TW200807137A - Fluorescent volume light source - Google Patents

Fluorescent volume light source Download PDF

Info

Publication number
TW200807137A
TW200807137A TW096119545A TW96119545A TW200807137A TW 200807137 A TW200807137 A TW 200807137A TW 096119545 A TW096119545 A TW 096119545A TW 96119545 A TW96119545 A TW 96119545A TW 200807137 A TW200807137 A TW 200807137A
Authority
TW
Taiwan
Prior art keywords
light
reflector
extracting surface
wavelength range
disposed
Prior art date
Application number
TW096119545A
Other languages
Chinese (zh)
Inventor
Todd Scott Rutherford
Michael Dolgin
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW200807137A publication Critical patent/TW200807137A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

An embodiment of the invention is an illumination system including a source of incoherent light capable of generating light in a first wavelength range and an elongate body that emits light in a second wavelength range when illuminated by light in the first wavelength range. The body has a length dimension, a width dimension and a height dimension. At least a portion of the body is tapered so as to increase in width and/or height along the length dimension. The body further includes an extraction surface. A first non-extraction surface extends along at least a portion of the length of the body and is disposed so as to share a common edge with the extraction surface. At least some of the light at the second wavelength is totally internally reflected at the non-extraction surface. At least one external reflector is disposed proximate to the non-extraction surface so as to create a gap between the external reflector and the non-extraction surface.

Description

200807137 九、發明說明: 【發明所屬之技術領域】 本發明係關於光源,且特定言之本發明係關於可用於照 明系統(例如,投影系統)中之光源。 【先前技術】 基於一類型光源之照明源之亮度通常受到光源本身亮度 的限制。舉例而言,——使用發光二極體(LED)之照明源通 常具有一以每單位面積每單位立體角之功率而量測的亮 度,因為收集來自LED之光之光學元件將至多保留LED源 之光學擴展量(Mendue),所以該亮度等於或小於LED之亮 度。因此,照明源之亮度受到限制。 在照明源之某些應用(諸如,投影儀照明)中,因為當前 可用之LED之亮度過低,所以由LED照明不是一具競爭力 的選擇。此對於產生綠色照明光尤其是一難題,因為用於 LED中之半導體材料的可見光譜區域在產生光方面效率較 低。 其他類型之光源可能能夠產生一足夠亮的光束,但其亦 具有其他缺點。舉例而言,高壓水銀燈通常能夠為一投影 系統提供足夠的光,但此類型之燈之效率相對較低、需要 一高壓電源,,含有有毒水銀,且具有有限使用壽命。諸如 LED之固態源效率較高,其在較低電壓下運作,不含有水 舉,且因此較安全,且其使用壽命比燈長,通常持續數萬 小時。 因此,對一種可用於照明系統中且比當前光源亮的固態 121109.doc 200807137 光源存在需要。 【發明内容】200807137 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to light sources, and in particular to the present invention relates to light sources that can be used in lighting systems (e.g., projection systems). [Prior Art] The brightness of an illumination source based on a type of light source is usually limited by the brightness of the light source itself. For example, an illumination source using a light-emitting diode (LED) typically has a brightness measured at a power per unit area of solid angle per unit area, since optical elements collecting light from the LED will retain at most the LED source. The optical expansion (Mendue), so the brightness is equal to or less than the brightness of the LED. Therefore, the brightness of the illumination source is limited. In some applications of illumination sources, such as projector illumination, LED illumination is not a competitive option because the brightness of currently available LEDs is too low. This is especially a problem for producing green illumination light because the visible spectral region of the semiconductor material used in the LED is less efficient in generating light. Other types of light sources may be able to produce a sufficiently bright beam, but they also have other disadvantages. For example, high pressure mercury lamps typically provide sufficient light for a projection system, but this type of lamp is relatively inefficient, requires a high voltage power supply, contains toxic mercury, and has a limited useful life. Solid-state sources such as LEDs are more efficient, operate at lower voltages, do not contain water lift, and are therefore safer, and have a longer life than lamps, typically lasting tens of thousands of hours. Therefore, there is a need for a solid state 121109.doc 200807137 light source that can be used in a lighting system and that is brighter than the current light source. [Summary of the Invention]

本發明之一實施例為一照明系統,其包括一能夠產生一 第一波長範圍中之光之非相干光源及一當被該第一波長範 圍中之光照明時發射一第二波長範圍中之光之狹長本體。 該本體具有一長度尺寸、一寬度尺寸及一高度尺寸。該本 體之至少一部分為錐形的以便沿著長度尺寸增加寬度及/ 或咼度。本體進一步包括一提取表面。一第一非提取表面 沿著本體之長度之至少一部分延伸且經安置以便與該提取 表面共用一公共邊緣。第二波長之光之至少某些在非提取 表面處經全内反射。至少一個外部反射器安置於緊鄰於該 非提取表面處以便在該外部反射器與該非提取表面之間產 生一間隙。 【實施方式】 本發明適用於光源,且更特定言之本發明適用於用於需 要一高亮度等級之照明系統中之光源。 一光源之亮度係以光功率(瓦特)除以光學擴展量而量 測。光學擴展量為光源處之光束之面積乘以折射率之平= 乘以光束之立體角的積。光之光學擴展量係不變的,亦 即,若在沒有光損失之情況下光束之立體角減小,則光束 之面積(例如)藉由增加光源之發光面積而增加。由於光興 擴展量係不變的,㈣光源產生之光之亮度僅可藉由增: 自光源提取之光的量來增加。若光源以最大輸出運作:則 彼光源之亮度不可能再增加。 、 121109.doc 200807137 光束之光功率可藉由使用額外光源增加。然而,限制在 於僅藉由添加更多光源可使光束之光功率及亮度增加的程 度。將光束導引向目標之光學系統僅接受在特定孔徑及錐 角限制内之光。此等限制取決於各種因素,諸如,透鏡之 尺寸及光學系統之f數。添加更多光源並不提供光束之光 功率或亮度之無限增加,因為光源之數目愈多1來自一添 加光源之光之愈來愈小的㈣將在光學系統之孔徑及錐角 限制内。 咸信本發明適用於使用許多具有一相對較低亮度之光源 (諸如光二極體)產生一具有一相對高亮度之集中光 源。來自較低亮度光源之光用於光學地栗浦一體積之榮光 材料。該榮光材料吸收由低亮产朵:盾 瓜凡度九源發射之光並螢光地發 射不同波長之光。螢光通常係由螢光材料各向同性地發 射。至少某些螢光可在該體積内被導引至一光提取區域。 泵浦表面區域為螢光容積之用於將相對低亮度、短波長之 泵浦光耦合至容積中之區域’且提取區域為螢光容積之自 其提取螢光之區域。當㈣表面區域與提取區域相比足夠 大時,可達成亮度之淨增加。 在以下描述中,術語螢光性涵蓋—材料吸收—第一波長 之光且隨後發射一不同於兮楚 、士 R Mr 个U於痃弟一波長之第二波長之光的現 象。所發射之光可盥一蔷工士斑6 /、里子力予各許躍遷或一量子力學非 容許躍遷㈣聯,後者通常被料磷光1螢光材料在發 射螢光之刖僅吸收單個泵浦光子,則該螢光通常具有一比 泵浦光長之波長。然而,在某些螢光系統中,在發射螢光 121109.doc 200807137 之岫可吸收一個以上的泵浦光子,在此狀況下,所發射之 光可具有一比泵浦光短之波長。此種現象通常被稱作上轉 換螢光。在某些其他螢光系統中,光被螢光材料中之一吸 收物質所吸收且所得之能量經非輻射地傳遞至材料中之一 弟一物貝,且遠第二物質發射光。如本文中所使用的,術 語螢光性及螢光意欲涵蓋泵浦光能量被一物質所吸收且該 能量由該物質或另一物質重新輻射之系統。美國專利申請 案第11/092,284號中說明及描述了此類型之裝置。 圖1A、圖1B及圖1C中示意性地說明本發明之一特定實 施例,圖1A、圖⑺及圖lc分別展示一容積螢光單元(或2 明系統)100之俯視圖、剖視圖及側視圖,容積螢光單元(或 照明系統)100具有一含有螢光材料之本體1〇2、將光發 射至本體102中之許多光發射器1〇4,及將自本體1〇2所發 射之光反射回至本體102中之外部反射器115。外部反射器 與本體102隔開一特定距離,形成間隙216A及2ΐ6β。 圖1A、_及圖心提供一笛卡兒⑽㈣叫座標系統 以幫助描述容積螢光單元1〇〇。座標系統之方向已經任音 指定以使得輸出螢光大體上沿著平行於本體之縱向尺; (具有一長度L)之z方向傳播。本體1〇2之寬度(w)係在χ方向 中加以量測且本體102之高度(h)係在戌向中加以量測。請 注意,本體102沿著其之長度逐漸變細。在當前實施例中 (最佳說明於圖1C中),>、儿莫+ r) /σ 方向的本體之高度(h)沿著 本體102之長度(L)(亦即,沿著z方向)增加尺寸。 在此特^實施例中,i浦光穿過㈣表面㈣進入本體 121109.doc •10- 200807137 102中且螢光輸出i〇9穿過一提取面112自本體1〇2中出去。 外部反射器115A及115B(整體作,,外部反射器115”)經直接 鄰近非提取表面113A至113D(整體被稱作”非提取表面 113M)而定位。泵浦表面i i〇亦為非提取表面丨13。雖然當前 實施例中說明四個非提取表面113,但請瞭解,本發明中 了包括任何數目之非提取表面113以及任何數目之泵浦表 面110。此外,雖然外部反射器Π5Α及115B經鄰接於非提 取表面113A及113C而安置,但設想可隨外部反射器115利 用所有非提取表面113。在當前實施例中,非提取表面113 沿著本體102之長度L延伸。在所說明之實施例中,本體 102為錐形的以致本體之最大橫截面積出現在提取面I。 處。亦說明一背面150且背面150可正交或可不正交於非提 取表面113之一或多者且可實質上平行或可不實質上平行 於提取表面。 穿過提取面112自本體1〇2中出去之某些螢光(藉由光線 109A舉例說明)可在本體1〇2之任何表面處沒有反射之情況 下直接自本體102中出去。輸出螢光1〇9之其他部分(藉由 光線109B舉例說明)可能已在本體1 〇2内經歷全内反射 (HR)之過程的反射。 另外,螢光之某些部分(藉由光線108A舉例說明)可透射 過本體102之非提取表面113A。螢光之其他部分(藉由光線 108B舉例說明)在本體1〇2内反射。 對於在外部反射器115與本體102之間保留間隙216A及 216B(整體被稱作”間隙216")而不是將反射器Π5直接相抵 121109.doc -11 - 200807137 本體102置放存在若干實際原因。—主要原因在於間隙2i6 容許有效率的TIR條件。TIR反射之剩餘損失可能非常低 (每一反射小於0.1%)。如下列進一步論述,此tir效應係 由於本體102之高折射率材料移動至低折射率材料(例如, 空氣,具有大致1.G之折射率)中造成的。藉由產生間隙 216,一諸如空氣(或其他材料)之低折射率材料可填充間隙 2!6。利用TIR效應優於將反射器115直接相抵本體ι〇2置 放,因為除非反射器之反射率在多種角度上非常高,否則 其將增加用於到達本體102之末端所需之許多反射之後的 總損失。此外,用一反射性表面塗佈本體之側面將係昂貴 的,因為該塗佈將需要非常接近本體邊緣且具有>995%之 反射率(對於一介電堆疊反射器而言需要許多層,且塗佈 所有非提取面將需要多個塗佈循環)。 考慮螢光本體102内所產生之光在本體1〇2内經反射(通 過TIR)或自本體102逃逸之角度之範圍係有用的。現參看 圖1C,考慮在點X處經螢光性地產生之光。可自以下陳述 式計算非提取表面113A處之一特定角度:An embodiment of the present invention is an illumination system including an incoherent light source capable of generating light in a first wavelength range and a second wavelength range when illuminated by light in the first wavelength range The narrow body of light. The body has a length dimension, a width dimension and a height dimension. At least a portion of the body is tapered to increase width and/or twist along the length dimension. The body further includes an extraction surface. A first non-extracting surface extends along at least a portion of the length of the body and is positioned to share a common edge with the extraction surface. At least some of the second wavelength light is totally internally reflected at the non-extracted surface. At least one external reflector is disposed proximate the non-extracting surface to create a gap between the outer reflector and the non-extracting surface. [Embodiment] The present invention is applicable to a light source, and more particularly, the present invention is applicable to a light source used in an illumination system requiring a high brightness level. The brightness of a light source is measured by dividing the optical power (watts) by the amount of optical expansion. The amount of optical expansion is the area of the beam at the source multiplied by the flat of the refractive index = multiplied by the product of the solid angle of the beam. The optical spread of light is constant, i.e., if the solid angle of the beam is reduced without loss of light, the area of the beam is increased, for example, by increasing the area of illumination of the source. Since the amount of light expansion is constant, (b) the brightness of the light produced by the light source can only be increased by increasing the amount of light extracted from the light source. If the light source operates at its maximum output: then the brightness of the light source cannot be increased. , 121109.doc 200807137 The optical power of the beam can be increased by using an additional light source. However, it is limited to the extent to which the optical power and brightness of the beam can be increased by simply adding more light sources. The optical system that directs the beam toward the target accepts only light within a specific aperture and cone angle. These limitations depend on various factors such as the size of the lens and the f-number of the optical system. Adding more light sources does not provide an infinite increase in the power or brightness of the beam, since the greater the number of light sources, the smaller the light from a source of light (4) will be within the aperture and cone angle limits of the optical system. The present invention is applicable to the use of a plurality of light sources (such as photodiodes) having a relatively low brightness to produce a concentrated light source having a relatively high brightness. Light from a lower-brightness source is used to optically illuminate a volume of glory material. The glory material absorbs the light emitted by the low-light production: Shield Guafan Jiuyuan and emits light of different wavelengths in a fluorescent manner. Fluorescence is usually emitted isotropically by a fluorescent material. At least some of the fluorescent light can be directed within the volume to a light extraction region. The pump surface area is a fluorescent volume for coupling relatively low brightness, short wavelength pump light to the area in the volume' and the extraction area is the area from which the fluorescent volume is extracted for fluorescence. When the (iv) surface area is sufficiently large compared to the extraction area, a net increase in brightness can be achieved. In the following description, the term fluorescing encompasses - material absorption - light of a first wavelength and then emits a light of a second wavelength different from that of a wavelength of a ray. The emitted light can be combined with a single worker's spot 6 /, a neutron force for each transition or a quantum mechanical non-permissible transition (four). The latter is usually fed with a phosphorescent 1 fluorescent material that absorbs only a single pump after emitting fluorescence. For photons, the fluorescence usually has a longer wavelength than the pump light. However, in some fluorescent systems, more than one pump photon can be absorbed after the emission of fluorescence 121109.doc 200807137, in which case the emitted light can have a shorter wavelength than the pump light. This phenomenon is often referred to as up-conversion fluorescence. In some other fluorescent systems, light is absorbed by one of the luminescent materials and the resulting energy is transmitted non-radiatively to one of the materials, and the far second material emits light. As used herein, term fluorochrome and fluorescein is intended to encompass a system in which pump light energy is absorbed by a substance and the energy is re-radiated by the substance or another substance. A device of this type is illustrated and described in U.S. Patent Application Serial No. 11/092,284. 1A, 1B, and 1C schematically illustrate a particular embodiment of the present invention, and FIGS. 1A, 7(7) and 1c show top, cross-sectional and side views, respectively, of a volumetric fluorescent unit (or 2) system 100. The volumetric fluorescent unit (or illumination system) 100 has a body containing a fluorescent material, a plurality of light emitters 1 〇 4 that emit light into the body 102, and light emitted from the body 1 〇 2 Reflected back to the outer reflector 115 in the body 102. The outer reflector is spaced apart from the body 102 by a specific distance to form gaps 216A and 2ΐ6β. Figure 1A, _ and Figure provide a Cartesian (10) (four) coordinate system to help describe the volumetric fluorescent unit 1〇〇. The direction of the coordinate system has been assigned to cause the output fluorescence to propagate generally along the z-direction (having a length L) parallel to the longitudinal scale of the body. The width (w) of the body 1 〇 2 is measured in the χ direction and the height (h) of the body 102 is measured in the 戌 direction. Note that body 102 tapers along its length. In the current embodiment (best illustrated in Figure 1C), the height (h) of the body in the direction > / m) / σ direction is along the length (L) of the body 102 (i.e., along the z direction) ) Increase the size. In this embodiment, the i-pu light passes through the (four) surface (four) into the body 121109.doc •10-200807137 102 and the fluorescent output i〇9 exits the body 1〇2 through an extraction surface 112. The external reflectors 115A and 115B (integrally, the external reflector 115") are positioned directly adjacent to the non-extracting surfaces 113A to 113D (collectively referred to as "non-extracting surfaces 113M"). The pump surface i i is also a non-extracted surface 丨13. While four non-extracting surfaces 113 are illustrated in the current embodiment, it will be appreciated that any number of non-extracting surfaces 113 and any number of pumping surfaces 110 are included in the present invention. Moreover, while the outer reflectors Α5Α and 115B are disposed adjacent to the non-extracting surfaces 113A and 113C, it is contemplated that all of the non-extracting surfaces 113 can be utilized with the outer reflector 115. In the current embodiment, the non-extraction surface 113 extends along the length L of the body 102. In the illustrated embodiment, the body 102 is tapered such that the largest cross-sectional area of the body occurs at the extraction face I. At the office. A back side 150 is also illustrated and the back side 150 may or may not be orthogonal to one or more of the non-extracting surfaces 113 and may or may not be substantially parallel or substantially parallel to the extraction surface. Some of the fluorescence exiting the body 1〇2 through the extraction surface 112 (illustrated by the ray 109A) can exit the body 102 directly without reflection at any surface of the body 1〇2. The other portion of the output fluorescent light 1 (illustrated by light 109B) may have been reflected by the process of total internal reflection (HR) within the body 1 〇2. Additionally, portions of the fluorescent light (illustrated by light 108A) may be transmitted through the non-extracting surface 113A of the body 102. The other portion of the fluorescent light (illustrated by light 108B) is reflected within the body 1〇2. There are several practical reasons for leaving the gaps 216A and 216B (collectively referred to as "gap 216") between the outer reflector 115 and the body 102 rather than directly aligning the reflector Π5 with the body 102. 121109.doc -11 - 200807137. - The main reason is that the gap 2i6 allows for efficient TIR conditions. The residual loss of TIR reflections can be very low (less than 0.1% per reflection). As discussed further below, this tir effect is due to the high refractive index material of the body 102 moving low. A refractive index material (e.g., air having a refractive index of approximately 1. G.) is created by creating a gap 216, a low refractive index material such as air (or other material) can fill the gap 2! 6. Using the TIR effect It is preferable to place the reflector 115 directly against the body ι2, because unless the reflectivity of the reflector is very high at various angles, it will increase the total loss after many of the reflections required to reach the end of the body 102. Furthermore, coating the side of the body with a reflective surface would be expensive because the coating would need to be very close to the body edge and have a reflectivity of >995% (for one Many layers are required for dielectric stack reflectors, and coating all non-extracted faces will require multiple coating cycles.) Consider that the light generated within the fluorescent body 102 is reflected (through TIR) in the body 1〇2 or The range of angles of escape from body 102 is useful. Referring now to Figure 1C, consider the luminescence-generating light at point X. A particular angle at non-extracted surface 113A can be calculated from the following statement:

Ocp^sin'^rip/n) ^ (5) 其中nP為非提取表面U3A之外部之折射率(在此狀況下, 在間隙216A内)且η為本體1〇2之折射率。此角度為通常 所呪的"臨界角"。陰影區域117展示小於%之角度之範 圍。若非提取表面113八在空氣中(亦即,若填充間隙216Α 之物質為空氣),則ηρ之值大致等於1。 若自點X傳播之光(例如,光線208Β)位於由陰影區域117 121109.doc -12- 200807137 指示之錐形之外部,則光線208B被非提取表面113A全内 反射。因此,為了減少穿過非提取表面113A而損失之光之 量(亦即,減少ecp),通常較佳為:η之值較大。若光(例 如’光線2 0 8 A)入射在非k取表面113 Α處而與 '一垂直於非 提取表面之線形成一角度(其之入射角,或AOI)且此角度 小於臨界角(0cp),則光208A透射過非提取表面U3A。 在添加外部反射器115之情況下,此光(藉由光線208A舉 例說明)可被重新俘獲。圖1D為展示此如何進行之一實例 的光單元1〇〇之示意圖(出於清晰度起見,在沒有光發射器 之情況下加以說明)。最初不滿足TIR條件之光線208C自外 部反射器115反射。在反射且穿過非提取表面113 A重新進 入之後,其在非提取表面113C處的本體y空氣界面處具有 一比其在先前與非提取表面113A處之本體/空氣界面相互 作用時之AOI大的AOI,且更接近TIR。對於所展示之光線 208C而言,在ΑΟΊ已經改變足夠多以滿足本體1 〇2中之tir 條件之前,光線208C在外部反射器11 5上進行了若干次反 射’且其間光線2 0 8 C透射過本體102。一旦達成TIR(點212 處所展示),光線208C就被限制於本體1〇2内,直至其到達 提取面112為止。 為更清楚說明此過程,已將圖1D的由一標記為"1 e ”之圓 界定之一部分放大成圖1E。再次,光線208C在點214A處 遭遇非提取表面113A。一 ΑΟΙ(Θ)界定於光線208C之路徑與 非提取表面113Α之一穿過點214Α之法線215之間。當光線 208C進入間隙216Α中時,其被偏離法線而折射。間隙 121109.doc -13· 200807137 216A係在外部反射器115與非提取表面U3A之間的空間。 光線208C在點214B處被外部反射器115反射。光線2〇8c在 點214C處重新進入本體102中,產生一折射角(θι)。光線 208C在點214Α處之入射角與其在點214C處之折射角實質 上相#。光線208C行進穿過本體1〇2,直至其在點214D處 k遇非&取表面113C為止。光線208C界定一比點214A及 214C處之AOI大的ΑΟΙ^+η)。此係由於在非提取表面 113A處之法線215A與非提取表面U3C處之法線215B之間 的非平行關係。在法線(215A與215B)之間的歪斜關係係由 於錐形本體102之侧面之非平行關係。當光線2〇8C離開非 知:取表面113 A或非提取表面113 c,且進入間隙2 16 A或 216B中時’ AOI隨著光線208C之每次後繼遭遇而增加。最 終AOI足夠大以致其大於臨界角,且光線2〇8C開始在本體 102内TIR,諸如,點212處所展示。 如圖1F中所說明,最初滿足TIR條件之某些向後傳播之 光線(亦即’如由光線208D說明的朝本體1 〇2之變窄部分之 方向傳播的光線)(因為光線之AOI降到臨界角之下)最終自 板側耦合出。在所說明之實施例中,當光線2〇8D遭遇非提 取表面113A或113C時,其最初具有一大於臨界角之AOI, 但在自非提取表面113A或113C之每一反射之後,入射角 減小。此出現係因為:光線208D與光線208C(先前關於圖 1E加以論述)相反地行進。因為光線2〇8D在其之ao〗被減 少至TIR角之下之前不到達本體102之末端,所以其自本體 102出去(如點214E處所說明)。外部反射器n5之添加防止 121109.doc -14· 200807137 了光線208D之損失。在損失TIR之後,光線2〇81)自外部反 射器115反射,且當光線208D在非提取表面113A或113C之 任一者處離開本體102時,在每次反射之後,其具有一逐 漸變小之AOI,直至AOI通過零度(經回轉)且開始在向前方 向(亦即,朝提取面112且朝本體102之變寬部分之方向)中 傳播為止。接著光線208D如圖1D中之向前狀況進行,最 終返回至本體102内之TIR,且被自提取面Π2提取。 如圖2中所說明,光單元(或照明系統)3⑽包括可與一具 有至少一部分不是錐形之本體3〇2 一起使用的外部反射器 315。出於清晰度起見,圖2為在沒有光發射器之情況下展 不的光單元300之示意性說明。在此狀況下,反射器315限 制住不滿足TIR條件之光線308C(亦即,其之A〇I不大於臨 界角),直至光線308C被耦合至錐形部分320中為止。外部 反射器315可平行於本體302之非錐形部分324及錐形部分 320之非提取表面313A及313B的全體而架設(換言之,反射 器3 15為”平鋪的”)。在圖3中所說明之另一實施例中,外部 反射器415可具有一相對於整個本體3〇2(包括錐形部分 及非錐形部分324)之單一斜率。為描述之便利,在錐形部 分320與非錐形部分324之間的過渡點將被稱作一非錐形輪 出端326及錐形輸入端328。請瞭解,此係一任意參考,且 或者’此點可(例如)指非錐形部分之"提取表面,t。 如圖2中所說明,已逃逸本體3〇2(由於一小於臨界角之 AOI)之光線308C連續被反射器315反射且當其離開本體 進入氣隙316A或316B之一者中時,其以實質上不改變之 121109.doc -15 · 200807137 AOI傳播穿過本體302。光線308C要直至其遭遇錐形部分 320之後才開始趨近TIR條件。此係由於以下事實:非錐形 部分324處之相對的非提取表面313 A及3 13B上之由322A及 322B舉例說明之法線實質上平行。結果是光線308C之AOI 並不顯著改變。在光線308C進入錐形部分320中之後,由 322D及322E舉例說明之法線變得歪斜,且當光線308C遭 遇非提取表面313A及313B時,其之AOI改變,直至光線 308C達成TIR為止(如點212A處所展示)。此過程同樣適用 於圖3中400處所說明之光單元(或照明系統),儘管外部反 射器415具有一用於本體302之長度之單一斜率。如所說 明,法線422A與422B實質上平行,而法線422C與422D為 歪斜的,以致光線408C在進入本體302之錐形部分320中之 後進入丁111條件(點412處所展示)。 本體302之錐形部分320額外具有一優點:充當一輸出提 取器,減少原本會在提取表面312(與使用一非錐形本體相 對)處經全内反射之螢光之量。為形成錐形本體302,可將 輸出提取器形式之不同類型之錐形部分320耦接至非錐形 部分324。以一種該方式將一錐形、透射性的棒或隧道耦 接至非錐形輸出端326以用作一輸出提取器且形成本體302 之錐形部分320。隧道經整形以緊密地耦接至非錐形輸出 端326。若非錐形輸出端326與提取器足夠匹配(亦即,尺 寸、形狀及折射率均匹配),則可藉由將錐形輸入端328相 抵非錐形輸出端326或在小於非錐形輸出端326之一波長内 (較佳大約或小於一波長之四分之一)置放而將光自非錐形 121109.doc -16- 200807137 部分324有效率地輕合至錐形部分320中。亦可在提取器與 隹开/輸出端326之間使用—折射率匹配材料(例如,—折 射率匹配油或一光學黏著劑)。提取器可由任何合適之透 明材料製成,例如,玻璃或聚合物。 螢光在提取器中之反射傾向於沿著z方向導引螢光,且 因此螢光錢道之輸出端(亦即,提取面312)處之角展度小 ;光自非錐形部分324進入錐形部分32〇中時之角展度。減Ocp^sin'^rip/n) ^ (5) where nP is the refractive index outside the non-extracted surface U3A (in this case, in the gap 216A) and η is the refractive index of the body 1〇2. This angle is the usual "critical angle". The shaded area 117 shows a range of angles less than %. If the non-extracting surface 113 is in the air (i.e., if the substance filling the gap 216 is air), the value of ηρ is approximately equal to one. If light propagating from point X (e.g., ray 208 Β) is outside the cone indicated by shaded area 117 121109.doc -12-200807137, then ray 208B is totally internally reflected by non-extracting surface 113A. Therefore, in order to reduce the amount of light lost through the non-extraction surface 113A (i.e., to reduce ecp), it is generally preferred that the value of η is large. If light (eg, 'light 2 0 8 A) is incident on the non-k-take surface 113 而 and forms an angle (the incident angle, or AOI) with a line perpendicular to the non-extracted surface and the angle is less than the critical angle ( 0cp), then light 208A is transmitted through non-extracted surface U3A. In the case where external reflector 115 is added, this light (illustrated by light 208A) can be recaptured. Fig. 1D is a schematic view showing how the light unit 1 之一 of one example is performed (for clarity, it will be explained without a light emitter). Light ray 208C that does not initially satisfy the TIR condition is reflected from outer reflector 115. After being reflected and re-entered through the non-extraction surface 113 A, it has a larger AOI at the bulk y air interface at the non-extraction surface 113C than when it interacts with the bulk/air interface at the previous non-extraction surface 113A. AOI, and closer to TIR. For the illustrated ray 208C, the ray 208C is reflected several times on the external reflector 117 before the ΑΟΊ has changed enough to satisfy the tir condition in the body 1 〇 2 and the ray 2 0 8 C is transmitted therebetween. Pass through the body 102. Once the TIR is reached (shown at point 212), light 208C is confined within body 1〇2 until it reaches extraction surface 112. To more clearly illustrate this process, one of the circles defined by a circle labeled "1 e" of Figure 1D has been enlarged to Figure 1E. Again, light 208C encounters a non-extracted surface 113A at point 214A. One of the path defined by the ray 208C and the non-extracted surface 113 穿过 passes between the normal 215 of the point 214. When the ray 208C enters the gap 216, it is deflected away from the normal. Gap 121109.doc -13· 200807137 216A Is the space between the outer reflector 115 and the non-extracting surface U3A. The light 208C is reflected by the outer reflector 115 at point 214B. The light 2〇8c re-enters the body 102 at point 214C, producing a refraction angle (θι) The angle of incidence of light 208C at point 214 实质上 is substantially opposite to its angle of refraction at point 214C. Light ray 208C travels through body 1〇2 until it encounters a non- & surface 113C at point 214D. 208C defines a ΑΟΙ^+η which is larger than the AOI at points 214A and 214C. This is due to the non-parallel relationship between the normal 215A at the non-extraction surface 113A and the normal 215B at the non-extraction surface U3C. The skew relationship between the normals (215A and 215B) is Non-parallel relationship on the side of the tapered body 102. When the light 2〇8C leaves the unknown: take the surface 113 A or the non-extraction surface 113 c, and enter the gap 2 16 A or 216B 'AOI with the light 208C The AOI is then sufficiently large that it is greater than the critical angle, and the ray 2〇8C begins to exhibit TIR within the body 102, such as at point 212. As illustrated in Figure 1F, some of the backwards that initially satisfy the TIR condition are shown. The propagating light (i.e., the light propagating in the direction of the narrowed portion of the body 1 〇2 as illustrated by the light 208D) (because the AOI of the light falls below the critical angle) is eventually coupled out from the side of the plate. In an embodiment, when the light 2〇8D encounters the non-extracted surface 113A or 113C, it initially has an AOI greater than the critical angle, but after each reflection from the non-extracted surface 113A or 113C, the angle of incidence decreases. The appearance of the ray 208D is opposite to the ray 208C (discussed previously with respect to Figure 1E). Since the ray 2 〇 8D does not reach the end of the body 102 before its ao is reduced below the TIR angle, its self-property 102 goes out (such as At point 214E, the addition of external reflector n5 prevents 121109.doc -14· 200807137 from loss of light 208D. After loss of TIR, light 2〇81) is reflected from external reflector 115, and when light 208D is not extracted When the surface 113A or 113C leaves the body 102, it has a gradually smaller AOI after each reflection until the AOI passes through zero degrees (rotated) and starts in the forward direction (ie, toward the extraction surface). 112 and propagates in the direction of the widened portion of the body 102. Light 208D is then advanced as shown in Figure 1D, eventually returning to the TIR within body 102 and being extracted from extraction surface Π2. As illustrated in Figure 2, the light unit (or illumination system) 3 (10) includes an external reflector 315 that can be used with a body 3〇2 having at least a portion that is not tapered. For the sake of clarity, Figure 2 is a schematic illustration of a light unit 300 that is not present without a light emitter. In this case, reflector 315 limits light 308C that does not satisfy the TIR condition (i.e., A 〇 I is not greater than the critical angle) until ray 308C is coupled into tapered portion 320. The outer reflector 315 can be erected parallel to the non-tapered portion 324 of the body 302 and the non-extracting surfaces 313A and 313B of the tapered portion 320 (in other words, the reflector 3 15 is "tiled"). In another embodiment illustrated in Figure 3, the outer reflector 415 can have a single slope relative to the entire body 3〇2, including the tapered portion and the non-tapered portion 324. For convenience of description, the transition point between the tapered portion 320 and the non-tapered portion 324 will be referred to as a non-conical wheel end 326 and a tapered input end 328. Please understand that this is an arbitrary reference, and or 'this point can, for example, refer to the non-tapered portion of the " extraction surface, t. As illustrated in Figure 2, the ray 308C of the escaping body 3〇2 (due to an AOI less than the critical angle) is continuously reflected by the reflector 315 and when it exits the body into one of the air gaps 316A or 316B, The AOI propagates through the body 302 without substantially changing 121109.doc -15 · 200807137. Light ray 308C does not begin to approach the TIR condition until it encounters tapered portion 320. This is due to the fact that the normals illustrated by 322A and 322B on the opposite non-extracted surfaces 313 A and 3 13B at the non-tapered portion 324 are substantially parallel. The result is that the AOI of light 308C does not change significantly. After light 308C enters tapered portion 320, the normals illustrated by 322D and 322E become skewed, and when light 308C encounters non-extracted surfaces 313A and 313B, its AOI changes until light 308C reaches TIR (eg, Shown at point 212A). This process is equally applicable to the light unit (or illumination system) illustrated at 400 in Figure 3, although the external reflector 415 has a single slope for the length of the body 302. As indicated, normals 422A and 422B are substantially parallel, while normals 422C and 422D are skewed such that light 408C enters the D1 condition (shown at point 412) after entering the tapered portion 320 of body 302. The tapered portion 320 of the body 302 additionally has the advantage of acting as an output extractor that reduces the amount of fluorescence that would otherwise be totally internally reflected at the extraction surface 312 (as opposed to using a non-conical body). To form the tapered body 302, different types of tapered portions 320 in the form of output extractors can be coupled to the non-tapered portion 324. In one such manner, a tapered, transmissive rod or tunnel is coupled to the non-tapered output 326 for use as an output extractor and forms a tapered portion 320 of the body 302. The tunnel is shaped to be tightly coupled to the non-tapered output 326. If the non-tapered output 326 is sufficiently matched to the extractor (i.e., the size, shape, and index of refraction are matched), then the tapered input end 328 can be offset against the non-tapered output 326 or at a less than non-tapered output. One of the wavelengths 326 (preferably about or less than a quarter of a wavelength) is placed to efficiently illuminate light from the non-tapered 121109.doc -16 - 200807137 portion 324 into the tapered portion 320. An index matching material (e.g., a refractive index matching oil or an optical adhesive) may also be used between the extractor and the split/output 326. The extractor can be made of any suitable transparent material, such as glass or a polymer. The reflection of the fluorescent light in the extractor tends to direct the fluorescent light along the z-direction, and thus the angular spread at the output end of the fluorescent money channel (i.e., the extraction surface 312) is small; the light from the non-tapered portion 324 The angular spread when entering the conical portion 32〇. Less

夕的角展度減少在輸出端表面(亦即,提取面31。處經全内 反射之螢光之量。 可將錐形部分320與非錐形部分324整體形成,例如,可 自一單件材料(諸如,聚合物材料)模製錐形部分32〇及非錐 形部分324。此外,錐形部分32()可或可不含有螢光材料。 錐形部分320之提取面312可垂直於2軸,或可傾斜,例 如,如公開的美國專利申請案第“(^^丨”乃卜八丨號中進 一步所描述。傾斜提取面312可係有用的,例如,在由一 影像中繼系統將提取面312成像至一傾斜目標的情況下。 一傾斜目標之一實例為一數位多鏡面裝置(DMD),數位多 鏡面裝置之一實例由美國德克薩斯州普萊諾市⑺The angular spread of the eve is reduced at the output end surface (i.e., the amount of fluorescent light that is totally internally reflected by the extraction surface 31. The tapered portion 320 may be integrally formed with the non-tapered portion 324, for example, from a single A piece of material, such as a polymeric material, molds the tapered portion 32 and the non-tapered portion 324. Further, the tapered portion 32() may or may not contain a fluorescent material. The extraction face 312 of the tapered portion 320 may be perpendicular to 2 axes, or tiltable, for example, as further described in the published U.S. Patent Application Serial No. (^^丨), pp. 丨 。. The oblique extraction surface 312 can be useful, for example, by an image relay The system images the extraction surface 312 to a tilt target. One example of a tilt target is a digital multi-mirror device (DMD), and one example of a digital multi-mirror device is from Plano, Texas (7).

Texas)的 Texas Instruments供應,如DLP™影像器。一 dmD 具有定位於一平面中之許多鏡面,每一鏡面可經個別定址 以在兩個位置之間傾斜。DMD通常係由一不垂直於該 DMD鏡面平面(亦即,鏡面平面相對於照明光之傳播之方 向傾斜)之光束照明,且由DMD反射之影像光係在一垂直 於該鏡面平面之方向中反射。 121109.doc •17- 200807137 本發明之本體可採取許多不同形狀。在圖丨至圖3中所說 明之例示性實施例中,本體102具有一平行於x_y平面之矩 形杈截面。在其他例示性實施例中,本體(1〇2、3〇2)之橫 截面可不J5] ’例# ’可為圓开》、三角形、橢圓形或多邊 形,且亦可係不規則的。請注意,圖1A至圖1F中所說明之 本體102之橫截面積(在py平面中)及圖2及圖3中之錐形部 分320可僅在一個維度或兩個維度上增加(亦即,f,錐形”可 出現)。 出於說明之目的,展示於圖丨至圖3中之反射器ιΐ5、315 及415包括一大氣隙。在一實際設計中,較佳保持空氣間 隔小。保持間隙小最小化自反射器之侧面逃逸之光。對於 提取效率之顯著改良而言,氣隙較佳小於本體102、302在 其之小端處之寬度的·。對於典型設計而言,此意謂氣 隙小於1〇〇微米。雖然空a為間隙中之典型物f,但本發 明設想使用其他妨2^ ^ 、他物質诸如,用一與空氣相比為低折射率 之介電質或氣體的填充間隙216。 保持間隙小之另一原因在於:由於來自激發態之斯托克 (Me0位移(輸入能量與螢光光子能量之間的差異)及非輻 射衰變而在螢光材料中產生熱。許多螢光材料展示出熱淬 減效應、:其中當溫度增加時,螢光量子效率減少(亦即, 產生之光減小)。χ,希望控制勞光本體之溫度以防止對 郇近材料及結構之可能損害。 本體之自知強制空氣冷卻可能有問題,因為來自空氣之 灰塵及其他污染物可累積於本體之表面上且增加自彼等表 121109.doc 18 200807137 面反射之光之損失。此外,可帛—風扇達成之詩空氣速 度之強制空氣對流傳熱係數在6至30 w/m2 *κ之範圍中。 此可能低於達成所要之結果所需的係數。 藉由板之側面至一散熱片之直接機械接觸的冷卻由於如 先前所論述的低折射率材料(空氣)之消除而將干擾tir過 程。圖4A中之小氣隙416A及416B維持於本體402之表面與 反射器415之間,以便考慮到當仍容許熱傳遞至散熱片 430A及430B時將出現TIR。散熱片(43〇A&43〇B)又可以一 習知方式加以冷卻,例如,藉由直接空氣或結合熱管或液 體傳熱之空氣。間隙416A及416B之厚度可經選擇以確保 間隙416A及41 6B中之材料層(例如,空氣)之熱阻不超過傳 熱要求。可用不同於空氣之氣體(或其他材料)填充間隙 416A及41 6B,尤其係具有比空氣高之熱導率之彼等材 料,諸如以下表中之彼等材料: 氣體 熱導率 (W/m K) 空氣 0.024 N2 0.024 He 0.143 Ne 0.046 又’間隙中之氣體可在一高於大氣壓之壓力下,該壓力 可進一步增加熱導率。 藉由組合反射器415與散熱片430A及430B,且將間隙 416A及416B維持在本體402與反射器415之間,光輸出有 效性可得以增加。此出現係由於:TIr光之減小的損失(當 121109.doc -19- 200807137 使用一錐形本體時)、因為來自光發射器之光可經導引至 板中而造成的光吸收之潛在增加,及控制本體4〇2之溫度 從而限制淬減。 可藉由控制在本體402與散熱片430A及43 0B(且更特定言 之反射器415)之間的空隙來控制在本體4〇2與環境空氣之 間的熱阻,且因此控制本體402之溫度。在一較佳實施例 中,間隙416A與416B之距離保持在1〇〇微米或更小。其他 較佳間隙距離包括0.075 mm及〇·03 mm之距離。光發射器 404(例如,發光二極體,或LED)說明為用於照明本體4〇2 之泵>#光’’源。此等光發射器404說明為附著於散熱片 430C及430D。額外反射性表面可附著於散熱片43〇c及 430D,或置放於光發射器404與本體402之間以進一步對本 體402知:供冷卻。使此等反射性表面為二向色的以容許泵 >爾光牙過反射器且同時反射螢光可係有用的。本發明包括 利用在本體402與反射器415之間的一最小間隙距離來冷卻 本體402,而不管本體402是錐形(或包括一錐形部分)還是 非錐形。 本發明之一實施例利用一彎曲反射器515A,如圖4B中 所展示。雖然展示彎曲反射器僅在一個邊緣上接觸本體 5 02 ’但可提供一在兩個反射器邊緣(如5 1 5B處之虛線中所 展示)上接觸本體之彎曲反射器。請注意,在所說明之實 施例中,反射器5 1 5 A主要係一用於導引由光發射器5〇4所 產生之泵浦光之反射器,而反射器515B主要係用於反射螢 光(如先前所論述及描述)。若同時使用反射器5 15 A與 121109.doc -20- 200807137 515B,則反射器515B將較佳為二向色的,從而容許來自 光發射器504之光穿過,且同時反射來自本體502之螢光。 彎曲反射器組態可提供一不同的氣流空間,該氣流空間在 設計一用於本發明之光單元之冷卻系統時可能係所要的。 亦說明了光發射器504、反射器515、間隙516及散熱片 530。 雖然主要在再生損失的TIR光之情況下論述將反射器緊 鄰於本體置放之優點之論述,但亦請瞭解,反射器可用來 ® 限制泵浦光以及螢光。若將外部反射器置放於本體之所有 側面上,亦即,在光發射器與本體之間,則可有益於使反 射器為二向色的,以致泵浦光可在一最小損失之情況下穿 過。 再參看圖1A至圖1C,請注意,螢光材料之特定選擇取 決於所要的螢光波長及自光發射器1〇4所發射之光之波 長。較佳地’螢光材料有效率地吸收由光發射器1 〇4發射 • 之泵浦光106,以致泵浦光1〇6大部分(若不是所有)被吸收 於本體102内。此增強將泵浦光1〇6轉換成有用的螢光輸出 10 9之效率。 ' 光發射器104可為任何合適類型之發射非相干光之穿 - 置。咸信本發明特別適用於使用來自較不明亮之光發射器 之光產生一相對明亮之光束。 在較佳例示性實施例中,自光發射器1〇4所發射之光丄㈧ 在一與螢光材料之一吸收波長帶良好重疊之波長範圍内。 又,以下為有用的··若光發射器104可經定向以致存在經 121109.doc -21- 200807137 發射之光10.6至本體102中之一高度光學耦合。一合適之類 型之光發射器為LED,其通常產生具有一在大約2〇 nm至 大約50 nm之範圍中之頻寬的光1〇6,雖然光頻寬可在此範 圍外部。此外,在許多狀況下,自一 LED之輻射型樣大致 為朗伯(Lambertian)型,且因此可能相對有效率地將光1〇6 耗合至本體102中。亦可使用其他類型之光發射器,例 如,氣體放電燈、白熾燈及其類似物。Texas Instruments is supplied by Texas Instruments, such as the DLPTM imager. A dmD has a number of mirrors positioned in a plane, each of which can be individually addressed to tilt between two positions. The DMD is typically illuminated by a beam that is not perpendicular to the DMD mirror plane (ie, the mirror plane is tilted relative to the direction of illumination light propagation), and the image light reflected by the DMD is in a direction perpendicular to the mirror plane. reflection. 121109.doc • 17- 200807137 The body of the present invention can take many different shapes. In the exemplary embodiment illustrated in Figures 3 to 3, body 102 has a rectangular cross section parallel to the x_y plane. In other exemplary embodiments, the cross section of the body (1〇2, 3〇2) may not be J5] 'Example #' may be rounded, triangular, elliptical or polygonal, and may also be irregular. Please note that the cross-sectional area of the body 102 illustrated in FIGS. 1A-1F (in the py plane) and the tapered portion 320 in FIGS. 2 and 3 may be increased in only one dimension or two dimensions (ie, , f, cone may appear. For purposes of illustration, the reflectors ι 5, 315, and 415 shown in Figures 3 through 3 include an air gap. In an actual design, it is preferred to keep the air gap small. Keeping the gap small minimizes the light escaping from the side of the reflector. For a significant improvement in extraction efficiency, the air gap is preferably smaller than the width of the body 102, 302 at its small end. For typical designs, this Means that the air gap is less than 1 μm. Although the space a is a typical object f in the gap, the present invention contemplates the use of other materials such as a dielectric having a low refractive index compared to air. Or the filling gap of the gas 216. Another reason for keeping the gap small is that it is in the fluorescent material due to Stoke from the excited state (Me0 displacement (difference between input energy and fluorescent photon energy) and non-radiative decay Produces heat. Many fluorescent materials exhibit thermal quenching Reduction effect: wherein when the temperature increases, the fluorescence quantum efficiency decreases (that is, the generated light decreases). χ, it is desirable to control the temperature of the working body to prevent possible damage to the material and structure. Forced air cooling can be problematic because dust and other contaminants from the air can accumulate on the surface of the body and increase the loss of light reflected from the surface of the table 121109.doc 18 200807137. In addition, the poem that can be achieved by the fan The forced air convection heat transfer coefficient of air velocity is in the range of 6 to 30 w/m2 * κ. This may be lower than the coefficient required to achieve the desired result. Cooling by direct mechanical contact of the side of the plate to a heat sink The tir process will be disturbed by the elimination of the low refractive index material (air) as previously discussed. The small air gaps 416A and 416B in Figure 4A are maintained between the surface of the body 402 and the reflector 415 to allow for heat to be tolerated. TIR will occur when transferred to the heat sinks 430A and 430B. The heat sink (43〇A & 43〇B) can be cooled in a conventional manner, for example, by direct air or by combining heat pipes or liquids. Heat transfer air. The thickness of the gaps 416A and 416B can be selected to ensure that the thermal resistance of the material layer (e.g., air) in the gaps 416A and 41 6B does not exceed the heat transfer requirements. Gases other than air (or other materials) can be used. Filling gaps 416A and 41 6B, especially those having a higher thermal conductivity than air, such as the materials in the following table: Gas thermal conductivity (W/m K) Air 0.024 N2 0.024 He 0.143 Ne 0.046 The gas in the gap may be at a pressure above atmospheric pressure which may further increase the thermal conductivity. By combining the reflector 415 with the heat sinks 430A and 430B, and maintaining the gaps 416A and 416B in the body 402 and the reflector Between 415, the effectiveness of light output can be increased. This occurs due to: the loss of TIr light reduction (when using a tapered body in 121109.doc -19- 200807137), the potential for light absorption due to light from the light emitter that can be directed into the panel Increase, and control the temperature of the body 4〇2 to limit the quenching. The thermal resistance between the body 4〇2 and the ambient air can be controlled by controlling the gap between the body 402 and the heat sinks 430A and 430B (and more specifically the reflector 415), and thus the body 402 is controlled temperature. In a preferred embodiment, the distance between the gaps 416A and 416B is maintained at 1 〇〇 micron or less. Other preferred gap distances include distances of 0.075 mm and 〇·03 mm. Light emitter 404 (e.g., a light emitting diode, or LED) is illustrated as a pump >#light' source for illuminating body 4〇2. These light emitters 404 are illustrated as being attached to heat sinks 430C and 430D. Additional reflective surfaces may be attached to the heat sinks 43C and 430D or placed between the light emitter 404 and the body 402 to further inform the body 402 for cooling. It may be useful to have such reflective surfaces dichroic to allow the pump to pass through the reflector while reflecting the fluorescence. The invention includes cooling the body 402 with a minimum gap distance between the body 402 and the reflector 415, regardless of whether the body 402 is tapered (or includes a tapered portion) or non-tapered. One embodiment of the present invention utilizes a curved reflector 515A, as shown in Figure 4B. Although the curved reflector is shown to contact the body 5 02 ' on only one edge, a curved reflector that contacts the body on the edges of the two reflectors (as shown in the dashed line at 5 1 5B) can be provided. Note that in the illustrated embodiment, the reflector 5 1 5 A is primarily a reflector for directing pump light generated by the light emitters 5〇4, while the reflector 515B is primarily used for reflections. Fluorescent (as previously discussed and described). If reflectors 5 15 A and 121109.doc -20- 200807137 515B are used at the same time, reflector 515B will preferably be dichroic, allowing light from light emitter 504 to pass through while reflecting from body 502. Fluorescent. The curved reflector configuration provides a different airflow space that may be desirable when designing a cooling system for the light unit of the present invention. Light emitter 504, reflector 515, gap 516, and heat sink 530 are also illustrated. Although the discussion of the advantages of placing the reflector in close proximity to the body is discussed primarily in the context of regenerative loss of TIR light, it is also understood that the reflector can be used to limit pump light and fluorescence. If the external reflector is placed on all sides of the body, that is, between the light emitter and the body, it can be beneficial to make the reflector dichroic, so that the pump light can be minimized. Pass under. Referring again to Figures 1A through 1C, it is noted that the particular choice of phosphor material will depend on the desired wavelength of the phosphor and the wavelength of the light emitted from the light emitters 112. Preferably, the phosphor material efficiently absorbs the pump light 106 emitted by the light emitters 〇4 such that most, if not all, of the pump light 〇6 is absorbed within the body 102. This enhancement converts the pump light 1〇6 into a useful fluorescent output 10 9 efficiency. The light emitter 104 can be any suitable type of transmitting incoherent light. The invention is particularly useful for generating a relatively bright beam of light using light from a less bright light emitter. In a preferred exemplary embodiment, the pupil (8) emitted from the light emitter 1 〇 4 is in a wavelength range that is well overlapped with the absorption wavelength band of one of the phosphor materials. Again, the following is useful if the light emitter 104 can be oriented such that there is a high degree of optical coupling of light 100.6 emitted by 121109.doc -21 - 200807137 to the body 102. A suitable type of light emitter is an LED which typically produces light 1 〇 6 having a bandwidth in the range of about 2 〇 nm to about 50 nm, although the optical bandwidth can be outside this range. Moreover, in many cases, the radiation pattern from an LED is generally of the Lambertian type, and thus it is possible to consume light 1〇6 into the body 102 relatively efficiently. Other types of light emitters can also be used, such as gas discharge lamps, incandescent lamps, and the like.

可視需要在一基板上提供光發射器1〇4(視需要以22〇處 之虛線所展示)。舉例而言,若光發射器1〇4為LED,則基 板220可與LED進行電及熱連接以分別提供功率及冷卻。 基板220可為反射性的以致在遠離本體1〇2之方向中自光發 射器104 ^引之一些光(由光線1〇6 A舉例說明)可重新導引 向本體102。此外,基板22〇可反射已在未被吸收之情況下 穿過本體102之泵浦光(由光線1〇此舉例說明)。 可計算使用全内反射耦合來自一本體之螢光的最大效 率。如上所述’通常較佳地,該本體具有一較高折射率, 以便使更大比率之螢光在該本體内全内反射。 本體102可由任何合適之材料形成。舉例而言,本體1⑽ 可由螢光材料本身形成,或可由透射螢光且含錢光材料 之某些介電材料形成。介電材料之某些合適之實例包㈣ 機晶體、玻璃及聚合物材料。可摻雜於介電材料中之螢光 材料之某些實例包括豨+ i 稀土離子、過渡金屬離子、有機染料 分子及磷光體。介電材艇 及螢光材料之一合適種類包括摻 雜有稀土離子之無機晶體,諸如,經鈽摻雜之紀铭石權石 121109.doc •22- 200807137 (Ce:YAG),或經過渡金屬離子摻雜之無機晶體,諸如,經 鉻摻雜之藍寶石或經鈦摻雜之藍寶石。稀土離子及過渡金 屬離子亦可摻雜至玻璃中。 另一合適種類之材料包括一摻雜至一聚合體中之螢光染 ^ 料。許多類型之螢光染料可自(例如)美國密蘇裏州聖路易 • 市⑼· Louis, Missouri)之Sigma-Aldrich及美國俄亥俄州代 頓市(Dayton,Ohio)之Exciton公司購得。通用類型之螢光 馨 染料包括螢光素;若丹明,諸如,若丹明6G及若丹明B ; 及香丑素,諸如,香豆素343及香豆素6。染料之特定選擇 取決於所要的螢光之波長範圍及泵浦光之波長。許多類型 之聚合物適合作為用於螢光染料之本體,該等聚合物包括 (但不限於)聚曱基丙烯酸曱酯及聚乙烯醇。 填光體包括包括螢光物質之結晶或陶瓷材料之粒子。磷 光體通常包括於基質中,諸如,聚合物基質。在某些實施 例中’基質之折射率可實質上與填光體之折射率匹配(在 φ 至少0·02内)而減少散射。在其他實施例中,可提供磷光體 作為基質内之奈米粒子:在所得基質内由於粒子之小尺寸 而存在很少的光散射,即使折射率不良好匹配亦如此。 • 其他類型之螢光材料包括經摻雜之半導體材料,例如, • 經摻雜之π-γι半導體材料,諸如,砸化鋅及硫化辞。一上 轉換螢光材料之一實例為共同擁有之美國專利公開案第 2004/003753 8 Α1號中較詳細描述之經録掺雜之石夕酸鹽玻 璃。在此材料中,兩個、三個或甚至四個泵浦光光子被铥 離子(Tm3+)吸收以將離子激發至隨後發射螢光之不同激發 121109.doc -23- 200807137 態。上述所描述之發光物質之料實例僅為說明之目的而 呈現,且不意欲為限制。 圖5中示意性地說明 一可使用如本文中所描述之螢光容 積光單元之投影系統的一例示性實施例。在此特定實施例 中,投影系統500為三面板式投影系統,其具有產生不同 的彩色照明光束506a、506b、506c(例如,紅色、綠色及Light emitters 1〇4 (shown by dashed lines at 22 视) may be provided on a substrate as desired. For example, if the light emitters 1〇4 are LEDs, the substrate 220 can be electrically and thermally coupled to the LEDs to provide power and cooling, respectively. The substrate 220 can be reflective such that some of the light (illustrated by the light 1 〇 6 A) from the light emitter 104 in the direction away from the body 1 可 2 can be redirected toward the body 102. In addition, the substrate 22 can reflect pump light that has passed through the body 102 without being absorbed (illustrated by light 1). The maximum efficiency of coupling fluorescence from a body using total internal reflection can be calculated. As noted above, it is generally preferred that the body have a higher index of refraction to allow a greater proportion of fluorescent light to be totally internally reflected within the body. Body 102 can be formed from any suitable material. For example, body 1 (10) may be formed from the phosphor material itself, or may be formed from some dielectric material that transmits fluorescent light and contains a light-emitting material. Some suitable examples of dielectric materials include (4) machine crystals, glass, and polymeric materials. Some examples of fluorescent materials that can be doped into the dielectric material include 豨+i rare earth ions, transition metal ions, organic dye molecules, and phosphors. One suitable type of dielectric boat and fluorescent material includes inorganic crystals doped with rare earth ions, such as ytterbium-doped Ji Ming Shi Quanshi 121109.doc •22-200807137 (Ce:YAG), or transition metal ions Doped inorganic crystals, such as chrome-doped sapphire or titanium-doped sapphire. Rare earth ions and transition metal ions can also be doped into the glass. Another suitable type of material includes a fluorescent dye that is doped into a polymer. Many types of fluorescent dyes are commercially available, for example, from Sigma-Aldrich of St. Louis, Missouri, Missouri, USA, and Exciton, Inc. of Dayton, Ohio, USA. Common types of fluorescent dyes include luciferin; rhodamine, such as rhodamine 6G and rhodamine B; and fragrant ruthenium, such as coumarin 343 and coumarin 6. The specific choice of dye depends on the desired wavelength range of the fluorescent light and the wavelength of the pump light. Many types of polymers are suitable as the bulk for the fluorescent dyes including, but not limited to, polydecyl methacrylate and polyvinyl alcohol. The filler includes particles of a crystalline or ceramic material comprising a fluorescent material. Phosphors are typically included in a matrix, such as a polymeric matrix. In some embodiments, the refractive index of the substrate can substantially match the index of refraction of the fill (within φ at least 0.002) to reduce scattering. In other embodiments, a phosphor may be provided as a nanoparticle within the matrix: there is little light scattering within the resulting matrix due to the small size of the particles, even if the refractive index is not well matched. • Other types of fluorescent materials include doped semiconductor materials such as • doped π-γι semiconductor materials such as zinc telluride and sulfide. An example of an up-converting phosphor material is the recorded doped ceraphanite glass described in more detail in commonly-owned U.S. Patent Publication No. 2004/003753, filed on Jan. In this material, two, three or even four pump photons are absorbed by the erbium ions (Tm3+) to excite the ions to the different excitations that subsequently emit fluorescence. 121109.doc -23- 200807137. The examples of the luminescent materials described above are presented for illustrative purposes only and are not intended to be limiting. An illustrative embodiment of a projection system that can use a fluorescent volumetric light unit as described herein is schematically illustrated in FIG. In this particular embodiment, projection system 500 is a three-panel projection system having different colored illumination beams 506a, 506b, 506c (e.g., red, green, and

藍色光束)之光源502a、502b、502c。在所說明之實施例 中,綠色光源502b包括一螢光容積光單元。然而,光源 502a、502b、502c中之任一者或全部可包括螢光容積光單 元。光源502a、502b、502c亦可包括光束指引元件(例 如,鏡面或稜鏡)以將彩色照明光束506a、5〇6b、5〇6c中 之任一者指引至其各自的成像裝置5 〇4a、504b、504 e。Light beams 502a, 502b, 502c of blue light beams. In the illustrated embodiment, green light source 502b includes a fluorescent volume light unit. However, any or all of the light sources 502a, 502b, 502c may include a fluorescent volume light unit. Light sources 502a, 502b, 502c may also include beam directing elements (eg, mirrors or ridges) to direct any of colored illumination beams 506a, 5〇6b, 5〇6c to their respective imaging devices 5〇4a, 504b, 504 e.

成像裝置504a、504b、504c可為任何種類之成像裝置。 舉例而言,成像裝置504a、504b、504c可為透射型或反射 型成像裝置。透射型與反射型液晶顯示器(LCD)面板皆可 用作成像裝置。一合適類型之透射型LCD成像面板之一實 例為一高溫多晶石夕(HTPS)LCD。一合適類型之反射型lcd 面板之一實例為矽上液晶(LCoS)面板。該等LCD面板藉由 偏振調變與選定像素相關聯之光來調變一照明光束,且接 •著使用一偏光片將經調變之光與未經調變之光分離。被稱 作數位多重鏡面裝置(DMD)且由美國德克薩斯州普萊諾市 (Plano, Texas)的 Texas Instruments供應之商標名稱為 DLPTM 之另一類型的成像裝置使用一可個別定址之鏡面陣^列,該 等鏡面使照明光向投影透鏡偏轉或使其離開投影透鏡。在 121109.doc -24- 200807137 所說明之實施例中’成像裝置504a、504b、504c為LCoS類 型。 光源5 02a、502b、5 02 c亦可包括諸如偏光片、積光器、 透鏡、鏡面及其類似物之各種元件,以用於修整吗明光束 506a、506b、506c ° 彩色照明光束506a、506b、506c經由各別偏光光束分光 菇(PBS)5 10a、5 10b及510c而導引向其之各別成像裝置 50牝、504b及504c。成像裝置504a、5〇讣及5〇乜偏振調變 入射之明光束506a、506b及506c,以便各別經反射之彩 色影像光束 508a、508b 及 508c 由 PBS 510a、51〇b 及510c 分 離且傳遞至色彩組合器單元514。可將彩色影像光束 508a、508b及508c組合成一由一投影透鏡單元511投射至 螢幕5 12之單一、全色影像光束516。 成像裝置504a、504b、504c可耦接至一控制顯示於螢幕 512上之影像之控制器52〇(虛線)。該控制器可為(例如)電 視、電腦或其類似物之調整及影像控制電路。 在所說明之例示性實施例中,彩色照明光束5〇仏、 506b、506c被PBS 510a、5 10b及5 10c反射至成像裝置 5〇4a、504b及504c且所得影像光束508a、5〇81>及5〇8(:透射 過PBS 51〇a、510b&51〇c。在另一未說明之方法中,照明 光可透射過PBS至成像裝置,而影像光由PBS反射。 投影系統之其他實施例可使用不同數目(較大數目或較 小數目)之成像裝置。投影系統之某些實施例使用單個成 像裝置’而其他實施例採用兩個成像裝置。舉例而言,使 121109.doc -25- 200807137 用單個成像裝置之投影系統較詳細論述於共同擁有之 專利申請案第10/895,705號中且使用兩個成像裝置之投影 系統描述於共同擁有之美國專利申請案第1〇/914,596: 中。在單面板式投影系統中,照明光僅入射至單個成像面° • 板上。入射光經調變,以使任—時間僅有一種色彩之光入 . Μ至成像裝置之-部分上。隨著時間推移,人射至成像裝 置上之光的色彩改變’例如’自紅色變.為綠色再變為藍色 • 然後變回紅色,以此重複循環。此通常被稱作"場序色彩" 之操作模式。在其他類型之單面板式投影系統中,光之不 同彩色帶可滾動顯示於單個面板上,以使該面板在任何一 時間由具有一個以上色彩之照明系統照明,但面板上之任 何特定點僅由單個色彩瞬時照明。 在雙面板式投影系統中,依次將兩種色彩導引向一第一 成像裝置面板’該第一成像裝置面板依次顯示一配合該兩 種色彩之衫像。弟一面板通常由第三種色彩之光來連續照 φ 明。來自該第一及該第二面板之影像光束經組合並投影。 歸因於眼睛中之整合作用,觀察者看到一全色影像。 實例 • 作為一理論上的實例,考慮一具有1.835之折射率之 • ce:YAG錐形本體。該本體為50 mm長,小端處之橫截面為 0.5 mmx〇.89 mm且大端(連續錐形)處之橫截面為1.65 mmx2.93 mm。本體之前22 mm由藍色LED激發以產生螢 光。光提取之效率沿著本體之產生螢光之該22 mm改變。 圖6說明作為位置之函數之效率(自提取面所提取之光之量 121109.doc -26- 200807137 與經I浦之光的比),在該位置中,用接近於—本體之兩 個大面之兩個外部反射器產生用於本體之螢光。向前進行 之光之效率在大約16 mm之前係恆定的,在16 mm點處, 此等光線之部分在板之輸出端面處經歷TIR。向後進行之 光之放率自板之末端處開始連續減少。該減少係由於光自 板之/又有反射器之兩侧面的逐漸增加的損失而造成。圖6 亦說明本體未利用反射器之比較狀況。 圖7中展示作為板位置(在所有四個側面上具有外部反射 时之板)之函數之提取效率。在此狀況下(假定〗反 、)k取在16 mm處之點之别完全,在16 mm處之點處, TIR開始在出口面上出現。出於比較之目的包括不使用反 射器之狀況。 在實際系統中,提取效率之改良將受外部反射器之反射 率限制。圖8說明經計算的外部反射器之反射率減少之效 應。對於高於95%之反射率(在相對簡單之增強型金屬反射 器之範圍内),實現效率之實質增加。此與一反射器直接 置放於板上之狀況相比,該狀況中效率極端快速地下降且 對於任何增強而言均需要大於99%之反射率。 實例 對於一所說明的具有尺寸60 χ 1 · 46 χ 2 · 6 mm之板,該板呈 有各自以3 W供電之90個LED晶粒且假定LED中之15%之電 至光轉換及板中之15 %之斯托克損失’則板内部所產生之 熱將為大約6.1 W(=3Wx9〇x〇.15x〇.15)。板之兩個大側面 之表面積為3 · 1 cm2。 、 121109.doc -27- 200807137Imaging devices 504a, 504b, 504c can be any type of imaging device. For example, imaging devices 504a, 504b, 504c can be transmissive or reflective imaging devices. Both transmissive and reflective liquid crystal display (LCD) panels can be used as imaging devices. An example of a suitable type of transmissive LCD imaging panel is a high temperature polycrystalline lithotripe (HTPS) LCD. An example of a suitable type of reflective lcd panel is an on-silicon liquid crystal (LCoS) panel. The LCD panel modulates an illumination beam by polarization-modulating the light associated with the selected pixel, and uses a polarizer to separate the modulated light from the unmodulated light. Another type of imaging device, known as the Digital Multiple Mirror Device (DMD) and supplied by Texas Instruments of Plano, Texas, under the trade name DLPTM, uses an individually addressable mirror. The mirrors deflect the illumination light toward the projection lens or away from the projection lens. In the embodiment illustrated in 121109.doc -24-200807137, the imaging devices 504a, 504b, 504c are of the LCoS type. The light sources 5 02a, 502b, 5 02 c may also include various elements such as polarizers, illuminators, lenses, mirrors, and the like for trimming the light beams 506a, 506b, 506c ° color illumination beams 506a, 506b And 506c are guided to respective imaging devices 50A, 504b, and 504c via respective polarized beam splitting mushrooms (PBS) 5 10a, 5 10b, and 510c. Imaging devices 504a, 5A, and 5" polarization modulated incident light beams 506a, 506b, and 506c such that individually reflected color image beams 508a, 508b, and 508c are separated and transmitted by PBSs 510a, 51〇b, and 510c. To color combiner unit 514. The color image beams 508a, 508b, and 508c can be combined into a single, full-color image beam 516 that is projected by a projection lens unit 511 onto the screen 51. The imaging devices 504a, 504b, 504c can be coupled to a controller 52 (dashed line) that controls the image displayed on the screen 512. The controller can be, for example, an adjustment and image control circuit for a television, computer or the like. In the illustrated exemplary embodiment, color illumination beams 5, 506b, 506c are reflected by PBSs 510a, 5 10b, and 5 10c to imaging devices 5〇4a, 504b, and 504c and resulting image beams 508a, 5〇81> And 5〇8 (: transmitted through PBS 51〇a, 510b & 51〇c. In another method not illustrated, illumination light can be transmitted through the PBS to the imaging device, and image light is reflected by the PBS. Other implementations of the projection system A different number (a larger number or a smaller number) of imaging devices may be used. Some embodiments of the projection system use a single imaging device' while other embodiments employ two imaging devices. For example, make 121109.doc -25 - 200807137 A projection system using a single imaging device is described in more detail in co-owned patent application Serial No. 10/895,705, and a projection system using two imaging devices is described in co-owned U.S. Patent Application Serial No. 1/914,596: In a single-panel projection system, illumination light is incident only on a single imaging surface. • The incident light is modulated so that only one color of light is applied to the portion of the imaging device. With Over time, the color change of the light that the person hits the imaging device 'for example' changes from red to green to blue and then back to red to repeat the loop. This is often referred to as "field color" Operating mode. In other types of single-panel projection systems, different colored strips of light can be scrolled onto a single panel so that the panel is illuminated by an illumination system with more than one color at any time, but on the panel Any particular point is only illuminated by a single color. In a two-panel projection system, two colors are sequentially directed to a first imaging device panel. The first imaging device panel sequentially displays a shirt matching the two colors. A panel is usually illuminated by a third color of light. The image beams from the first and second panels are combined and projected. Due to the integration in the eye, the viewer sees one. Full-color image. Example • As a theoretical example, consider a ce:YAG tapered body with a refractive index of 1.835. The body is 50 mm long and the cross section at the small end is The cross section at 0.5 mmx〇.89 mm and the large end (continuous taper) is 1.65 mm x 2.93 mm. The front 22 mm of the body is excited by a blue LED to generate fluorescence. The efficiency of light extraction produces fluorescence along the body. The 22 mm change. Figure 6 illustrates the efficiency as a function of position (the amount of light extracted from the extraction surface 121109.doc -26- 200807137 versus the Ipu light), in which the - Two external reflectors on the two large faces of the body produce fluorescence for the body. The efficiency of the forward light is constant before about 16 mm, at 16 mm, the part of the light is on the plate The output end face experiences TIR. The rate of light that is made backwards continues to decrease from the end of the plate. This reduction is due to the gradual increase in loss of light from/on both sides of the reflector. Figure 6 also shows the comparison of the body without the reflector. The extraction efficiency as a function of the plate position (the plate with external reflection on all four sides) is shown in FIG. In this case (assuming that the inverse, k) is taken at the point of 16 mm, at the point of 16 mm, the TIR begins to appear on the exit face. For comparison purposes, the condition of not using a reflector is included. In practical systems, the improvement in extraction efficiency will be limited by the reflectivity of the external reflector. Figure 8 illustrates the effect of the calculated reflectance reduction of the external reflector. For reflectances above 95% (within the relatively simple range of enhanced metal reflectors), a substantial increase in efficiency is achieved. This is an extremely rapid drop in efficiency in this situation compared to the situation where a reflector is placed directly on the board and requires greater than 99% reflectance for any enhancement. Example For an illustrated board having dimensions of 60 χ 1 · 46 χ 2 · 6 mm, the board has 90 LED dies each powered by 3 W and assumes 15% of the LEDs to the light conversion and board The 15% of the Stoke loss in the 'the heat generated inside the board will be about 6.1 W (= 3Wx9〇x〇.15x〇.15). The two large sides of the plate have a surface area of 3 · 1 cm2. , 121109.doc -27- 200807137

若板之隶大溫度不可超過1 5〇°C且環境空氣溫度將為 45 C,則傳熱需要超過ip W/m2*K __6:1 W__wIf the plate temperature is not more than 15 °C and the ambient air temperature will be 45 C, the heat transfer needs to exceed ip W/m2*K __6:1 W__w

3.1cm2 (150~45)Κ ^187m2K 則最大熱阻將為17TK/W(1〇5/61)。散熱片(例如,來 自” Alphanovatech 丨’之 UBC60_25B,具有速度為 2 m/sec 之強 制空氣對流)之熱阻將為大約9〇k/w。3.1cm2 (150~45) Κ ^187m2K, the maximum thermal resistance will be 17TK/W (1〇5/61). The heat sink (for example, UBC60_25B from Alphanovatech®, with forced air convection at 2 m/sec) will have a thermal resistance of approximately 9 〇k/w.

因此氣隙之熱阻不得超過8·2〇ΚΛν(亦即,17.2-9)。如圖 9中所展示的氣隙之熱阻之計算證實一小於〇〇75之氣 隙將足以視需要將板冷卻下來。 【圖式簡單說明】 圖1A、圖1B、圖ic、圖1D、圖1E及圖1F示意性地說明 一根據本發明之原理之容積螢光單元的一實施例; 圖2示意性地說明一根據本發明之原理之具有一部分錐 形本體及平鋪反射器的容積螢光單元之另一實施例; 圖3示意性地說明一根據本發明之原理之具有一部分錐 形本體及非平鋪反射器的螢光本體之另一實施例; 圖4A示意性地說明—根據本發明之原理之具有反射器及 散熱片的容積螢光單元之實施例; 圖4B示意性地說明—根據本發明之原理之具有一彎曲反 射器及-散熱片的容積螢光單元之實施例; 示意性地說明—使用—根據本發明之原理之容積榮 光單元的投影系統之一實施例; 圖6展示距一 實驗容積螢光單 元之本體之小端各種距離 121109.doc -28- 200807137 處的提取效率之曲線圖; 圖7展示距一實驗容積螢光單元之本體之小端各種距離 處的提取效率之曲線圖; 圖8展示提取效率與外部鏡面反射率之關係之曲線 . 圖;及 , 圖9展示各種氣隙距離之熱阻之曲線圖。 不同圖式中之相同數字指類似元件。雖然本發明可進行 各種修改及替代形式,但其之詳細說明已借助於圖式中之 ® 實例加以展示且進行詳細描述。然而應瞭解,本發明並未 將本發明限制於所描述之特定實施例。相反地,本發明將 涵蓋屬於如由附隨申請專利範圍界定之本發明之精神及範 疇内的所有修改、均等物及替代物。 【主要元件符號說明】 100 容積螢光單元(或照明系統) 1〇2 本體 φ 104 光發射器 106 光 10ΒΑ 光線 . 108Β 光線 108C 光線, 1〇9 螢光輸出 109Α 光線 109Β 光線 110 泵浦表面 121109.doc -29- 200807137Therefore, the thermal resistance of the air gap must not exceed 8·2 〇ΚΛν (ie, 17.2-9). The calculation of the thermal resistance of the air gap as shown in Figure 9 confirms that an air gap of less than 〇〇75 will be sufficient to cool the plate as needed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A, FIG. 1B, FIG. 1D, FIG. 1E, and FIG. 1F schematically illustrate an embodiment of a volumetric fluorescent unit in accordance with the principles of the present invention; FIG. 2 schematically illustrates a Another embodiment of a volumetric fluorescent unit having a portion of a tapered body and a tiled reflector in accordance with the principles of the present invention; FIG. 3 is a schematic illustration of a portion of a tapered body and non-tiled reflection in accordance with the principles of the present invention. Another embodiment of a fluorescent body of the device; FIG. 4A schematically illustrates an embodiment of a volumetric fluorescent unit having a reflector and a heat sink in accordance with the principles of the present invention; FIG. 4B schematically illustrates - in accordance with the present invention Embodiment of a volumetric fluorescent unit having a curved reflector and a heat sink; schematically illustrating - using one embodiment of a projection system of a volumetric glare unit in accordance with the principles of the present invention; Graph of extraction efficiency at various distances of the small end of the body of the volume fluorescent unit 121109.doc -28- 200807137; Figure 7 shows various distances from the small end of the body of an experimental volume fluorescent unit Extraction efficiency graph; Figure 8 shows a graph of the relationship between extraction efficiency and the external mirror reflectivity FIG.;. And, Figure 9 shows a graph of thermal resistance of a variety of air gap distance. The same numbers in different figures refer to like elements. While the invention may be susceptible to various modifications and alternative forms, However, it should be understood that the invention is not limited to the specific embodiments described. Rather, the invention is to cover all modifications, equivalents, and alternatives of the invention as claimed. [Main component symbol description] 100 volume fluorescent unit (or illumination system) 1〇2 body φ 104 light emitter 106 light 10ΒΑ light. 108Β light 108C light, 1〇9 fluorescent output 109Α light 109Β light 110 pump surface 121109 .doc -29- 200807137

112 提取面 113 非提取表面 113A 非提取表面 113B 非提取表面 113C 非提取表面 113D 非提取表面 115 外部反射器 115A 外部反射器 115B 外部反射器 117 陰影區域 150 背面 208A 光線 208B 光線 208C 光線 208D 光線 212 點 212A 點 214A 點 214B 點 214C 點 214D 點 214E 點 215 法線 215A 法線 121i09.doc •30 200807137112 Extraction face 113 Non-extraction surface 113A Non-extraction surface 113B Non-extraction surface 113C Non-extraction surface 113D Non-extraction surface 115 External reflector 115A External reflector 115B External reflector 117 Shadow area 150 Back surface 208A Light 208B Light 208C Light 208D Light 212 points 212A Point 214A Point 214B Point 214C Point 214D Point 214E Point 215 Normal Line 215A Normal Line 121i09.doc •30 200807137

215B 法線 216 間隙 216A 間隙 216B 間隙 220 基板 300 光單元(或照明系統) 302 本體 308C 光線 312 提取表面/提取面 313A 非提取表面 313B 非提取表面 315 外部反射器 316A 氣隙 316B 氣隙 320 錐形部分 322A 法線 322B 法線 322D 法線 322E 法線 324 非錐形部分 326 非錐形輸出端 328 錐形輸入端 400 光單元(或照明系統) 402 本體 121109.doc -31- 200807137215B normal 216 gap 216A gap 216B gap 220 substrate 300 light unit (or illumination system) 302 body 308C light 312 extraction surface / extraction surface 313A non-extraction surface 313B non-extraction surface 315 external reflector 316A air gap 316B air gap 320 cone Portion 322A Normal 322B Normal 322D Normal 322E Normal 324 Non-tapered portion 326 Non-conical output 328 Conical input 400 Light unit (or illumination system) 402 Body 121109.doc -31- 200807137

404 光發射器 408C 光線 412 點 415 外部反射器 416A 氣隙/間隙 416B 氣隙/間隙 422A 法線 422B 法線 422C 法線 422D 法線 430A 散熱片 430B 散熱片 430C 散熱片 430D 散熱片 500 投影系統 502 本體 502a 光源 502b 光源 502c 光源 504 光發射器 504a 成像裝置 504b 成像裝置 504c 成像裝置 506a 照明光束 121109.doc 200807137 506b 照明光束 506c 照明光束 508a 經反射之彩色影像光束 508b 經反射之彩色影像光束 508c 經反射之彩色影像光束 510a 偏光光束分光器(PBS) 510b 偏光光束分光器(PBS) 510c 偏光光束分光器(PBS) 511 投影透鏡單元 512 螢幕 514 色彩組合器單元 515 反射器 515A 彎曲反射器 515B 反射器 516 間隙/影像光束 520 控制器 530 散熱片 h 南度 L 長度 X 點 w 寬度 121109.doc -33-404 light emitter 408C light 412 point 415 external reflector 416A air gap / gap 416B air gap / gap 422A normal 422B normal 422C normal 422D normal 430A heat sink 430B heat sink 430C heat sink 430D heat sink 500 projection system 502 Body 502a light source 502b light source 502c light source 504 light emitter 504a imaging device 504b imaging device 504c imaging device 506a illumination beam 121109.doc 200807137 506b illumination beam 506c illumination beam 508a reflected color image beam 508b reflected color image beam 508c reflected Color image beam 510a Polarized beam splitter (PBS) 510b Polarized beam splitter (PBS) 510c Polarized beam splitter (PBS) 511 Projection lens unit 512 Screen 514 Color combiner unit 515 Reflector 515A Curved reflector 515B Reflector 516 Gap/image beam 520 controller 530 heat sink h south degree L length X point w width 121109.doc -33-

Claims (1)

200807137 十、申請專利範圍: 1 · 一種照明系統,其包含·· 一能夠產生一第一波長範圍中之光之非相干光源; 一狹長本體’其當被該第一波長範圍中之光照明時發 射一第二波長範圍中之光,該本體具有一長度尺寸、一 見度尺寸及一高度尺寸,該本體之至少一部分為錐形的 以便沿著該長度尺寸增加寬度及/或高度,該本體進一步 包括一提取表面及一第一非提取表面,該第一非提取表 面係沿著該本體之該長度之至少一部分延伸且經安置成 與該提取表面共用一公共邊緣; 其中該第二波長之該光之至少部分在該非提取表面處 經全内反射;及 至少一個外部反射器,其安置於緊鄰於該非提取表面 處以便在該外部反射器與該非提取表面之間產生一間 隙。 2·如請求们之系統,其中該非相干光源係安置於一不同 於在該外部反射器與該非提取表面之間的位置之位置 中。 3·如咕求们之系統’其中在該外部反射器與該非提取表 面之間的該間隙實質上用一流體來填充。 4·如請求項3之系統,其中該流體為空氣。 5·如請求項1之系統,其進一步包含: -第二非提取表面’其安置於該本體之—與該第—非 提取表面相對之側面上; 121109.doc 200807137 一第二外部反射器,其 卜 、女置於緊鄰於該第二非提取表 面處以便在該外部反射器鱼 /、邊弟一非提取表面之間產生 一間隙,其中該非相干光 τ尤原係女置於一不同於在該第 外部反射器與該第-非媳 6.200807137 X. Patent application scope: 1 · An illumination system comprising: an incoherent light source capable of generating light in a first wavelength range; a narrow body 'when illuminated by light in the first wavelength range Transmitting light in a second wavelength range, the body having a length dimension, a visibility dimension, and a height dimension, at least a portion of the body being tapered to increase width and/or height along the length dimension, the body further An extraction surface and a first non-extraction surface extending along at least a portion of the length of the body and disposed to share a common edge with the extraction surface; wherein the second wavelength At least a portion of the light is totally internally reflected at the non-extracting surface; and at least one external reflector disposed proximate the non-extracting surface to create a gap between the outer reflector and the non-extracting surface. 2. A system as claimed, wherein the incoherent light source is disposed in a different location than the location between the outer reflector and the non-extracting surface. 3. The system of claim </ RTI> wherein the gap between the outer reflector and the non-extracted surface is substantially filled with a fluid. 4. The system of claim 3, wherein the fluid is air. 5. The system of claim 1, further comprising: - a second non-extracting surface disposed on the side of the body opposite the first non-extracting surface; 121109.doc 200807137 a second external reflector, And the female is placed adjacent to the second non-extracting surface to create a gap between the outer reflector fish/, a non-extracting surface of the brother, wherein the incoherent light τ is placed in a different In the first external reflector and the first-non-媳6. 乐一非美取表面之間的位置之位置中。 如請求項5之照明系統,其進一步包含·· 一在該本體上之第三非提取表面; 在該本體上之第四非提取表面,其安置於該本體之 一與該第三非提取表面相對之侧面上且實質上垂直於該 第一非提取表面; 一第三外部反射器,其安置於緊鄰於該第三非提取表 面處以便在該外部反射器與該第三非提取表面之間產生 間隙,其中該非相干光源係安置於一不同於在該第三 外。卩反射器與該第三非提取表面之間的位置之位置 中;及Le Yi is not in the position of the position between the surface. The illumination system of claim 5, further comprising: a third non-extracting surface on the body; a fourth non-extracting surface on the body disposed on one of the body and the third non-extracting surface Opposite the side surface and substantially perpendicular to the first non-extracting surface; a third outer reflector disposed adjacent to the third non-extracting surface for between the outer reflector and the third non-extracting surface A gap is created, wherein the incoherent light source is disposed at a different one than the third. The position of the position between the 卩 reflector and the third non-extracting surface; and 弟四外。卩反射器,其安置於緊鄰於該第四非提取表 面處以便在該外部反射器與該第四非提取表面之間產生 間隙’其中该非相干光源係安置於一不同於在該第四 外部反射器與該第四非提取表面之間的位置之位置中。 月求項1之照明糸統’其中形成該間隙之距離小於1 〇 〇 微米。 月求項1之知明糸統’其中該本體之橫截面通常為矩 形形狀。 9·如請求項1之照明系統,其中該反射器大體上平行於該 非提取表面延伸。 121109.doc 200807137 1 〇 ·如凊求項1之系統,其中該反射器具有一面對該非提取 表面之凹表面。 U·如請求項丨之系統,其中該本體含有一螢光材料,該螢 光材料發射一不同於該第一波長範圍之第二波長範圍中 之光。 12_如請求項丨之系統’其中該至少一第一非相干光源包含 一第—源及至少一第二源。 13·如請求項12之系統,其中該第一源及該第二源係安置於 該本體之不同側面上。 明求項1之糸統’其中該第一光源為一發光二極體 (LED) 〇 15·如清求項14之系統,其中該LED係安置於一反射基板 上。 1 6·如明求項丨之系統,其中該至少一第一光源包含複數個 月匕夠發射該第一波長範圍中之光之發光二極體(LED), Φ 亥第—波長範圍係在大約4〇〇 nm與大約500 nm之間,且 弟波長範圍位於大約500 nm與大約600 nm之間。 如明求項1之系統,其中該本體具有一與該提取表面相 , 對^背面,該背面實質上平行於該提取表面。 ’ 18·如明求項17之系統,其中該本體具有在該背面與該提取 表面之間延伸之側壁,該等側壁實質上係平坦的。 如明求項1 8之系統,其中該背面係不垂直於該等側 至少一者。 20.如請求項1糸 之糸統,其進一步包含一安置於一非錐形輸 121109.doc 200807137 出端處之錐形部分,該錐形部分㈣學轉 料分中提取該第二波長範圍中之該光。 21. ^求項2〇之系統,其中該至少一個反射器沿著該非錐 U刀及該錐形部分之一表面延伸且該間隙在至少該 形邛分與該反射器之間延伸。 .22.如=求項21m其巾該錐形部分為―輕接至該本體 之提取器。 23. 如請求項22$会e • + 、、 糸統,其中該間隙沿著該提取器減小尺 入端隙之該尺寸在緊鄰於該提取器之—錐形輸 24. =清求項22之系統,其中該輸出提取器係由與該本體相 冋之材料形成且係與該本體整體地形成。 25·^求項^统’其中該本體包含—材料,該材料且 1該本體之該長度之至少兩倍的對該第二波長範圍 中之光的平均自由徑。 • '如請甘求項1之系、统,其中該本體具有-長度L及一高度 二中當在該本體之該表面處進行全内反射時,經散 射之光之比率小於5%/(2L/h)。 27. 如請求項1之系統,其中 弟—波長範圍含有比該第一 波長乾圍長的波長。 28. 如請求項〗之系統,其進一 押一— 匕3 一投影單元,該投影 =3至少一個成像裝置、-投影透鏡單元及一螢 來自該至卜個成像裝置之影==少—個成像裝置, ^像先由該投影透鏡單元投 121109.doc -4 - 200807137 射至該螢幕。 29.如請求们之系統,其中該本體包含安 Φ夕ϊ I φ,ι ' 4日月材料 才料’該螢光材料包含稀土金屬離子八 屬離子及有機螢光染料中之至少一者。 ’又孟 請求項丨之系統’其中該本體包含安置 中之榮光材料’該透明材料包含無機晶 物基質中之一者。 坡璃及聚合 3 1 · —種照明系統,其包含: -能夠產生一第一波長範圍中之光之非相干光源; 長本體’其當被該第一波長範圍中之光照 射-第二波長範圍中之光’該本體進一步包括一提取: ^及一第-非提取表面,該第—非提取表面係沿著料 體之長度之至少-部分延伸且經安置成與該提取表面此 用一公共邊緣; /、 其中該第二波長之該光之至少部分在該非提取表面處 經全内反射;及 至少-個外部反射器’其安置於緊鄰於該非提取表面 處以便在該外部反射器與該非提取表面之間產生 100微米之間隙。 ; 32.如請求項31之“,其中在該外部反射器與該非提取表 面之間的該間隙實質上用一流體來填充。 、 33·如請求項32之系統,其中該流體為空氣。 34·如請求項3 1之系統,其進一步包含: 一第二非提取表面,其安置於該本體之一與該第一非 121109.doc 200807137 提取表面相對之側面上; 第外邛反射器’其安置於緊鄰於該第二非提取表 面處以便在該外部反射器與該第二非提取表面之間產生 -間隙’其中該非相干光源係安置於一不同於在該第二 - 外邛反射态與該第二非提取表面之間的位置之位置中。 、 35·如請求項31之照明系統,其進一步包含: 一在該本體上之第三非提取表面; 在林體上之第四非提取表面,其安置於該本體之 -肖該第三非提取表面相,之侧面上且實質上垂直於該 第一非提取表面; -第三外部反射器’其安置於緊鄰於該第三非提取表 面處以便在該外部反射器與該第三非提取表面之間產生 一小於100微米之間隙;及 一第四外部反射器,其安置於緊鄰於該第四非提取表 面處以便在該外部反射器與該第四非提取表面之間產生 • 一小於100微米之間隙,其中該非相干光源係安置於一 不同於在該第四外部反射器與該第四非提取表面之間的 位置之位置中。 • 36·如請求項31之照明系統,其中該本體之橫截面大體上為 矩形形狀。 37. 如請求項3i之照明系統,其中該反射器大體上平行於該 非提取表面延伸。 38. 如喷求項3 i之系統,其中該本體含有—螢光材料,該榮 光材料發射一不同於該第一波長範圍之第二波長範圍中 121109.doc 200807137 之光。 3 9.如請求項3 1之系統,其中該至少一第一非相干光源包含 一第一源及至少一第二源。 40.如請求項3 1之系統,其中該至少一第一光源包含複數個 能夠發射該第一波長範圍中之光之發光二極體(LED), 該第一波長範圍係在大約400 nm與大約500 nm之間,且 該第二波長範圍位於大約500 nm與大約600 nm之間。Brother four. a 卩 reflector disposed adjacent to the fourth non-extracting surface to create a gap between the outer reflector and the fourth non-extracting surface, wherein the incoherent light source is disposed at a different one than the fourth In the position of the position between the reflector and the fourth non-extracting surface. The illumination system of the first item 1 has a distance of less than 1 〇 微米 micrometer. The knowledge of the term 1 is that the cross section of the body is usually a rectangular shape. 9. The illumination system of claim 1, wherein the reflector extends substantially parallel to the non-extracting surface. The system of claim 1, wherein the reflector has a concave surface on one side of the non-extracting surface. U. The system of claim 1, wherein the body comprises a phosphor material that emits light in a second wavelength range different from the first wavelength range. 12_ The system of claim </ RTI> wherein the at least one first incoherent light source comprises a first source and at least a second source. 13. The system of claim 12, wherein the first source and the second source are disposed on different sides of the body. The system of claim 1 wherein the first source is a light emitting diode (LED) 〇 15. The system of claim 14, wherein the LED is disposed on a reflective substrate. The system of claim 1, wherein the at least one first light source comprises a plurality of light emitting diodes (LEDs) that emit light in the first wavelength range for a plurality of months, and the Φ hai-wavelength range is It is between about 4 〇〇 nm and about 500 nm, and the wavelength range is between about 500 nm and about 600 nm. The system of claim 1, wherein the body has a surface opposite the extraction surface, the back surface being substantially parallel to the extraction surface. The system of claim 17, wherein the body has sidewalls extending between the back surface and the extraction surface, the sidewalls being substantially flat. The system of claim 18, wherein the back side is not perpendicular to at least one of the sides. 20. The system of claim 1 further comprising a tapered portion disposed at an exit of a non-conical input 121109.doc 200807137, wherein the tapered portion (four) learns to transfer the second wavelength range The light in the middle. 21. The system of claim 2, wherein the at least one reflector extends along a surface of the non-cone U-knife and the tapered portion and the gap extends between at least the split and the reflector. .22. If = 21m, the tapered portion of the towel is "lighter" to the extractor of the body. 23. If the request item 22$ would e • + , , 糸 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The system of 22, wherein the output extractor is formed from a material that is opposite the body and is integrally formed with the body. And wherein the body comprises a material, the material and the average free path of the light in the second wavelength range at least twice the length of the body. • 'If the body of the item 1 has a length L and a height 2, when the total internal reflection is made at the surface of the body, the ratio of scattered light is less than 5% / ( 2L/h). 27. The system of claim 1, wherein the wavelength range comprises a wavelength that is longer than the first wavelength. 28. The system of claim 1, wherein the projection unit is at least one imaging device, the projection lens unit, and a shadow from the imaging device. The imaging device, ^ is first projected by the projection lens unit 121109.doc -4 - 200807137 to the screen. 29. The system of claimants, wherein the body comprises an φ ϊ I φ, ι '4 s monthly material. The fluorescent material comprises at least one of a rare earth metal ion octagonal ion and an organic fluorescent dye. The system of the present invention, wherein the body comprises a glory material disposed in the body, the transparent material comprising one of the inorganic crystal substrates. A glass and a polymeric illumination system comprising: - an incoherent light source capable of producing light in a first wavelength range; a long body 'when illuminated by light in the first wavelength range - a second wavelength The light in the range' the body further includes an extraction: ^ and a first-non-extracted surface extending along at least a portion of the length of the body and disposed to be associated with the extraction surface a common edge; /, wherein at least a portion of the light of the second wavelength is totally internally reflected at the non-extracting surface; and at least one external reflector is disposed adjacent to the non-extracting surface for interaction with the external reflector A gap of 100 microns is created between the non-extracted surfaces. 32. The method of claim 31, wherein the gap between the outer reflector and the non-extracting surface is substantially filled with a fluid. The system of claim 32, wherein the fluid is air. The system of claim 3, further comprising: a second non-extracting surface disposed on a side of the body opposite the first non-121109.doc 200807137 extraction surface; Positioned adjacent to the second non-extracting surface to create a gap between the outer reflector and the second non-extracting surface, wherein the incoherent light source is disposed in a different state than the second-outer reflective state In the position of the position between the second non-extracting surface, 35. The illumination system of claim 31, further comprising: a third non-extracting surface on the body; a fourth non-extraction on the forest a surface disposed on a side of the body of the third non-extracted surface, substantially perpendicular to the first non-extracted surface; a third external reflector disposed adjacent to the third non-extraction a face to create a gap of less than 100 microns between the outer reflector and the third non-extracting surface; and a fourth outer reflector disposed adjacent to the fourth non-extracting surface for reflection at the outer And a gap of less than 100 microns between the fourth non-extracting surface, wherein the incoherent light source is disposed in a different position than the position between the fourth outer reflector and the fourth non-extracting surface 36. The illumination system of claim 31, wherein the body has a substantially rectangular cross section. 37. The illumination system of claim 3, wherein the reflector extends substantially parallel to the non-extracting surface. The system of claim 3, wherein the body comprises a phosphor material that emits light in a second wavelength range different from the first wavelength range of 121109.doc 200807137. 3 9. As claimed in claim 3 The system, wherein the at least one first incoherent light source comprises a first source and at least a second source. 40. The system of claim 3, wherein the at least one first light source comprises a light emitting diode (LED) capable of emitting light in the first wavelength range, the first wavelength range being between about 400 nm and about 500 nm, and the second wavelength range being about 500 nm and about 600 Between nm. 121109.doc121109.doc
TW096119545A 2006-06-02 2007-05-31 Fluorescent volume light source TW200807137A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80381606P 2006-06-02 2006-06-02
US80382106P 2006-06-02 2006-06-02

Publications (1)

Publication Number Publication Date
TW200807137A true TW200807137A (en) 2008-02-01

Family

ID=38802185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096119545A TW200807137A (en) 2006-06-02 2007-05-31 Fluorescent volume light source

Country Status (2)

Country Link
TW (1) TW200807137A (en)
WO (1) WO2007143347A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650811B (en) * 2011-08-27 2016-01-27 深圳市光峰光电技术有限公司 Optical projection system and light-emitting device thereof
GB2552379A (en) * 2016-07-22 2018-01-24 Univ Oxford Innovation Ltd A receiver assembly and a data communications method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949933A (en) * 1998-03-03 1999-09-07 Alliedsignal Inc. Lenticular illumination system
US6687436B2 (en) * 1998-09-01 2004-02-03 Stephen Griffin Optical fiber with numerical aperture compression
US6272269B1 (en) * 1999-11-16 2001-08-07 Dn Labs Inc. Optical fiber/waveguide illumination system
US6418252B1 (en) * 2001-01-16 2002-07-09 The Regents Of The University Of California Light diffusing fiber optic chamber

Also Published As

Publication number Publication date
WO2007143347A3 (en) 2008-02-21
WO2007143347A2 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US20070279915A1 (en) Fluorescent Volume Light Source With Air Gap Cooling
US20070279914A1 (en) Fluorescent volume light source with reflector
US7857457B2 (en) Fluorescent volume light source having multiple fluorescent species
US10477166B2 (en) Wavelength conversion device and projector
US20180080627A1 (en) Light sources system and projection device using the same
US7733571B1 (en) Phosphor screen and displays systems
US10379431B2 (en) Projection apparatus and illumination system having wavelength conversion modules
JP5914878B2 (en) Light source device and projection display device
US6227669B1 (en) Illumination device and image projection apparatus comprising the device
US9910346B2 (en) Illumination system and projection apparatus
WO2014196015A1 (en) Illumination optical system and projector
US9429829B2 (en) Illumination system and projection apparatus
TWI710802B (en) An optical device for producing high brightness light
TW200815806A (en) Fluorescent light source having light recycling means
WO2012133485A1 (en) Light source device
US20130329448A1 (en) Lighting apparatus with phosphor element
JP2008536266A (en) Fluorescent volume light source
JP6681882B2 (en) Lighting system
US11422450B2 (en) Light source apparatus and display device
CN107193177B (en) Light source system and projection device thereof
TWI598540B (en) Wavelength converting module and light source module using the same
TW200807137A (en) Fluorescent volume light source
TWI276908B (en) Illumination system and optical projection apparauts
EP3669115B1 (en) Broadband light source based on crystalline phosphor
US20200333583A1 (en) Wavelength conversion module and projection device