TW200805997A - Mobile communication device with positioning capability and related GPS receiver - Google Patents

Mobile communication device with positioning capability and related GPS receiver Download PDF

Info

Publication number
TW200805997A
TW200805997A TW96122633A TW96122633A TW200805997A TW 200805997 A TW200805997 A TW 200805997A TW 96122633 A TW96122633 A TW 96122633A TW 96122633 A TW96122633 A TW 96122633A TW 200805997 A TW200805997 A TW 200805997A
Authority
TW
Taiwan
Prior art keywords
communication device
mobile communication
receiver
oscillator
control
Prior art date
Application number
TW96122633A
Other languages
Chinese (zh)
Other versions
TWI381711B (en
Inventor
Ying-Lin Lai
Original Assignee
Mstar Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mstar Semiconductor Inc filed Critical Mstar Semiconductor Inc
Publication of TW200805997A publication Critical patent/TW200805997A/en
Application granted granted Critical
Publication of TWI381711B publication Critical patent/TWI381711B/en

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A mobile communication device with positioning capability is provided including: a GNSS (global navigation satellite system) receiver; a communication circuit for generating a control signal; an oscillator shared between the communication circuit and the GNSS receiver, for providing a clock signal of a frequency corresponding to the control signal; and a decision unit, coupled to the communication circuit and the GNSS receiver, for recording the control signal; wherein the GNSS receiver obtains the frequency value of the clock signal according to the control signal recorded in the decision unit.

Description

200805997 九、發明說明: 【發明所屬之技術領域】 本發明係有關於行動通訊裝置之技術,尤指具有定位 功能之行動通訊裝置。 【先前技術】 行動通訊裝置(例如行動電話)與全球衛星定位系統 φ ( global navigation satellite system,GNSS )接收器(例如 GPS接收器)都是應用相當廣泛的電子裝置。對許多使用 者而言,這兩者都是日常生活中不可或缺的配備。為滿足 使用者的需求’將全球衛星定位系統接收器(Gnss receiver)與行動通訊裝置兩者的功能進行整合,已逐漸成 為一種趨勢。然而,要整合全球衛星定位系統接收器與行 動通訊4置時,有許多問題必須加以考量,例如耗電量、 硬體成本與電路板面積等等。 參 眾所週知,全球衛星定位系統接收器與行動通訊裝置 皆需利用振盪器來作為運作時所需的參考頻率源。在習知 技術中,全球衛星定位系統接收器所使用的振盪器,通常 疋调4父至某一特定頻率(例如16·368 MHz)的高精度振盪 例如,皿度補償石英振盪器(丁emperature Compensated Costal 〇scillator,TCX〇 )等,而行動通訊裝置中所使用的 振盪為則多半是精確度較低的振盪器,例如電壓控制溫度 5 200805997 補償石英振盪器(VCTCXO)等。 為降低行動通訊裝置整合全球衛星定位系統接收器功 能時的硬體成本,美國專利第6724342號提出了一種具有 定位功能的行動通訊装置,由該行動通訊裝置中的通訊電 路與定位訊號接收器共用同-個振盈器。然而,定位訊號 接收器對振盈器輸出之參考頻率的精確度和頻率飄移 φ (如卿胃·)相當敏感。在上·國專利案所揭示之 行動通訊裝置中,若通訊電路在定位訊號接收器操取衛星 定位訊號的期間内調整共用振盈器的輸出頻率,定位訊號 接收器並無法立刻得知該振遭器輪出頻率的變化’故容易 發生定位錯誤(例如定位點突然大幅偏離先前位置)甚至 無法偵測衛星訊號的情況。 解決前述問題的方式之一,3 疋在該定位訊號接收器擷 取侑星定位訊號的期間内,批钿 ^ 7 控制该共用振盪器使其輸出頻 率維持不變。只可惜,這種觥 徑解决方式將導致該行動通訊裝 置的斷話率(call drop rate ) 士 a- & · J大幅提升,因而降低整體的通 話品質。 【發明内容】 有鑑於此,本發明之3沾 ^ 〜牧目的之—在於提供-種具有定位 功此且可解虹㈣題的行動_裝置。 6 200805997 本說明書提供了一種具有定位功能之行動通訊裝置的 實施例,其包含有··一全球衛星定位系統接收器;一通訊 電路,用來輸出一控制訊號;一振盪器,由該通訊電路與 該全球衛星定位系統接收器所共用,用來提供相對應於該 控制訊號之一時脈訊號;以及一決定單元,連接於該通訊 電路與該全球衛星定位系統接收器,用來記錄該控制訊 號;其中該全球衛星定位系統接收器係依據該決定單元所 記錄之該控制訊號獲得該時脈訊號之頻率值。 【實施方式】 請參考第1圖’其所繪示為本發明第一實施例之具有 疋位功能之行動通訊裝置1〇〇簡化後的方塊圖。在實際應 用上’行動通訊裝i 1〇〇乂應用態樣包含各種可攜式用戶 端設備,例b 2G/3G行動電話或智慧型手機轉。如圖所 示行動itafl裝置1〇〇包含有通訊電路(^咖麵^如⑽200805997 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a technology of a mobile communication device, and more particularly to a mobile communication device having a positioning function. [Prior Art] Mobile communication devices (such as mobile phones) and global positioning satellite system (GNSS) receivers (such as GPS receivers) are widely used electronic devices. For many users, both are indispensable in everyday life. In order to meet the needs of users, the integration of the functions of the global satellite positioning system (Gnss receiver) and mobile communication devices has gradually become a trend. However, when integrating GPS receivers and mobile communications, there are many issues that must be considered, such as power consumption, hardware cost, and board area. As is well known, both GPS receivers and mobile communication devices require the use of an oscillator as a reference frequency source for operation. In the prior art, the oscillator used by the global satellite positioning system receiver usually adjusts the high-precision oscillation of the 4th father to a certain frequency (for example, 16·368 MHz), for example, the degree compensation quartz oscillator (Ding emerature) Compensated Costal 〇scillator, TCX〇), etc., and the oscillations used in mobile communication devices are mostly low-precision oscillators, such as voltage control temperature 5 200805997 compensated crystal oscillator (VCTCXO). In order to reduce the hardware cost of the mobile communication device integrating the function of the global satellite positioning system receiver, US Pat. No. 6,724,342 proposes a mobile communication device with a positioning function, and the communication circuit in the mobile communication device is shared with the positioning signal receiver. Same as a vibrator. However, the positioning signal receiver is quite sensitive to the accuracy of the reference frequency of the output of the oscillator and the frequency drift φ (such as Qing stomach). In the mobile communication device disclosed in the above patent case, if the communication circuit adjusts the output frequency of the shared vibrator during the period in which the positioning signal receiver operates the satellite positioning signal, the positioning signal receiver cannot immediately know the vibration. The change in the frequency of the wheel of the device is so easy to locate errors (for example, the positioning point suddenly deviates significantly from the previous position) and even the satellite signal cannot be detected. One of the ways to solve the above problem is that during the period in which the positioning signal receiver picks up the satellite positioning signal, the batch 钿 ^ 7 controls the shared oscillator to keep its output frequency constant. Unfortunately, this method of resolution will result in a significant increase in the call drop rate of the mobile communication device, a- & J, which will reduce overall call quality. SUMMARY OF THE INVENTION In view of the above, the object of the present invention is to provide an action_device having a positioning function and a solutionable problem. 6 200805997 The present specification provides an embodiment of a mobile communication device having a positioning function, comprising: a global satellite positioning system receiver; a communication circuit for outputting a control signal; an oscillator, the communication circuit Common to the global satellite positioning system receiver for providing a clock signal corresponding to the control signal; and a determining unit coupled to the communication circuit and the global positioning satellite receiver for recording the control signal The global satellite positioning system receiver obtains the frequency value of the clock signal according to the control signal recorded by the determining unit. [Embodiment] Please refer to FIG. 1 for a simplified block diagram of a mobile communication device having a clamp function according to a first embodiment of the present invention. In the actual application, the mobile communication device includes various portable user devices, such as b 2G/3G mobile phones or smart phones. As shown in the figure, the italfl device 1〇〇 contains communication circuits (^咖面^如(10)

CirCUlt) 1〇2、全球衛星定位系統接收器(GNSS receiver) 104、振還器106及決定單元⑽,其中振盪器106係由通 訊電路102與全球衛星定位系統接收器1〇4兩者所共用。 打動通訊裝i 100中之通訊電路102係用來與行動通 訊網路内之基地台進行軌,讀供制麵需之聲音或 數據傳輸服務。如第1圖所示,本實施例之通訊電路102 包含混波器112、類比至數位轉換器(ADC) 114、控制單 200805997 元116、非揮發性儲存媒體(例如flash或⑽μ 及數位至類_換器(DAC) 12G,其中,非揮發性儲存= 體118中儲存有與振盛器1〇6出廢時所預設之振盤頻率、 對應之初始控制值Di。為簡潔起見,#丨圖中並未纷示^ 訊電路102之天線模組及發送端電路。 ^ 全球衛星定位系統接收器1〇4則係用來接收並分析來 自數個導航衛星所傳來之衛星訊號,以計算行動通訊裝置 100之所在位置,例如經度、緯度與海拔高度等資料。前 述的導航衛星可以是美國的GPS衛星、歐盟的伽利略 (Galileo)衛星、俄羅斯的(^(^八88衛星或是其他全球 衛星定位系統的衛星 為方便說明起見,以下假設通訊電路102係符合3GPP 規格之寬頻劃碼多工進接(Wideband Code Division Multiple Access, W-CDMA)之通訊電路,且全球衛星定位 系統接收器104係為GPS接收器。換言之,行動通訊裝置 1Q0在本實施例中係為具有GPS定位功能之3G行動電話。 請注意,此僅係為一實施例,而非限定通訊電路102與全 球衛星定位系統接收器104的實際功能。 具有GPS定位功能的行動通訊裝置1〇〇有四種不同的 操作模式,分別是剛開機時的初始細胞搜尋模式(initial 8 200805997 cell search mode)、無網路訊號模式(〇ut-of-service mode)、 待機模式(idlemode)以及通話中的主動模式(active mode)。與CDMA2000系統不同,W-CDMA系統中的基地 台(又稱為NodeB)彼此間並不需要同步。因此,W-CDMA 系統中的每一個基地台會使用一個獨特的主擾亂碼 (Primary ScramblingCodes,PSC)以供識別,而用戶端設 備找尋基地台,並與其主擾亂碼達成同步的過程稱之為細 Φ 胞搜尋(cell search)。基地台細胞搜尋可分成五個階段: 時槽同步(slot synchronization )、訊框同步及擾亂碼群組 確認(frame synchronization and scrambling code group identification)、擾亂碼確認(scrambling code identification)、頻率擷取(frequency acquisition)、以及細 胞識別(cell identification)。行動通訊裝置100在前述的 初始細胞搜尋模式、待機模式以及主動模式中,都會進行 細胞搜尋的動作。 相較於基地台中所使用的振盪器,行動通訊裝置1〇〇 中所使用的振盪器106通常成本較低但精確度也相對較 低。實作上,振盪器106可用壓控振盪器(v〇ltage-contr〇lled oscillator,VCO)來實現,例如電壓控制溫度補償石英振盪 器(VCTCX0)等等。由於振盪器106的精確度並不如基 ’ 地台所使用的振盪器來得理想,故其所輸出之時脈訊號的 頻率會有所偏差。這樣的頻率偏差若不加以校正,可能會 200805997 造成通訊電路102的接收效能惡化’而導致行動通訊褒置 100與基地台間的通訊無法順利進行。因此,在前述細胞 搜尋的過程中,行動通訊裝置100之通訊電路102會對振 盪器' 106進行校正,以使得振盪器1〇6之輸出的頻^與基 地台所使用的振盪器同步。 、土 請參考第2圖’其係描述行動通崎置丨⑼在初始細 #胞搜尋模式之-運作實施例的流程圖2〇〇。當行動通訊裝 置100開機時,會進入初始細胞搜尋模式(步驟210)。此 時’通訊電路丨02的控制單元116會從非揮發性儲存媒體 118中載入初始控制值Di (步驟22〇),並以之作為數位至 類比轉換器120的數位控制值DW。數位至類比轉換器 會依據數位控制值DW產生控制電壓Vc,使振逢器】〇6依 據控制電壓V c輸出具有預設頻率之時脈訊號c L κ (步驟 230)。當通訊電路1〇2接收到基地台傳來之訊號尺又時(步 •驟240),混波器112會將訊號以與振盪器1〇6輪出之時 脈訊號CLK混合,以產生混合訊號Μχ,而類比至數位轉 換裔114則會將混合吼號Μχ轉換成數位訊號ds。 接著,控制單元116會進行步驟25〇,依據數位訊號 Ds推導出振盪器106所輸出之時脈訊號CLK的頻率偏移 (frequency offset),並依據該頻率偏移調整數位控制值 DW。如此一來,數位至類比轉換器12〇會調整控制電壓 200805997CirCUlt) 1, 2, a GNSS receiver 104, a reverberator 106, and a decision unit (10), wherein the oscillator 106 is shared by both the communication circuit 102 and the global satellite positioning system receiver 1〇4. . The communication circuit 102 in the communication device is used to track the base station in the mobile communication network to read the sound or data transmission service required for the supply side. As shown in FIG. 1, the communication circuit 102 of the present embodiment includes a mixer 112, an analog to digital converter (ADC) 114, a control unit of $200,805,997, and a non-volatile storage medium (such as flash or (10) μ and digital to class. _ converter (DAC) 12G, wherein non-volatile storage = body 118 stores the initial vibration frequency of the vibration plate preset with the vibration device 1〇6, corresponding to the initial control value Di. For the sake of brevity, # The antenna module and the transmitting circuit of the circuit 102 are not shown in the figure. ^ The GPS receiver 1〇4 is used to receive and analyze the satellite signals from several navigation satellites. Calculate the location of the mobile communication device 100, such as longitude, latitude and altitude. The aforementioned navigation satellites may be GPS satellites of the United States, Galileo satellites of the European Union, and Russian (^ (^8 88 satellites or other) For the sake of explanation, the following is assuming that the communication circuit 102 is a communication circuit conforming to the 3GPP standard Wideband Code Division Multiple Access (W-CDMA), and is global. The star positioning system receiver 104 is a GPS receiver. In other words, the mobile communication device 1Q0 is a 3G mobile phone with GPS positioning function in this embodiment. Note that this is only an embodiment, not a communication circuit. 102 and the actual function of the global positioning system receiver 104. The mobile communication device with GPS positioning function has four different operation modes, which are the initial cell search mode when starting up (initial 8 200805997 cell search mode). , 〇ut-of-service mode, idle mode, and active mode during call. Unlike CDMA2000 systems, base stations in W-CDMA systems (also known as NodeBs) There is no need to synchronize with each other. Therefore, each base station in the W-CDMA system uses a unique Primary Scrambling Codes (PSC) for identification, while the client device looks for the base station and is disturbed by its master. The process of achieving code synchronization is called cell search. Base station cell search can be divided into five stages: time slot synchronization (slot synchroniz) Ic), frame synchronization and scrambling code group identification, scrambling code identification, frequency acquisition, and cell identification. The mobile communication device 100 performs a cell search operation in the initial cell search mode, the standby mode, and the active mode described above. The oscillator 106 used in the mobile communication device 1 is generally less expensive but less accurate than the oscillator used in the base station. In practice, the oscillator 106 can be implemented with a voltage controlled oscillator (VCO), such as a voltage controlled temperature compensated crystal oscillator (VCTCX0) or the like. Since the accuracy of the oscillator 106 is not as good as that of the oscillator used in the base station, the frequency of the clock signal outputted by it will be deviated. If such a frequency deviation is not corrected, the transmission performance of the communication circuit 102 may be deteriorated by the 200805997, and the communication between the mobile communication device 100 and the base station cannot be smoothly performed. Therefore, during the aforementioned cell search, the communication circuit 102 of the mobile communication device 100 corrects the oscillator '106 so that the frequency of the output of the oscillator 1〇6 is synchronized with the oscillator used by the base station. Please refer to Figure 2 for a description of the flow chart 2 of the operational example of the action in the initial fine cell search mode (9). When the mobile communication device 100 is turned on, it enters the initial cell search mode (step 210). At this time, the control unit 116 of the communication circuit 丨02 loads the initial control value Di from the non-volatile storage medium 118 (step 22A) and uses it as the digital control value DW of the digital to analog converter 120. The digital to analog converter generates a control voltage Vc according to the digital control value DW, so that the oscillator 输出6 outputs a clock signal c L κ having a preset frequency according to the control voltage V c (step 230). When the communication circuit 1〇2 receives the signal from the base station (step 240), the mixer 112 mixes the signal with the clock signal CLK which is rotated by the oscillator 1〇6 to generate a mixture. The signal Μχ, and the analog to digital conversion 114 will convert the mixed apostrophe 数 into a digital signal ds. Next, the control unit 116 performs step 25, deriving the frequency offset of the clock signal CLK output by the oscillator 106 according to the digital signal Ds, and adjusting the digital control value DW according to the frequency offset. As a result, the digital to analog converter 12〇 will adjust the control voltage 200805997

Vc的大小,進而校正振盪器106所輸出之時脈訊號clk 的頻率,使其與基地台所使用之高精度振B同步(步驟 26〇)。藉由前述的校正方式,可將振盪器1〇6之輸出頻率 的精確度提升至接近基地台所使用之振盪器的水平,使得 打動通訊裝置1〇〇可使用成本較低的振盪器1〇6來作為參 考頻率源而不會損及通訊效能。實作上,控制單元116的 功能可利用微處理器、(mieiOpn)ce贿)或數位訊號處理器 (DSP)執行適當規劃的程式來實現。 另一方面,在前述的頻率校正過程中,振盪器1〇6之 輸出時脈CLK的頻率可能會有較大的變異。因此,即使行 動通訊裝置100收到使用者或通訊網路要求全球衛星定位 系統接收器104進行定位的指令,本實施例之全球衛星定 位系統接收器104仍會處於關閉或禁能(disable)狀態, 以避免因振盪器106之輸出時脈CLK的頻率變異過大,而 發生定位錯誤或無法偵測衛星訊號的情況。等到通訊電路 1〇2將振盪器106所輸出之時脈訊號CLK的頻率調校至與 基地台的振盪器同步之後,全球衛星定位系統接收器1〇4 才會依據使用者或通訊網路的要求,開始進行定位運作(步 驟270)。」 實際上,當1T述的頻率校正程序完成(亦即振盪器1〇6 被調校至與基地台的振盪器同步)之後,振盤器廳與基 200805997 地台的振盪器之間還是可能會有頻率偏移(frequency麵) 的情況發生。這多半是因振盪器106的溫度變化、振盡器 106電路老化或是因行動通訊裝置丨⑼移動所產生的都普 勒效應(D0pplereffect)等因素所造成。通訊電路1〇2可 持續地微調振逢器106,使振|器1〇6的輸出頻率能維持 在3GPP規格所要求的鮮誤差内,以確保通話品質。 # 喷'主思,在第1圖之實施例中,通訊電路102之控制 皁元116會將數位至類比轉換器12〇之數位控制值dw 迗給決定單元108。本實施例之決定單元1〇8可用記憶體 或暫存器等各式儲存單元來實現。由前述說明可知,數位 至類比轉換器120之數位控制值DW與振盛器106所輸出 之時脈訊號CLK的頻率值兩者係互相對應。因此,全球衛 星定位系統接收器104可依據決定單元1〇8所儲存的數位 •控制值D W ’推導出振盡1 10 6所輸出之時脈訊號c L κ的 f率值,以作為進行定位計算時的依據。舉例而言,全球 術星定位系統接收器1〇4可利用預設轉換函數或是查表方 式’依據數位控制值DW求得振盪器,⑽所輸出之時脈訊 號CLK的頻率。 第3圖為全球衛星定位系統接收器104 —實施例之示 意目,在此實施例中,全球衛星定位系統接收器1〇4包括 , 一 SAW濾波器310、一低噪音放大器(LNA)320、一射頻電 12 200805997 路330 ’以及一基頻電路340,全球衛星定位系統接收器 104接收到GPS射頻訊號後,先經由SAW濾波器310及低 噪音放大器320的處理,然後輸入至射頻電路330,射頻 電路330將〇?8射頻訊號轉換成基頻訊號後輸入至基頻電 路340,射頻電路330與基頻電路340在處理訊號時皆需 要參考一時脈訊號,在此實施例中,射頻電路330與基頻 電路340所需之時脈訊號係由全球衛星定位系統接收器 _ 104外部之振盪器1〇6所提供,而基頻電路340對時脈訊 號CLK之頻率值要求較高,故基頻電路34〇可依據決定單 元1〇8所儲存的數位控制值Dw,推導出振盪器1〇6所輸 出之時脈訊號CLK的頻率值,以作為進行定位計算時的依 據。 在這樣的架構下,一旦通訊電路1〇2欲調整振盪器1〇6 之輸出時脈CLK的頻率,全球衛星定位系統接收器1〇4即 可依據決定單元108所收到的數位控制值DW,預先得知 接下來振盪器106要輸出之時脈訊號CLK的新頻率值,進 而莩握時脈訊號CLK即將發生的頻率變化,而無需利用其 他電路持續性地對時脈訊號CLK進行偵測。如此一來,當 振盪器106之輸出時脈CLK的頻率改變時,全球衛星定位 系統接收器104便可立即依據時脈訊號CLK的頻率變化對 3計算騎補償,轉得正確蚊輯算結果。全球衛 星定位系統接收H 1G4在進行前述補償時,可參考時脈訊 13 200805997 ^ 來的辦記錄,這麵勉财料於全球衛星 疋位系統接收器104内部的館存單元或是決定單元⑽, :。實作上’亦可將通訊電路1〇2之控制單元ιΐ6 ^ 出之全部或最後數個數位㈣值儲存於決定單元⑽中, 使縣球衛星定位系統接收器谢可依據該等數位控制值 求得相對應的數個頻率值。 • 在另一實施例中,若全球衛星定位系統接收器104依 據決定單元1〇8中所儲存之數位控制值,發現時脈訊號 ox即將發生的頻率變化過於劇烈(例如超過—預設變化 量),則會將定位運算暫停。這樣的做法可避免時脈訊號 頻率改變後计异所得之定位點,突然大幅偏離時脈訊 5虎CLK頻率改變前計算所得之定位點的不合理情形發生。 φ 月多考弟4圖’其係描述行動通訊裝置100在無網路 成就板式之一運作實施例的流程圖4〇〇。倘若行動通訊裝 置100離開了通訊電路102之行動通訊網路的服務範圍(例 如使用者將行動通訊裝置100帶至偏遠的郊區),或是通訊 電路102在行動通訊裝置100進入初始細胞搜尋模式後超 過一預定時間仍無法搜尋到基地台,則行動通訊裝置100 便會進入無網路訊號模式(步驟410)。進入無網路訊號模 式時’通訊電路102的控制單元116會進行一計時運作(步 驟420)。若行動通訊裝置100接收到要求全球衛星定位系 200805997 統接收器104進行定位的指令(步驟43〇),控制單元116 會從非揮發性儲存媒體H8中載入初始控制值Di以作為數 位控制值DW (步驟440)。數位至類比轉換器120則會依 據數位控制值DW產生控制電壓Vc,以控制振盪器1〇6輸 出具有預設頻率之時脈訊號CLK (步驟450)。 全球衛星定位系統接收器104則會依據決定單元1〇8 • 所儲存的數位控制值DW,獲得振盪器1〇6所輸出之時脈 訊號CLK的頻率值,並據以進行定位運作(步驟46〇)。如 流程圖400所示,在該計時運作逾時(timeout)之前(步 驟470),全球衛星定位系統接收器1〇4會持續進行定位運 作,以更新行動通訊裝置100的所在位置。在該計時運作 逾時的時候(步驟470),行動通訊裝置100會切換至初始 細胞搜尋杈式,同時全球衛星定位系統接收器1〇4的定位 _ 運作也會暫停(步驟48〇),以避免因振盪器106頻率在初 始細胞搜尋模式中有劇烈變化而造成定位運作發生錯誤。 實作上,控制單元116可於該計時運作逾時的時候,發出 逾時訊號通知全球衛星定位系統接收器104將其定位運作 暫停。 若通訊電路102在行動通訊裝置100切換至初始細胞 乂 搜尋模式後,搜尋超過一預定時間仍未找到任何基地台, • 則行動通矾裝置1〇〇會再次進入無網路訊號模式。請注 15 200805997 意’ W述步驟42G之計時運作的逾時長度設定可以是時變 5例如,打動通訊裳置1〇〇可於每次由初始細胞搜尋 ^返回無網路訊號模式時,調增步驟42G之計時運作的 =丨又°又定以降低行動通訊裝置100在無網路訊號模 初始細胞搜尋"^式之間來回切換賴率。前述調整該 二運作之逾時長度設定的方式僅係為-實施例,而非侷 ^么明之實際實施方式。另外’通訊電路102的某些元 、言2網路喊模式中的大部分時間都無需作動,故可在 兀件不需使用時將其關閉’以節省系統整體的耗電。 一第5圖所繪不為插述行動通訊襄置議在待機模式之 =作實施例的流程圖5⑽。當行動通訊裝置1⑼完成細 “臾号(cell search)後,可進入待機模式(步驟51〇),讓 電路102進入間斷接收(disc〇ntinu〇us咖响仙,DRX ) 會方式以節省電力消挺。進入待機模式時,控制單元116 / DRX什時運作(步驟52〇),其中該DRX計時運 元的逾時長度設定通常係由基地台所指定。此外,控制單 持6會將數位至類比轉換器12〇之數位控制值DW,保 106先則進行細胞搜尋時最後所使用的數值,以使振盪器 產生頻率與基地台之振盪器同步之時脈訊號CLK。 ^在待機模式中,若行動通訊裝置100接收到要求全球 俯生定位系統接收器1〇4進行定位的指令(步驟53〇),全 16 200805997 球衛生疋位系統接收器l〇4會依據先前通訊電路1〇2在進 行細胞搜尋時決定單元108所收到的最後一個數位控制值 DW’獲得振盪裔106所輸出之時脈訊號(^尺的頻率值(步 驟540),並依據所獲得的頻率值進行定位運作(步驟 550)。如流程圖500所示,在DRX計時運作逾時之前(步 驟460),全球衛星定位系統接收器1〇4會持續進行定位運 作,以更新行動通訊裝置丨〇〇的所在位置。 在DRX計時運作逾時的時候(步驟56〇),行動通訊 裝置1〇〇會啟動通訊電路102進行細胞搜尋(cellsearch) 的動作(步驟570)。此時,通訊電路1〇2之控制單元ιΐ6 會控制振I器106之輸出時脈CLK的頻率,以使通訊電路 102與基地台保持同步。倘若控制單元116並未調整振盪 益106所輸出之時脈訊號CLK的頻率(步驟58〇),全球衛 星定位系統接收器丨04會繼續進行步驟55〇之運作。若控 制單70 116有调整振盪器106所輸出之時脈訊號CLK的頻 率(步驟580),則全球導航衛星系統接收器1〇4會依據決 定單元108所收到的數位控制值DW,預先掌握時脈訊號 CLK的頻率變化,並對定位計算進行相對應的補償(步驟 590),以獲得正確的定位計算結果。 請參考第6圖,其係描述行動通訊裝置100在主動模 式之一運作實施例的流程圖600。當行動通訊裝置1〇〇進 17 200805997 行通話時,會進入主動模式(步驟610)。在行動通訊裝置 100接收到要求全球衛星定位系統接收器1〇4進行定位"的 指令前,通訊電路102之控制單元116會持續地調控振盪 器106之輸出頻率,以使通訊電路1〇2與基地台保持同步。 當行動通訊裝置1 〇 〇接收到要求全球衛星定位系統接收器 104進行定位的指令時(步驟_),全球衛星定位系統接 收器104會依據決定單元108所收到的數位控制值dw, • 獲得振盪器1〇6當前輸出之時脈訊號CLK的頻率值(步驟 630) ’並據以進行定位運作(步驟64〇)。 在主動模式中,若控制單元116所推導出之振盪器 的頻率偏差不超過預定的臨界值TH1 (步驟65〇)時,則 控制單元116便不會調整數位控制值DW,亦即不會調整 振蘯器106之頻率,以避免頻繁的調校震盈器的輸出頻 率。此時,全球衛星定位系統接收器104會繼續進行步驟 攀640之運作。 右控制單兀116於步驟650中發現振盪器1〇6的頻率 偏差超過預定臨界值TH1,則控制單元116會進一步依據 通訊電路102的通話品質來決定是否調整振盡器106之頻 率。例如,控制單το 116彳依據數位訊號Ds的位元錯誤率 (bit 論,BER )來衡量通訊電路丨〇2當前的通話品質 (步驟_)。在—實施财,若數他號DS的位元錯^ 200805997 率高於一預設值TH一BER,控制單元 人 1〇2當前的通話品質未達預設水平 d定通訊電路 制單元116便會判定通訊電路1〇2“P不佳);否則,控 設水平(亦即良好)。請注意 Z的通話品質達到預 ^ 迷判斷通訊電路1 〇2 a 乂 通活口口貝的方法僅係為一實施例,虽刖 實施方式。 卩侷限本發明之實際 若控制單元H6於步驟660中判… 的通話品質未達預設水平,則控制單=::路,當前 制值DW以校正振盪器⑽的輸 “將數位控 提升通訊電路1()2的通話品質。 '(㈣67G)’以期 接收™據決定單 仃疋位運作(步驟640)。 义倘若控制單元116於步驟660中判定通訊電路搬當 則的輕品質達到預設水平,則控制單元ιΐ6不會調整數 位控制值DW,亦即不會對振盈器1()6之輸出時脈clk的 頻率進行校正,但會進—步黯軌電路m未來的通話 品質(步驟並依據預估結果來調整步驟65〇中所使 用的預定臨界值TH1 (步驟_)。實作上,控制單元ιΐ6 可依據通訊電路102當前的功率控制指令(P_ c〇ntr〇1 command),來預估通訊電路1〇2未來的通話品質。例如, 19 200805997 若通訊電路1〇2當前的内迴路功率控制(innerl〇〇pp〇wer control) ^日々係為调降功率(d〇wn ),則控制單元116 可預估通訊電路102未來的通話品質為良好’因而調增步 驟650中所使用的預定臨界值TH1。反之,若通訊電路搬 當刖=内迴路功率控制指令係為調升功率(p_up),則 控制單元116可預估通訊電路1〇2未來的通話品質為不 因而調降步,驟65〇中所使用的預定臨界值削。請注 #意,前述預估通訊電路1〇2未來通話品f的方法僅係為一 實施例,而非侷限本發明之實際實施方式。 =前述說明可知,㈣單元116在全球衛星定位系統 U4進仃疋位運作的過程中會依據通訊電路 質來決定是否校正振I器刚之頻率並可適應 H a aptwely)調整步驟65()中所使用的預定臨界值 1H1 〇 在前揭的實施例中,由於控制單元116所輸出之數位 控制值DW與振盪器1〇6 > 數位控制值Dw料錢接收器ig4可依據 頻車佶芬“獲 所輸出之時脈訊號clk的 頻率值及其頻率變化。眚 輪出之批在只示上,數位至類比轉換器120所 輸出之控制電壓Vc盥捩湯突、〜士人 的頻率值Min,、'I 所_之㈣訊號CLK 兩者亦相互對應。因此,全球衛星㈣統接收 20 200805997 器亦可依據控制電壓Vc來獲得振盪器106所輸出之時脈飞 號CLK的頻率值及其頻率變化。 請參考第7圖,其所繪示為本發明第二實施例之具有 定位功能之行動通訊裝置700簡化後的方塊圖。行動通1 裝置700與第1圖中之行動通訊裝置1〇〇很類似,故兩^ 動通訊裝置中運作與實施方式實質上相同之元件係以同= φ 的編號表示,以便於了解。與行動通訊裝置1〇〇相同,二 動通裝置700中之振盛器1〇6係由通訊電路a〕鱼八7 衛星定位系統接收器704兩者所共用。 、王球 行動通訊裝置700與行動通訊裝置1〇〇的不同點 一,在於打動通訊襞置70〇中之決定單元7〇8的 之 與前述的決定單元1〇8不同。如第6圖所示 :方i 決定單元7〇8包含檢測單元m及儲存單元川=例4 元 元川係用來檢測數位至類比轉換器12〇戶斤輪出之 壓VC的電壓值’而儲存單元714則係.用來 ^ 1 712的檢測結果,亦即控制電壓VC的電壓值双測早 行動通訊裝置·與㈣軌裝置_㈣一不同 點,在於仃動通訊裝置7〇〇 〇 704 - 您王衣術生疋位系統接收 704係依據儲存早元714所儲存 推導出振盪器106所輸出背^ VC的電翻 才脈Λ唬CLK的頻率值,以 200805997 為進行定位計算時的依據。舉例而言,全球衛星定位系統 接收器704可利用預設轉換函數或是查表方式,依據控制 電壓Vc的電壓值求得振盪器106所輸出之時脈訊號CLK 的頻率值。 CLK進行偵測< 的頻率改變時, 定位計算進扞來 在行動通訊裝置700的架構中,一旦通訊電路1〇2之 控制單元116欲調整振盪器106之輸出時脈CLK的頻率, • 全球衛星定位系統接收器704即可依據決定單元708所收 到的控制電壓Ve,預先得知接下來振I器觸要輸出之時 脈Λ5虎CLK的新頻率值,進而掌握時脈訊號clk即將發 生的頻率變化’而無需利用其他電路持續性地對時脈訊號 疋叶鼻進行相對應的補償,以獲得正確的定位計算社 果^前述實_相仿,全_以位純減H 704°在 進行定位補償時,The size of Vc, in turn, corrects the frequency of the clock signal clk outputted by the oscillator 106 to be synchronized with the high-precision vibration B used by the base station (step 26). By the above-mentioned correction method, the accuracy of the output frequency of the oscillator 1〇6 can be raised to a level close to that of the oscillator used by the base station, so that the communication device 1 can be used to use the lower cost oscillator 1〇6. Used as a reference frequency source without compromising communication performance. In practice, the functionality of control unit 116 can be implemented using a microprocessor, (miei) or a digital signal processor (DSP) to execute a suitably programmed program. On the other hand, during the aforementioned frequency correction process, the frequency of the output clock CLK of the oscillator 1〇6 may be greatly varied. Therefore, even if the mobile communication device 100 receives an instruction from the user or the communication network to request the positioning of the global satellite positioning system receiver 104, the global positioning system receiver 104 of the present embodiment will still be in a disabled or disabled state. In order to avoid the positioning error or the inability to detect the satellite signal due to the excessive frequency variation of the output clock CLK of the oscillator 106. After the communication circuit 1〇2 adjusts the frequency of the clock signal CLK outputted by the oscillator 106 to synchronize with the oscillator of the base station, the global satellite positioning system receiver 1〇4 will be based on the requirements of the user or the communication network. , the positioning operation is started (step 270). In fact, after the frequency correction procedure described in 1T is completed (that is, the oscillator 1〇6 is tuned to synchronize with the oscillator of the base station), it is still possible between the oscillator chamber and the oscillator of the base 200805997. There will be a frequency offset (frequency plane). This is mostly due to factors such as temperature changes in the oscillator 106, aging of the oscillating device 106, or the D0ppler effect due to the movement of the mobile communication device 9(9). The communication circuit 1〇2 can continuously fine-tune the oscillator 106 so that the output frequency of the oscillator 1〇6 can be maintained within the fresh error required by the 3GPP specifications to ensure call quality. #喷' In the first embodiment, in the embodiment of Fig. 1, the control soap unit 116 of the communication circuit 102 sends the digital control value dw of the digital to analog converter 12 to the decision unit 108. The decision unit 1〇8 of the present embodiment can be implemented by various storage units such as a memory or a temporary memory. As can be seen from the foregoing description, the digital control value DW of the digital to analog converter 120 and the frequency value of the clock signal CLK output by the oscillator 106 correspond to each other. Therefore, the global satellite positioning system receiver 104 can derive the f-rate value of the clock signal c L κ outputted by the oscillation unit 1 8 6 according to the digital control value DW ' stored in the determining unit 1 8 8 as a positioning. The basis for calculation. For example, the global satellite positioning system receiver 1〇4 can determine the frequency of the clock signal CLK output by the oscillator (10) according to the digital control value DW using a preset conversion function or a look-up table method. 3 is a schematic representation of an embodiment of a global satellite positioning system receiver 104. In this embodiment, the global satellite positioning system receiver 1〇4 includes a SAW filter 310, a low noise amplifier (LNA) 320, A radio frequency 12 200805997 way 330 'and a baseband circuit 340, after receiving the GPS radio frequency signal, the global satellite positioning system receiver 104 is processed by the SAW filter 310 and the low noise amplifier 320, and then input to the radio frequency circuit 330. The RF circuit 330 converts the RF signal into a baseband signal and then inputs it to the baseband circuit 340. The RF circuit 330 and the baseband circuit 340 need to refer to a clock signal when processing the signal. In this embodiment, the RF circuit 330 The clock signal required by the baseband circuit 340 is provided by the oscillator 1〇6 external to the global satellite positioning system receiver _104, and the baseband circuit 340 requires a higher frequency value of the clock signal CLK. The frequency circuit 34 推 can derive the frequency value of the clock signal CLK output by the oscillator 1 〇 6 according to the digital control value Dw stored in the determining unit 1 〇 8 as the basis for performing the positioning calculation. . Under such an architecture, once the communication circuit 1〇2 wants to adjust the frequency of the output clock CLK of the oscillator 1〇6, the global satellite positioning system receiver 1〇4 can be based on the digital control value DW received by the decision unit 108. In advance, the new frequency value of the clock signal CLK to be outputted by the oscillator 106 is known in advance, thereby changing the frequency change of the clock signal CLK, without using other circuits to continuously detect the clock signal CLK. . In this way, when the frequency of the output clock CLK of the oscillator 106 changes, the global positioning system receiver 104 can immediately calculate the riding compensation based on the frequency change of the clock signal CLK, and convert the correct mosquito calculation result. When receiving the aforementioned compensation, the Global Positioning System (GPS) receiving H 1G4 can refer to the record of the time zone 13 200805997 ^, which is based on the library unit or decision unit (10) inside the global satellite clamp system receiver 104. , :. In practice, the total or last digits (4) of the control unit ιΐ6^ of the communication circuit 1〇2 can also be stored in the decision unit (10), so that the county satellite positioning system receiver can rely on the digital control values. Find the corresponding number of frequency values. • In another embodiment, if the global positioning system receiver 104 determines the imminent frequency change of the clock signal ox is too severe (eg, exceeds the preset change amount according to the digital control value stored in the determining unit 〇8). ), the positioning operation will be suspended. In this way, the positioning point of the time difference after the frequency change of the clock signal can be avoided, and the unreasonable situation of the positioning point calculated before the frequency change of the CLK frequency is suddenly changed. φ月多考弟4图' is a flow chart describing the operation of the mobile communication device 100 in one of the non-network achievement boards. If the mobile communication device 100 leaves the service range of the mobile communication network of the communication circuit 102 (for example, the user brings the mobile communication device 100 to a remote suburb), or the communication circuit 102 exceeds the mobile communication device 100 after entering the initial cell search mode. If the base station cannot be searched for a predetermined time, the mobile communication device 100 enters the no-network signal mode (step 410). When entering the no-network signal mode, the control unit 116 of the communication circuit 102 performs a timing operation (step 420). If the mobile communication device 100 receives an instruction to request the global satellite positioning system 200805997 receiver 104 to perform positioning (step 43A), the control unit 116 loads the initial control value Di from the non-volatile storage medium H8 as a digital control value. DW (step 440). The digital to analog converter 120 generates a control voltage Vc based on the digital control value DW to control the oscillator 1〇6 to output a clock signal CLK having a predetermined frequency (step 450). The GPS receiver 104 obtains the frequency value of the clock signal CLK output by the oscillator 1〇6 according to the digital control value DW stored in the determining unit 1〇8, and performs positioning operation accordingly (step 46). 〇). As shown in flowchart 400, prior to the timing operation timeout (step 470), the global positioning satellite receiver 1〇4 continues to perform positioning operations to update the location of the mobile communication device 100. When the timing operation expires (step 470), the mobile communication device 100 switches to the initial cell search mode, and the positioning operation of the global satellite positioning system receiver 1〇4 is also suspended (step 48〇) to Avoid erroneous positioning operations due to drastic changes in the oscillator 106 frequency in the initial cell search mode. In practice, the control unit 116 may send a timeout signal to the global positioning system receiver 104 to suspend its positioning operation when the timing operation expires. If the communication circuit 102 does not find any base station after the mobile communication device 100 switches to the initial cell 搜寻 search mode for more than a predetermined time, the mobile communication device 1 will enter the no-network signal mode again. Please note 15 200805997 meaning that the timeout setting of the timing operation of step 42G can be time-varying. For example, if the communication is set to 1st, it can be adjusted every time the initial cell search returns to the no-network signal mode. The step-by-step operation of the step 42G is further set to reduce the mobile communication device 100 to switch back and forth between the no-network signal initial cell search " The foregoing manner of adjusting the time-out length setting of the two operations is merely an embodiment, and is not an actual implementation. In addition, some of the elements of the communication circuit 102 do not need to be activated for most of the time, so the device can be turned off when it is not needed to save the overall power consumption of the system. Figure 5 is not a block diagram of the mobile communication protocol in standby mode = flowchart 5 (10) of the embodiment. When the mobile communication device 1 (9) completes the fine "cell search", it can enter the standby mode (step 51 〇), and let the circuit 102 enter the intermittent reception (disc〇ntinu〇us 咖响, DRX) to save power. When entering the standby mode, the control unit 116 / DRX operates in time (step 52 〇), wherein the timeout setting of the DRX timing unit is usually specified by the base station. In addition, the control unit 6 will be digital to analogy. The digital control value DW of the converter 12 ,, 106 is the last value used in the cell search to make the oscillator generate the clock signal CLK synchronized with the oscillator of the base station. ^ In the standby mode, if The mobile communication device 100 receives an instruction to request positioning of the global positioning positioning system receiver 1〇4 (step 53〇), and all 16 200805997 ball sanitary clamp system receivers 〇4 are in progress according to the previous communication circuit 1〇2 The last digit control value DW' received by the cell search decision unit 108 obtains the clock signal (the frequency value of the ruler) output by the oscillator 106 (step 540), and proceeds according to the obtained frequency value. Positioning operation (step 550). As shown in flowchart 500, prior to the DRX timing operation timeout (step 460), the global satellite positioning system receiver 1〇4 continues to perform positioning operations to update the mobile communication device. When the DRX timing operation expires (step 56〇), the mobile communication device 1 starts the communication circuit 102 to perform cell search (step 570). At this time, the communication circuit 1〇2 The control unit ι6 controls the frequency of the output clock CLK of the oscillator 106 to keep the communication circuit 102 synchronized with the base station. If the control unit 116 does not adjust the frequency of the clock signal CLK output by the oscillation benefit 106 (step 58)全球), the global positioning satellite receiver 丨04 will continue to operate in step 55. If the control unit 70 116 has adjusted the frequency of the clock signal CLK output by the oscillator 106 (step 580), the global navigation satellite system receives The device 1〇4 pre-masters the frequency variation of the clock signal CLK according to the digital control value DW received by the determining unit 108, and performs corresponding compensation for the positioning calculation (step 590). The correct positioning calculation result is obtained. Please refer to FIG. 6 , which is a flowchart 600 illustrating an embodiment of the mobile communication device 100 operating in an active mode. When the mobile communication device 1 enters the 17 200805997 line call, it will enter Active mode (step 610). The control unit 116 of the communication circuit 102 continuously adjusts the output frequency of the oscillator 106 before the mobile communication device 100 receives an instruction to request the global satellite positioning system receiver 1 to perform positioning. In order to keep the communication circuit 1〇2 synchronized with the base station. When the mobile communication device 1 receives an instruction to request the positioning of the global satellite positioning system receiver 104 (step _), the global positioning system receiver 104 receives the digital control value dw received by the determining unit 108, • The frequency value of the clock signal CLK currently output by the oscillator 1 〇 6 (step 630) 'and the positioning operation is performed accordingly (step 64 〇). In the active mode, if the frequency deviation of the oscillator derived by the control unit 116 does not exceed the predetermined threshold TH1 (step 65A), the control unit 116 does not adjust the digital control value DW, that is, does not adjust. The frequency of the vibrator 106 avoids frequent adjustments to the output frequency of the vibrator. At this point, the Global Positioning System Receiver 104 will continue to perform the steps 640. The right control unit 116 finds in step 650 that the frequency deviation of the oscillator 1〇6 exceeds the predetermined threshold TH1, and the control unit 116 further determines whether to adjust the frequency of the vibrator 106 according to the call quality of the communication circuit 102. For example, the control unit το 116 衡量 measures the current call quality of the communication circuit 丨〇 2 according to the bit error rate (BER) of the digital signal Ds (step _). In the implementation of the financial, if the number of the bit of the DS is wrong ^ 200805997 rate is higher than a preset value TH - BER, the control unit 1 〇 2 current call quality does not reach the preset level d the communication circuit unit 116 Will judge the communication circuit 1〇2 “P is not good”; otherwise, the control level (that is, good). Please note that the call quality of Z reaches the pre-determination of the communication circuit 1 〇 2 a For an embodiment, although the embodiment is implemented, the actual control unit H6 of the present invention determines that the call quality in step 660 is less than the preset level, then the control order =:: way, the current value DW is used to correct the oscillation. The input of the device (10) will increase the call quality of the communication circuit 1 () 2 by digital control. '((4)67G)' is expected to receive the TM decision to operate the unit (step 640). If the control unit 116 determines in step 660 that the light quality of the communication circuit is up to a preset level, the control unit ι 6 does not adjust the digital control value DW, that is, does not output to the oscillator 1 () 6 The frequency of the pulse clk is corrected, but the future call quality of the track circuit m is advanced (steps are adjusted according to the estimation result to adjust the predetermined threshold TH1 used in step 65 (step _). In practice, control The unit ιΐ6 can estimate the future call quality of the communication circuit 1〇2 according to the current power control command (P_c〇ntr〇1 command) of the communication circuit 102. For example, 19 200805997 If the communication circuit 1〇2 current inner loop power Control (innerl〇〇pp〇wer control) ^ The daytime is the power down (d〇wn), the control unit 116 can estimate the future call quality of the communication circuit 102 to be good' thus the schedule used in the step 650 is increased. The threshold TH1. Conversely, if the communication circuit is 刖=the inner loop power control command is the boost power (p_up), the control unit 116 can estimate that the future call quality of the communication circuit 1〇 is not adjusted. Step 65〇 The predetermined threshold value used in the cutting. Note that the foregoing method for estimating the communication circuit 1〇2 future call product f is merely an embodiment, and is not intended to limit the actual implementation of the present invention. (4) Unit 116 determines whether to correct the frequency of the oscillator and adapts to the predetermined threshold used in step 65() according to the quality of the communication circuit during the operation of the global positioning system U4. The value 1H1 前 In the previously disclosed embodiment, the digital control value DW outputted by the control unit 116 and the oscillator 1〇6 > the digital control value Dw the money receiver ig4 can be obtained according to the frequency of the vehicle The frequency value of the clock signal clk and its frequency change. The batch of the wheel is shown only, the control voltage Vc of the digital to analog converter 120 is output, the frequency value of the person is Min, and 'I The (four) signal CLK also corresponds to each other. Therefore, the global satellite (four) system receiving 20 200805997 can also obtain the frequency value of the clock fly CLK output by the oscillator 106 and its frequency change according to the control voltage Vc. Refer to Figure 7, which A simplified block diagram of a mobile communication device 700 having a positioning function according to a second embodiment of the present invention is shown. The mobile communication device 700 is similar to the mobile communication device 1 in the first embodiment, so that the two communication devices are similar. The elements that operate substantially the same as the embodiment are denoted by the same number as φ for easy understanding. Like the mobile communication device 1 , the vibrating device 1〇6 in the second-pass device 700 is composed of the communication circuit a] The fish 8-7 satellite positioning system receiver 704 is shared by both. The difference between the king ball mobile communication device 700 and the mobile communication device 1 is that the determination unit 7〇8 of the communication device 70〇 is activated. The aforementioned decision units 1 to 8 are different. As shown in Fig. 6, the square i decision unit 7〇8 includes the detecting unit m and the storage unit. The example 4 element is used to detect the voltage value of the voltage VC from the digit to the analog converter 12. The storage unit 714 is used for the detection result of the ^1 712, that is, the voltage value of the control voltage VC is doubled, the early mobile communication device is different from the (four) rail device _ (four), and the communication device is 仃704 - Your King's clothing system accepts the 704 system according to the storage of the early element 714 to derive the frequency value of the output of the oscillator 106 outputted by the oscillator 106, using the 200805997 as the positioning calculation. in accordance with. For example, the global positioning system receiver 704 can determine the frequency value of the clock signal CLK output by the oscillator 106 according to the voltage value of the control voltage Vc by using a preset conversion function or a look-up table. When CLK detects the frequency change of the < the positioning calculation is performed in the architecture of the mobile communication device 700, once the control unit 116 of the communication circuit 1 2 wants to adjust the frequency of the output clock CLK of the oscillator 106, • Global The satellite positioning system receiver 704 can know in advance the new frequency value of the clock Λ5 CLK of the next oscillator output according to the control voltage Ve received by the determining unit 708, thereby grasping that the clock signal clk is about to occur. The frequency change 'without the need to use other circuits to continuously compensate the clock signal 疋 leaf nose to obtain the correct positioning calculation results ^ the above real _ similar, all _ in pure reduction H 704 ° in progress When positioning compensation,

。如此一來,當振盪器1〇6之輸出時脈CLK ’全球衛星定位系統接收器704便可立即對 22 200805997 實作上,控制單元116所產生之數位控制值DW與數 位至類比轉換器12〇所產生之控制電壓vc,兩者皆可視為 通訊電路102所輸出之控制訊號。換言之,前揭實施例中 的全球衛星定位系統接收器104及704,皆係依據通訊電 路102所輸出之控制訊號來獲得振盪器1⑽所輸出之時脈 訊號CLK的頻率值,並預先掌握振盪器1〇6的頻率變化。 , 乂上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範 圍。 【圖式簡單說明】 第1圖為本發明具有定位功能之行動通訊裝置之第一實施 例簡化後的方塊圖。 第2圖為係描述第1圖之行動通訊裝置在初始細胞搜尋模 > 式之一運作實施例的流程圖。 > 第3圖為本發明之一實施例中之全球衛星定位系統接收器 之功能方塊圖。 第4圖為描述第1圖之行動通訊裝置在無網路訊號模式之 一運作實施例的流程圖。 第5圖為描述第1圖之行動通訊裝置在待機模式之一運作 實施例的流程圖。 第6圖為描述第1圖之行動通訊裝置在主動模式之一運作 23 200805997 貫施例的流程圖。 第7圖為本發明具有定位功能之行動通訊裝置之第二實施 例簡化後的方塊圖。. In this way, when the output of the oscillator 1 时 6 CLK 'Global Positioning System Receiver 704 can be implemented on 22 200805997, the digital control value DW and the digital to analog converter 12 generated by the control unit 116 can be implemented. The control voltage vc generated by the 〇 can be regarded as the control signal output by the communication circuit 102. In other words, the global satellite positioning system receivers 104 and 704 in the foregoing embodiments obtain the frequency value of the clock signal CLK outputted by the oscillator 1 (10) according to the control signal outputted by the communication circuit 102, and pre-master the oscillator. The frequency of 1〇6 changes. The above description is only the preferred embodiment of the present invention, and all changes and modifications made to the scope of the present invention should be covered by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a simplified block diagram showing a first embodiment of a mobile communication device having a positioning function according to the present invention. Figure 2 is a flow chart depicting an operational embodiment of the mobile communication device of Figure 1 in an initial cell search mode. > Figure 3 is a functional block diagram of a global satellite positioning system receiver in one embodiment of the present invention. Figure 4 is a flow chart depicting an operational embodiment of the mobile communication device of Figure 1 in a no-network signal mode. Fig. 5 is a flow chart showing an embodiment in which the mobile communication device of Fig. 1 operates in one of standby modes. Figure 6 is a flow chart depicting the operation of one of the active communication modes of the mobile communication device of Figure 1 . Figure 7 is a simplified block diagram showing a second embodiment of the mobile communication device having the positioning function of the present invention.

【主要元件符號說明】 100 、 700 行動通訊裝置 102 通訊電路 104 、 704 全球衛星定位系統接收器 106 振盪器 108 、 708 決定單元 112 混波器 114 類比至數位轉換器 116 控制單元 118 非揮發性儲存媒體 120 數位至類比轉換器 712 檢測單元 714 儲存單元 24[Main component symbol description] 100, 700 mobile communication device 102 communication circuit 104, 704 global satellite positioning system receiver 106 oscillator 108, 708 decision unit 112 mixer 114 analog to digital converter 116 control unit 118 non-volatile storage Media 120 digital to analog converter 712 detection unit 714 storage unit 24

Claims (1)

200805997 十、申請專利範圍: 一種具有定位功能之行動通訊裝置,其包含有: 一全球衛星定位系統接收器; 一通訊電路,用來輸出一控制訊號; 一振盪器,由該通訊電路與該全球衛星定位系統接收 器所共用,用來提供相對應於該控制訊號之一時 脈訊號;以及 _ 一決定單元,連接於該通訊電路與該全球衛星定位系 統接收器,用來記錄該控制訊號; 其中該全球衛星定位系統接收器係依據該決定單元所’ 記錄之該控制訊號獲得該時脈訊號之頰率值。 2·如申請專利範圍第1項所述之行動通訊裴置,其中該 通訊電路包含有一數位至類比轉換器,用來依據該控 _ 制訊號產生一控制電壓,而該振盈器係依據該控制電 壓產生該時脈訊號。 3·如申請專利範圍第1項所述之行動通訊裝置,其中該 .決定單元包含有至少-儲存單元,用以儲存該控制訊號。 4·如申請專利範圍第1項所述之行動通訊裝置,其中該 振盛器係為—壓控振盡器(VCO )。 25 200805997 5. 如申請專利範圍第1項所述之行動通訊裝置,其中該 振盪器係為一電壓控制溫度補償石英振盪器 (VCTCXO)。 6. 如申請專利範圍第1項所述之行動通訊裝置,其中該 控制訊號係為該振盪器之控制電壓。 7. 如申請專利範圍第6項所述之行動通訊裝置,其中該 決定單元會偵測並記錄該控制電壓之電壓值.,而該全 球衛星定位系統接收器係依據該決定單元所記錄之該 電壓值獲得該時脈訊號之頻率值。 8. 如申請專利範圍第1項所述之行動通訊裝置,其中該 通訊電路係利用該控制訊號校正該振盪器所產生之該 時脈訊號的頻率。 9. 如申請專利範圍第1項所述之行動通訊裝置,其中該 通訊電路係為一符合3GPP規格之W-CDMA通訊電路。 10. 如申請專利範圍第1項所述之行動通訊裝置,其中該 全球衛星定位系統接收器係為一 GPS接收器、一伽利 略(Galileo)接收器或一 GLONASS接收器。 „ 11.如申請專利範圍第1項所述之行動通訊裝置,其中該 26 200805997 決定單元會記錄該通訊電路在不同時間點所輸出之複 數個控制訊號。 12·如申請專利範圍第η項所述之行動通訊裝置,其中該 全球衛星定位系統接收器會依據該決定單元所記錄之 該複數個控制訊號對定位運作進行補償。 φ 13·如申請專利範圍第η項所述之行動通訊裝置,其中該 全球導航衛星系統接收器會依據該決定單元所記錄之 該複數個控制訊號獲得該時脈訊號即將發生的頻^化。 # 14·如申睛專利範圍第項所述之行動通訊裝置,其中若 該時脈訊號即將發生的頻率變化超過一預設變化量, 則該全球衛星定位系統接收器會將定位運作暫停。 • I5·如申請專利範圍第1項所述之行動通訊裝置,其中該 全球衛星定位系統接收器係於該通訊電路與一基地台 同步後,才開始進行定位運作。 16.如申請專利範圍第〗項所述之行動通訊裝置,其中當 邊行動通訊裝置由一無網路訊號模式(out-of-service mode)切換至一初始細胞搜尋模式(initialcellsearch " mode)時,該全球衛星定位系統接收器會暫停其定位 27 200805997 運作。 17·如申請專利範圍第16項所述之行動通訊裝置,其中當 該行動通訊裴置進入該無網路訊號模式時,該通訊電 路會進行一計時運作,而該行動通訊裝置係於該計時 運作逾時發生時,切換至該初始細胞搜尋模式。 18·如申請專利範圍第17項所述之行動通訊裝置,其中該 全球衛星定位系統接收器係於該計時運作逾時發生 時’暫停其定位運作。 19·如申請專利範圍第17項所述之行動通訊裝置,其中該 計時運作之逾時長度設定係為時變性的。 20·如申請專利範圍第1項所述之行動通訊裝置,其中當 該行動通訊裝置處於一主動模式 (active mode)且該 全球衛星定位系統接收器正進行定位運作時,若該振 盈器的頻率偏差小於一預定臨界值,則該通訊電路不 會調整該控制訊號。 21·如申請專利範圍第20項所述之行動通訊裝置,其中若 該振堡器的頻率偏差超過該預定臨界值,該通訊電路 會依據其通話品質來決定是否調整該控制訊號。 28 200805997 22. 訊裝置,其中該 的位元錯誤率來衡量其當 如申請專利範圍第21項所述 軌電路魏據紐心m 前的通話品質。 23. =請專利範圍第21項所述之行動通 忒通矾電路判定其當前的通晰 則會調整雜魏如校㈣振° $未達―預設水平, 5虎的頻率。 訊裝置,其中若 盪器所輪出之時脈訊 利關第21項所述之行動通訊装置,其中若 =電關定其#前的通話品質達到-預設水平, 訊電路會預估其未來的通話品質,並依據預估 、、、口果來调整該預定臨界值。 仏如中請專利範㈣24項所述之行動通訊裝置,其中該 通訊電路餘據其當前的功率㈣指令(p_⑽_ command),來預估未來的通話品質。 26.如申請專利範圍$ 25項所述之行動通訊裝置,其中該 功率控制指令係為一内迴路功率控制(ί·1〇〇ρ power control)指令。 27·如申請專利範圍第2〇項所述之行動通訊裝置,其中該 29 200805997 通訊電路會適應性地調整該預定臨界值。 28· 如申請專利範圍第1項所述之行動通訊裝置,其中該 通訊電路包含有: 一混波器,用來將一基地台所傳來之訊號與該時脈訊 號混合,以產生一混合訊號; 一類比至數位轉換器,用來將該混合訊號轉換成一數 位訊號; 一控制單元,用來依據該數位訊號推導出該時脈訊號 的頻率偏差,並依據該頻率偏差產生一數位控制 值;以及 數位至類比轉換器,用來依據該數位控制值產生一 控制電壓,以控制該振盪器產生該時脈訊號; 其中該控制訊號係為該數位控制值或該控制電壓。 29· —種全球衛星定位系統接收器,其包括: 振盈器’接收一控制訊號,用來提供相對於該控制 號之一時脈訊號; 决定單元,用來記錄該控制訊號;以及 一基頻電路,耦接該決定單元,該基頻電路藉由該決 疋單元以獲得該時脈訊號之頻率值。 3〇·如申請專利範圍第29項所述之全球衛星定位系統接 200805997 收器,其中該振盪器係外接於該全球衛星定位系統接 收器。 31. 如申請專利範圍第29項所述之全球衛星定位系統接 收器,其中該決定單元包含有至少一儲存單元,用以儲存 該控制訊號。 32. 如申請專利範圍第29項所述之全球衛星定位系統接 收器,其中該控制訊號係為該振盪器之控制電壓。 33. 如申請專利範圍第32項所述之全球衛星定位系統接 收器,其中該決定單元會偵測並記錄該控制電壓之電 壓值’而該基頻電路係依據該決定早元所記錄之該電 壓值獲得該時脈訊號之頻率值。 φ 34.如申請專利範圍第29項所述之全球衛星定位系統接 收器,其中該振盪器係由該全球衛星定位系統接收器 與一通訊裝置所共用。 35. —種全球衛星定位系統接收器,其包括: 一外接振盪器,接收一控制訊1虎,用來提供相對於該 控制訊號之一時脈訊號;以及 ^ 一決定單元,用來記錄該控制訊號; 31 200805997 其中該全球衛星定位系統接收器係依據該決定單元之 記錄獲得該時脈訊號之頻率值。 36. 如申請專利範圍第35項所述之全球衛星定位系統接、 收器,其中該決定單元包含有至少一儲存單元,用以儲存 該控制訊號。 37. 如申請專利範圍第35項所述之全球衛星定位系統接 收器,其中該振盪器係由該全球衛星定位系統接收器 與一通訊裝置所共用。200805997 X. Patent application scope: A mobile communication device with positioning function, comprising: a global satellite positioning system receiver; a communication circuit for outputting a control signal; an oscillator, the communication circuit and the global The satellite positioning system receiver is used to provide a clock signal corresponding to the control signal; and a decision unit is connected to the communication circuit and the global positioning system receiver for recording the control signal; The global satellite positioning system receiver obtains the cheek rate value of the clock signal according to the control signal recorded by the determining unit. 2. The mobile communication device of claim 1, wherein the communication circuit includes a digital to analog converter for generating a control voltage according to the control signal, and the oscillator is based on the The control voltage generates the clock signal. 3. The mobile communication device of claim 1, wherein the determining unit comprises at least a storage unit for storing the control signal. 4. The mobile communication device according to claim 1, wherein the vibrating device is a voltage controlled vibrator (VCO). 5. The mobile communication device of claim 1, wherein the oscillator is a voltage controlled temperature compensated crystal oscillator (VCTCXO). 6. The mobile communication device of claim 1, wherein the control signal is a control voltage of the oscillator. 7. The mobile communication device of claim 6, wherein the determining unit detects and records a voltage value of the control voltage, and the global positioning satellite receiver is recorded according to the determining unit. The voltage value obtains the frequency value of the clock signal. 8. The mobile communication device of claim 1, wherein the communication circuit uses the control signal to correct the frequency of the clock signal generated by the oscillator. 9. The mobile communication device according to claim 1, wherein the communication circuit is a W-CDMA communication circuit conforming to the 3GPP specifications. 10. The mobile communication device of claim 1, wherein the GPS receiver is a GPS receiver, a Galileo receiver or a GLONASS receiver. „ 11. The mobile communication device according to claim 1, wherein the 26 200805997 decision unit records a plurality of control signals output by the communication circuit at different time points. The mobile communication device, wherein the global positioning system receiver compensates for the positioning operation according to the plurality of control signals recorded by the determining unit. φ 13 · The mobile communication device according to claim n, The GNSS receiver obtains the upcoming frequency of the clock signal according to the plurality of control signals recorded by the determining unit. [14] The mobile communication device according to the scope of claimant patent scope, If the frequency change of the clock signal is more than a predetermined amount of change, the global positioning system receiver will suspend the positioning operation. • I5. The mobile communication device according to claim 1, wherein The global satellite positioning system receiver is only after the communication circuit is synchronized with a base station, and then the positioning operation is started. 16. The mobile communication device of claim 1, wherein the mobile communication device switches from an out-of-service mode to an initial cell search mode (initialcellsearch " mode The GPS receiver will suspend its operation 27 200805997. 17. The mobile communication device of claim 16, wherein when the mobile communication device enters the no-network signal mode, The communication circuit performs a timing operation, and the mobile communication device switches to the initial cell search mode when the timing operation occurs. 18. The mobile communication device according to claim 17, wherein the mobile communication device The GPS receiver is 'suspended its positioning operation when the timing operation expires. 19. The mobile communication device according to claim 17, wherein the time-out length of the timing operation is time-variant 20. The mobile communication device according to claim 1, wherein the mobile communication device is in a master mode (active mode) and when the global positioning system receiver is performing the positioning operation, if the frequency deviation of the vibrator is less than a predetermined threshold, the communication circuit does not adjust the control signal. The mobile communication device of claim 20, wherein if the frequency deviation of the vibrating device exceeds the predetermined threshold, the communication circuit determines whether to adjust the control signal according to the quality of the call. 28 200805997 22. The device, wherein the The bit error rate is used to measure the call quality before the track circuit is as described in item 21 of the patent application scope. 23. = Please refer to the action described in item 21 of the patent scope to determine its current ambiguity through the circuit, which will adjust the frequency of the Wei Wei (4) vibrating ° not reached - the preset level, 5 tigers. The information device, wherein if the swaying device is rotated, the mobile communication device described in Item 21, wherein if the power of the call is set to a preset level, the circuit predicts The quality of the call in the future, and the predetermined threshold is adjusted according to the estimation, and the result. For example, in the mobile communication device described in Patent (4), the communication circuit calculates the future call quality according to its current power (4) command (p_(10)_ command). 26. The mobile communication device of claim 25, wherein the power control command is an internal loop power control (ί·1〇〇ρ power control) command. 27. The mobile communication device of claim 2, wherein the 29 200805997 communication circuit adaptively adjusts the predetermined threshold. 28. The mobile communication device of claim 1, wherein the communication circuit comprises: a mixer for mixing a signal transmitted by a base station with the clock signal to generate a mixed signal. a type of analog to digital converter for converting the mixed signal into a digital signal; a control unit for deriving the frequency deviation of the clock signal according to the digital signal, and generating a digital control value according to the frequency deviation; And a digital to analog converter for generating a control voltage according to the digital control value to control the oscillator to generate the clock signal; wherein the control signal is the digital control value or the control voltage. A global satellite positioning system receiver, comprising: a vibrator to receive a control signal for providing a clock signal relative to the control number; a determining unit for recording the control signal; and a fundamental frequency The circuit is coupled to the determining unit, and the baseband circuit obtains the frequency value of the clock signal by using the determining unit. 3. The Global Positioning System (GPS) system as described in claim 29, is connected to the 200805997 receiver, wherein the oscillator is externally connected to the global satellite positioning system receiver. 31. The global positioning system (GPS) receiver of claim 29, wherein the determining unit comprises at least one storage unit for storing the control signal. 32. The global positioning satellite system as claimed in claim 29, wherein the control signal is a control voltage of the oscillator. 33. The global positioning satellite receiver as claimed in claim 32, wherein the determining unit detects and records a voltage value of the control voltage, and the base frequency circuit records the time according to the decision The voltage value obtains the frequency value of the clock signal. Φ 34. The global positioning satellite receiver of claim 29, wherein the oscillator is shared by the global positioning satellite receiver and a communication device. 35. A global satellite positioning system receiver, comprising: an external oscillator receiving a control signal to provide a clock signal relative to the control signal; and a decision unit for recording the control Signal; 31 200805997 wherein the global positioning system receiver obtains the frequency value of the clock signal according to the record of the determining unit. 36. The global positioning system (GPS) receiver of claim 35, wherein the determining unit comprises at least one storage unit for storing the control signal. 37. The global positioning satellite system receiver of claim 35, wherein the oscillator is shared by the global satellite positioning system receiver and a communication device. 十一、圖式: 32XI. Schema: 32
TW96122633A 2006-07-05 2007-06-22 Mobile communication device with positioning capability and related gps receiver TWI381711B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80661906P 2006-07-05 2006-07-05

Publications (2)

Publication Number Publication Date
TW200805997A true TW200805997A (en) 2008-01-16
TWI381711B TWI381711B (en) 2013-01-01

Family

ID=39036609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96122633A TWI381711B (en) 2006-07-05 2007-06-22 Mobile communication device with positioning capability and related gps receiver

Country Status (2)

Country Link
CN (1) CN101102570A (en)
TW (1) TWI381711B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382195B (en) * 2008-06-13 2013-01-11 Mediatek Inc Sync detection device and method for a gnss receiver
TWI424184B (en) * 2008-08-15 2014-01-21 Broadcom Corp Method and system for calibrating group delay errors in a combined gps and glonass receiver
TWI465752B (en) * 2008-02-25 2014-12-21 Sirf Techonology Inc Wireless device and power controller thereof and method for utilizing the power controller
US9261600B2 (en) 2008-08-15 2016-02-16 Broadcom Corporation Method and system for calibrating group delay errors in a combined GPS and GLONASS receiver
TWI577135B (en) * 2014-12-18 2017-04-01 英特爾智財公司 High-speed digital signal processing systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504757B (en) * 2012-08-09 2015-03-25 Nvidia Corp Reference clock calibration
US8712359B2 (en) * 2012-08-23 2014-04-29 Intel Mobile Communications GmbH Communication device and method for detecting a radio signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US6965754B2 (en) * 2001-10-09 2005-11-15 Motorola, Inc. Satellite positioning system receiver with reference oscillator circuit and methods therefor
TWM277930U (en) * 2005-02-16 2005-10-11 Microelectronics Tech Inc GPS integrated into low noise block down converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465752B (en) * 2008-02-25 2014-12-21 Sirf Techonology Inc Wireless device and power controller thereof and method for utilizing the power controller
TWI382195B (en) * 2008-06-13 2013-01-11 Mediatek Inc Sync detection device and method for a gnss receiver
TWI424184B (en) * 2008-08-15 2014-01-21 Broadcom Corp Method and system for calibrating group delay errors in a combined gps and glonass receiver
US9261600B2 (en) 2008-08-15 2016-02-16 Broadcom Corporation Method and system for calibrating group delay errors in a combined GPS and GLONASS receiver
TWI577135B (en) * 2014-12-18 2017-04-01 英特爾智財公司 High-speed digital signal processing systems

Also Published As

Publication number Publication date
TWI381711B (en) 2013-01-01
CN101102570A (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US8188917B2 (en) System and method for operating a GPS device in a micro power mode
US8064860B2 (en) Method and apparatus for adjusting reference oscillator frequency in a mobile wireless device
JP4395379B2 (en) Mobile communication using shared oscillators-compensation for frequency adjustment in location devices
TW200805997A (en) Mobile communication device with positioning capability and related GPS receiver
US7084810B2 (en) Portable terminal and GPS time keeping method
KR100726108B1 (en) System and method for frequency management in a communications positioning device
US6697016B1 (en) Self adjustment of a frequency offset in a GPS receiver
EP2256941B1 (en) Combined navigation satellite receiver/communications device
JP4607868B2 (en) Automatic frequency control processing in multichannel receivers.
US20070205939A1 (en) Apparatus and method for sharing a TCXO of a mobile terminal using a global positioning system in a mobile communication system
EP1543626B1 (en) Method of and apparatus for reducing frequency errors associated with an inter-system scan
US20110205115A1 (en) Always on GPS Device
US8725162B2 (en) Mobile communication device with positioning capability and related GPS receiver
EP1933468B1 (en) Wireless communications device providing temperature-compensated clock correction features and related methods
TWI382678B (en) Communications system using a low cost oscillator and related method thereof
US8687645B2 (en) Wireless communications device providing temperature-compensated clock correction features and related methods
JP5064358B2 (en) Reference signal generator
JP2007166091A (en) Receiving device and control method of receiving frequency