TW200804561A - Silicate fluorescent material and fabricating method thereof and light-emitting device using the same - Google Patents

Silicate fluorescent material and fabricating method thereof and light-emitting device using the same Download PDF

Info

Publication number
TW200804561A
TW200804561A TW095124431A TW95124431A TW200804561A TW 200804561 A TW200804561 A TW 200804561A TW 095124431 A TW095124431 A TW 095124431A TW 95124431 A TW95124431 A TW 95124431A TW 200804561 A TW200804561 A TW 200804561A
Authority
TW
Taiwan
Prior art keywords
light
fluorescent material
excitation
range
illuminating
Prior art date
Application number
TW095124431A
Other languages
Chinese (zh)
Other versions
TWI275629B (en
Inventor
Wei Xia
zhi-guo Xiao
Jing Xu
Guang-Xu Lin
xi-feng Wang
Original Assignee
Dalian Luminglight Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Luminglight Science & Technology Co Ltd filed Critical Dalian Luminglight Science & Technology Co Ltd
Priority to TW095124431A priority Critical patent/TWI275629B/en
Application granted granted Critical
Publication of TWI275629B publication Critical patent/TWI275629B/en
Publication of TW200804561A publication Critical patent/TW200804561A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a silicate fluorescent material that can be excited by an exciting light source from ultraviolet to green light zone and fabricating method thereof, more particularly relates to a light-emitting device of white light or multi-colors. The material have light-emitting color from blue to red color zone, and the fluorescent material is composed by aMO.bM'O.SiO2.cR:xEu.yLn.zLv, in which M is one or more elements selected from the group consisting of Sr, Ca, Ba and Zn; M' is one or more elements selected from the group consisting of Mg, Cd and Be; R is one or both elements selected from the group consisting of B2O3 and P2O5; Ln is one or more elements selected from the group consisting of Nd, Dy, Ho, Tm, La, Ce, Er, Pr, Bi, Sm, Sn, Y, Lu, Ga, Sb, Tb and Mn; Lv is one or more element irons selected from the group consisting of Cl-, F-, Br-, I- and S2-; a, b, c, x, y and z are molar coefficients.

Description

200804561 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種螢光材料,特別是指一種包括採 用半導體發光元件(led)在内的白光系及多色系發光裝置 用的螢光材料,其可以被作爲激發光源的發射光譜在240〜200804561 IX. Description of the Invention: [Technical Field] The present invention relates to a fluorescent material, and more particularly to a fluorescent device comprising a white light-based and multi-color light-emitting device using a semiconductor light-emitting device (LED) Material, which can be used as an excitation source for the emission spectrum at 240~

V 510nm的紫外一 一綠光區域的發光元件激發,吸收激發光 ’ 源的至少一部分發射光,發出420〜70〇nm範圍内,至 少有一個以上峰值在43〇〜63〇nm範圍内的發射光譜 屬於光電子和照明技術領域。 【先前技術】 I1返者弟二代半導體材料氮化嫁的突破和藍、綠、白光 發光二極體的問世,被譽爲“照亮未來的技術,,的LED (半 導體發光二極體,Light— Emitting Diode ),漸漸走進了我 們的曰常生活,並將引導我們走向更加光明的未來。以第 二代半導體材料氮化鎵作爲半導體照明光源,在同樣亮度 下耗電量僅爲普通白熾燈的1/10,壽命可以達到8萬小時 Φ 以上’ 一個半導體燈正常情況下可以使用50年以上。作爲 新型照明技術,LED以其應用靈活、綠色環保、調節方便 等諸多優點,將引發一次照明領域的革命。白光LED的出 < 現,是LED從標識功能向照明功能跨出的實質性_步。白 光LED最接近日光,更能較好反映照射物體的真實顏色。 從技術角度看,白光LED無疑是LED最尖端的技術。白光 LED的應用市場將非常廣泛。因此,迫切需要高效的營光 材料’能夠將包括LED在内的發光元件發出的紫外光到綠 5 200804561 光的光有效轉化爲可見光,從而實現白光系及多色系發光 裝置。 目前在現有技術領域,實現白光LED的方式,以通過 紫外晶片或藍光晶片激發螢光材料的方法爲主。但是,由 於受到螢光材料的限制,這些方法都存在一定的侷限性。 H 如專利 US 5998925、US 6998771、ZL00801494.9 中, 都是利用藍光晶片激發鈽啟動的稀土石榴石螢光材料(如 Y3A15012 : Ce,(Y,Gd)3 ( A卜 Ga) 5012 ·· Ce,簡稱 YAG I ;或Tb—石榴石,簡稱TAG ),通過藍光晶片激發螢光材 料發出黃光與部分藍色晶片的藍光複合出白光。這種方法 中,所使用的螢光材料在白光LED的應用和性能方面具有 很大的侷限性。首先,這種螢光材料的激發範圍在420〜 490nm的範圍内,最有效的激發在450〜470nm的範圍内, 對於紫外光區域和可見光的短波長側區域及綠光區域不激 發;其次,這種稀土石權石結構的螢光粉的發射光譜最大 只能到540nm左右,缺少紅色成分,造成白光LED的顯色 _ 指數較低。 如專利 US 6649946 、 USPA 20040135504 、 CN 1522291A、CN 1705732A、CN 1596292A、CN 1596478A、 μ US 6680569中,所涉及的是UV—藍光區域可以有效激發的 稀土啟動的氮化物或氮氧化物螢光材料。這種方法的螢光 材料的有效激發波長範園有所增加,發射範圍也可以從綠 光到紅光,但是這種營光材料的發光亮度較低,而且製造 成本較高,作爲實用化的LED螢光粉使用還有很大的偈限 6 200804561 性。 如專利USPA 6351069中所涉及的是硫化物紅色螢光材 料,這種螢光材料可以作爲補色成分加入到白光LED中, 用以彌補顯色指數,降低色溫。但是,硫化物螢光材料的 發光亮度低,雖然提高顯色指數,卻降低LED的流明效率 " ;而且,其化學穩定性和耐老化性能差,並腐蝕晶片,縮 " 短了 LED的使用壽命。 如專利 USPA20060027781 、USPA20060028122 、 | USPA20060027785中所涉及的是矽酸鹽螢光材料,但是該 材料侷限於含鋇正矽酸鹽結構,而且激發光譜在280〜 490nm,發射光譜在460〜590nm的範圍内,發光只有綠色 到黃色的範圍,也缺乏紅色光,而且發光強度較差,還無 法與YAG螢光材料相比。 如專利CN 1585141A所涉及的是鹵矽酸鹽綠色螢光材 料及焦矽酸鹽和正矽酸鹽的紅色螢光材料。該專利所述的 綠色螢光材料激發光譜較寬,但是發光顏色單一;並且所 • 述的紅色螢光材料,發光強度較弱,不能與現有的螢光粉 匹配,在實際應用中有很大的侷限性。 【發明内容】 H 因此,本發明之目的,即在提供一種矽酸鹽螢光材料 ,具有激發範圍寬( 240〜510nm),發射範圍寬( 43 0〜 630nm ),光轉換效率高,耐老化性能優異的螢光材料 〇 本發明的另一個目的是提供一種>5夕酸鹽螢光材料 7 200804561 的製造方法。 本發明的再一目的是提供一種含有本發明所述的 矽酸鹽螢光材料的發光裝置,特別涉及白光LED。 方;是’本發明矽酸鹽螢光材料的主要化學組成可用式 (1)表示: aM0· bM^ 〇. Si〇2- cR : xEu· yLn- ZLv (1) 其中M選自Sr、Ca、Ba、Zn中的一種或多種元素 的組合;Μ —選自Mg、Cd、Be中的一種或多種元素 的、、且cr ,R選自B2〇3、P2〇5中的一種或兩種成分;The illuminating element of the ultraviolet ray-green region of V 510 nm is excited to absorb at least a part of the emitted light of the excitation light source, emitting at least 420 to 70 〇 nm, and at least one of the peaks emitting in the range of 43 〇 to 63 〇 nm The spectrum belongs to the field of optoelectronics and lighting technology. [Prior Art] The breakthrough of the nitriding of the second generation semiconductor materials of I1, and the advent of blue, green and white light-emitting diodes, known as "the technology that illuminates the future, LED (semiconductor light-emitting diode, Light- Emitting Diode), gradually entering our daily life, and will lead us to a brighter future. With the second-generation semiconductor material GaN as a semiconductor illumination source, the power consumption is only ordinary at the same brightness. 1/10 of incandescent lamps, life can reach 80,000 hours Φ or more 'A semiconductor lamp can be used for more than 50 years under normal conditions. As a new lighting technology, LEDs will be triggered by its flexible application, environmental protection and convenient adjustment. A revolution in the field of lighting. The output of white LEDs is now a substantial step from the identification function to the illumination function. The white LED is closest to daylight and better reflects the true color of the illuminated object. Look, white LED is undoubtedly the most advanced technology of LED. The application market of white LED will be very wide. Therefore, there is an urgent need for efficient camping materials. Ultraviolet light emitted from a light-emitting element including an LED to green 5 200804561 Light is efficiently converted into visible light, thereby realizing a white light system and a multi-color light-emitting device. Currently, in the prior art, a white LED is realized to pass an ultraviolet wafer. Or the method of exciting the fluorescent material by the blue light wafer. However, these methods have certain limitations due to the limitation of the fluorescent material. H. For example, in the patents US 5998925, US 6998771, and ZL00801494.9, all use the blue light wafer. A rare earth garnet fluorescent material (such as Y3A15012: Ce, (Y, Gd) 3 (A Bu Ga) 5012 · · Ce, referred to as YAG I; or Tb-garnet, TAG for short) excited by erbium, excited by a blue light wafer The material emits yellow light and blue light of some blue wafers to combine white light. In this method, the fluorescent materials used have great limitations in the application and performance of white LEDs. First, the excitation of such fluorescent materials The range is in the range of 420~ 490nm, the most effective excitation is in the range of 450~470nm, for the ultraviolet region and the short-wavelength side region and the green region of visible light. Secondly, the emission spectrum of the rare earth stone weight structure of the phosphor powder can only be up to 540 nm, and the red component is lacking, resulting in a low color rendering index of the white LED. For example, patents US 6649946, USPA 20040135504, CN 1522291A, CN 1705732A, CN 1596292A, CN 1596478A, and μ US 6680569 relate to rare earth-activated nitride or oxynitride phosphors that are effectively excited by the UV-blue region. The effective excitation wavelength of the fluorescent material of this method is increased, and the emission range can also be from green light to red light, but the light-emitting material of the camping material has low luminance and high manufacturing cost, and is practical. LED phosphor powder has a great limit 6 200804561 sex. For example, in the patent USPA 6351069, a sulfide red fluorescent material is used, which can be added as a complementary color component to a white LED to compensate for the color rendering index and lower the color temperature. However, the fluorescein fluorescent material has a low luminance, and although the color rendering index is improved, the lumen efficiency of the LED is lowered. Moreover, its chemical stability and aging resistance are poor, and the wafer is etched, and the LED is shortened. Service life. For example, the patents USPA20060027781, USPA20060028122, and USPA20060027785 refer to a phthalate fluorescent material, but the material is limited to a ruthenium phthalate-containing structure, and the excitation spectrum is in the range of 280 to 490 nm, and the emission spectrum is in the range of 460 to 590 nm. The light is only in the range of green to yellow, and it lacks red light, and the luminous intensity is poor, and it cannot be compared with the YAG fluorescent material. For example, patent CN 1585141A relates to a hafnium phthalate green fluorescent material and a red fluorescent material of pyroantimonate and orthosilicate. The green fluorescent material described in the patent has a wide excitation spectrum, but the luminescent color is single; and the red fluorescent material described has a weak luminescence intensity and cannot be matched with the existing fluorescent powder, and has a large practical application. Limitations. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a phthalate fluorescent material having a wide excitation range (240 to 510 nm), a wide emission range (43 0 to 630 nm), high light conversion efficiency, and aging resistance. A fluorescent material excellent in performance 〇 Another object of the present invention is to provide a method for producing a >5 bismuth silicate fluorescent material 7 200804561. It is still another object of the present invention to provide a light-emitting device comprising the phthalate fluorescent material of the present invention, and more particularly to a white LED. The main chemical composition of the phthalate fluorescent material of the present invention can be expressed by the formula (1): aM0· bM^ 〇. Si〇2- cR: xEu· yLn- ZLv (1) wherein M is selected from Sr, Ca a combination of one or more of Ba, Zn; Μ - one or more elements selected from the group consisting of Mg, Cd, and Be, and cr, R being selected from one or both of B2〇3, P2〇5 ingredient;

Ln 爲 Nd、Dy、Ho、Tm、La、Ce、Er、Pr、Bi、Sm 、Sn、Y、£u、6a、Sb、Tb、Mn中一種或多種元素 的組合;Lv選自C1_、F-、Br-、「、s2—中的一種 或多種元素離子的組合;a、b、C、d、x、y、z爲莫 耳係數,0.5$ as 5·0 ; 0$ 3.0 ; OS eg 〇·5 ; 〇·〇〇1$χ$〇·2; 〇^υ$〇·5; 〇$ζ<0·5;其中 i< (a + b ) $ 6,且當(a + b ) = 2時,M /共Mg ;該材料 可以被做爲激發光源的發射光譜在240〜510nm的紫外一 一綠光區域的發光元件激發,吸收激發光源的至少一部分 务射光,發出420〜7OOnm範圍内,至少有一個以上 峰值在430〜63Onm範圍内的發射光譜,可呈現藍、 麗綠、綠、黃綠、黃、黃紅、紅、白顏色的發光。 根據本發明的一種優選方案的矽酸鹽螢光材料,其中 爲了獲得藍色發光,當K ( a + b) < 2,且a> b時, 〇.5^a^l.5^ 〇.4^b^l.〇,O^c^O.5^ 0.001^x^ 200804561 0.2,0$yS〇.5,0$ζ<0·5,且 M^Ca;當 2<(a + b) $4,且 agb 時,1·0$ 2,1·0$ 2·0 , 0SC$0.5,0·001$χ$0·2,0$y$0.5,0Sz<0.5 ο 根據本發明的一種優選方案的矽酸鹽螢光材料,其中 " 爲了獲得藍綠色發光,1 < ( a + b ) < 2,且a > b時,Ln is a combination of one or more of Nd, Dy, Ho, Tm, La, Ce, Er, Pr, Bi, Sm, Sn, Y, £u, 6a, Sb, Tb, Mn; Lv is selected from C1_, F -, Br-, ", s2 - a combination of one or more element ions; a, b, C, d, x, y, z are the molar coefficients, 0.5 $ as 5 · 0; 0 $ 3.0; OS eg 〇·5 ; 〇·〇〇1$χ$〇·2; 〇^υ$〇·5; 〇$ζ<0·5; where i< (a + b ) $ 6, and when (a + b ) = 2, M / a total of Mg; the material can be used as an excitation spectrum of the excitation source in the UV-green region of the 240 ~ 510nm light-emitting element excitation, absorbing at least a part of the excitation light source, emitting 420 ~ 7OOnm range Within, there is at least one emission spectrum with a peak in the range of 430 to 63 Onm, which can exhibit luminescence of blue, green, green, yellowish green, yellow, yellow red, red, and white colors. According to a preferred embodiment of the present invention An acid salt fluorescent material in which, in order to obtain blue light emission, when K ( a + b) < 2, and a > b, 〇.5^a^l.5^ 〇.4^b^l.〇, O^c^O.5^ 0.001^x^ 200804561 0.2,0$yS〇.5,0$ζ<0·5, and M^Ca; when 2≪(a + b) $4, and agb, 1·0$ 2,1·0$ 2·0 , 0SC$0.5,0·001$χ$0·2,0$y$0.5,0Sz<0.5 ο according to this A preferred embodiment of the phthalate phosphor material, wherein < (a + b) < 2, and a > b, in order to obtain blue-green luminescence,

" 0.5$ 1·5,0.4$ 1·0,0$ 0·5,0.001S 0.2,0$ y $ 0.5,OS z< 0.5,且Ca元素的莫耳含量 I 與Sr元素莫耳含量的比值在0.2〜0.5之間。 根據本發明的一種優選方案的矽酸鹽螢光材料,其中 爲了獲得綠色發光,當1 < ( a + b ) < 2時,0.5 S 1.5,0.2$bS1.0,OScSO.5,0.001$x$0.2,0Sy S 0.5,OS z< 0.5,且Ca元素的莫耳含量與Si*元素 莫耳含量的比值在〇·6〜1·5之間;當2< ( a + b) $ 5 時,0.5SaS3.0,0$b$3.0,OScSO.5,0.001S χ$〇·2,0$yS0.5,0$ζ<0·5。 • 根據本發明的一種優選方案的矽酸鹽螢光材料,其中 爲了獲得黃綠色發光,當1 < ( a + b) < 2時,0.5$ a gl.5,0SbS1.0, 0$cS0.5, 0.001 ^ x ^ 0.2 ^ 0 e $ y S 0.5,0$ z< 0.5,且Ca元素的莫耳含量與Sr元 素莫耳含量的比值在2.8〜3·3之間;當2< (a+b) $6,且 時,1.5$a$3,0$b$3.0,0Sc$0.5 ,0·001$χ$0·2,0Sy$0.5,0$ζ<0·5 ;當(a+b )=2 時,1 $ 2,0$ b S 1.0,0$ 0.5,0.001 $ 200804561 〇$ 〇·5,且當 b妾 0 時,ΜΤ Sr元素的莫耳含1與Ba元素莫 耳含量的比值在〇 · 8〜1 · 6之間" 0.5$ 1·5,0.4$ 1·0,0$ 0·5,0.001S 0.2,0$ y $ 0.5,OS z< 0.5, and the molar content I of Ca and the molar content of Sr The ratio is between 0.2 and 0.5. A phthalate fluorescent material according to a preferred embodiment of the present invention, wherein 1 < ( a + b ) < 2, 0.5 S 1.5, 0.2 $ bS 1.0, OScSO. 5, 0.001 $x$0.2,0Sy S 0.5,OS z< 0.5, and the ratio of the molar content of Ca element to the molar content of Si* element is between 〇·6~1·5; when 2< ( a + b) $ 5 When, 0.5SaS3.0, 0$b$3.0, OScSO.5, 0.001S χ$〇·2,0$yS0.5,0$ζ<0·5. • A phthalate fluorescent material according to a preferred embodiment of the present invention, wherein in order to obtain yellow-green luminescence, when 1 < ( a + b) < 2, 0.5 $ a gl. 5, 0 SbS 1.0, 0$ cS0.5, 0.001 ^ x ^ 0.2 ^ 0 e $ y S 0.5,0$ z< 0.5, and the ratio of the molar content of Ca element to the molar content of Sr element is between 2.8 and 3. 3; when 2 < (a+b) $6, and, at the time, 1.5$a$3,0$b$3.0,0Sc$0.5,0·001$χ$0·2,0Sy$0.5,0$ζ<0·5; when (a+b)= 2,1 $ 2,0$ b S 1.0,0$ 0.5,0.001 $ 200804561 〇$ 〇·5, and when b妾0, the ratio of the molar content of ΜΤSr element to the molar content of Ba element is 〇· 8~1 · 6

根據本發明的一種優選方案的矽酸鹽螢光材料,其中 爲了獲得黃色發光,當1< (a+b) <2時,0.5S'aS 1.5,〇.4$b‘i.〇,〇‘c€〇 5 ’ 〇·〇〇ι$χ$〇·2’ 〇‘y $ 0·5,〇$ z< 〇·5,且 Sr ;當 2< ( a + b) $ 6, 且 a$b 時,2‘a$4,〇$b$3.〇’ 〇Sc$CL5’ 0.001A phthalate fluorescent material according to a preferred embodiment of the present invention, wherein, in order to obtain yellow luminescence, when 1 < (a + b) < 2, 0.5 S'aS 1.5, 〇.4 $ b'i. 〇'c€〇5 ' 〇·〇〇ι$χ$〇·2' 〇'y $ 0·5, 〇$ z< 〇·5, and Sr ; when 2< ( a + b) $ 6, and When a$b, 2'a$4, 〇$b$3.〇' 〇Sc$CL5' 0.001

$x$CL2,〇‘y$CL5,0$z<〇·5,·當(a+b) = 2 時 ,l$a$2,0‘bSl.O,0$c‘〇.5,〇.〇01$x$〇.2, 0$y$0.5,〇‘ζ<0·5,且當 b弇 〇 時,^Mg,當 b=〇時,Sr元素的莫耳含量與BaS素莫耳含量的 比值在1·8〜2.2之間。 根據本發明的一種優選方案的石夕酸鹽螢光材料,其中$x$CL2,〇'y$CL5,0$z<〇·5,·When (a+b) = 2, l$a$2,0'bSl.O,0$c'〇.5,〇 .〇01$x$〇.2, 0$y$0.5,〇'ζ<0·5, and when b弇〇, ^Mg, when b=〇, the molar content of Sr element and BaS elemental The ratio of the contents is between 1.8 and 2.2. A luminescent acid material according to a preferred embodiment of the present invention, wherein

〇·2,〇$ y $ 〇·5 关Mg,當b = o時 爲了獲得黃紅色發光,2 < ( a + b ) $ 5 ’且a > b時, l.〇$a$3.〇,〇$b‘2.0,〇‘c‘〇·5’ 〇·0〇ι$χ$〇7 ,〇SyS0.5,〇^z<0.5 ,且 Sr*/或(^元素的莫 耳含量大於Ba元素的莫耳含量。 其中 5 a ξ ’ 〇$ 根據本發明的〆種優選方案的矽酸鹽螢先材料, 爲了獲得紅色發光,當1< (a+b) <:1·5時,〇·2 1.2,0.2$ ι·2,〇$ eg 0·5 ,0·001 $ 〇·2 y $ 0.5,0$ ζ< 〇·5 ;當 1.5 < ( a + b ) < 2 時,〇 δ 1.8,0.5$ 1.8,〇$ 0.5,0·001 g xg 〇 g y $ 0.5,0$ z< 〇·5 ;當 2< ( a + b ) $ 5 時, ίο 200804561 a^3.0^ 1.0^b^3^ 0^c^〇.5» 〇.〇〇l^x^0.2* y^0.5^0 ^z<0.5 〇 根據本發明的一種優選方案的矽酸鹽螢光材料,其中 所述的石夕g久鹽赏光材料被在24〇〜η 〇nm範圍内的具有發 射峰的激發光源的光激發,並且螢光材料的發射峰波長大 於激發光源的長波側發射峰的波長。〇·2, 〇$ y $ 〇·5 Off Mg, in order to obtain a yellow-red glow when b = o, 2 < ( a + b ) $ 5 ' and a > b, l.〇$a$3. 〇,〇$b'2.0,〇'c'〇·5' 〇·0〇ι$χ$〇7 ,〇SyS0.5,〇^z<0.5, and Sr*/or (^ elemental molar content More than the molar content of the Ba element. wherein 5 a ξ ' 〇 $ according to the preferred embodiment of the present invention, the bismuth fluorite precursor material, in order to obtain red luminescence, when 1 < (a + b) <: 1 · 5 Time, 〇·2 1.2, 0.2$ ι·2, 〇$ eg 0·5 , 0·001 $ 〇·2 y $ 0.5,0$ ζ<〇·5; when 1.5 < ( a + b ) < 2, 〇δ 1.8, 0.5$ 1.8, 〇$ 0.5,0·001 g xg 〇gy $ 0.5,0$ z<〇·5; when 2< ( a + b ) $ 5, ίο 200804561 a^3.0 ^ 1.0^b^3^ 0^c^〇.5» 〇.〇〇l^x^0.2* y^0.5^0 ^z<0.5 矽 a phthalate fluorescent material according to a preferred embodiment of the present invention, The Shishi g long salt light-receiving material is excited by the light of the excitation light source having an emission peak in the range of 24 〇 to η 〇 nm, and the emission peak wavelength of the fluorescent material is larger than the long-wave side of the excitation light source. The wavelength of the emission peak.

在本發明中,通過精細調整矽酸鹽螢光材料的鹼土金 屬Μ和/或的含量與組合來實現螢光材料的寬激發峰 矛t射峰的波長。稀土離子能級間的躍遷特徵與晶體結構 有著明頒的依賴關係、,通過運用這種關係調節稀土離子的 :收或毛射波長而形成不同顏色的發光。特別是對於激發 ▼在5G 51Gnm範圍内的波長,是本發明中特別涉及的適 用于白光LED照明的半導體晶片的螢光材料激發波長範圍 3 ^ 种所使用的Eu、離子,在晶體中所處的晶體 :衣兄對其5d能態和4f-Sd躍遷的影響非常明顯,躍遷的 最大吸收和發射中心的位置隨著基質晶袼環境的變化而發 生明_的變化,發射波長可以從紫外到紅絲域内精細調 節變化。且通過精細調整料鹽螢練料的驗土金屬Μ和/ 或Μ的含量與組合,使在某些異質同晶系列化合物中, 使^射中心位置可以隨基質化學組成的變化有規律的向長 波或短波方向移動。在本發明中,利用電荷遷移(cts)躍遷 l、fi部分填充的4f殼層時,在光譜中產生較寬的電 何d,使嗜帶的位置隨著環境的變化而變化。 11 200804561 另外’銪離子的濃度變化影響本發明中的螢光粉的發 射光的主峰位置移動。通過調整Eu、Ln離子的濃度比例也 可以精細的調節螢光材料的發射光的主峰位置。 本發明中引入Ln的目的是,利用稀土離子間的能量傳 ^ 遞,即當發光中心被激發後,激發能可以從發光體的某一 處傳到另一處,或從一個發光中心傳到另一個發光中心, «而狻付具有高亮度的螢光材料。本發明中所涉及的Ln離 子如Mn、Ce、Bi等離子可以和Eu離子間發生高效的無輻 | 射能量傳遞。 製造本發明的矽酸鹽螢光材料時,所用原料爲表 示式(1 )中各元素的化合物,一般選用原料中,M 、Μ / 、Ln、Eu的化合物是分別用它們所代表元素 的碳酸鹽、硫酸鹽、硝酸鹽、碟酸鹽、>5朋酸鹽、醋酸 鹽、草酸鹽、檸檬酸鹽或其氧化物、氫氧化物、鹵化 物;Si的化合物是使用Si〇2、矽酸、矽膠、秒酸鹽 或氮化矽;R是硼、磷的化合物;所用原料中元素莫 鲁 耳配比爲: Μ : 0.5〜5 ; Μ / : 0〜3·〇 ; Si : hO ; R : 〇〜〇 5 ;Eu : 0.001 〜0.2 ; Ln : 0〜〇·5 ; Lv : 〇〜〇·5 ; ‘其中:Μ代表Sr、Ca、Ba、ζη中的一種或多種 元素的化合物; 1VT代表Mg、Cd、Be中的一種或多種元素的 化合物; R代表B、P中的一種或兩種元素的化合物;In the present invention, the wavelength of the broad excitation peak of the fluorescent material is achieved by finely adjusting the content and combination of the alkaline earth metal lanthanum and/or of the phthalate fluorescent material. The transition characteristics between the energy levels of rare earth ions have a well-defined dependence on the crystal structure. By using this relationship, the light emission of different colors is formed by adjusting the wavelength of the rare earth ions. In particular, for the wavelength of the excitation ▼ in the range of 5G 51Gnm, the excitation wavelength range of the fluorescent material of the semiconductor wafer suitable for white LED illumination, which is particularly involved in the present invention, is 3^, which is used in the crystal. The crystal: the influence of the brother on its 5d energy state and 4f-Sd transition is very obvious, the maximum absorption and emission center position of the transition changes with the change of the substrate crystal environment, and the emission wavelength can be from ultraviolet to Fine adjustment changes in the red silk domain. And by finely adjusting the content and combination of the soil strontium and/or strontium of the soil salt fluorescing material, in some heterogeneous crystal series compounds, the position of the center of the chemistry can be regularly changed with the change of the chemical composition of the matrix. Long or short wave direction moves. In the present invention, when a 4f shell layer partially filled with a charge transfer (cts) transition l, fi is used, a wider electric charge d is generated in the spectrum, so that the position of the taste band changes with the environment. 11 200804561 Further, the change in the concentration of strontium ions affects the shift of the main peak position of the emitted light of the phosphor powder in the present invention. The main peak position of the emitted light of the fluorescent material can also be finely adjusted by adjusting the concentration ratio of the Eu and Ln ions. The purpose of introducing Ln in the present invention is to utilize energy transfer between rare earth ions, that is, when the luminescent center is excited, the excitation energy can be transmitted from one place to another or from one illuminating center. Another illuminating center, «and pays for fluorescent materials with high brightness. The Ln ions involved in the present invention, such as Mn, Ce, Bi, etc., can generate highly efficient radiation-free energy transfer between Eu ions and Eu ions. When the phthalate fluorescent material of the present invention is produced, the raw material used is a compound representing each element in the formula (1), and generally, the compound of M, Μ / , Ln, Eu is used as the carbonic acid of the element represented by the element. Salt, sulfate, nitrate, dish salt, >5 pate, acetate, oxalate, citrate or its oxide, hydroxide, halide; Si compound is Si 2 Niobic acid, tannin, sec-second or tantalum nitride; R is a compound of boron and phosphorus; the elemental molar ratio of the raw materials used is: Μ: 0.5~5; Μ / : 0~3·〇; Si : hO ; R : 〇 ~ 〇 5 ; Eu : 0.001 ~ 0.2 ; Ln : 0 ~ 〇 · 5 ; Lv : 〇 ~ 〇 · 5 ; ' Among them: Μ represents a compound of one or more of Sr, Ca, Ba, ζη ; 1VT represents a compound of one or more elements of Mg, Cd, Be; R represents a compound of one or both of B, P;

Si代表Si的化合物; 12 200804561Si represents a compound of Si; 12 200804561

Ell代表Eu的化合物;Ell represents a compound of Eu;

Ln 代表 Nd、Dy、Ho、Tm、La、Ce、Er、Pr、Ln stands for Nd, Dy, Ho, Tm, La, Ce, Er, Pr,

Bi、Sm、Sn、Y、Lu、Ga、Sb、Tb、Mix 中一種或多 種元素的化合物;a compound of one or more of Bi, Sm, Sn, Y, Lu, Ga, Sb, Tb, Mix;

Lv代表C1、F、Br、I、s中的一種或多種元素 ^ 的化合物; ^ 其製作工勢爲高溫固相反應法,將各元素的原料 按莫耳配比稱取,混合均勻,將混合物料先在氧化氣 • 氛下7〇〇ell〇(rC燒結2〜6小時,再於還原氣氛下( 還原氣氛爲氫氣、氨氣、氮氣和氫氣或碳粒存在下, 也可以在上述氣氛下,遂含有不超過i 〇 %的硫化氫 ()),根據爐體容量和物料重量和物料種類及配 方的不同在1000-1300C燒成溫度下,燒結2〜6小時Lv represents a compound of one or more of C1, F, Br, I, s; ^ The working force is a high-temperature solid-phase reaction method, and the raw materials of each element are weighed according to the molar ratio, and uniformly mixed. The mixture is first sintered in an oxidizing gas atmosphere at 7 〇〇 〇 (rC for 2 to 6 hours, and then in a reducing atmosphere (the reducing atmosphere is hydrogen, ammonia, nitrogen, hydrogen or carbon particles, or in the above atmosphere). Next, bismuth contains no more than i 〇% of hydrogen sulphide ()), according to the furnace capacity and material weight and material type and formulation, at 1000-1300C firing temperature, sintering 2~6 hours

本發明的製造方法爲氧化、還原二段式反應。這 種製造方法有利於稀土啟動劑離子在矽酸鹽螢光材料 中的擴散,而且易於螢光材料的晶體長大。 爲了提高材料的品質,可在原料中加入少量(不 超過原料重量30% )的其他化合物,如NH4Ci, nh4f,(NH4)2HP〇4,葡萄糖,尿素,,c仏, ZnF2, ZnS’ SiS,CaS,SrS〇4, _ρ〇4 或 CaHp〇4、The production method of the present invention is an oxidation and reduction two-stage reaction. This manufacturing method facilitates the diffusion of rare earth promoter ions in the phthalate fluorescent material and facilitates crystal growth of the fluorescent material. In order to improve the quality of the material, a small amount (not more than 30% by weight of the raw material) of other compounds such as NH4Ci, nh4f, (NH4)2HP〇4, glucose, urea, c仏, ZnF2, ZnS' SiS may be added to the raw material. CaS, SrS〇4, _ρ〇4 or CaHp〇4,

Li2C〇3參與固相反應。燒結後,經冷卻、粉碎、過篩 工序,根據使用要求,篩分成各級粒徑材料。 本發明還涉及一種發光裝置 具有做爲激發光源的 13 200804561 發光元件,及能夠將激發光源的至少一部分光轉換的 螢光材料,其中: 發光元件的發射光譜峰值在24〇〜51〇ηηι的紫外一 一綠光區域範圍内,以及將至少一部分所述的發光元件的 第一發光光譜的波長轉換成至少有一個以上的峰值波長處 於430〜63〇nm波長範圍内的第二發射光譜的螢光材 一 料的發光裝置,其中的螢光材料至少有一種以上爲本 發明任何一種的矽酸鹽螢光材料。 • 根據本發明的一種優選方案的發光裝置,做爲激發 光源的發光元件在螢光材料吸收發光元件的24〇〜 510nm的紫外一一綠光區域範圍内至少具有1個以上的發 光蜂波長。 根據本發明的一種優選方案的發光裝置,發光元件的 杳光層是氮化物半導體、或具有含In的氮化物半導體。 根據本發明的一種優選方案的發光裝置,所使用的螢 光材料爲本發明的任何一種矽酸鹽螢光材料。 • 根據本發明的-種優選方案的發光裝置,做爲激發 、 光源的發光元件的發射光譜峰值在紫外光範圍内,所使 用的螢光材料爲本發明的矽酸鹽螢光材料的一種或兩種以 • 上的組合;螢光材料吸收激發光源的和/或組合中其他螢光 粉的至少一部分發光,將至少一部分發光元件的發光光譜 的波長轉換成不同的至少有一個以上的峰值波長處於43〇 〜630jim波長範圍内的發射光譜以獲得混合後的白光 或I光、或監綠光、或綠光、或黃綠光、或黃光、或黃 14 200804561 紅光、或紅光。 根據本發明的一種優選方案的發光裝置,做爲激發 光源的發光元件的發射光譜峰值在藍光到綠光的範圍内 ’所使用的螢光材料爲本發明的矽酸鹽螢光材料的一種或 兩種以上的組合;螢光材料吸收激發光源的和/或組合中其Li2C〇3 participates in the solid phase reaction. After sintering, it is cooled, pulverized, and sieved, and sieved into particles of various sizes according to the requirements of use. The invention also relates to a light-emitting device having a light-emitting element as an excitation light source, and a fluorescent material capable of converting at least a part of the light source of the excitation light source, wherein: the emission spectrum of the light-emitting element has a peak value of ultraviolet light of 24 〇 51 51 〇 ηηι And converting the wavelength of the first illuminating spectrum of at least a portion of said illuminating elements into a fluorescing of at least one second emission spectrum having a peak wavelength in the wavelength range of 430 to 63 〇 nm; A luminescent device of the same material, wherein at least one of the phosphor materials is a phthalate phosphor material of any of the invention. A light-emitting device according to a preferred embodiment of the present invention, wherein the light-emitting element as the excitation light source has at least one or more light-emitting bee wavelengths in a range of 24 to 510 nm of the ultraviolet-green light region of the fluorescent material absorbing light-emitting element. According to a preferred embodiment of the present invention, the light-emitting layer of the light-emitting element is a nitride semiconductor or a nitride semiconductor containing In. According to a preferred embodiment of the light-emitting device of the present invention, the fluorescent material used is any of the phthalate fluorescent materials of the present invention. According to a preferred embodiment of the present invention, the emission spectrum of the light-emitting element of the excitation source is in the ultraviolet range, and the fluorescent material used is one of the phthalate fluorescent materials of the present invention or a combination of two or more; the fluorescent material absorbs at least a portion of the illumination of the excitation source and/or other phosphors in the combination, converting at least a portion of the wavelength of the illumination spectrum of the illumination element to a different one or more peak wavelengths An emission spectrum in the wavelength range of 43 〇 to 630 jim to obtain mixed white light or I light, or green light, or green light, or yellow green light, or yellow light, or yellow 14 200804561 red light, or red light. According to a preferred embodiment of the present invention, the luminescent device used as the excitation light source has an emission spectrum peak in the range of blue to green light. The fluorescent material used is one of the phthalate fluorescent materials of the present invention or a combination of two or more; the fluorescent material absorbs the excitation source and/or the combination thereof

他螢光粉的至少一部分發光,將至少一部分發光元件的發 光光%的波長轉換成不同的至少有一個以上的摩值波長處 於430〜63 0nm波長範圍内的發射光譜以獲得混合後 的白光、或藍光、或藍綠光、或綠光、或黃綠光、或黃光 、或黃紅光、或紅光。 根據本發明的一種優選方案的發光裝置,所使用的螢 光材料,還含有同本發明的一種以上的矽酸鹽螢光材料 一同使用的第二螢光材料,和/或第三螢光材料,和/ 或第四螢光材料;該第二螢光材料,和/或第三螢光 材料,和/或第四螢光材料將來自激發光源的光=一 部分,和/或來自本發明的矽酸鹽螢光材料的光的至少一 部分波長轉換’並具有在藍光到紅光的可見光區域内具有 至少一個發射峰波長的發光光譜。 根據本發明的-種優選方案的發光裝置,做爲气發 光源的發光元件的發射光譜峰值在紫外光的範圍内,; 自本發明石夕酸鹽螢光材料的至少一部分光、來自第二 材料和/或第三螢光材料和/或第 ^ 步W忠先材料的光的至 >、兩束以上的光混合以獲得白光、或藍光、或、 或綠光、或黃綠光、或黃光、或黃紅光、或紅光。 15 200804561 根據本發明的一種優選方案的發光裝置,做爲激發 光源的發光元件的發射光譜峰值在藍光到綠光的範圍内 ,來自激發光源的至少一部分光、來自本發明矽酸鹽螢光 材料的至少一部分光、來自第二螢光材料和/或第三螢光 材料和/或第四螢光材料的光的至少兩束以上的光混 合以獲得白光、或藍光、或藍綠光、或綠光、或黃綠光、 或黃光、或黃紅光、或紅光。 根據本發明的一種優選方案的發光裝置,其中的第 二螢光材料和/或第三螢光材料和/或第四螢光材料爲 •接雜稀土啟動的氮氧化物螢光粉、和/或摻雜稀土 啟動的氮化物螢光粉、和/或摻雜稀土啟動的鹵矽酸 鹽螢光粉、和/或摻雜稀土啟動的石榴石結構的螢光 卷、和/或摻雜稀土啟動的硫化物螢光粉、和/或摻雜 稀土啟動的氧化物螢光粉、和/或摻雜稀土啟動的琉 氧化物螢光粉、和/或摻雜稀土啟動的銘酸鹽螢先粉 、和/或掺雜Μη啟動的氟砷(鍺)酸鎂螢光粉、和/ 或接雜稀土啟動的硼酸鹽螢光粉、和/或摻雜稀土啟 動的%酸鹽螢光粉、和/或摻雜稀土啟動的鹵磷酸鹽 赏光粉、和/或摻雜稀土啟動的鈦酸鹽螢光粉、和/或 格雜稀土啟動的硫代鎵酸鹽螢光粉。 根據本發明的一種優選方案的發光裝置,其中的第 一邊光材料和/或第三螢光材料和/或第四螢光材料將 來自激發光源的光的一部分,和/或來自本發明矽醆鹽 赏光材料的光的至少一部分波長轉換,並具有在藍光到紅 16 200804561 光的可見光區域内具有至少―個發射峰的發光光譜。 根據本發明的一種優選方案的發光裝4,發光裝置是 -種螢光材料直接或間接與晶片接觸的發光轉換 LED。 根據本發明的—種優選方案的發光裝£,發光裝置是 包含至少一個使用螢光材料的lED的照明裝置。 本心月中佘光材料的激發光譜和發射光譜採用F- 4500 螢光光譜儀測試。At least a portion of the phosphor powder emits light, converting at least a portion of the wavelength of the illuminating light of the illuminating element into a different emission spectrum having at least one wavelength range of 430 to 63 nm, to obtain mixed white light, Or blue light, or blue-green light, or green light, or yellow-green light, or yellow light, or yellow red light, or red light. According to a preferred embodiment of the present invention, the luminescent device further comprises a second luminescent material, and/or a third luminescent material, for use with more than one phthalate phosphor of the present invention. And/or a fourth fluorescent material; the second fluorescent material, and/or the third fluorescent material, and/or the fourth fluorescent material will have a portion of the light from the excitation source, and/or from the present invention At least a portion of the light of the phthalate phosphor material is wavelength converted 'and has an emission spectrum having at least one emission peak wavelength in the visible region of the blue to red light. According to a preferred embodiment of the present invention, the emission spectrum of the light-emitting element as the gas-emitting source is in the range of ultraviolet light, and at least a portion of the light from the phosphoric acid material of the present invention is from the second The material and/or the third fluorescent material and/or the light of the first loyalty material are mixed with > two or more lights to obtain white light, or blue light, or, or green light, or yellow-green light, or yellow. Light, or yellow red, or red light. 15 200804561 A light-emitting device according to a preferred embodiment of the present invention, the emission spectrum peak of the light-emitting element as the excitation light source is in the range of blue light to green light, at least a part of the light from the excitation light source, and the phthalate fluorescent material from the present invention Mixing at least a portion of the light, at least two or more beams of light from the second phosphor material and/or the third phosphor material and/or the fourth phosphor material to obtain white light, or blue light, or blue-green light, or Green, or yellow-green, or yellow, or yellow-red, or red. According to a preferred embodiment of the present invention, the second fluorescent material and/or the third fluorescent material and/or the fourth fluorescent material is a rare earth-activated oxynitride phosphor, and/or Or a rare earth-doped nitride phosphor, and/or a rare earth-doped hafnium silicate phosphor, and/or a rare earth-initiated garnet-structured phosphor roll, and/or doped rare earth Activated sulfide phosphor, and/or rare earth-doped oxide phosphor, and/or rare earth-doped germanium oxide phosphor, and/or rare earth-doped starter Powdered, and/or doped yttrium-activated fluoroarsenic magnesium fluorite powder, and/or rare earth-activated borate phosphor, and/or rare earth-doped % acid salt phosphor, And/or a rare earth-activated halophosphate glazing powder, and/or a rare earth-doped titanate phosphor, and/or a rare earth-activated thiogallate fluorite. A light emitting device according to a preferred embodiment of the present invention, wherein the first edge light material and/or the third phosphor material and/or the fourth phosphor material will be part of the light from the excitation source, and/or from the present invention The at least a portion of the light of the bismuth salt illuminating material is wavelength converted and has an illuminating spectrum having at least one emission peak in the visible region of light from blue to red 16 200804561. According to a preferred embodiment of the illuminating device 4 of the present invention, the illuminating device is a luminescence conversion LED in which the phosphor material is in direct or indirect contact with the wafer. According to a preferred embodiment of the invention, the illumination device is an illumination device comprising at least one lED using a fluorescent material. The excitation and emission spectra of the twilight materials in this month were tested using an F- 4500 fluorescence spectrometer.

LED的相對光譜功率分佈和色品座標採用PMS 一 5〇型 紫外一可見一近紅外光譜分析系統測試。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之四十八個較佳實施例的詳細說明中, 將可清楚的呈現。下面敍述本發明的實施例,需要指出The relative spectral power distribution and chromaticity coordinates of the LEDs were tested using a PMS-5 紫外-UV-visible-near-infrared spectroscopy system. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the preferred embodiments. The embodiments of the present invention are described below, and it is necessary to point out

的疋本發明並不受這些實施例的限制。 實施例1The invention is not limited by these examples. Example 1

將上述組成的各原料充分球磨混合,裝入掛塌後,放 入電爐中’在900。(:下氧化氣氛下燒結4小時,冷卻後 再將其放入通有95%的氫氣、3%的氮氣和2%的硫化氫混 合氣體的爐中燒結,並在ll〇〇°C下保溫燒結4小時。燒結 17 200804561 版^部後,粉碎、用球磨機進行研磨,再湘奶目規格 、:篩子進仃-分’得到本發明中的具有藍色發光的螢光材 料 Sr0· 〇·6 MgO· Si02· 〇.02p2〇5 : 〇〇3 Eu2+· »亥材料的激發光讀在240〜45Onm範圍内,激發 , 峰4置在,發射光禮在420〜560nm範圍内,發射 主峰位置在467nm。 v 實施例2—8 通過使用製備實施例1螢光材料的混料方法和燒成方 φ 式製備激發光譜在240〜450nm範圍内(激發主峰位置隨組 成在350〜410nm範圍内變化)、發射光譜在420〜56〇nm範 圍内(發射主峰位置隨組成在440〜475nm範圍内變化)的 具有藍色發光顏色的實施例2-8的螢光材料。表1給出了各 實施例螢光材料的組成。 表1 實施 例號 實施例組成 2 1.3SrO· 0·4 MgO· Si02· 0·08Β2〇3 : 0.003 Eu2+· 0.05Tm3+ · 0.005C1- 3 0.8SrO. 0.5MgO· Si02· 0·01Β2〇3 : 〇·〇2 Eu2+· 0.001Ce3+ · 0.05F· 4 SrO· 〇.9MgO· Si02· 〇 〇2B2〇3 : 〇·1 Eu2、 0.002Tm3 + 5 SrO· 0.5BaO· 1 .OMgO· Si02. 0·2Β2Ο3 : 〇·〇〇1 Ειι2+· 0.0001Γ 6 〇.6SrO· 〇.4BaO· 〇.〇5CaO· 1.2MgO· Si02· 0.5B2〇3 : 0-2 Eu2+· 0.001S2· 7 SrO· BaO · 2.0 MgO· Si02 · 0·02Β2Ο3 : 0.003 18 200804561Each of the above-mentioned raw materials was sufficiently ball-milled, placed in a collapsed state, and placed in an electric furnace at 900. (: Sintered in an oxidizing atmosphere for 4 hours, cooled and then sintered in a furnace with a mixture of 95% hydrogen, 3% nitrogen and 2% hydrogen sulfide, and incubated at ll ° ° C Sintering for 4 hours. Sintering 17 200804561 Edition, after pulverization, grinding with a ball mill, and then the size of the citron, the: sieve into the 仃-minute' to obtain the blue-emitting phosphor material Sr0· 〇·6 in the present invention. MgO· Si02· 〇.02p2〇5 : 〇〇3 Eu2+·»The excitation light reading of the material is in the range of 240~45Onm, excitation, peak 4 is placed, the emission light is in the range of 420~560nm, and the emission main peak position is 467 nm. v Example 2-8 The excitation spectrum was prepared in the range of 240 to 450 nm by using the mixing method of the fluorescent material of Preparation Example 1 and the firing formula φ (the main peak position of the excitation varies with the composition in the range of 350 to 410 nm) Fluorescent materials of Examples 2-8 having blue emission colors in the range of 420 to 56 Å (the main peak position of the emission varies with the composition in the range of 440 to 475 nm). Table 1 shows the examples. Composition of the fluorescent material. Table 1 Example No. Example Composition 2 1 .3SrO· 0·4 MgO· Si02· 0·08Β2〇3 : 0.003 Eu2+· 0.05Tm3+ · 0.005C1- 3 0.8SrO. 0.5MgO· Si02· 0·01Β2〇3 : 〇·〇2 Eu2+· 0.001Ce3+ · 0.05 F· 4 SrO· 〇.9MgO· Si02· 〇〇2B2〇3 : 〇·1 Eu2, 0.002Tm3 + 5 SrO· 0.5BaO· 1 .OMgO· Si02. 0·2Β2Ο3 : 〇·〇〇1 Ειι2+· 0.0001Γ 6 〇.6SrO· 〇.4BaO· 〇.〇5CaO· 1.2MgO· Si02·0.5B2〇3 : 0-2 Eu2+· 0.001S2· 7 SrO· BaO · 2.0 MgO· Si02 · 0·02Β2Ο3 : 0.003 18 200804561

Eji_0.45Br Ευ2+· 0.45C1 〇 5SrO. 2Ba〇 · ιο Mg〇. si〇2. 〇 〇 π 2 + Λ 一 — ζ w: :0.05 其組成 對於本發明的具有藍色發光的螢光材料組成 的變化對於發射波長的變化影響規律是: 、當士 1 < (a+b) <2 時,M#Ca,當 Ba 部分取Eji_0.45Br Ευ2+· 0.45C1 〇5SrO. 2Ba〇· ιο Mg〇. si〇2. 〇〇π 2 + Λ一—ζ w: :0.05 The composition of which is composed of the fluorescent material with blue luminescence of the present invention The influence of the change on the variation of the emission wavelength is: When Shi 1 < (a+b) < 2, M#Ca, when Ba is taken

代Sr時,螢光粉的激發發射波長隨著含量的辦加 向長波方向移動,螢光粉的激發發射波長隨著Sr含 量的增加向短波方向移動…係數&與b的比例: 大(a > b ),激發發射波長向短波方向移動越加明顯 當2 < ( a+ b ) g 4時,激發發射波長受到Ba 與Sr含量之比及a與b之比的影響。這裏b,而 且當Ba < Sr時,隨Ba含量的增力口,激發發射波長向 長波移動;當Ba > Sr時,隨Ba含量的增加,激發發 射波長向短波移動。 圖1說明了實施例1螢光材料的激發發射光譜圖。從 圖1可以看到’本發明的具有藍色發光的螢光材料的激發 光4犯圍覓,能夠在長波uv〜藍紫光光譜區形成有效激發 γ其有效激發範圍比現有技術的藍色發光螢光材料的激發 範圍大传多’而且發光效率高,非常適合於製備使用紫外 曰曰片或紫光晶片作爲激發光源發光元件的LED。 實施例9When Sr is substituted, the excitation emission wavelength of the phosphor powder moves toward the long-wave direction as the content increases, and the excitation emission wavelength of the phosphor powder moves toward the short-wave direction as the Sr content increases. The ratio of the coefficient & b to the large: a > b), the excitation emission wavelength shifts to the short-wave direction more obviously when 2 < ( a + b ) g 4 , the excitation emission wavelength is affected by the ratio of Ba to Sr content and the ratio of a to b. Here, b, and when Ba < Sr, the excitation emission wavelength shifts to the long wave with the increase of the Ba content; when Ba > Sr, the excitation emission wavelength shifts to the short wave as the Ba content increases. Figure 1 illustrates an excitation emission spectrum of the phosphor of Example 1. It can be seen from Fig. 1 that the excitation light 4 of the fluorescent material having blue luminescence of the present invention is entangled, and can form effective excitation γ in the long-wave uv~blue-violet spectral region, and its effective excitation range is higher than that of the prior art. The fluorescent material has a large excitation range and high luminous efficiency, and is very suitable for preparing an LED using an ultraviolet or violet wafer as an excitation light source. Example 9

19 20080456119 200804561

Si02 ___ ζυ.16 60 09 H3BO3 2.47 將上述組成的各原料充分球磨混合,裝入掛瑪後,放 入電爐中,在mrc下氧化氣氛下燒結6小時’冷卻後 再將其放入通有氫氣氣體的爐中燒結,並在13〇代下保溫 燒結4小時。燒結體冷卻後,粉碎、用球磨機進行研磨, 再利用325目規格的筛子進行筛分,得到本發明中的具有 藍綠色發光的螢光材料〇.6Sr〇. 〇2Ca〇. 〇5Mg〇. si〇2 • 0.02B203. 〇.2P2〇5 : 0.01 Eu2+。該材料的激發光譜在 250〜470⑽範圍内,激發主峰位置在362nm;發射光譜在 420〜590nm範圍内’發射主峰位置在485nm。 實施例10—12 通過使用製備實施例9螢光材料的混料方法和燒成方 泰 式製備激發光譜在250〜470nm範圍内(激發主锋位置隨組 成在360〜42〇nm範圍内變化)、發射光譜在420〜59〇nm範 圍内(發射主峰位置隨組成在470〜490nm範圍内變化)的 •具有藍綠色發光顏色的實施例10-12的螢光材料。表2給出 了各實施例螢光材料的組成。 表2 實施 例號 實施例組成 10 〇.7SrO· 〇.3CaO· 0.4 MgO· Si〇9 · 0·〇〇8Β^~ 20 200804561 0.005 Ειι2+· 0.005Μη2+· 0·005(:Γ 11 〇.7Sr〇. 〇.2Ba〇· 0.2CaO · 〇.6MgO· Si02· 〇-〇1B7〇3 : 0.03 Eu2+* 0.001Ho3+e 〇 〇5F' 12 SrO· 0.2Ca〇· 〇.8MgO· Si02· 0.02 P2〇5 ·· 0.2 Eu2 + • 0.002Nd3 + 對於本發明的具有藍綠色發光的螢光材料組成,其組 成的變化對於發射波長的變化影響規律是·· 在保證Ca元素的莫耳含量與Sr元素莫耳含量的 比值在0.2〜〇·5之間的條件下,當Ba和/或Ca部分 取代Sr時’螢光粉的激發發射波長隨著Ba和/或Ca 含量的增加向長波方向移動。 圖2說明了實施例9螢光材料的激發發射光譜圖。分 析圖2可以看到,本發明的具有藍綠色發光的螢光材料的 激發光譜範圍涵蓋從長波UV〜藍光光譜區形成有效激發, 可以用於製備使用紫外晶片或紫光晶片或藍色晶片作爲激 發光源發光元件的led。 實施例13 原料 重量(g ) SrC〇3 73.82 CaC03 50.05 MgO 12.09 Si02 60.09 H3BO3 1.24 Ευ203 1.76 Mn304 0.076 將上述組成的各原料充分球磨混合,裝入坩堝後,放 入電爐中’在1000°c下氡化氣氛下燒結2小時,冷卻 21 200804561 後再將其放入通有氫氣氣體的爐中燒結,並在·代下保 孤蚝'纟。6小%。燒結體冷卻後,粉碎、用球磨機進行研磨 再利用325目規格的篩子進行筛分得到本發明中的具 有綠色發光的螢光材料〇5Sr〇. 〇5Ca〇. 〇.狗〇. si〇2 0’01B2C)3 · 〇·〇ι Eu2+· 〇 〇〇lMn2+e 該材料的激發光譜 在260〜48〇nm範圍内1發主峰位置在422細;發射光譜 在43〇〜60〇nm範圍内,發射主峰位置在499nm。 實施例14 一 16 • 通過使用製備實施例13螢光材料的混料方法和燒成方 式製備激發光譜在26G〜48Gnm範圍内(激發主锋位置隨組 成在370〜43〇nm範圍内變化)、發射光譜在43〇〜刚⑽範 圍内(發射主锋位置隨組成在49〇〜51〇nm範圍内變化)的 具有綠色發光顏色的實施例14·12的勞光材料。表3认 各實施例螢光材料的組成。 ° 貫施 例號 的 實施例組成 0.6SrO· 〇 4Sr〇. 〇-6Ca〇.^MgO-^7^7i7 0.001Sm2+· 〇·〇〇75^^Si02 ___ ζυ.16 60 09 H3BO3 2.47 The raw materials of the above composition are fully ball milled, placed in an electric furnace, and sintered in an oxidizing atmosphere at mrc for 6 hours. After cooling, they are placed in a hydrogen atmosphere. The gas was sintered in a furnace and sintered at 4 Torr for 4 hours. After the sintered body is cooled, it is pulverized, ground by a ball mill, and sieved by a 325 mesh sieve to obtain a fluorescent material having blue-green luminescence in the present invention. S2Ca〇. 〇5Mg〇. si 〇2 • 0.02B203. 〇.2P2〇5 : 0.01 Eu2+. The excitation spectrum of the material is in the range of 250 to 470 (10), the main peak position of the excitation is 362 nm, and the emission spectrum is in the range of 420 to 590 nm. The emission main peak position is 485 nm. Example 10-12 The excitation spectrum was prepared in the range of 250 to 470 nm by using the mixing method of the fluorescent material of Preparation Example 9 and the firing method (the excitation main front position varied with the composition in the range of 360 to 42 〇 nm) The emission material of the embodiment 10-12 having a blue-green luminescent color in the range of 420 to 59 Å (the main peak position of the emission varies with the composition in the range of 470 to 490 nm). Table 2 shows the composition of the phosphor materials of the respective examples. Table 2 Example No. Example Composition 10 〇.7SrO·〇.3CaO· 0.4 MgO· Si〇9 · 0·〇〇8Β^~ 20 200804561 0.005 Ειι2+· 0.005Μη2+· 0·005(:Γ11 〇.7Sr〇 〇.2Ba〇· 0.2CaO · 〇.6MgO· Si02·〇-〇1B7〇3 : 0.03 Eu2+* 0.001Ho3+e 〇〇5F' 12 SrO· 0.2Ca〇·〇.8MgO· Si02· 0.02 P2〇5 ············································································································· When the ratio of the content is between 0.2 and 〇·5, when Ba and/or Ca are partially substituted for Sr, the excitation emission wavelength of the phosphor powder moves toward the long wave direction as the content of Ba and/or Ca increases. The excitation emission spectrum of the fluorescent material of Example 9 is illustrated. It can be seen from analysis 2 that the excitation spectrum of the fluorescent material having blue-green luminescence of the present invention covers the effective excitation from the long-wave UV to blue spectral region, and can be used. For the preparation of using an ultraviolet wafer or a violet wafer or a blue wafer as an excitation source LED of the optical element. Example 13 Weight of raw material (g) SrC〇3 73.82 CaC03 50.05 MgO 12.09 Si02 60.09 H3BO3 1.24 Ευ203 1.76 Mn304 0.076 The raw materials of the above composition were sufficiently ball-milled, placed in a crucible, and placed in an electric furnace. Sintering in a deuterated atmosphere at 1000 ° C for 2 hours, cooling 21 200804561 and then placing it in a furnace with hydrogen gas to be sintered, and under the generation of 蚝 蚝 纟 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Grinding, grinding with a ball mill, and sieving with a 325 mesh sieve to obtain a green light-emitting fluorescent material 〇5Sr〇. 〇5Ca〇. 〇.狗〇. si〇2 0'01B2C)3 〇·〇ι Eu2+· 〇〇〇lMn2+e The excitation spectrum of the material is in the range of 260~48〇nm, and the main peak position is 422; the emission spectrum is in the range of 43〇~60〇nm, and the emission main peak is at 499nm. . Example 14 - 16 • The excitation spectrum was prepared by the mixing method and the firing method using the phosphorescent material of Preparation Example 13 in the range of 26 G to 48 Gnm (the position of the excitation main front varies with the composition in the range of 370 to 43 〇 nm), The emission spectrum of the light-emitting material of Example 14·12 having a green luminescent color in the range of 43 〇 to just (10) (the position of the emission main front varies with the composition in the range of 49 〇 to 51 〇 nm). Table 3 shows the composition of the fluorescent materials of the respective examples. ° Example of the example of the example number 0.6SrO· 〇 4Sr〇. 〇-6Ca〇.^MgO-^7^7i7 0.001Sm2+· 〇·〇〇75^^

2.0BaO. 2.〇8M^1T〇2. 0.0^7^^·^ 0.3Mn2+· 〇.2La3+· 〇.45 〜 U 對於本發^具有綠色發光的螢光^μ、 變化對於發射波長的變化影響規律是: 當1 < ( a + b ) < 2時,在保證Γ °且Ca兀素的莫j 22 200804561 含量與Sr元素莫耳含量的比值在〇·6〜15之間的條 件下’螢光粉的激發發射波長隨著Ca含量的增加向 長波方向移動。 當2 < ( a + b ) $ 5時,激發發射波長受到Ba 與Sr含量之比及a與b之比的影響。隨Ba含量的增 加’激發發射波長向短波移動;隨Sr含量的增加,激 發發射波長向長波移動。2.0BaO. 2.〇8M^1T〇2. 0.0^7^^·^ 0.3Mn2+· 〇.2La3+· 〇.45 ~ U For this hair ^ Green luminescence with fluorescence ^μ, change for emission wavelength The law of influence is: When 1 < ( a + b ) < 2, the condition that the ratio of Mo 2 22 200804561 content of Ca 兀 与 and the molar content of Sr element is between 〇·6 and 15 is guaranteed. The excitation emission wavelength of the lower fluorescent powder moves toward the long wave direction as the Ca content increases. When 2 < ( a + b ) $ 5, the excitation emission wavelength is affected by the ratio of Ba to Sr content and the ratio of a to b. As the Ba content increases, the excitation emission wavelength shifts to a short wave; as the Sr content increases, the excitation emission wavelength shifts toward a long wave.

圖3說明了實施例13螢光材料的激發發射光譜圖。分 析圖3可以看到,本發明的具有綠色發光的螢光材料的激 發光譜範圍涵蓋從長波UV〜藍綠光光譜區形成有效激發, 可以用於製備使用紫外晶片或紫光晶片或藍色晶片作爲激 發光源發光元件的LED。 實施例17Figure 3 illustrates an excitation emission spectrum of the phosphor of Example 13. It can be seen from analysis of FIG. 3 that the excitation spectrum of the green light-emitting fluorescent material of the present invention covers effective excitation from the long-wave UV to blue-green spectral region, and can be used for preparation using an ultraviolet wafer or a violet wafer or a blue wafer. The LED that excites the light source of the light source. Example 17

將上述組成的各原料充分球磨混合,裝入坩堝後,放 入電爐中,在lOOOt下氧化氣氛下燒結3小時,冷卻 後再將其放入通有氮氫混合氣體的爐中燒結,並在13001 下保溫燒結2小時。燒結體冷卻後,粉碎、用球磨機進行 23 200804561 研磨,再利用325目規格的篩子進行篩分,得到本發明中 的具有κ綠色發光的螢光材料〇.2SrO· 〇.6CaO· 0.4 MgO • Si〇2. 〇.〇2B203 ·· 0·02 Ειι2+· 0.00lCe3+. 〇 〇〇6F-。 该材料的激發光譜在240〜500nm範圍内,激發主峰位置在 430nm ;發射光譜在450〜600nm範圍内,發射主峰位置在 512nm 〇 • 實施例18 — 22The raw materials of the above composition are sufficiently ball-milled, loaded into a crucible, placed in an electric furnace, sintered in an oxidizing atmosphere at 1000 Torr for 3 hours, cooled, and then placed in a furnace through which a mixed gas of nitrogen and hydrogen is sintered, and Insulation sintering at 13001 for 2 hours. After the sintered body is cooled, it is pulverized, ground by a ball mill 23 200804561, and sieved by a 325 mesh sieve to obtain a fluorescent material having κ green luminescence in the present invention. 2SrO· 〇.6CaO· 0.4 MgO • Si 〇 2. 〇.〇2B203 ·· 0·02 Ειι2+· 0.00lCe3+. 〇〇〇6F-. The excitation spectrum of the material is in the range of 240~500nm, the main peak position is 430nm; the emission spectrum is in the range of 450~600nm, and the emission main peak is at 512nm. 实施 Example 18-22

通過使用製備實施例17螢光材料的混料方法和燒成方 式製備激發光譜在240〜510nm範圍内(激發主峰位置隨組 成在370〜440nm範圍内變化)、發射光譜在45〇〜6〇〇nm範 圍内(發射主峰位置隨組成在505〜525nm範圍内變化)的 具有黃綠色發光顏色的實施例18-22的螢光材料。表4給出 了各貫施例螢光材料的組成。 表4 實施 例號 實施例組成 18 〇.3SrO· 〇.95CaO· 0.7 MgO· Si02. 0·003ρ2〇5 : 0.13 Eu2+· 0.005Dy3+· 〇.〇〇5Γ 19 〇.36SrO· l.〇5CaO· 0.2MgO· SiO2: 0 06 Eu2+— 0.001Sn2+· 0-0005S' 20 SrO· BaO· Si02* 0.01B203^ 0.008^〇5 : 〇Λ〇6^ Eu2+· 0·05 F· 21 2.0BaO· MgO· Si02 : 0:025 Eii2;^75Mn2+·~^ 0.45CT 22 --—~------ 0.25SrO· 1.5BaO· 0.25CaO· 2Mg〇. SioT^Tu Eu2+· 〇·〇1Μη2+· 0.01Ce3+· 〇η7ςη】· 對於本發明的具有黃綠色發光的螢光材料組成,其組™ 24 200804561 成的變化對於發射波長的變化影響規律是: 當1 < ( a + b ) < 2時,在保證Ca元素的莫耳 含量與Sr元素莫耳含量的比值在28〜3:3之間的條 件下,螢光粉的激發發射波長隨著Ca含量的增加向 長波方向移動。 當2 ‘( a + b ) $ 6,且a b時,激發發射波The excitation spectrum was prepared in the range of 240 to 510 nm by using the mixing method of the fluorescent material of Preparation Example 17 and the firing method (the main peak position of the excitation was varied in the range of 370 to 440 nm with the composition), and the emission spectrum was 45 〇 to 6 〇〇. The phosphor material of Examples 18-22 having a yellow-green luminescent color in the nm range (the main peak position of the emission varies with the composition in the range of 505 to 525 nm). Table 4 shows the composition of each of the examples of fluorescent materials. Table 4 Example No. Example Composition 18 〇.3SrO· 〇.95CaO· 0.7 MgO· Si02. 0·003ρ2〇5 : 0.13 Eu2+· 0.005Dy3+· 〇.〇〇5Γ 19 〇.36SrO· l.〇5CaO· 0.2 MgO· SiO2: 0 06 Eu2+— 0.001Sn2+· 0-0005S' 20 SrO· BaO· Si02* 0.01B203^ 0.008^〇5 : 〇Λ〇6^ Eu2+· 0·05 F· 21 2.0BaO· MgO· Si02 : 0:025 Eii2;^75Mn2+·~^ 0.45CT 22 ---~------ 0.25SrO· 1.5BaO· 0.25CaO· 2Mg〇. SioT^Tu Eu2+· 〇·〇1Μη2+·0.01Ce3+· 〇η7ςη For the composition of the fluorescent material having yellow-green luminescence of the present invention, the variation of the variation of the group TM 24 200804561 on the emission wavelength is: when 1 < ( a + b ) < 2, in ensuring Ca Under the condition that the ratio of the molar content of the element to the molar content of the Sr element is between 28 and 3:3, the excitation emission wavelength of the fluorescent powder moves toward the long wave direction as the Ca content increases. When 2 ‘( a + b ) $ 6 and a b , the excitation wave is excited

長文到Ba與Sr含量之比及a與b之比的影響。隨 Ba含量的增加,激發發射波長向短波移動;隨Sr含 量的增加,激發發射波長向長波移動。 係數a與b的比例越大(a > b ),激發發射波長 向短波方向移動越加明顯。 圖4、圖5、圖6分別爲實施例17、20、21螢光材料 的激發發射光譜圖。圖5的發射光譜是以47〇nm的激發光 源作爲檢測波長所得。分析光譜圖可以看到,本發明的具 有黃綠色發光的螢光材料的激發光譜範圍涵蓋從長波uv〜 監綠光光譜區形成有效激發,可以用於製備使用紫外晶片 或紫光晶片或藍色晶片作爲激發光源發光元件的led 實施例23The ratio of the long text to the ratio of Ba to Sr and the ratio of a to b. As the Ba content increases, the excitation emission wavelength shifts to a short wave; as the Sr content increases, the excitation emission wavelength shifts to a long wave. The larger the ratio of the coefficients a to b (a > b ), the more the excitation emission wavelength shifts toward the short-wave direction. 4, 5, and 6 are excitation emission spectra of the phosphors of Examples 17, 20, and 21, respectively. The emission spectrum of Fig. 5 was obtained by using an excitation light source of 47 〇 nm as the detection wavelength. It can be seen from the analysis of the spectrogram that the excitation spectrum of the fluorescent material having yellow-green luminescence of the present invention covers the effective excitation from the long-wave uv~ illuminating green spectral region, and can be used for preparing an ultraviolet wafer or a violet wafer or a blue wafer. LED as an excitation light source illuminating element Example 23

25 200804561 將上述組成的各原料充分球磨混合,裝入坩堝後,放 入電爐中,在i〇〇(TC下氧化氣氛下燒結4小時,冷卻 後再將其放人通有氮氣與氫氣體積比例爲97 : 3的混合氣 體的爐中燒結,並在123(rc下保溫燒結6小時。燒結體冷 部後,粉碎、用球磨機進行研磨,再利用325目規格的篩 子進行篩分,得到本發明中的具有黃色發光的螢光材料 〇.85CaO· 0.55Mg〇· Si02 · 0.02B2O3 : 0.015 Eu2+ · LOGISCe · 〇.〇〇6F—。該材料的激發光譜在24〇〜52〇nm 範圍内’激發主峰位置在432nm ;發射光譜在450〜630nm 範圍内,發射主峰位置在534nm。 實施例24—28 通過使用製備實施例23螢光材料的混料方法和燒成方 式製備激發光譜在240〜520nm範圍内(激發主峰位置隨組 成在400〜470nm範圍内變化)、發射光譜在450〜640ηπι範 圍内(發射主峰位置隨組成在515〜540nm範圍内變化)的 具有黃色發光顏色的實施例24-28的螢光材料。表5給出了 各實施例螢光材料的組成。 表5 實施 例號 實施例組成 24 CaO· 0.15BaO · 0.6 MgO· Si〇2· 〇·〇5Ρ205 : 〇·〇3 Ευ2 + 25 1.3SrO· 〇.6Ca〇· O.SBaO* 0.4MgO* Si02* 0·002Β2〇3· 0.005 P205 : 0.2 Ειι2+· 0·028Μη2+· 0.035Dy3+· 0.3C1" 26 0.25Sr〇· 0.25Ca〇· 1.5Ba〇· 2.0Mg〇· Si02 : 0.14 26 200804561 Εβ2+· 〇.〇78Μη2+· 0.035Bi3+· 〇 08Γ「'〜 27 0.25Sr〇· 〇.25CaO· 1.5Ba〇· 2.〇Mg〇^ Si〇2 ; Eu2+· 0.〇78Mn2+· 0.035Ce3 + 28 1.3SrO· 〇.7BaO· Si〇2· 〇·01Β2〇3· 〇.0〇76 p2〇—^ ____0.023 Eu2+· 0.05F* ---------- 對於本發明的具有黃色發光的螢光材料組成,其組成 的變化對於發射波長的變化影響規律是: 當1 < ( a+b) <2時,在Μ关Sr的條件下, 螢光粉的激發發射波長隨著C a含量的增加向長波方 向移動。 當2$U+b)$6,且a b時,激發發射波 長受到Ba、Sr、Ca含量之比及a與b之比的影響。 隨Ba含量的增加,激發發射波長向短波移動;隨心 含量的增加,激發發射波長向長波移動;隨Ca含量 的增加,激發發射波長向長波移動。三者對於激發 長向長波方向影響的作用大小爲Ca>Sr>Ba。 //25 200804561 The raw materials of the above composition are fully ball-mixed, put into a crucible, placed in an electric furnace, sintered in an oxidizing atmosphere under TC for 4 hours, and then cooled to a volume ratio of nitrogen to hydrogen. Sintered in a furnace of 97:3 mixed gas, and sintered at 123 (rc) for 6 hours. After sintering the cold part of the body, pulverizing, grinding with a ball mill, and sieving with a sieve of 325 mesh size, the present invention is obtained. Fluorescent material with yellow luminescence 〇.85CaO·0.55Mg〇·SiO2 · 0.02B2O3 : 0.015 Eu2+ · LOGISCe · 〇.〇〇6F—The excitation spectrum of the material is excited in the range of 24〇~52〇nm The main peak position is at 432 nm; the emission spectrum is in the range of 450 to 630 nm, and the emission main peak position is at 534 nm. Examples 24-28 The excitation spectrum was prepared in the range of 240 to 520 nm by using the mixing method and the firing method of Preparation Example 23 fluorescent material. Inside (the position of the main peak of the excitation varies with the composition in the range of 400 to 470 nm), and the emission spectrum is in the range of 450 to 640 ηπ (the main peak position of the emission varies with the composition in the range of 515 to 540 nm) with yellow luminescence. Colors of the fluorescent materials of Examples 24-28. Table 5 shows the composition of the fluorescent materials of the respective examples. Table 5 Example No. Example Composition 24 CaO· 0.15BaO · 0.6 MgO· Si〇2· 〇·〇 5Ρ205 : 〇·〇3 Ευ2 + 25 1.3SrO·〇.6Ca〇· O.SBaO* 0.4MgO* Si02* 0·002Β2〇3· 0.005 P205 : 0.2 Ειι2+· 0·028Μη2+· 0.035Dy3+· 0.3C1" 26 0.25 Sr〇·0.25Ca〇·1.5Ba〇· 2.0Mg〇· Si02 : 0.14 26 200804561 Εβ2+·〇.〇78Μη2+·0.035Bi3+·〇08Γ“'~27 0.25Sr〇·〇.25CaO· 1.5Ba〇· 2. 〇Mg〇^ Si〇2 ; Eu2+· 0.〇78Mn2+· 0.035Ce3 + 28 1.3SrO·〇.7BaO· Si〇2·〇·01Β2〇3· 〇.0〇76 p2〇—^ ____0.023 Eu2+· 0.05F* ---------- For the composition of the phosphor material having yellow luminescence of the present invention, the influence of the change in composition on the variation of the emission wavelength is: when 1 < ( a + b) < At 2 o'clock, under the condition of Sr, the excitation emission wavelength of the phosphor powder moves toward the long wave direction as the content of Ca increases. When 2$U+b)$6 and a b, the excitation emission wavelength is affected by the ratio of Ba, Sr, Ca content and the ratio of a to b. As the Ba content increases, the excitation emission wavelength shifts to the short wave; the excitation emission wavelength shifts to the long wave as the content increases, and the excitation emission wavelength shifts to the long wave as the Ca content increases. The effect of the three on the direction of the long-wave direction is Ca>Sr>Ba. //

係數a與b的比例越大(a>b),激發發射波長向 短波方向移動越加明顯。 圖 圖8 圖9分別爲實施例23、25、28螢光材料 的激發發射光譜圖。圖9的發射光譜是以·⑽的激發光 源作爲監測波長所得。分析光譜圖可以看到,本發明的且 有黃色發光的螢光材料的激發先譜範圍涵蓋從長波UV〜藍The larger the ratio of the coefficients a to b (a > b), the more the excitation emission wavelength shifts toward the short-wave direction. Figure 8 Figure 9 are excitation emission spectra of the phosphors of Examples 23, 25 and 28, respectively. The emission spectrum of Fig. 9 is obtained by using the excitation light source of (10) as the monitoring wavelength. It can be seen from the analysis of the spectrogram that the excitation spectrum of the fluorescent material of the present invention and having yellow luminescence covers from long-wave UV to blue.

綠光光譜區形成有效激發,料 B ^ ^符別疋對監光光譜區域的激發 強度較高’可以用於贺備#用 … _ ^衣備使用I外晶片3戈紫光晶片作爲激 發光源發光元件的LED,脖!ζιΙ、& m 1 &別適用于採用藍光晶片作爲激 27 200804561 發光源發光元件的白光LED。在白光LED中,使用本發明 的這種螢光材料吸收部分藍光輻射源的發射而被激發;並 且其發射與剩餘的藍光輻射複合成白光。這種白光LED具 有良好的流明效率和顯色指數以及低色溫。 實施例29 原料 重量(g ) SrC03 295.26 BaC03 15.78 CaC03 3 MgO 34.26 Si02 60.09 Eu203 10.56 NH4C1 16.05The green light spectral region forms an effective excitation, and the material B ^ ^ 疋 疋 has a higher excitation intensity in the region of the illuminating spectrum. 'Can be used for He Bei # _ ^ Clothing using I outer wafer 3 Ge violet wafer as an excitation light source The LEDs of the components, necks, ζιΙ, & m 1 & are not suitable for white LEDs using a blue light wafer as the light source illuminating element. In a white LED, the phosphor material of the present invention is used to absorb the emission of a portion of the blue radiation source to be excited; and its emission is combined with the remaining blue radiation to form white light. This white LED has good lumen efficiency and color rendering index as well as low color temperature. Example 29 Starting material Weight (g) SrC03 295.26 BaC03 15.78 CaC03 3 MgO 34.26 Si02 60.09 Eu203 10.56 NH4C1 16.05

將上述組成的各原料充分球磨混合,裝入坩堝後,放 入電爐中,在1100°c下氧化氣氛下燒結3小時,冷卻 後再將其放入通有氮氣與氫氣體積比例爲95 : 5的混合氣 體的爐中燒結,並在1250°C下保溫燒結5小時。燒結體冷 卻後,粉碎、用球磨機進行研磨,再利用325目規格的篩 子進行篩分,得到本發明中的具有黃紅色發光的螢光材料 2.0SrO · 0.08BaO · 0.03CaO · 0.85MgO · Si02 : 0.06 Eu2+· 0.3C1—。該材料的激發光譜在200〜530nm範圍内 ,激發主峰位置在432nm ;發射光譜在480〜640nm範圍内 ,發射主峰位置在558nm。 實施例30—31 通過使用製備實施例29螢光材料的混料方法和燒成方 式製備激發光譜在200〜530nm範圍内(激發主峰位置隨組 28 200804561 成在400〜485nm範圍内變化)、發射光譜在480〜640nm範 圍内(發射主峰位置隨組成在535〜580nm範圍内變化)的 具有黃紅色發光顏色的實施例30-31的螢光材料。表6給出 了各實施例螢光材料的組成。 實施 例號 實施例組成 30 l-9SrO· 0.〇6Ca〇· 0.6 Mg〇· Si02· 0.4Β2Ο3· 〇·〇03Ρ2〇5 : 〇·08 eu2+· 〇.〇2Mn2+· 〇.〇〇4Dy3 + 31 2.3Sr〇· 〇.2BaO· 〇.〇6CaO· MgO· Si02 : 0.06 Eu2 + • 0.25F· 對於本發明的具有黃紅色發光的螢光材料組成,其組 成的變化對於發射波長的變化影響規律是: 當2 < ( a + b ) $ 5,且a > b時,激發發射波 長文到Ba、Sr、Ca含量之比的影響。隨Ba含量的增 加’激發發射波長向短波移動;隨Sr含量的增加, 激發發射波長向長波移動;隨Ca含量的增加,激發 發射波長向長波移動。三者對於激發波長向長波方向 影響的作用大小爲Ca>Sr>Ba。 圖爲實施例29螢光材料的激發發射光譜圖。分析 光譜圖可以看到’本發明的具有黃紅色發光的螢光材料的 竑卷光瑨範圍涵盍從長波uv〜綠光光譜區形成有效激發, 4寸別疋在360〜480nm的波長範圍内激發強度較高而且基本 ”也田、坐才不軸平仃,可以用於製備使用冑夕卜晶片或紫光晶片 作爲激發光源發光元件@ LED,特別適用于採用藍光晶片 29 200804561 作爲激發光源發光元件的^ led。在白光led中,使用 本叙明的沒種螢光材料吸收部分藍光輻射源的發射而被激 發;並且其發射與剩餘的藍光輻射複合成白光。由於螢光 材料的發射主峰位於黃色光譜區與紅色光譜區之間,因此The raw materials of the above composition were sufficiently ball-milled, placed in a crucible, placed in an electric furnace, sintered at 1100 ° C for 3 hours in an oxidizing atmosphere, and then cooled and then placed in a volume ratio of nitrogen to hydrogen of 95:5. The mixed gas was sintered in a furnace and sintered at 1250 ° C for 5 hours. After the sintered body is cooled, it is pulverized, ground by a ball mill, and sieved by a 325 mesh sieve to obtain a phosphorescent material having a yellow-red luminescence in the present invention. 2.0SrO · 0.08BaO · 0.03CaO · 0.85MgO · Si02 : 0.06 Eu2+· 0.3C1—. The excitation spectrum of the material is in the range of 200 to 530 nm, the main peak of the excitation is at 432 nm, the emission spectrum is in the range of 480 to 640 nm, and the main peak of the emission is at 558 nm. Examples 30-31 The excitation spectra were prepared in the range of 200 to 530 nm by using the mixing method and the firing method of Preparation Example 29, and the emission peaks were changed in the range of 400 to 485 nm with the group 28 200804561. The phosphor material of Examples 30-31 having a yellow-red luminescent color in the range of 480 to 640 nm (the emission main peak position varies with the composition in the range of 535 to 580 nm). Table 6 shows the composition of the phosphor materials of the respective examples. EXAMPLES Example Composition 30 l-9SrO·0.〇6Ca〇·0.6 Mg〇· Si02·0.4Β2Ο3·〇·〇03Ρ2〇5 : 〇·08 eu2+· 〇.〇2Mn2+· 〇.〇〇4Dy3 + 31 2.3Sr〇·〇.2BaO·〇.〇6CaO· MgO· Si02 : 0.06 Eu2 + • 0.25F· For the composition of the phosphor material having yellow-red luminescence of the present invention, the influence of the composition change on the change of the emission wavelength is : When 2 < ( a + b ) $ 5, and a > b, the effect of the ratio of the emission wavelength to the ratio of Ba, Sr, and Ca is excited. As the Ba content increases, the excitation emission wavelength shifts to the short wave; as the Sr content increases, the excitation emission wavelength shifts to the long wave; as the Ca content increases, the excitation emission wavelength shifts to the long wave. The effect of the three on the influence of the excitation wavelength on the long-wave direction is Ca > Sr > Ba. The figure shows the excitation emission spectrum of the fluorescent material of Example 29. It can be seen from the analysis of the spectrogram that the range of the aperture of the fluorescent material with yellow-red luminescence of the present invention is effectively excited from the long-wave uv~green spectral region, and the 4-inch aperture is in the wavelength range of 360 to 480 nm. The excitation intensity is high and the basic "Yantian, sitting is not axis-flat", and can be used for preparing a light-emitting element using an enamel wafer or a violet wafer as an excitation light source @LED, which is particularly suitable for using a blue light wafer 29 200804561 as an excitation light source. In the white light led, the fluorescent light source of the present invention absorbs the emission of a portion of the blue light source and is excited; and the emission is combined with the remaining blue light to form white light. Since the emission main peak of the fluorescent material is located Between the yellow spectral region and the red spectral region, therefore

製備的白光LED呈有齡林沾t 實施例32— 色指數和低色溫。 肸上述組成的各原料充分球磨混合,裝入坩堝後,放 入電爐中,在loocrc下氧化氣氛下燒結6小時,冷卻 後再將其放入通有氮氣與氫氣體積比例爲95 : 5的混合氣 體的爐中燒結,並在13〇(rc下保溫燒結5小時。燒結體冷 部後,粉碎、用球磨機進行研磨,再利用325目規袼的篩 子進行4分’得到本發明中的具有紅色發光的螢光材料 〇.25Sr〇. 1.25BaO· 1.5 Mg〇· Si02 : 〇.〇25 Ευ2+· 〇Λ ΜΠ · 〇.5C1·。該材料的激發光譜在230〜500nm範圍内, 激發主峰位置在429nm;發射光譜具有紅光區和藍光區的 兩個發射主峰,紅光區發射光譜在 480〜640nm範圍内,紅 光發射主峰位置在609nm。 實施例33〜35 30 200804561 通過使用製備實施例32螢光材料的混料方法和燒成方 式製備激發光瑨在200〜530nm範圍内(激發主峰位置隨組 成在400 485nm範圍内變化)、發射光譜在々go 〜640nm範 圍内(發射主峰位置隨組成在580〜63〇nm範圍内變化)的 具有黃紅色發光顏色的實施例33-35的螢光材料。表7給出 了各實施例螢光材料的組成。The prepared white LEDs were aged at a temperature of Example 32 - color index and low color temperature. The raw materials of the above composition are fully ball-mixed, loaded into a crucible, placed in an electric furnace, sintered in an oxidizing atmosphere under a loocrc for 6 hours, cooled, and then placed in a mixture having a nitrogen gas to hydrogen volume ratio of 95:5. The gas was sintered in a furnace and sintered at 13 Torr (rc for 5 hours. After the cold portion of the sintered body, pulverized, ground with a ball mill, and then sieved with a 325 mesh sieve for 4 minutes), the red color of the present invention was obtained. Luminescent fluorescent material 〇.25Sr〇. 1.25BaO· 1.5 Mg〇· Si02 : 〇.〇25 Ευ2+· 〇Λ ΜΠ · 〇.5C1·. The excitation spectrum of the material is in the range of 230~500nm, and the main peak position is excited. 429 nm; the emission spectrum has two emission main peaks of a red light region and a blue light region, the red light region emission spectrum is in the range of 480 to 640 nm, and the red light emission main peak position is at 609 nm. Examples 33 to 35 30 200804561 By using Preparation Example 32 Fluorescent material mixing method and firing method to prepare excitation pupil in the range of 200~530nm (excitation main peak position varies with composition in the range of 400 485nm), emission spectrum in the range of 々go ~ 640nm (emission main peak) Fluorescent materials of Examples 33-35 having a yellow-red luminescent color as the composition varied from 580 to 63 Å. Table 7 shows the composition of the phosphor materials of the various examples.

15Ba〇· 2.0 MgO· Si02· 0.〇1B2〇3 : 〇.2 Ευ2 Μη2+· 0.0002Pr^>n in- 〇 34 〇.8Ba〇. 〇了MgO. Si02. : 〇.〇6 Eu2. 0.03 Mn2+ · 0.25F' 35 - 9BaO 0.9Mg〇· Si02 : 0.〇〇3 Eu2+· 0.006 Mn 0.005F' 對於本發明的具有紅色發光的螢光材料組成,其組成 的變化對於發射波長的變化影響規律是: 除利用基質中的驗土金屬含量變化產生性質差異 的1双土金屬離子鍵調整Eu2+的激發和發射光譜外,還 有效利用Eu、Ln離子(特別是Mn2+)間的能量傳 遞控制和調整發射光譜和能量。固定Mn2+含量時, 以2 +含量增加,發射光譜的紅色發射主峰強度增加, 而藍+光區的發射主峰強度降低;固定Eu2+含量時, Mn含ϊ增加,發射光譜的紅色發射主峰強度減弱 圖11爲實施Μ 32 f光材料的激發發射光譜目。發射光 31 200804561 二馬紅光區發射光譜。分析賴可以看到,本發明的且 = = ^Mm_28()〜475nm的激發光波長範 片作 激發,在使用紫外晶片或紫光晶片或藍色晶 =作爲激發㈣發光元件的白光㈣+,其在紅光區的發 j光對於提尚顯色指數、降低色溫,更好的與人體眼睛的 破感性相匹配。15Ba〇· 2.0 MgO· Si02· 0.〇1B2〇3 : 〇.2 Ευ2 Μη2+· 0.0002Pr^>n in- 〇34 〇.8Ba〇. MMgO. Si02. : 〇.〇6 Eu2. 0.03 Mn2+ · 0.25F' 35 - 9BaO 0.9Mg 〇 · Si02 : 0. 〇〇 3 Eu 2+ · 0.006 Mn 0.005F ' For the composition of the phosphor material having red luminescence of the present invention, the change in composition affects the variation of the emission wavelength Yes: In addition to adjusting the excitation and emission spectra of Eu2+ by using a double earth metal ion bond that produces a difference in the nature of the soil metal content in the matrix, it also effectively utilizes the energy transfer control and adjustment between Eu and Ln ions (especially Mn2+). Emission spectrum and energy. When the content of Mn2+ is fixed, the content of red emission main peak of the emission spectrum increases with the increase of 2 + content, while the intensity of the emission main peak of blue + region decreases. When the content of Eu2+ is fixed, the Mn content increases, and the intensity of the red emission main peak of the emission spectrum decreases. 11 is the excitation emission spectrum of the Μ 32 f light material. Emission light 31 200804561 Two horse red region emission spectrum. It can be seen that the excitation light wavelength range of the present invention and ==Mm_28()~475 nm is excited by using an ultraviolet wafer or a violet wafer or a blue crystal = white light (four) + as an excitation (four) light-emitting element, which is The j-light of the red light area is suitable for the color rendering index, the color temperature, and the skin damage of the human eye.

本發明中發現在螢光材料製備過程中可以加人占原料 重里0〜30%的丽⑹,ΝΗβ,(nh4)2hpo4,葡萄糖 ’尿素 ’ BaF2,CaF2,ZnF2,ZnS,SrS,CaS,SrS〇4 ’ SrHP〇4或CaHP〇4、Li2C〇3等參與固相反應可以在 不同轾度上提高材料的發光相對亮度和激發發射光譜 ,下面舉例說明。 實施例36 -------辱料 重詈(2 ) _— Sr(NCM? 1. -=- \ t? / ----— __ 253.96 __ __ Ca(〇H)? __ 14.8 —__BaC03 ——— ----- __ 157.85 __ Mg ( OH) 2· 4MgC03· ___ 6H20 -------------—.—— 10.07 __ H4Si〇4 ------ —------ __ 9 6 __ __ H3BO3 __0.12 _____ —>_ (NH4)2HP04 ___ 2.64 __ —__Eu(N〇,), _ 16.9 Mn02 0.87 ____ Ce〇2 ——_________—— 8.6 ___ -_ NH4CI —_ 2.68 __ _ ZnS 0.49 32 200804561 外加占原料重量14%的BaF2和0.3%的Li2C03,將上 述組成的各原料充分球磨混合,裝入坩堝後,放入電爐中 ,在700°C下氧化氣氛下燒結6小時,冷卻後再將其放 入通有體積氮氣與氫氣及硫化氫比例爲95 : 3 : 2的混合氣 體的爐中燒結,並在1150°C下保溫燒結5小時。燒結體冷 卻後’粉碎、用球磨機進行研磨,再利用325目規袼的篩 子進行篩分,得到本發明中的具有黃色發光的螢光材料 1.2Sr〇· 0.8BaO· 0.2Ca〇· 0.1 MgO · Si02· 0.〇〇1B2〇3 • 0·01Ρ205 : 〇·〇5 Eu2+ · 0·01 Mn2+ · 〇·〇5 Ce3+ · 0.05C1·· 0.005S2·· 0.45F-· 0.05 Li+。該材料的激發光 譜在240〜520nm範圍内,激發主峰位置在 475nm均有很強的激發光譜);發射光譜在45〇〜63〇nm範 圍内,發射主峰位置在537nm。 在本發明製造方法中所要求的各種外加原料的加入方 式和方法均與實施例36相類似,只是根據需要製作的螢光 材料的激發發射光譜範圍和相對亮度來選擇加入的原料種 類和加入量。 本發明還涉及使用本發明中的任何一種以上的螢光材 料的照明裝置,特別涉及使用作爲激發光源使用的發光元 件的發射主峰在240〜510nm範圍内的半導體LED,尤其是 發射白光的LED。下面以具體的實施例形式對本發明的要 求保護範疇予以說明。 參照圖12 ,本發明的LED包括半導體發光晶片2、陰 電極2、陽電極3、管腳4、螢光材料5、封裝材料6、引線 33 200804561 7反光杯8。半;體發光晶片是以祕晶片、或晶片 。螢光材料中包括至少—種以上的本發明㈣酸鹽榮光材 料。封裝材料爲透明樹脂,可以是透明環氧樹脂 '透明石夕 膠等。 &其中圖a爲螢光材料與半導體發光晶片直接接觸的方式 ,螢光材料與透明樹脂混合後均勾塗覆在半導體發光晶片 之上反光杯之巾。® b爲螢光材料與半導體發光晶片間 =接觸的方式’螢光材料均勻分佈在環氧樹脂表層。圖〇爲 赏光材料半導體發光晶片間接接觸的方式,營光材料均勾 ^佈在環氧樹脂之中,半導體發光晶片之上。 實施例37 •採用圖12中圖3的LED封裝方式製備白光LED。具體 對襄工藝爲:根據螢光粉的有效激發波長範圍選取具有相 匹配的發射主峰波長的I g。 片本貝轭例中,半導體發光晶 片^射主峰波長爲460nm,螢光材料選擇實施例29所述 Κ好的曰曰片進订固晶、打線、烘乾。稱取 如若干克與透明環氧樹脂按照適當的比例混合均勾後 放均! ί覆在半導體晶片上(點膠)。將點好膠的引線杯, 空棋箱固化後’插入灌有環氧樹脂的模具中,再經 一工烘箱固化,最後脫模。這$ $ # τ ρη 分佈^ mm Γ 的相對光譜功率 ,、色xum、 γ=0.3292,色 顯色指數85。其發射譜是由榮光粉受部分藍光 日日片务射出藍光激發後發射出 部分辟 汽紅色發先先碏和剩餘的 眚二“片發射出的藍光光譜複合而成。 實施例38 34 200804561 ^採用圖12中圖b # LED封裝方式製備白光led。本 只知例中帛‘體發光晶片的發射主峰波長爲385nm,螢 光材料選擇實施例i、實施例13、實施例23、實施例32所 ,的營光材料按照適當的比例混合。封裝卫藝與實施例π 類似,但螢光材料均勻分佈在環氧樹脂表層。這種白光 led的發射譜是由上述四種螢光粉分別受部分紫外光晶片 發射出时外光和/或部分來自螢光粉的發射光激發後分別 發射出的藍色、綠色、黃色、紅色發光光譜與螢光粉的剰 餘4分發射光光譜複合而成。其色品座標冑x=03747、 Υ=〇.34〇3,色溫3874K。圖14爲這種白光咖的⑽圖。 其中F點爲本實施例白光LED的色品座桿點。 實施例39 # 採用圖i 2中圖e的LED封裝方式製備白光LED。本實 把例中’半導體發光晶片的發射主峰波長冑470nm,螢光 材料選擇實施例3〇所述的螢先材料(發射主♦波長爲 556ηΐΏ)與摻雜稀土啟動的石梅石結構的YAG營光粉( (Y0.33Gd0.63Ce0.04)3A】5〇】2’發射主峰波長532⑽)以及播雜 稀土啟動的硫化物螢光# (CaS : Eu,發射主峰波長 6〇6—按照適當的比例混合。封裝工藝與實施例37㈣ ,但螢光材料均勾分佈在環氧樹脂之中,半導體發光晶片 之上。這_ LED的發射譜是由上述三種營光粉分別受 藍光和@部分來自螢光粉發射光激 發後分別發射出的黃色、黃紅色、紅色發光光譜與勞光粉 的剩餘部分發射光光譜以及剩餘的部分藍光晶片發射出的 35 200804561 藍光光譜複合而成。其色品座標胃χ=〇·3288、γ=〇.邱, 色溫5637Κ ’顯色指數8〇。 採用如圖12中圖a、圖,、圖⑶㈣封裝方式都可 以製備LED。封裝工藝與實施例η%類似。但是螢 光粉的組合方式可以有多種選擇,其原則是: 虫 螢光粉的有效激發波長範圍與半導體晶片的發射主 峰波長和/或共同使㈣其他營絲的發射主峰波長相匹配 〇 心 在確定半導體晶片的發射主峰波長的前提下,根據 需要的LED産品的發光顏色選擇螢光材料。 在使用至少一種以上本發明的矽酸鹽螢光材料的前 提下’同時根據需要白勺LED纟品的發光顏&,選擇非本發 月所述的第二螢光材料和/或第三螢光材料和/或第四 螢光材料。 可以作爲第一螢光材料和/或第三螢光材料和/或 弟四赏光材料使用的螢光材料種類包括:摻雜稀土啟 動的氮氧化物螢光粉、摻雜稀土啟動的氮化物螢光粉 、#雜稀土啟動的画矽酸鹽螢光粉、摻雜稀土啟動的 石^石結構的螢光粉、摻雜稀土啟動的硫化物螢光粉 4 4稀土啟動的氧化物螢光粉、摻雜稀土啟動的硫 氧化物螢光粉、摻雜稀土啟動的鋁酸鹽螢光粉、摻雜 啟動的氟砷(鍺)酸鎂螢光粉、摻雜稀土啟動的 朋i备光粉、摻雜稀土啟動的填酸鹽螢光粉、摻雜 稀土啟動的函磷酸鹽螢光粉、摻雜稀土啟動的鈦酸鹽 36 200804561 螢光粉、摻雜稀土啟動的硫代鎵酸鹽螢光粉。 衣備的LED發光顔色由所採用的半導體晶片發射光譜 和相對亮度以及使用的螢光粉的發射光譜和相 決定的。 心八共同 下面通過實施例40〜48加以說明 ,呈*曰 μ /丑日日片、螢光粉 的選擇以及LED的發光顏色示於表8。 表 8In the invention, it is found that in the preparation process of the fluorescent material, the human (5), ΝΗβ, (nh4)2hpo4, glucose 'urea' BaF2, CaF2, ZnF2, ZnS, SrS, CaS, SrS〇 can be added. 4 'SrHP〇4 or CaHP〇4, Li2C〇3, etc. participate in the solid phase reaction to increase the relative luminance and excitation emission spectrum of the material at different twists, as exemplified below. Example 36 ------- humiliation (2) _- Sr(NCM? 1. -=- \ t? / ----- __ 253.96 __ __ Ca(〇H)? __ 14.8 — __BaC03 ——— ----- __ 157.85 __ Mg ( OH) 2· 4MgC03· ___ 6H20 -------------—.—— 10.07 __ H4Si〇4 ------ —------ __ 9 6 __ __ H3BO3 __0.12 _____ —>_ (NH4)2HP04 ___ 2.64 __ —__Eu(N〇,), _ 16.9 Mn02 0.87 ____ Ce〇2 ——_________—— 8.6 ___ -_ NH4CI —_ 2.68 __ _ ZnS 0.49 32 200804561 Adding 14% of BaF2 and 0.3% of Li2C03, the raw materials of the above composition are fully ball-mixed, put into the crucible, and placed in an electric furnace at 700°. Sintering was carried out for 6 hours under an oxidizing atmosphere in C. After cooling, it was sintered in a furnace containing a mixed gas of a volume of nitrogen and hydrogen and a hydrogen sulfide ratio of 95:3:2, and sintered at 1150 ° C for 5 hours. After the sintered body is cooled, it is pulverized, ground by a ball mill, and sieved by a 325 mesh sieve to obtain a fluorescent material having a yellow luminescence in the present invention. 1.2Sr〇·0.8BaO·0.2Ca〇·0.1 MgO · Si02· 0.〇〇1B2〇3 • 0 · 01Ρ205 : 〇·〇5 Eu2+ · 0·01 Mn2+ · 〇·〇5 Ce3+ · 0.05C1·· 0.005S2·· 0.45F-· 0.05 Li+. The excitation spectrum of the material is in the range of 240~520nm, and the main peak position is excited. There is a strong excitation spectrum at 475 nm; the emission spectrum is in the range of 45 〇 to 63 〇 nm, and the emission main peak is at 537 nm. The manner and method of adding various external raw materials required in the manufacturing method of the present invention are similar to those of the embodiment 36 except that the type and amount of the raw materials to be added are selected according to the excitation emission spectrum range and relative brightness of the fluorescent material to be produced. . The present invention also relates to an illumination device using any one or more of the phosphor materials of the present invention, and more particularly to a semiconductor LED using an emission main peak used as an excitation light source in the range of 240 to 510 nm, particularly an LED emitting white light. The scope of the claimed invention will now be described in the form of a specific embodiment. Referring to Fig. 12, the LED of the present invention comprises a semiconductor light-emitting chip 2, a cathode electrode 2, a positive electrode 3, a pin 4, a fluorescent material 5, a sealing material 6, and a lead 33 200804561 7 reflecting cup 8. The half-body light-emitting chip is a secret wafer or a wafer. The fluorescent material includes at least one or more of the (4) acid salt glazing materials of the present invention. The encapsulating material is a transparent resin, and may be a transparent epoxy resin, such as a transparent stone. & wherein a is a direct contact between the fluorescent material and the semiconductor light-emitting chip, and the fluorescent material is mixed with the transparent resin and then coated on the reflective glass of the semiconductor light-emitting chip. ® b is the way to contact between the fluorescent material and the semiconductor light-emitting chip. The fluorescent material is evenly distributed on the surface of the epoxy resin. Figure 〇 is the way in which the light-emitting material semiconductor light-emitting chip is in indirect contact, and the light-emitting materials are all disposed in the epoxy resin and above the semiconductor light-emitting chip. Example 37 • A white LED was prepared using the LED package of Figure 3 of Figure 12. The specific enthalpy process is to select I g having a matching emission main peak wavelength according to the effective excitation wavelength range of the phosphor powder. In the example of the conjugate of the film, the wavelength of the main peak of the semiconductor light-emitting chip is 460 nm, and the luminescent material is selected as described in Example 29, and the die-bonding, wire bonding, and drying are performed. Weigh a few grams and a transparent epoxy resin in the appropriate proportions. ί over the semiconductor wafer (dispensing). The glued lead cup is glued, the empty chess box is solidified, and then inserted into a mold filled with epoxy resin, and then solidified in a work oven, and finally demolded. The relative spectral power of this $ $ # τ ρη distribution ^ mm Γ , color xum, γ = 0.3292, color rendering index 85. The emission spectrum is formed by the luminescence powder being partially excited by the blue light and emitted by the blue light, and then emitted by the red light spectrum of the first red light and the remaining "second film". Example 38 34 200804561 ^ The white light LED is prepared by using the LED package method in FIG. 12 . In this example, the emission main peak wavelength of the 帛 'body light emitting chip is 385 nm, and the fluorescent material selection embodiment i, the embodiment 13, the embodiment 23, and the embodiment 32 The camping materials are mixed in an appropriate ratio. The package is similar to the embodiment π, but the phosphor material is evenly distributed on the surface of the epoxy resin. The emission spectrum of the white LED is controlled by the above four kinds of phosphors. When the ultraviolet light is emitted, the blue, green, yellow, and red luminescence spectra respectively emitted by the external light and/or part of the emitted light from the fluorescent powder are combined with the remaining 4 minute emission spectrum of the fluorescent powder. The color coordinates are 胄x=03747, Υ=〇.34〇3, and the color temperature is 3874K. Fig. 14 is a (10) diagram of the white light coffee. The point F is the chromaticity seat point of the white LED of the embodiment. Example 39 # Use Figure i 2 in Figure e The white LED is prepared by LED packaging. In the example, the emission main peak wavelength of the semiconductor light-emitting chip is 胄470nm, and the fluorescent material selected in the third embodiment is the fluorescent material (the emission main wavelength is 556ηΐΏ) and the doping rare earth starts. YAG campsite powder of the pumice structure ((Y0.33Gd0.63Ce0.04)3A]5〇] 2' emission main peak wavelength 532(10)) and sulfide-fluorescent fluorescing # (CaS: Eu, emission main peak) The wavelength is 6〇6—mixed in an appropriate ratio. The packaging process is the same as in Example 37(4), but the fluorescent materials are all distributed in the epoxy resin and on the semiconductor light-emitting chip. This _ LED emission spectrum is composed of the above three kinds of camp light. The yellow, yellow-red, and red-emitting spectroscopy spectra of the yellow, yellow, and red luminescence spectra emitted by the luminescence and the luminescence of the remaining portion of the blue ray are respectively emitted by the blue light and the @ part of the luminescent powder. Composite color. Its color coordinates stomach χ = 〇 · 3288, γ = 〇. Qiu, color temperature 5637 Κ 'color rendering index 8 〇. Using Figure a, Figure, (3) (four) package can be used to prepare LED. seal The process is similar to the embodiment η%. However, there are many options for the combination of the phosphor powder. The principle is: The effective excitation wavelength range of the worm phosphor powder and the emission main peak wavelength of the semiconductor wafer and/or together (4) other camp wires The emission main peak wavelength is matched to the core. Under the premise of determining the emission main peak wavelength of the semiconductor wafer, the fluorescent material is selected according to the required luminescent color of the LED product. Under the premise of using at least one of the above-described phthalate fluorescent materials of the present invention At the same time, according to the luminescent color of the LED product, the second fluorescent material and/or the third fluorescent material and/or the fourth fluorescent material are not selected. The types of fluorescent materials that can be used as the first fluorescent material and/or the third fluorescent material and/or the fourth fluorescent material include: rare earth-doped oxynitride phosphors, rare earth-doped nitride phosphors. Photopowder, #杂Rare earth-activated phthalate phosphor powder, rare earth-doped stone structure phosphor powder, rare earth-doped sulfide phosphor powder 4 4 rare earth-activated oxide phosphor powder , doped rare earth-activated sulfur oxide fluorescent powder, rare earth-doped aluminate fluorescent powder, doped activated fluorine arsenic magnesium fluorite powder, doped rare earth activated powder , doped rare earth-activated acid-filled phosphor powder, rare earth-doped functional phosphate phosphor, doped rare earth-activated titanate 36 200804561 Fluorescent powder, rare earth-doped thiogallate Light powder. The LED illumination color of the clothing is determined by the emission spectrum and relative brightness of the semiconductor wafer used and the emission spectrum and phase of the phosphor used. The following are explained by Examples 40 to 48, and the selection of *曰 μ / ugly day, the selection of the phosphor and the color of the LED are shown in Table 8. Table 8

37 200804561 620 46 Gal 400 470 3.5MgO· 〇.5MgF2· 655 白 nN 530 Ge02:Mn4+ 47 Gal 460 510 (Y〇.95Ce〇>〇5)3Al5〇i2 550 白 nN 535 48 Gal nN 410 570 黃 紅37 200804561 620 46 Gal 400 470 3.5MgO·〇.5MgF2· 655 White nN 530 Ge02: Mn4+ 47 Gal 460 510 (Y〇.95Ce〇>〇5)3Al5〇i2 550 White nN 535 48 Gal nN 410 570 Yellow Red

本發明的矽酸鹽螢光材料的抗衰減性能優異,將在實 施例37、38、39中製作的白光LED進行破壞性老化試驗, 試驗條件爲:環境溫度25t:,電流100mA,老化時間1008 小時。其亮度衰減曲線見圖15。從圖中可以看到,經過在 這種條件下的破壞性試驗,LED的光衰小於26%,抗衰減 性能優異,具有良好的溫度穩定性。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1爲具有藍色發光的實施例i的螢光材料的激 發射光譜; " 光材料的激發 圖2爲具有藍綠色發光的實施例9的螢 和發射光譜; 光材料的激發和 圖3爲具有綠色發光的實施例13的螢 發射光譜; 17的衷光材料的激發 圖4爲具有黃綠色發光的實施例 38 200804561 和發射光譜; 圖5爲具有黃綠色發光的實施例20的螢光材料的激發 和發射光譜’其中發射光譜是以470nm的激發光源作爲檢 測波長所得; ’ 圖6爲具有黃綠色發光的實施例21的螢光材料的激發 和發射光譜; 圖7爲具有黃色發光的實施例23的螢光材料的激發和 發射光譜; • 圖8爲具有黃色發光的實施例25的螢光材料的激發和 發射光譜; 圖9爲具有黃色發光的實施例28的螢光材料的激發和 發射光譜’其中發射光譜是以470nm的激發光源作爲檢測 波長所得; 圖10爲具有黃紅色發光的實施例29的激發和發射光 譜; 圖11爲具有紅色發光的實施例3 2螢光材料的激發發射 ® 光譜圖,發射光譜爲紅光區發射光譜; ^ 圖12爲一種LED結構示意圖; ; 圖13爲實施例37的白光LED的相對光譜功率分佈圖 圖14爲實施例38的白光LED在· CiE圖中的色品座標 ;及 圖15爲實施例37、38、39的白光1^0的光衰曲線圖 39 200804561 【主要元件符號說明】 1 · » _ 半導體發光晶片 5 _ • · ·螢光材料 2 · · · · 陰電極 6 · • · ·封裝材料 3 · · · * 陽電極 7 · • ••引線 4 · · · · 管腳 8 · • · ·反光杯The phthalate fluorescent material of the present invention is excellent in anti-attenuation performance, and the white LEDs produced in Examples 37, 38, and 39 are subjected to a destructive aging test under the following conditions: ambient temperature 25t: current 100 mA, aging time 1008 hour. The brightness decay curve is shown in Figure 15. As can be seen from the figure, after the destructive test under such conditions, the LED has a light decay of less than 26%, excellent anti-attenuation performance, and good temperature stability. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a laser emission spectrum of a fluorescent material of Example i having blue light emission; " Excitation of an optical material FIG. 2 is a firefly and emission spectrum of Example 9 having blue-green light emission; The excitation of the material and FIG. 3 is the fluorescene emission spectrum of Example 13 with green luminescence; the excitation of the photonic material of 17 is Example 38 200804561 with emission of yellow-green luminescence and emission spectrum; FIG. 5 is luminescence with yellow-green luminescence Excitation and emission spectra of the fluorescent material of Example 20 wherein the emission spectrum is obtained by using an excitation light source of 470 nm as the detection wavelength; 'Figure 6 is the excitation and emission spectra of the fluorescent material of Example 21 having yellow-green illumination; 7 is an excitation and emission spectrum of the fluorescent material of Example 23 having yellow light emission; • FIG. 8 is an excitation and emission spectrum of the fluorescent material of Example 25 having yellow light emission; FIG. 9 is an Example 28 having yellow light emission. The excitation and emission spectra of the fluorescent material 'where the emission spectrum is obtained by using an excitation light source of 470 nm as the detection wavelength; FIG. 10 is the excitation of Example 29 having yellow-red illumination. Figure 11 is an excitation emission spectrum of Example 3 2 fluorescent material with red emission, emission spectrum is red region emission spectrum; ^ Figure 12 is a schematic diagram of an LED structure; Figure 13 is an embodiment FIG. 14 is a chromaticity coordinate of a white LED of Example 38 in a CiE diagram; and FIG. 15 is a light attenuation diagram of white light 1^0 of Embodiments 37, 38, and 39. 39 200804561 [Explanation of main component symbols] 1 · » _ Semiconductor light-emitting chip 5 _ • · · Fluorescent material 2 · · · · Cathode electrode 6 · · · · Package material 3 · · · * Positive electrode 7 · • •• Lead 4 · · · · Pin 8 · • · · Reflective Cup

4040

Claims (1)

200804561 十、申請專利範圍: 1· 一種螢光材料,特別涉及包括lED在内的發光裝置用的 螢光材料’其特徵爲主要含有矽酸鹽和啟動劑離子,其 主要的化學組成表示式爲:aMO · bM〆0 · Si〇2 · cR : Ευ yLn zLv ’ 其中 μ 選自 Sr、Ca、Ba、Zn 中的一種200804561 X. Patent application scope: 1. A fluorescent material, in particular, a fluorescent material for a light-emitting device including lED, which is characterized in that it mainly contains citrate and a promoter ion, and its main chemical composition expression is :aMO · bM〆0 · Si〇2 · cR : Ευ yLn zLv ' where μ is selected from one of Sr, Ca, Ba, Zn 或多種7G素的組合;M /選自Mg、cd、Be中的一種或 多種元素的組合;R選自B2〇3、P2〇s中的一種或兩種 成分 ’ Ln 爲 Nd、Dy、Ho、Tm、La、Ce、Er、Pr、Bi、 Sm、Sn、Y、Lu、Ga、Sb、Tb、Mn 中一種或多種元素 的組合’ Lv選自cr、F—、Br—、「、S2—&gt;的一種或多 種元素離子的組合;a、b、c、x、y、z爲莫耳係數,〇·5 ~ ~ 5^° ; 0 ^ b ^ 3.0 ; 0 ^ c ^ 〇.5 ; 0.001 ^ χ ^ r\ 0 · =0.2,〇 s y ^ 〇·5 ; ο ^ ζ &lt; 〇·5 ,…中 1 &lt; (a+b) ^ 6,且當(a+b) = 2 時,μ〆 &amp; /材料可以被做爲激發光源的發射光譜在240 〜510nm的紫外—一綠光區域的發光元件激發,吸收激 &amp;光源的至)一部分發射光,發出420〜700nm範圍内 ,至/有一個以上峰值在430〜63〇nra範圍内的發射光 譜,可王現藍、藍綠、綠、黃綠、黃、黃紅、紅、白顏 色的發光。 2·依據申請專利範 所述的莫耳係數 圍第1項所述之螢光材料,其特徵在於 的範圍是:當i&lt;(a+b) &lt;2,且a &gt; b 時 ’ 0·5 g ^ 〇·5 ,〇.〇〇! a — 1·5 ’ 0·4 $ b $ 1·0 , ^ x = 0.2 ,0 ^ y $ 0.5 41 200804561 Z &lt; 〇.5 ,且 M#Ca ;當 2 &lt; (a+b) ,且 a$b 時,1.0S a S 2,1.0 $ b m 〇 $ e ^ q $ ,0.001 S X $ 〇·2,〇 $ y $ 〇 5,〇 $ z &lt; 0·5,激發後的發光顏色爲藍色。 3. 依據申請專利範圍第〗項所述之營光材料,其特徵在於 所述的莫耳係數的範圍录:1 &lt; ( a + b ) &lt; 2,且a &gt; b 時,0.5 $ a $ u,〇 4 g b。〇,〇 $ 二 0.5,〇顧 g x g 0.2,〇 $ y、〇 5,-〇 “ &lt; 0.5,且Ca元素的莫耳含量與Sr元素莫耳含量的比 值在0.2 〇.5之間,激發後的發光顏色爲藍綠色。 4. 依據申請專利範圍第i項所述之螢光 所述的莫耳係數的範圍是:當i &lt;u+b/、= = 0.5 ^ a ^ 1.5 , 0.2 ^ 5 〇 , 〇 ^ 〇…….2,〇 S…5 ; &lt; —y — U.5 ,0 $ ζ &lt; 〇·5 ’且Ca元素的莫耳含量與Sr元素莫耳含量的比值在〇 6 〜Μ 之間;當 2&lt; (…)$5 時,0.5 g a $ 3.〇, 0 - b ~3·0 5 〇 ^ 0.5,〇.〇〇1 ^ x ^ 〇2 :,0 $ Υ “.5 ’〇 ^ Ζ〈 〇.5;激發後的發光顏色 爲綠色。 5. 依據中請專利範圍第1項所述之爱光材料,其特徵在於 所述的莫耳係數的範圍是:當! &lt; (a+b) &lt;2時, 〇·5 “ $ 1.5, M b U0 ’ 〇 $ c $ 〇 5, 0 001 ' X ^ 〇-2 Ό ^ Y ^ 0.5 , 〇 ^ z &lt; 〇.5 ,且Ca元素的莫耳含量與Sr元素莫耳含量的比值在2 8 42 200804561 3.3 之間;當 2 &lt; (a+b) } = 6 且 a b 時,15&lt; a ^ 3,0 $ b $3·〇,n &lt; ° = =c $ 0·5,Ο.οοι ^ X S 0.2,0 $ y ^ 〇·5 , 〇 χ = ζ &lt; 〇·5 ;當(a+b )-2β寸,i^a^2 η = b $ U,0 ^ c ^ °·5,0-001 ^ X ^ 0.2 , π &lt; ~ ^ =y ^ 0.5 ,〇&lt; z &lt; 0.5 ,且當b关0時,丄 M 关Mg,當b=()時, 素的莫耳含量與Ba元素^ 70 „ 兴斗s里的比值在0.8〜1 6之 間,激發後的發光顔色爲黃綠色。 6·依據申請專利範圍第}項所 所述的莫耳係數的範圍是· a 〆,其特徵在於 〇.5“ …1n +b) &lt;2 時, 0 001 &lt; &lt; 一〇,0$cg 0.5, 0 001 $ X S 0·2 ,〇 &lt; &gt; y ^ ο·5 ,〇 幺 ,且❹ Sr;當 2 &lt; (a ~ &lt; 0.5 b S3.0 , o j =6 且 a b 時,2 S =c = 0.5 » 0 001 &lt; ^ 0.2 ^ ^ y ^ 0.5 0.001 s X υ$Ζ&lt;〇ς.火, 、 =2 時,i.O $ a &lt; ) 0.5 ,,當(a+b) …0 “ ^1·〇,ο &lt; Γ〈 〇·5,〇·_ “ “·2,ο ‘ == &lt;0.5 ,且當 b关Ο 時,]· ,〇$ζ 素的莫耳含量與Ba元素莫耳入曰L田b=0日夺,心元 異耳含ϊ的比值名】 間;激發後的發光顏色爲黃色。 在1.8〜2.2之 7.依據中請專利範圍第】項所述 所述的莫耳係數的範圍是.^ 料,其特徵在於 b 時,】.0$ aq〇/ -〈(^) ^,且〇 一…“.:,::Γ:…… u = y g 0·5,ο ‘ ζ 43 200804561 &lt; 〇·5 ,且Sr和/或Ca元素的莫耳含量大於Ba元素的 莫耳含量,·激發後的發光顏色爲黃紅色。 8·依據申請專利範圍第1項所述之螢光材料,其特徵在於 所述的莫耳係數的範圍是:當1 &lt; (a+b) &lt;1·5時 ,〇·2 S a ^ 1·2,0·2 S b $ 1·2,0 ^ c ^ 〇·5 ,0.001 S χ S 0·2,0 $ y $ 0·5 ,〇 ^ ζ〈 °·5 :當 1·5 &lt; ( a+b) &lt;2 時,〇·5 $ a $ L8,〇·5 =b ^ 1.8 ’ 〇 ^ c ^ 0.5,0.001 ^ χ ^ q 2 ,Or a combination of a plurality of 7G; M / a combination of one or more elements selected from the group consisting of Mg, cd, and Be; R is selected from one or both of B2〇3, P2〇s' Ln is Nd, Dy, Ho , a combination of one or more of Tm, La, Ce, Er, Pr, Bi, Sm, Sn, Y, Lu, Ga, Sb, Tb, Mn 'Lv is selected from the group consisting of cr, F-, Br-, ", S2 -&gt; combination of one or more element ions; a, b, c, x, y, z are the molar coefficients, 〇·5 ~ ~ 5^°; 0 ^ b ^ 3.0 ; 0 ^ c ^ 〇.5 ; 0.001 ^ χ ^ r\ 0 · =0.2, 〇sy ^ 〇·5 ; ο ^ ζ &lt; 〇·5 ,...1 &lt; (a+b) ^ 6, and when (a+b) = 2 When the μ〆&/material can be used as an excitation source, the emission spectrum is excited by a light-emitting element in the ultraviolet-green region of 240 to 510 nm, and a part of the light is emitted from the excitation light source, emitting a range of 420 to 700 nm. Inside, there is more than one emission spectrum in the range of 430~63〇nra, which can be illuminated by blue, blue green, green, yellow green, yellow, yellow red, red and white colors. The molar coefficient of the first item The fluorescent material is characterized by a range of: when i &lt; (a + b) &lt; 2, and a &gt; b ' 0 · 5 g ^ 〇 · 5 , 〇. 〇〇 ! a — 1· 5 ' 0·4 $ b $ 1·0 , ^ x = 0.2 , 0 ^ y $ 0.5 41 200804561 Z &lt; 〇.5 , and M#Ca ; when 2 &lt; (a+b) , and a$b When, 1.0S a S 2,1.0 $ bm 〇$ e ^ q $ ,0.001 SX $ 〇·2, 〇$ y $ 〇5, 〇$ z &lt; 0·5, the illuminating color after excitation is blue. 3. The camping light material according to the scope of claim patent, characterized in that the range of the molar coefficient is: 1 &lt; ( a + b ) &lt; 2, and a &gt; b, 0.5 $ a $ u, 〇 4 gb. 〇, 〇 $ 2 0.5, regardless of gxg 0.2, 〇 $ y, 〇 5, -〇 " &lt; 0.5, and the ratio of the molar content of Ca element to the molar content of Sr element is Between 0.2 and 5., the illuminating color after excitation is blue-green. 4. The range of the moir coefficient according to the fluorescence described in item i of the patent application scope is: when i &lt;u+b/, == 0.5 ^ a ^ 1.5 , 0.2 ^ 5 〇, 〇^ 〇... ....2, 〇S...5 ; &lt; —y — U.5 , 0 $ ζ &lt; 〇·5 ' and the ratio of the molar content of Ca element to the molar content of Sr element is between 〇6 Μ ;; When 2&lt; (...)$5, 0.5 ga $ 3.〇, 0 - b ~3·0 5 〇^ 0.5,〇.〇〇1 ^ x ^ 〇2 :,0 $ Υ “.5 '〇^ Ζ 〇 5 5 ; ; ; 激发 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. b) &lt;2, 〇·5 “ $ 1.5, M b U0 ' 〇$ c $ 〇5, 0 001 ' X ^ 〇-2 Ό ^ Y ^ 0.5 , 〇^ z &lt; 〇.5 , and Ca The ratio of the molar content of the element to the molar content of the Sr element is between 2 8 42 200804561 3.3; when 2 &lt; (a+b) } = 6 and ab, 15 &lt; a ^ 3,0 $ b $3·〇 ,n &lt; ° = =c $ 0·5,Ο.οοι ^ XS 0.2,0 $ y ^ 〇·5 , 〇χ = ζ &lt;〇·5; when (a+b )-2β inch, i^ A^2 η = b $ U,0 ^ c ^ °·5,0-001 ^ X ^ 0.2 , π &lt; ~ ^ =y ^ 0.5 ,〇&lt; z &lt; 0.5 , and when b is off, 丄M off Mg, when b=(), the molar content of the element is in the range of 0.8 to 16 between the Ba element and the 70 element, and the luminescent color after excitation is yellow-green. The range of the molar coefficient described in the item is · a 〆, which is characterized by 〇.5 "...1n +b) &lt;2, 0 001 &lt;&lt; a 〇, 0$cg 0.5, 0 001 $ XS 0·2 , 〇 &lt;&gt; y ^ ο·5 , 〇幺, and ❹ Sr; when 2 &lt; (a ~ &lt; 0.5 b S3.0 , oj =6 and ab, 2 S =c = 0.5 » 0 001 &lt; ^ 0.2 ^ ^ y ^ 0.5 0.001 s X υ$Ζ&lt;〇ς. fire, , =2, iO $ a &lt; ) 0.5 ,, when (a+b) ...0 “ ^1 ·〇, ο &lt; Γ < 〇·5, 〇·_ “ “·2, ο ' == &lt;0.5, and when b is closed,]·, 〇$ζ The molar content of Ba and Ba element The ear is in the L field b = 0 day, the heart of the ear contains the ratio of the name of the 】; the illuminating color after the excitation is yellow. In the range of 1.8 to 2.2, the range of the molar coefficient described in the scope of the patent application is in the form of material, which is characterized by b., .0$ aq〇/ -<(^) ^, And 〇一...".:,::Γ:...... u = yg 0·5,ο ' ζ 43 200804561 &lt; 〇·5 , and the molar content of Sr and / or Ca elements is greater than the molar content of Ba element The luminescent color after excitation is yellow-red. 8. The fluorescent material according to claim 1, wherein the range of the molar coefficient is: when 1 &lt; (a+b) &lt;;1·5, 〇·2 S a ^ 1·2,0·2 S b $ 1·2,0 ^ c ^ 〇·5 ,0.001 S χ S 0·2,0 $ y $ 0·5 , 〇^ ζ< °·5 : When 1·5 &lt; ( a+b) &lt;2, 〇·5 $ a $ L8,〇·5 =b ^ 1.8 ' 〇^ c ^ 0.5,0.001 ^ χ ^ q 2 , 10. 0 ^ y ^ 0.5 ,0 $ Ζ &lt; 0.5 ;當 2 &lt; (a+b) ^ 5 時,1·0 ‘ a g 3·0,ΐ·〇 $ b $ 3 , 〇 ^ c ^ 〇·5 ’ 〇·〇〇1 $ χ $ 〇·2,Ο $ y $ 〇·5,〇 $ ζ 〈〇·5 ;激發後的發光顏色爲紅色。 依據申請專利範圍第i項所述之螢光材料,其特徵在於 ,所述的矽酸鹽螢光材料被在240〜510nm範圍内的具 有發射峰的激發光源的光激發,並^螢光材料的發射峰 波長大於激發光源的長波側發射峰的波長。 爲下列 bM ^ -種螢光材料的製作方&amp;,其特徵在於所用原料 各元素的化合物’其元素按照下述表示式劇 〇· si〇2. cR: xEu. yLn. zLv 的莫耳配比爲 Μ : 0·5〜5 ; Μ ^ : 0〜3.0 ; Si : 1.0 ; R : 0〜2.0 ; Ευ : 0.001—0.2 ; 44 200804561 Ln : 0〜0·5 ; Lv : 0〜0.5 ; ,其中:Μ代表Sr、Ca、Ba、Zn中的一種或多種元 素的化合物; ^代表Mg、Cd、Be中的一種或多種元素的化合 物; R代表B、P中的一種或兩種元素的化合物; Si代表Si的化合物; Ειι代表Ειι的化合物; Ln 代表 Nd、Dy、Ho、Tm、La、Ce、&amp;、&amp; 抝、 Sm'Sn' Y'LU'Ga'Sb、Tb、Mn 中一種或多種元素 的化合物; Lv代表α、F、Br、I、s φ的 括七# . b τ的一種或多種元素的化 合物; Μ M Ln、Eu的化合物是分別用它們所代表元 素的碳酸鹽、硫酸鹽、硝酸鹽、磷酸鹽、硼酸鹽、醋酸 鹽、草酸鹽、檸檬酸鹽或其氯仆物、气今儿l h ^ 、虱化物虱虱化物、鹵化物 ;Si的化合物是使用Si〇2、石夕酿、功暖 卜 ^ 2矽I 矽.、氮化矽或矽酸 鹽;R是硼、磷的化合物;赞作工苑s - 衣作工蟄舄鬲溫固相反應法 ,將各元素的原料按莫耳配屮錳街、曰人^ 此比柄取,混合均勻,先在氧 化氣氛下7〇〇-ii〇〇r燒結2〜6小日本,i+人w b小枯,再於還原氣氛下 1000-1300。(:燒結2〜6小時,六知% !ν 时,冷部後,粉碎,過篩而成 〇 11·依據申請專利範圍第10項所诫 Μ 、尸坏迷之踅先材料的製造方法, 45 200804561 其特徵在於所述的還原氣翕&amp;今々 … 卜 礼式馬虱乳、乳氣、氮氣和氫氣 或碳粒存在下。 12·依據申請專利範圍第10或 人U項所述之螢光材料的製造 方法’其特徵在於所述的還居今与 ,、w遢原虱巩含有不超過1〇%的 H2S 〇 13.依據中請專利額第!〇項所述之螢光材料的製造方法, 其特徵在於可在混合原料中加人占原料重量卜测的 nh4C1,NH4F,(NH4)2HP〇4,葡萄糖,尿素,BaF2, CaF2 ’ ZnF2 ’ ZnS ’ SrS ’ CaS ’ SrS〇4,SrHp〇4 或 CaHP〇4、Li2C03參與固相反應。 14· 一種發光裝置,具有做爲激發光源的發光元件,及能夠 將激發光源的至少一部分光轉換的螢光材料,其特徵在 於: 發光元件的發射光譜峰值在24〇〜51〇nm的紫外— 一綠光區域範圍内,以及將至少一部分所述的發光元件 的第一發光光譜的波長轉換成至少有一個以上的峰值波 長處於430〜63〇nm波長範圍内的第二發射光譜的螢光 .材料的發光裝置,所述的螢光材料至少有一種以上爲申 叫專利範圍第1〜13中任何一項所述的石夕酸鹽螢光材料 〇 15·依據申請專利範圍第項所述之發光裝置,其特徵在於 所述的做爲激發光源的發光元件在螢光材料吸收發光元 件的240〜510nm的紫外——綠光區域範圍内至少具有工 個以上的發光峰波長。 46 200804561 其特徵在於 或具有含In 16.依據申請專利範圍第15項所述之發光裝置 所述的發光元件的發光層是氮化物半導體、 的氮化物半導體。 π依據^專利簡f 15項所述之發光裝置, 所使用的螢光材料爲權利要求卜 ’、/在方; 石夕酸鹽螢料料。 μ何—項所述的10. 0 ^ y ^ 0.5 ,0 $ Ζ &lt;0.5; when 2 &lt; (a+b) ^ 5, 1·0 ' ag 3·0, ΐ·〇$ b $ 3 , 〇^ c ^ 〇 · 5 ' 〇·〇〇1 $ χ $ 〇·2, Ο $ y $ 〇·5, 〇$ ζ 〈〇·5; the illuminating color after excitation is red. A fluorescent material according to the invention of claim 1, wherein the phthalate fluorescent material is excited by light of an excitation light source having an emission peak in a range of 240 to 510 nm, and the fluorescent material is The emission peak wavelength is greater than the wavelength of the long-wave side emission peak of the excitation light source. It is the maker of the following bM ^ - type of fluorescent material &amp;amp; it is characterized by the compound of each element of the raw material used. Its element is expressed by the following formula: si〇2. cR: xEu. yLn. The ratio is Μ : 0·5~5 ; Μ ^ : 0~3.0 ; Si : 1.0 ; R : 0~2.0 ; Ευ : 0.001-0.2 ; 44 200804561 Ln : 0~0·5 ; Lv : 0~0.5 ; Wherein: Μ represents a compound of one or more of Sr, Ca, Ba, Zn; ^ represents a compound of one or more of Mg, Cd, Be; R represents a compound of one or two of B, P ; Si represents a compound of Si; Ειι stands for a compound of Ειι; Ln represents Nd, Dy, Ho, Tm, La, Ce, &amp;, &amp; 拗, Sm'Sn' Y'LU'Ga'Sb, Tb, Mn a compound of one or more elements; Lv represents a compound of α, F, Br, I, s φ, a compound of one or more elements of b τ; a compound of Μ M Ln, Eu is a carbonate of an element respectively represented by them Salt, sulphate, nitrate, phosphate, borate, acetate, oxalate, citrate or its chlorine servant, Today, lh ^ , telluride telluride, halide; Si compound is Si 〇 2, Shi Xi brew, Gong Wen Bu ^ 2 矽 I 矽., tantalum nitride or bismuth salt; R is boron, phosphorus Compounds; praise for the work of the industrial s - clothing work temperature and solid phase reaction method, the raw materials of each element according to Moer 屮 manganese road, 曰人 ^ this handle is taken, mixed evenly, first in an oxidizing atmosphere 7〇〇-ii〇〇r sintered 2~6 small Japan, i+ person wb small dry, and then in the reducing atmosphere 1000-1300. (: Sintering 2~6 hours, 6% know%! ν, after the cold part, smashing, sifting into 〇11. According to the application of patent item 10, 尸 坏 迷 踅 踅 踅 , , , 45 200804561 It is characterized in that the reducing gas amp &amp; 々 卜 式 虱 虱 虱 。 。 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 The method for producing a light material is characterized in that it is still in existence, and that the original material contains no more than 1% of H2S. 13. According to the fluorescent material described in the patent item! The manufacturing method is characterized in that nh4C1, NH4F, (NH4)2HP〇4, glucose, urea, BaF2, CaF2' ZnF2 ' ZnS ' SrS ' CaS ' SrS〇4 are added to the mixed raw materials. SrHp〇4 or CaHP〇4, Li2C03 participate in the solid phase reaction. 14. A light-emitting device having a light-emitting element as an excitation light source and a fluorescent material capable of converting at least a part of the light of the excitation light source, wherein: the light-emitting element The emission spectrum peaks at 2 In the range of ultraviolet light-green light region of 4〇~51〇nm, and converting the wavelength of the first light-emitting spectrum of at least a part of the light-emitting elements into at least one peak wavelength in the wavelength range of 430 to 63〇nm The second emission spectrum of the fluorescent material. The light-emitting device has at least one of the fluorescent materials described in any one of claims 1 to 13 of the invention. The illuminating device according to claim 2, characterized in that the illuminating element as the excitation light source has at least one or more workers in the ultraviolet-green region of 240 to 510 nm of the luminescent material absorbing illuminating element. The light-emitting layer of the light-emitting element according to the light-emitting device of claim 15, which is a nitride semiconductor, is a nitride semiconductor. The illuminating device according to item 15 of the present invention, wherein the fluorescent material used is the claim ', / in the square; 18.依據申請專㈣㈣14項所述之發光裝置,其特徵在於 做為激發光源的發光元件的發射光譜峰值在紫外光範圍 内,所使用的螢光材料爲權利要求卜13令任何—項所 述的石夕酸鹽螢光材料的—種或兩種以上的組合;榮光材 料吸收激發光源的和/或組合中其他營光粉的至少一部分 《光將至少-部分所述的發光元件的發光光譜的波長 轉換成不同的至少有一個以上的峰值波長處於㈣〜 ㈣謂波長範圍内的發射光譜以獲得混合後的白光、或 監光、或監綠光、或蜂本十廿 ^ 4光或貫綠光、或黃光、或黃紅 光、或紅光。 19·依據中請專利範圍第14項所述之發光裝置,其特徵在於 做爲激發光源的發光元件的發射光譜峰值在藍光到綠光 的範_ ’所使用的螢光材料爲權利要求卜13中任何 一項所述㈣酸鹽螢光材料的—種或兩種以上的組合; 營光材料吸收激發光源的和/或組合中其他營光粉的至少 -部分發光’將至少一部分所述的發光元件的發光光譜 的波長轉換成不同的至少有一個以上的峰值波長處於 430〜630nm波長範圍内的發射光譜以獲得混合後的白光 47 200804561 、或監光、或藍綠光、或綠光、或黃綠光、 廿,, 5乂更光、-或 育紅光、或紅光。 2〇·依據申請專利範圍第W、15、18或19項 只Μ迷之發光裝 置,其特徵在於所使用的螢光材料,還含 &lt; δ胥冋核利要求 1 I3中任何一項所述的一種以上的矽酸鹽螢光材料一 同使用的第二螢光材料,和/或第三螢光材料,和/或第 四螢^光材料;該第二螢光材料,和/或第三螢光材料1和 /或第四螢光材料將來自所述的激發光源的光的一部分, =/或來自所述權利要求1〜13中任何一項所述的矽酸鹽 赏光材料的光的至少一部分波長轉換,並具有在藍光到 紅光的可見光區域内具有至少一個發射峰波長的發光光 譜。 21.依據申請專利範圍第2Q項所述之發光裝置,其特徵在於 做爲激發光源的發光元件的發射光譜峰值在紫外光的範 圍内’來自所述的矽酸鹽螢光材料的至少一部分光、來 自所述的第二螢光材料和/或第三螢光材料和/或第四螢 光材料的光的至少兩束以上的光混合以獲得白光、或藍 光、或藍綠光、或綠光、或黃綠光、或黃光、或黃紅光 、或紅光。 2·依據申請專利範圍第14、15、18或19項所述之發光裝 置’其特徵在於做爲激發光源的發光元件的發射光譜岭 值在監光到綠光的範圍内,來自所述的激發光源的至少 一部分光、來自所述的矽酸鹽螢光材料的至少一部分光 來自所述的第二螢光材料和/或第三螢光材料和/或第 48 200804561 四蛋光材料的光的5小a 土 尤的至J/兩束以上的光混合以獲得白光、 或藍光、或藍綠光、吱 々廿#上 斗、廿^ 70 戎、、录光、或育綠光、或頁光、或黃 紅光、或紅光。 /、 2 3 ·依據申請專利鈴圖隹 乾圍弟14、15、18或19項所述之發光裝 置,、特被在於所述的第二螢光材料和/或第三螢光材料 必第四忠光材料爲·摻雜稀土啟動的氮氧化物螢光粉 、和/或摻雜稀土啟動的氮化物螢光粉、和/或摻雜稀土 啟動的i矽酸鹽螢光粉、和/或摻雜稀土啟動的石榴石結 構的k光粉、和/或摻雜稀土啟動的硫化物螢光粉、和/ 或t濰稀土啟動的氧化物螢光粉、和/或摻雜稀土啟動的 硫氧化物螢光粉、和/或摻雜稀土啟動的鋁酸鹽螢光粉、 和/或摻雜Μη啟動的氟坤(鍺)酸鎂螢光粉、和/或摻雜 稀土啟動的硼酸鹽螢光粉、和/或摻雜稀土啟動的磷酸鹽 瓦光粉、和/或摻雜稀土啟動的Α磷酸鹽螢光粉、和/或 摻雜稀土啟動的鈦酸鹽螢光粉、和/或摻雜稀土啟動的硫 代鎵酸鹽螢光粉。 24·依據申請專利範圍第14、15、18或19項所述之發光裝 置’其特徵在於所述的第二螢光材料和/或第三螢光材料 和/或第四螢光材料將來自所述的激發光源的光的一部分 ’和/或來自所述權利要求1〜13中任何一項所述的矽酸 鹽螢光材料的光的至少一部分波長轉換,並具有在藍光 到紅光的可見光區域内具有至少一個發射峰的發光光譜 〇 25·依據申請專利範圍第14、15、18或19項所述之發光裝 49 200804561 置,其特徵在於所述的發光裝置是一種所述的螢光才 直接或間接與晶片接觸的發光轉換led。 “才料 26·依據申請專利範圍第14、15、18或19項所述之發光裝 置,其特徵在於所述的發光裝置是包含至少一個使用所 述的螢光材料的LED的照明裝置。18. The light-emitting device according to claim 4, wherein the emission spectrum of the light-emitting element as the excitation light source is in the ultraviolet light range, and the fluorescent material used is any one of the claims a combination of two or more of the phosphoric acid materials; the glory material absorbs at least a portion of the other luminescent powders of the excitation source and/or combination of light luminescence spectra of at least a portion of the luminescent elements The wavelength is converted into a different emission spectrum with at least one peak wavelength in the range of (4) to (iv) wavelengths to obtain mixed white light, or illuminating light, or illuminating green light, or bee 廿 廿 ^ 4 light or Green light, or yellow light, or yellow red light, or red light. The illuminating device according to claim 14, wherein the luminescent material used as the excitation spectrum of the illuminating element of the illuminating element is in the range of blue to green light. Any one or a combination of two or more of the (four) acid salt fluorescent materials; the at least a portion of the light-emitting material absorbing at least a portion of the excitation light source and/or other luminescent powders in the combination The wavelength of the luminescence spectrum of the illuminating element is converted into different emission spectra of at least one of the peak wavelengths in the wavelength range of 430 to 630 nm to obtain mixed white light 47 200804561, or illuminating light, or blue-green light, or green light, Or yellow-green light, 廿,, 5 乂 more light, - or red light, or red light. 2. The illuminating device according to the W, 15, 18 or 19 patent application scope is characterized in that the fluorescent material used further contains any of the &lt; δ 胥冋 nuclear claim 1 I3 a second fluorescent material, and/or a third fluorescent material, and/or a fourth fluorescent material, which are used together with more than one phthalate fluorescent material; the second fluorescent material, and/or The third fluorescent material 1 and/or the fourth fluorescent material will be a portion of the light from the excitation source, =/or light from the bismuth silicate material of any of claims 1-13 At least a portion of the wavelength is converted and has an emission spectrum having at least one emission peak wavelength in the visible region of the blue to red light. The illuminating device according to claim 2, characterized in that the emission spectrum peak of the illuminating element as the excitation light source is in the range of ultraviolet light 'at least a part of the light from the citrate fluorescent material Mixing at least two or more lights of the light from the second phosphor material and/or the third phosphor material and/or the fourth phosphor material to obtain white light, or blue light, or blue-green light, or green Light, or yellow-green light, or yellow light, or yellow red light, or red light. 2. The illuminating device according to claim 14, wherein the radiant value of the illuminating element as the excitation light source is in the range of the illuminating to the green light, from the At least a portion of the light from the excitation source, at least a portion of the light from the phthalate phosphor material is from the second phosphor material and/or the third phosphor material and/or the light of the 48 200804561 four egg light material 5 small a soil to J / two or more beams of light to obtain white light, or blue light, or blue-green light, 吱々廿 #上斗, 廿 ^ 70 戎,, light, or green light, or Page light, or yellow red light, or red light. /, 2 3 · According to the patent application, the illuminating device described in paragraph 14, 15, 18 or 19 of the company, is specifically characterized by the second fluorescent material and/or the third fluorescent material. Sizhongguang materials are: rare earth-doped oxynitride phosphors, and/or rare earth-doped nitride phosphors, and/or rare earth-doped i-silicate phosphors, and/or a rare earth-initiated garnet-structured k-powder, and/or a rare earth-doped sulfided phosphor, and/or a t-rare-earthed oxide phosphor, and/or a rare earth-doped sulfur Oxide phosphors, and/or rare earth-doped aluminate phosphors, and/or Mn-doped fluoroquinone fluorite powder, and/or rare earth-doped borate Fluorescent powder, and/or rare earth-doped phosphate tile, and/or rare earth-doped yttrium phosphate phosphor, and/or rare earth-doped titanate phosphor, and/or Or doped with rare earth-activated thiogallate fluorescein. The illuminating device according to claim 14, wherein the second fluorescent material and/or the third fluorescent material and/or the fourth fluorescent material are derived from At least a portion of the light of the excitation light source and/or at least a portion of the light from the phthalate phosphor material of any of claims 1 to 13 having a wavelength of blue to red light An illuminating spectrum having at least one emission peak in the visible light region 〇25. The illuminating device 49 200804561 according to claim 14, claim 15, 18 or 19, wherein the illuminating device is a kind of arsenal A luminescence conversion led that is in direct or indirect contact with the wafer. The illuminating device according to claim 14, wherein the illuminating device is an illuminating device comprising at least one LED using the luminescent material. 50 200804561 七、指定代表圖: )圖。 螢光材料 封裝材料 引線 反光杯 (一) 本案指定代表圖為:第(12 (二) 本代表圖之元件符號簡單說明: 1 • · · ·半導體發光晶片 5 · · 2 • · · ·陰電極 6 · · y 3 • · ••陽電極 7 · · 4 • · ••管腳 8 · · 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 200804561 Hd j沖〉 四、聲明事項: □主張專利法第二十二條第二項□第一款或□第二款規定之事實,其 事實發生曰期為:年月曰。 □申請前已向下列國家(地區)申請專利: 【格式請依:受理國家(地區)、申請日、申請案號順序註記】 □有主張專利法第二十七條第一項國際優先權·· 0無主張專利法第二十七條第一項國際優先權: • €理目家-中國大陸 申請曰一2006年5月26曰 申請案號一200610082355.5 □主張專利法第二十九條第一項國内優先權: 【格式請依:申請曰、申請案號順序註記】 □主張專利法第三十條生物材料: □須寄存生物材料者: 國内生物材料【格式請依:寄存機構、曰期、號碼順序註記】50 200804561 VII. Designated representative map: ). Fluorescent material packaging material lead reflector (1) The representative drawing of this case is: (12 (II) The symbol of the symbol of the representative figure is simple: 1 • · · · Semiconductor light-emitting chip 5 · · 2 • · · · Negative electrode 6 · · y 3 • · ••yang electrode 7 · · 4 • · •• Pin 8 · · 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 200804561 Hd j 冲〉 IV. Statement Matters: □ Proposal for the facts as stipulated in the second paragraph or the second paragraph of Article 22 of the Patent Law, the facts of which occur in the following period: year and month. □ Apply for patents from the following countries (regions) before applying : [Format please follow: order of acceptance of country (region), application date, application case number] □ There is a claim for patent law Article 27, the first international priority · 0 No claim patent law Article 27 An international priority: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Apply for 曰, Note on the application case number □ Proposal Patent Law Article 30 Biological Materials: □ Those who need to deposit biological materials: Domestic biological materials [Format please follow the instructions of the depository, the period, the number order] 國外生物材料【格式請依:寄存國家、機構、日期、號碼順序註記】 □不須寄存生物材料者: 所屬技術領域中具有通常知識者易於獲得時,不須寄存。Foreign biomaterials [format: please note: country, organization, date, number order note] □ Those who do not need to deposit biomaterials: When the general knowledge in the technical field is easy to obtain, no deposit is required.
TW095124431A 2006-07-04 2006-07-04 Silicate fluorescent material and fabricating method thereof and light-emitting device using the same TWI275629B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095124431A TWI275629B (en) 2006-07-04 2006-07-04 Silicate fluorescent material and fabricating method thereof and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095124431A TWI275629B (en) 2006-07-04 2006-07-04 Silicate fluorescent material and fabricating method thereof and light-emitting device using the same

Publications (2)

Publication Number Publication Date
TWI275629B TWI275629B (en) 2007-03-11
TW200804561A true TW200804561A (en) 2008-01-16

Family

ID=38645995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095124431A TWI275629B (en) 2006-07-04 2006-07-04 Silicate fluorescent material and fabricating method thereof and light-emitting device using the same

Country Status (1)

Country Link
TW (1) TWI275629B (en)

Also Published As

Publication number Publication date
TWI275629B (en) 2007-03-11

Similar Documents

Publication Publication Date Title
TWI363793B (en)
CA2575841C (en) Novel silicate-based yellow-green phosphors
CN101077973B (en) Silicate luminescent material, preparation method thereof and luminescent device using the same
CN101292009B (en) Novel silicate-based yellow-green phosphors
TW554030B (en) Calcium-magnesium-chlorosilicate luminescent material and its application in luminescence-conversion-LED
US20060027785A1 (en) Novel silicate-based yellow-green phosphors
WO2009082714A1 (en) Novel silicate-based yellow-green phosphors
TWI373513B (en)
TWI373511B (en)
CN101694862A (en) Warm white light light-emitting diode (LED) and lithium matter fluorescent powder thereof
CN101255338B (en) Warm-white semiconductor and yellow-orange luminescent silicate fluorescent powder thereof
CN102286281B (en) Aluminate-based red fluorescent material and preparation method thereof
TW200409810A (en) Method for producing white-light LED with high brightness by phosphor powder
CN1585141A (en) White light LED and light converting luminophore
TW201132741A (en) Blue phosphors, white light illumination devices and solar cells utilizing the same
CN102585806B (en) Green fluorescent powder suitable for excitation of near ultraviolet light and blue light and preparation method thereof
TW200804561A (en) Silicate fluorescent material and fabricating method thereof and light-emitting device using the same
CN101565620B (en) Single-phase white-emitting phosphor based on near ultraviolet excitation and preparation method thereof
CN104152143B (en) Rare earth-containing functional material and preparation method thereof
CN105462585B (en) A kind of white light LEDs fluogermanic acid barium red light material and preparation method thereof
CN105255490B (en) A kind of blue light activated orange red nitric oxide fluorescent powder and preparation method thereof
CN102212368B (en) Blue-light fluorescent material, white-light emitting device using same and solar battery
CN102618262A (en) Purple light excited dimmable fluorescent material and preparation method thereof