TW200803204A - A method of and apparatus for combining electrical signals - Google Patents

A method of and apparatus for combining electrical signals Download PDF

Info

Publication number
TW200803204A
TW200803204A TW96118048A TW96118048A TW200803204A TW 200803204 A TW200803204 A TW 200803204A TW 96118048 A TW96118048 A TW 96118048A TW 96118048 A TW96118048 A TW 96118048A TW 200803204 A TW200803204 A TW 200803204A
Authority
TW
Taiwan
Prior art keywords
optical
signal
signals
frequency
communication device
Prior art date
Application number
TW96118048A
Other languages
Chinese (zh)
Inventor
Adrian Wonfor
Ian Hugh White
Richard Vincent Penty
Pierpaolo Ghiggino
Original Assignee
Univ Cambridge Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Cambridge Tech filed Critical Univ Cambridge Tech
Publication of TW200803204A publication Critical patent/TW200803204A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

A method of combining a plurality of electrical signals for transmission over an optical network, said method comprising: (a) each of a plurality of light emitters receiving a respective input electrical signal at a different respective centre frequency and emitting a respective light signal in response thereto and indicative thereof, wherein each light emitter emits the respective light signal at a different respective wavelength; and (b) a photoreceptor receiving the light signals and emitting an output electrical signal in response thereto and indicative thereof.

Description

200803204 九、發明說明: 【發明所屬之技術領域】 本务明係有關於一種結合傳送於光纖網路(〇^cal network)上之複數電氣信號之方法。本發明亦有關於一種 通化裝置。本發明亦有關於一種用於傳送信號之系統。 本發明之實施例係有關於被動式光纖網路(passive optical network’ P0N)架構,其用以散播通信信號至複數 終立而用戶没備(end user premises)。 # 【先前技術】 將光纖通纜線延伸至用戶端之被動式光纖網路(pQN) 近來愈發受到重視。其有時稱為,,光纖到家(fibre t〇 the home)”、,’光纖到路邊(fibre t〇 the kerb),,或,,光纖到樓(fibre to the building)”架構。此等被動式光纖網路架構利用分時 多工(TDM,time division multiplexing)、分波長多工 (WDM,wavelength division multiplexing) ' 次載波多工200803204 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of combining a plurality of electrical signals transmitted on a fiber optic network. The invention also relates to a generalizing device. The invention also relates to a system for transmitting signals. Embodiments of the present invention are directed to a passive optical network (PNO) architecture for disseminating communication signals to a plurality of terminal and end user premises. # [Prior Art] The passive optical network (pQN) that extends the fiber-optic cable to the customer end has recently received increasing attention. It is sometimes referred to as "fibre t〇 the home", "fiber t to the kerb", or, fibre to the building architecture. These passive optical network architectures utilize time division multiplexing (TDM) and wavelength division multiplexing (WDM).

(SCM; sub-carrier multiplexing)、以及混合式 WDM/TDM ® 機制等技術已經可以實際運作。此等架構之中,許多實例 之運作係應用 TDMA (time division multiple access,分時 多工存取)技術’其通常使得許多用戶共享一特定頻寬1 〇 Gb/s(每秒十億位元,即giga_bits per second)之光纖頻道。 此類型之解決方案有賴於用戶端設備之高頻寬組件,且涉 及用戶端之層級分類以建立信號傳輸之延遲以及信號上行 鏈路之排程,以避免多個使用者於同一光纖頻道同時傳輸 所引起之彼此間之干擾。 5 200803204 被動式光纖網路係單點對多點 織娘1 π ^ Α 』纷木構。被動式光 纖、屑路可以包含光纖至終端 之中,係佶田X兩番、広 峪木構。在此種網路 、 而’ Λ、之分光器(optical splitters)以經由單 纖針對多個終料行服務。某些系統之中,單一光纖 可以服務3 2個終端設借。扯如j、μ 、σ 被動式光纖網路於服務彳庫 之機房端(C論al office,或稱乃端)勺人丄服R應者Technologies such as (SCM; sub-carrier multiplexing) and hybrid WDM/TDM ® mechanisms are already operational. Among these architectures, many of the examples operate using TDMA (time division multiple access) technology, which typically allows many users to share a specific bandwidth of 1 〇 Gb/s (1 billion bits per second). , ie giga_bits per second) fiber channel. This type of solution relies on the high-bandwidth component of the client device and involves hierarchical classification of the client to establish signal transmission delays and signal uplink scheduling to avoid simultaneous transmission of multiple users on the same fiber channel. Interference between each other. 5 200803204 Passive fiber-optic network is a single point to multi-point woven mother 1 π ^ Α 』 wood structure. Passive fiber and chipping can contain fiber to the terminal, which is the combination of Putian X and 峪 峪. In such networks, the optical splitters are used to service multiple final lines via a single fiber. Among some systems, a single fiber can serve 32 terminals. Pull j, μ, σ passive optical network in the service room of the service library (C on al office, or Nai Duan)

pt llneterminal;0LT),而於用戶端附近包含多個光 纖網路早元(0Ptical netw〇rk units)。被動式光纖網路之優 點在於其相對於點對點架構需要數目較少之光纖。在某些 系統之中’下行鏈路信號(dGwnlinksignals,意即從機房端 至K端用戶设備之信號)廣播至共用相同下行鏈路頻道之每 ,,s端用戶设備。下行鏈路和上行鏈路信號…plink signals,意即從終端用戶設備端至機房端之信號)均可以加 岔處理,以防止被竊聽。在某些系統之中,上行鏈路信號 會利用一多工存取協定加以結合,該協定通常是tdma。 使用TDMA的問題之一在於網路設備必須提供時間槽 slots)予終端用戶設備以允許上行鏈路通信。 多個被動式光纖網路標準已然制定·· ITU-T g.983 ; ITU-T G.984 ;以及 IEEE 802.3ah。ITU_T G 983 係由國際 黾仏聯盟(International Telecommunications Union)所制 定,其包含 AP〇N(asynchronous transfer mode(ATM) PON,Pt llneterminal; 0LT), and contains multiple optical network early units (0Ptical netw〇rk units) near the user end. The advantage of a passive fiber optic network is that it requires a smaller number of fibers than a point-to-point architecture. In some systems, the 'downlink signal (dGwnlinksignals, meaning the signal from the terminal to the K-end user equipment) is broadcast to each of the same downlink channel, the s-end user equipment. The downlink and uplink signals...plink signals, meaning signals from the end user equipment to the equipment room, can be processed to prevent eavesdropping. In some systems, the uplink signal is combined using a multiplex access protocol, which is typically tdma. One of the problems with TDMA is that network devices must provide time slot slots to end user equipment to allow uplink communications. Several passive optical network standards have been developed · ITU-T g.983; ITU-T G.984; and IEEE 802.3ah. ITU_T G 983 is developed by the International Telecommunications Union and includes AP〇N (asynchronous transfer mode (ATM) PON,

非同步傳輸模式被動式光纖網路)以及BP〇N(broadbaiid PON ’寬頻被動式光纖網路)。ITU_T G 984亦稱為 GPON(gigabit PON,千兆位元被動式光纖網路)。IEEE 6 200803204 802.3ah亦稱為EPON(Ethernet PON,乙太網路式被動式光 纖網路)。 現有之被動式光纖網路通常基於分波長多工(WDM)技 術,於下行鏈路通信使用一種波長,而於上行鏈路通信使 用另一不同之波長。此使得可以使用單一光纖進行雙向之 通信傳輸。 被動式光纖網路可以包含一機房端節點,其稱為OLT (即光纖局線終端)。被動式光纖網路更可以包含一或多個 用戶端節點,其可以稱為ONT (optical network terminals, 光纖網路終端)。介於OLT和0NT間之光纖和分光器稱為 ODN(optical distribution network,光纖散播網路)。OLT 提供被動式光纖網路和基幹網路(backbone network)間之介 面。ONT提供對終端用戶希望連接至被動式光纖網路之任 何裝置之連結。適宜於被動式光纖網路進行傳輸之服務包 括:傳統之舊式電話服務(plain old telephone service,’ POTS);網際網路協定語音傳輸(voice over internet protocol,VoIP);數據資料(例如,乙太網路);視訊;以 及遙測技術(telemetry)。被動式光纖網路係一種匯集式網 路(converged),其上傳輸非特定之内容。也就是說,被動 式光纖網路可能用來傳送任何服務。服務裝置之適切組件 產生之信號可以經由轉換和封裝於一個單一封包型式之 中,以於被動式光纖網路内傳遞。Asynchronous transmission mode passive optical network) and BP〇N (broadbaiid PON 'wideband passive optical network). ITU_T G 984 is also known as GPON (gigabit PON, Gigabit passive optical network). IEEE 6 200803204 802.3ah is also known as EPON (Ethernet PON, Ethernet passive optical network). Existing passive fiber optic networks are typically based on wavelength division multiplexing (WDM) technology, using one wavelength for downlink communications and another different wavelength for uplink communications. This allows for a two-way communication transmission using a single fiber. A passive optical network can include a terminal node, which is called an OLT (ie, a fiber-optic office terminal). The passive optical network may further include one or more client nodes, which may be referred to as ONT (optical network terminals). The optical fiber and optical splitter between the OLT and the NTT are called ODN (optical distribution network). The OLT provides an interface between a passive fiber network and a backbone network. The ONT provides a link to any device that the end user wishes to connect to the passive optical network. Services suitable for passive optical network transmission include: plain old telephone service ('POTS); voice over internet protocol (VoIP); data (eg, Ethernet) Road); video; and telemetry. Passive fiber optic networks are a converged network that transports non-specific content. That is, a passive optical network may be used to carry any service. The appropriate components of the service device can be converted and packaged in a single packet format for transmission within a passive fiber optic network.

使用TDMA之被動式光纖網路包含一共用之網路,其 中之OLT傳送一下行鏈路之資料流至所有ONT。每一 ONT 7 200803204A passive optical network using TDMA includes a shared network in which the OLT transmits the data stream of the downlink to all ONTs. Every ONT 7 200803204

僅讀取傳送給它本身之封包。其可以使用加密以防患對於 下打鏈路通信内容未經授權之竊聽。OLT亦與每一 〇NT 通信’以分配上行鏈路頻寬予每_節點。⑽了有通信 内容欲傳遞’ OLT指派-時間起始點使得〇Ντ可以傳送 其封包。由於頻寬並未固定保㈣每—㈣,而是動態地 刀配’ TDMA被動式光纖網路對於上行鍵路和下行鍵路頻 寬均允許統計上之多工以及超額配置。此使得此種被動式 光纖網路相對於點對點網路更具有另一好處,即其不僅可 共用光纖,亦可以使一大群使用者共用頻寬,而不致犧牲 安全性。 此種被動式光纖網路架構的一個問題係於上行鏈路方 向使用TDMA技術。此使得用戶端設備需要高頻寬之組 件。此外,於上行鏈路方向使用TDMA需要於終端用戶設 備和本地被動式光纖網路節點間實施層級分類。另外, TDMA之使用亦須對上行鏈路之資料傳輸進行排程,以避 _ 免多個使用者於同一光纖頻道同時傳輸所引起之彼此間之 干擾。於被動式光纖網路使用TDMA技術亦需要具有相當 複雜之處理設備存在於此被動式光纖網路之中。 次載波多工技術克服了此等問題,其分配一部分上行 鏈路通信之頻寬予一終端用戶,而不在時域上做限制。 次載波多工可以使用於被動式光纖網路以增進光纖頻 寬使用之效率。次載波多工(以下或稱SCM)係多個信號多 工配置於射頻(radio frequency,以下或稱RF)範圍内而藉 由光纖中之單一波長傳送之一種機制。於被動式光纖網路 8 200803204 學元件成熟,固微波 大之穩定性和頻率選 使用SCM之優點在於微波元件較光 元件較之同樣功能之光學元件具有車交 擇性。 通常’被動式光纖網路於下行鏈路方向配置有一被動 式分光器以散播複數個信號至每'終端用戶設備。某歧被 動式分光器可以伺服高it 32組終端用戶設備。複數個被Read only the packets that are passed to itself. It can use encryption to prevent unauthorized eavesdropping on the under-link communication content. The OLT also communicates with each ’NT to allocate the uplink bandwidth to each _ node. (10) There is communication content to be transmitted 'OLT assignment-time start point so that 〇Ντ can transmit its packet. Since the bandwidth is not fixed (4) per-(four), it is dynamically equipped with a 'TDMA passive fiber-optic network that allows for statistical multiplex and over-provisioning for both the uplink and downlink link bandwidths. This makes this passive fiber optic network even more advantageous than a point-to-point network in that it not only shares the fiber but also allows a large group of users to share the bandwidth without sacrificing security. One problem with this passive fiber-optic network architecture is the use of TDMA technology in the uplink direction. This allows the client device to require a high bandwidth component. In addition, the use of TDMA in the uplink direction requires hierarchical classification between end user equipment and local passive fabric nodes. In addition, the use of TDMA must also schedule the uplink data transmission to avoid interference between multiple users caused by simultaneous transmission of the same fiber channel. The use of TDMA technology in passive fiber optic networks also requires the presence of fairly complex processing equipment in this passive fiber optic network. Subcarrier multiplex technology overcomes these problems by allocating a portion of the bandwidth of the uplink communication to an end user without limiting the time domain. Subcarrier multiplexing can be used in passive fiber optic networks to increase the efficiency of fiber bandwidth usage. Subcarrier multiplex (hereinafter referred to as SCM) is a mechanism in which multiple signals are multiplexed in a radio frequency (hereinafter referred to as RF) range and transmitted by a single wavelength in the fiber. Passive Optical Network 8 200803204 Learn the maturity of components, solid microwave stability and frequency selection The advantage of using SCM is that microwave components are more versatile than optical components with the same function. Typically, a passive fiber optic network is configured with a passive splitter in the downlink direction to spread a plurality of signals to each 'end user equipment. A certain split splitter can servo up to 32 sets of end user devices. Multiple

動式分光器連接至一高密度分波長多工式 wavelength division multiplexing, DWDM) # ^ 器/解多工器’ I中後者又連接至機房端。下行鏈路頻道上 之被動式分光器經由光纖連接至每一終端用戶設備。 於上行鏈路通信頻道使用SCM之優點在於處理微波範 圍之信號較為容易、成本較低,且效率較佳。然而,當終 端用戶設備彼此分隔-定之距離且共同經由光纖連接至被 動式刀光m之%,於上行鏈路通信頻道使用技術是 :問題的。通常,於傳輸路徑使用SCM t要相當複雜立 無效率之通信頻道,以使得信號可以於置於被動式分光器 旁之集訊器(c〇ncentrator)進行次載波多工動作。此一集訊 益可能需要靈敏之微波接收裝置以接收於短距射頻連結或 特殊鋪設之同軸纜線上傳送之微波信號,且需要額外之通 虽微波結合裝置和光學調變設備以調製適宜回傳至機房瑞 之心喊。此一系統缺乏透明度且以硬體和信號減損之觀黠 而言較不經濟。 本發明之一目的即在針對此問題加以處理。 【發明内容】 9 200803204 依據本發明一第一特色,其提出一種結合傳送於光纖 網路上之複數電氣信號之方法,此方法包含: a) 複數個光發射器中之每一光發射器(light emitte〇分 別接收一不同中心頻率之輪入電氣信號,且分別發射一光 信號以反應並指示前述輸入電氣信號之接收,其中每一前 述光發射器分別於一不同波長發射該光信號;以及 b) —光接收器(photoreceptor)接收上述之光信號並發 射一輸出電氣信號以反應並指示前述光信號之接收。 至少一前述之輸入電氣信號可以產生自於一基頻信號 (baseband signal)。一適當之電氣信號可以產生自於一基頻 佗號,其藉由混合前述基頻信號和一本地振盡器 oscillator)之輸出而產生之。前述之本地振盪器最好於射頻 範圍内運作。 至少一前述之輸入電氣信號可以是源自於一無線接取 點(wireless access point,或稱無線基地台,無線橋接器, 簡稱AP)之信號,諸如與一個人電腦連接之無線存取點。 至少一前述之輸入電氣信號可以相容於IEEe 802.1 1標準 乏—〇 至少一 4述之輸入電氣信號可以源自於一行動電話電 4口 基地口(cellular telephone telecommunication base station) °至少一前述之輸入電氣信號可以源自於一行動電 口舌電 4口微型 口(cellular telephone telecommunication pico station) o 前述光接收器之頻寬可以使得每一前述光信號係位於 10 200803204 頻帶内(in-band),及/或使得前述光信號之波差頻率(beat frequency,或稱拍頻)相對於該頻寬係位於頻帶外(〇ut_〇f-band)。二者擇一地,或者二者皆然’前述光發射器可以是 使得前述其發射之光係位於頻帶内,及/或使得波差頻率相 對於該光接收器之頻寬係位於頻帶外。一濾波器(fiher)可 以被使用以大致防止前述光信號之前述波差頻率被前述光 接收器所偵測。 光接收器所輸出之前述輸出電氣信號可以輸入至一傳 輸光發射器(transmission light emitter)。此傳輸光發射器 可以是一發光二極體(Light Emitting Diode,LED)。此傳 輸光發射為可以是一傳輸雷射(transmissi〇I1 iaser)。此傳輸 雷射可以發射光至一光纖。上述之傳輸光發射器可以是一 低禮度分波長多工式(eoarse wavelength division multiplexing,CWDM)雷射。此雷射可以是非冷卻式 (uncooled)的。前述傳輸雷射可以一高密度分波長多工式雷 射。前述之輸出電氣信號可以用以驅動一調變器,其將此 輸出電氣j吕號加入一來自一散播源(distributed source)之連 續波(continuous wave,CW)波長 ° 一接收光接收器(receiving photoreceptor)可以接收來 自傳輸光發射器經由光纖傳送之信號。複數個接收器可以 連接至前述接收光接收器之輸出。此光接收器可以是一光 二極體(photodiode)。光二極體可以是一 P-type-Intrinsic-N-type(PiN 型)光二極體。 至少一前述之複數個接收器可以產生一基頻信號。一 200803204 基頻#號可以藉由對接收光接收器之輸出之一選擇頻率與 一本地振盪器之輸出進行降頻轉換(d〇wnc〇nverting)而產 生。前述之本地振盪器最好於射頻範圍内運作。 前述複數個接收器至少其中之一可以是一無線接取 點。至少一前述之複數個接收器可以相容於IEEE 8〇2.1 1 標準之一。 至少一前述之複數個接收器可以是一行動電話電信基 地台。前述複數個接收器至少其中之一可以是一行動電話 電信微型基地台。 鈾述方法步驟(a)之前可以執行接收複數個基頻信號之 步驟’其分別於每一終端用戶設備模組接收且將每一基頻 信號分別升頻轉換為載波信號以分別產生相對之輸入電氣 #號’每一載波信號均分別具有不同之中心頻率。 此方法可以包含於複數個光學信號集訊器之每一個分 別藉由一群終端用戶設備模組接收前述之光信號輸出之步 私,每一集訊器分別結合相對於該群終端用戶設備模組之 光信號,並分別輸出一結合光信號以反應並指示前述光信 號之接收。 此方法可以更包含於一多工器接收每一 丽述之結合光信號,並對其進行多工處理以於一光載波 (optical carrier)繼續傳輸。 依據本發明一第二特色,其提出一種結合傳送於光纖 網路上之複數電氣信號之通信裝置,此裝置具有複數個光 射為和一光接收器,每一前述之光發射器係用以分別接 12 200803204 收一不同中心頻率之輸入電氣信號,且分別於一不同波長 發射一光信號以反應並指示前述輸入電氣信號之接收;而 前述之光接收器係用以接收前述之光信號並發射一輸出電 氣信號以反應並指示前述光信號之接收。 此通信裝置可以更用以實施如前述第一特色所述之方 法。於第一特色所提及之各種額外之特徵因此亦為此第二 特色所具有。The dynamic splitter is connected to a high-density wavelength-multiplexed wavelength division multiplexing, DWDM) #^器/解 multiplexer' I, which in turn is connected to the terminal. A passive optical splitter on the downlink channel is connected to each end user device via an optical fiber. The advantage of using SCM for the uplink communication channel is that it is easier, less costly, and more efficient to process the microwave range signals. However, when the end user equipments are separated from one another by a distance and are commonly connected via fiber optic to the % of the active knife m, the technique used in the uplink communication channel is: problematic. In general, the use of SCM t in the transmission path is quite complicated and inefficient communication channels, so that the signal can be subjected to subcarrier multiplexing operation in a collector (c〇ncentrator) placed beside the passive beam splitter. This set of information may require sensitive microwave receiving devices to receive microwave signals transmitted over short-range RF connections or specially laid coaxial cables, and requires additional communication, such as microwave combining devices and optical modulation devices, to modulate suitable backhaul. Shouted to the heart of the computer room. This system lacks transparency and is less economical in terms of hardware and signal impairment. One of the objects of the present invention is to address this problem. SUMMARY OF THE INVENTION 9 200803204 In accordance with a first feature of the present invention, a method of combining a plurality of electrical signals transmitted over a fiber optic network is provided, the method comprising: a) each of a plurality of light emitters (light) Emitte〇 respectively receives a wheeled electrical signal of a different center frequency and respectively emits an optical signal to react and indicate the reception of the aforementioned input electrical signal, wherein each of the aforementioned light emitters respectively emits the optical signal at a different wavelength; and b - a photoreceptor receives the optical signal as described above and transmits an output electrical signal to react and indicate receipt of the optical signal. At least one of the aforementioned input electrical signals can be generated from a baseband signal. A suitable electrical signal can be generated from a fundamental frequency apostrophe generated by mixing the output of the baseband signal and a local oscillator oscillator. The aforementioned local oscillator preferably operates in the radio frequency range. At least one of the aforementioned input electrical signals may be a signal originating from a wireless access point (or wireless base station, wireless bridge, or AP for short), such as a wireless access point connected to a personal computer. At least one of the aforementioned input electrical signals may be compatible with the IEEe 802.1 1 standard - at least one of the input electrical signals may be derived from a cellular telephone telecommunication base station ° at least one of the foregoing The input electrical signal may be derived from a cellular telephone telecommunication pico station. o The bandwidth of the optical receiver may be such that each of the foregoing optical signals is located in the band 10 200803204 (in-band). And/or causing the beat frequency (or beat frequency) of the optical signal to be out of band (〇ut_〇f-band) relative to the bandwidth. Alternatively, or both, the aforementioned light emitters may be such that the aforementioned light system is within the frequency band and/or such that the wave frequency is out of band with respect to the bandwidth of the light receiver. A fiher can be used to substantially prevent the aforementioned wave difference frequency of the aforementioned optical signal from being detected by the aforementioned optical receiver. The aforementioned output electrical signal output by the optical receiver can be input to a transmission light emitter. The transmission light emitter can be a Light Emitting Diode (LED). This transmitted light emission can be a transmission laser (transmissi〇I1 iaser). This transmitted laser can emit light to a fiber. The above-mentioned transmission light emitter may be a low-degree-of-the-earth wavelength division multiplexing (CWDM) laser. This laser can be uncooled. The aforementioned transmission laser can be a high density wavelength division multiplexed laser. The foregoing output electrical signal can be used to drive a modulator, which adds the output electrical signal to a continuous wave (CW) wavelength from a distributed source. A receiving optical receiver (receiving) The photoreceptor can receive signals transmitted from the transmitting optical transmitter via the optical fiber. A plurality of receivers can be connected to the output of the aforementioned receiving optical receiver. The light receiver can be a photodiode. The photodiode may be a P-type-Intrinsic-N-type (PiN type) photodiode. At least one of the plurality of receivers described above can generate a baseband signal. A 200803204 base frequency # can be generated by down-converting (d〇wnc〇nverting) the output of one of the output of the receiving optical receiver with the output of a local oscillator. The aforementioned local oscillator preferably operates in the radio frequency range. At least one of the plurality of receivers may be a wireless access point. At least one of the foregoing plurality of receivers may be compatible with one of the IEEE 8〇2.1 1 standards. At least one of the foregoing plurality of receivers may be a mobile telephone telecommunications base station. At least one of the plurality of receivers may be a mobile telephone telecommunications base station. The step of receiving a plurality of baseband signals before the step (a) of the uranium method is performed by each of the end user equipment modules and each of the baseband signals is upconverted into a carrier signal to respectively generate a relative input. The electrical ##' each carrier signal has a different center frequency. The method may be included in each of the plurality of optical signal collectors, each of which receives the optical signal output by a group of end user equipment modules, each of which is combined with the terminal user equipment module The light signals are respectively outputted with a combined optical signal to reflect and indicate the reception of the aforementioned optical signals. The method can be further included in a multiplexer to receive the combined optical signal of each of the details and multiplex it to continue transmission on an optical carrier. According to a second feature of the present invention, a communication device is provided in combination with a plurality of electrical signals transmitted over a fiber optic network, the device having a plurality of light beams and a light receiver, each of the foregoing light emitters being used to separate Connect 12 200803204 to receive an input electrical signal of a different center frequency, and respectively emit an optical signal at a different wavelength to reflect and indicate the reception of the aforementioned input electrical signal; and the aforementioned optical receiver is configured to receive the aforementioned optical signal and transmit An electrical signal is output to react and indicate receipt of the aforementioned optical signal. The communication device can be further implemented to implement the method as described in the first feature above. The various additional features mentioned in the first feature are therefore also present for this second feature.

此裝置可以更包含複數個終端用戶設備模組,其中每 一模組包含一升頻轉換器(UpC〇nverter)以分別將一基頻信 號升頻轉換回相對之載波信號,每一載波信號分別具有不 同之中心頻率,藉以分別產生一輸入電氣信號。每一終端 用戶δ又備模組可以更包含光發射器,且可以使得每一光發 射器分別接收如上產生之輸入電氣信號。每一終端用戶設 備模組可用以接收射頻信號,且可以將每一射頻信號分別 輸入至光發射器。 單一、多個或所有上述之光發射器可以是一低密度分 波長多工式雷射。光發射器可以是—非冷卻式雷射。 此裝置可以包含複數個光學信號集訊器,每—光學信 號集訊II分㈣由—群終端用戶設備模組接收前述之光信 虎輸出|本δί1器分別結合相對於該群終端用戶設備 模組之光信號,並分別輪屮_ 、 刀乃j料】出結合光信號以反應並指示前 述光信號之接收。單一、多個七 平 夕個或所有上述之光學信號集訊 器可以分別包含一連接至一相 相對之傳輸雷射之光二極體。 此傳輸雷射可以是一高密度分 反刀夜長多工式傳輸雷射。 13 200803204 : _乂更包含一多工益以接收每一前述之結合光 1 ’並對其進行多工處理以於―光載波繼續傳輸。此多 工器可以是一鬲密度分波長多工式多工器。 依據本發明—第三特色,其提出一具有如上特徵之終 端用戶設備模組。 據本i明一第四特色,其提出一具有如上特徵之複 數個終端用戶設備模組。 至少某些本發明之實施例允許SCM實施於現有之被動 式光纖、、’罔路以降低成本。至少某些本發明之實施例使用 SCM貝知於包含連接至用戶端設備之光纖之被動式光纖網 路。 至少某些本發明之實施例提出於一集訊器進行之信號 光-電-光轉換。此集訊器可以包含一近乎被動式(virtually 上行鏈路模組。此集訊器使得一+昂貴之非冷卻式 低密度分波長多工式雷射得以使用於用戶端設備。 至少在某些實施例之中,僅需要單一溫度控制雷射 (temper㈣⑽trolled _〇以進行,,回載h叫”其 意指自-服務-群用戶之終端設備至機房端之資料傳輸。 本發明之至少某些實施例允許一近乎被動式之上行鍵 路頻道被用以做為將多重使用者之上行鏈路頻道結合入單 -波長。此種信號之結合使得個別SCM f料頻道基於很 明地結合Q _信冑之結合產i —垂直式或 有效的點對點網路’其中每—用戶端設備均具有往返^ 房端之雙向專用通信頻道。此一垂直式點對點網路於前述 200803204 用戶端設備和機房端之間不需要僅專用於單一用戶之光纖 連接。 隹 / 之至少某些實施例係近乎被動式的,此意味在 集訊器模纽内並無信號處理發生。因此,本發明之某些實 施例允許於用ρ甚士 I 柒叹備中使用極為廉價之元件。 —入f至夕某些實施例中,—冑分被動式光纖網路可以用 70王’員比式之射頻應用通信系統取代,以進行維護、緊急 修復以及災難毀損之重建。 本lx月之M鈿例可以提供終端用戶遠高於TDMA式被 動式光纖網路系統所能提供之上行鏈路頻寬。 【實施方式】 第一圖顯示一第一备处 ^ ^糸統,其中來自終端用戶(未顯示於 圖中)之二基頻信號A和B被結合並經由單一 ⑴傳送至機房端(未顯示於圖中)。在此實施例中,^ 傳輸線111係25 km之標準單模光纖(singie m〇de仙“’, 以下或稱卿)。光纖傳輪'線⑴構成至機房端之高密度 分波長多工式回載。 此^统包含-第-升頻轉換器,其具有一第一混頻器 105和-與其連接之本地振盈器ι〇3,&第 於第一混頻器105之輪人媳 ’、轉換态 如可以產頻” A。本地振逢器 ·5 GHz之信號。第一混頻器 端連接至一第一雷射二極體107之輸入端/輪出 為1560.6奈米之光。第—雷射二極 二只’出波長 極體109可感應區域之光。、_ X ,、乾圍洛入光二 15 200803204 其另有一第二升頻轉換器與上述之第一升頻轉換器並 列。第二升頻轉換器包含一第二混頻器丨〇6和一與其連接 之第二本地振盤器1 04 ’此第二升頻轉換器於第二混頻器 106之輸入端接收基頻信號B。第二本地振盪器1〇4可以 產生一 6 GHz之#號。第二混頻器1 之輸出端連接至一 第二雷射二極體108之輸入端,其發射出波長為153〇.3奈 米之光。第二雷射二極體亦發出範圍落入光二極體丨〇9可 感應區域之光。 光二極體109具有15 GHz之頻寬。光二極體1〇9之 電氣輸出端連接至一傳輸雷射11〇。傳輸雷射11()可以發 出波長1566.1奈米之光。傳輸雷射11〇更發出光至光纖傳 輸線111,光纖傳輸線1 Π於此實施例係一單模光纖。一 PIN 型(P-type,intrinsic,N_type)光二極體 112 安置於光纖 傳輸線111之接收端以接收傳送其上之信號。此?1^型二 極體具有1 5 GHz之頻寬,且可以將接收自光纖傳輸線i i i 之k號放大。PIN型二極體ii2之輸出端連接至二本地接 收态之輸入端,每一本地接收器於運作時分別可取得基頻 信號A和B。第一個本地接收器具有一第一接收器混頻器 11 3和一第一接收器本地振盪器1丨5。本地振盪器丨丨$係 用以產生和系統用戶端之第一本地振盪器1〇3相同頻率之 仏號,意即2.45 GHz。因此,第一接收器混頻器丨13可輸 出基頻信號A 。同樣地,第二本地接收器包含一第二接 收器混頻器114,其接收來自一第二接收器本地振盪器u 6 之信號。此本地振盪器係用以產生和第二本地振盪器1 〇4 16 200803204 相同頻率之信號,意即6 GHz。因此,第二接收器混頻器 114可輸出基頻信號b。 以下說明如第一圖所示之系統之運作。繼續參見第一 圖,基頻信號A和B利用一本地振盪器和混頻器1〇3、1〇5、 考1 〇 6升頻轉換為不同之射頻頻率。每一基頻信號a 和B利用一寬頻三平衡混頻器(tTiple balanced mixer)分別 被升頻轉換為一 RF載波,以產生二進制相位移鍵(binary _ Phase shift keMd,以下或稱BPSK)式信號,且分別具有不 同之載波頻率。母一彳吕號接著分別輸入雷射二極體1 〇 7、 108,且每一雷射二極體1〇7、1〇8回應以輸出不同波長之 光。每一雷射二極體107、108分別獨立輸出調變成個別 載波之基頻信號,而個別載波又分別調變成雷射二極體 107、108輸出之光載波。 如上所述’雷射二極體107和108係運作於不同之波 長。雷射二極體107和108之波長,以及光二極體1〇9之 φ 頻寬,係被選擇使得來自每一雷射二極體1 〇7、1 〇8之光 交互作用所產生之波差頻率不能被光二極體1〇9所偵測。 因此,光二極體109之15 GHz頻寬之運作如同一濾波器, 其使得雷射二極體107和1〇8之波差頻率不被偵測到。光 二極體109輸出之電氣信號係次載波調變(sub_carrier modulated,SCM)信號。此SCM信號之中心位於載波頻率 2.45 GHZ和6 GHz。此合成電氣信號係用以驅動運作於 1566.1奈米之傳輸雷射110。傳輸雷射11〇用以於25 km 標準單模光纖111上傳送包含前述二SCM頻道之合成電 17 200803204 氣信號,其構成至機房端之DWDM回載。因此,一回載 光學信號於單模光、纖⑴之上傳送。此信號由位於系統機 房端之放大之15 GHz PIN二極體112所偵測。PIN型二極 體Π2輸出之電氣信號接著被分離並於每一接收器進行降 頻轉換 產生之基頻信The device may further comprise a plurality of end user device modules, wherein each module comprises an upconverter (UpC〇nverter) to upconvert a baseband signal back to a relative carrier signal, each carrier signal separately There are different center frequencies to generate an input electrical signal, respectively. Each of the end user δ modules may further include a light emitter, and each of the light emitters may receive an input electrical signal generated as above. Each end user device module can be used to receive radio frequency signals, and each radio frequency signal can be separately input to the optical transmitter. A single, multiple or all of the above described light emitters can be a low density wavelength division multiplexed laser. The light emitter can be an uncooled laser. The device may comprise a plurality of optical signal collectors, each of the optical signal collections II (4) receiving the aforementioned optical letter output by the group terminal user equipment module | the δί1 device is respectively combined with the group terminal device module The light signal, and the rim _, the knife, respectively, combines the light signal to react and indicate the reception of the aforementioned optical signal. A single, a plurality of seven or all of the above optical signal collectors may each include a light diode connected to a phase opposite transmission laser. The transmitted laser can be a high-density sub-knife night-long multiplex transmission laser. 13 200803204: _乂 contains more benefits to receive each of the aforementioned combined lights 1 ' and multiplex it to continue the transmission of the "optical carrier". The multiplexer can be a density-density, wavelength-multiplexed multiplexer. According to the third feature of the present invention, a terminal user equipment module having the above features is proposed. According to a fourth feature of the present invention, a plurality of terminal user equipment modules having the above characteristics are proposed. At least some embodiments of the present invention allow SCM to be implemented in existing passive fiber optics, to reduce costs. At least some embodiments of the present invention use SCM to know a passive fiber optic network that includes an optical fiber coupled to a customer premises equipment. At least some embodiments of the present invention provide for signal-to-electrical-to-optical conversion by a hub. The hub can include a nearly passive (virtually uplink module) that allows a + expensive, non-cooled, low-density, wavelength-multiplexed laser to be used in the customer premises equipment. At least in some implementations In the example, only a single temperature control laser (temper (4) (10) trolled _ 〇 is required, and the return h is called "which means the data transmission from the terminal device of the self-service-group user to the computer terminal. At least some implementations of the present invention. This allows a nearly passive uplink channel to be used as a combination of multiple users' uplink channels into a single-wavelength. This combination of signals allows individual SCM channels to be based on a clear combination of Q__ The combination of i-vertical or effective peer-to-peer network, each of which has a two-way dedicated communication channel to and from the terminal. This vertical point-to-point network is between the aforementioned 200803204 client device and the terminal. There is no need for a fiber optic connection dedicated to a single user. At least some embodiments of the device are nearly passive, meaning that no signal processing takes place in the hub of the hub. Thus, certain embodiments of the present invention allow for the use of extremely inexpensive components in ρ 士 I 柒 。 。 。 。 。 。 。 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些 某些Replacement of RF application communication systems for maintenance, emergency repair, and reconstruction of disaster damage. This Mx example can provide end users with much higher uplink bandwidth than TDMA passive fiber network systems. [Embodiment] The first figure shows a first standby system in which two fundamental frequency signals A and B from an end user (not shown in the figure) are combined and transmitted to the machine room via a single (1) (not Shown in the figure. In this embodiment, ^ transmission line 111 is a standard single-mode fiber of 25 km (singie m〇dexian "', hereinafter referred to as Qing). Fiber-optic transmission line (1) constitutes the height of the machine room Density-wavelength multiplexed back-loading. This system includes a -to-ups-converter having a first mixer 105 and a local oscillator ι〇3, & The frequency of the device 105 is 媳', the conversion state can be produced A. Local oscillating device · 5 GHz signal. The first mixer end is connected to the input end of a first laser diode 107 / wheel is 1560.6 nm light. The first - laser two pole two Only the wavelength pole body 109 can sense the light of the area. _ X , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The device includes a second mixer 丨〇6 and a second local oscillating device 104 connected thereto. The second up-converter receives the fundamental frequency signal B at the input of the second mixer 106. The local oscillator 1〇4 can generate a #6 GHz#. The output of the second mixer 1 is connected to the input of a second laser diode 108, which emits a wavelength of 153 〇.3 nm. Light. The second laser diode also emits light that falls within the sensing area of the photodiode 丨〇9. The photodiode 109 has a bandwidth of 15 GHz. The electrical output of the photodiode 1〇9 is connected to a transmission laser 11〇. Transmission of laser 11 () can emit light with a wavelength of 1566.1 nm. The transmission laser 11 emits light to the optical fiber transmission line 111. The optical fiber transmission line 1 is a single mode optical fiber in this embodiment. A PIN type (P-type, intrinsic, N_type) photodiode 112 is disposed at the receiving end of the optical fiber transmission line 111 to receive a signal transmitted thereon. this? The 1^ type diode has a bandwidth of 15 GHz and can amplify the k number received from the optical fiber transmission line i i i . The output of the PIN diode ii2 is connected to the input terminals of the two local receiving states, and each of the local receivers can obtain the fundamental frequency signals A and B respectively during operation. The first local receiver has a first receiver mixer 11 3 and a first receiver local oscillator 1丨5. The local oscillator 系$ is used to generate the nickname of the same frequency as the first local oscillator 1〇3 of the system user, meaning 2.45 GHz. Therefore, the first receiver mixer 丨13 can output the baseband signal A. Similarly, the second local receiver includes a second receiver mixer 114 that receives signals from a second receiver local oscillator u6. This local oscillator is used to generate a signal of the same frequency as the second local oscillator 1 〇4 16 200803204, which means 6 GHz. Therefore, the second receiver mixer 114 can output the baseband signal b. The operation of the system as shown in the first figure is explained below. Continuing with the first figure, the baseband signals A and B are converted to different RF frequencies using a local oscillator and mixers 1〇3, 1〇5, and 116. Each of the fundamental frequency signals a and B is upconverted to an RF carrier by a tTiple balanced mixer, respectively, to generate a binary phase shift key (binary _ Phase shift keMd, hereinafter referred to as BPSK) Signals, and each has a different carrier frequency. The mother-in-law Lu then inputs the laser diodes 1, 〇 7, 108, respectively, and each of the laser diodes 1 〇 7, 1 〇 8 responds to output light of different wavelengths. Each of the laser diodes 107, 108 independently outputs a fundamental frequency signal modulated into an individual carrier, and the individual carriers are respectively modulated into optical carriers output by the laser diodes 107, 108. As described above, the laser diodes 107 and 108 operate at different wavelengths. The wavelengths of the laser diodes 107 and 108, and the φ bandwidth of the photodiodes 1〇9, are selected such that the light generated by the interaction of light from each of the laser diodes 1 〇7, 1 〇8 The difference frequency cannot be detected by the photodiode 1〇9. Therefore, the 15 GHz bandwidth of the photodiode 109 operates as the same filter, which causes the wave difference frequencies of the laser diodes 107 and 1〇8 to be undetected. The electrical signal output by the photodiode 109 is a sub-carrier modulated (SCM) signal. The center of this SCM signal is at the carrier frequency of 2.45 GHZ and 6 GHz. This composite electrical signal is used to drive a transmission laser 110 operating at 1566.1 nm. The transmission laser 11 is used to transmit a composite power 17 200803204 gas signal including the aforementioned two SCM channels on a 25 km standard single mode fiber 111, which constitutes a DWDM reload to the equipment room end. Therefore, a back-loaded optical signal is transmitted over the single-mode optical fiber (1). This signal is detected by an amplified 15 GHz PIN diode 112 located at the system room end. The electrical signal output by the PIN-type diode Π2 is then separated and converted to a baseband signal generated by each receiver.

以產生上述之二基頻信號A和B 號已經過低通濾波處理。The generation of the above two fundamental frequency signals A and B has been subjected to low pass filtering.

第二圖顯示一第二系統,其係第一圖之系統一般化後 之版本。第二系統係用以於光纖傳輸線21丨上傳送二個以 上之SCM頻道。數個基頻信號A至z連接至複數個升頻 轉換為204。此等升頻轉換器被安排為與配合第一圖所描 述之第一系統大致相同之方式。因此,每一升頻轉換器2〇4 分別包含本地振盪器δι至\,每一本地振盪器均分別運作 於不同之頻率fi至fn。升頻轉換器2〇4係用以輸出複數個 獨立之次載波調變信號,每一信號之中心均位於不同之載 波頻率。每一升頻轉換器2〇4之輸出分別輸入至數個雷射 二極體206之一。每一雷射二極體2〇6係用以分別於一不 同之波長至λη輸出光。 雷射二極體206被安排成使得每一光輸出均輸入至單 一光二極體209。光二極體209之頻寬係使得任意波長μ 至λη間之波差頻率不會被光二極體2〇9偵測到。光二極體 209可以產生一合成電氣信號,此合成電氣信號包含每— 個次載波調變信號,其被視為用以驅動傳輸雷射21〇。傳 輸雷射210藉由適當之發射路徑連接至光纖傳輸線2u。 光纖傳輸線211復於系統之機房端連接至一光二極體2丨2, 18 200803204 光極體212連接至一分光器(未顯示於圖中)以及數個 接收器。每一接收器包含一本地振盪器和混頻器214,其 分別輸出基頻信號A至Z中的一個。 第二圖所示之第二系統之運作基本上同於第一圖所示 之第一系統。在此第二系統中,每一基頻信號202被升頻 轉換為一 RF載波,每一 RF載波之中心頻率於經由光纖傳 輸線21 1傳送之基頻信號群中係獨一無二的。使得接收裝 置214能基於其頻率而唯一地識別每一接收之基頻信號 是有必要的。每一升頻轉換後之基頻信號A至z分別輸入 雷射二極體206其中之一,雷射二極體206於此雷射二極 體群中具有獨一無二之波長。每一雷射二極體2〇6接著分 別傳送一光信號至光二極體209。每一雷射二極體2〇6均 具有獨一無二之波長、至、以降低投射至光二極體2〇9 之不同光k號間之干擾效應。波差頻率之產生係肇因於不 同雷射二極體發出之光信號間之交互作用,但雷射二極體 206之各個波長和光二極體2〇9係經過蓄意選擇使得此等 波差頻率不會被光二極體2〇9所偵測到:雷射二極體 之波差頻率不在光二極體209之頻率範圍之内。 光二極體209輸出之合成電氣信號輸入至傳輪雷射 210。傳輸雷射210回應以將光發射至光纖傳輸線2ΐι。在 光纖傳輸線211之接收端,安置一光二極體212以接收傳 送自光纖傳輸線211之光。光二極體212重現一電氣信號, 其可以被分離並於複數個接收器進行降頻轉換,以分別重 現複數個基頻信號A至Z。 19 200803204 第二圖顯示被動式光纖網路之下行鏈路頻道,其可 以做為任一實施本發明系統之下行鏈路頻道。機房301經 由一光纖纜線連接至一高密度分波長多工式(DWDM)解多 工器302。此DWDM解多工器3〇2復連接至數條光纖,此 等光纖將DW麗解多卫器3G2連接至數個分光器,每― 光纖分別連接至-相對之分光器。為說明方便起見,第三 圖僅顯示其中之-分光器31〇。此分光器可以視為一"被動 式”分光器’因為其中並未進行信號處理。被動式分光器31〇 連接至DWDM解多工器3〇2,並將接收自dwdm解多工 器302之信號散播至數個用戶終端設備單元32〇,每一單 元320刀别、,、二由光纖纜線連接。每一用戶終端設備單元 320包含一光一極冑321和一降頻轉換器322,降頻轉換 器322包含-混頻器和一本地振盈器(二者均未顯示於圖 中)。 以下將說明第三圖所示之下行鏈路結構之運作。機房 3〇1傳送-高密度分波長多工式(DWDM)信號至dwdm解 多工器術。機房3(Π傳送之DWDM信號包含複數個dwdm 頻道,每-DWDM頻道均運作於獨—無二之波長。每一 同一群組中之用戶終端設備單元32〇之信號,於機房斯, 於一特定波長被編碼至一 DWDM頻道。同一群組之用戶 終端設備單元320係、由連接至同—被動式分光器3ι〇 U戶終端設備M 32G所組成。同—群組内之每一用戶 終端設備單元320由相對之rf頻率定址。 此DWDM信號包含一專心㈣ 20 200803204 之波長。換言之,此DWDM信號包含數個DWDM頻道, 每一頻道分別對應於每一被動式分光器3 10。於其他替代 性安排中,超過一個被動式分光器可以接收來自 DWDM 解多工器302之相同頻道。然而,每一用戶終端設備單元 320必需唯一定址於一 DWDM波長和藉由其傳送之SCM 信號之RF頻率。DWDM解多工器302對接收自機房之 DWDM信號進行解多工處理。DWDM解多工器302輸出 一 DWDM頻道至每一被動式分光器3 10。此DWDM頻道 • 係經由一波長加以識別。信號之減損可能使得必須於 DWDM解多工器302使用光學放大器。此一光學放大器可 以是一摻铒光纖放大器(erbium doPed fibre ampllfer, EDFA)。 被動式分光器310接收單一 DWDM頻道,如前所述, 此DWDM係由其波長所定義。被動式分光器3 10輸出其 接收之DWDM頻道至每一用戶終端設備320。此DWDM 頻道包含一 SCM信號,其中每一用戶終端設備之信號係 ®由- RF頻率所定義。 在每一用戶終端設備單元320中,其中之光二極體321 自接收之DWDM #道產生—電氣信號°此電1^ #U㈣ 入單元320中之RF接收器322,且其中之本地振盪器(未 顯示於圖中)針對特定用戶終端設備單元320之特疋頻 率進行解碼。因此,其應能理解,每一用戶終端設備單元 3 20均具有一 RF接收器,此RF接收器專用於從接收自機 房301之次載波多工信號解譯出特定單元320之RF頻率。 21 200803204 簡而言之,每一用戶終端設備單元320和同—群租内 之每-其他單元接收相同之DWDM頻道或波長。此頻道 由被動式分光器3H)輸出。每一用戶終端設備單元32〇隨 之解譯其對應之RF頻率。 =圖顯示-第三系統之上行鏈路頻道,其可以做為 —㈤所述之系統之上仃鏈路頻道。如第四圖所示,此第 =統ί含數個用戶終端設備單元(例示於圖中之-標示為 、、日:母4一單元420包含一具有«器(未顯示於圖中)之 :頻…以及一雷射二極體421。混頻器422用以接 收一基頻信號Α至Ζ做為於Λ η时朴 ^ . U為輪入,且將其升頻轉換至一射頻 门 頻器422之輪出連接至雷射二極體421之輸 輸出-基頻信號升頻轉換二早:420之每-個均可以 光信號輪出之。 、為一射頻’且利用一特定波長之 備$ 4〜本^ 4 1 0、經由光纖接收來自用戶終端設 :二::所有輸出光學信號。光學信號集訊… 式的,因其中基本上並無信號處理。光學 1口就市讯态410係用 人 -傳輸雷射(未顯示於第二:一接收之光學信號而後藉由 工器402,直門将、 圖中)輸出-信號至一 DWDM多 輪雷射係-適於產生傳於接。光學信號集…1〇之傳 DWDM帝射。 、兩於DWDM回載至機房之信號之 圍内運作。在某此7_雷射於-極為有限之波長變動範 在此第三系V中施例:,此傳輸雷射係 匕含數個光學信號集訊器,諸如 22 200803204 41 0。類似於光學信號集訊器4 1 0,每一其他集訊器4 1 〇均 係經由光纖纟覽線分別連接至一群大致相同於如上所述之單 元42〇之用戶端設備單元。每一集訊器亦分別輸出一 DWDM 頻道至DWDM多工器402。DWDM多工器402係用以經 由光纖接收此等複數個DWDM頻道。DWDM多工器402 復經由光纖連接至機房401,於此實施例中,前述光纖之 長度超過1 0公里。 以下將說明第四圖所示之第三系統之運作。和第三圖 說明之下行鏈路傳輸頻道類似,第四圖所示之上行鏈路傳 輸頻道中,每一用戶終端設備單元42〇係由次載波多工頻 道中之一元件之RF頻率和經由用戶終端設備搭配之光學 信號集訊器410傳送之DWDM頻道之波長所唯一識別。 每一用戶終端設備單元420之運作在於對一基頻信號進行 升頻轉換,且將升頻轉換後之信號經由一雷射二極體42ι 傳送。在此實施例中,雷射二極體421係一非冷卻式低密 度WDM(CWDM)雷射。每一用戶終端設備單元42〇之每一 雷射二㈣421 <輸出藉由光纖傳送至光學信號集訊器 410 〇 正常運作時,光學信號集訊器41〇是近乎被動式的, 因為並無信號處理於光學信號集訊器41〇中進行,光學信 號集訊器僅用以針對光學上之作 ° j兀子工之乜唬進打結合。又因為其必 須施加電源以操作DWDM傳輪雷射產生適於經由dwdm 多工402回傳至機房4〇1之Dwdm頻道,故光學信號 集訊器410亦係近乎被動式的。同樣地’簡而言之,同一 23 200803204 群組内(意即連接至同一光學信號集訊器41〇)之每一用戶 終端設備單元420之上行鏈路頻道信號係接收於機房 中之單一 DWDM波長。每一光學信號集訊器41〇分別於 一特定波長輸出一 DWDM頻道。DWDM多工器4〇2之運 作在於結合接收自每一光學信號集訊器41〇之複數個 DWDM頻道,並經由光纖輪出_包含複數波長之 信號至機房4 01。 第五圖顯示第四圖所示之第三系統之光學信號集訊器 410之詳細圖解。參見第五圖,光學信號集訊器51〇包含 一光二極體512和一傳輸雷射514。光二極體512自連接 於光學信號集訊器510之每一用戶終端設備單元52〇接收 一光學信號。每一光學信號包含一藉由不同波長之光傳送 之不同RF頻率之信號。光二極體512結合此等信號以產 生一合成電氣信號,此合成電氣信號包含次載波多工處理 之來自用戶終端設備單元420之每一信號。此合成電氣信 號輸入至傳輸雷射5 14,於此實施例中,傳輸雷射5丨4藉 由光纖傳送一合成光信號。 上述之實施例中提及之光纖可以是一單模光纖或一多 才栗光纖(multi-mode fibre)。 上述之實施例已對基頻信號之傳輸有所說明。在其他 替代性實施例中,至少一升頻轉換為射頻之基頻信號可以 取代以一射頻信號。此一射頻信號可以輸出自一無線存取 閘迢,諸如無線區域網路(wireless 1〇cal以⑽netw〇rk,WLan) 内可讓個人電腦存取之無線接取點。此射頻信號可以輸出 24 200803204 自行動電話電信基地台。 於上述之實施例中,光二極體1〇9、2〇9和512做為濾 波°°以排除由投射入光二極體之不同波長光線之交互作用 所產生之波差頻率。在—替代之實施例中,其包含一額外 之濾波器以執行或增強此功能。The second figure shows a second system which is a generalized version of the system of the first figure. The second system is used to transmit more than two SCM channels on the optical fiber transmission line 21A. A number of fundamental frequency signals A through z are connected to a plurality of upconverts converted to 204. These upconverters are arranged in substantially the same manner as the first system described in connection with the first figure. Therefore, each upconverter 2〇4 includes a local oscillator δι to \, respectively, and each local oscillator operates at a different frequency fi to fn. The upconverter 2〇4 is used to output a plurality of independent subcarrier modulation signals, and the center of each signal is at a different carrier frequency. The output of each upconverter 2〇4 is input to one of the plurality of laser diodes 206, respectively. Each of the laser diodes 2 〇 6 is used to output light at a different wavelength to λη, respectively. The laser diodes 206 are arranged such that each light output is input to a single photodiode 209. The bandwidth of the photodiode 209 is such that the wavelength difference between any wavelength μ to λη is not detected by the photodiode 2〇9. The photodiode 209 can generate a composite electrical signal that includes each subcarrier modulation signal that is considered to drive the transmission laser 21 〇. The transmission laser 210 is connected to the optical fiber transmission line 2u by a suitable transmission path. The fiber optic transmission line 211 is connected to a photodiode 2丨2, 18 200803204, and the photodiode 212 is connected to a beam splitter (not shown) and a plurality of receivers. Each receiver includes a local oscillator and mixer 214 that outputs one of the baseband signals A through Z, respectively. The second system shown in the second figure operates substantially the same as the first system shown in the first figure. In this second system, each of the baseband signals 202 is upconverted to an RF carrier, and the center frequency of each of the RF carriers is unique among the baseband signal groups transmitted via the fiber optic transmission line 21 1 . It is necessary for the receiving device 214 to uniquely identify each received baseband signal based on its frequency. Each of the up-converted baseband signals A to z is input to one of the laser diodes 206, respectively, and the laser diode 206 has a unique wavelength in the laser diode group. Each of the laser diodes 2〇6 then transmits an optical signal to the photodiode 209, respectively. Each of the laser diodes 2〇6 has a unique wavelength to reduce the interference effect between the different light k-numbers projected onto the photodiode 2〇9. The generation of the wave difference frequency is due to the interaction between the light signals emitted by the different laser diodes, but the wavelengths of the laser diodes 206 and the light diodes 2〇9 are deliberately selected to make such wave differences. The frequency is not detected by the photodiode 2〇9: the wave difference frequency of the laser diode is not within the frequency range of the photodiode 209. The resultant electrical signal output from the photodiode 209 is input to the transmitting laser 210. The transmission laser 210 responds to transmit light to the fiber optic transmission line 2ΐ. At the receiving end of the optical fiber transmission line 211, a photodiode 212 is disposed to receive the light transmitted from the optical fiber transmission line 211. The photodiode 212 reproduces an electrical signal that can be separated and downconverted by a plurality of receivers to reproduce a plurality of fundamental frequency signals A through Z, respectively. 19 200803204 The second figure shows a passive optical network downlink channel, which can be used as a downlink channel under any of the systems of the present invention. The equipment room 301 is connected to a high density wavelength division multiplexing (DWDM) demultiplexer 302 via a fiber optic cable. The DWDM demultiplexer 3〇2 is connected to a plurality of optical fibers, and the optical fibers connect the DW plexus 3G2 to a plurality of optical splitters, and each of the optical fibers is connected to the opposite optical splitter. For the sake of convenience of explanation, the third diagram only shows the - splitter 31 其中 therein. This splitter can be regarded as a "passive" splitter' because it does not perform signal processing. The passive splitter 31 is connected to the DWDM demultiplexer 3〇2 and will receive signals from the dwdm demultiplexer 302. The device is distributed to a plurality of user terminal equipment units 32, each unit 320 is connected, and the second is connected by a fiber optic cable. Each user terminal equipment unit 320 includes a light pole 321 and a down converter 322, which are down-converted. The converter 322 includes a -mixer and a local oscillator (both of which are not shown in the figure). The operation of the downlink structure shown in the third figure will be described below. The machine room 3〇1 transmission - high density points Wavelength multiplexed (DWDM) signal to dwdm demultiplexer. Room 3 (ΠDWDM signal contains multiple dwdm channels, each -DWDM channel operates at unique wavelengths. In each same group The signal of the user terminal equipment unit 32 is encoded into a DWDM channel at a specific wavelength in the computer room. The user terminal equipment unit 320 of the same group is connected to the same-passive optical splitter 3ι〇U household terminal device. M 32G is composed. The same - Each user terminal equipment unit 320 in the group is addressed by a relative rf frequency. The DWDM signal includes a wavelength that is intentive (4) 20 200803204. In other words, the DWDM signal includes several DWDM channels, each channel corresponding to each passive splitting In other alternative arrangements, more than one passive optical splitter can receive the same channel from the DWDM demultiplexer 302. However, each user terminal equipment unit 320 must be uniquely addressed and transmitted by a DWDM wavelength. The RF frequency of the SCM signal. The DWDM demultiplexer 302 demultiplexes the DWDM signal received from the equipment room. The DWDM demultiplexer 302 outputs a DWDM channel to each passive optical splitter 3 10. This DWDM channel The signal is identified by a wavelength. The impairment of the signal may necessitate the use of an optical amplifier in the DWDM demultiplexer 302. This optical amplifier may be an erbium doPed fibre ampllfer (EDFA). The passive beam splitter 310 receives a single DWDM. Channel, as previously stated, this DWDM is defined by its wavelength. Passive splitter 3 10 outputs its received DW DM channel to each user terminal device 320. The DWDM channel includes an SCM signal, wherein the signal system of each user terminal device is defined by - RF frequency. In each user terminal device unit 320, the optical diode therein 321 Self-receiving DWDM #道产生—Electrical signal° This electric 1^ #U(4) is input into RF receiver 322 in unit 320, and the local oscillator (not shown) is specific to the specific user terminal equipment unit 320.疋 Frequency is decoded. Therefore, it should be understood that each of the user terminal equipment units 3 20 has an RF receiver dedicated to interpreting the RF frequency of the particular unit 320 from the subcarrier multiplex signal received from the equipment room 301. 21 200803204 In short, each user terminal equipment unit 320 and each other unit within the same-group rent receive the same DWDM channel or wavelength. This channel is output by the passive beam splitter 3H). Each user terminal equipment unit 32 then interprets its corresponding RF frequency. = Figure shows - the uplink channel of the third system, which can be used as the network link channel on the system described in (v). As shown in the fourth figure, the third system includes a plurality of user terminal equipment units (illustrated in the figure - labeled as, day: mother 4 unit 420 contains a device (not shown in the figure) : a frequency ... and a laser diode 421. The mixer 422 is configured to receive a fundamental frequency signal Α to Ζ as Λ η 朴 . U U U U U , , , , , , , , , , , , , , , , , , , , The output of the frequency converter 422 is connected to the output of the laser diode 421. The fundamental frequency signal is upconverted twice early: each of the 420 can be rotated by the optical signal. It is an RF and uses a specific wavelength. Ready $4~本^4 1 0, Received from the user terminal via fiber optic: 2:: All output optical signals. Optical signal collection... Because there is basically no signal processing. Optical 1 port is on the market State 410 is a human-transmitted laser (not shown in the second: a received optical signal and then outputted by the worker 402, the straight door, in the figure) - a signal to a DWDM multi-round laser system - suitable for generating Connected. Optical signal set...1〇传传DWDM帝射., Two in DWDM back to the signal in the machine room operation. In some 7_ Shot - very limited wavelength variation in this third system V: This transmission laser system contains several optical signal collectors, such as 22 200803204 41 0. Similar to optical signal collector 4 1 0, each of the other hubs 4 1 is connected to a group of user equipment units substantially the same as the unit 42 as described above via the fiber optic cable. Each of the hubs also outputs a DWDM channel to each. The DWDM multiplexer 402 is configured to receive the plurality of DWDM channels via the optical fiber. The DWDM multiplexer 402 is connected to the equipment room 401 via an optical fiber. In this embodiment, the length of the optical fiber exceeds 10 The operation of the third system shown in the fourth figure will be explained below. Similar to the downlink transmission channel illustrated in the third figure, in the uplink transmission channel shown in the fourth figure, each user terminal equipment unit 42 The 〇 is uniquely identified by the RF frequency of one of the subcarrier multiplex channels and the wavelength of the DWDM channel transmitted by the optical signal concentrator 410 collocated by the user terminal device. The operation of each user terminal device unit 420 lies in A baseband signal is upconverted, and the upconverted signal is transmitted via a laser diode 42. In this embodiment, the laser diode 421 is a non-cooled low density WDM (CWDM). Laser. Each of the user terminal equipment units 42 each of the two (four) 421 < output is transmitted by optical fiber to the optical signal collector 410. When operating normally, the optical signal organizer 41 is nearly passive because No signal processing is performed in the optical signal collector 41〇, and the optical signal collector is only used for the combination of optical and optical components. Also, since it is necessary to apply power to operate the DWDM transmission laser to generate a Dwdm channel suitable for transmission back to the equipment room via the dwdm multiplex 402, the optical signal concentrator 410 is also nearly passive. Similarly, in short, the uplink channel signal of each user terminal equipment unit 420 in the same 23 200803204 group (that is, connected to the same optical signal collector 41A) is received in a single DWDM in the equipment room. wavelength. Each optical signal collector 41 outputs a DWDM channel at a specific wavelength. The DWDM multiplexer 4 〇 2 operates in conjunction with a plurality of DWDM channels received from each of the optical signal collectors 41 and transmits a signal containing a plurality of wavelengths to the equipment room 4 01 via the optical fiber. The fifth diagram shows a detailed illustration of the optical signal collector 410 of the third system shown in the fourth figure. Referring to the fifth diagram, the optical signal collector 51A includes a photodiode 512 and a transmission laser 514. The optical diode 512 receives an optical signal from each of the user terminal equipment units 52 connected to the optical signal collector 510. Each optical signal contains a signal of a different RF frequency transmitted by light of different wavelengths. Light diode 512 incorporates these signals to produce a composite electrical signal that includes each of the signals from user terminal equipment unit 420 for subcarrier multiplex processing. The composite electrical signal is input to a transmission laser 514. In this embodiment, the transmission laser 5丨4 transmits a composite optical signal via the optical fiber. The optical fiber mentioned in the above embodiments may be a single mode fiber or a multi-mode fiber. The above embodiments have described the transmission of the baseband signal. In other alternative embodiments, at least one of the baseband signals converted to a radio frequency can be replaced with a radio frequency signal. The RF signal can be output from a wireless access gate, such as a wireless local area network (wireless wireless network (10) netw〇rk, WLan) for wireless access points for personal computer access. This RF signal can be output 24 200803204 from a mobile telecom base station. In the above embodiment, the photodiodes 1 〇 9, 2 〇 9 and 512 are used as filters to exclude the wave difference frequency generated by the interaction of light rays of different wavelengths projected into the photodiode. In an alternate embodiment, it includes an additional filter to perform or enhance this function.

上述之實施例中已提及SCM調變係使用BPSK調變格 式 ^而’在本發明之其他可替代之實施例中,其可以使 用任何调Μ格式。使用之調變格式尤其可以包含下列舉出 者 進制相位移鍵、正交相位移鍵(quadrature phase shift keymg ’以下或稱qPSK)、十六相正交振幅調變 quadrature amplitude modulation,以下或稱 16 QAM)、以 及/、十四相正交振幅調變(Μ qUa(jrature amplitude modulation,以下或稱64 qam)。同樣地,SCM調變可用 以傳送其他射頻或無線標準,諸如、3G、IEEE 802.1 1。 另一實施本發明之系統實例,其使用qPSK技術並描 述於 J· Y· Ha,A. Wonfor,R. V. Penty,I· H· White 和 P. Ghiggino 所合寫之,,Spectrally efficient 10 χ 1 Gb/s QPSK Multi-User Optical Network Architecture",此文件以參照 之方式結合於本文而為本說明書之一部分。此文件描述使 用不同波長之雙頻道實例,以實施如第一圖所揭示之架 構。 實施本發明之又一系統實例,其使用qAM技術並描 述於 J· Y. Ha, A· Wonfor,R· V· Penty,I. H· White 和 Ρ· Ghiggino 所合寫之”mghlySpectralEfficiencyMlllti-User 25 200803204It has been mentioned in the above embodiments that the SCM modulation system uses the BPSK modulation format and that in other alternative embodiments of the invention, any tuning format can be used. The modulation format used may include, for example, a binary phase shift key, a quadrature phase shift key (hereinafter referred to as qPSK), or a sixteen phase quadrature amplitude modulation quadrature amplitude modulation. 16 QAM), and /, fourteen-phase quadrature amplitude modulation (Μ qUa (jrature amplitude modulation, below or 64 qam). Similarly, SCM modulation can be used to transmit other RF or wireless standards, such as 3G, IEEE 802.1 1. Another example of a system embodying the invention, which uses qPSK technology and is described by J. Y. Ha, A. Wonfor, RV Penty, I. H. White and P. Ghiggino, Spectrally efficient 10 χ 1 Gb/s QPSK Multi-User Optical Network Architecture", which is incorporated herein by reference in its entirety for this specification. This document describes a dual-channel example using different wavelengths to implement the disclosure as shown in the first figure. Architecture. Another system example implementing the present invention, which uses qAM techniques and is described by J. Y. Ha, A. Wonfor, R. V. Penty, I. H. White, and G. Ghiggino. Write of "mghlySpectralEfficiencyMlllti-User 25 200803204

Optical Network Architecture using IGb/s 16QAM Subcarrier Multiplexing",此文件以參照之方式結合於本文而為本說 明書之一部分。此文件描述使用不同波長之雙頻道實例, 以實施如第一圖所揭示之架構。 本發明之實施例配合所舉之實例說明如上。其應能理 解,上述之實例可在不超出本發明之範缚内加以變化或修 改,其範疇以後附之申請專利範圍為準。 附錄於後之附錄一和附錄二舉出更多之實施例。 附錄一 住家和企業服務關於頻寬需求之戲劇性成長導致被動 式光纖網路(PONs)之蓬勃發展,已制定之一連串標準使得 用戶端可以具有10_100 Mb/s(每秒百萬位元)之頻寬。由於 寬頻網路和諸如HDTV(高傳真電視)之需要大量頻寬之應 用之成長,被動式光纖網路架構愈來愈受到重視,其應用 低成本之技術達成較大之使用者頻寬(例如,高達1 Gb/s)。 因此,受益於高速RF技術之進展,次載波多工(SCM)技術 被提出以替代被動式光纖網路應用中之TDM和 CDMA(Code division multiple access ’ 分碼多工存取)技術。 SCM之倡議擁護者舉出之優點包括彈性之協定傳輸(不同 頻道可用於不同服務)、較鬆且動態之用戶端配件規格、以 及優良之光纖傳輸性能。然而,其亦認知到重大之缺點, 特別是關於上行鏈路資訊間之光學波差干擾之產生。做為 此問越之解決辦法,我們先前已提出一 WDM-SCM多重用 戶之光纖網路架構’其包括一新穎之上行鍵路結合器,允 26 200803204 許SCM頻道之簡易結合,且多重使用者間沒有光學波差 干擾。此處,其將顯示極佳之上行鏈路傳輸性能可能達成。 此處將證明10 X Ι-Gb/s正交相位移鍵(QPSK)WDM-SCM多重使用者光纖網路架構之可行性。此處將藉由量測 產生於上行鏈路方向二SCM頻道之位元錯誤率(bit error rate,以下或稱BER),以展示一包含二使用者之系統之上 行鏈路功能之實驗性原理證明。其利用一時域雷射模型 (time domain laser model)確認單一波長十頻道情形之改良 光譜效率理論上係有效的。 第六圖顯示所提出之網路之上行鏈路部分之示意圖。 多重SCM頻道產生於每一用戶端。其透過短光纖連結傳 送至一 ”近乎被動式”之上行鏈路結合器,光學信號於此 結合並由一寬頻帶之光偵測器偵測,接著以一具有外部調 變器之高密度分波長多工式(DWDM)雷射中繼其傳輸。因 此上述之SCM頻道被多工化至相同之WDM波長。為了進 行實驗性之原理證明,二SCM-QPSK頻道傳送於此網路之 上。為了產生實驗上所需之1 Gb/s之QPSK信號,二500 Mb/s之”資料”和”非資料”之虛擬隨機輸出自一 Anritsu MP1763C 12.5GHz之波形產生器,其並沿不同長度之纜線 獨立傳送以避免互相耦合。每一輸出分別做為信號之同相 (in-phase) (I)成分和正交(quadrature) (Q)成分’其利用一 寬頻三平衡混頻器被升頻轉換至每一正交RF載波,而後 重疊以形成一 QPSK資料信號。使用於網路之該二QPSK 頻道接著被設置以不同之載波頻率。每一 QPSK SCM信號 27 200803204 於是以不同波長’ # 1560·61奈米和1563 05奈米,驅動 上行鏈路光源。此二光學信號互相結合並以一 15GHZ頻 寬光二極體偵測之。產生之合成電氣信號用以對一運作於 1 562.23奈米之第三光源進行再調變,其用以將產生之包 含二SCM頻道之光學信號於25 km之標準SMf上傳送, 做為至機房之DWDM回載。此回載光學信號由—放大之Μ GHz PIN二極體偵測。電氣信號隨之被分離,並以每一原 始本地振盪器進行降頻轉換。產生之基頻信號進行低通濾 波處理,並以一示波器和一錯誤偵測器(err〇r detect〇偵 測。 為了研究lOxl-Gb/s QPSK WDM_SCM被動式光纖網 路之可仃性,故將降頻混合資料之品質因數(qualhy ctor ’以下或稱Q factor)視為調變頻道間隔或載波頻率 分離度之函數而詳加量測(第七圖)。其發現於次載波頻率 =7GHz之SCM頻道之品質因數隨著頻道間隔之增加而遞 立曰而後因頻道間之干擾降低而趨於穩定。當介於二SCM 頻道之間隔係i GHz之時,!和q信號二者之品質因數分 別^ 9.45和9.56 dB。上行鏈路部分於錯誤率方面之性能 係轎由量測得自上行鏈路之每_讀頻道之位元錯誤率 :加以評估’如第八圖所示。左側之二贿曲線顯示背靠 月之知作(back to back 〇peration)每一頻道具有相似之靈敏 度而2錯誤率之差別。右側之二BER曲線則顯示近乎被動 弋^夕工架構下經過25 km之傳輸後,表示DWDM回載 至機房之距離,於10-9之BER區間僅有ldB之損失。為 28 200803204 了評估實作一 10x 1-Gb/S WDM_SCM光纖網路之可能性, 其基於時域雷射模型進行一電腦模擬。& 了尋找sCM頻 道之一第一次載波頻率,其將為次載波頻率之函數之一 SC=頻道於通過上行鏈路結合器後之品質因數加以計算, 如第九圖所不。結果顯示次載波頻率接近0 時,其品Optical Network Architecture using IGb/s 16QAM Subcarrier Multiplexing", which is incorporated herein by reference in its entirety. This document describes a dual channel instance using different wavelengths to implement the architecture as disclosed in the first figure. Embodiments of the invention are described above in conjunction with the examples given. It is to be understood that the above-described examples may be varied or modified without departing from the scope of the invention, the scope of which is incorporated by reference. Further examples are given in Appendix I and Appendix II below. Appendix 1 Home and Enterprise Services The dramatic growth in bandwidth demand has led to the proliferation of passive optical networks (PONs), and a series of standards have been developed that allow users to have a bandwidth of 10_100 Mb/s (megabits per second). . Passive fiber-optic network architectures are gaining more and more attention due to the growth of broadband networks and applications requiring large bandwidths such as HDTV (High-Fax Television), which uses low-cost technology to achieve greater user bandwidth (for example, Up to 1 Gb/s). Therefore, benefiting from the advancement of high-speed RF technology, sub-carrier multiplex (SCM) technology has been proposed to replace TDM and CDMA (Code division multiple access) technology in passive optical network applications. Advantages of SCM's advocates include flexible protocol delivery (different channels can be used for different services), looser and more dynamic client accessory specifications, and superior fiber transmission performance. However, it also recognizes significant shortcomings, particularly with regard to optical wavefront interference between uplink information. To solve this problem, we have previously proposed a WDM-SCM multi-user fiber-optic network architecture, which includes a novel uplink link combiner, allowing for easy integration of multiple 2008 SCM channels and multiple users. There is no optical wave difference interference between them. Here, it will show that excellent uplink transmission performance is possible. The feasibility of the 10 X Ι-Gb/s Quadrature Phase Shift Key (QPSK) WDM-SCM multi-user fiber network architecture will be demonstrated here. Here, the bit error rate (hereinafter referred to as BER) generated in the uplink direction of the SCM channel is measured to demonstrate an experimental principle of the uplink function of the system including the two users. prove. It is theoretically valid to use the time domain laser model to confirm the improved spectral efficiency of a single wavelength ten channel case. The sixth diagram shows a schematic diagram of the uplink portion of the proposed network. Multiple SCM channels are generated at each client. It is transmitted through a short fiber link to a "near-passive" uplink combiner, where the optical signals are combined and detected by a wide-band optical detector, followed by a high-density wavelength with an external modulator. A multiplexed (DWDM) laser relays its transmission. Therefore, the above SCM channels are multiplexed to the same WDM wavelength. In order to prove the experimental principle, the two SCM-QPSK channels are transmitted on this network. In order to generate the experimentally required 1 Gb/s QPSK signal, two 500 Mb/s "data" and "non-data" virtual random outputs are output from an Anritsu MP1763C 12.5 GHz waveform generator, which are along different lengths. Cables are independently transmitted to avoid mutual coupling. Each output is treated as an in-phase (I) component and a quadrature (Q) component of the signal, which is upconverted to each orthogonal RF carrier using a wideband triple balanced mixer. They are then overlapped to form a QPSK data signal. The two QPSK channels used in the network are then set to different carrier frequencies. Each QPSK SCM signal 27 200803204 then drives the uplink source at different wavelengths '1515·61 nm and 1563 05 nm. The two optical signals are combined with each other and detected by a 15 GHz wide optical diode. The generated composite electrical signal is used to modulate a third light source operating at 1 562.23 nm, which is used to transmit the generated optical signal containing the two SCM channels on a standard SMf of 25 km as a computer room The DWDM is back. This back-loaded optical signal is detected by the 放大 GHz PIN PIN diode. The electrical signals are then separated and downconverted with each of the original local oscillators. The generated baseband signal is low-pass filtered and detected by an oscilloscope and an error detector (err〇r detect〇. In order to study the scalability of the lOxl-Gb/s QPSK WDM_SCM passive optical network, The quality factor of the down-mixed data (qualhy ctor 'below or Q factor) is taken as a function of the modulation channel spacing or carrier frequency separation and is measured in detail (seventh image). It is found in the subcarrier frequency = 7 GHz. The quality factor of the SCM channel is set as the channel interval increases, and then stabilizes due to the interference between the channels. When the interval between the two SCM channels is i GHz, the quality factor of both the ! and q signals = 9.45 and 9.56 dB respectively. The performance of the uplink part in terms of error rate is measured by the bit error rate of each channel of the uplink from the uplink: evaluated as shown in Figure 8. Left side The second bribe curve shows back to back 〇peration. Each channel has similar sensitivity and 2 error rate difference. The right BER curve shows that it is nearly passive and 25 km. After transmission, indicates D The distance from WDM back to the equipment room is only ldB loss in the BER range of 10-9. It is 28 200803204 to evaluate the possibility of implementing a 10x 1-Gb/S WDM_SCM fiber network based on the time domain laser model. Perform a computer simulation. & Find the first carrier frequency of one of the sCM channels, which will be one of the functions of the secondary carrier frequency. SC = channel is calculated by the quality factor after passing through the uplink combiner, as shown in Figure 9. No. The result shows that when the subcarrier frequency is close to 0, its product

^因數劇烈地下降。此模擬中,最佳之3dB高斯遽波器頻 見係〇·3 GHz。第十圖顯示本發明所提出之WDM_SCM光 纖網路中,間隔為!邮之1〇 χ 1-Gb/s QpSK SCM傳輪 之可行性。次載波頻率之範圍選定於135 GHz至ι〇·35 GHz 之間。此例中,隨著頻道數目增加,計算其最壞狀況之頻 這位置之品質因數。結果顯示Q fact〇r隨頻道數目之增加 而惡化。其主要係肇因於隨雷射之非線性增加而導致之 SCM頻道之邊振成份。然而,即使模擬之頻道達1 〇 個狀况最差之頻道之品質因數仍超過8.6 dB。此結果帶 來以夕頻道WDM-SCM傳輸機制實現總資料率1〇_Gb/s而 單一用戶資料率高達i Gb/S之可能性。 本奄明提出一光譜上極具效率之10 X 1 Gb/s QPSK多 重用戶光纖網路架構’其係基於應用於被動式光纖網路之 次載波多工技術。針對分隔以1 GHz RF載波之二上行鏈 路頻這之原理上之驗證,證明其經過25 km之傳輸後,具 有1 dB t X力率損&。模.疑之結果顯示每一光纖頻道足以支 持10個兀全之1 Gb/s專用連結,並於使用4〇個WDM頻 道之時,同時服務400個用戶。 附錄二 29 200803204 住家和企業服務關於頻寬需求之戲劇性成長導致被動 式光纖網路(PONs)之蓬勃發展,已制定之—連串標準使得 用戶端可以具有10-100 Mb/s(每秒百萬位元)之頻寬。受益 於高速RF技術之進展,次載波多工(SCM)技術被提出以替 代被動式光纖網路應用中之分時多工和分碼多工存取技 術。雖然SCM技術具有許多優點,其未來應用仍可能受 限於某些SCM調變袼式光譜上之無料。因此,具有優 良光譜效率之SCM高速光纖網路一直受到注目。使用具 光譜效率數位調變機制之SCM <光纖網路,諸如正交相 位移鍵(QPSK)和正交振幅調變(QAM),允許低速之進入資 料流,故得以配合低速而廉價之電子组件。為了滿足未來 之高性能被動式光纖網路服務之需求,本發明之前例示一 分波長多工式之次載波多工式(wdm_scm)多重用戶光纖網 路架構,其使用一上行鏈路結合器,而移除光源間之波差 雜訊。此使得—群用戶之中’每一個用戶均能使用個別之 SCM頻道,每一頻道的έ士人 〇〇 頒遏均、、、α合於早一光波長以回載至機房。 四十個此種DWDM波長可以結合於單—光纖,使得超過彻 ㈣㈣戶於單—被動式光纖網路均具有丨 之連接我們已展不具有優越上行鍵路傳輸性能之卜 Gb/s QPSK調變機制’然其光譜效率有限。 本例中’我們完成—2 χ卜· i6 _ 二 =光學上行鏈路技術之原理上之實證,以擴充用以 ::南光譜效率之網路性能。其利用時域雷射模型於理論 上驗證了此單一诚具,Λ μ 長Q頻道情況之改良之光譜效率,顯 30 200803204 示出此架構之擴充性。 ^第十一圖顯示所提出網路之上行鏈路架構之示意圖。 每用戶產生一 SCM步員道。其經由簡短之低密度分波長 多工式(CWDM)光學連結傳送至一,,近乎被動式,,之上行鏈 路結合器,光學信號於其中結合’由一寬頻光偵測器所偵 測,而後利用具有外部調變器之高密度分波長多工式 (DWDM)雷射再傳送出去。藉此,該等scm頻道經由多工 處理以結合至單一波長而回載至機房。為了原理性實驗之 響驗證,我們例示具有二SCM_1Gb/s 16 QAM頻道之單— DWDM上行鏈路架構之性能。首先,為了產生一 之四位準資料流,一 25〇 Mb/s之資料頻道被衰減6 dB, 而非資料頻道被延遲整數數目之位元時間。該二頻道接著 於一 4 GHz阻抗式分光器/結合器内被結合並分離。其中— 輸出做為同相(I)成分,而另一個被延遲並作為信號之正交 (Q)成分,接著利用一混頻器將其升頻轉換至每一正交rf φ 載波並重疊以形成一 16 QAM資料信號。使用於網路中之 該二16QAM頻道隨之設定為不同之載波頻率。每一 16qam SCM信號於是以不同波長,即156〇 61奈米和i563 〇5奈 米,驅動上行鏈路光源。此二光學信號互相結合並以一工$ GHz頻寬光二極體偵測之。產生之合成電氣信號用以對一 運作於1562.23奈米之第三光源進行再調變,其用以將產 生之包含二SCM頻道之光學信號於25 km之標準單模光 纖(SMF)上傳送,做為至機房之DWDM回載。此回載光學 信號由一放大之15 GHz PIN二極體偵測。電氣信號隨之 31 200803204 被分離,並以每一原始本地振盪器進行降頻轉換。產生之 基頻信號進行低通濾波處理,並以一示波器偵測。 為了例示16QAM光纖網路,其分別The ^ factor drops drastically. In this simulation, the best 3dB Gaussian chopper frequency is seen in the system 33 GHz. The tenth figure shows the interval in the WDM_SCM optical fiber network proposed by the present invention! 1之 χ 1-Gb/s QpSK SCM transmission feasibility. The subcarrier frequency range is selected from 135 GHz to ι〇·35 GHz. In this example, as the number of channels increases, the quality factor of the worst-case frequency is calculated. The results show that Q fact〇r deteriorates as the number of channels increases. It is mainly due to the side vibration component of the SCM channel caused by the nonlinear increase of the laser. However, even the analog channel has a quality factor of more than 8.6 dB for the worst-performing channel. This result brings the possibility that the total data rate is 1〇_Gb/s and the single user data rate is as high as i Gb/S with the WDM-SCM transmission mechanism. Benjamin proposes a spectrally highly efficient 10 X 1 Gb/s QPSK multi-user fiber network architecture that is based on subcarrier multiplex technology for passive fiber networks. The principle verification of separating the uplink frequency of the 1 GHz RF carrier proves that it has a 1 dB t X rate loss & after 25 km transmission. The results of the suspicion show that each fiber channel is sufficient to support 10 full 1 Gb/s dedicated links and serve 400 users simultaneously when using 4 WDM channels. Appendix II 29 200803204 Home and Enterprise Services The dramatic growth in bandwidth demand has led to the proliferation of passive optical networks (PONs), which have been developed – a series of standards that allow clients to have 10-100 Mb/s (millions per second) The bandwidth of the bit). Benefiting from the advancement of high-speed RF technology, subcarrier multiplex (SCM) technology was proposed to replace time-division multiplex and code-code multiplex access in passive fiber-optic network applications. Although SCM technology has many advantages, its future applications may still be limited to certain SCM modulation spectroscopy spectra. Therefore, SCM high-speed fiber optic networks with excellent spectral efficiency have been attracting attention. The use of SCM < fiber optic networks with spectral efficiency digital modulation mechanisms, such as quadrature phase shift keys (QPSK) and quadrature amplitude modulation (QAM), allows low-speed access to data streams, enabling low-speed, low-cost electronics Component. In order to meet the needs of future high performance passive optical network services, the present invention exemplifies a sub-wavelength multiplexed sub-carrier multiplexed (wdm_scm) multi-user fiber network architecture using an uplink combiner. Remove the wave noise between the light sources. This allows each user to use an individual SCM channel, and each channel's gentleman's 颁 颁 , , , α is combined with the early wavelength of light to return to the machine room. Forty such DWDM wavelengths can be combined with single-fiber, so that more than the (four) (four) households in the single-passive optical network have a connection. We have not demonstrated superior uplink transmission performance, Gb / s QPSK modulation The mechanism 'has limited spectral efficiency. In this example, we completed - 2 χ · i6 _ 2 = the empirical evidence of the optical uplink technology to extend the network performance for the ::South spectral efficiency. It uses the time domain laser model to theoretically verify the improved spectral efficiency of this single honest device, Λ μ long Q channel condition, showing the scalability of this architecture. ^ Figure 11 shows a schematic diagram of the uplink architecture of the proposed network. Each user generates a SCM step. It is transmitted via a short low-density wavelength-multiplexed (CWDM) optical link to a near-passive, uplink-coupler where the optical signal is combined with 'detected by a wide-band photodetector, and then High-density wavelength-multiplexed (DWDM) lasers with external modulators are used for re-transmission. Thereby, the scm channels are reloaded to the machine room via multiplexing processing to be combined to a single wavelength. For the verification of the principle experiment, we illustrate the performance of a single-DWDM uplink architecture with two SCM_1Gb/s 16 QAM channels. First, in order to generate a four-bit quasi-data stream, a 25 〇 Mb/s data channel is attenuated by 6 dB, while the non-data channel is delayed by an integer number of bit times. The two channels are then combined and separated within a 4 GHz impedance splitter/splicer. Where – the output is treated as an in-phase (I) component, and the other is delayed and used as a quadrature (Q) component of the signal, which is then upconverted to each orthogonal rf φ carrier by a mixer and overlapped to form A 16 QAM data signal. The two 16QAM channels used in the network are then set to different carrier frequencies. Each 16qam SCM signal drives the uplink source at different wavelengths, 156 〇 61 nm and i563 〇 5 nm. The two optical signals are combined with each other and detected by a working $ GHz bandwidth photodiode. Generating a composite electrical signal for modulating a third source operating at 1562.23 nm for transmitting the resulting optical signal comprising the two SCM channels over a standard single mode fiber (SMF) of 25 km. As a DWDM back to the machine room. This reloaded optical signal is detected by an amplified 15 GHz PIN diode. The electrical signal is then separated by 31 200803204 and downconverted with each original local oscillator. The generated baseband signal is low-pass filtered and detected by an oscilloscope. To illustrate the 16QAM fiber network, the difference is

GHz -人載波之二scM頻道之眼狀圖(eye diagram),如第十 二圖和第十三圖所示。二SCM頻道之I和Q信號之每一 眼形有類似之品質因數。在25 km之SMG傳輸之後,品 質因數由於傳輸上之損失略為降低。上方、中間和底部眼 形之品質因數均超過3.7(〜l〇-4BER),其可以藉由更佳之RF 組件之VSWR匹配和利用產生優於1(rl5 BER之前向錯誤 校正技術(forward error correcti〇n techniques)加以改進。 為了評估實作—2〇 χ卜咖16QAM光纖網路之可能性, 其基於時域雷射模型進行一電腦模擬。此模擬包含整合性 系統應、有< RF組件之性能,而不是使用於我們針對;理 性展示之驗證之個別組件。第十四a圖以職顯示KM 頻道間具有最佳濾波效果之頻道間隔之效應。此計算㈣ 中,- 2.5 GHz SCM頻道之EVM量測為頻道間隔之函數。 單一 SCM㈣之符關干擾⑽叫ymbQi _加⑽,⑻ 隨著濾波器頻寬之減少而遞增’而產生之干擾於最 滅光器頻寬處減到最小。此例中,當頻道間隔係 子 之時,得到之最佳頻寬遽波器頻寬係Q 1625 gHz。第 b圖例示本發明所提出之光纖網路中,間隔為〇·5邮之: X 1-Gb/s 16QAM SCM傳輪之可夂以 〜 得翰之可仃性。次載波頻率之範園 選定於1.0 GHz至ι〇·5 GHz夕M L 圍 她之間。此例中,當串加_ sThe eye diagram of the GHz-human carrier two scM channel, as shown in the twenty-second and thirteenth figures. Each of the I and Q signals of the two SCM channels has a similar quality factor. After a 25 km SMG transmission, the quality factor is slightly reduced due to transmission losses. The quality factor of the upper, middle and bottom eye shapes exceeds 3.7 (~l〇-4BER), which can be better than 1 by VSWR matching and utilization of better RF components (rl5 BER forward error correcting technique) 〇n techniques) to improve. In order to evaluate the possibility of implementing the Q 咖 16 16 16QAM optical network, it is based on a time domain laser model for a computer simulation. This simulation includes the integrated system should have < RF components Performance, rather than the individual components we use for verification; rational display. Figure 14a shows the effect of the channel spacing with the best filtering effect between KM channels. In this calculation (4), - 2.5 GHz SCM channel The EVM measurement is a function of the channel spacing. The single SCM (four) of the interference (10) is called ymbQi _ plus (10), (8) as the filter bandwidth decreases and the resulting interference minimizes the minimum extinguisher bandwidth. In this example, when the channel spacing is in series, the optimal bandwidth chopper bandwidth is Q 1625 gHz. Figure b illustrates the optical network proposed by the present invention, the interval is 〇·5 post : X 1-Gb/s 16QAM S The CM pass can be 〜 得 得 得 得. The subcarrier frequency of the park is selected from 1.0 GHz to ι〇·5 GHz 夕 M L around her. In this case, when the string is added _ s

頻道,隨著SCM頻道數目夕祕^ CM 數目之增加,計算其最壞狀況之頻 32 200803204Channel, with the increase in the number of SCM channels, the number of CMs, calculate the frequency of its worst case 32 200803204

iL之EVM結果顯示EVM隨頻道數目之增加而惡化。其 主要係肇因於隨雷射之非線性增加而導致之SCM頻道之 白振成伤上行鍵路結合器内之Mach-Zehnder (MZ)調變 杰之遞增之調變指數(modulation index)M亦降低調變之非 線性。然而,即使模擬之SCM頻道達2〇個(Μ=Ό·4),狀況 最差之頻道之EVM仍小於7%。此結果顯示以多頻道hGb/s 16QAM傳輸機制實現總資料率2〇_Gb/s而具有2_bits/s/Hz 高光譜效率之可能性。 本發明展示一光譜上極具效率之2 χ LGWs 16QAM多 用戶上行鏈路杀構,其係基於應用於被動式光纖網路之 人載波夕工技術。模擬之結果顯示每一光纖頻道足以支持 20 X Ι-Gb/s專用連結,並於上行鏈路結合器至機房之間使 用40個WDM頻道之時,同時服務8〇〇個用戶。 【圖式簡單說明】 2 各實施例說明 < 圖式之簡要描述,其中: 立弟一圖顯示一構成特定通信系統之上行鍵路路徑之示 …圖其巾—基頻信號經由_長程光纖傳輸線自終端用戶 傳送至機房端。 第二圖顯示一構成類似楚 今_ 稱成類似弟—圖所示者之第二通信系統 之上行鏈路頻道之示意圖,复 ^ r t /、中超過一基頻信號經由一長 程光纖傳輸線傳送。 弟^圖顯不構成繁 m _ 再成弟圖和第二圖所示之通作季矫之上 行鍵路頻道之示意圖,自機“至終剌戶。^先之上 第四圖顯示構成一第三通信系統之上行鏈路頻道之示 33 200803204 意圖’其類似第一圖和第二圖所示,丨顯示系統各元件設 置之細節。 第五圖顯示第四圖系統中之光學信號集訊器之進一步 細節。 附錄1中另舉出一實施例,其參照以下各圖式,其中: 第六圖顯示一實驗性設置,其中λ1:1560 61奈米(nm)、 λ2:1563.05 奈米、人3 :1562.23 奈米。 第七圖顯示Q factor和頻道頻率間隔之關聯性。 第八圖顯示複數BER量測值。 第九圖顯示一第一 SCM頻道之最小次載波頻率。 第十圖顯不最差頻道之Q fact〇r相對於頻道數目之關 係圖。 附錄2中復另舉出一實施例,其參照以下各圖式,其 中: ’、 第十一圖顯示一本發明提出之網路之上行鏈路示意 圖。 第十二a圖和第十二b圖分別顯示次载波頻率25 GHz(千兆赫)之I和Q信號。第十二e圖和第十二c圖分The EVM results of iL show that the EVM deteriorates as the number of channels increases. The main reason is that the modulation index M of the Mach-Zehnder (MZ) modulation in the uplink key combiner is also reduced due to the nonlinear increase of the laser. The nonlinearity of modulation. However, even if the simulated SCM channel reaches 2〇 (Μ=Ό·4), the EVM of the worst-performing channel is still less than 7%. This result shows the possibility of achieving a high spectral efficiency of 2_bits/s/Hz with a total data rate of 2〇_Gb/s with a multi-channel hGb/s 16QAM transmission mechanism. The present invention demonstrates a spectrally efficient 2 χ LGWs 16QAM multi-user uplink killing based on human carrier technology applied to passive optical networks. The results of the simulation show that each fiber channel is sufficient to support 20 X Ι-Gb/s dedicated connections and serve up to 8 users simultaneously when 40 WDM channels are used between the uplink combiner and the equipment room. BRIEF DESCRIPTION OF THE DRAWINGS [Embodiment of the embodiments] A brief description of the drawings, in which: Figure 1 shows a schematic diagram of an uplink key path constituting a specific communication system. The towel-based frequency signal is transmitted via a long-range optical fiber. The transmission line is transmitted from the end user to the terminal. The second figure shows a schematic diagram of an uplink channel constituting a second communication system similar to that shown in the figure, wherein more than one fundamental frequency signal is transmitted via a long-range optical fiber transmission line. The younger brother's picture does not constitute a versatile _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The uplink channel of the third communication system 33 200803204 is intended to be similar to the first and second figures, showing the details of the various component settings of the system. The fifth figure shows the optical signal collection in the fourth system. Further details of the apparatus. An embodiment is further described in Appendix 1, which refers to the following figures, wherein: Figure 6 shows an experimental setup in which λ1:1560 61 nm (nm), λ2: 1563.05 nm, Person 3: 1562.23 nm. The seventh figure shows the correlation between Q factor and channel frequency interval. The eighth figure shows the complex BER measurement. The ninth figure shows the minimum subcarrier frequency of a first SCM channel. A diagram of the relationship between Q fact〇r and the number of channels of the worst channel. An example is given in Appendix 2, which refers to the following figures, where: ', the eleventh figure shows a network proposed by the present invention. Schematic diagram of the uplink of the road. Twelfth and tenth FIG views b show the carrier frequency 25 GHz (gigahertz) the I and Q signals. twelfth twelfth c and e in FIG FIGS minutes

別顯示次載.波頻率3.5 GHz於上行鏈路結合器後之!和Q 信號。 第十一 a圖和第十二b圖分別顯示次載波頻率2.5 於25 km(公里)SMF傳輸後之I和q信號。第十三c圖和 第十三d圖分別顯示次載波頻率3.5 gHz於25 kmSMF傳 輸後之I和Q信號。 34 200803204 第十四a圖顯示一 2.5 GHz SCM頻道之EVM為-向斯濾、波器頻寬(Gaussian filter bandwidth)之函數。 四b圖顯示當加入一並聯SCM頻道時,最差頻道之 4目•於頻道數目之關係圖。 【主要元件符號說明】Do not show the secondary load. The wave frequency is 3.5 GHz after the uplink combiner! And Q signal. The eleventh and t-th b-frames show the I and q signals after sub-carrier frequency 2.5 and 25 km (km) SMF transmission, respectively. The thirteenth and fifth th diagrams show the I and Q signals after the subcarrier frequency of 3.5 gHz and 25 km SMF transmission, respectively. 34 200803204 Figure 14a shows the EVM of a 2.5 GHz SCM channel as a function of the Gaussian filter bandwidth. Figure 4b shows the relationship between the number of channels of the worst channel and the number of channels when adding a parallel SCM channel. [Main component symbol description]

3dB 第十 EVM3dB tenth EVM

100 第一系統 101 基頻信號A 102 基頻信號B 1〇3 第一本地振盪器 104 第二本地振盪器 105 第一混頻器 106 第二混頻器 1〇7 第一雷射二極體 108 第二雷射二極體 109 光二極體 110 傳輸雷射 111 光纖傳輸線 112 PIN型光二極體 113 第一接收器混頻器 114 第二接收器混頻器 115 第一接收器本地振盪器 116 第二接收器本地振盪器 117 基頻信號A 118 基頻信號B 35 200803204 200 第二系統 202 基頻信號 204 升頻轉換器 206 雷射二極體 209 光二極體 210 傳輸雷射 211 光纖傳輸線 212 光二極體 214 本地振盪器和混頻器 218 基頻信號 301 機房 302 高密度分波長多工式(DWDM)解多工器 310 被動式分光器 320 用戶終端設備單元 321 光二極體 322 降頻轉換器 323 基頻信號 401 機房 402 DWDM多工器 410 光學信號集訊器 420 用戶終端設備單元 421 雷射二極體 422 混頻器 423 基頻信號 36 200803204100 first system 101 baseband signal A 102 baseband signal B 1〇3 first local oscillator 104 second local oscillator 105 first mixer 106 second mixer 1〇7 first laser diode 108 second laser diode 109 light diode 110 transmission laser 111 optical fiber transmission line 112 PIN type optical diode 113 first receiver mixer 114 second receiver mixer 115 first receiver local oscillator 116 Second Receiver Local Oscillator 117 Baseband Signal A 118 Baseband Signal B 35 200803204 200 Second System 202 Baseband Signal 204 Upconverter 206 Laser Diode 209 Light Diode 210 Transmission Laser 211 Optical Fiber Transmission Line 212 Photodiode 214 Local Oscillator and Mixer 218 Baseband Signal 301 Room 302 High Density Wavelength Multiplexed (DWDM) Demultiplexer 310 Passive Beam Splitter 320 User Terminal Equipment Unit 321 Optical Diode 322 Downconverter 323 baseband signal 401 room 402 DWDM multiplexer 410 optical signal collector 420 user terminal equipment unit 421 laser diode 422 mixer 423 fundamental frequency signal 36 200803204

510 光學信號集訊器 512 光二極體 514 傳輸雷射 520 用戶終端設備單元 A-Z 基頻信號 δ|-δη 本地振盡 λλ-λη 波長 37510 optical signal collector 512 optical diode 514 transmission laser 520 user terminal equipment unit A-Z fundamental frequency signal δ|-δη local vibration λλ-λη wavelength 37

Claims (1)

200803204 十、申請專利範固: 1 · 一種結合於光纖網路上傳送之複數電氣信號之方 法,其包含: a) 複數個光發射器中之每一光發射器分別接收一不同 個別中心頻率之輸入電氣信號,且分別發射一個別光信號 以反應並指示該輸入電氣信號之接收,其中每一該光發射 器分別於一不同個別波長發射該個別光信號;以及 b) —光接收器(ph〇t〇receptor)接收該些光信號並發射 _ 一輸出電氣信號,以反應並指示該光信號之接收。 2·如申請專利範圍第1項之方法,更包含自一基頻信 遽(baseband signal)產生至少一該輸入電氣信號。 3.如申請專利範圍第丨項之方法,更包含藉由將一基 頻信號與一本地振盪器之輸出混合,以自該基頻信號產生 至少一該輸入電氣信號。 4·如申請專利範圍第3項之方法,其中該本地振盡器 運作於射頻範圍。 β 5·如申請專利範圍第1至4項中任一項之方法,其中 該步驟(b)包含該光接收器接收該光信號以使得,相對於該 光接收器之頻寬,每一該光信號之頻率大致係位於頻帶 内’且該光信號之波差頻率(beat frequencies)大致係位於 頻帶外。 ' 6.如申請專利範圍第〗至5項中任一項之方法,其中 該步驟(b)包含對該光接收器接收之該光信號進行濾波處 理’以防止該光信號之波差頻率被該光偵測器所侦測。 38 200803204 7. 如申請專利範圍第丨至6項中任一項之方法,更包 含該光接收器輸出一電氣信號至一傳輸光發射器 (transmission light emitter),以指示該光接收器所接收之 光學信號之步驟。 8. 如申請專利範圍第7項之方法,更包含一接收光接 收器接收傳送自該傳輸光發射器之信號,並於複數個接收 器中之每一個接收器接收來自該接收光接收器之輸出,每 一該接收器將來自該接收光接收器之輸出之一選擇頻率分 別與一本地振盪器之輸出進行降頻轉換,以分別產生一基 頻信號之步驟。 9·如申請專利範圍第1至8項中任一項之方法,其中 上述之步驟(a)之前可以執行接收複數個基頻信號之步驟, 其分別於每一終端用戶設備模組接收且將每一基頻信號分 別升頻轉換為載波信號以分別產生相對之輸入電氣信號, 母一載波信號均分別具有不同之中心頻率。 10 ·如申请專利範圍第9項之方法,更包含於複數個光 學"ί吕號集訊器(optical signal concentrators)中之每一個光學 k號集訊器分別藉由一群終端用戶設備模組接收該光信號 輸出之步驟’每一該集訊器分別結合相對於該群終端用戶 設備模組之光信號,並分別輸出一結合光信號以反應並指 示該光信號之接收。 11.如申請專利範圍第9項或第1〇項之方法,更包含 於*^多工益(multipiexer)接收母,該結合光信號,並對盆 進行多工處理以於一光載波(optical carrier)繼續傳輸之步 39 200803204200803204 X. Patent application: 1 · A method of combining a plurality of electrical signals transmitted over a fiber optic network, comprising: a) each of the plurality of optical transmitters receiving an input of a different individual center frequency Electrical signals, and respectively transmitting a different optical signal to reflect and indicate receipt of the input electrical signal, wherein each of the optical transmitters respectively transmits the individual optical signals at a different individual wavelength; and b) - the optical receiver (ph〇 Receiving the optical signals and transmitting an electrical signal to reflect and indicate the reception of the optical signals. 2. The method of claim 1, further comprising generating at least one of the input electrical signals from a baseband signal. 3. The method of claim 3, further comprising generating at least one of the input electrical signals from the baseband signal by mixing a baseband signal with an output of a local oscillator. 4. The method of claim 3, wherein the local oscillating device operates in the radio frequency range. The method of any one of claims 1 to 4, wherein the step (b) comprises the optical receiver receiving the optical signal such that, relative to the bandwidth of the optical receiver, each of the The frequency of the optical signal is approximately in the frequency band 'and the beat frequencies of the optical signal are substantially outside the frequency band. 6. The method of any one of claims 1-5, wherein the step (b) comprises filtering the optical signal received by the optical receiver to prevent the wave frequency of the optical signal from being The photodetector detects. 38. The method of any one of claims 1-6, further comprising the optical receiver outputting an electrical signal to a transmission light emitter to indicate receipt by the optical receiver The step of the optical signal. 8. The method of claim 7, further comprising receiving, by the receiving optical receiver, a signal transmitted from the transmitting optical transmitter, and receiving, by the plurality of receivers, the receiving optical receiver from the receiving optical receiver. And outputting, each of the receivers down-converting a selected frequency of the output from the receiving optical receiver to an output of a local oscillator to generate a baseband signal, respectively. The method of any one of claims 1 to 8, wherein the step (a) is performed before the step of receiving a plurality of baseband signals, which are respectively received by each end user equipment module and Each of the fundamental frequency signals is up-converted into a carrier signal to respectively generate a relative input electrical signal, and the mother-carrier signals respectively have different center frequencies. 10 · If the method of claim 9 is included in each of the optical optical concentrators, each of the optical k concentrators is respectively supported by a group of end user equipment modules. The step of receiving the optical signal output 'each of the combiners respectively combines the optical signals with respect to the group of end user equipment modules, and respectively outputs a combined optical signal to reflect and indicate the reception of the optical signal. 11. The method of claim 9 or claim 1 is further included in the *^ multipiexer receiving mother, the combined optical signal, and the multiplex processing of the basin for an optical carrier (optical) Carrier) Continue to transfer step 39 200803204 12· —種結合於光纖網路上傳送之複數電氣信號之通信 裝置,具有複數個光發射器和一光接收器,每一該光發射 為係用以分別接收一不同中心頻率之輸入電氣信號,且分 別於一不同波長發射一光信號以反應並指示該輸入電氣信 號之接收;而該光接收器係配置成接收該光信號並發射一 輸出電氣彳§ 5虎以反應並指示該光信號之接收。 13·如申請專利範圍第12項之通信裝置,其中該光接 收器及/或該光發射器係使得,相對於該光接收器之頻寬, 每一該光發射器接收發射之該光信號大致係位於頻帶内, 且該光信號之波差頻率大致係位於頻帶外。 14·如申請專利範圍第12項或第13項之通信裝置,更 包含一濾波器,用以大致防止該光信號之波差頻率被該光 偵測器所偵測。 1 5 ·如申請專利範圍第12項至第14項中任一項之通信 裝置’更包含一傳輸光發射器,其係配置成接收該光接收 器輸出之一輸出電氣信號。 16.如申請專利範圍第15項之通信裝置,其中該傳輸 光發射器係一發光二極體(Light Emitting Diode,LED)或 一傳輸雷射(transmission laser),諸如一低密度分波長多工 式(coarse wavelength division multiplexing,CWDM)雷射 或一尚岔度分波長多工式(dense wavelength division multiplexing,DWDM)雷射。 17·如申請專利範圍第12項至第i6項中任一項之通信 200803204 裝置,更包含一調變器,其係配置成接收該輸出電氣信號, 且可以將該輸出電氣信號加入一來自一散播源(distributed source)之連續波(continuous wave,CW)波長。 18·如申請專利範圍第12項至第17項中任一項之通信 I置,更包含一接收光接收器,其係配置成接收傳送自該 傳輸光發射器之信號,並輸出一電氣信號以指示該信號之 接收;且進一步包含複數個接收器,連接至該接收光接收 器之輸出,每一該接收器將來自該接收光接收器之輸出之 一選擇頻率分別與一本地振盪器之輸出進行降頻轉換,以 分別產生一基頻信號。 19.如申請專利範圍第18項之通信裝置,其中該本地 振盪器運作於射頻範圍。 20·如申請專利範圍第18項或第19項之通信裝置,其 中至少一該複數個接收器係一無線接取點,例如符合IEEE 802.11標準之無線接取點;或其中該複數個接收器其中之 係行動電活電信基地台,例如一行動電話電信之微型 口(cellular telephone telecommunication pico station) 〇 21 ·如申請專利範圍第12項至第20項中任一項之通信 裝置,更包含複數個終端用戶設備模組,其中每一該終端 用戶δ又備模組包含一升頻轉換器(^Μηναία),用以將相 對之基頻信號分別升頻轉換至一載波信號,每一該載波信 號分別具有不同之中心頻率,藉以分別產生相對之輸入電 氣信號。 22·如申請專利範圍第21項通信裝置,其中每一該升 200803204 硕轉換器分別包含一混頻器和與其相連接之本地振盪器, 每°亥升頻轉換器係藉由將該基頻信號與相對之該本地振 盪裔之輸出混合以分別自相對之基頻信號產生相對之該輸 入電氣信號。 、13·如申請專利範圍第22項之通信裝置,其中該本地 振盪器係運作於射頻範圍。 24·如申請專利範圍第21項至第23項中任一項之通信 φ 裝置,其中每一該終端用戶設備模組更包含該光發射器, /寻母忒光务射器分別接收上述產生之該輸入電氣信 號。 申明專利範圍苐2 1項至第2 4項中任一項之通信 衣置/、中每一该終端用戶設備模組係用以接收射頻信 且將母該射頻信號分別輸入至相對之光發射器。 狀·如申明專利範圍第12項至第25項中任一項之通信 衣置其中一個、多個或所有之該光發射器係一低密度分 參 波長多工式(c〇arse wavelength以心⑽则叫叩, CWDM)雷射。 狀27·如申請專利範圍第12項至第26項中任一項之通信 ▲置更匕3複數個光學信號集訊器,每一該光學信號集 訊器^別藉由-群終端用戶設備模組接收該光信號輸出, 且每7該集訊器分別結合相對於該群終端用戶設備模組之 光U ϋ刀別輪出一結合光信號以反應並指示該光信號 之接收。 28·如申明專利範圍第27項之通信裝置,其中一個、 42 200803204 多個或所有之該光學信號集訊器分別包含一連接至相對之 傳輸雷射之光一極體(photo diode)。 29·如申請專利範圍第28項之通信裝置,其中該傳輸 雷射係一咼岔度为波長多工式(dense wavelength division multiplexing,DWDM)雷射。 30·如申請專利範圍第27項至第29項中任一項之通信 裝置,更包含一多工器以接收每一該結合光信號,並對其 進行多工處理以於一光載波繼續傳輸。 3 1 ·如申請專利範圍第30項之通信裝置,其中該多工 口口係咼禮度分波長多工式(dense wavelength division multiplexing,DWDM)多工器。 32_如申請專利範圍第12項至第31項中任一項之通信 裝置,其中至少一該複數個輸入電氣信號係來自一無線接 取點之信號,諸如用以連接至個人電腦之無線接取點,至 少一該輸入電氣信號係符合IEEE 8〇2 u標準;及/或至少 一该輸入電氣信號係來自一行動電話電信基地台之信號, 例如來自一行動電話電信微型台(cellular teleph〇ne telecommunicaticm pico station)。 33·—種終端用戶設備模組,其係根據申請專利範圍第 21項至第32項中任一項。 34. —種複數個終端用戶設備模組,其係根據申請專利 範圍第21項至第33項中任一項。 35. —種方法,其係實質上如參照後附圖式而如上文所 說明。 43 200803204 36· —種裝置,其係實質上如參照後附圖式而如上文所 說明及/或顯示於該等圖式中之一或多個圖中。 十一、國式: 如次頁。12. A communication device coupled to a plurality of electrical signals transmitted over a fiber optic network, having a plurality of optical transmitters and an optical receiver, each of the optical transmissions being adapted to receive an input electrical signal at a different center frequency, And respectively emitting an optical signal at a different wavelength to reflect and indicate the reception of the input electrical signal; and the optical receiver is configured to receive the optical signal and transmit an output electrical device to react and indicate the optical signal receive. 13. The communication device of claim 12, wherein the optical receiver and/or the optical transmitter is such that each of the optical transmitters receives the transmitted optical signal relative to a bandwidth of the optical receiver The frequency is substantially within the frequency band, and the frequency difference of the optical signal is substantially outside the frequency band. 14. The communication device of claim 12 or 13 further comprising a filter for substantially preventing a wave difference frequency of the optical signal from being detected by the optical detector. The communication device of any one of claims 12 to 14 further comprising a transmission light emitter configured to receive an output electrical signal from one of the optical receiver outputs. 16. The communication device of claim 15, wherein the transmission light emitter is a Light Emitting Diode (LED) or a transmission laser, such as a low density wavelength division multiplexing (coarse wavelength division multiplexing, CWDM) laser or a density wavelength division multiplexing (DWDM) laser. The device of claim 20, 803,204, further comprising a modulator configured to receive the output electrical signal and to add the output electrical signal to a The continuous wave (CW) wavelength of a distributed source. 18. The communication device of any one of clauses 12 to 17, further comprising a receiving optical receiver configured to receive a signal transmitted from the transmitting optical transmitter and output an electrical signal To indicate the reception of the signal; and further comprising a plurality of receivers connected to the output of the receiving optical receiver, each of the receivers selecting a frequency of the output from the receiving optical receiver and a local oscillator respectively The output is down-converted to produce a baseband signal, respectively. 19. The communication device of claim 18, wherein the local oscillator operates in a radio frequency range. 20. The communication device of claim 18 or claim 19, wherein at least one of the plurality of receivers is a wireless access point, such as a wireless access point compliant with the IEEE 802.11 standard; or wherein the plurality of receivers The mobile telephone telecommunication base station, for example, a cellular telephone telecommunication pico station 〇 21 · the communication device according to any one of claims 12 to 20, further including plural An end user equipment module, wherein each of the end user δ modules further includes an up-converter (^Μηααα) for upconverting the relative baseband signals to a carrier signal, each of the carriers The signals have different center frequencies, respectively, to generate a relative input electrical signal, respectively. 22. The communication device of claim 21, wherein each of the 200803204 supersonic converters respectively includes a mixer and a local oscillator connected thereto, and the fundamental frequency converter is converted by the ocean. The signal is mixed with the output of the local oscillator to generate an input electrical signal relative to the baseband signal, respectively. 13. The communication device of claim 22, wherein the local oscillator operates in a radio frequency range. The communication φ device according to any one of claims 21 to 23, wherein each of the end user device modules further comprises the light emitter, and the homing ray ejector respectively receives the generation The input electrical signal. Each of the end-user device modules of the patent scope 苐2 1 to item 24 is for receiving an RF signal and inputting the RF signal to the relative light emission separately Device. The one or more or all of the light-emitting devices of the communication device of any one of claims 12 to 25 are a low-density partial-wavelength multiplexer (c〇arse wavelength (10) is called 叩, CWDM) laser. 27) The communication of any one of the 12th to 26th patents is set to 匕3 plurality of optical signal collectors, each of the optical signal collectors by the group terminal user equipment The module receives the optical signal output, and each of the transceivers combines a light signal with respect to the optical U ϋ of the group of end user equipment modules to react and indicate the reception of the optical signal. 28. A communication device according to claim 27, wherein one, 42 200803204, the plurality or all of the optical signal collectors respectively comprise a photo diode connected to the opposite transmitting laser. 29. The communication device of claim 28, wherein the transmission laser system is a wavelength wavelength division multiplexing (DWDM) laser. 30. The communication device of any one of clauses 27 to 29, further comprising a multiplexer for receiving each of the combined optical signals and multiplexing the same to continue transmission on an optical carrier . 3 1 . The communication device of claim 30, wherein the multiplex port is a density wavelength division multiplexing (DWDM) multiplexer. The communication device of any one of clauses 12 to 31, wherein at least one of the plurality of input electrical signals is a signal from a wireless access point, such as a wireless connection for connecting to a personal computer. Taking at least one of the input electrical signals conforms to the IEEE 8〇2 u standard; and/or at least one of the input electrical signals is a signal from a mobile telephone telecommunications base station, such as from a mobile telecom base station (cellular teleph〇) Ne telecommunicaticm pico station). 33. An end user equipment module, which is according to any one of items 21 to 32 of the patent application scope. 34. A plurality of end user equipment modules, according to any one of items 21 to 33 of the scope of the patent application. 35. A method substantially as hereinbefore described with reference to the following figures. 43 200803204 36. A device is substantially as described above and/or shown in one or more of the figures, with reference to the following figures. 11. National style: as the next page. 4444
TW96118048A 2006-05-19 2007-05-21 A method of and apparatus for combining electrical signals TW200803204A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0610029A GB0610029D0 (en) 2006-05-19 2006-05-19 A method of and apparatus for combining electrical signals

Publications (1)

Publication Number Publication Date
TW200803204A true TW200803204A (en) 2008-01-01

Family

ID=36660526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96118048A TW200803204A (en) 2006-05-19 2007-05-21 A method of and apparatus for combining electrical signals

Country Status (3)

Country Link
GB (1) GB0610029D0 (en)
TW (1) TW200803204A (en)
WO (1) WO2007135407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798470B2 (en) 2009-12-15 2014-08-05 Broadcom Corporation RF signal transport over passive optical networks

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947146B (en) 2011-11-08 2018-06-01 骁阳网络有限公司 The data processing of optical network element
US10389450B2 (en) 2013-08-30 2019-08-20 Keysight Technologies, Inc. Optical bandwidth interleaving

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2051325C (en) * 1990-09-14 1999-06-29 Shigeki Watanabe Optical communication system
JPH07321744A (en) * 1994-05-27 1995-12-08 Nec Corp Optical network and analog relay node
US6525857B1 (en) * 2000-03-07 2003-02-25 Opvista, Inc. Method and apparatus for interleaved optical single sideband modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798470B2 (en) 2009-12-15 2014-08-05 Broadcom Corporation RF signal transport over passive optical networks
TWI465053B (en) * 2009-12-15 2014-12-11 Broadcom Corp Rf signal transport over passive optical networks

Also Published As

Publication number Publication date
GB0610029D0 (en) 2006-06-28
WO2007135407A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US10432340B2 (en) Optical port auto-negotiation method, optical module, central office end device, and terminal device
Wey 魏君珊 The outlook for PON standardization: A tutorial
Abbas et al. The next generation of passive optical networks: A review
Cvijetic et al. 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing
Kani Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems
Song et al. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms
Lin Next generation PON in emerging networks
Koonen Fiber to the home/fiber to the premises: what, where, and when?
US9654245B2 (en) Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
Park et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network
JP4876172B2 (en) OLT and ONU apparatus and method for wavelength independent WDM passive optical network
US20100329680A1 (en) Optical networks
WO2007071154A1 (en) A wavelength division multiplexing passive optical network and its implement method
JP2010539759A (en) Optical line terminator, passive optical network, and radio frequency signal transmission method
WO2007143931A1 (en) A wavelena wavelength division multiplexing passive optical network
WO2008044273A1 (en) Optical communication system
US9287987B2 (en) Self-seeded colorless burst-mode transmitter using reflective semiconductor optical amplifier and injection locked Fabry-Perot laser
CN101729146A (en) Self-excitation multi-wavelength dynamically dispatched optical network unit in passive optical network
Shaddad et al. Emerging optical broadband access networks from TDM PON to OFDM PON
Maier WDM passive optical networks and beyond: the road ahead
Zhao et al. A wavelength-division-multiplexed passive optical network with flexible optical network unit internetworking capability
Romero Passive optical networks: Present status and future outlook
Nesset Next Generation PON Technologies: 50G PON and Beyond
Iwatsuki Application and technical issues of WDM-PON
TW200803204A (en) A method of and apparatus for combining electrical signals