極之間的單元通道區域之至少一部分之上。儲存元件上 的一程式化電荷位準因而控制該等單元的一操作特徵,該 等單元可藉由向已定址的記憶體單元施加適當的電壓來讀 取”亥等單元。此類單元之範例、於記憶體系統中的其用途 及其製造方法係提供於下列美國專利案第5,070,032、 5,095,344、5,313,421、5,315,541、5,343,G63、5,661,〇53 及 6,222,762號中。 NAND陣列利用兩個以上記憶體單元(例如16或32個)之 串列串,其連同一或多個選擇電晶體連接在個別位元線與 參考電位之間以形成單元行。字元線會橫跨大量該些行 内的單元而延伸。藉由使該串中的其餘單元硬開啟以便流 過一串的電流係取決於儲存在已定址單元中之電荷位準, 在程式化期間讀取並確認一行内的一個別單元。作為一記 憶體系統之部分的NAND架構陣列及其操作之範例係見諸 於美國專利帛 5,570,315、5,774,397、6,046,935、6,456,528 及 6,522,58〇號中。 如先刖所引用之專利案中所論述,目前快閃EEPROM陣 列的電荷儲存元件係最常見的導電浮動閘極,通常由導電 払雜的夕晶矽材料所形成。用於快閃EEPROM系統的一替 代型°己憶體單元利用一非導電介電材料來代替導電浮動閘 極以非揮發性方式儲存電荷。此類單元係說明於 319630.doc 200809864Like type equipment. In addition to ^ 恃 恃 + every A 八 思 card only ^ solution, can be embedded in this type of memory system. Two general-purpose memory single-element array architectures have been commercially applied, namely, Saki and NAND. In a typical N〇R array, the memory cell is connected between the bit line source and the drain diffusion region of the phase 119630.doc 200809864, and the drain diffusion region extends in the row direction, wherein the gate system is controlled. Connect to the word line that extends along the cell column. An e-memory unit includes at least one storage element positioned over at least a portion of the cell channel region between the source and/or the pole. A stylized charge level on the storage element thus controls an operational characteristic of the unit, which can read the "Hai unit" by applying an appropriate voltage to the addressed memory unit. Examples of such units The use in the memory system and its method of manufacture are provided in the following U.S. Patent Nos. 5,070,032, 5,095,344, 5,313,421, 5,315,541, 5,343, G63, 5,661, 〇53 and 6,222,762. NAND arrays utilize more than two memories a string of cells (eg, 16 or 32) connected between one or more select transistors between individual bit lines and a reference potential to form a cell row. The word line spans a plurality of cells within the row By extending the remaining cells in the string so that a stream of current flows depends on the level of charge stored in the addressed cell, a separate cell in a row is read and acknowledged during the stylization. Examples of NAND architecture arrays and their operation as part of a memory system are found in U.S. Patents 5,570,315, 5,774,397, 6,046,935, 6,456,528 and 6,522,58 As discussed in the patent cited above, the charge storage element of the current flash EEPROM array is the most common conductive floating gate, usually formed of a conductive doped cerium material. For flash EEPROM An alternative type of system uses a non-conductive dielectric material instead of a conductive floating gate to store charge in a non-volatile manner. Such units are described in 319630.doc 200809864

Takaaki Nozaki等人所發表之論文”用於半導體碟片應用之 具MONOS記憶體單元之LMb EEpR〇M,’(IEEE固態電路期 刊,第26卷,第4號,1991年4月,第497至501頁)。在一 耗例中,由氧化矽、氮化矽及氧化矽(〇N〇)所形成的三層 介電質係夾置於一導電控制閘極與記憶體單元通道上方的 一半導電基板表面之間。藉由將電子從單元通道注入該氮 化物而程式化該單元,在該氮化物中該等電子受到截獲並Takaaki Nozaki et al., "LMb EEpR〇M with MONOS Memory Units for Semiconductor Disc Applications," IEEE Transactions on Solid State Circuits, Vol. 26, No. 4, April 1991, 497 至Page 501). In one consumption case, a three-layer dielectric system formed of tantalum oxide, tantalum nitride, and tantalum oxide (〇N〇) is sandwiched between a conductive control gate and a memory cell channel. Between the surfaces of the conductive substrates, the cells are programmed by injecting electrons from the cell channels into the nitride, in which the electrons are intercepted and

儲存於-X限區域中,並藉由將熱電洞注人該氮化物而加 以抹除。數種採用介電儲存元件的特定單元結構與陣列係 說明於美國專利案第6,925,〇〇7號中。 個別快閃EEPROM單 〜"二人干儿τ爾 疋數篁的電荷(其表示—或多個位元的資料)。一儲存 件之電荷纟準控制其記憶體單元的臨界電壓(―般引用 VT),其係用作讀取單元儲存狀態的—依據。通常將一 界電壓視窗分成若干範圍,記憶體單元之兩個或更多儲 狀態之每個狀態對應一範圍。該些範圍係由保護帶分開 該等保護帶包括-標稱感應位準,其允許決定個別單元 儲存狀態。該些儲存位準確實合 貫㈢由於干擾在相鄰或其他 關記憶體單元、頁或區塊内所執 W仃的轾式化、讀取或抹 操作之電荷而偏移。因此,—般藉由控制器來計算錯誤 正碼(ECC),並將其與所程式化的主機資料—起儲存, 係在讀取期間用以驗證資料並- 要時執仃某一位準的資 校正。而且,偏移電荷位準在 、 p ^ r rn ^ ^ .十^作使其完全偏移出 已界疋靶圍並因而引起讀取錯 曰决貝枓之刚,可不時地恢 119630.doc 200809864 回到其狀態範圍的中心。此程序係說明於美國專利案第 5,532,962及5,9〇9,449號中,其係稱為資料再新或擦除。使 用洋動閘極之多狀態快閃EEPROM結構及其操作係說明於 , 美國專利案第5,043,940及5,172,338號中。一多狀態記憶體 - 單元陣列之選定部分還可由於各種原因在兩個狀態(二進 制)下以如美國專利案第5,930,167及6,456,528號所述之方 式操作。 • 一典型快閃EEPR0M陣列的記憶體單元係分成一起抹除 的離散單元區塊。即,區塊(抹除區塊)係抹除單位,即可 同時抹除的最小單元數目。每個抹除區塊一般儲存一或多 個資料頁,頁係程式化及讀取的最小單位,但是在不同的 子陣列或平面中可平行地程式化或讀取多個頁。每一頁— 般儲存-或多個資料區段,區段大小係由主機系統來定 義。一範例性區段遵循一針對磁碟機所建立的標準,包括 512位元組的主機資料,再加上關於主機資料及/或儲存其 • 《抹除區塊的若干位元組管理資訊。此類記憶體—般在每 個區塊内配置16、32或更多頁,且每個頁面儲存一或多個 . 【段的主機資料。主機資料可包括來自-在主機上運行的 " 應、用程式之使用者資料與主機在管理記憶體所產生的資料 (例如FAT(檔案配置表))以及目錄資料。 *為了增加在將主機資料程式化到記憶體陣列内以及從其 讀取主機資料期間的平行度,一般將陣列分成子陣列(1 般稱為平面)’該等子陣列包含其自已的資料暫存器與I 他電路以允許平行操作,使得可將多個區段的資料同時程 119630.doc 200809864 式化到數個或所有平面中的每一平面或從數個或所有平面 中的每一平面同時讀取多個區段的資料。在一單一積體電 路上的一陣列可在實體上分成多個平面,或每一平面可由 一分離的一或多個積體電路晶片來形成。此類記憶體實施 方案之範例係說明於美國專利第5,798,968及5,89〇,192號 中。 在某些記憶體系統中,亦將實體記憶體單元分組成二或 更多區域。一區域可以係該實體記憶體或記憶體系統之任 一分割子集,一特定範圍的邏輯區塊位址係映射到該子集 内例如,可將能夠儲存64百萬位元組資料的記憶體系統 刀成四個區域,每一區域儲存〗6百萬位元組的資料。接 著,亦可將邏輯區塊位址範圍分成四個群組,向四個區域 之母區域之抹除區塊指派一群組。在一典型的實施方案 中,邏輯區塊位址受到限制,以至於絕不會將每一邏輯區 塊位址的資料寫入到該等邏輯區塊位址所映射之一單一實 體區域的外部。在分成多個平面(子陣列)(各具有其自己的 疋址、私式化及讀取電路)的一記憶體單元陣列中,每個 區域較佳係包括來自多個平面的抹除區塊,一般與來自每 一平面的抹除區塊數目相同。區域主要係用以簡化諸如邏 輯至實體轉譯之位址管理,從而得到更小的轉譯表、保存 該些表所需的更少RAM記憶體以及定址記憶體之目前作用 區域之更快存取時間,但因為其限制性質而可能導致磨損 平準達不到最佳。 ' 為了進一步有效地管理記憶體,可將抹除區塊鏈接在一 119630.doc 200809864 起’以形成虛擬的區塊或元區塊。即,將每一元區塊定義 為包括來自每一平面的一抹除區塊。在美國專利案第 6,763,424號中說明元區塊之使用。藉由一主機邏輯區塊位 址將元區塊識別為一目的地用於程式化及讀取資料。同 樣’一元區塊的所有抹除區塊係一起抹除。採用此類較大 區塊及/或元區塊來進行操作的在記憶體系統中的控制器 執行若干功能,包括從一主機接收的邏輯區塊位址(lba)Stored in the -X limit area and erased by injecting the thermal hole into the nitride. A number of specific cell structures and arrays employing dielectric storage elements are described in U.S. Patent No. 6,925, filed on. Individual flash EEPROM single ~ " two people dry τ 疋 篁 篁 篁 电荷 ( ( ( ( ( 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷 电荷The charge of a memory is used to control the threshold voltage of its memory cell ("General Reference VT"), which is used as a basis for reading the storage state of the cell. The boundary voltage window is typically divided into a range, and each of the two or more storage states of the memory unit corresponds to a range. The ranges are separated by a guard band. The guard bands include a nominal sense level that allows for individual cell storage status to be determined. The storage bits are accurate and consistent. (3) The interference is offset due to interference in the zigzag, read or erase operation of adjacent or other memory cells, pages or blocks. Therefore, the controller calculates the error positive code (ECC) and stores it with the programmed host data, which is used during verification to verify the data and - when necessary, to a certain level Capital correction. Moreover, the offset charge level is at , p ^ r rn ^ ^ . 10 ^ makes it completely offset from the bound target and thus causes the reading of the fault, and can be restored from time to time 119630.doc 200809864 Back to the center of its status range. This procedure is described in U.S. Patent Nos. 5,532,962 and 5,9,9,449, which are incorporated herein by reference. A multi-state flash EEPROM structure and its operating system using a galvanic gate are described in U.S. Patent Nos. 5,043,940 and 5,172,338. A multi-state memory - selected portions of the cell array can also be operated in two states (binary) for various reasons as described in U.S. Patent Nos. 5,930,167 and 6,456,528. • The memory cells of a typical flash EEPR0M array are divided into discrete cell blocks that are erased together. That is, the block (erase block) is the minimum number of cells that can be erased at the same time by erasing the unit. Each erase block typically stores one or more data pages, which are the smallest units of stylization and reading, but can program or read multiple pages in parallel in different sub-arrays or planes. Each page is generally stored - or multiple data segments, and the segment size is defined by the host system. An exemplary segment follows a standard established for a disk drive, including 512-bit host data, plus a number of byte management information about the host data and/or its erased blocks. Such memory is generally configured with 16, 32 or more pages in each block, and each page stores one or more. [Segment host data. The host data can include data from the user's application running on the host, the user data of the application, and the data generated by the host in the management memory (such as FAT (File Configuration Table)) and directory data. * In order to increase the parallelism during the programming of the host data into and out of the memory array, the array is generally divided into sub-arrays (generally referred to as planes). The sub-arrays contain their own data. Storing the circuit with I to allow parallel operation so that the data of multiple segments can be simultaneously programmed to 119630.doc 200809864 to each of several or all planes or from each of several or all planes The plane reads data of multiple sections at the same time. An array on a single integrated circuit can be physically divided into a plurality of planes, or each plane can be formed by a separate one or more integrated circuit wafers. Examples of such memory implementations are described in U.S. Patent Nos. 5,798,968 and 5,89,192. In some memory systems, physical memory cells are also grouped into two or more regions. An area may be any divided subset of the physical memory or memory system, and a specific range of logical block addresses are mapped into the subset, for example, a memory capable of storing 64 million bytes of data The body system is divided into four areas, each of which stores 6 million bytes of data. Then, the logical block address range can be divided into four groups, and a group is assigned to the erase block of the parent areas of the four areas. In a typical implementation, the logical block addresses are limited such that data for each logical block address is never written to the outside of a single physical area to which the logical block addresses are mapped. . In a memory cell array divided into a plurality of planes (sub-arrays) each having its own address, privacy, and read circuitry, each region preferably includes erased blocks from multiple planes. Generally, it is the same as the number of erase blocks from each plane. The area is mainly used to simplify address management such as logic to entity translation, resulting in smaller translation tables, less RAM memory required to save the tables, and faster access times for the current active area of the addressed memory. However, due to its limited nature, the level of wear and tear may not be optimal. To further manage memory efficiently, the erase block can be linked at a time of 119630.doc 200809864 to form a virtual block or metablock. That is, each metablock is defined to include an erase block from each plane. The use of metablocks is described in U.S. Patent No. 6,763,424. The metablock is identified as a destination for programming and reading data by a host logical block address. All erase blocks of the same 'one dollar block' are erased together. A controller in a memory system that operates with such larger blocks and/or metablocks performs several functions, including a logical block address (lba) received from a host.

與該記憶體單元陣列内的實體區塊號碼(pBN)之間的轉 澤。一般藉由區塊位址内的偏移來識別該等區塊内的個別 頁。位址轉譯常常涉及使用邏輯區塊編號(LBN)與邏輯頁 的中間項。 在一元區塊内儲存的資料係時常更新。在一元區塊内發 生更新之可能性隨著元區塊資料容量的增加而增加。一元 區塊之更新區段係通常寫人另—元區塊。作為相同程式化 操作之部分,通常將不變的區段從最初元區塊複製到新元 區塊以口併貝料。或者,不變的資料可保留在最初元區 塊:f到稍後與更新資料一起再次合併在一單一元區塊 —一在A區塊内的所有資料均由於更新及複製而變 餘冑將1亥7L區塊置於一符列内用於抹除。 叮!!一抹除區塊經過連續的程式化及抹除週期,其經歷 月b t衾t 4 ζ丨古& ρ Μ Λ, 、1 •鬼失效的磨損。在某些情況下,一控制 口口猎由保持一熱計數來於 已妳為 木皿控此磨損,該熱計數指示一區塊 匕經叉之抹除週期數目。 几 ^ , ^ 因為一快閃記憶體區塊必須在可The transition between the physical block number (pBN) within the array of memory cells. Individual pages within the blocks are typically identified by offsets within the block address. Address translation often involves the use of a logical block number (LBN) and an intermediate term of a logical page. The data stored in the unary block is updated from time to time. The likelihood of an update in a metablock increases as the metablock data capacity increases. The update section of the unary block is usually written as a separate meta-block. As part of the same stylized operation, the invariant sections are usually copied from the original metablock to the new metablock. Alternatively, the invariant data may remain in the original metablock: f to be later merged with the updated data again in a single metablock - all data in the A block will be changed due to updates and duplications. The 1H 7L block is placed in a column for erasure. Ding! ! A wipe out block undergoes a continuous stylization and erasing cycle, which experiences the wear of the month b t衾t 4 ζ丨古 & ρ Μ Λ, , 1 • ghost failure. In some cases, a control port is controlled by maintaining a heat count to control the wear of the wood, which indicates the number of erase cycles of a block. a few ^ , ^ because a flash memory block must be available

私式化其之前加以抹除,# ^ ^ J 故所經歷之抹除操作之數目_般 H9630.doc -10- 200809864 等於所經歷之程式化操作之數目。所經歷之抹除操作之數 目一般係區塊所經歷之磨損之一較佳測量。在某些情況 下’該控制器使用該熱計數用於磨損水準測量目的,以試 圖’確保一記憶體陣列内的區塊以大致相同的速率磨損。然 而,為一記憶體陣列之所有區塊維持熱計數值會佔用寶貴 2控制器資源。特定言之,在記憶體陣列包含大量區塊之 ^况下,維持並更新熱計數之負擔可能較為明顯。而且,It is erased before it is privateized, # ^ ^ J The number of erase operations experienced by _ H9630.doc -10- 200809864 is equal to the number of stylized operations experienced. The number of erase operations experienced is generally a preferred measure of the wear experienced by the block. In some cases, the controller uses this thermal count for wear leveling purposes to try to ensure that blocks within a memory array wear at approximately the same rate. However, maintaining a thermal count for all blocks of a memory array can take up valuable 2 controller resources. In particular, the burden of maintaining and updating the heat count may be significant in the case where the memory array contains a large number of blocks. and,

與監控及更新熱計數相關聯之通信可使用在一控制器與記 憶體晶片之間的某些通信容量,從而減慢其他通信並減 存取時間〇 〆 【發明内容】 1在與一圮憶體陣列相同晶片或多個晶片上的專用電路允 許獨立於—控制器來維持熱計數。此點使該 =功能,從而改良效能。•由使用晶片上電路::Communication associated with monitoring and updating the hot count can use some communication capacity between a controller and a memory chip, thereby slowing down other communications and reducing access time. [Inventive content] 1 A dedicated circuit on the same wafer or multiple wafers of the bulk array allows the thermal count to be maintained independently of the controller. This point makes the = function, which improves performance. • By using on-wafer circuits:

揮,“生記憶體中維持熱計數,減小由於斷 數之危險。 K 内㈣憶體陣列内在—區塊之-管理資料區域 ,至暫”對該區塊接收-抹除命令時,該熱計數係複 :較,以二將該熱計數與一或多個臨界值進行 括mi二,取的動作(如果有的話)。此類動作可包 括知用£塊或修改某些區塊操作 使用的電遂或時間週期。—I +區塊時 埶計數。接荽- •又5,抹除該區塊並更新該 F妁人 更新的熱計數寫回到該區塊之管理資料 區域0若停用兮F说 , 几< &段貝村 亥£塊,則可選擇另—區塊並標記該停用區 119630.doc • 11 - 200809864 在使用多位準儲存以p 採用-二進制格式來儲^更㊉儲存密度之記憶體中,可 機資料係採用多位準熱計數,即便在相同頁内的主 數值毁壞風險,在不;^來儲存。此點提供—較低的熱計 下,尤其需要此點。 貝了十之丨月况 在具有多平面 用於更新其個料Π 針對各平面提供專用電路, (在晶片上)實現二之^ 性。 .不而要控制器資源且具有-高度的可靠 【實施方式】Wave, "maintaining heat count in raw memory, reducing the risk due to the number of breaks. K inside (four) memory array intrinsic - block - management data area, to the temporary "received-erase command for the block, The thermal count is complex: the second, the heat count is combined with one or more threshold values, and the action (if any) is taken. Such actions may include knowing the use of blocks or modifying the power or time period used by certain block operations. —I + block time 埶 count.荽 - • 5, erase the block and update the F 妁 person updated hot count write back to the management data area of the block 0 if disabled 兮F said, a few <& Duanbei Chai Block, you can select another block and mark the deactivated area 119630.doc • 11 - 200809864 In the memory using multi-level storage in p-binary format to store more storage density, the machine data system With multiple quasi-thermal counts, even if the main value in the same page destroys the risk, it is not stored. This is provided at this point—especially for lower heat meters. In the case of a multi-plane for updating its individual materials, a dedicated circuit is provided for each plane, and (on the wafer) is implemented. Not requiring controller resources and having - high reliability [Embodiment]

圖1之方塊圖說明可眚尬士 & DD r見鈿本發明之各方面之一範 憶體系統。包括以—矩陣 b£ 矩I早配置之禝數個記憶體單元 憶體單元陣列1係藉由行控制 1 丁 ί工f i冤路2、列控制電路3、一 c源 ^ c P井控制電路5來控制。在此範例中, 記憶體單元陣列I伤卜令Α止A # Μ 平幻1係上文在先則技術及以引用方式併入本 文之參考文獻中所述之咖时。還可使用其他類型的非 揮發性記憶體。行控制電路2係連接至記憶體單元陣列】之 位7G線(BL),用於讀取儲存在記憶體單元内的資料,用於 在一程式化操作期間決定記憶體單元的一狀態,以及用於 控制位元線(BL)的電位位準以促進程式化或禁止程式化。 列控制電路3係連接至字元線(WL)以選擇該等字元線(WL) 之一,施加讀取電壓,組合受行控制電路2控制的位元線 電位位準來施加程式化電壓,並施加與上面形成記憶體單 119630.doc 12 200809864 疋的—p型區域(單元?井)之—電 極控制電路4控制—連接至該等記J體:抹除電塵。c源 線。c-ρ井控制電路5控制單元c_p井電愿。早兀之共用源極 遠存在n己憶體單元内的資料係一 並經由—3仃控制電路2來讀取The block diagram of Figure 1 illustrates a gentleman & DD r see one of the various aspects of the present invention. The memory cell array 1 including the matrix matrix b moment I is configured by the row control system, the column control circuit 3, the c source circuit, and the c-well control circuit 5 to control. In this example, the memory cell array I is incapable of A # Μ 幻幻1, which is described above in the prior art and incorporated herein by reference. Other types of non-volatile memory can also be used. The row control circuit 2 is connected to the bit 7G line (BL) of the memory cell array for reading data stored in the memory cell for determining a state of the memory cell during a stylized operation, and Used to control the potential level of the bit line (BL) to facilitate stylization or prohibit stylization. The column control circuit 3 is connected to the word line (WL) to select one of the word lines (WL), applies a read voltage, and combines the bit line potential level controlled by the line control circuit 2 to apply the stylized voltage. And is applied to the -p-type region (cell?) of the memory sheet 119630.doc 12 200809864 疋, which is controlled by the electrode control circuit 4, to be connected to the body J: erase the electric dust. c source line. The c-ρ well control circuit 5 controls the unit c_p well. The shared source of the early 兀 远 远 远 远 远 n n n n n n n 读取 读取 读取 读取 读取 读取 读取 读取 读取

線。要儲存在”::輸出電路6而輪出至外部I/O 蝻存在4 #记憶體單元内的 I/O線而輸入至音粑私 式貝料係經由外部 r月】入至貝枓輸入/輪出電路6, 2。該等外特α㈣連接至—控❹輸騎控制電路 類型的暫存哭ϋ ^ > 技制态9包括各種 體(RAM)l〇。 揮舍性隨機存取記憶 用於控制快閃記憶體裝置之命令 7,命令電路7連接至與控制器9相連接的:入至命令電路 ^ 相連接的外部控制線。命 7貝枓通知快閃記憶體所請求的 至狀態機8,J;押制行批以士 、〜輪入命令係傳輸 制4北 J订控制電路2、列控制電路3、·極控 制4、c-p井控制電 可於ψ 及貝枓輸入7輸出緩衝器δ。狀態機8 叮輸出快閃記憶體的一狀能 PASS/FAIL 〇 心貝枓例如READY/BUSY 或 控制器9係連接或可連接一主機系統,例如一個人電 =、-數位相機或—個人數位助理。即由主機來發起命 y例如儲存或讀取資料至記憶體陣列1内或從其讀取資 料亚刀別提供或接收此類資料。控制器9將此類命令轉 換成可由命令電路7來解譯並執行的命令信^控制哭9一 般還包含緩衝器記憶體’用以將主機資料寫入記憶體陣列 或從其讀取。—曲和丨^ α π γ /、1记憶月豆糸統包括一積體電路晶片 119630.doc • 13 · 200809864 二其包括控制器.9;以及一或多個積體電路晶片i]B, 每曰曰片匕3 §己憶體陣列與相關聯的控制、輸入/輸出 及狀態機電路。有可能將一系統之記憶體陣列與控制器電 • 路一起整合在一或多個積體電路晶片上。 • 可瓜圖1之圮憶體系統成為主機系統的一部分,或可 將/、U括纟5己憶卡内,該記憶卡可以可移除地插入一主 機系統之-匹配插槽之中。此類卡可包括整個記憶體系 Φ 、、充或扰制杰與圮憶體陣列及關聯周邊電路可提供在分離 卡内若干卡Μ施案係說明於(例如)美國專利案第 5,887,145號中,其全部内容以引用方式明確地併入本文。 一流行快閃EPROM架構利用—nand陣列,其中大量記 憶體單元串係在個別位元線與一參考電位之間透過一或多 個選擇電晶體來連接。圖〗之nand記憶體單元陣列1之一 部分係以平面圖顯示在圖2A中。blo_BL4(其中BL1-BL3還 標註為至!6)表示至全域垂直金屬位元線(未顯示)之擴散 籲 位%線連接。儘管在各串中顯示四個浮動閘極記憶體單 2 ’但該等個別串一般在一行内包括16、32或更多記憶體 • 早几電荷儲存元件,例如浮動閘極。標註為WL〇—WL3之 子元線(在圖2B(— 圖2A之線A-A之斷面)中標註為p2)且 串選擇線SGD及SGS在浮動閘極之列上橫跨多個串延伸。 然而,對於選擇電晶體40及41而言,可電連接控制閘極及 浮動閘極(未顯示)。該等控制閘極線一般於該等浮動閘極 上形成為一自對齊堆疊,並透過一中間介電層19來相互電 容耦合,如圖2Β所示。串之頂部及底部一般透過一使用浮 119630.doc •14- 200809864 動閘極材料(P1)作為其由 峻电驅動之主動閘極的電晶體 而分別連接至位元線及一丑 /、用源極線。在浮動閘極與控制 閑極之間的此電容_合允許藉由增加在該處㈣合之控制 :如的電壓來提高浮動閑極之電壓。在-行内的一個別 單元係藉由放置一相對齡古费 祁対#乂同電壓在其個別字元線上並藉由line. To be stored in the ":: output circuit 6 and turn to the external I / O 蝻 there is an I / O line in the 4 # memory unit and input to the audio 粑 private shell material through the external r month] into the Bessie Input/rounding circuits 6, 2. These external special α(4) are connected to the temporary storage crying of the type of control circuit control ^ > Technical state 9 includes various body (RAM) l〇. The memory is used to control the command 7 of the flash memory device, and the command circuit 7 is connected to the external control line connected to the controller 9: the incoming command circuit is connected to the flash memory. To the state machine 8, J; the smuggling line to the squad, ~ turn in the command system transmission system 4 North J order control circuit 2, column control circuit 3, · pole control 4, cp well control electric can be in and 枓Input 7 output buffer δ. State machine 8 叮 Output flash memory PASS/FAIL 〇 枓 枓 枓 READY/BUSY or controller 9 is connected or can be connected to a host system, such as a person =, - Digital camera or personal digital assistant. That is, the host initiates a life y, such as storing or reading data to the memory array 1 Or reading or receiving data from the data cutter. The controller 9 converts such commands into command commands that can be interpreted and executed by the command circuit 7. Controlling the crying 9 generally also includes buffer memory. To write or read host data into the memory array. - 曲 and 丨^ α π γ /, 1 memory 糸 包括 system includes an integrated circuit chip 119630.doc • 13 · 200809864 2 which includes the controller .9; and one or more integrated circuit chips i]B, each 匕3 § 体 体 array and associated control, input / output and state machine circuits. It is possible to a system of memory array Integrate with the controller circuit on one or more integrated circuit chips. • The system can be part of the host system, or the /, U can be included in the 5 memory card, The memory card can be removably inserted into a matching slot of a host system. Such a card can include an entire memory system Φ, a charge or a disturbance, and an associated peripheral circuit can be provided in the separate card. A number of card cases are described, for example, in US Patent Case 5 , 887, 145, the entire contents of which is expressly incorporated herein by reference. A popular flash EPROM architecture utilizes a nand array in which a large number of memory cell strings are passed between individual bit lines and a reference potential. Or a plurality of selection transistors are connected. One part of the nand memory cell array 1 of the figure is shown in plan view in Fig. 2A. blo_BL4 (where BL1-BL3 is also labeled as ~6) represents the global vertical metal bit line. (not shown) the diffusion call is % line connected. Although four floating gate memory memories 2' are displayed in each string, the individual strings generally include 16, 32 or more memories in one row. Store components such as floating gates. The sub-element labeled WL〇-WL3 (labeled p2 in Figure 2B (-section of line A-A of Figure 2A) and the string selection lines SGD and SGS extend across the plurality of strings on the column of floating gates. However, for selecting transistors 40 and 41, the control gate and the floating gate (not shown) can be electrically connected. The control gate lines are generally formed as a self-aligned stack on the floating gates and are electrically coupled to each other through an intermediate dielectric layer 19, as shown in FIG. The top and bottom of the string are generally connected to the bit line and ugly by using a floating 119630.doc •14-200809864 dynamic gate material (P1) as the transistor of the active gate driven by the electric power. Source line. This capacitance-to-fuse between the floating gate and the control idler allows the voltage of the floating idler to be increased by increasing the voltage at which it is controlled. A unit in the line is placed on its individual word line by placing a relative age 祁対#乂 voltage

放置一相對較低電壓在-選定字元線來使串㈣剩餘單元 開啟’使得流過各串之m要僅取決於儲存在選定字元 線下面的已定址單元内的電荷位準,來在程式化期間讀取 並驗證m般針對A量的串來平行感應,從而沿一 列浮動閘極平行地讀取電荷位準狀態。 圖3A顯不一具有浮動閘極記憶體單元MO、Ml、M2... Μη之NAND串50之一電路圖。記憶體單元髓〇、M1、M2... Μη係受由字元線WL〇、WL1.·· WLn所形成之控制閘極的 控制。此外,一選擇閘極(SGS)控制選擇電晶體S1,電晶 體S1將NAND串50連接至一源極連接54。另一選擇閘極 (SGD)控制選擇電晶體S2,選擇電晶體S2將NAND串50連 接至一汲極連接5 6。在NAND串5 0内的單元數目可以係4, 如圖2B所示’或可以係某些其他數目,例如8、16、32或 更多。 圖3B係顯示如何可連接:^八”0串以形成一記憶體陣列之 一部分的一電路圖。NAND串50a、50b... 50c係連接在一 起以形成一區塊。NAND串50a、50b... 50c之各串具有與 圖3A之NAND串50相同的結構。NAND串50a、50b…5 0c可 包括許多串。在一範例中,在一 NAND記憶體内的一區塊 119630.doc •15· 200809864 可包含16,384個串。NAND串50a,5〇b·.· 5〇c共享共用字元 線 WLO、WL1··· WLn 與選擇線 SGSASGD。nAN]D 串 50a、 5 0b.·· 5 0c係一起抹除,因而形成一區塊。此外,nand串 5 0a、5 0b··· 5〇c共旱一共用源極線。位元線連接至不同區 塊之NAND串之汲極側。資料一般係以頁為單位程式化在 一 NAND陣列内。在一 NAND陣列中,一頁可藉由一單一 字兀線連接的記憶體單元來形成。資料一般係連續地、逐 頁地程式化在一區塊内,一次選擇一字元線。位元線具有 表不欲程式化資料之電壓。在某些記憶體中,多個位元係 程式化在各記憶體單元内。在此類記憶體中,儲存在一字 凡線之記憶體單元内的資料可視為上頁資料與下頁資料, 對應於指定兩個位元之四個電壓範圍。在某些記憶體中, 管理資料係儲存在與主機資料相同的區塊内。一區塊之一 部分可專用於儲存管理資料。故,例如ναν〇串5〇a及5〇b 可儲存主機資料,而NAND串50c儲存管理資料。 圖3B之個別頁之大小可變化,但一商用形式在一個別頁 内包括一或多個區段的資料。此類具有兩個區段153及US 之頁的内容係如圖4所示,纟區段具有管理資料。在其他 fe例中@個以上區段可儲存在一頁内。主機資料⑸一 般係512個位元組。除主機資料157之外,還有管理資料 159,其可包括從該主機資料計算的ecc資料、與區段資 料及/或該區&程式化於其中的抹除區塊相關的參數以及 仗4等*數w十异的-ECC以及任何其他可能包括的管理資 料。在某些範例中,用於一區段之主機資料的管理資料係 119630.doc -16- 200809864 :子在與該主機資料相鄰的一實體位置内。在其他範例 中,用於一頁之管理資料係一起儲存在該頁之一管理 區域内。 、 管理資料可包括抹除區塊所經歷的程式化/抹除週期數 關的數里,此數量藉由控制器在每一週期或某一數 '目ί週期之後得以更新。但將此經歷數量用在-磨損水準 、'!里^法%,藉由該控制器規則地將邏輯區塊位址重新 映射至不同的實體區塊位址’以便使所有抹除區塊的使用 量(磨損)均勻化。 管理資料還可包括指派給各該等記憶體單元之該等儲存 狀態(稱之為其之"旋轉")之位元值的—指示。此點亦會對 磨損水準測量產生有利的影響。還可在管理資料内包括一 或夕個旗標’其指示狀況或狀態。還可將用於程式化及/ 或抹除抹除區塊的電壓位準之指示儲存於該管理資料内, 戎些電壓會隨著抹除區塊所經歷的週期數目與其他因素的 變化而更新。該管理資料之其他範例包括在抹除區塊内的 任何損壞單元之一識別、映射至此實體區塊之資料之邏輯 位址以及在主要抹除區塊損壞的情形下任何替代抹除區塊 的位址。用於任何記憶體㈣中的管理資料所儲存之特定 參數組合會依據設計而變化。一般而言,該等參考係由該 控制器來存取並在需要時由該控制器來更新。 圖5顯示在-财刚己憶體陣列内的一抹除區塊。該抹除 區,(即-最小抹除單位)包含四f()_3,各頁面係最小程式 化單7〇。—或多個主機區段的資料係連同管理資料(包括 119630.doc -17- 200809864 從該區段之資料所計算的至少ECC)—起儲存在各頁内並可 採用圖4之資料區段之形式。該抹除區塊之各頁係由一橫 % NAND串延伸的子兀線所形成且該抹除區塊之該 串共用源極及汲極選擇.線。Placing a relatively low voltage in the -selected word line to turn on the remaining cells of the string (four) so that the m flowing through each string depends only on the level of charge stored in the addressed unit below the selected word line, During the stylization, the m-like strings for the A-quantity are read and verified in parallel to read the charge level state in parallel along a column of floating gates. Figure 3A shows a circuit diagram of a NAND string 50 having floating gate memory cells MO, M1, M2 ... Μη. The memory cell medulla, M1, M2... Μη is controlled by the control gate formed by the word lines WL〇, WL1.·· WLn. In addition, a select gate (SGS) controls select transistor S1, which connects NAND string 50 to a source connection 54. Another select gate (SGD) control selects transistor S2, and select transistor S2 connects NAND string 50 to a drain connection 56. The number of cells within the NAND string 50 can be 4, as shown in Figure 2B' or can be some other number, such as 8, 16, 32 or more. Figure 3B is a circuit diagram showing how a series of blocks can be connected to form a memory array. NAND strings 50a, 50b ... 50c are connected together to form a block. NAND strings 50a, 50b. The strings of .cc have the same structure as the NAND string 50 of Figure 3A. The NAND strings 50a, 50b ... 50c can include a number of strings. In one example, a block 119630.doc in a NAND memory. 15· 200809864 can contain 16,384 strings. NAND string 50a, 5〇b··· 5〇c share common word line WLO, WL1··· WLn and select line SGSSASG. nAN]D string 50a, 5 0b.·· 5 0c is erased together, thus forming a block. In addition, the nand string 50a, 5 0b··· 5〇c co-dry a common source line. The bit line is connected to the NAND string of different blocks. The data is generally programmed in a NAND array in units of pages. In a NAND array, a page can be formed by a single word line connected memory cells. The data is generally continuous, page by page. Stylize in a block, select a word line at a time. The bit line has a voltage that does not want to program the data. In some memories In the memory, the data stored in the memory unit of a word line can be regarded as the data on the previous page and the data on the next page, corresponding to the specified two. The four voltage ranges of one bit. In some memories, the management data is stored in the same block as the host data. One part of a block can be dedicated to storing management data. Therefore, for example, ναν〇 string 5〇 The a and 5 〇 b can store the host data, and the NAND string 50c stores the management data. The size of the individual pages of FIG. 3B can vary, but a commercial form includes one or more segments of data in one page. The contents of the pages of the two sections 153 and US are as shown in Fig. 4. The 纟 section has management data. In other fe cases, more than @ sections can be stored in one page. The host data (5) is generally 512 bits. In addition to the host material 157, there is a management data 159, which may include ecc data calculated from the host data, associated with the segment data, and/or erased blocks in which the region & Parameters and 仗4, etc. *number w different -ECC and any Management information that he may include. In some examples, the management data for the host material of a section is 119630.doc -16- 200809864: the child is in a physical location adjacent to the host material. In other examples The management data for one page is stored together in one of the management areas of the page. The management data may include erasing the number of stylized/erasing cycles experienced by the block, and the amount is controlled by The device is updated after each cycle or a certain number of 'eyes' cycles. But use this number of experiences in the - wear level, '! % method, by the controller to regularly remap the logical block address to a different physical block address 'to make all erase blocks The amount of use (wear) is uniformized. The management profile may also include an indication of the location values of the storage states (referred to as "rotation") assigned to each of the memory cells. This also has a beneficial effect on wear leveling. An indication or status may also be included in the management data. An indication of the voltage level used to program and/or erase the erase block may also be stored in the management data, which may vary with the number of cycles experienced by the erased block and other factors. Update. Other examples of the management data include the identification of one of the damaged cells in the erase block, the logical address of the data mapped to the physical block, and any alternative erased block in the event that the primary erased block is damaged. Address. The specific combination of parameters stored in the management data used in any memory (4) will vary depending on the design. In general, the reference frames are accessed by the controller and updated by the controller when needed. Figure 5 shows a erase block in the array of the 财 财. The erase area, (ie, the minimum erase unit) contains four f()_3, and each page is the smallest stylized single 7〇. - or the data of the multiple host segments is stored in each page along with the management data (including 119630.doc -17- 200809864 at least ECC calculated from the data in the segment) and the data segment of Figure 4 can be used. Form. Each page of the erase block is formed by a sub-turn line extending from a horizontal % NAND string and the string of the erase block shares the source and drain select lines.

圖6A中說明另一多區段抹除區塊配置。在此,整個記憶 體單兀陣列係在實體上分成兩個或更多個平面,說明四個 平面0-3。每—平面係—記憶體單元子陣列,其具有本身 的資料暫存器、感應放大器、定址解碼器及類似等,以便 月b夠报大私度上獨立於其他平面而操作。所有平面可提供 於一單—積體電路裳置上或多個裝置上,—範例係用於由 -或多個不同的積體電路裝置來形成每一平面。圖6八之範 例性系統中的每一抹除區塊包含16個頁ρ〇·ρΐ5,每一頁面 具有、一或更多主機資料區段以及某些管理資料之一容 量0 圖6Β顯不圖6Α之平面〇-3,對於各平面均具有專用列控 制電路與專用行控制電路。_單_晶片可在其上具有一記 憶體陣列之多個平面。此外,多個晶片可連接在―起以形 成陣列。一單一控制器可用於在該記憶體陣列之所有平 面内s理貝料。一般而言,該控制係位於一分離晶片上。 圖7中顯示另一記憶體配置。各平面包含大量的抹除區 塊為^加操作的平行度,不同平面内的抹除區塊係邏輯 鏈連結,以形成元區塊。此類元區塊係如圖7所示。各元 區塊可远輯定址且記憶體控制器指派並追蹤形成該等個別 兀區塊的,玄等抹除區塊。該主機系統以一區段串流形式提 119630.doc -18- 200809864 供資料。此區段串流係分成邏輯區塊。此處,— 喊科座塊 係一邏輯資料單位,其包含與記憶體陣列之一 7L區塊内所 §資料區^又相同數目的資料區段。記憶體控制养維持每 邏輯區塊所儲存位置的一記錄。例如,圖7之此類邏輯區 塊61係藉由一邏輯區塊位址(LBA)來識別,該邏輯區塊位 址(LBA)係藉由該控制器而映射成組成該元區塊之區塊之 實體區塊號碼(PBN)中。該元區塊之所有區塊係一起抹Another multi-segment erase block configuration is illustrated in Figure 6A. Here, the entire memory unitary array is physically divided into two or more planes, indicating four planes 0-3. Each-plane-memory unit sub-array has its own data register, sense amplifier, address decoder, and the like so that the month b can be reported to operate independently of other planes. All of the planes may be provided on a single-integrated circuit or on multiple devices, and the examples are used to form each plane by - or a plurality of different integrated circuit devices. Each erase block in the exemplary system of FIG. 6 includes 16 pages ρ 〇 · ρ ΐ 5, each page has one, more host data sectors and one of some management data capacity 0 Figure 6 Β The plane 〇-3 of 6Α has a dedicated column control circuit and a dedicated row control circuit for each plane. The _single_chip can have a plurality of planes of an array of memory layers thereon. In addition, a plurality of wafers can be connected to form an array. A single controller can be used to process the batting in all planes of the memory array. In general, the control is located on a separate wafer. Another memory configuration is shown in FIG. Each plane contains a large number of erase blocks for the parallelism of the operation, and the erase blocks in different planes are logically linked to form a metablock. Such metablocks are shown in Figure 7. The metablocks can be remotely addressed and the memory controller assigns and tracks the blocks that form the individual blocks. The host system provides 119630.doc -18-200809864 for information in a stream. This sector stream is divided into logical blocks. Here, the shout block is a logical data unit that contains the same number of data segments as the data area in the 7L block of the memory array. The memory controls a record that maintains the location where each logical block is stored. For example, such a logical block 61 of FIG. 7 is identified by a logical block address (LBA), which is mapped by the controller to form the metablock. The physical block number (PBN) of the block. All blocks of the metablock are wiped together

除,且來自每一區塊的頁係一般同時程式化與讀取。依此 方式一起程式化或讀取之不同平面之頁可視為形成一元 頁0 圖8顯不在平面N内的一區塊8〇之一範例,其具有一用於 儲存主機資料之主機資料區域8 i與一用於儲存管理資料^ 管理資料區域83。主機資料區域81可用於儲存主機所傳送 之資料,包括使用者資料及用於管理記憶體的主機所產生 之資料,例如檔案配置表(FAT)區段。主機資料區域以係 由第組行所形成,該等行具有一第一組行控制電路 85 >吕理貝料區域83係由一第二組行所形成,該等行具有 第一、、且行控制電路87。提供用於管理資料之行數目取決 於要儲存的管理賴。此外,可提供冗餘行,以便需要時 可置換損壞行。行控制電路85、87包括電路,用於在一位 :線亡讀取電壓以決定記憶體陣列内一記憶體單元之狀 ^仃控制電路還包括電路,用於依據要程式化至記憶體 早兀之圮憶體狀態來向位元線提供電壓。一般而言,管理 貢料區域83不受主機存取。該控制器存取管理資料區域81 119630.doc -19- 200809864 並將該控制器用於管理記憶體陣列内資料之資料儲存在該 處。 圖8顯示連接至.管理行控制電路87之一暫存器88與連接 至暫存器88之一比較及遞增電路89。在一具體實施例中, 管理行控制電路87從區塊80之管理資料區域83讀取一熱計 數並在抹除區塊80之前將該熱計數值儲存在暫存器Μ内。 接著,比較及遞增電路89執行該熱計數值與一或多個預定 值之間的-比較並基於此比較作決定n例中,該熱 計數值可比較一預定值以決定該熱計隸所指示之抹除操 作之數目是否超過—臨界數目,該臨界數目指示該區塊係 在一磨損條件下或接近一磨損條件。在一範例中,該臨界 值係100,000 ’但還可使用其他更高或更低的值。當抹除 操作數目超過此臨界值時,可停用區塊80並指示其不再用 於儲存資料。若抹除操作之數目未超過該臨界數目,則比 較及遞增電路89遞增暫存器88内的熱計數值。抹除區塊80 並接著藉由管理行控制電路87將遞增後的熱計數值寫入回 到區塊80之管理資料區域83。在—範例中,暫存器88保持 二個位7L組的資料’其係足夠用於最高到該臨界數目的一 熱計數值。在此情況下’該管理資料區域之熱計數部分還 保持三個位元組。與維持一熱計數值之特定先前系統不同 的係’此具體實施例不需要該控制器針對不同區塊管理哉 6十數值。相反,該熱計數值係藉由專用電路來維持,該等 專用電路係包含該區塊之平 又周遺電路。此點減小該控 制益及在記憶體之周邊電路與該控制器之間的通信線上的 119630.doc -20- 200809864 負擔’使得該控制器可勃 从 執订其他功能並更快地操作。此 外,使用晶片上電路爽力Ρ ^ 品鬼内、准持一熱計數減小熱計數 €由於一無法預期的斷 。 丟失之風險,該風險可能在一 4工制态在揮發性RAM内維# _ ^ + 門维符熱計數之情況下發生。當一 區塊超過該臨界值時,可 σ f匕制态指不此點,以使控制 斋Ik後不試圖存取該區塊。 π十% _ 合則,该常式可獨立於該控制 裔米_進打。 Φ 在一具體貫施例中,一埶二4*叙^ …、计數係初始化成一非零值。此 點可在工廠完成,例如作 U、體製造後的一測試及配置 程序之部分。例如,可 初始將一位元設定為,,〗"。埶 计數係稍後讀取為全部”〇, … ^主、乂王邛1 ,則此指示一錯誤。 電日^^在私式化該熱計數至該管理資料區域期間在斷 在一具體實施例中,該埶舛 …、汁數值可比較一或多個預定 值,其指示小於一磨損條徠 ^ 7 貝條件的一或多個磨損位準。在草也 記憶體中,記憶體單亓夕壯 — . 早凡之特徵可能隨其磨損而變化。在此 類記憶體中,可能齡糸女 車為有利的係隨著該等記.憶體單元磨損 而^變特定操作條件。因而,一第一組操作條件可選擇用 區塊&11塊經歷少於—第—臨界數目的抹除操作。 可在該區塊已經歷多於該第一 & 昂^界數目的抹除操作但小於 一弟二臨界數目的抹除操作 、 μ k释弟二組操作# 件。可在該區塊已經歷多於 /、 斤一 、弟一gtm界數目的抹除操作但 小於一第三臨界數目的枯^ 1 |a的抹除核作時,可選擇_第 條件。適當時可選擇不同 、、呆作 伴+门組的刼作條件用於不同的磨損位 119630.doc *21 . 200809864 準。依此方式修改的該等操作條件包括程式化電麗、程式 «衝數目、程式化脈衝持續時間、逐個脈衝的程式化; 昼遞增、在程式化期間用於自行增壓之電塵、抹除電慶、 臨界電壓至記憶體狀態之指派、保護帶大小、程式逾時週 』、抹除及頃取操作、每個區塊之Eccf料數目、捧除操 2之頻率、備用及任何其他操作條件。可獨立於該押 制器來改變該等操作條件。例如,該比較及遞增電路可向: 2令電路發送—信號,在存取該記憶㈣㈣,該命令電 路引起一狀態機使用不同的操作條件。 :據本發明之一具體實施例,儲存在一區塊之 内内的的:::可採用一不同於儲存在該區塊之-主機資料區域 =_貝料之格式來儲存在主機賴區域 ==在資料區域内的某些資料可與允許校正錯誤之咖資 料儲存在 '一起,作答挪次11 、 有此類ECC資料:例:: 資料並一般不與在該位元毁 早位兀的 資料儲/· y i 4 Μ況下允許扠正的任何冗餘 比用於Ιΐ 對於此㈣料,較為有利的係可採用— 有ECC資料之主機f料或管理資料更安全的 來程式化。在某选借 、 η — / ’不為儲存在一區塊之管理資料 ==計數來計算任何咖。相反,該熱計數係採 用一進制格式儲存以增加可靠性。 在一具體實施例中,f M _欠L、丨Y ^ 格式來料。在㈣多位準單7^似) 係由四個四個或更多的不同邏輯狀態 5夕的不同臨界電壓範圍來指定用於-單元。 119630.doc -22- 200809864 圖9A顯示其中四個臨界電塵(Vt)範圍係指派給四 恶〇1、11、10、00之一範例。該〇1狀態對應於_抹除 程式化)狀態並可包括一負臨界電遂範圍。在其他範例 中,邏輯狀態可藉由不同的臨界電麼範圍來表示。在某此 範例中,電虔範圍至邏輯狀態之指派在不同時間變化= 應於邏輯狀態之該等臨界電壓範圍可能與在其之間提供的 保護帶不連續,以減小干擾一萨 、 一 讀^界電昼之機會,使得記憶 中”狀,Γ狀態變化至另—狀態。在其他範例 、夕固邏輯狀悲可藉由不同的臨界電壓來表示。程 j化-般係詩在-主機資料區域内儲存資料,在該主: 貝料區域内期望高儲存密度且錯誤可藉由ecc來校正。 圖9B顯示表示在—管理資料區域内—記憶體單元之兩個 邏輯狀態之兩個臨界電壓範圍。該等邏輯狀態對應於具有 最大的電麼差的圖9A之兩個邏輯狀態。因而,在圖則 指派給邏輯狀態lmi〇的該等臨界電壓範圍在圖卯之範例 中變成-較大保護帶之部分且僅邏輯狀態〇1及〇〇同 時”01 ”及”〇〇"符號仍用於圖9B用於比較圖9A,僅儲存一位 元且該等狀態可視為Μ"及’,〇,,狀態)。此格式允許在一極低 ^誤風險下進行程式化。具有一對應於圖9Β中狀態〇1之臨 界電壓之-記憶體單元不可能會經歷一使其具有一對岸於 邏輯狀態00之臨界電壓之干擾。在僅使用兩個程式化狀離 之情況下’還可更快速地完成程式化。在_具有較大保镬 帶^單元内程式化-單-位元的資料可視為”旗標程式化 “’因為其特別適合於程式化旗標。依據本發明之一 119630.doc -23- 200809864 具體貫施例,指示 【品 程式化模式下儲存g.; 數一…在旗標 盆他管理資料 機資料(以及在某些情況下的 、4,例如ECC資料)係儲存在MLC模式下。 示崎本發明之—具體實施例晶片上電路如何可 口 - UiU命令以抹除—區塊。該控制器傳送—抹除^ 令’其識別欲抹除之區塊 :、p x p 7係由日日片上電路接收 Λ 般在該控制器以在該區塊内的全部資料係 過日寸時發生。用你兮 、 ’、 於㈣塊之熱計數係從其所儲存的該區塊 = 中複製1〇3並寫入相同晶片上的一暫存器 1〇 曰片上猎由-比較電路’將該熱計數比較 疋6™界值。該臨界值可在工廠設定為一數目,苴 :!據與一區塊之抹除操作數目及失效相關之實驗資料來 Γ=Γ 一般係在工廢採用一無法取消的方式來設 :’二猎由使㈣絲或抗㈣'。若該熱計數超過該臨界 祖 07該區塊並-般將其標記為不可用於館存資 料。可將一指示傳送至該# 、 _ ρ在該區塊上的抹除操 兮::且该區塊不可用於儲存資料。該控制器可記錄 二區塊不可用,使其不再試圖存取該區塊。一般而言,該 控制器將在此階段選擇另—區塊並繼續程式化。在失效區 =與其他平面内的其他區塊平行程式化之情況下(例 如作為一元區塊之部分彳,兮 兄之^刀),该失效區塊係藉由相同平面内 區塊來置換。若正在平行程式化的所有區塊均失 ㈣ϋ可放棄該程式化操作。若該熱計數值係小 於㈣值’則該區塊(包括一含該熱計數的管理資料區 119630.doc -24- 200809864 域)係抹除109且在暫存器内的該熱計數係更新iu以反映 額外的抹除操作。在—具體實施例中,該熱計數係僅遞增 -來反映-額外抹除操作。在另—具體實施例中,每次^ 行一抹除操作時’不遞增該熱計數。相反,-亂數產生器 係用於決定是否遞增該熱計數。依此方式,該熱計數係^ 不頻繁地遞增,頻率以一預定方式取決於該亂數產生器。 此點允許在區塊内使用較少的空間來儲存—熱計數。:用 此類亂數產生器用力更新熱計數值之範圍係提供於美國專 利案第6,345,GG1號中。-旦在暫存器更新熱計數值,便將 更新後的熱計數值寫回到已抹除的區塊113之管理資料區 域。因而’區塊包含一熱計數,其反映已執行的抹除操 作。此熱計數係獨立於該控制器來維持。 圖11顯示在抹除一區塊期間更新的熱計數及使用該熱計 數來官理該區塊之另一範例之一流程圖。㉟控制器傳送一 抹除命令,其識別欲抹除之區塊。此命令係由晶片上電路 接,到121。用於該區塊之熱計數係從其所儲存的該區塊 之管理f料區域中複製123並寫入相3晶片上^一暫存器 内。還在相同晶片上,在一比較電路内,將該熱計數比較 !25-預定臨界值。若該熱計數值係大於該臨界值,則修 改127用於該區塊之操作條件,使得該區塊從在一第一模 式下操作進入在一第二模式下操作。修改操作條件可能涉 及修改用於區塊操作之一或多個電壓或修改一或多個逾時 週期或修改用於管理區塊之其他參數。在本範例中,該埶 计數係比較-單一臨界值,使得在該熱計數係小於該臨界 119630.doc -25· 200809864 使用預設操作條件。在該抹除計數超過該臨界值之 應用-第二組的操作條件。在其他範例f,該孰計數 =較兩個或更多臨界值以決定應使用三個或更多操作停 哪個條件。抹除該區塊129並更新⑶暫存器内的敎計 值/論Μ已修改操作條件。接著,將該 數程式化回到該區塊之f ”,、寸Except, and the page system from each block is generally stylized and read at the same time. The pages of different planes that are programmed or read together in this way can be regarded as forming an unary page. FIG. 8 is an example of a block 8 that is not in the plane N, and has a host data area 8 for storing host data. i and one are used to store management data ^ management data area 83. The host data area 81 can be used to store data transmitted by the host, including user data and data generated by the host for managing the memory, such as a file configuration table (FAT) section. The host data area is formed by a group of rows having a first group of row control circuits 85 > the lyrics area 83 is formed by a second group of rows having first, and row control Circuit 87. The number of lines provided for managing data depends on the management to be stored. In addition, redundant rows can be provided to replace damaged rows when needed. The row control circuits 85, 87 include circuitry for determining the state of a memory cell in the memory array in one bit: the control circuit further includes circuitry for programming to memory early The state of the memory is used to supply voltage to the bit line. In general, the management tribute area 83 is not accessed by the host. The controller accesses the management data area 81 119630.doc -19- 200809864 and stores the data used by the controller for managing data in the memory array. Figure 8 shows a compare and increment circuit 89 connected to one of the registers of the management line control circuit 87 and to one of the registers 88. In one embodiment, the management row control circuit 87 reads a thermal count from the management data area 83 of the block 80 and stores the hot count value in the scratchpad 抹 before erasing the block 80. Next, the compare and increment circuit 89 performs a - comparison between the heat count value and one or more predetermined values and determines based on the comparison. In the example n, the heat count value can be compared with a predetermined value to determine the heat meter. Indicates whether the number of erase operations exceeds a critical number indicating that the block is under or near a wear condition. In an example, the threshold is 100,000' but other higher or lower values may also be used. When the number of erase operations exceeds this threshold, block 80 can be deactivated and indicated that it is no longer used to store data. If the number of erase operations does not exceed the critical number, the compare and increment circuit 89 increments the heat count value in the register 88. The block 80 is erased and the incremented heat count value is then written back to the management data area 83 of the block 80 by the management line control circuit 87. In the example, register 88 holds two bits of 7L data 'sufficient for a thermal count value up to the critical number. In this case, the hot count portion of the management data area also holds three bytes. A different system than a particular prior system that maintains a heat count value. This particular embodiment does not require the controller to manage the values for different blocks. Instead, the thermal count value is maintained by dedicated circuitry that includes the flat circuit of the block. This reduces the control benefit and the burden on the communication line between the peripheral circuitry of the memory and the controller. This allows the controller to perform other functions and operate faster. In addition, using the on-wafer circuit to suppress the heat, the heat count is reduced by a heat count, due to an unpredictable break. The risk of loss, which may occur in a volatile state in the volatile RAM within the # _ ^ + gate dimension heat count. When a block exceeds the threshold, the σ f匕 state means that this is not the point so that the control does not attempt to access the block after Ik. π 十% _ Combined, the routine can be independent of the control of the _ rice. Φ In a specific embodiment, the counting system is initialized to a non-zero value. This can be done at the factory, for example as part of a test and configuration procedure after U, body manufacturing. For example, you can initially set a bit to , , ". The 埶 counting system is later read as all "〇, ... ^主, 乂王邛1, then this indicates an error. Electric day ^^ is in the privateization of the heat count to the management data area during the break in a specific In an embodiment, the 埶舛..., juice value may compare one or more predetermined values indicating one or more wear levels less than a wear strip condition. In the grass memory, the memory list亓夕壮— The characteristics of the early singularity may change with the wear and tear. In such memory, the aging female car is advantageous, and the specific operating conditions are changed as the recording unit is worn out. a first set of operating conditions may select to use the block & 11 block to experience less than the -th critical number of erase operations. The block may have experienced more erases than the first & Operation but less than the second critical number of erase operations, μ k release two sets of operation # pieces. In this block has been experienced more than /, 斤一, brother gtm boundary number of erase operations but less than a When the triple critical number of the erased ^ 1 |a is erased, the _ condition can be selected. The conditions of the work and the door group are used for different wear levels 119630.doc *21 . 200809864. The operating conditions modified in this way include stylized electric lee, program «rush number, stylized pulse Duration, pulse-by-pulse stylization; 昼 increment, self-pressurized dust during stylization, erase power, assignment of threshold voltage to memory state, guard band size, program timeout period, erase And the operation, the number of Eccf materials in each block, the frequency of the operation 2, the standby, and any other operating conditions. The operating conditions can be changed independently of the controller. For example, the comparison and increment circuit can To: 2 command the circuit to transmit a signal to access the memory (4) (4), the command circuit causing a state machine to use different operating conditions. According to one embodiment of the invention, stored within a block: :: A different format than the one stored in the host data area of the block can be stored in the host area == Some data in the data area can be stored in the coffee data that allows correction errors. One For answering the number of times 11, there is such ECC information: for example:: The data is generally not allowed to be used in the data storage of the bit 毁 / yi 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何 任何This (four) material, more favorable can be used - the ECC data host material f or management data is more secure to program. In a lend, η - / ' is not stored in a block of management data == count To calculate any coffee, on the contrary, the thermal count is stored in a binary format to increase reliability. In a specific embodiment, f M _ ow L, 丨Y ^ format incoming material. In (4) multi-digit order 7^ It is specified by a different threshold voltage range of four four or more different logic states. 119630.doc -22- 200809864 Figure 9A shows an example in which four critical electrical dust (Vt) ranges are assigned to four evils 1, 11, 10, 00. The 〇1 state corresponds to the _erase stylized state and may include a negative critical 遂 range. In other examples, the logic state can be represented by different critical electrical ranges. In some examples, the assignment of the range to the logic state varies at different times = the threshold voltage range that should be in the logic state may be discontinuous with the guard band provided between them to reduce the interference. The opportunity to read the electric power, so that the state of memory, the state of the state changes to another state. In other examples, the logic of the sorrow can be expressed by different threshold voltages. The data is stored in the host data area, and a high storage density is expected in the main: beaker area and the error can be corrected by ecc. Figure 9B shows two of the two logical states of the memory unit in the management data area. The threshold voltage range. The logic states correspond to the two logic states of Figure 9A having the largest electrical error. Thus, the threshold voltage ranges assigned to the logic state lmi〇 in the plan become in the example of the figure - Part of the larger guard band and only the logic states 〇1 and 〇〇 at the same time "01" and "〇〇" symbols are still used in Figure 9B for comparing Figure 9A, only one bit is stored and the states can be regarded as Μ" And ',〇 ,,status). This format allows for stylization at a very low risk. A memory cell having a threshold voltage corresponding to state 〇1 in Figure 9 is unlikely to experience an interference that causes it to have a pair of threshold voltages at logic state 00. Stylization can be done more quickly with only two stylized singularities. Stylized-single-bit data in the unit with a larger guarantee can be regarded as "flag stylized" because it is particularly suitable for stylized flags. According to one embodiment of the present invention 119630.doc -23- 200809864, the specific embodiment, the indication [stored in the stylized mode g.; number one... in the flag basin he manages the data of the data machine (and in some cases, 4 , for example, ECC data) is stored in MLC mode. This is the invention of the invention - the specific circuit on the chip can be used - UiU command to erase - block. The controller transmits - erases the ^ command to identify the block to be erased: pxp 7 is received by the on-chip circuit, as the controller takes over all the data in the block. . Use the thermal count of your 兮, ', (4) block to copy 1〇3 from the block where it is stored = and write it to a scratchpad on the same wafer. The heat count is compared to the TM6TM threshold. The threshold value can be set to a number in the factory, 苴:! According to the number of erase operations and the experimental data related to the failure of a block, Γ=Γ Generally, it can be set in the way of work and waste: Hunting by making (four) silk or anti-(four)'. If the heat count exceeds the critical ancestor 07, the block is generally marked as unavailable for library storage. An indication can be sent to the eraser operation of the #, _ ρ on the block: and the block is not available for storing data. The controller can record that the two blocks are not available, so that they no longer attempt to access the block. In general, the controller will select another block at this stage and continue to program. In the case where the failure zone = is parallelized with other blocks in other planes (for example, as part of a unitary block, the brother's knife), the failed block is replaced by the same in-plane block. If all the blocks that are being stylized in parallel are missing (4), the stylized operation can be abandoned. If the heat count value is less than (four) value ', then the block (including a management data area 119630.doc -24-200809864 field containing the heat count) is erased 109 and the heat count is updated in the register Iu to reflect the extra erase operation. In a particular embodiment, the thermal count is only incremented - to reflect - an additional erase operation. In another embodiment, the heat count is not incremented each time an erase operation is performed. Instead, the random number generator is used to decide whether to increment the hot count. In this way, the thermal count is incremented infrequently and the frequency is dependent on the random number generator in a predetermined manner. This allows for less space to be stored within the block - hot count. The extent to which the heat count value is updated with such a random number generator is provided in U.S. Patent No. 6,345, GG1. Once the hot count value is updated in the scratchpad, the updated hot count value is written back to the administrative data area of the erased block 113. Thus the 'block' contains a heat count that reflects the erase operation that has been performed. This thermal count is maintained independently of the controller. Figure 11 shows a flow chart of another example of updating the hot count during erasing a block and using the heat count to administer the block. The controller 35 transmits an erase command that identifies the block to be erased. This command is connected by the circuit on the chip to 121. The thermal count for the block is copied 123 from the management f-region of the block in which it is stored and written into the phase 3 wafer. On the same wafer, in a comparison circuit, the heat count is compared to !25 - a predetermined threshold. If the thermal count value is greater than the threshold, then modification 127 is used for the operating conditions of the block such that the block operates from a first mode to operate in a second mode. Modifying the operating conditions may involve modifying one or more voltages for the block operation or modifying one or more timeout periods or modifying other parameters for managing the block. In this example, the 计数 count is compared to a single threshold such that the preset operating conditions are used when the thermal count is less than the critical 119630.doc -25· 200809864. In the application where the erase count exceeds the threshold - the second set of operating conditions. In other example f, the 孰 count = two or more thresholds to determine which condition should be used for three or more operations. Erasing the block 129 and updating (3) the trick value in the scratchpad/arguing that the operating conditions have been modified. Then, the number is programmed back to the f" of the block,

e理貝科£域133。圖η所示之程 序可在晶片上實施而不雲I ”且…… 以便減小控制器上的 控制益可更快速地執行其他操作。修改操作條件可 糟由與該區塊相同平面的周邊電路來完成。 =0及η所述之具體實施例係同時由晶片上提供的電路 機〜丄 夕千面之§己憶體中’各平面-般具有-主 钱負料區域與一營理咨M P A q β “里貝枓區域且各平面具有-暫存器與一 比較及遞增電路,該雷敗 電路允許各平面獨立地實施熱計數更 ^永彳V吕可獨立於控制器來實施熱計數更新操作,但 =制器可使用此類熱計數值。例如,控制器可使用晶片上 “路所、准持之熱计數值用於磨損水準測量目的。 儘官上述各種具體實施例包括提供超過先前技術之特 知’但一般需要維持停用此類特徵之能力。此點可實現用 於向後相容性目的或用於某此 中,包括-暫存…比較:二=。在一具體貫施例 _ ^ ^ 比#乂及遞增電路之熱計數電路係在 -第-模式下致動並在一第二模式下停用。在另—模式 ^一熱計數係藉由該等電路來維持,但不用於停用_:區 塊或修改區塊之择作么 ”乍條件。此類熱計數可用於測試目的、 失效分析或其他目的。 H9630.doc -26- 200809864 雖然已針對各範例性具體實施例來說明本發明 瞭解本發明有權在所附申請專利範圍之完整範嘴内受到保 護。 . 【圖式簡單說明】 圖1顯不包括一記憶體單元陵而| A • 平凡陣列及一控制器的一記憶體 糸統; 圖2A說明圖1之NAND記憶體單元陣列之組織·, • 圖2B顯示圖之NAND記憶體單元之一^^^^串之一斷 面; 圖3A顯示具有“固記憶體單元M〇_Mn之一 ΝΑΝ〇串; 圖3B顯示由包括形成一區塊之NAND串5〇a,5〇b ..5〇c之 夕個NAND串所組成之一記憶體陣列之一部分; 圖4顯示包含兩個區段的主機資料及管理資料之一頁之 一範例; 圖5顯示包含四個頁之一抹除區塊; 籲 圖6A顯示一具有四個平面之記憶體陣列,各平面具有多 個區塊,包括抹除區塊0與抹除區塊1,平面1之抹除區塊1 4 包含頁P0-P15 ; ® B ,、、、員示圖6 a之έ己憶體陣列,各平面具有專用列控制 電路與行控制電路; 圖7顯不在程式化一元區塊期間平行程式化平面^平面3 内區塊之一範例; 圖8顯示一記憶體陣列及周邊電路,其包括列及行控制 電路、一暫存器及一比較及遞增電路; H9630.doc -27- 200809864 圖9A顯示表 示四^固;羅結处& λα ^ ^ 1U建輯狀毖的一記憶體單元之四個臨凡 電壓範圍; % ” •輯狀態的一記憶體單元之兩個臨界 圖9B顯示表示兩個 電壓範圍; 圖10顯示用於在熱計數 之 T数^過一 g品界值之情況下停用區塊 一區塊抹除操作之一流程圖; 圖11顯示用於在熱外查 ^^ ^ ^ 、 σ之一臨界值之情況下修改區禎 操作條件之一II: & ϋ ^ . 【主要元件符號說明】 1 吕己憶體單元陣列 2 行控制電路 3 列控制電路 4 c源極控制電路 5 C-P井控制電路 6 資料輸入/輸出電路 7 命令電路 8 狀態機 9 控制器 10 揮發性隨機存取記· 11A 積體電路晶片 11B 積體電路晶片 12 文中未說明 14 文中未說明 16 文中未說明 119630.doc '28. 200809864 參 19 中間介電層 40 選擇電晶體 41 選擇電晶體 50 NAND 串 50a NAND 串 50b NAND 串 50c NAND 串 54 源極連接 56 汲極連接 61 邏輯區塊 80 區塊 81 主機貢料區域 83 管理資料區域 85 第一組行控制電路 87 第二組行控制電路 88 暫存器 89 比較及遞增電路 153 區段 155 區段 157 區段 159 管理資料 BL 位元線 BLO 位元線 BL1 位元線 119630.doc -29- 200809864e Li Beike £ 133. The procedure shown in Figure n can be implemented on the wafer without cloud I" and ... to reduce the control benefits on the controller to perform other operations more quickly. The modified operating conditions can be worse than the perimeter of the same plane as the block. The circuit is completed. The specific embodiments described in =0 and η are simultaneously provided by the circuit machine provided on the wafer, the 各 千 千 ' ' ' ' ' ' ' ' ' ' ' ' 各 各 各 各 各 各 主MPA q β "Ribebe region and each plane has a - register and a comparison and increment circuit, the lightning circuit allows each plane to independently perform the heat count more ^ 彳 V Lu can be independent of the controller to implement heat The update operation is counted, but the controller can use such a hot count value. For example, the controller may use the "on-the-spot, quasi-holding thermal count value on the wafer for wear leveling purposes. The various embodiments described above include providing specific knowledge beyond the prior art' but generally need to maintain such features. Ability. This can be achieved for backward compatibility purposes or for some use, including - temporary storage... comparison: two =. In a specific example _ ^ ^ ratio #乂 and increment circuit thermal counting circuit Actuated in the -first mode and deactivated in the second mode. In the other mode, the thermal count is maintained by the circuits, but is not used to disable the _: block or modify the block. Choose what?" Conditions. Such heat counts can be used for testing purposes, failure analysis, or other purposes. H9630.doc -26- 200809864 The present invention has been described with respect to various exemplary embodiments. It is understood that the present invention is entitled to be protected within the scope of the appended claims. [Simplified Schematic] Figure 1 shows a memory cell unit without a memory unit | A • A trivial array and a memory system of a controller; Figure 2A illustrates the organization of the NAND memory cell array of Figure 1. 2B shows a cross section of one of the NAND memory cells of the figure; FIG. 3A shows a string of "solid memory cells M〇_Mn"; FIG. 3B shows that a block is formed by including One of the memory arrays of the NAND string 5〇a, 5〇b ..5〇c is one of the memory arrays; FIG. 4 shows an example of one of the host data and management data including two sections; Figure 5 shows an erase block comprising one of four pages; Figure 6A shows a memory array having four planes, each plane having a plurality of blocks, including erase block 0 and erase block 1, plane 1 The erase block 1 4 includes pages P0-P15; ® B , , , and the member of Figure 6 a έ έ 体 array, each plane has a dedicated column control circuit and row control circuit; Figure 7 is not in the stylized unitary Example of parallel stylized plane ^plane 3 inner block during block; Figure 8 shows a memory array and peripheral power , which includes a column and row control circuit, a register and a comparison and increment circuit; H9630.doc -27- 200809864 Figure 9A shows a representation of the four solids; the knots & λα ^ ^ 1U The four temporary voltage ranges of the memory unit; % ” • Two critical figures of a memory cell in the state of the picture 9B show two voltage ranges; Figure 10 shows the number of T used in the heat count ^ over one g In the case of the boundary value, one of the flow blocks of the block-block erasing operation is disabled; FIG. 11 shows one of the operating conditions for modifying the zone 在 in the case of one of the heat thresholds ^^^^, σ : & ϋ ^ . [Main component symbol description] 1 Lu Yiyi body unit array 2 row control circuit 3 column control circuit 4 c source control circuit 5 CP well control circuit 6 data input / output circuit 7 command circuit 8 state machine 9 Controller 10 Volatile Random Access Memory 11A Integrated Circuit Wafer 11B Integrated Circuit Wafer 12 Not described in the text 14 Not described in the text 16 Not described in the text 119630.doc '28. 200809864 Reference 19 Intermediate dielectric layer 40 Selective transistor 41 Select electro-crystal Body 50 NAND string 50a NAND string 50b NAND string 50c NAND string 54 source connection 56 drain connection 61 logic block 80 block 81 host tributary area 83 management data area 85 first group row control circuit 87 second group row control Circuit 88 Register 89 Comparison and Increment Circuit 153 Section 155 Section 157 Section 159 Management Data BL Bit Line BLO Bit Line BL1 Bit Line 119630.doc -29- 200809864

BL2 位元線 BL3 位元線 BL4 位元線 MO 浮動閘極記憶’體單元 Ml 浮動閘極記憶體單元 M2 浮動閘極記憶體單元 Μη 浮動閘極記憶體單元 PI 浮動閘極材料 P2 字元線 SI 選擇閘極(SGS)控制選擇電晶體 S2 選擇閘極(SGD)控制選擇電晶體 SGD 串選擇線 SGS 串選擇線 WL 字元線 WLO 字元線 WL1 字元線 WL2 字元線 WL3 字元線 WLn 字元線 119630.doc -30-BL2 bit line BL3 bit line BL4 bit line MO floating gate memory 'body unit Ml floating gate memory unit M2 floating gate memory unit Μn floating gate memory unit PI floating gate material P2 word line SI select gate (SGS) control select transistor S2 select gate (SGD) control select transistor SGD string select line SGS string select line WL word line WLO word line WL1 word line WL2 word line WL3 word line WLn word line 119630.doc -30-

Claims (1)

200809864 十、申請專利範圍: 1· 一種管理形成於一第一基板上之一 NAND快閃記憶體陣 列之抹除區塊之方法,該陣列受在一第二基板上之一控 制器的控制,該NAND快閃記憶體陣列具有為一區塊的 一最小抹除單位,一區塊包括兩個或更多頁,該方法包 含: / 從一區塊讀取一熱計數值,該熱計數值表示該區塊已 抹除之次數; 將忒熱計數儲存在一位於該第一基板上的暫存器内; 比較該熱計數值與一預定值; 右該熱計數值不超過該預定值,則抹除該區塊内的所 有資料,遞增該熱計數值並將該遞增的熱計數值寫入該 區塊;以及 若該熱計數值超過該預定值,則記錄該區塊不用於後 續的資料儲存。 2. 如=求項丨之方法,其中該熱計數值係儲存在每個記憶 體單元儲存一位元的記憶體單元内且在該區塊内儲存的 主機資料係儲存在每個記憶體單元儲存兩個或更多位元 之兄憶體單元内。 3. 如請求们之方法,其中該暫存器係初始化成一非零 數。 4. 如請求項丨之方法,其中該區塊係形成一平面之複數個 區塊之一且該暫存器係專用於該平面,額外的暫存器係 用於額外的平面。 119630.doc 200809864 5·如:求们之方法’其中該平面、該等額外平面、該暫 存益及該等額外暫存器係在該第一基板上。 月求項1之方法,其中在該熱計數超過該預定值之情 - 況下,將一指示傳送給該控制器。 • I 士明求項1之方法,其中該計數值係讀取自該區塊之一 吕理貝料區域且該遞增的熱計數值係寫入該區塊之管理 資料區域。 • 8. 一種在—快閃記憶體系統内使用一熱計數之方法,該快 閃記憶體系統包括在一第一基板上的一NAND快閃記憶 體陣列與在一第二基板上的一記憶體控制器,該NAND 快閃記憶體陣列具有為一區塊的一最小抹除單位,該熱 计數表示该區塊已抹除之次數,一區塊包含兩個或更多 頁其中一頁係一最小程式化單位,該方法包含: « 5亥區塊讀取該熱計數; 在違第一基板上的一比較電路内比較該熱計數與一預 φ 定值;以及 右该熱計數超過該預定值,則改變該區塊之一操作條 * 件。 • 9·如凊求項8之方法,其中改變該操作條件導致停用該區 塊。 10·如請求項8之方法,其中改變該操作條件導致用於存取 該區塊之至少一電壓的一變化。 11 ·如請求項10之方法,其中該至少一電壓包括一程式化電 壓與一抹除電壓之至少一者。 119630.doc 200809864 的二:=方法’其進一步包含比較該熱計數與額外 一組操作條件。 卜預(值的吨來選擇 i3.=;:8之方法’其中該熱計數係採用-二進制形式 子:遠區塊之一管理資料區域内且主機資料係採用 μ ―二準袼式而儲存在該區塊之—主機資料區域内。 •陣列=有:最小抹除單位為一區塊之-快閃記憶體 一外,^5己憶體陣列具有包括至少一第一平面盥 =二平面的複數個平面,該複數個平面之各平面均具 /、自己的列及行解碼器電路,該方法包含: 六f由將—第—熱計數值從該第—區塊複製到-第-暫 來維#第_熱計數用於該第—平面内的—第一區 塊:遞增該第-熱計數值,抹除該第—區塊並將該遞增 的弟一熱計數值寫入該第一區塊; 比較該第一熱計數值與一臨界值’並在該第一埶計數 值係小於該臨界值之情況下在—第—模式下操作該第一 區塊’並在該第—熱計數值係大於該臨界值之情況下在 一第二模式下操作該第一區塊; 2由將一第二熱計數值從該第二區塊複製到一第二暫 存為來維持—第二熱計數用於該第二平面内的_第二區 塊:遞增該第二熱計數值,抹除該第二區塊並將該遞增 的第二熱計數值寫入該第二區塊,·以及 比較該第二熱計數值與該臨界值,並在該第二熱計數 值係小於該臨界值之情況下在_第—模式下操作該第二 119630.doc 200809864 ==在$弟二熱計數值係大於該臨界值之情況下在 一弟二模式下操作該第二區塊。 1 5 ·如明求項14之方法,盆中哮游* 口。 ,、中μ祓數個平面係受一單一控制 裔的控制。 16. = ί項15之方法,其中該複數個平面係在—或多個記 憶體日曰片上且該控制器係在一分離控制器晶片上。 17.2求項16之方法,其中該比較該第—熱計數值與-臨 =及該比較㈣:熱計數值與該臨界值係藉由在該一 5夕個记憶體晶片上的電路來執行。 18·如請求項17之方法,其 e 弟一核式下,該第一區塊係 4了用且5亥弟一區塊传傳用夕 4t ~ ^ ^用之^係傳送給該控制器。 19·如铂求項14之方法,苴 蚀爾一外 弟—极式下,該第一區塊 .^ 弟—模式下’該第一區塊 使用一弟二組操作電壓。 20·如味求項14之方法,其中該 』&lt; 體陣列係一 NAND 陣歹!J。 21^^項14之方法’其中該快閃記憶體陣列之—區塊包 或更多頁且該等兩個或更多頁之各頁均包含兩個 或更多區段的資料。 22. —種快閃記憶體陣列,其包含: 及複:個平面’該複數個平面之各平面均具有專用的列 及灯解碼器電路; 該複數個平面之各平面具有一 -比較電路; 暫“、-遞增電路及 119630.doc 200809864 °亥暫存器從一區塊接收一 該區塊已抹除之次數; 熱計數值 該熱計數值指示 該遞增電路 容;以及 回應該區塊之一 抹除來遞增該暫存器之内 該比較電路比較該暫存器之内容與一預定值。 23. 如請求項22之記憶體陣列,其巾該複數個平面係位於一200809864 X. Patent Application Range: 1. A method for managing an erase block of a NAND flash memory array formed on a first substrate, the array being controlled by a controller on a second substrate, The NAND flash memory array has a minimum erase unit of one block, and one block includes two or more pages. The method includes: / reading a heat count value from a block, the heat count value Indicates the number of times the block has been erased; storing the heat count in a register located on the first substrate; comparing the heat count value with a predetermined value; and right the heat count value does not exceed the predetermined value, And erasing all the data in the block, incrementing the hot count value and writing the incremental hot count value to the block; and if the hot count value exceeds the predetermined value, recording the block is not used for subsequent Data storage. 2. The method of claim 1, wherein the heat count value is stored in a memory unit in which each memory unit stores one bit and the host data stored in the block is stored in each memory unit. Store two or more bits in the brother memory unit. 3. The method of the requester, wherein the register is initialized to a non-zero number. 4. The method of claim 1, wherein the block forms one of a plurality of blocks in a plane and the register is dedicated to the plane, and the additional register is used for the additional plane. 119630.doc 200809864 5. The method of claim </ RTI> wherein the plane, the additional planes, the temporary benefits, and the additional registers are attached to the first substrate. The method of claim 1, wherein an indication is communicated to the controller if the thermal count exceeds the predetermined value. • The method of claim 1, wherein the count value is read from one of the blocks and the incremental heat count value is written to the management data area of the block. • 8. A method of using a thermal count in a flash memory system, the flash memory system comprising a NAND flash memory array on a first substrate and a memory on a second substrate a body controller, the NAND flash memory array having a minimum erasing unit of a block, the hot count indicating the number of times the block has been erased, and a block containing two or more pages of one page A minimum stylized unit, the method comprising: «5 hai block reading the hot count; comparing the heat count with a pre-φ value in a comparison circuit on the first substrate; and the right heat count exceeds The predetermined value changes the operation bar of one of the blocks. 9. The method of claim 8, wherein changing the operating condition results in deactivating the block. 10. The method of claim 8, wherein changing the operating condition results in a change in the at least one voltage used to access the block. The method of claim 10, wherein the at least one voltage comprises at least one of a stylized voltage and an erase voltage. 119630.doc 200809864's two:=methods' further includes comparing the heat count with an additional set of operating conditions. Bu pre (the value of tons to choose i3. =;: 8 method 'where the heat count is - binary form: one of the remote block management data area and the host data system is stored using μ - two standard In the host data area of the block. • Array = Yes: The minimum erase unit is a block - the flash memory is outside, and the ^5 memory array has at least one first plane 盥 = two planes a plurality of planes, each plane of the plurality of planes having /, its own column and row decoder circuit, the method comprising: six f by copying the -first heat count value from the first block to - the first Temporary dimension #第_热数 is used in the first plane - the first block: increment the first heat count value, erase the first block and write the incremental heat count value to the a first block; comparing the first heat count value with a threshold value and operating the first block in the -first mode if the first threshold value is less than the threshold value - operating the first block in a second mode if the thermal count value is greater than the threshold value; The second heat count value is copied from the second block to a second temporary store to maintain - the second heat count is used for the second block in the second plane: incrementing the second heat count value, erasing The second block writes the incremented second heat count value to the second block, and compares the second heat count value with the threshold value, and the second heat count value is less than the threshold value In the case of operating in the _first mode, the second 119630.doc 200809864 == operating the second block in a second mode if the second hot count value is greater than the threshold. 1 5 · For example, the method of item 14 is to control the mouth of the pot. The number of planes in the basin is controlled by a single control. 16. = ί The method of item 15, wherein the plurality of planes are in — or a plurality of memory slabs and the controller is on a separate controller chip. 17.2. The method of claim 16, wherein the comparing the first heat count value with -1 and the comparison (4): the heat count value and the The threshold is performed by circuitry on the memory chip. 18. The party of claim 17 In the case of the e-diet, the first block is used and the 5th block is transmitted to the controller by the 4th~^^. 19· Platinum item 14 The method, the eclipse of the eldest brother - the extreme type, the first block. ^ brother - mode 'the first block uses a brother two sets of operating voltage. 20 · If the method of claim 14, wherein The &lt; body array is a NAND array! J. 21^^ Item 14 'where the flash memory array - block or more pages and the pages of the two or more pages Data comprising two or more segments. 22. A flash memory array comprising: and a complex plane: each of the plurality of planes has a dedicated column and lamp decoder circuit; Each plane of the plurality of planes has a-comparison circuit; a temporary ", - increment circuit and a 119630.doc 200809864 °H register receives a number of times the block has been erased from a block; the hot count value of the heat count value Indicating the incrementing circuit capacity; and echoing one of the blocks to increment the comparison circuit within the register Compared with the contents of the register and a predetermined value. 23. The memory array of claim 22, wherein the plurality of planes are located at one 或多個記憶體晶片上且該等暫存器、遞增電路及比較電 路係也位於該一或多個記憶體晶片上。 24. 如請求項23之記憶體陣列,其進一步包含在一控制器晶 片上的一控制器,其與該一或多個記憶體晶片通信。 25. 如請求項22之記憶體陣列,其中該暫存器係初始化成一 非零數。 26·如明求項22之記憶體陣列,其中一遞增的熱計數值係寫 回到該區塊。 27·如請求項22之記憶體陣列,其中儲存在該區塊内的主機 資料係每個記憶體單元兩個或更多位元地儲存且該熱計 數係每個單元僅一位元地儲存。 28.如請求項22之記憶體陣列,其中該區塊包括一主機資料 區域與一管理資料區域,讓主機計數係儲存在該管理資 料區域内。 29·如請求項22之記憶體陣列,其中該比較電路回應該比較 而提供一信號,該信號指示不再使用該區塊。 3〇.如請求項22之記憶體陣列,其中該比較電路回應該比較 提供一信號,該信號引起修改該區塊之一或多個操作條 I19630.doc 200809864 件0 3 1 · —種具有一 頁作為私式化單位及一區塊作為抹除單位之 NAND快閃記憶體陣列,一區塊 NAND快閃記憶體、.陣列包含·· 包含兩個或更多頁 ,該 ^,有—主機貢料區域及—管理資料區域之ϋ塊,該 管理資料包含一熱計數,其記錄該區塊已抹除之次數, 該區塊位於一第一基板上;The plurality of memory chips and the registers, the incrementing circuit, and the comparison circuit are also located on the one or more memory chips. 24. The memory array of claim 23, further comprising a controller on a controller wafer in communication with the one or more memory chips. 25. The memory array of claim 22, wherein the register is initialized to a non-zero number. 26. The memory array of claim 22, wherein an incremental hot count value is written back to the block. 27. The memory array of claim 22, wherein the host data stored in the block is stored in two or more bits per memory unit and the thermal count is stored in only one bit per cell . 28. The memory array of claim 22, wherein the block comprises a host data area and a management data area, the host count system being stored in the management data area. 29. The memory array of claim 22, wherein the comparison circuit is responsive to provide a signal indicating that the block is no longer used. 3. The memory array of claim 22, wherein the comparison circuit is responsive to providing a signal that causes one or more of the operating blocks to be modified. I19630.doc 200809864 pieces 0 3 1 · The page is a private unit and a block as a NAND flash memory array for erasing units, a block of NAND flash memory, an array containing ·· containing two or more pages, the ^, having a host a tributary area and a management data area, the management data includes a heat count, which records the number of times the block has been erased, and the block is located on a first substrate; 一比較電路,其比較該熱計數與—臨界值,該比較電 路係在該第一基板上;以及 在第一基板上的一控制器,該控制器管理在該記憶 體陣列内的資料儲存。 32. 如請求項31iNAND快閃記憶體陣列,其中該比較電路 係連接至該記憶體陣列之一第一平面,該記憶體陣列之 額外平面連接至該第一基板上的額外比較電路。 33. 如請求項31之NAND快閃記憶體,其進一步包含在該第 一基板上的一暫存器,其保持該熱計數用於比較該臨界 值,該熱計數在該暫存器内遞增。 34. 如請求項31之NAND快閃記憶體,其中該主機資料區域 包含以母個記憶體單元兩個或更多位元儲存的主機資料 且該管理資料區域包含以每個記憶體單元僅一位元儲存 的資料。 35·如請求項31之NAND快閃記憶體,其中該比較電路回應 比較該熱計數與該臨界值來傳送一信號,該信號指示該 區塊之至少一操作條件之一變化。 119630.doca comparison circuit that compares the thermal count with a threshold value, the comparison circuit being on the first substrate; and a controller on the first substrate that manages data storage within the memory array. 32. The request item 31iNAND flash memory array, wherein the comparison circuit is coupled to a first plane of the memory array, the additional plane of the memory array being coupled to an additional comparison circuit on the first substrate. 33. The NAND flash memory of claim 31, further comprising a register on the first substrate that maintains the thermal count for comparing the threshold, the hot count being incremented within the register . 34. The NAND flash memory of claim 31, wherein the host data area comprises host data stored in two or more bits of a parent memory unit and the management data area comprises only one memory unit per memory unit The data stored in the bit. 35. The NAND flash memory of claim 31, wherein the comparison circuit is responsive to comparing the thermal count to the threshold to transmit a signal indicative of a change in one of the at least one operating condition of the block. 119630.doc
TW96110825A 2006-04-13 2007-03-28 Cycle count storage methods and systems TW200809864A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/404,672 US7451264B2 (en) 2006-04-13 2006-04-13 Cycle count storage methods
US11/404,454 US7467253B2 (en) 2006-04-13 2006-04-13 Cycle count storage systems

Publications (1)

Publication Number Publication Date
TW200809864A true TW200809864A (en) 2008-02-16

Family

ID=38328195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96110825A TW200809864A (en) 2006-04-13 2007-03-28 Cycle count storage methods and systems

Country Status (2)

Country Link
TW (1) TW200809864A (en)
WO (1) WO2007121025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561988B (en) * 2012-09-20 2016-12-11 Silicon Motion Inc Data storage device and flash memory control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625901A (en) * 2008-07-10 2010-01-13 深圳市朗科科技股份有限公司 Method for prewarning service life of semiconductor storage medium and system and device using same
WO2016182783A1 (en) 2015-05-14 2016-11-17 Adesto Technologies Corporation Concurrent read and reconfigured write operations in a memory device
US10347329B2 (en) * 2017-08-29 2019-07-09 Micron Technology, Inc. Reflow protection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028794A (en) * 1997-01-17 2000-02-22 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and erasing method of the same
US6456528B1 (en) * 2001-09-17 2002-09-24 Sandisk Corporation Selective operation of a multi-state non-volatile memory system in a binary mode
JP4287222B2 (en) * 2003-09-03 2009-07-01 株式会社東芝 Nonvolatile semiconductor memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561988B (en) * 2012-09-20 2016-12-11 Silicon Motion Inc Data storage device and flash memory control method
US9690695B2 (en) 2012-09-20 2017-06-27 Silicon Motion, Inc. Data storage device and flash memory control method thereof

Also Published As

Publication number Publication date
WO2007121025A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US10303370B2 (en) Flash memory system
JP4834676B2 (en) System and method using on-chip non-volatile memory write cache
TWI305915B (en) Non-volatile memory and control with improved partial page program capability
JP4787266B2 (en) Scratch pad block
US7467253B2 (en) Cycle count storage systems
US8230165B2 (en) Method of storing data on a flash memory device
JP4643711B2 (en) Context-sensitive memory performance
EP2564388B1 (en) Non-volatile memory and method with even/odd combined interleaved block decoding with adapted word line activation circuitry
TWI574270B (en) Wear leveling for a memory device
JP4362534B2 (en) Scheduling housekeeping operations in flash memory systems
CN107112044B (en) Multi-chip dual write
US9792175B2 (en) Bad column management in nonvolatile memory
TW201423751A (en) Flash memory with data retention bias
JP2006114078A (en) Nonvolatile semiconductor memory device and operation method therefor
JP2008257773A (en) Nonvolatile semiconductor memory device, method for controlling the same, nonvolatile semiconductor memory system, and memory card
TW200527435A (en) Nonvolatile semiconductor memory device having protection function for each memory block
JP5550386B2 (en) Nonvolatile semiconductor memory device and memory system
TW201428746A (en) Flash memory with data retention partition
CN109726035A (en) To prevent the EOL performance of loss of data from throttling
CN109727622A (en) SLC pages of reading
KR100648254B1 (en) Non_volatile memory device being capable of reducing erase time and erase method thereof
WO2021035551A1 (en) Write buffer control in managed memory system
TW200809864A (en) Cycle count storage methods and systems
US20120311243A1 (en) Method for increasing reliability of data accessing for a multi-level cell type non-volatile memory
US20070159883A1 (en) Method and Related Apparatus Capable of Improving Endurance of Memory