TW200806075A - Methods for fabricating CNT field emission displays - Google Patents

Methods for fabricating CNT field emission displays Download PDF

Info

Publication number
TW200806075A
TW200806075A TW095125783A TW95125783A TW200806075A TW 200806075 A TW200806075 A TW 200806075A TW 095125783 A TW095125783 A TW 095125783A TW 95125783 A TW95125783 A TW 95125783A TW 200806075 A TW200806075 A TW 200806075A
Authority
TW
Taiwan
Prior art keywords
substrate
field emission
cathode
fabricating
carbon nanotube
Prior art date
Application number
TW095125783A
Other languages
Chinese (zh)
Other versions
TWI314841B (en
Inventor
Yau-Chen Jiang
Ming-Chun Hsiao
Ying-Hsien Chen
Kuang-Chung Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW095125783A priority Critical patent/TWI314841B/en
Priority to US11/775,142 priority patent/US7704116B2/en
Publication of TW200806075A publication Critical patent/TW200806075A/en
Application granted granted Critical
Publication of TWI314841B publication Critical patent/TWI314841B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Abstract

Methods for fabricating field emission displays. A first substrate is provided. A cathode structure is formed on the first substrate. A surface treatment procedure is performed on the first substrate with cathode structure thereon. A second substrate opposing the first substrate is provided and assembled in vacuum with a predetermined gap therebetween. The surface treatment procedure includes a free radical oxidation and super critical CO2 cleaning.

Description

200806075 九、發明說明: 【發明所屬之技術領域】 本♦明係有關於一種場發射顯示器製造方法,特別有 關方;種奈米碳管場發射顯示器基板表面處理的方法。 【先前技術】 大面知尽膜場發射顯示器(Field Emission Display,簡 # 稱FED) ’利用厚膜網印製程及場發射顯示器(FED)技術讓 傳統的陰極射線管(CRT)得以平面化,不僅保留了 crt的 ’P像πσ貝’並具有省電及體積薄小的好處。此外,結合奈 米碳管或具奈米結構新穎平板場發射源材料的低導通電 場、咼發射電流密度以及高穩定特性,製造出大尺寸、低 成本的全新平面顯示器,兼具低驅動電壓、高發光效率、 無視角問題及省電的優點。 然而’就現有大尺寸顯示器而言,陰極射線管 雖具備良好的顯像品質,但體積卻過大。投影電視雖可改 善體和問通,但顯像品質不良。另一種平面奮將 &浪絲員示器 (plasma display panel,簡稱PDP)雖符合輕、薄要件, 製程大部分採用網印法製作,然而其耗電量卻遇大,且, 合省能源之需求。 不付 場發射顯示元件(Field Emission Display,簡稱p 於自發光類型之微真空管型的電子發射源陣列,甘θ 一、 /、頌示原 理主要是利用閘極控制電壓去將發射源的電子ό ^ 、 自陰極發 射,而且在陽極端可以使其維持在極高的電壓卞 卜,使發射 0412-Α21492TWF(N2);P03940334TW;jamng、 5 200806075 的能量去激發磷光物質而發亮。早期的發射 ^衣、、’是利用半導體薄膜製程的方式製作陰極板的場 务射源陣列,這些發射源通常 .jl, rh(^i) —主 、书弋—些鉬(Mo)、鎢(VO或矽(bl) 且:层:而,然而半導體薄膜製程需要高額的設備成本而 且不=面積化,傳統的場發射顯示器圖所示。 弟^圖係顯示傳統的場發射顯示器的剖面示意圖。於 二典型的場發射顯示器_)包括下基板11 ==12,其其間夹"間隔距離G的檔牆_ 二;尸於身十口於下土板U上具有圖案化的陰極電極13。 if14設置於陰極電極13上。於圖案化的陰極 ::1。3侧部上係由介電層15圍繞,介電層15上有間極電 於上基板12上具有陽極電極17。紅18R、綠邮、誃 1 烛8B衫色營光層設置於陽極電極17上,且紅、綠、: 螢光層之間相隔-黑色矩陣陣列(black matrix,BM):二 為了能簡化製程及大面積化,習知技術利用 印 製程製作陰極基板’除了提供—種成本低廉,並且可以 面積化製作場射顯示器的方法 '然而於厚膜製程中, 板的陰極結構通常是將不_材料疊印在—起,由^ 刷過程中所使用的材料,經過燒結過後會有—些不紳^ P 生且殘留在電子發射層,留下許多大小不一的孔隙出現。 美國專利早期公開第US 2005/0062195號揭露〜種在 電子發射源(emitter)上貼附上一層膠膜,然後將膠膜 除。此法可以將電子發射源上的雜質去除並可以使ς工义 0412-A21492TWF(N2);P03940334TW;jamngwo 200806075 射源可以對準於(align)垂直電場的方向 第2A-2B圖係顯示習知拮种 口。 - -立闫〇A ’L利用黏貼法形成場發射1舅 +态的示意圖。於第2Α圖中,认* 4 ^ w 於基板35上旦有陰極雷我 40。圖案化隔離結構50與閘極7 丄/、巧:征包極 6〇形成於险;{:¾雷極40 μ 場發射結構70Α利用帶狀膠膜 " 。 40上,且位㈣案化_結構^ —介職聽極電極 所示。然而,膠膜黏闕造成⑯之間其結構如第2Β圖 域的電子發射源容易被拔除。再性差、部分區 對元件表面造成破壞,以及殘⑼法重複使用, 容易造成電弧放電(arcing),皆對冑物質在高電壓下, 良的影響。 “Μ㈣發射特性有不 於習知技術中,另一種增進場發射均 用摩擦(rubbing)的方式在電子菸:、二勾性的方法是利 巧丁 %射源上做配侖 藉由靜電的作用方式使得電子發射源可r 的動作,並 電場方向。然而,研磨所使用的滾輛,以^各易翁準垂直 表面、不易將燒結後之殘渣清除,古欠邊刷毛物質在 厂、 於馬電壓下芬〜 電弧放電(arcing),皆對顯示p的γ 夂各易造成 響。 。.錢射特性有不良的影 習知技術另一種增進場發射均勻性的方 (sand blasting)的方式,利用微小碌w 〆是利用噴砂 又貝顆粒砂枒批 射源表面,藉由外力將雜質分解。妙 里#電子發 、 W >占附在| ; 面的殘留砂礫因不易去除而容易造成污3 %于發射源表 美國專利第US 6,890,23。號揭露=利 化(activate)或使場發射源的奈半筝 田射光源活 '、位向,以有 0412-A21492TWF(N2);P03940334TW;]amngwo 7 200806075 雷射:射特性。第3A_3B圖係顯示習知技術利用 田、’〜化(activate)場發射源的奈米管的示咅 鳩’-場發射顯示器包括一下基板n〇,::且, 奈米碳管厚膜130形成於陰極電極咖, 亡:豕X射源。一上基板16〇對向於下基板, , 有陽極電極15〇。—電壓控制器刚施加偏壓於陽枉^ ⑼與陰極電極⑽之間以控制場發射顯示 1趣 知技術利用一雷射光源170透過上基板160與陽員 150照射奈米竣管厚 人吕谷肤130以活化0比”岣場發射源。 後々琢务射顯示器如第3B圖所示。 彳 然而,當雷射在對場發射源的奈米管處理時,其 的:心:i如熱能,可能損傷其他的元件結構(例如動J > "琶層、閘極層或基板160)。此外,若先將奈米管: 仃圖案化形成場發射源,甚至完成整個顯示器元件後^進 ,行雷射處理,於雷射的定址及對位上會產生困難,尤^ 是應用在高解析度顯示器面板時,上述問題因習知枯^: 耘繁複而導致成本上升且良率下降。 η丁衣 【發明内容】 有鑑於此,本發明之一目的在於提供一種顯示器基板 的表面處理方法,深入且均勻地清除不純物及污染物,進 而誕升場發射源的均勻性。 ’、 本發明的另一目的在於在於提供場發射顯示元件的高 政率及環境友善的表面處理方法,藉同時處理多片的試片 達到發射源層的材質純化及表面改質的目的,且整個過程 412 A21492TWF^2);P03940334TW;jamngwo 200806075 中不會製造出額外的污染物’進而避免因高電壓造成 (arching) ’增加元件在高真空下的穩定性。 土 瓜 元件的製作方 才誇於該弟〜基^ 構上;以及提 檔牆結構,並 為達上述目的,本發明提供一種顯示器 法,包括·提供一第一基板;形成一陰極結 板上,施以一表面處理步驟於該陰極基板結 供一第一基板對向該第一基板,之間夾以一 於真空中封合。200806075 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a field emission display, and particularly relates to a method for surface treatment of a substrate for a carbon nanotube field emission display. [Previous Technology] Field Emission Display (FED) uses a thick film screen printing process and field emission display (FED) technology to planarize a conventional cathode ray tube (CRT). Not only does the crt's 'P image πσ shell' remain, but it also has the advantages of power saving and small size. In addition, a low-conduction electric field, a 咼 emission current density and a high stability characteristic of a carbon nanotube or a novel slab field source material having a nanostructure are used to manufacture a large-sized, low-cost new flat panel display having a low driving voltage. High luminous efficiency, no viewing angle problems and the advantages of power saving. However, in the case of the existing large-sized display, the cathode ray tube has a good developing quality but is too bulky. Although the projection TV can improve the body and the communication, the quality of the image is poor. Another type of flat-panel & plasma display panel (PDP) is light and thin, and most of the process is made by screen printing. However, its power consumption is large, and the energy is saved. Demand. The Field Emission Display (P field) is a self-luminous type of micro-vacuum tube type electron-emitting source array. The principle of the θ1, /, 颂 is mainly to use the gate control voltage to 发射 the electron of the emission source. ^, from the cathode emission, and at the anode end can be maintained at a very high voltage, so that the emission of 0412-Α21492TWF (N2); P03940334TW; jamng, 5 200806075 energy to stimulate the phosphor to brighten. Early emission ^衣,, 'is a field source array that uses a semiconductor thin film process to make cathode plates. These sources are usually .jl, rh(^i) - main, book - molybdenum (Mo), tungsten (VO or矽 (bl) and: layer: However, the semiconductor film process requires high equipment cost and does not = area, as shown in the traditional field emission display. The figure shows the cross-sectional view of the conventional field emission display. A typical field emission display _) includes a lower substrate 11 == 12, with a gap between the gaps G _ 2; the corpse has a patterned cathode electrode 13 on the lower slab U. Cathode electrode 13. On the patterned cathode:: 1. The side of the side is surrounded by a dielectric layer 15, and the dielectric layer 15 is electrically connected to the upper substrate 12 with an anode electrode 17. Red 18R, green post, 誃1 candle 8B shirt color camping layer is placed on the anode electrode 17, and red, green,: the phosphor layers are separated by a black matrix array (black matrix, BM): two in order to simplify the process and large area, the conventional The technology uses the printing process to make the cathode substrate 'in addition to providing a low cost, and can be used to fabricate the field emission display method. However, in the thick film process, the cathode structure of the board is usually overprinted by the material, by ^ The material used in the brushing process, after sintering, may be agglomerated and left in the electron-emitting layer, leaving many pores of different sizes. U.S. Patent Publication No. US 2005/0062195 discloses Attach a layer of film on the electron emitter and then remove the film. This method can remove the impurities on the electron emission source and can make the 041 义 0412-A21492TWF(N2); P03940334TW; jamngwo 200806075 Source can be aligned (vertical) The direction of the field 2A-2B shows the conventional antagonizing mouth. - - Li Yan Yan A 'L uses the sticking method to form a field emission 1 舅 + state diagram. In the second figure, the * 4 ^ w on the substrate 35 There is a cathode mine I 40. The patterned isolation structure 50 and the gate 7 丄 /, Qiao: the enveloping pole 6 〇 formed in danger; {: 3⁄4 thunder pole 40 μ field emission structure 70 Α using strip film " . 40, and the position (4) case _ structure ^ - the position of the electrode is shown. However, the adhesion of the film to the electron-emitting source of the structure such as the second image is easily removed. Poorness, partial damage to the surface of the component, and repeated use of the residual (9) method, easily causing arcing, all of which have a good effect on the high voltage under the enthalpy. "The emission characteristics of Μ(4) are not in the conventional technology, and the other way to enhance the field emission is rubbing. In the electronic cigarette: the method of the two hooks is to use the static electricity. The mode of action is such that the electron-emitting source can operate in the direction of r and the direction of the electric field. However, the rolling roller used in the grinding is to be able to remove the residual residue after sintering, and the residue of the squeezing material is in the factory. The horse voltage fen~ arcing (arcing) is easy to produce γ 显示 显示 。 。 。 。 。 。 。 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱 钱The use of tiny shovel w is the use of sand blasting and shelling granules to spray the surface of the source, and the impurities are decomposed by external force. Miaoli #电子发, W > occupies in |; residual grit on the surface is easy to cause due to easy removal Stained in the source table US Patent No. 6,890,23. The disclosure of the number = the activation or the field source of the Nai-Han-Zheng field source of light, the position, to 0412-A21492TWF (N2); P03940334TW ;]amngwo 7 200806075 Laser: Shooter 3A_3B shows a conventional technique using a field, 'activated field emission source of a nanotube tube'-field emission display including a substrate n〇, :: and, carbon nanotubes thick The film 130 is formed on the cathode electrode, the anode: the X-ray source. An upper substrate 16〇 is opposite to the lower substrate, and has an anode electrode 15〇. The voltage controller has just applied a bias voltage to the anode (9) and the cathode electrode (10). The control field emission display 1 uses a laser light source 170 to illuminate the nano-tubes with the solar cell 150 through the upper substrate 160 to activate the 0-channel field source. The rear view display is shown in Figure 3B. However, when the laser is processed by the nanotubes of the field emission source, its: heart: i, such as thermal energy, may damage other component structures (eg, J>"琶 layer, gate layer or substrate 160 ). In addition, if the nanotube: 仃 is first patterned to form a field emission source, even after the entire display component is completed, laser processing is performed, which may cause difficulties in addressing and alignment of the laser, especially in applications. When the resolution display panel is used, the above-mentioned problems are caused by the conventional problems: the cost increases and the yield decreases. In view of the above, it is an object of the present invention to provide a surface treatment method for a display substrate that thoroughly and uniformly removes impurities and contaminants, thereby promoting the uniformity of the field emission source. Another object of the present invention is to provide a high-political and environmentally friendly surface treatment method for field emission display elements, which can simultaneously process a plurality of test pieces to achieve material purification and surface modification of the emission source layer, and The entire process 412 A21492TWF^2); P03940334TW; jamngwo 200806075 does not create additional contaminants' and thus avoids the arching of high voltages to increase the stability of the component under high vacuum. The maker of the melon component is exaggerated from the structure of the younger brother; and the structure of the lifting wall, and for the above purposes, the present invention provides a display method comprising: providing a first substrate; forming a cathode junction plate, Applying a surface treatment step to the cathode substrate to provide a first substrate opposite to the first substrate, and sandwiching between them in a vacuum.

為達上地目的,本發明另提供一種奈米石炭管場發射顯 :益的製作方法,包括··提供一第一基板;以、網印法形成 -陰極電極、-電子場發射源於該陰極電極上以及一閑極 於該第-基板上,其中該電子場發射源包括奈米碳管 (CNT)、奈米碳纖(CNF)、石墨、氧聽_)、多晶输叫、 二 二基板對向該第-基板,之間 夾以一擒牆結構,並於真空中封人。 下文特 為使本發明之上述目的、特徵和優點能更明僅 舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明提供提供一種用於平面場發 . 活,處理陰極基板的方法’利用結合:由心:超:: 二氧化碳之清洗技術藉以清除 虱化及t ™, 及穩定性。本發明的方以提升其均勻七 的試片達到發射源層的材料化^均句的同時處理多^ 個過程中不會產生額外的污染〗2㈣的目的’且養 、物。再者,本發明實施例更 0412-A21492TWF(N2);P03940334TW;jamngwo 200806075 加修飾奈米碳管粉體的微結構,促進· 決了習知技術的問題。 ,解 * 4A圖係顯示根據本發明實施例之奈 顯示器的製造步驟流程圖。首先,步二 = 基板、、.構,接者,於步驟挪中,真空封合上基板鱼 板以完成奈米碳管場發射顯示器,如步驟州。,、土For the purpose of reaching the ground, the present invention further provides a method for manufacturing a nano-carboniferous field emission display, comprising: providing a first substrate; forming by a screen printing method - a cathode electrode, and an electron field emission source On the cathode electrode and on the first substrate, wherein the electron field emission source comprises a carbon nanotube (CNT), a carbon nanofiber (CNF), a graphite, an oxygen listener, a polycrystalline input, and a second The substrate is opposed to the first substrate, and a wall structure is sandwiched between the substrates, and is sealed in a vacuum. The above-mentioned objects, features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments. Live, the method of processing the cathode substrate 'utilizes the combination: by the heart: super:: carbon dioxide cleaning technology to remove deuteration and t TM, and stability. The method of the present invention improves the uniformity of the test piece to reach the materialized layer of the emission source layer while processing the plurality of processes without incurring the purpose of additional pollution (2) and the cultivation. Furthermore, the embodiment of the present invention further has the microstructure of the modified carbon nanotube powder, which promotes the problem of the prior art. 0412-A21492TWF(N2); P03940334TW; jamngwo 200806075. The solution 4A shows a flow chart of the manufacturing steps of the display according to the embodiment of the present invention. First, step 2 = substrate, structure, and receiver. In the step, the substrate fish plate is vacuum-sealed to complete the carbon nanotube field emission display, such as the step state. ,,earth

形成場發射顯示器的下基板的步驟進一步包括步驟 301,形成奈米碳管粉體,例如以電弧放電法(机 discharge)、化學氣相沉積法⑽vap則叩。郝〇n,簡 稱CVD)及雷射剝鍍法ablati〇n)形成。並將所形成的 奈米碳管粉體收集起來。接著,於步驟3〇3中,將奈米碳 官粉體調成漿料’供後續的網印製程。接著,於步驟取 中,將奈米碳管粉體漿料網印成圖案化的陰極。接著於步 驟305,將具陰極電及㈣的基板燒成,再於—基板上施 以活化處理步驟(步驟3G6),以形成場發射電拜射源。 形成場發射顯示器的上基板的步驟包括步,驟312,形 成-電極於基板上。接著,於步驟314中,網印圖案化的 陽極於一基板上並燒成(步驟316)。 第4B圖係顯示第4A圖中表面活化處理步驟的流程 圖。表面活化處理步驟進一步包括將陰極結構基板置入乾 式處理反應槽(步驟410)。接著,施以自由基氧化乾式處理 420 ’可選擇UV處理425a、〇3處理425b或uv/〇3處理 425c方式進行。接著將陰滅縣板細超臨界流體處 0412-A21492TWF(N2);P03940334TW;jamngwo 10 200806075 理。其步驟依序為將陰極結構基板置入超臨界二氧化碳處 理槽430,設定超臨界二氧化碳處理槽的壓力、溫度及添 加修飾劑的比例440,導入超臨界態二氧化碳请洗陰極結 構基板450,在降溫與減壓460後,取出陰極結構基板470。 超臨界流體物理性質介於氣、液相之間,具有如氣體 般的低黏、高擴散係數、低表面張力,有如液體般的高密 度,此外,超臨界流體的化學性質亦與其在氣、液態時有 所不同,例如二氧化碳在氣體狀態下不具萃取能力,但當 進入超臨界狀態後,二氧化碳轉變為親有機性,因而具有 溶解有機物的能力,此溶解能力隨溫度及壓力調整而改 變;使用後的超臨界流體只需減壓即會返回氣相,而和其 他固、液相的物質分離,因此容易回收再使用。 第5A-5C圖係顯示根據本發明實施例之顯示器基板結 構製作步驟的分解示意圖。請參閱第5A圖,首先提供一 基板510,例如透明的玻璃基板。於基板510上形成一導 電層512 〇 接著,請參閱第5B圖,圖案化導電層512形成陰極電 極513及閘極導線圖案514,例如以微影製程蝕刻。陰極 電極513及閘極導線圖案514亦可以網印的方式直接塗佈 於基板510上。 接著,請參閱第5C圖,形成奈米碳管電子發射源515 於陰極電極513圖案上。例如,以網版印刷技術將奈米碳 管漿料印刷於陰極電極513圖案上,形成具陰極結構的基 板500。此外,電子場發射源515的形成方式亦包括以網 0412-A21492TWF(N2);P03940334TW;]amngwo 200806075 版印刷(screen Printing)、微接觸印刷(micro-contact printing) 法、喷墨印刷(ink-jet printing)法、電泳法(EPD)及化學氣相 沉積法形成。 第6A-6B圖係顯示根據本發明實施例中自由基氧化乾 式處理與超臨界二氧化碳處理的示意圖。於第6A圖中, 首先將製作完的FED陰極電極結構基板,利用紫外光 UV(本案可實施的波長為185〜254nm)光照射過。根據本發 _ 明之實施例,其紫外光UV的波長範圍為185〜254nm,其 中又以紫外光UV的波長為185或254nm,可以得到最佳 的實施效果。紫外光UV照射時間大抵為3分鐘。紫外光 UV光源至基板照射距離為〇·2 cni。於紫外光UV照射基板 時亦可導入03氣體,或單獨以〇3氣體進行自由基氧化。 接著,再將FED陰極基板置於充滿超臨界二氧化碳流 體620的處理槽650中,如第6B圖所示。由於二氧化態 氣體在進入超臨界狀態後,二氧化碳轉變為親有機性,因 _ 而具有溶解有機物的能力。根據本發明之較佳實施例,超 臨界C〇2操作壓力大抵為3000 psi,超臨界C02溫度控制 在50°C,超臨界C〇2處理時間約5分鐘。更可藉由添加修 飾劑,例如7%的正丙醇(n-propanol)提升超臨界二氧化碳 流體的清潔能力。 弟7圖係顯示本發明實施例之奈米碳管場發射顯示器 的剖面示意圖。於第7圖中,奈米碳管場發射顯示器 (CNT-FED) 700包括下基板701與對向的上基板7Ό2,之 間夾以間隔距離G的檔牆結構750,並於真空中封合。於 0412-A21492TWF(N2);P03940334TW;jamngwo 12 200806075 下基板701上具有圖案化的陰極電極7ι〇。奈米碳管厚膜 715設置於陰極電極710上,做為場發射源以激發電子。 於圖案化的陰極電極710側部上係由介電層72〇圍繞’介 電層720上有閘極電極730。 於上基板702上具有陽極電极·。紅⑻、綠⑹、藍 ⑻彩色螢光粉770設置於陽極電極7〇6上,且紅⑻、綠 (G)、監(B)衫色赏光粉775 t間相隔—黑、色矩陣陣列㈣化 matrix,BM) 770 〇 [本發明之特徵與優點] 本發明之優點在於利用此表面處理方法可以同時用在 平面三極結構、垂直三極結構或底閘極(under gate)三極結 構,相較於之岫所使用的表面處理方法(Taping和 Rubbmg)本案所提出的方法可以在不破壞材質表面結構的 情況之下洙入溝渠結構以及發射源外及内的孔隙清除不純 •物且不會留下污染物。在經過表面處理後所形成的場發射 顯不器,其均勻度可大幅度提升,場發射性質亦較優良。 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明的範圍,任何熟習此項技藝者,在不脫離本發明之 精神和範圍内,當可做些許的更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 0412-A21492TWF(N2);P03940334TW;jamngwo 13 200806075 【圖式簡單說明】 ' 第1圖係顯示傳統的場發射顯示器的剖面示意圖; 第2A-2B圖係顯示習知技術利用黏貼法形成場發射顯 不裔的不意圖, 第3A-3B圖係顯示習知技術利用雷射光源活化 (activate)場發射源的奈米管的示意圖; 第4A圖係顯示根據本發明實施例之奈米碳管場發射 ⑩ 顯示器的製造步驟流程圖; 第4B圖係顯示第4A圖中表面活化處理步驟的流程 圖; 第5A-5C圖係顯示根據本發明實施例之顯示器基板結 構製作步驟的分解示意圖; 第6A-6B圖係顯示根據本發明實施例中自由基氧化乾 式處理與超臨界二氧化碳處理的示意圖;以及 第7圖係顯示本發明實施例之奈米碳管場發射顯示器 _的剖面示意圖。 【主要元件符號說明】 習知部分(第1〜3B圖) 10〜場發射顯示器(FED); 11〜下基板; 12〜上基板; 13〜陰極電極; 14〜電子場發射源; 0412-A21492TWF(N2);P03940334TW;jamngwo ]4 200806075 15〜介電層; 16〜閘極電極; 17〜陽極電極, 18R、18G、18B〜紅、綠、藍彩色螢光層; 19〜黑色矩陣陣列(black matrix,BM); G〜間隔距離; 3 基板; 40〜陰極電極; 50〜隔離結構, 60〜閘極; 70A、80〜場發射結構; 30〜帶狀膠膜; 110〜下基板; 120〜陰極電極; 130〜活化前的奈来碳管厚膜; 130’〜活化後的奈米碳管厚膜; 140〜電壓控制器; 150〜陽極電極; 160〜上基板; 170〜雷射光源。 本案部分(第3〜8圖) 301-340〜場發射顯示器的製程步驟; 410-470〜陰極結構基板的活化表面處理步驟; 0412-A21492TWF(N2);P03940334TW;jamngwo 15 200806075 500〜具陰極結構的基板; 510〜基板, 512〜導電層; 513〜陰極電極; 514〜閘極導線圖案, 515〜奈米碳管電子發射源; UV〜紫外光; 620〜超臨界二氧化碳流體; 650〜處理槽; 700〜奈米碳管場發射顯示器; 701〜下基板; 7Ό2〜上基板; 710〜陰極電極, 715〜奈米碳管厚膜; 720〜介電層; 730〜閘極電極; 750〜檔牆結構; 760〜陽極電極, 770〜黑色矩陣陣列; 775〜彩色螢光粉; G〜間隔距離。 0412-A21492TWF(N2);P03940334TW;]amngwo 16The step of forming the lower substrate of the field emission display further includes the step 301 of forming a carbon nanotube powder, for example, by an arc discharge method, a chemical vapor deposition method (10), and a vap. Hao Hao n, hereinafter referred to as CVD) and laser stripping method ablati〇n). The formed carbon nanotube powder is collected. Next, in step 3〇3, the nanocarbon powder is slurried into a subsequent screen printing process. Next, in the step, the carbon nanotube powder slurry is screen printed as a patterned cathode. Next, in step 305, the substrate having the cathode electricity and (4) is fired, and then an activation treatment step (step 3G6) is applied to the substrate to form a field emission electric radiation source. The step of forming the upper substrate of the field emission display includes the step of step 312 of forming an electrode on the substrate. Next, in step 314, the patterned anode is screen printed on a substrate and fired (step 316). Fig. 4B is a flow chart showing the surface activation treatment step in Fig. 4A. The surface activation treatment step further includes placing the cathode structure substrate into a dry processing reaction tank (step 410). Next, the radical oxidation dry treatment 420 ' can be carried out by UV treatment 425a, 〇3 treatment 425b or uv/〇3 treatment 425c. Next, the Yinshui County plate fine supercritical fluid is located at 0412-A21492TWF (N2); P03940334TW; jamngwo 10 200806075. The steps are: placing the cathode structure substrate into the supercritical carbon dioxide treatment tank 430, setting the pressure, temperature and the ratio of adding the modifier 440 to the supercritical carbon dioxide treatment tank, and introducing the supercritical carbon dioxide to wash the cathode structure substrate 450, and cooling the substrate. After the pressure reduction 460, the cathode structure substrate 470 is taken out. The physical properties of supercritical fluids are between gas and liquid phase, with low viscosity such as gas, high diffusion coefficient, low surface tension, high density like liquid, and the chemical properties of supercritical fluids are also The liquid state is different. For example, carbon dioxide does not have the ability to extract under gas conditions, but when it enters the supercritical state, carbon dioxide is converted into an organophilic property, thus having the ability to dissolve organic matter, and the solubility is changed with temperature and pressure adjustment; After the supercritical fluid is returned to the gas phase only by decompression, it is separated from other solid and liquid substances, so it is easy to recycle and reuse. 5A-5C are exploded views showing the steps of fabricating the structure of the display substrate in accordance with an embodiment of the present invention. Referring to Figure 5A, a substrate 510, such as a transparent glass substrate, is first provided. A conductive layer 512 is formed on the substrate 510. Next, referring to FIG. 5B, the patterned conductive layer 512 forms a cathode electrode 513 and a gate conductive pattern 514, for example, by lithography. The cathode electrode 513 and the gate conductor pattern 514 can also be directly applied to the substrate 510 by screen printing. Next, referring to FIG. 5C, a carbon nanotube electron emission source 515 is formed on the cathode electrode 513 pattern. For example, a carbon nanotube paste is printed on the cathode electrode 513 pattern by a screen printing technique to form a substrate 500 having a cathode structure. In addition, the electronic field emission source 515 is also formed by the network 0412-A21492TWF (N2); P03940334TW;] amngwo 200806075 version (screen printing), micro-contact printing method, ink-jet printing (ink- Jet printing method, electrophoresis (EPD) and chemical vapor deposition. 6A-6B are schematic views showing radical oxidation dry treatment and supercritical carbon dioxide treatment according to an embodiment of the present invention. In Fig. 6A, the fabricated FED cathode electrode structure substrate is first irradiated with ultraviolet light (the wavelength which can be implemented in the present invention is 185 to 254 nm). According to the embodiment of the present invention, the ultraviolet light UV has a wavelength in the range of 185 to 254 nm, and the ultraviolet light UV has a wavelength of 185 or 254 nm, and an optimum effect can be obtained. The ultraviolet UV irradiation time is approximately 3 minutes. The UV light source is irradiated to the substrate at a distance of 〇·2 cni. It is also possible to introduce 03 gas when irradiating the substrate with ultraviolet light UV, or to perform radical oxidation by 〇3 gas alone. Next, the FED cathode substrate is placed in a processing tank 650 filled with supercritical carbon dioxide fluid 620 as shown in Fig. 6B. Since the oxidized state gas enters the supercritical state, the carbon dioxide is converted into an organophilic property, which has the ability to dissolve organic matter. In accordance with a preferred embodiment of the present invention, the supercritical C 〇 2 operating pressure is typically 3000 psi, the supercritical C02 temperature is controlled at 50 ° C, and the supercritical C 〇 2 processing time is about 5 minutes. The cleaning ability of the supercritical carbon dioxide fluid can be enhanced by the addition of a trimming agent such as 7% n-propanol. Figure 7 is a schematic cross-sectional view showing a carbon nanotube field emission display of an embodiment of the present invention. In FIG. 7, a carbon nanotube field emission display (CNT-FED) 700 includes a lower substrate 701 and an opposite upper substrate 7Ό2, with a barrier structure 750 sandwiched by a distance G, and sealed in a vacuum. . 0412-A21492TWF(N2); P03940334TW; jamngwo 12 200806075 The lower substrate 701 has a patterned cathode electrode 7ι. A carbon nanotube thick film 715 is disposed on the cathode electrode 710 as a field emission source to excite electrons. On the side of the patterned cathode electrode 710 is surrounded by a dielectric layer 72. The dielectric layer 720 has a gate electrode 730 thereon. An anode electrode is provided on the upper substrate 702. Red (8), green (6), and blue (8) color fluorescent powders 770 are disposed on the anode electrode 7〇6, and the red (8), green (G), and (B) shirt color light powders are separated by 775 t—black, color matrix array (4) Matrix, BM) 770 〇 [Features and Advantages of the Invention] The present invention has the advantage that the surface treatment method can be used simultaneously in a planar three-pole structure, a vertical three-pole structure or an under gate three-pole structure. Compared with the surface treatment methods used (Taping and Rubbmg), the method proposed in this case can break into the ditch structure and the pores outside and outside the emission source to remove impurities and not without destroying the surface structure of the material. Will leave pollutants. The field emission display formed by the surface treatment can greatly improve the uniformity and the field emission property. The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the present invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 0412-A21492TWF(N2);P03940334TW;jamngwo 13 200806075 [Simplified illustration] 'Fig. 1 shows a schematic cross-sectional view of a conventional field emission display; Figure 2A-2B shows a conventional technique for forming a field emission display using an adhesive method The intention of the afro, the 3A-3B diagram shows a schematic diagram of a conventional technique for activating a field tube of a field emission source using a laser source; FIG. 4A is a diagram showing a carbon nanotube field according to an embodiment of the present invention. Flowchart of manufacturing steps for transmitting 10 displays; FIG. 4B is a flow chart showing steps of surface activation processing in FIG. 4A; and FIGS. 5A-5C are exploded views showing steps of fabricating a structure of a display substrate according to an embodiment of the present invention; -6B is a schematic view showing a radical oxidation dry treatment and a supercritical carbon dioxide treatment according to an embodiment of the present invention; and Fig. 7 is a schematic cross-sectional view showing a carbon nanotube field emission display of the embodiment of the present invention. [Main component symbol description] Conventional part (Fig. 1 to 3B) 10 to field emission display (FED); 11 to lower substrate; 12 to upper substrate; 13 to cathode electrode; 14 to electron field emission source; 0412-A21492TWF (N2); P03940334TW; jamngwo] 4 200806075 15~ dielectric layer; 16~ gate electrode; 17~ anode electrode, 18R, 18G, 18B~ red, green, blue color fluorescent layer; 19~ black matrix array (black Matrix, BM); G~ spacing distance; 3 substrate; 40~ cathode electrode; 50~ isolation structure, 60~ gate; 70A, 80~ field emission structure; 30~ strip film; 110~ lower substrate; Cathode electrode; 130~ thick film of Neil carbon tube before activation; 130'~ activated carbon nanotube thick film; 140~ voltage controller; 150~ anode electrode; 160~ upper substrate; 170~ laser light source. Part of this case (Fig. 3~8) Process steps of 301-340~field emission display; 410-470~activation surface treatment step of cathode structure substrate; 0412-A21492TWF(N2); P03940334TW; jamngwo 15 200806075 500~ with cathode structure Substrate; 510~substrate, 512~conductive layer; 513~cathode electrode; 514~gate wire pattern, 515~nanocarbon tube electron emission source; UV~ultraviolet light; 620~supercritical carbon dioxide fluid; 650~treatment tank 700~nano carbon tube field emission display; 701~lower substrate; 7Ό2~upper substrate; 710~cathode electrode, 715~nano carbon tube thick film; 720~dielectric layer; 730~gate electrode; 750~ file Wall structure; 760~anode electrode, 770~black matrix array; 775~color phosphor powder; G~ spacing distance. 0412-A21492TWF(N2); P03940334TW;]amngwo 16

Claims (1)

200806075 十、申請專利範圍: 1.-種顯示器元件的製作方法,包括: 提供一第一基板; 形成一陰極結構於該第—基板上; 之間夾以一檔牆結構 t以一表面處理步驟於該陰極基板結構上;以及 提供一第二基板對向該第一基板, 並於真空中封合。 立由=申4專利範圍第1項所述之顯示器元件的製作方法, 陰極結構包括―平面三極結構、-錄三極結構或-底 閘極(under gate)三極結構。 3·如申請專利範圍第〗項所述之顯示器元件的製作方法, 其中該陰極結構包括—陰極電極、—電子場發射源於該陰極電 極以及一閘極。 4·如申請專利範圍第3項所述之顯示器元件的製作方法, 其中該電子場發射源包括奈米碳管(CNT)、奈米碳纖(CNF)、 _ 石墨、氧化鈀(pd〇)、多晶矽(P-Si)、鑽石膜、或氮化碳(CxNy)。 5·如申請專利範圍第3項所述之顯示器元件的製作方法, 其中4電子场發射源係以網版印刷(screen printing)法、微接觸 印刷(micro-contact printing)法、喷墨印刷(ink-jet printing)法、 電泳法(EPD)及化學氣相沉積法形成。 6·如申請專利範圍第3項所述之顯示器元件的製作方法, 其中該表面處理步驟包括一自由基氧化步驟及一超臨界二氧 ’ 化碳清潔步驟。 7·如申請專利範圍第6項所述之顯示器元件的製作方法, 04^~A21492TWF(N2);P03940334TW;jamngwo 200806075 其中該自由基氧化步驟包括以紫外光照射該陰極結構的表面。 如申請專利範圍第6項所述之顯示器元件的製作方法, 其中該自由基氧化步驟包括通入臭氧(Os)氣體於該陰極結構 的表面。 9·如申請專利範圍第6項所述之顯示器元件的製作方法, 其中該自由基氧化步驟包括通入臭氧(Os)氣體於該陰極結構 的表面,並以紫外光照射該陰極結構的表面。 _ 1〇·如申請專利範圍第6項所述之顯示器元件的製作方 法’其中該超臨界二氧化碳清潔步驟包括將第一基板置於一腔 體中,並導入一超臨界二氧化碳流體於該腔體中;其中超臨界 ^一氧化碳流體包括一修飾背J。 11. 一種奈米碳管場發射顯不器的製作方法,包括· 提供一第一基板; 以網印法形成一陰極電極、一電子場發射源於該陰極電極 上以及一閘極於該第一基板上,其中該電子場發射源包括奈米 _ 石厌管(CNT)、奈米碳纖(CNF)、石墨、氧化把(PdO)、多晶^夕 (P-Si)、鑽石膜、或氮化碳(CxNy) ; · 曰 施以一表面處理步驟於該陰極基板結構上;以及 提供一第二基板對向該第一基板,之間夾以一檔牆結構, 並於真空中封合。 12. 如申請專利範圍第11項所述之奈米碳管場發射顯示哭 的製作方法,其中該表面處理步驟包括一自由基氧 职 超臨界二氧化碳清潔步驟。 一 13. 如申請專利範圍第12項所述之奈米碳管場發射顯示哭 0412-Α21492TWF(N2);P03940334TW;jamngwo 18 200806075 的製作方法,其中該自由基氧化 結構的表面。 匕括以糸外光照射該陰極 I4·如申請專概圍第π項所叙 r 的製作方法’其中該紫外光照射的波:範圍顯示器 254nm。 队礼固…於185_至 示器 體於 的制Γ方,12項所述之奈米碳管場發射尋 的製作方法,射該自由純化步驟包 =200806075 X. Patent application scope: 1. A method for manufacturing a display component, comprising: providing a first substrate; forming a cathode structure on the first substrate; sandwiching a wall structure t with a surface treatment step And on the cathode substrate structure; and providing a second substrate opposite to the first substrate and sealing in a vacuum. The method of fabricating the display device according to the first aspect of the invention, wherein the cathode structure comprises a "planar three-pole structure, a recording three-pole structure or an under gate three-pole structure. 3. The method of fabricating a display device according to the invention of claim 1, wherein the cathode structure comprises a cathode electrode, an electron field emission source from the cathode electrode and a gate. 4. The method of fabricating a display device according to claim 3, wherein the electron field emission source comprises a carbon nanotube (CNT), a carbon nanofiber (CNF), a graphite, a palladium oxide (pd〇), Polycrystalline germanium (P-Si), diamond film, or carbon nitride (CxNy). 5. The method of fabricating a display device according to claim 3, wherein the four electron field emission sources are screen printing, micro-contact printing, inkjet printing ( Ink-jet printing method, electrophoresis (EPD) and chemical vapor deposition. 6. The method of fabricating a display device according to claim 3, wherein the surface treatment step comprises a radical oxidation step and a supercritical carbon dioxide cleaning step. 7. The method for fabricating a display device according to claim 6, 04^~A21492TWF(N2); P03940334TW; jamngwo 200806075 wherein the radical oxidation step comprises irradiating the surface of the cathode structure with ultraviolet light. The method of fabricating a display device according to claim 6, wherein the radical oxidation step comprises introducing ozone (Os) gas to the surface of the cathode structure. 9. The method of fabricating a display device according to claim 6, wherein the radical oxidation step comprises introducing an ozone (Os) gas to the surface of the cathode structure and irradiating the surface of the cathode structure with ultraviolet light. The method for fabricating a display device according to claim 6, wherein the supercritical carbon dioxide cleaning step comprises placing the first substrate in a cavity and introducing a supercritical carbon dioxide fluid into the cavity. The supercritical carbon monoxide fluid comprises a modified back J. 11. A method of fabricating a carbon nanotube field emission display, comprising: providing a first substrate; forming a cathode electrode by screen printing, an electron field emission source on the cathode electrode, and a gate on the first On a substrate, wherein the electron field emission source comprises nano _ stone tube (CNT), nano carbon fiber (CNF), graphite, oxidized rod (PdO), polycrystalline (P-Si), diamond film, or Carbon nitride (CxNy); 曰 applying a surface treatment step on the cathode substrate structure; and providing a second substrate opposite to the first substrate, sandwiching a wall structure and sealing in a vacuum . 12. The method for producing crying of a carbon nanotube field as described in claim 11 wherein the surface treatment step comprises a radical oxygenation supercritical carbon dioxide cleaning step. A 13. The carbon nanotube field emission as described in claim 12 of the patent application shows crying 0412-Α21492TWF(N2); P03940334TW; jamngwo 18 200806075, wherein the surface of the radical oxidized structure. The method of illuminating the cathode with external light I4 is as described in the application of the πth item, wherein the wavelength of the ultraviolet light is 254 nm. Team ritual...In the 185_ to the body of the device, the production method of the 12 carbon nanotube field emission detection, shooting the free purification step package = 該陰極結構的表面。 六虱(〇3)頭 • π申請專利範圍第u項所述之奈米碳管場發射项 的衣作方法,其巾該自由基氧化步驟包括通人臭氧 該陰極結構的表m外光照射該陰極結構的表面十。 顯示器 體於 I 17·如申請專利範圍第12項所述之奈米碳管場發射顯示哭 的‘作方去,其中該超臨界二氧化碳清潔步驟包括將第—式板 置於一腔體中,並導入一超臨界二氧化碳流體於該腔體中;= 中超臨界二氧化碳流體包括一修飾劑。 /、 18·如申請專利範圍第17項所述之奈米碳管場發射顯示哭 的製作方法’其中該超臨界二氧化破流體的壓力為3〇〇〇psi, 溫度為50°C。 ’ 19·如申請專利範圍第17項所述之奈米碳管場發射顯示器 的製作方法,其中該修飾劑包括正丙醇(n-propanol)。 20·如申請專利範圍第11項所述之奈米碳管場發射顯 示器的製作方法,其中該第二基板上具有一陽極圖案及 螢光層。 0412-A21492TWF(N2)iP03940334TW;jamngwo 19The surface of the cathode structure.虱 ) ) • • • • • • π π π π π 奈 π 奈 奈 奈 奈 奈 奈 奈 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该The surface of the cathode structure is ten. The display body of the present invention is shown in the invention of the carbon nanotube field emission described in claim 12, wherein the supercritical carbon dioxide cleaning step comprises placing the first plate in a cavity, And introducing a supercritical carbon dioxide fluid into the cavity; = the medium supercritical carbon dioxide fluid comprises a modifier. / 18) The method for producing cryogenic carbon nanotube field emission as described in claim 17 wherein the supercritical dioxide decomposing fluid has a pressure of 3 psi and a temperature of 50 °C. The method for producing a carbon nanotube field emission display according to claim 17, wherein the modifier comprises n-propanol. The method of fabricating a carbon nanotube field emission display according to claim 11, wherein the second substrate has an anode pattern and a phosphor layer. 0412-A21492TWF(N2)iP03940334TW;jamngwo 19
TW095125783A 2006-07-14 2006-07-14 Methods for fabricating field emission displays TWI314841B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW095125783A TWI314841B (en) 2006-07-14 2006-07-14 Methods for fabricating field emission displays
US11/775,142 US7704116B2 (en) 2006-07-14 2007-07-09 Methods for fabricating field emission display devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095125783A TWI314841B (en) 2006-07-14 2006-07-14 Methods for fabricating field emission displays

Publications (2)

Publication Number Publication Date
TW200806075A true TW200806075A (en) 2008-01-16
TWI314841B TWI314841B (en) 2009-09-11

Family

ID=38949822

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095125783A TWI314841B (en) 2006-07-14 2006-07-14 Methods for fabricating field emission displays

Country Status (2)

Country Link
US (1) US7704116B2 (en)
TW (1) TWI314841B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753924B (en) * 2016-07-07 2022-02-01 法商達樂股份有限公司 Vacuum electron tube with planar cathode based on nanotubes or nanowires

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653599B1 (en) * 2012-11-16 2014-02-18 International Business Machines Corporation Strained SiGe nanowire having (111)-oriented sidewalls
US10143063B2 (en) * 2016-10-10 2018-11-27 Boe Technology Group Co., Ltd. Illumination light source and fabricating method thereof
CN111540655A (en) * 2020-05-09 2020-08-14 金陵科技学院 Light-emitting backlight source with staggered-cutting oblique ridge simple surface cathode-based different-curvature gate control structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113147B2 (en) 1991-11-01 1995-12-06 工業技術院長 New carbon material manufacturing method
US6359383B1 (en) * 1999-08-19 2002-03-19 Industrial Technology Research Institute Field emission display device equipped with nanotube emitters and method for fabricating
WO2002041348A1 (en) 2000-11-20 2002-05-23 Nec Corporation Cnt film and field-emission cold cathode comprising the same
WO2003084865A2 (en) * 2001-06-14 2003-10-16 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
US6890230B2 (en) 2001-08-28 2005-05-10 Motorola, Inc. Method for activating nanotubes as field emission sources
TW594824B (en) 2002-12-03 2004-06-21 Ind Tech Res Inst Triode structure of field-emission display and manufacturing method thereof
TWI276140B (en) 2003-09-23 2007-03-11 Ind Tech Res Inst Method of forming carbon nanotube field emission source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753924B (en) * 2016-07-07 2022-02-01 法商達樂股份有限公司 Vacuum electron tube with planar cathode based on nanotubes or nanowires

Also Published As

Publication number Publication date
US7704116B2 (en) 2010-04-27
TWI314841B (en) 2009-09-11
US20080014821A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
Shi et al. Large area screen-printing cathode of CNT for FED
Lee et al. Application of carbon nanotubes to field emission displays
CN1998067B (en) Activation of carbon nanotubes for field emission applications
JPWO2006112455A1 (en) Electron emitter, field emission display device, cold cathode fluorescent tube, flat illumination device, and electron emission material
US6290564B1 (en) Method for fabricating an electron-emissive film
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
US20090124160A1 (en) Printable Nanocomposite Code Cathode Slurry and its Application
KR20040108713A (en) Field electron emission film, field electron emission electrode and field electron emission display
Lee et al. Carbon nanotube-based field-emission displays for large-area and full-color applications
JP3843447B2 (en) Carbon nanotube pattern formation method
TW200806075A (en) Methods for fabricating CNT field emission displays
JP2004335435A (en) Manufacturing method of carbon nanotube field emission transistor
TW200407933A (en) Patterned granulized catalyst layer suitable for electron-emitting device, and associated fabrication method
JP5055655B2 (en) Emitter manufacturing method, field emission cold cathode using the emitter, and flat image display device
JP3372751B2 (en) Field electron emission device and method of manufacturing the same
JP3581296B2 (en) Cold cathode and method of manufacturing the same
JP2000348599A (en) Field emission electron source and manufacture thereof
TWI322792B (en) Methods for fabricating carbon nano-tubes and field emission displays
CN1828813A (en) Emissive flat panel display device
KR20070104809A (en) A method to fabricate horizontally aligned carbon nanotube field emitter using electrophoresis
JP2004179026A (en) Manufacturing method of electron emitting element, and manufacturing method of display device
JP3852692B2 (en) Cold cathode field emission device, manufacturing method thereof, and cold cathode field emission display
JP2007149616A (en) Field emission element and its manufacturing method
Kim et al. Fabrication of carbon nanotube paste using photosensitive polymer for field emission display
JP2005032523A (en) Electron emission element and display device using the same, and method of manufacturing electron emission element