TW200541365A - Apparatus and method for generating dummy pilot signal for use in hard handover of mobile communication - Google Patents

Apparatus and method for generating dummy pilot signal for use in hard handover of mobile communication Download PDF

Info

Publication number
TW200541365A
TW200541365A TW93137090A TW93137090A TW200541365A TW 200541365 A TW200541365 A TW 200541365A TW 93137090 A TW93137090 A TW 93137090A TW 93137090 A TW93137090 A TW 93137090A TW 200541365 A TW200541365 A TW 200541365A
Authority
TW
Taiwan
Prior art keywords
signal
cdma
code
pilot
short
Prior art date
Application number
TW93137090A
Other languages
Chinese (zh)
Other versions
TWI292674B (en
Inventor
Ho-Sang Yoo
Jin-Yong Kim
Tai-Shin Kim
Hyung-Suk Kim
Original Assignee
Gt & T Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gt & T Co Ltd filed Critical Gt & T Co Ltd
Publication of TW200541365A publication Critical patent/TW200541365A/en
Application granted granted Critical
Publication of TWI292674B publication Critical patent/TWI292674B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An apparatus and method for generating a dummy pilot signal for a hard handover of mobile communication. The apparatus allows a Beacon device capable of supporting a hard handover in a synchronous Code Division Multiple Access (CDMA) wireless communication network to generate a dummy pilot signal using a Base Station (BS) classification Pseudo Noise (PN) synchronous signal extracted from a CDMA Radio Frequency (RF) signal of the BS. The apparatus acquires short PN code synchronization from the CDMA RF signal using a serial searcher scheme when the Beacon device generates a dummy pilot signal, such that a large number of gates are not required and a short PN code drift caused by a frequency shift of an internal oscillator can be compensated. Also, the apparatus allows the output dummy pilot signal to have frequency stability suitable for BS requirements, and solves problems of a conventional dummy pilot signal generation scheme, such that there is no need to receive an even clock signal (EVEN_CLK) and a reference clock signal from the BS.

Description

200541365 玖、發明説明: 【發明所屬之技術領域】 本發明相關於用以產生一用於一行動通訊之硬遞交的 填充領航信號之一設備和方法,和尤指用以允許一信標 (Beacon)裝置在一同步分碼多重存取式(CDMA)無線通訊 網路有能力支援一硬遞交之一設備和方法,以使用一基地 台(BS)分類偽雜訊(Pseudo noise,PN)同步信號以產生一填 充領航信號(dummy pilot signal),該基地台分類偽雜訊同 步信號係截取自基地台之一 CDMA無線電頻率(RF)。 【先前技術】 典型地,基地台(BSs)根據網格基礎規劃(cell-based scheme)為用戶提供許多通信服務’和當一 MS自一個網格 (例如,一個基地台的區域)移動至另"網格(例如’另一個 基地台的區域)時,必須防止在一行動站台(MS)和任何基地 台之一者間產生呼叫遺落(call drop)的現象。藉由這個方 法,當MS自一基地台區域移動到另一基地台區域時,如 果在MS和基地台之間持續保持一呼叫信號,這個操作叫 作「遞交」。 通常,一行動通信系統的遞交操作被分類為一硬遞交 操作和一軟遞交操作。該軟遞交操作指示一特定遞交模 式,其中,當一 MS從一第一基地台被遞交到一第二基地 台時,該第二基地台(例如,一鄰近基地台)分派與該第一 基地台(例如,一現有BS)者相同之頻率分派(FA)信號給該 200541365 MS。該硬遞交操作指示一特定遞交模式,其中, 與維持一呼叫連結狀態同步地從一第一基地台被 第二基地台時,該第二基地台(例如,一鄰近基 與該第一基地台(例如,一現有B S)者不同之頻率 信號給該MS。在這種狀況下,當該MS在具有不 號之該第一和第二基地台間硬遞交時,一信標裝 以防止一呼叫遺落的產生。 第 1圖是說明基地台之間硬遞交的操作的 示0 參照第1圖,如果現在在一第一基地台*’A” 利用一 FA2信號建立一呼叫連結狀態之該MS被 第二站台"B"之一區域,在該第二站台”不包括 號的狀況下,該MS不能決定是否其位置存在於 台”B"之區域。為何該MS不能決定上述的狀態的 MS只具有能夠處理一頻率的無線電頻率硬體 組。因此,該MS持續進入該第二基地台’’B”之區 該第一基地台"A”的FA2信號被切斷為止,因此 在該MS和該第二基地台"B”間的呼叫信號。 然而,如果該第二基地台"B"把FA2信號的 信號傳給MS,則該MS能確認到MS持續進入該 台"B"區域的目前狀態。因此,如果從第二基地# 的FA2填充領航信號的能量到達足夠強度’則該 遞交至該第二基地台"B",以使該呼叫^號旎夠維 一基地台"A”和該第二基地台,,β,,之間。當該第二1 當一 MS 遞交到一 &台)分派 分派(FA) :同FA信 置被調整 概念性圖 之一區域 遞交至一 該FA2信 該第二站 原因是該 :(H/W)模 域,直到 無法建立 填充領航 第二基地 ^ MB”產生 MS被硬 持於該第 I地台"B ” 4 200541365 產生該FA2填充領航信號時,該FA2填充領航信號必須具 有等於一個基地台分類短PN碼者的預定時間偏移設定 (timeoffset),用於該第二基地台”B”的FA1領航通道。 上述硬遞交操作係通常執行於一業預定的邊界,其 中’由每一基地台使用之FA信號數被改變為另一數值, 例如’一城内邊界或戶外/建築物内邊界、等等。如果一基 地台之FA信號數在城内區域及城外區城間之一邊界區域 被改變為另一數值,一信標裝置係安裝於一位於該城外區 域的一基地台,以允許安裝於一位於該城内區域的一基地 台的FA信號數相等於位於城外區域之基地台者,以使在 在複數基地台網格間的遞交能夠輕易地執行。 二種規劃,即,下面的第一和第二規劃,可調整以適 用於上述的信標裝置。 第一規劃控制基地台"B"以對基地台”B"產生的FA 1 RF k號執行轉合,因此該FA 1 RF信號的一頻率被改變為 FA2 h號者,並且最後如第1圖所示般傳送該ρΑ2信號。 在使用第一規劃的情況下,藉由FA2信號傳送所有導致增 加最終放大器中的負載之通道信號(例如,一領航通道信 號、一同步通道信號、一傳呼通道信號和一交通通道信 號)。同樣地,一不預期之時間延遲在無線電頻率路徑中發 生,因此,FA1領航信號的一短PN碼時間偏移設定不可 能等於FA2領航信號者。 在第二規劃情況下,如果基地台”B"將充當基地台同步 信號的均勻時脈(CLK)信號提供給該信標裝置,並且一使 200541365 用者進入一短PN碼,該信標裝置控制這個短PN碼以進入 一時間偏移設定狀態,因此它產生一填充領航信號。然而, 第二規劃的缺點是該基地台必須為該信標裝置提供均勻的 CLK信號和一參考時脈信號。 當藉由執行FA1信號的耦合使FA1信號轉變成FA2 信號時,用於上述二規劃之信標裝置控制一定向耦合器, 其連接至一基地台主要(BTS —MAIN)天線電纜,以執行一無 線電頻率信號耦合。該耦合的無線電頻率信號被傳送至一 RF跳頻單元,因此它的頻率被改變成另一頻率。在接連通 過高功率放大器(ΗΡΑ)和一個雙工過濾器之後,該轉變的 無線電頻率信號被傳送至一分集天線(ANT_DIV)。 當從基地台得到EVEN一CLK信號時,如果信標裝置產 生填充領航信號,則它藉由EVEN一CLK璋口接收 EVEN-CLK信號和藉由參考時脈埠口接收參考時脈信號, 因此它把這個接收的EVEN —CLK信號用作一 pn產生單元 的BS短PN同步信號,並且把這個接收的參考時脈信號用 作一信標系統參考時脈信號。根據以EVEN一CLK信號為其 礎的使用者的PN建立資料,該PN產生單元產生具有一 ^ 當時間偏移设疋的領航仏號。藉由RF跳頻單元,使該領 航信號轉變成一個RF頻率;被應用至一 ηρα和一雙工過 濾器;和最後傳給一個分集天線(ΑΝΤ一DIV)淳口。 在使該RF仏號轉變成使用上述的信標裝置的另一俨 號的情況下,信標裝置有一優點,在於它有一簡化的架構。 然而,上述的仏標裝置有缺點,在於把除了領航通道信號 6 200541365 以外的同步通道信號、傳呼通道於 、七唬、和交通通道信號作 為負載應用於最後的輸出端放夫 八裔,因此如果它要傳送所 欲的信號,必須以高於只能傳详 月匕得运領航通道信號的另一放大 器5db的一預定的輸出水準。闾 J樣地,上述信標裝置具有 另一缺點,在於它具有一不正 个正確的短PN時間偏移設定, 其起因於RF路徑的時間延遲。 %冋時,在自一外部接收傳 統時脈信號(EVEN CLK)時產座 Λ 一 座生一領航信號的情況下.,該 信標裝置具有一缺點,在於基从Α 暴地台必須提供一短的ΡΝ碼 的EVEN一CLK信號和參考時脈^ 可崎脈k旒。然而,信標裝置具有 一優點,在於它具有一相對簡化的架構。 在此期間,在韓國專利申社缺^ J 甲 % 戒 20-2000-0020362 中描 述另一信標裝置,標題為「銥豹 夠執行用硬遞交的改進信標 裝置」,其併入本文以供念昭 八供芬照。上述韓國專利申請號 20-2000-0020362的信標裝署女 心裝置有一優點,在於它能夠藉由 調整一領航搜尋器為一符合的過请势 ^ 灯σ幻過/慮Is,以執行短PN碼之 快速同步化取得;及亦具有另一很机 ^ 丹有另優點,在於因為當產生填 充領航信時,不會自-外部接收一同步時脈信號(例如,一 謂N 一 CLK信號),戶斤以可以輕易地與基地台互動。然而, 如果以符合的過濾器裝配領航搜尋器,在韓國專利申請號 20-2000-0020362中上述信標裝置需要大量閘道,雖然上 述信標裝置能夠只使用該領航搜尋器獲得一初始短pN 碼,但是無法彌補由一内部振盪器的頻率轉變產生的一短 PN碼的漂移之方法。此外,無法使輸出填充領航信號具有 適於基地台的頻率穩定性(^ ±0 )。此外,上述信標震置 200541365 使用用以延遲自領航I和Q產生器所產生的延遲j和q信 號達一預定時間之一延遲,因它需要一額外的先進先出 (FIFO)記憶體。 【發明内容】 因此,本發明係鑒於上述問題而產生,而本發明之目 的在於提供一設備和方法,以控制能夠支援同步CDMa無 線通信網路的硬遞交的一信標裝置,以彌補一短PN碼的 漂移和產生具有足夠頻率穩定性之一填充領航信號。 根據本發明之一態樣,可以由用以產生一硬遞交之一 填充領航信號的一設備達成上述和其他目的,包含:一定 向耦合器,用以耦合接收自一基地台(BS)之一分碼多重存 取式(CDMA)無線電頻率(RF)信號至一信標裝置;信標裝 置,其用以自CDMA RF信號擷取一 BS分類偽雜訊(PN) 同步信號,該CDMA RF信號係藉由傳輸線自定向耦合器 接收,及用以使用該擷取的BS分類偽雜訊(PN)同步信號, 產生用於硬遞交之一填充領航信號;一混合耦合器,用以 將產生自信標裝置之填充領航信號與CDMA RF信號輕 合,和將耦合結果產生為一行動通訊信號;和一 BS天線, 用以輸出產生自混合耦合器以作為一 RF信號的行動通訊 信號。 根據本發明之另一態樣,提供用以產生一硬遞交的一 填充領航信號之一設備,包含:一定向耦合器,用以舞合 接收自一基地台(BS)之一分碼多重存取式(CDMA)無線電 200541365 頻率(RF)信號至一信標举200541365 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to an apparatus and method for generating a hard-to-fill pilot signal for a mobile communication, and in particular to allow a beacon (Beacon The device is capable of supporting a hard-delivery device and method in a synchronous code division multiple access (CDMA) wireless communication network to use a base station (BS) to classify pseudo noise (PN) synchronization signals to A dummy pilot signal is generated. The base station classifies a pseudo-noise synchronization signal intercepted from one of the base stations' CDMA radio frequency (RF). [Prior art] Typically, base stations (BSs) provide users with many communication services according to a cell-based scheme 'and when an MS moves from one grid (for example, the area of one base station) to another " Grids (eg, 'the area of another base station') must prevent call drop between a mobile station (MS) and any of the base stations. With this method, when the MS moves from one base station area to another base station area, if a call signal is continuously maintained between the MS and the base station, this operation is called "submission". Generally, the submission operation of a mobile communication system is classified into a hard submission operation and a soft submission operation. The soft delivery operation indicates a specific delivery mode, in which, when an MS is delivered from a first base station to a second base station, the second base station (for example, a neighboring base station) is assigned to the first base station Stations (eg, an existing BS) to the 200541365 MS. The hard handover operation indicates a specific handover mode in which the second base station (for example, a neighboring base station and the first base station) is synchronized from a first base station to a second base station in synchronization with maintaining a call connection state. (For example, an existing BS) to the MS with different frequency signals. In this case, when the MS is hard handed over between the first and second base stations with different numbers, a beacon is installed to prevent a The generation of call drop. Figure 1 is a diagram illustrating the operation of hard handover between base stations. Referring to Figure 1, if a first base station * 'A is now used to establish a call link status using a FA2 signal, MS is in the area of the second station " B ". Under the condition that the second station "does not include the number, the MS cannot determine whether its location exists in the area of the station" B ". Why the MS cannot determine the above state The MS only has a radio frequency hardware set capable of processing one frequency. Therefore, the MS continues to enter the area of the second base station "B" until the FA2 signal of the first base station " A "is cut off, so In the MS and the second base " B ". However, if the second base station " B " transmits the signal of the FA2 signal to the MS, the MS can confirm that the MS continues to enter the current state of the station " B " area. Therefore, if the energy of the pilot signal from FA2 of the second base # reaches a sufficient level, then it should be submitted to the second base station " B " so that the call ^ number is sufficient to maintain one base station " A "and The second base station, between, β ,. When the second 1 when an MS is delivered to an & station) Assignment Assignment (FA): Submitted to one of the areas of the conceptual map of the FA confidence adjustment FA2 believes that the second station is due to the: (H / W) mode domain, until the second pilot base can not be established to fill the ^ MB "produced MS was held on the first platform " B" 4 200541365 generated the FA2 fill When the pilot signal, the FA2 fill pilot signal must have a predetermined time offset set equal to the base station classification short PN code for the FA1 pilot channel of the second base station "B". The above-mentioned hard submission operation system Usually performed within a predetermined boundary of the industry, where 'by The number of FA signals used by each base station is changed to another value, such as' intra-city boundary or outdoor / building inner-boundary, etc. If the number of FA signals of a base station is in one of the inner-city area and the outer-city area, The border area is changed to another value. A beacon device is installed on a base station located in the outer city area to allow the number of FA signals of a base station installed in the inner city area to be equal to that in the outer city area. Base station so that handover between multiple base station grids can be easily performed. Two plans, i.e. the first and second plans below, can be adjusted to fit the beacon device described above. The first plan controls the base station " B " to perform rounding on the FA 1 RF k number generated by the base station "B ", so a frequency of the FA 1 RF signal is changed to the FA 2 h number, and in the end it is the same as the first The ρΑ2 signal is transmitted as shown in the figure. In the case of the first plan, all channel signals (for example, a pilot channel signal, a synchronization channel signal, and a paging channel) that cause an increase in the load in the final amplifier are transmitted by the FA2 signal. Signal and a traffic channel signal). Similarly, an unexpected time delay occurs in the radio frequency path, so a short PN code time offset setting for the FA1 pilot signal cannot be equal to the FA2 pilot signal. In the second plan In the case, if the base station "B " provides a uniform clock (CLK) signal serving as a base station synchronization signal to the beacon device, and once the 200541365 user enters a short PN code, the beacon device controls the short PN The code enters a time offset setting state, so it generates a fill pilot signal. However, a disadvantage of the second plan is that the base station must provide the beacon device with a uniform CLK signal and a reference clock signal. When the FA1 signal is converted into the FA2 signal by performing the coupling of the FA1 signal, the beacon device used for the above two plans controls the directional coupler, which is connected to a base station main (BTS-MAIN) antenna cable to perform a Radio frequency signal coupling. The coupled radio frequency signal is transmitted to an RF frequency hopping unit, so its frequency is changed to another frequency. After being connected to a high power amplifier (HPA) and a duplex filter, the converted radio frequency signal is transmitted to a diversity antenna (ANT_DIV). When the EVEN-CLK signal is obtained from the base station, if the beacon device generates a fill pilot signal, it receives the EVEN-CLK signal through the EVEN-CLK port and receives the reference clock signal through the reference clock port, so it The received EVEN-CLK signal is used as a BS short PN synchronization signal of a pn generating unit, and the received reference clock signal is used as a beacon system reference clock signal. Based on the user's PN creation data based on the EVEN_CLK signal, the PN generating unit generates a pilot number with a time offset setting of ^. With the RF frequency hopping unit, the pilot signal is converted into an RF frequency; it is applied to an ηρα and a duplex filter; and finally passed to a diversity antenna (ANT-DIV). In the case where the RF signal is converted into another signal using the above-mentioned beacon device, the beacon device has an advantage in that it has a simplified architecture. However, the above target device has a disadvantage in that the synchronization channel signal, paging channel Yu, Qiu, and traffic channel signals other than the pilot channel signal 6 200541365 are applied as loads to the final output terminal. Therefore, if To transmit the desired signal, it must be at a predetermined output level higher than the other amplifier 5db that can only transmit the signal of the pilot channel.闾 J. Similarly, the above-mentioned beacon device has another disadvantage in that it has an incorrect short PN time offset setting due to the time delay of the RF path. % 冋 When the traditional clock signal (EVEN CLK) is received from an external source, a beacon is generated. The beacon device has a disadvantage in that the base station must provide a short The EVEN-CLK signal and reference clock of the PN code can be different. However, the beacon device has an advantage in that it has a relatively simplified architecture. In the meantime, another beacon device was described in the Korean Patent Application Agency ^ J A% or 20-2000-0020362, entitled "Iridium Leopard is able to perform an improved beacon device with hard submission", which is incorporated herein by reference. Confession for Zhao Bhafu. The above-mentioned Korean Patent Application No. 20-2000-0020362 has an advantage in that it can perform a short PN by adjusting a pilot searcher to a conforming request potential. The code can be quickly synchronized; and it also has another advantage. Dan has another advantage because it will not receive a synchronous clock signal from the outside when it generates a filling pilot letter (for example, a so-called N-CLK signal). The household can easily interact with the base station. However, if the pilot searcher is equipped with a matching filter, the aforementioned beacon device in Korean Patent Application No. 20-2000-0020362 requires a large number of gateways, although the aforementioned beacon device can use the pilot searcher to obtain an initial short pN Code, but cannot compensate for the drift of a short PN code caused by the frequency transition of an internal oscillator. In addition, the output padding pilot signal cannot be made to have a frequency stability (^ ± 0) suitable for the base station. In addition, the above-mentioned beacon set 200541365 is used to delay the delay j and q signals generated by the pilot I and Q generators by one of a predetermined time because it requires an additional first-in-first-out (FIFO) memory. [Summary of the Invention] Therefore, the present invention is made in view of the above problems, and an object of the present invention is to provide a device and method for controlling a beacon device capable of supporting a hard handover of a synchronous CDMa wireless communication network to compensate for a short The PN code drifts and generates a fill pilot signal with sufficient frequency stability. According to one aspect of the present invention, the above and other objects can be achieved by a device for generating a hard-delivered fill pilot signal, including: a directional coupler for coupling to receive one of a base station (BS) Code division multiple access (CDMA) radio frequency (RF) signal to a beacon device; a beacon device for capturing a BS classification pseudo noise (PN) synchronization signal from the CDMA RF signal, the CDMA RF signal Received by the transmission line from the directional coupler, and used to use the captured BS classification pseudo-noise (PN) synchronization signal to generate a pilot signal for hard handover filling; a hybrid coupler to generate confidence The filling pilot signal of the target device is lightly combined with the CDMA RF signal, and the coupling result is generated as a mobile communication signal; and a BS antenna is used to output the mobile communication signal generated from the hybrid coupler as an RF signal. According to another aspect of the present invention, a device for generating a filled pilot signal for hard delivery is provided. The device includes: a directional coupler for dancing and receiving a code division multiple storage from a base station (BS). Access (CDMA) Radio 200541365 Frequency (RF) Signal to a Beacon

衣置;信標裝置,其用以自CDMA RF信號擷取一 BS分類後^Clothing; beacon device, which is used to capture a BS classification from a CDMA RF signal ^

瑪雜訊(ΡΝ)同步信號,該CDMA RF 信號係藉由傳輸線自定向耦合器接收,及用以使用該擷取 的BS分類偽雜訊(PN)同步信號,產生用於硬遞交之一填 充領航信號;一雙工器,用以將CDMA RF信號與產生自 信標裝置之填充領航信號耦合,和將耦合結果產生為一行 動通訊信號;和一接收天線饋送纜線,用以傳送該基地台 之CDMA RF信號至該雙工器;及一接收分集天線,用以 輸出行動通訊信號至一空氣界面° 本發明尚有另一態樣’提供用以產生一硬遞交的一填 充領航信號之一設備,包含:一信標天線,用以自一基地 台(BS)無線接收一分碼多重存取式(CDMA)無線電頻率(RF) 信號;一信標裝置,其用以自該CDMARF信號擷取一 bs 分類偽雜訊(PN)同步信號,該CDMA RF信號係自該信標 天線接收,及用以使用該擷取的BS分類偽雜訊(PN)同步 信號,產生用於硬遞交之一填充領航信號;及一傳送信標 天線,用以將產生自信標裝置之填充領航信號無線輸出為 一行動通訊信號。Pseudo-Noise (PN) synchronization signal, the CDMA RF signal is received by a directional coupler through a transmission line, and used to classify the pseudo-noise (PN) synchronization signal using the captured BS to generate a pad for hard handover Pilot signal; a duplexer for coupling the CDMA RF signal with the filled pilot signal for generating a beacon device, and generating the coupling result as a mobile communication signal; and a receiving antenna feeding cable for transmitting the base station A CDMA RF signal to the duplexer; and a receiving diversity antenna for outputting a mobile communication signal to an air interface. There is another aspect of the present invention, which provides one of a padding pilot signal for generating a hard handover. The device includes: a beacon antenna for wirelessly receiving a code division multiple access (CDMA) radio frequency (RF) signal from a base station (BS); a beacon device for acquiring from the CDMA RF signal Take a bs classification pseudo-noise (PN) synchronization signal, the CDMA RF signal is received from the beacon antenna, and is used to use the captured BS classification pseudo-noise (PN) synchronization signal to generate a hard handover One Fill Pilot A signal; and a transmitting beacon antenna for wirelessly outputting the filled pilot signal for generating a beacon device as a mobile communication signal.

根據本發明之進一步態樣’提供用以產生一硬遞交的 一填充領航信號之一方法,以使用一分碼多重存取式 (CDMA)無線電頻率(RF)信號,使一信標裝置之一填充領航 信號與一基地台同步化,該方法包含下列步驟:(a)使該 CDMA信號關聯於一短偽雜訊(PN)碼(即,一自體產生短 PN碼),其產生自該信標裝置’及確認該基地台之CDMA 200541365 信號之一短PN碼的一起始點;(b)延遲一觸發脈衝之一產 生時間,用以使用該短pN碼之週期性產生一傳送領航信 號,以補償一系統時間延遲及一傳送/傳播延遲;及(c)週 期性地檢查該CDMA信號’及產生傳送領航信號之觸發脈 衝的產生時間。 【實施方式】 現下,將參照附圖詳述本發明的較佳實施例。在圖示 中,即使在不同圖示中繪示’使用相同的標號指示相同的 或者類似的元件。在下文中’若不能使本發明的標的更清 楚時,併入本文之已知功能及設定可能會被省略。 第2圖係根據本發明的一第一較佳實施例,說明產生 一硬遞交之填充領航信號的一設備的方塊圖。 參照第 2圖,為了讓不能支援傳送/接收分集之一 BS210能夠與本發明之一信標裝置220互相作用,根據本 發明之一第一較佳實施例,一填充領航信號產生器200包 括:一基地台控制器(未見於圖示);基地台 210,用以傳 送/接收行動通訊信號;信標裝置220,其係安裝於一特定 區域,其中產生自基地台210之一 CDMA RF信號具有較 低的信號強度,其係與基地台210互相作用,接收來自基 地台210之CDMA RF信號,和輸出一填充領航信號;一 定向耦合器(D/C)230,用以耦合產生自基地台210之CDMA RF信號與信標裝置220 ; —混合耦合器240,用以耦合產 生自信標裝置220之一填充領航信號與CDMA RF信號, 10 200541365 和產生一行動通訊信號;和一 B S天線2 5 0 ,用以從混合耦 合器240輸出行動通訊信號為一 信號。 信標裝置220包括:一信標模組222,以為該cdmA RF 信號轉變成一填充領航信號;一 ΗΡΑ 224,用於以高額動 力放大該填充領航信號;和一頻帶式過滤器(BpF) 226,用 以僅讓來自放大的填充領航信號之對應的頻帶信號通過。 更詳細地說’用於上述填充領航信號產生器2〇〇之該 信標裝置220藉由定向耦合器23〇,使用接收自基地台210 之CDMA RF信號’產生與基地台2 1〇的一短ρΝ碼相同的 填充領航信號。從信標裝置產生的填充領航信號使用混合 耦合器240耦合至基地台210產生的CDMA RF信號,從 而作為行動通仏、號藉由一基地台天線250輸出。 然而’當信標裝置220的輸出信號與基地台210的輸 出信號耦合時,上述填充領航信號產生器200使用混合耦 合器240,使得基地台210和信標裝置220的個別輸出信 號不可避免地削弱一預定值3db。 第3圖係根據本發明的一第二較佳實施例,說明用以 產生硬遞交的一填充領航信號之一設備300的方塊圖。 參照第3圖,在為了讓不能支援傳送天線分集之一基 地台2 1 0支援接收天線分集時能夠與本發明之一信標裝置 220互相作用,根據本發明之一第一較佳實施例,除了第2 圖所示之基地台的上述元件外,一填充領航信號產生器 300包括:一接收天線饋送電纜(RX1)、一雙工器310、及 一接收分集天線320。該雙工器310傳送基地台210之一 200541365 CDMA RF信號至接收分集天線320,及使信標裝置220之 之一填充領航信號耦合至藉由接收分集饋送電纜(RX 1)傳 送之CDMA RF信號。接收分集天線320輸出藉由雙工器 3 1 0耦合之結果信號為行動信號至空氣界面。 定向耦合器 230對藉由基地台的一天線饋送電纜 (TX/RX0)自基地台210傳送的CDMA RF信號執行耦合, 並且把耦合的CDMA RF信號傳送給信標裝置220。信標裝 置2 20輸出與使用CDMA RF信號的基地台210的一短PN 碼相同的填充領航信號。自信標裝置2 1 0產生的填充領航 信號被傳送給雙工器310,並且該雙工器210使該接收的 填充領航信號與藉由基地台210的接收天線饋送電纜(RX1) 發送的CDMA RF信號耦合,因此結果的耦合信號藉由接 收分集天線320作為行動通信信號輸出至空氣界面。 第4圖係根據本發明的一第三較佳實施例,說明用以 產生硬遞交的一填充領航信號之一設備400的方塊圖。 參考第4圖,當不能把基地台210用電線連接至信標 裝置4 1 0時,根據本發明一第三較佳實施例,一填充領航 信號產生器400控制一信標裝置4 1 0,以使用一接收信標 天線412,從一基地台天線250得到CDMA RF信號。填充 領航信號產生器400包括:一接收信標天線412,用以接 收傳送自基地台210得的CDMA RF信號;信標裝置410, 用以轉變接收自接收信標天線412之CDMA RF信號成一 填充領航信號,並且產生該填充領航信號;和一傳送信標 天線4 1 4,用以輸出接收自信標裝置4丨〇之填充領航信號 12 200541365 作為一行動通信信號。 在從接收信標天線420接收以後,基地台21〇的CDMA RF信號被傳送給信標裝置4 1 0。該信標裝置4 1 〇產生與使 用該CDMA RF信號的基地台210的一短PN碼相同的填充 領航信號。產生的填充領航信號藉由一傳送信標天線43 〇 輸出至空氣界面作為一行動通信信號。 第5 a圖至第5 c圖係根據本發明說明一信標裝置内部 架構的方塊圖。 參照第5 a圖至第5 c圖,根據本發明,信標裝置5 00 包括:一網路管理系統(NMS)終端單元502、一第一 BPF 504、二路分離器506、一第一 RF放大器508、一第二BPF 510、一第一混合器512、一第一合成器514、一第一低通 過渡器(LPF)516、^一第二RF放大器518、一表面聲波過滤 器(SAW filter)520、一第三RF放大器522、一第一可變衰 減器524、一第二合成器526、一正交相位調變器528、一 第二LPF 530、一類比至數位(A/D)轉換器532、一基頻處 理器5 3 4、一電壓控制振盪器5 3 6、一系統時脈相位閉鎖迴 圈(PLL)單元53 8、一數位至類比(D/A)轉換器540、一第三 LPF 542、一正交相位調變器544、一第三合成器546、一 第三BPF 5 48、一第四RF放大器550、一第二可變衰減 器552、一第四合成器554、一第二混合器556、一第四 BPF 55 8、一第五 RF放大器 560、一高功率放大器 (HPA)562、和一 Cavity BPF 564、等等。 信標裝置500之上述内部元件的功能在該技術領域中 13 200541365 是為眾所熟知的,因此為描述的方便將在這裡省略它的細 節描述。 信標裝置500自基地台210接收該CDMA RF信號。 在這種情況下,CDMA RF信號包括:一領航通道信號、一 同步通道信號、一傳呼通道信號、和一交通通道信號、等 等。在信標裝置500中接收的CDMA RF信號係藉由第一 BPF 5 04傳送至二路分離器5〇6,和被分出至NMS的NMS 終端單元502及第一 RF放大器508。 在第一 RF放大器508接收的CDMA RF信號508被放 大並傳遞至第二BPF 510以移除影像。第一混合器512使 從第二BPF 510產生的放大的CDMA RF信號與第一合成 器5 1 4的一輸出信號混合。 第一混合器的輸出信號512通過第一 LPF 516。只有 一中介頻率(IF)信號存在於第一 LPF 516的輸出信號。換 句話說,CDMA RF信號被轉換為一 IF頻率。由第二RF 放大器518放大第一 LPF 516的輸出信號,而放大的信號 通過表面聲波過濾器520。表面聲波過濾器520刪除產生 自基地台210的複數鄰近CDMA RF信號,和僅接收一單 一 CDMA RF 信號。 在通過第三RF放大器5 22之後,自表面聲波過濾器 520產生的CDMA信號被應用於第一可變衰減器524。根 據來自基頻處理器534接收的控制信號,第一可變衰減器 524控制接收增益。根據接收增益控制信號,第一可變衰 減器524控制一增益,以保持一可變CDMA RF信號的一 14 200541365 功率水準。從第一可變衰減器524產生的預定水準信號被 傳送至正交相位調變器528。使用接收自第二合成器526 之一信號,正交相位調變器528轉換一 if頻率的〆CDMA 信號為一 I/Q基頻CDMA信號。 從正交相位調變器528產生的Ι/Q基頻CDMA信號被 傳送至第二LPF 530,以使它刪除一影像信號。從第二LPF 530產生的CDMA k號被應用於a/D轉換器532。該A/D 轉換器532使該CDMA信號轉換成數位資料,和以至少八 倍於1.22 8 8 Mbps之一速率執行數位資料的取樣。由A/D 轉換器532轉換成數位資料的數位CDMA信號被傳送至基 頻處理器534。 基頻處理534自系統時脈pll單元538接收一系統 時脈信號,和從一使用者接收輸出輸出組織資料。基頻處 理器534控制第一可變衰減器524,以執行一接收增益控 制操作,和控制用以產生信標裝置500的一參考頻率之電 壓控制振盪器536,以減少與基地台210相關的一頻率錯 誤。該基頻處理器5 3 4執行一傳送功率控制操作,和虞生 一填充領航Ι/Q信號,以允許該信標裝置500產生〆填充 領航信號,其具有與接收的領航信號相同的短PN碼。 從基頻處理器5 34產生的填充領航ΐ/Q信號被傳送I D/A轉換器540,而後被轉換成一類比ι/Q信號。自P/A 轉換器540產生的類比Ι/Q信號通過第三LPF 542,以移 除影像信號。從第三LPF 542產生的領航Ι/Q信號被應用 於正交相位調變器器544,以使它轉換成IF發信號。 15 200541365According to a further aspect of the present invention, a method is provided for generating a hard handed padding pilot signal to enable a beacon device using a code division multiple access (CDMA) radio frequency (RF) signal. The padding pilot signal is synchronized with a base station. The method includes the following steps: (a) associating the CDMA signal with a short pseudo noise (PN) code (ie, a self-generated short PN code), which is generated from the Beacon device 'and confirm a starting point of a short PN code of the CDMA 200541365 signal of the base station; (b) delay the generation time of a trigger pulse for periodically generating a transmission pilot signal using the short pN code To compensate for a system time delay and a transmission / propagation delay; and (c) periodically check the CDMA signal 'and the generation time of a trigger pulse that generates a pilot signal. [Embodiment] Now, a preferred embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used to indicate the same or similar elements even if they are shown in different drawings. In the following, if the subject matter of the present invention is not made clearer, the known functions and settings incorporated herein may be omitted. Figure 2 is a block diagram illustrating a device for generating a hard handed fill pilot signal according to a first preferred embodiment of the present invention. Referring to FIG. 2, in order to enable a BS 210 that cannot support transmit / receive diversity to interact with a beacon device 220 of the present invention, according to a first preferred embodiment of the present invention, a padding pilot signal generator 200 includes: A base station controller (not shown); a base station 210 for transmitting / receiving mobile communication signals; a beacon device 220, which is installed in a specific area, and a CDMA RF signal generated from the base station 210 has Low signal strength, which interacts with the base station 210, receives the CDMA RF signal from the base station 210, and outputs a padding pilot signal; a directional coupler (D / C) 230 for coupling to generate from the base station 210 CDMA RF signal and beacon device 220;-hybrid coupler 240, used to couple one of the beacon device 220 to fill the pilot signal and CDMA RF signal, 10 200541365 and generate a mobile communication signal; and a BS antenna 2 5 0 is used to output a mobile communication signal from the hybrid coupler 240 as a signal. The beacon device 220 includes: a beacon module 222 for converting the cdmA RF signal into a filling pilot signal; a HPA 224 for amplifying the filling pilot signal with high power; and a band filter (BpF) 226, It is used to pass only the corresponding frequency band signal from the amplified filling pilot signal. In more detail, 'the beacon device 220 used for filling the pilot signal generator 200 above uses the CDMA RF signal received from the base station 210 by the directional coupler 23' to generate one of the base station 2 10 The short ρN code fills the pilot signal. The filled pilot signal generated from the beacon device is coupled to the CDMA RF signal generated by the base station 210 using the hybrid coupler 240, and is then output as a traffic signal through a base station antenna 250. However, when the output signal of the beacon device 220 is coupled with the output signal of the base station 210, the aforementioned filling pilot signal generator 200 uses a hybrid coupler 240, so that the individual output signals of the base station 210 and the beacon device 220 inevitably weaken one The predetermined value is 3db. Fig. 3 is a block diagram illustrating a device 300 for generating a hard-filled pilot signal according to a second preferred embodiment of the present invention. Referring to FIG. 3, in order to allow a base station 2 1 that cannot support transmit antenna diversity to support receive antenna diversity, it can interact with a beacon device 220 of the present invention. According to a first preferred embodiment of the present invention, In addition to the above components of the base station shown in FIG. 2, a filling pilot signal generator 300 includes: a receiving antenna feeding cable (RX1), a duplexer 310, and a receiving diversity antenna 320. The duplexer 310 transmits a 200541365 CDMA RF signal from one of the base stations 210 to the receive diversity antenna 320, and couples one of the beacon devices 220 with a pilot signal to the CDMA RF signal transmitted through the receive diversity feed cable (RX 1). . The output signal of the receiving diversity antenna 320 coupled by the duplexer 3 10 is a mobile signal to the air interface. The directional coupler 230 performs coupling on a CDMA RF signal transmitted from the base station 210 through an antenna feed cable (TX / RX0) of the base station, and transmits the coupled CDMA RF signal to the beacon device 220. The beacon device 2 20 outputs the same padding pilot signal as a short PN code of the base station 210 using the CDMA RF signal. The filling pilot signal generated by the beacon device 2 10 is transmitted to the duplexer 310, and the duplexer 210 enables the received filling pilot signal to be transmitted with the CDMA RF transmitted through the receiving antenna feeding cable (RX1) of the base station 210. The signal is coupled, so the resulting coupled signal is output to the air interface as a mobile communication signal through the receiving diversity antenna 320. Fig. 4 is a block diagram illustrating an apparatus 400 for generating a hard-filled pilot signal according to a third preferred embodiment of the present invention. Referring to FIG. 4, when the base station 210 cannot be connected to the beacon device 4 10 by a wire, according to a third preferred embodiment of the present invention, a filling pilot signal generator 400 controls a beacon device 4 1 0, Using a receiving beacon antenna 412, a CDMA RF signal is obtained from a base station antenna 250. The filling pilot signal generator 400 includes: a receiving beacon antenna 412 for receiving the CDMA RF signal transmitted from the base station 210; a beacon device 410 for converting the CDMA RF signal received from the receiving beacon antenna 412 into a padding A pilot signal, and generate the filling pilot signal; and a transmitting beacon antenna 4 1 4 for outputting a filling pilot signal 12 200541365 of the receiving beacon device 4 丨 0 as a mobile communication signal. After receiving from the reception beacon antenna 420, the CDMA RF signal of the base station 210 is transmitted to the beacon device 4 10. The beacon device 4 10 generates the same padding pilot signal as a short PN code of the base station 210 using the CDMA RF signal. The generated filling pilot signal is output to the air interface through a transmitting beacon antenna 43 as a mobile communication signal. 5a to 5c are block diagrams illustrating the internal structure of a beacon device according to the present invention. 5a to 5c, according to the present invention, the beacon device 500 includes: a network management system (NMS) terminal unit 502, a first BPF 504, a two-way splitter 506, a first RF Amplifier 508, a second BPF 510, a first mixer 512, a first synthesizer 514, a first low-pass filter (LPF) 516, a second RF amplifier 518, a surface acoustic wave filter (SAW filter) 520, a third RF amplifier 522, a first variable attenuator 524, a second synthesizer 526, a quadrature phase modulator 528, a second LPF 530, an analog to digital (A / D ) Converter 532, a baseband processor 5 3 4, a voltage controlled oscillator 5 3 6, a system clock phase locked loop (PLL) unit 53 8, a digital-to-analog (D / A) converter 540 , A third LPF 542, a quadrature phase modulator 544, a third synthesizer 546, a third BPF 5 48, a fourth RF amplifier 550, a second variable attenuator 552, a fourth synthesis 554, a second mixer 556, a fourth BPF 55 8, a fifth RF amplifier 560, a high power amplifier (HPA) 562, and a Cavity BPF 564, etc. . The functions of the above-mentioned internal components of the beacon device 500 are well known in the technical field. Therefore, its detailed description will be omitted here for convenience of description. The beacon device 500 receives the CDMA RF signal from the base station 210. In this case, the CDMA RF signal includes a pilot channel signal, a synchronization channel signal, a paging channel signal, a traffic channel signal, and so on. The CDMA RF signal received in the beacon device 500 is transmitted to the second splitter 506 through the first BPF 504, and is dropped to the NMS terminal unit 502 and the first RF amplifier 508 of the NMS. The CDMA RF signal 508 received at the first RF amplifier 508 is amplified and passed to the second BPF 510 to remove the image. The first mixer 512 mixes the amplified CDMA RF signal generated from the second BPF 510 with an output signal of the first synthesizer 5 1 4. The output signal 512 of the first mixer passes the first LPF 516. Only an intermediate frequency (IF) signal is present in the output signal of the first LPF 516. In other words, the CDMA RF signal is converted to an IF frequency. The output signal of the first LPF 516 is amplified by the second RF amplifier 518, and the amplified signal passes through the surface acoustic wave filter 520. The surface acoustic wave filter 520 deletes the plural adjacent CDMA RF signals generated from the base station 210 and receives only a single CDMA RF signal. After passing through the third RF amplifier 522, the CDMA signal generated from the surface acoustic wave filter 520 is applied to the first variable attenuator 524. According to the control signal received from the baseband processor 534, the first variable attenuator 524 controls the reception gain. According to the received gain control signal, the first variable attenuator 524 controls a gain to maintain a 14 200541365 power level of a variable CDMA RF signal. A predetermined level signal generated from the first variable attenuator 524 is transmitted to a quadrature phase modulator 528. Using a signal received from the second synthesizer 526, the quadrature phase modulator 528 converts a 〆CDMA signal with an if frequency into an I / Q baseband CDMA signal. The 1 / Q baseband CDMA signal generated from the quadrature phase modulator 528 is transmitted to the second LPF 530 so that it deletes an image signal. The CDMA k number generated from the second LPF 530 is applied to the a / D converter 532. The A / D converter 532 converts the CDMA signal into digital data, and performs sampling of the digital data at a rate of at least eight times 1.22 8 8 Mbps. The digital CDMA signal converted into digital data by the A / D converter 532 is transmitted to a baseband processor 534. The baseband processing 534 receives a system clock signal from the system clock pll unit 538, and receives output from a user to output organization data. The baseband processor 534 controls the first variable attenuator 524 to perform a receive gain control operation, and controls a voltage-controlled oscillator 536 used to generate a reference frequency of the beacon device 500, so as to reduce the A frequency error. The baseband processor 5 3 4 performs a transmission power control operation and fills the pilot 1 / Q signal with Yu Sheng to allow the beacon device 500 to generate a pseudo-fill pilot signal, which has the same short PN as the received pilot signal. code. The stuffing pilot ΐ / Q signal generated from the baseband processor 5 34 is transmitted to the I D / A converter 540 and then converted into an analogue / Q signal. The analog I / Q signal generated from the P / A converter 540 passes through the third LPF 542 to remove the image signal. The pilot I / Q signal generated from the third LPF 542 is applied to a quadrature phase modulator 544 so that it is converted into an IF signal. 15 200541365

正交相位調變器544的輸出信號被傳送至第三BPF 5 4 8,以移除除了包含在一預定的信號通過頻帶中的一信號 以外的影像信號。第三BPF 548的輸出信號被傳送至第四 RF放大器550’以使它放大’並且把該放大號應用於第 二可變衰減器552。在這種情況下,調適第二可變衰減器 以調整一填充領航信號的一輸出水準°第二可變衰減器 552的輸出信號被應用於第二混合器556 ’以使它轉换成 RF信號。 第二混合器5 56的輸出信號被傳送至第四BPF 5 5 8, 以移除影像信號,並且把沒有影像信號的結果信號應用於 第五RF放大器56〇,以使藉由第五RF放大器560將其放 大。把第五RF放大器560的輸出信號被應用於HPA 562, 方能以大量功率放大。如果HPA 562用大量功率放大第五 RF放大器560的輸出信號’除了一預定的頻帶信號以外’ 該Cavity BPF 5 64移除影像信號及假信號’以產生一填充 領航信號。 第6圖是根據本發明說明基頻處理器内部架構的方塊 圖。 參考第6圖,基頻處理器534包括一接收水準控制器 6 02、一傳送增益控制器604、一相關器606、一相位變形 控制器608、一相關性能量值計算器和pn碼時脈控制器 610、一短PN碼和觸發脈衝產生器612、和一領航信號產 生器614、等等。 該接收水準控制器602檢查一接收的數位i/q信號的 16 200541365 一預定時期,和控制一接收增益,方能用一預定的功率水 準接收一 CDMA RF信號。 根據使用者建立資料控制,傳送增益控制器604控制 一傳送增益。同樣地,使用一接收水準控制器602的一接 收水準;以及從相關性能量值計算器和PN碼時脈控制器 6 1 0接收的一相關性能量值,該傳送增益控制器604測量 一接收的CDMA信號的一領航水準,和使用該測量的領航 水準以控制一輸出填充領航信號的傳送增益。 由於基地台2 1 0和信標裝置5 00間的一相位差,相位 變形不可避免地發生在接收的領航信號中。相位變形控制 器608比較相關器606的一輸出I/Q相關積分值與一先前 的相關積分值,決定順時針方向旋轉或者逆順時針方向旋 轉,和控制一參考振盪器的一電壓,以使接收的領航信號 的相位能夠無旋轉地位於一預定的位置。根據上述控制過 程,從基地台210接收的一 CDMA中心頻率變得等於信標 裝置500的一接收選擇中心頻率。 相關器606包括乘法器和積分器。乘法器把一產生的 I/Q短PN碼乘以一接收的數位CDMA I/Q信號。從乘法器 產生的一數位值被應用於一積分器,並且該積分器積分一 預定時期内產生的數位值。對每個I/Q信號獨立執行乘法 和積分運算,以使獨立I/Q完整值從相關器606產生。 使用從相關器606產生的I/Q積分值,相關性能量值 計算器和PN碼時脈控制器6丨〇計算一相關性能量值,使 用計算的相關性能量值決定與自己的短PN碼(即,一自體 17 200541365 產生的短PN碼)關聯的一相關位置,和控制一 短PN石馬和觸發的脈衝產生器6 1 2產生欲 使用的一 I/Q短PN碼,和產生一短PN碼的觸 以產生領航信號。在這種情況下,j/q短PN碼 對CDMA規劃合適的一 pQ短pN碼。用以產 號短PN碼的觸發脈衝信號在短pN碼的每週期 衝仏號(即 ’ 1/1.2288 Mcps*215 « 26.67ms)。 生器產生一觸發脈衝信號,以補償信標裝置的 由一處理延遲引起的一時間延遲。 領航信號產生器614可調適以產生欲由信 的傳送器使用的一填充領航信號,和能夠使用 和觸發脈衝產生器612產生的觸發脈衝信號, 基地台210之一 pN相同的pN。當產生該領航 航信號產生器614產生一滿足is-95標準之一 碼的期間被定為26.67ms,因此輸出領航信號 每一都有26.67ms的期間。為了利用上述週期 號產生器614包括能夠儲存!/q資料26.67ms 料的一資料記憶體裝置。因此,當傳送領航信 信號產生器6 14自短PN碼及觸發脈衝產生器 觸發脈衝,和以26.67ms之一預定的時間的間 記憶體位址。 一種當自基地台210接收一 CDMA RF信 把信標裝置5 00的填充領航信號與基地台2 1 0 法’該方法被劃分為第一至第三子步驟。 PN碼時脈。 由一接收器 發脈衝信號 產生器產生 生一領航信 產生觸發脈 觸發脈.衝產 系統延遲及 標裝置500 從短PN碼 以產生與的 信號時,領 信號。短PN 的I/Q信號 性,領航信 的一期間資 號時,領航 6 1 2接收一 隔,調整一 號時,用以 同步化之方 18 200541365 一自 碼之 碼之 送領 被補 信號 生時 用以 第一 產生 碼的 有特 "all 序列 列具 列中 後序 中添 第一子步驟使自基地台接收的CDMA RF信號相關於 體產生的短PN碼,並確認基地台CDMA信號的短PN 一起點(即,ΡΝ#0之一起點)。第二子步驟利用短PN 週期性,延遲一觸發脈衝的一產生時間,以產生一傳 航信號,以使一系統時間延遲和一傳送/傳播延遲能夠 償。第三子步驟定期地檢查從基地台接收的CDMA RF ,和補償用以產生一傳送領航信號之觸發脈衝的一產 下文將詳述到上述第一至第三子步驟。 藉由使接收的RF信號相關於一自體產生的短PN碼, 確認基地台的短PN碼之起點(例如,PN#〇的起點)的 子步驟將先被詳述如下。 第7圖係說明自第6圖所示之一短PN碼和觸發脈衝 器產生的一接收器PN碼的一觸發脈衝和一接收器PN 時間表示圖示。 如果一使用者欲使用1 5正反器確認一 PN序列時,沒 定狀況指示"all zero"的狀態。提供所有正反器為指示 zero ”狀態,由於PN序列的特性,持續決定下列PN 為"0"。的確,若沒執行"add zero"程序,每一 PN序 有”32767”的一預定期間。因此,必須向最後的PN序 添加"zero"的值。i4"Zero"值連續地在I和Q信號的最 列中出現。在這種情況下,向I和Q信號的最後序列 加"zero"值,以便產生32678 chips。 如果當產生接收器I/Q PN序列時產生14"0”信號後, 19 200541365 另增加"0"值到14"0”信號,然後在WQ短ΡΝ (即,短ΡΝ#0起點),產生接收器ρν序列的一 第8圖係說明在一輸入CDMA信號和一輸 之間,彌補一 PN偏差之一方法的時間表示圖$ 參考第8圖’信標裝置500使一具有預定 設定的輸入CDMA信號相關於在一 AFC(自動$ 閉(Ο F F)狀態自體產生的一短p N碼,和執行結 旋轉(Slew),以使它查尋CDMA信號的PN#〇 ^ 輸入CDMA信號的一 PN參考點指示信標 一 RF輸入埠口的一輸入時間,而接收器PN序 脈衝指示一特定時間,其為信標裝置5 00確認 之時。在這種情況下,時間延遲”1”自一 RF輸 頻處理器534的一輸入時間的一時間延遲,和 534的一處理時間延遲。 第二子步驟係利用一短PN碼週期性,以 傳送領航信號的一觸發脈衝的產生時間,以補 延遲和傳送/傳播延遲,該第二子步驟將在下文 如果信標裝置查尋基地台210的ΡΝ#0起 送一領航信號,以補償信標裝置500的時間延 種時間延遲元件,例如,一接收器的一時間延 處理之一延遲、和一傳送器的一時間延遲。信 領航信號的週期性,補償上述時間延遲。 上述時間延遲補償被應用於一觸發脈衝, 器的領航信號。為了暫時安排在一 RF輸入 序列的起點 觸發脈衝。 出領航信號 F ° 的時間偏移 頃率控制)關 果信號的一 t置。 裝置500之 列的一觸發 ΡΝ#0起點 入時間到基 基頻處理器 延遲產生一 償系統時間 中詳述。 點’應該傳 遲。有許多 遲、一基頻 標裝置使用 以產生傳送 淳口接收的 20 200541365 CDMA信號,和領航信號的輸出結果,以預定的時間延遲 ”11,'延遲該傳送領航信號,以產生延遲的領航信號。 第三子步驟定期地檢查從基地台210接收的CDMA RF信號,和補償用以產生傳送領航信號的觸發脈衝的一產 生時間,該第三子步驟將在下文中詳述。 雖然在信標裝置5〇〇的輸入CDMA信號和信標裝置 5 00的輸出領航信號之間的延遲被補償了,但是它可·能轉 換成另一時間延遲’因為在信標裝置500的一系統時脈信 號和基地台2 1 〇的一系統時脈信號之間的一穩定性差異。 因此,使一預定的期間間隔接收的輸入CDMA信號相 關於信標裝置5 00的一短pn碼,計算出一特定相關性能 量值,以該特定相關性能量值為基礎,能夠持續補償上述 時間延遲。當補償上上述時間延遲時,為了減少時間波紋 (ripples),在A/D轉換期間信標裝置5〇〇至少執行8過度 取樣(oversampling)操作,和決定用以產生傳送領航信號的 觸發脈衝之產生時間的一控制解析度為"1/24 chip”。在這 種情況下,執行AFC操作以部署信標裝置500的系統時脈 穩定性。僅供參考,由Quaicomm公司製造的終端設備已 被設計為能夠在A/D轉換期間執行4個過度取樣操作。 第9圖是說明用於控制基頻處理器534以產生填充領 航信號之一方法的概念性圖示。 參考第9圖,所有領航資料單元都被設定成,,〇,,而 WalSh資料也被設定成,,〇”,因此由1.2288 Mbps的Walsh 資料調變每一領航資料。在這種情況下,該輸出信號分 21 200541365 成二部分,並且根據從一外部元件接收的一觸發脈衝,藉 由從一 Ι/Q短PN碼產生器產生的一 PN碼調變該二部分。 在這種情況下,I/Q短PN碼的序列期間具有2 15的一預定 的長度(即,32768 chips)。 由定標器(scaler)控 除 益,而後應用至 Finite Impulse Response(FIR)過遽器 了適於IS-95標準的基頻信號以外,fir過濾器移除諧波 信號。FIR 過濾器執行接收信號的 4過插入 (over-interpolation)的操作,和輸出結果信號。 因此,由於PN碼週期性,傳送數位j/q領航信號具 有週期性,以使信標裝置500儲存一單一期間的I/Q領航 信號(即,l/1.2288MCps * 32768 Ξ 26.67ms)在一資料記 憶體,和定期地重複I/Q領航信號的上述儲存操作,從而 產生結果ι/Q領航信號。 第1〇圖係說明用以產生I/Q領航信號之一資料記憶體 的一内部架構的一方塊圖。 參第10圖,如果從短PN碼和觸發脈衝產生器 接收觸發脈衝信號,藉由一位㈣和位址計數器,分離】 領航資料和Q領航資料,以使分離的!和q領航資料單元 :存在-資料記憶趙中。在"〇25"叫料間延遲間隔 々第Q位址至第” 1 3 1 07 1 ’’位址的1領航資料係被儲存 “領航資料記憶體區域,並且在,,0.25"chip的時間延 Β隔中’從第"〇,,位址至第"131071"位址的 被儲存在-Q領航資料記憶體區域。的料係 22 200541365 同時,一種方法可用以使一基地台的輪出 標裝置輸出頻率交互作用’以保證信標裝置的 穩定性,該方法將於下文詳述。 信標裝置500的輸出頻率穩定性標』 ±0.05ppm及更少,並且必須保證與基地台者相同 性。為了保證上述頻率穩定性’必需考慮作為十 的一參考振盪器之一振缴器的溫度穩定性,以 過去數年的穩定性。在這種情況下,如果信標 用一高穩定性振盪器(即’一 0CX0等級的振 幅增加它的生產費用。為了解決上述生產費用 標裝置使用一電壓控制的振盪器(即,TCXO), 收的CDMA RF信號部署一 AFC功能,因此它 基地台參考振盪器的一表現。為了提供信標絮 頻率穩定性,使用至少1 〇位元的解析度執行-的電壓控制操作。例如,由 Qualcomm公司靠 備具有8位元的AFC解析度。 一種方法可用於使基地台的輸出水準與卷 出水準交互作用,該方法將於下文中詳述。 用以產生一填充領航信號之一傳統信標絮 準係由使用者固定。如果基地台增加或者減少 出水準,也改變了一基地台的服務區域,以E 的增加或者減少,所以也必須把信標裝置的輕 另一水準1而’傳統信標裝置的缺點在於: 台領航功率已換成另-功率,它卻不能改變輕 頻率與一信 輸出頻率之 斧被決定為 的頻率穩定 Μ票裝置500 ,及用以回應 :裝置500使 盪器),將·大 的問題,信 和使用它接 丨的功能接近 :置500的高 -參考振盪器 ί造的終端設 :標裝置的輸 .置的輸出水 ‘ 一全部的輸 !應輸出水準 r出水準換成 儘管一基地 r出水準。為 23 200541365 了解決上述問題,需要一種方法用於使基地台的輸 與信標裝置的輸出水準交互作用。 在該RF埠口接收的CDMA RF信號包括領航 號、同步通道信號、傳呼通道信號、和複數交通通 入的 CDMA RF信號的功率因通信使用者的數目 變。因此,能夠由CDMA RF信號確認到領航通道 功率,則可以對產生自信標裝置的領航信號進行功 操作。 當執行自動增益控制(AGC)操作時,信標裝置 認CDMA RF信號的一接收水準。同樣地,因為相 量值係因交通通道的數目而線性改變,在基頻處理 中含有的相關器606計算一相關性能量值,和根據 相關性能量值,就接收的CDMA RF信號的一全部 論,計算領航通道信號的一功率比例。因此,信標 制一填充領航信號的一輸出水準,以使在欲產生之 航信號功率和由AGC執行所確認之CDMA RF信號 收水準之間的比例等於計算的功率比例。 如果基地台210完全增加或者減少輸出水準, 加或者減少領航通道信號的功率,而信標裝置5 〇 〇 測領航通道 >(吕號之功率變化率輸出它的輸出水準。 從上述内容明顯可知,根據本發明,當信標裝 填充領航信號時’用以產生填充領航信號的一設備 使用一序號搜尋器規劃以自一 CDMA RF信號獲得多 同步化’從而無需大量閘道而由一内部振盪器的頻 出水準 通道信 道。輪 持續改 ^號的 率控制 5 0 0確 關性能 器534 計算的 功率而 t置控 填充領 之一接 則亦增 藉由偵 置產生 和方法 a pn碼 率轉換 24 200541365 產生的多PN㉟漂移能夠被補。 作确且右谪认* 像地,輸出填充領航 ° :基地台需要的頻率穩定性(<+〇ns Λ . ^ 較於用以在接收擅处^ (〜±〇·〇5处所),並且相 此類填充領航作,m +一 參考時脈信號時產生 FVFN ΓΤΙ^ ^ 上述叹備不額外接收一 EVEN一CLK h號及一春老脖 久爹号時脈^唬,可獲致一其从而 的簡化架構。 蚁基地口界面 雖然為了說明之目的,已經揭露 ,,ν σ 〇左揭露了本發明的較佳實施 例’但疋那些熟知該項技蓺 家有將了解亦有可能對本發明進 行各種修正、辦^知番始 ^ 曰加和置換,而不悖離本發明在下文中所揭 示之申請專利範圍的範圍和精神。 【圖式簡單說明】 本發月之上述和其他的目的、特徵和其他的優點將可 參照附圖從下述詳細内容更清楚地理解,其中 第1圖係說明基地台間的硬遞交的概念性圖示; 第2圖係根據本發明的一第一較佳實施例,說明用以 產生硬遞交的一填充領航信號之一設備的方塊圖; 第3圖係根據本發明的一第二較佳實施例,說明用以 產生硬遞交的一填充領航信號之一設備的方塊圖; 第4圖係根據本發明的一第三較佳實施例,說明用以 產生硬遞交的一填充領航信號之一設備的方塊圖; 第5a圖至第5c圖係根據本發明說明一信標裝置内部 架構的方塊圖; 第6圖是根據本發明說明基頻處理器内部架構的方塊 25 200541365 圖; 第7圖係說明自第6圖所示之一短PN碼和觸發脈衝 產生器產生的一接收器PN碼的一觸發脈衝和一接收器PN 碼的圖不, 第8圖係說明在一輸入CDMA信號和一輸出領航信號 之間,彌補一 PN偏差之一方法的圖示; 第9圖是說明用於控制基頻處理器以產生填充領航信 號之一方法的概念性圖示 ;和 第1 0圖係說明用以產 的一内部架構的一方塊圖 生I/Q領航信號之一資料記憶體 〇 【主要元件符號說明】 2 1 0基地台 220信標裝置 222信標模組 224高功率放大器 226頻帶式過濾器 230定向耦合器 240混合耦合器 2 5 0天線 310雙工器 3 2 0天線 4 1 0信標裝置 4 1 4天線 4 1 2天線 26The output signal of the quadrature phase modulator 544 is transmitted to the third BPF 5 48 to remove an image signal other than a signal contained in a predetermined signal passing band. The output signal of the third BPF 548 is passed to a fourth RF amplifier 550 'to amplify it' and the amplification number is applied to the second variable attenuator 552. In this case, the second variable attenuator is adapted to adjust an output level that fills the pilot signal. The output signal of the second variable attenuator 552 is applied to the second mixer 556 'to convert it to RF. signal. The output signal of the second mixer 5 56 is transmitted to the fourth BPF 5 58 to remove the image signal, and the resulting signal without the image signal is applied to the fifth RF amplifier 56 so that by the fifth RF amplifier 560 to enlarge it. The output signal of the fifth RF amplifier 560 is applied to the HPA 562 so that it can be amplified with a large amount of power. If the HPA 562 amplifies the output signal of the fifth RF amplifier 560 'except for a predetermined frequency band signal' with a large amount of power, the Cavity BPF 5 64 removes image signals and false signals' to generate a filling pilot signal. Figure 6 is a block diagram illustrating the internal architecture of a baseband processor according to the present invention. Referring to FIG. 6, the baseband processor 534 includes a receiving level controller 602, a transmission gain controller 604, a correlator 606, a phase distortion controller 608, a correlation performance value calculator, and a pn code clock The controller 610, a short PN code and trigger pulse generator 612, a pilot signal generator 614, and so on. The reception level controller 602 checks a received digital i / q signal for a predetermined period of time, and controls a reception gain to receive a CDMA RF signal at a predetermined power level. According to the user-established data control, the transmission gain controller 604 controls a transmission gain. Similarly, using a reception level of a reception level controller 602; and a correlation performance value received from a correlation performance value calculator and a PN code clock controller 6 10, the transmission gain controller 604 measures a reception A pilot level of the CDMA signal, and use the measured pilot level to control the transmission gain of an output filling pilot signal. Due to a phase difference between the base station 210 and the beacon device 500, phase distortion inevitably occurs in the received pilot signal. The phase deformation controller 608 compares an output I / Q correlation integral value of the correlator 606 with a previous correlation integral value, determines a clockwise rotation or a counterclockwise rotation, and controls a voltage of a reference oscillator to enable reception. The phase of the pilot signal can be located at a predetermined position without rotation. According to the above control process, a CDMA center frequency received from the base station 210 becomes equal to a reception selection center frequency of the beacon device 500. The correlator 606 includes a multiplier and an integrator. The multiplier multiplies a generated I / Q short PN code by a received digital CDMA I / Q signal. A digital value generated from the multiplier is applied to an integrator, and the integrator integrates the digital value generated within a predetermined period. Multiplication and integration operations are performed independently for each I / Q signal so that the complete value of the independent I / Q is generated from the correlator 606. Use the I / Q integral value generated from the correlator 606, the correlation performance value calculator and the PN code clock controller 6 to calculate a correlation performance value, and use the calculated correlation performance value to determine the short PN code with itself. (Ie, a short PN code generated by self 17 200541365) an associated position, and a short PN stone horse and a triggered pulse generator 6 1 2 to generate an I / Q short PN code to be used, and generate A touch of a short PN code generates a pilot signal. In this case, the j / q short PN code is a pQ short pN code suitable for CDMA planning. The trigger pulse signal used to generate the short PN code is used to punch the 仏 code every cycle of the short pN code (that is, ′ 1 / 1.2288 Mcps * 215 «26.67ms). The generator generates a trigger pulse signal to compensate for a time delay of the beacon device caused by a processing delay. Pilot signal generator 614 is adapted to generate a padded pilot signal to be used by the transmitter of the signal, and a trigger pulse signal that can be generated using trigger pulse generator 612, which is the same pN as one of the base stations 210. The period during which the pilot signal generator 614 generates a code that meets one of the IS-95 standards is determined to be 26.67 ms, so each output pilot signal has a period of 26.67 ms. To take advantage of the above cycle number generator 614 includes the ability to store! / qdata 26.67ms data memory device. Therefore, when transmitting the pilot signal, the signal generator 6 14 generates a trigger pulse from the short PN code and the trigger pulse generator, and the memory address at a predetermined time of one of 26.67 ms. A method for receiving a CDMA RF signal from the base station 210 and filling the pilot signal of the beacon device 5 00 with the base station 2 10 method. The method is divided into first to third sub-steps. PN code clock. A receiver sends a pulse signal, a generator generates a pilot signal, a trigger pulse, a trigger pulse, and a system delay and a standard device 500 generates a AND signal from a short PN code. I / Q signal of short PN, when Pilot letter period number, Pilot 6 1 2 received one interval, when adjusting the number one, used to synchronize 18 200541365 A self-coded code to send the supplementary signal The special "all" sequence is used to generate the first generation code. The first sub-step is added to the sequence to make the CDMA RF signal received from the base station correlate with the short PN code generated by the body and confirm the base station's CDMA. The short PN of the signal points together (ie, one of the starting points of PN # 0). The second sub-step uses a short PN period to delay a generation time of a trigger pulse to generate a navigation signal so that a system time delay and a transmission / propagation delay can be compensated. The third sub-step periodically checks the CDMA RF received from the base station and compensates for the production of a trigger pulse used to transmit a pilot signal. The first to third sub-steps will be described in detail below. By correlating the received RF signal with a self-generated short PN code, the sub-steps of confirming the starting point of the short PN code of the base station (for example, the starting point of PN # 0) will be described in detail as follows first. Fig. 7 illustrates a trigger pulse and a receiver PN time representation of a receiver PN code generated from a short PN code and a trigger pulse shown in Fig. 6; If a user wants to use a 15 flip-flop to confirm a PN sequence, the status of the status indicator " all zero " is undefined. Provide all flip-flops to indicate the status of zero. Due to the characteristics of the PN sequence, the following PNs are continuously determined to be " 0 ". Indeed, if the " add zero " procedure is not executed, each PN sequence has a reservation of "32767" Therefore, the value of " zero " must be added to the last PN sequence. The i4 " Zero " value appears consecutively in the most columns of the I and Q signals. In this case, to the last sequence of the I and Q signals Add the "zero" value in order to generate 32678 chips. If a 14 " 0 "signal is generated when the receiver I / Q PN sequence is generated, 19 200541365 another increase the " 0 " value to 14 " 0" signal, and then in WQ A short PN (that is, a short PN # 0 starting point), which generates a sequence of receiver ρν. Figure 8 illustrates a time representation of one method to compensate for a PN deviation between an input CDMA signal and an input. Figure 'Beacon device 500 correlates an input CDMA signal with a predetermined setting to a short p N code that is self-generated in an AFC (automatically closed (0 FF)) state, and performs a knot rotation (Slew) to make it Find PN # of CDMA signal A PN reference point indicates an input time of a beacon RF input port, and a receiver PN sequence pulse indicates a specific time, which is when the beacon device 5 00 confirms. In this case, the time delay is "1" A time delay from an input time of an RF transmission processor 534 and a processing time delay from 534. The second sub-step is to use a short PN code periodically to transmit the generation time of a trigger pulse of the pilot signal, To compensate for the delay and transmission / propagation delay, the second sub-step will send a pilot signal from PN # 0 of the base station 210 if the beacon device searches for the base station 210 to compensate for the time delay of the beacon device 500. For example, A time delay of a receiver, a time delay of a receiver, and a time delay of a transmitter. The periodicity of the pilot signal is compensated for the aforementioned time delay. The aforementioned time delay compensation is applied to a pilot pulse of the pilot signal. In order to temporarily arrange the triggering pulse at the beginning of an RF input sequence. Time offset of pilot signal F ° is controlled. A signal of the fruit signal is set. Sending the PN # 0 starting time to the baseband processor delay to generate a compensation system time is detailed. The point 'should be delayed. There are many late and one baseband standard devices used to generate the 20 200541365 CDMA signal received by the transmission port. And the pilot signal output result is delayed by a predetermined time "11, 'delaying the transmission of the pilot signal to generate a delayed pilot signal. A third sub-step periodically checks the CDMA RF signal received from the base station 210 and compensates for a generation time of a trigger pulse used to transmit a pilot signal. This third sub-step will be described in detail below. Although the delay between the input CDMA signal of the beacon device 500 and the output pilot signal of the beacon device 500 is compensated, it can be converted into another time delay 'because of a system in the beacon device 500 A stability difference between the clock signal and a system clock signal of the base station 2 10. Therefore, the input CDMA signal received at a predetermined interval is correlated with a short pn code of the beacon device 500, and a specific correlation performance value is calculated. Based on the specific correlation performance value, the above time can be continuously compensated. delay. When compensating for the above time delay, in order to reduce time ripples, the beacon device 500 performs at least 8 oversampling operations during A / D conversion, and determines the number of trigger pulses used to generate the pilot signal. A control resolution of the generated time is " 1/24 chip ". In this case, the AFC operation is performed to deploy the system clock stability of the beacon device 500. For reference only, the terminal equipment manufactured by Quaimom Corporation has been Designed to be able to perform 4 oversampling operations during A / D conversion. Figure 9 is a conceptual diagram illustrating one of the methods used to control the baseband processor 534 to generate a fill pilot signal. Referring to Figure 9, all The pilot data units are all set to, 0, and the WalSh data is also set to, 0, so each pilot data is modulated by 1.2288 Mbps Walsh data. In this case, the output signal is divided into two parts by 21 200541365, and the two parts are modulated by a PN code generated from a 1 / Q short PN code generator according to a trigger pulse received from an external component. . In this case, the sequence of the I / Q short PN code has a predetermined length of 2 15 (i.e., 32768 chips). The gain is controlled by a scaler and then applied to the Finite Impulse Response (FIR) converter. In addition to the fundamental frequency signal suitable for the IS-95 standard, the fir filter removes harmonic signals. The FIR filter performs 4-over-interpolation on the received signal and outputs the resulting signal. Therefore, due to the periodicity of the PN code, the transmitted digital j / q pilot signal has periodicity, so that the beacon device 500 stores the I / Q pilot signal for a single period (ie, l / 1.2288MCps * 32768 Ξ 26.67ms) in a Data memory, and the above-mentioned storage operation of the I / Q pilot signal is periodically repeated, thereby generating a result i / Q pilot signal. Figure 10 is a block diagram illustrating an internal architecture of a data memory used to generate an I / Q pilot signal. Refer to Figure 10, if the trigger pulse signal is received from the short PN code and the trigger pulse generator, separated by a bit chirp and an address counter] pilot data and Q pilot data to make them separate! And q pilot data unit: existence-data memory Zhao Zhong. The "pilot data delay interval" between the Q address and the "1 3 1 07 1" address is stored in the "pilot data memory area", and the "pilot data memory area" is in the "0.25" chip. In the interval B, 'from the "" 〇, address to the " 131071 " address is stored in the -Q pilot data memory area. 22 200541365 At the same time, a method can be used to make the base station ’s wheel bidding device output frequency interact 'to ensure the stability of the beacon device. This method will be described in detail below. The output frequency stability standard of the beacon device 500 is ± 0.05 ppm and less, and must be the same as that of the base station. In order to ensure the above-mentioned frequency stability ', it is necessary to consider the temperature stability of the oscillator, which is one of the reference oscillators of the ten, in order to stabilize the past few years. In this case, if the beacon uses a high-stability oscillator (that is, an amplitude of '0CX0 level' increases its production cost. In order to solve the above production cost standard device uses a voltage controlled oscillator (ie, TCXO), The received CDMA RF signal is deployed with an AFC function, so it is a base station reference oscillator performance. In order to provide beacon signal frequency stability, a voltage control operation is performed using a resolution of at least 10 bits. For example, by Qualcomm The company has an 8-bit AFC resolution. One method can be used to interact the output level of the base station with the roll-out level, which will be described in detail below. A traditional beacon used to generate a fill pilot signal The standard is fixed by the user. If the base station increases or decreases the output level, it also changes the service area of a base station, with the increase or decrease of E, so the beacon device must be lightened to another level. The disadvantages of the beacon device are: The pilot power of the station has been changed to another-power, but it cannot change the light frequency and the frequency of the beacon output frequency is determined to be stable. M ticket device 500, and used to respond: device 500 oscillator), will be a big problem, the function of the letter and the use of it are close to: the terminal set for the high-reference oscillator set 500: the output of the standard device The set output level is a total output! The output level r output level should be replaced with a base r output level. In order to solve the above problem in 23 200541365, a method is needed for the base station's output to interact with the output level of the beacon device. The power of CDMA RF signals received at this RF port includes pilot signals, synchronization channel signals, paging channel signals, and multiple traffic access CDMA RF signals. The power varies depending on the number of communication users. Therefore, if the pilot channel power can be confirmed by the CDMA RF signal, the pilot operation of the pilot signal generating self-confidence device can be performed. When performing automatic gain control (AGC) operation, the beacon device recognizes a reception level of the CDMA RF signal. Similarly, because the phasor value changes linearly due to the number of traffic lanes, the correlator 606 included in the fundamental frequency processing calculates a correlation performance value, and according to the correlation performance value, all of the received CDMA RF signals In theory, calculate a power ratio of the pilot channel signal. Therefore, the beacon fills an output level of the pilot signal so that the ratio between the power of the navigation signal to be generated and the reception level of the CDMA RF signal confirmed by the AGC execution is equal to the calculated power ratio. If the base station 210 completely increases or decreases the output level, increases or decreases the power of the pilot channel signal, and the beacon device 5000 measures the pilot channel > (the power change rate of Lu No. outputs its output level. Obviously from the above content According to the present invention, when a beacon is filled with a pilot signal, 'a device for generating a pilot signal is planned using a serial number finder to obtain multiple synchronizations from a CDMA RF signal', thereby eliminating the need for a large number of gateways and an internal oscillation. The frequency of the level channel channel is continuously changed. The rate control of the round number is continuously changed to ensure the power calculated by the performance unit 534. The t-filling collar is also increased by detection generation and method a pn code rate conversion. 24 200541365 The multiple PN㉟ drift generated can be compensated. Make sure that the right and left are recognized * As the ground, the output fills the pilot °: The frequency stability required by the base station (< + 〇ns Λ. ^ ^ (~ ± 〇 · 〇5), and similar filling pilots, m + a reference clock signal generates FVFN ΓΤΙ ^ ^ The above excuse does not additionally receive an EVEN-CLK h number and a The clock of the old neck Jiufu is bluffed, which can lead to a simplified structure. Although the ant base interface has been disclosed for the purpose of illustration, ν σ 〇 left discloses the preferred embodiment of the present invention 'but 疋 those Those skilled in the art will understand that it is possible to make various modifications, additions and substitutions to the present invention without departing from the scope and spirit of the scope of patent application disclosed in the present invention in the following. Simple description of the formula] The above and other objectives, features and other advantages of this month will be more clearly understood from the following details with reference to the drawings, where the first diagram is a conceptual diagram illustrating the hard handover between base stations Figure 2 is a block diagram illustrating a device for generating a hard-filled pilot signal according to a first preferred embodiment of the present invention; Figure 3 is a second preferred implementation according to the present invention For example, a block diagram illustrating a device for generating a hard-filled pilot signal; FIG. 4 is a diagram illustrating a method for generating a hard-filled pilot signal according to a third preferred embodiment of the present invention. Block diagram of the device; Figures 5a to 5c are block diagrams illustrating the internal architecture of a beacon device according to the present invention; Figure 6 is a block diagram 25 200541365 illustrating the internal architecture of the baseband processor according to the present invention; Figure 7 FIG. 8 illustrates a trigger pulse and a receiver PN code generated from a short PN code and a trigger PN code generated by a trigger pulse generator shown in FIG. 6. FIG. 8 illustrates an input CDMA signal and An illustration of a method for compensating a PN deviation between an output pilot signal; FIG. 9 is a conceptual diagram illustrating one method for controlling a baseband processor to generate a pilot signal; and FIG. 10 is a A block diagram illustrating an internal architecture used to produce one of the data memory of I / Q pilot signals. [Description of main component symbols] 2 1 0 Base station 220 beacon device 222 beacon module 224 high power amplifier 226 frequency band Filter 230 directional coupler 240 hybrid coupler 2 5 0 antenna 310 duplexer 3 2 0 antenna 4 1 0 beacon device 4 1 4 antenna 4 1 2 antenna 26

Claims (1)

200541365 拾、申請專利範圍: 1. 一種用以產生一硬遞交之一填充領航信號的設備,包 含: 一定向耦合器,用以耦合接收自一基地台(BS)之一 分碼多重存取式(CDMA)無線電頻率(RF)信號至一信標 裝置; 該信標裝置,其藉由傳輸線,用以從接收自該定向 耦合器之 CDMA RF信號中擷取一基地台分類偽雜訊 (PN)同步信號,和利用該截取的基地台分類偽雜訊同步 信號,產生用於一硬遞交之一填充領航信號; 一混合耦合器,用以耦合產生自該信標裝置之填充 領航信號與CDMA RF信號,和產生該耦合的結果作為 一行動通訊信號;和 一基地台天線,用以輸出從該混合耦合器產生的該 行動通訊信號,作為一無線電頻率信號。 2. 如申請專利範圍第1項所述之設備,其中: 該信標裝置使用該CDMA RF信號來輸出與該基地 台的一短PN碼相同的填充領航信號。 3 .如申請專利範圍第1項和第2項所述之設備,其中該信 標裝置包括: 一信標模組,用以使該CDMA RF信號轉換成該填 27 200541365 充領航信號; 一高功率放大器(ΗΡΑ) 填充領航信號;和 一頻帶式過濾器(BPF) 號中,只通過一對應的頻帶 ,其使用一大量功率放大該 ’用以從放大的填充領航信 信號。 *種用以產生一硬遞交之一埴右々首. ^ 填死領航^號的設備,包 含: 一定向耦合器,用以耦合接收自一基地台(BS)之一 分碼多重存取式(CDMA)無線電頻率(RF)信號至一信標 裝置; 該信標裝置,其藉由傳輸線,用以從接收自該定向 耦合器之CDMA RF信號中擷取一基地台分類偽雜訊 (PN)同步信號,和利用該截取的基地台分類偽雜訊同步 信號,產生用於一硬遞交之一填充領航信號; 一雙工器,用以耦合該基地台之CDMA RF信號與 該信標裝置之該填充領航信號’和輸出該轉合結茱作為 一行動通訊信號; 一接收天線饋送電規’用以傳送該基地台之CDMA RF信號至該雙工器;和 一接收分集天線,用以輸出該行動通訊信號至一空 氣界面。 28 200541365 5 ·如申請專利範圍第4項所述之設備’其中該疋向 把藉由一基地台天線饋送電纜從基地台傳送之 RF信號耦合至_信標裝置,立該信標裝置 CDMA RF信號來輸出與該基地台的一短PN碼 填充領航信號。 6 ·如申請專利範圍第4項和第5項所述之設備’其 標裝置包括: 一信標模組,用以使該CDMA RF信號轉換 充領航信號; 一高功率放大器(ΗΡΑ),其使用一大量功率 填充領航信號;和 一頻帶式過濾器(BPF),用以從放大的填充 號中,只通過一對應的頻帶信號。 7· —種用以產生一硬遞交之一填充領航信號的設 含: 一信標觸角,用以從一基地台(BS)無線接收 多重存取式(CDMA)無線電頻率(Rp*)作號; 該信標裝置’用以從接收自該信標天線之 RF信號中擷取一基地台分類偽雜訊(pN)同步信 利用該截取的基地台分類偽雜訊同步信號,產生 硬遞交之一填充領航信號; 耦合器 CDMA 使用該 相同的 中該信 成該填 放大該 領航信 備,包 一分碼 CDMA 號,和 用於一 29 200541365 一傳送信標天線,用以無線輸出產生自該信標裝置 之該填充領航信號作為一行動通訊信號。 8. 如申請專利範圍第7項所述之設備,其中: 該信標裝置輸出與使用該CDMA RF信號的基地台 的一短PN碼相同的填充領航信號》 9. 如申請專利範圍第7項和第8項所述之設備,其中該信 標裝置包括: 一信標模組,用以使該CDMA RF信號轉換成該填 充領航信號; 一高功率放大器(ΗΡΑ),其使用一大量功率放大該 填充領航信號;和 一頻帶式過濾器(BPF),用以從放大的填充領航信 號中,只通過一對應的頻帶信號。 1 0 ·如申請專利範圍第1、4和7項所述之設備,其中該信 標裝置包括一基頻處理器,其中該基頻處理器自一使用 者接收輸出建立資料;控制一接收增益;控制自己的參 考頻率以減少與該基地台關聯的一頻率錯誤;控制一傳 送功率;及產生一填充領航I/Q信號,以輸出一填充領 航信號,其具有與一接收的領航信號相同的短ΡΝ碼的 輸出。 30 200541365 11 ·如申請專利範圍第1 〇項所述之設備,其中該基頻處理 器包括: 一接收水準控制器,用以偵測一接收的數位Ι/Q信 號之一預定期間,和控制一接收增益,以使該CDMA RF 信號能以一預定的功率水準接收; 一傳送增益控制器,用以根據使用者建立資料控制 一傳送增益; 一相關器,包含一乘法器和一積分器,其中該乘法 器使一 Ι/Q短PN碼乘以一數位CDMA Ι/Q信號和傳送 一結果數位值給該積分器,和該積分器積分產生達一預 定期間之數位值,以使該乘法和積分對每一 Ι/Q信號獨 立執行,而產生獨立的Ι/Q積分值; 一相位變形控制器,用以比較產生自相關器之I/Q 相關性積分值與一先前相關性積分值,和執行一參考振 盪器之一電壓控制; 一相關性能量值計算器和PN碼時脈控制器,用以 使用產生自該相關器之I7Q積分值計算一相關性能量 值,以使用相關性能量值決定一自體產生的短PN碼之 一相關性位置,及控制一 PN碼時脈; 一短PN碼和觸發脈衝產生器,用以產生一 I7Q短 PN碼以供一接收器使用,和產生一短PN碼之一觸發 脈衝信號,以產生一領航信號;和 31 200541365 一領航信號產生器,可調適以產生供信標裝置之一 傳送器使用之一填充領航信號,用以使用該短PN碼 和觸發脈衝產生器所產生之一觸發脈衝信號來產生與 該基地台之一 PN相同之PN ° 1 2 ·如申請專利範圍第11項所述之設備,其中:該傳送增 益控制器使用一接收水準控制器的一接收水準和接收 自該相關性能量值計算器之一相關性能量值,以量測該 接收的CDMA RF信號的一領航水準,以及使用該測量 的領航水準,控制該輸出的填充領航信號的一傳送增 益。 1 3 ·如申請專利範圍第11項所述之設備,其中: 該短PN碼和觸發脈衝產生器產生一適於cdMA的 一 I / Q短P N碼規劃’產生該短P N碼之該觸發脈衝信 號,用以在一短PN碼期間之間隔產生該領航信號;及 產生該觸發脈衝信號以回應該信標裝置之一系統延遲 和由一處理延遲所引起的一時間延遲。 14·如申請專利範圍第11項所述之設備,其中: 該領航信號產生器產生一領航信號’其滿足IS-95 標準;儲存I/Q資料的一期間資料;接收從短PN碼和 觸發脈衝產生器產生的一觸發脈衝;及控制每一短PN 32 200541365 碼期間之一記憶體位址。 15·如申請專利範圍第14項所述之設備 在從短PN碼和觸發脈衝產生器 時’該領航信號產生器藉由一位址閂 開儲存I領航資料和Q領航資料; 在"〇.25”chip的時間延遲間隔 第"1 3 1 07 1 ”位址的j領航資料係被傷 記憶體區域,並且在”0.25 "chip的時 第··〇”位址至第"131071"位址的Q領 一 Q領航資料記憶體區域。 —種用以產生一硬遞交的一填充領 信標裝置之一填充領航信號與一基J 化係使用接收自一基地台之一分碼 無線電頻率(RF)信號來進行,該方沒 (a) 使該CDMA信號關聯於一從 生的短偽雜訊(PN)碼,及確認該基i 之一短PN碼的一起始點; (b) 延遲一觸發脈衝之一產生時 PN碼之週期性產生一傳送領航信號 間延遲及一傳送/傳播延遲;及 (c) 週期性地檢查該CDMA信號 ,其中: 接收觸發脈衝信號 和位址計數器來分 中,從第"0”位址至 ί存在一 I領航資料 ^間延遲間隔中,從 航資料係被儲存在 航信號以同步化一 也台之方法,該同步 多重存取式(CDMA) 5:包含下列步驟: ,該信標裝置自體產 也台之CDMA信號 間,用以使用該短 ,以補償一系統時 ,及補償產生該傳 33 200541365 送領航信號之該觸發脈衝的該產生時間。 1 7·如申請專利範圍第1 6項所述之方法,其中步驟(a)包 括下列步驟: 當產生短PN碼時,如果產生14’’0"信號,增加 值至該14"〇"信號,以決定該短PN碼的一起點,和根 據該決定的起點產生該短PN碼的一觸發脈衝;和 使具有一預定的時間偏移設定之一輸入CDMA信 號相關於在一 AFC(自動頻率控制)關閉狀態自體產生 之一短 PN碼,執行該相關性結果信號之一旋轉 (slewing),和在同時確認該CDMA信號之該短PN碼的 該起點》 18.如申请專利範圍第16項所述之方法’其中步驟(b)包括 下列步驟: 不只根據在步驟(a)確認之該CDMA信號之該短PN 踽的該起點和在自體產生的短PN碼之一起點間的一時 間間隔’亦根據該短PN碼之一期間,延遲用以產生該 傳送領航信號之該觸發脈衝,以使它暫時性地安排在一 RF輸入淳口接收之一 CDMA RF信號和該信標裝置之 ^輸出領航信號。 19•如申請專利範圍第丨6項所述之方法’步驟(c)包括不列 34 200541365 步驟: 藉由使在一預定期間接收之CDMA信號之一短PN 碼相關於自該信標裝置產生之該自體產生短PN碼,計 算出一相關性能量值,據以持續補償用以產生該傳送領 航信號之該觸發脈衝之該產生時間。 20.如申清專利範圍第19項所述之方法,另包含下列步驟: 當該信標裝置執行類比類比至數位(A/D)轉換時, 執行8次過取樣(〇versampling)操作,以減少一補償時 間的波紋’決定產生該傳送領航信號之該觸發脈衝之該 產生時間的一控制解析度為"i/24 chip”之一預定值,和 執行一 AFC(自動頻率控制)操作以提供該信標裝置之 系統時脈穩定性。 2 1.如申請專利範圍第丨6項所述之方法,另包含下列步驟: 使該基地台之一輸出水準與該信標裝置之一輸出 水準交互作用。 22.如申請專利範圍第21項所述之方法,另包含下列步驟: 不只根據從該基地台接收之該CDMA RF信號亦根 據該信標裝置之該自體產生短PN碼,計算該接收的 CDMA RF信號之一功率水準及一領航通道信號之一功 率水準之間的一比率;及 35 200541365 不只根據由 AGC(自動增益控制)確認之該 CDMA RF信號之一接收水準亦根據該計算的比率,控制該填 充領航信號之一輸出水準。 36200541365 Scope of patent application: 1. A device for generating a hard-to-fill pilot signal, including: a directional coupler for coupling a code division multiple access type received from a base station (BS) (CDMA) radio frequency (RF) signal to a beacon device; the beacon device is used to extract a base station classification pseudo noise (PN) from a CDMA RF signal received from the directional coupler via a transmission line. ) Synchronization signal, and use the intercepted base station to classify the pseudo-noise synchronization signal to generate a fill pilot signal for a hard submission; a hybrid coupler for coupling the fill pilot signal generated from the beacon device with CDMA The RF signal and the result of the coupling are used as a mobile communication signal; and a base station antenna is used to output the mobile communication signal generated from the hybrid coupler as a radio frequency signal. 2. The device according to item 1 of the scope of patent application, wherein: the beacon device uses the CDMA RF signal to output a padding pilot signal that is the same as a short PN code of the base station. 3. The device as described in claims 1 and 2 of the scope of patent application, wherein the beacon device includes: a beacon module for converting the CDMA RF signal into the pilot signal which is filled in 2005 2005365; a high A power amplifier (HPA) fills the pilot signal; and a band-pass filter (BPF) number passes only a corresponding frequency band, which uses a large amount of power to amplify the 'pilot signal' from the amplified filler. * A kind of device used to generate a hard handed 埴 right head. ^ Fill the dead pilot ^ device, including: a directional coupler, used to couple a code received multiple access type from a base station (BS) (CDMA) radio frequency (RF) signal to a beacon device; the beacon device is used to extract a base station classification pseudo noise (PN) from a CDMA RF signal received from the directional coupler via a transmission line. ) Synchronization signal, and use the intercepted base station to classify the pseudo-noise synchronization signal to generate a pilot signal for filling one of the hard submissions; a duplexer to couple the CDMA RF signal of the base station with the beacon device The padding pilot signal 'and outputting the combined signal as a mobile communication signal; a receiving antenna feeding electric gauge' for transmitting the CDMA RF signal of the base station to the duplexer; and a receiving diversity antenna for Output the mobile communication signal to an air interface. 28 200541365 5 · The device as described in item 4 of the scope of patent application 'wherein the direction couples the RF signal transmitted from the base station via a base station antenna feed cable to the _ beacon device, and establishes the beacon device CDMA RF Signal to output a pilot signal filled with a short PN code from the base station. 6 · The equipment as described in claims 4 and 5 of the scope of the patent application 'its standard device includes: a beacon module for converting the CDMA RF signal into a pilot signal; a high power amplifier (HPA), which A pilot signal is filled with a large amount of power; and a band filter (BPF) is used to pass only a corresponding band signal from the amplified pad number. 7 · —A device for generating a hard-to-fill one pilot signal includes: a beacon antennae for wirelessly receiving multiple access (CDMA) radio frequency (Rp *) signals from a base station (BS) The beacon device 'is used to extract a base station classification pseudo noise (pN) synchronization signal from the RF signal received from the beacon antenna, and use the intercepted base station classification pseudo noise synchronization signal to generate a hard-delivered signal. A padding pilot signal; the coupler CDMA uses the same message to fill the pilot beacon, including a subcode CDMA number, and a 29 200541365 transmission beacon antenna for wireless output generated from the signal The filling pilot signal of the target device is used as a mobile communication signal. 8. The device as described in item 7 of the scope of patent application, wherein: the beacon device outputs a padding pilot signal identical to a short PN code of the base station using the CDMA RF signal. 9. As item 7 of the scope of patent application And the device of item 8, wherein the beacon device comprises: a beacon module for converting the CDMA RF signal into the filling pilot signal; a high-power amplifier (HPA), which uses a large amount of power to amplify The filling pilot signal; and a band-type filter (BPF) for passing only a corresponding frequency band signal from the amplified filling pilot signal. 10 · The device as described in claims 1, 4 and 7 of the scope of patent application, wherein the beacon device includes a baseband processor, wherein the baseband processor receives output establishment data from a user; controls a reception gain ; Control its own reference frequency to reduce a frequency error associated with the base station; control a transmission power; and generate a filling pilot I / Q signal to output a filling pilot signal, which has the same characteristics as a received pilot signal Output of short PN code. 30 200541365 11 · The device according to item 10 of the patent application scope, wherein the baseband processor includes: a receiving level controller for detecting a predetermined period of a received digital I / Q signal, and controlling A receiving gain so that the CDMA RF signal can be received at a predetermined power level; a transmitting gain controller for controlling a transmitting gain according to user-created data; a correlator including a multiplier and an integrator, The multiplier multiplies an I / Q short PN code by a digital CDMA I / Q signal and transmits a resulting digital value to the integrator, and the integrator integrates to generate a digital value for a predetermined period, so that the multiplication The sum and integration are performed independently for each I / Q signal to generate an independent I / Q integral value; a phase deformation controller is used to compare the I / Q correlation integral value generated by the autocorrelator with a previous correlation integral value And perform a voltage control of a reference oscillator; a correlation performance value calculator and a PN code clock controller for calculating a correlation performance value using the I7Q integral value generated from the correlator, Use the correlation performance value to determine a correlation position of a self-generated short PN code and control the clock of a PN code; a short PN code and a trigger pulse generator for generating an I7Q short PN code for reception And a trigger signal generated by a short PN code to generate a pilot signal; and 31 200541365 a pilot signal generator, adapted to generate a fill pilot signal for use by a transmitter of a beacon device, with Use the short PN code and a trigger pulse signal generated by a trigger pulse generator to generate the same PN as one of the PNs of the base station. 1 2 · The device according to item 11 of the patent application scope, wherein: the transmission The gain controller uses a reception level of a reception level controller and a correlation performance value received from one of the correlation performance value calculators to measure a pilot level of the received CDMA RF signal, and a pilot using the measurement. The level controls a transmission gain of the output fill pilot signal. 1 3 · The device according to item 11 of the scope of patent application, wherein: the short PN code and the trigger pulse generator generate an I / Q short PN code plan suitable for cdMA 'to generate the trigger pulse of the short PN code A signal for generating the pilot signal at intervals of a short PN code period; and generating the trigger pulse signal in response to a system delay of the beacon device and a time delay caused by a processing delay. 14. The device as described in item 11 of the scope of patent application, wherein: the pilot signal generator generates a pilot signal 'which meets the IS-95 standard; stores a period of data for I / Q data; receives a short PN code and triggers A trigger pulse generated by a pulse generator; and controlling a memory address during each short PN 32 200541365 code period. 15. When the device as described in item 14 of the scope of patent application, when the short PN code and the trigger pulse generator are triggered, the pilot signal generator stores the I pilot data and Q pilot data by a bit latch; in " 〇 .25 ”chip ’s time delay interval " 1 3 1 07 1 " address of the n pilot data is the damaged memory area, and the address of" 0.25 " chip's time ·· 〇 "to" " 131071 " Q pilot one Q pilot data memory area of the address. A type of padding pilot signal and a baseband signal used to generate a hard-to-fill padding beacon device are performed using a fractional code radio frequency (RF) signal received from a base station. ) Associate the CDMA signal with a born short pseudo-noise (PN) code and confirm a starting point of a short PN code of the base i; (b) Delay the period of the PN code when one of the trigger pulses is generated And generate a transmission pilot signal delay and a transmission / propagation delay; and (c) periodically check the CDMA signal, where: the reception trigger signal and the address counter are used to divide, from the "0" address to There is a method for synchronizing a pilot signal with a pilot data interval. The synchronous multiple access (CDMA) method 5 includes the following steps: The beacon device. The self-propelled CDMA signal is used to compensate for the short time to compensate for a system, and the generation time of the trigger pulse that generates the transmission signal. The method described in 6 items, wherein Step (a) includes the following steps: When a short PN code is generated, if a 14 "0 " signal is generated, a value is added to the 14 " 〇 " signal to determine the point of the short PN code, and according to the decision, The starting point generates a trigger pulse of the short PN code; and correlates an input CDMA signal with a predetermined time offset setting to a short PN code generated by itself in an AFC (Automatic Frequency Control) off state, and performs the correlation "Slewing one of the result signals and confirming the starting point of the short PN code of the CDMA signal at the same time" 18. The method described in item 16 of the scope of patent application 'where step (b) includes the following steps: According to a time interval between the starting point of the short PN 确认 of the CDMA signal confirmed in step (a) and one of the starting points of the short PN code generated by itself, and also according to a period of the short PN code, the delay is used to Generate the trigger pulse for transmitting the pilot signal so that it is temporarily arranged to receive a CDMA RF signal and an output pilot signal of the beacon device at an RF input port. 19 • As claimed in item 6 of the patent application scope Said party Step (c) of the method includes step 34 200541365. Step: Calculate a correlation by correlating a short PN code of a CDMA signal received within a predetermined period with the self-generated short PN code generated from the beacon device. The performance value is used to continuously compensate the generation time of the trigger pulse used to generate the pilot signal. 20. The method described in item 19 of the patent scope of claim, further comprising the following steps: When the beacon device executes During analog-to-digital (A / D) conversion, 8 oversampling operations are performed to reduce the ripple of a compensation time, which determines a control resolution of the generation time of the trigger pulse of the transmission pilot signal. It is a predetermined value of "i / 24 chip" and performs an AFC (Automatic Frequency Control) operation to provide the system clock stability of the beacon device. 2 1. The method as described in item 6 of the patent application scope, further comprising the following steps: interacting one output level of the base station with one output level of the beacon device. 22. The method as described in item 21 of the scope of patent application, further comprising the following steps: calculating not only the received CDMA RF signal from the base station but also the short PN code generated by the beacon device itself. A ratio between a power level of a CDMA RF signal and a power level of a pilot channel signal; and 35 200541365 not only based on the reception level of one of the CDMA RF signals confirmed by AGC (Automatic Gain Control) but also based on the calculated ratio To control the output level of one of the fill pilot signals. 36
TW93137090A 2004-06-12 2004-12-01 Apparatus and method for generating dummy pilot signal for use in hard handover of mobile communication TWI292674B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20040043338A KR100627141B1 (en) 2004-06-12 2004-06-12 Apparatus and Method for Generating Dummy Pilot Signal in Hard Hand-over of Mobile Telecommunication

Publications (2)

Publication Number Publication Date
TW200541365A true TW200541365A (en) 2005-12-16
TWI292674B TWI292674B (en) 2008-01-11

Family

ID=35581655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93137090A TWI292674B (en) 2004-06-12 2004-12-01 Apparatus and method for generating dummy pilot signal for use in hard handover of mobile communication

Country Status (5)

Country Link
JP (1) JP4130437B2 (en)
KR (1) KR100627141B1 (en)
CN (1) CN1707975A (en)
BR (1) BRPI0405437A (en)
TW (1) TWI292674B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141782B (en) * 2006-09-07 2012-08-29 日电(中国)有限公司 Access point auxiliary fast handover method, equipment and system
KR100925781B1 (en) 2007-08-28 2009-11-11 주식회사 썬웨이브텍 Generator of dummy pilot of wcdma and the method thereof
KR101024276B1 (en) * 2008-09-26 2011-03-29 삼지전자 주식회사 dual type pilot beacon system
KR101427254B1 (en) 2008-10-10 2014-08-07 에스케이텔레콤 주식회사 Hand over system by means of pilot beacon, and method the same
KR101514362B1 (en) * 2009-02-09 2015-04-23 에스케이텔레콤 주식회사 Wireless communication relay system and method by means of pilot beacon and relay apparatus applied to the same
US12003045B2 (en) 2021-10-20 2024-06-04 Samsung Electronics Co., Ltd. Wireless interconnect for high rate data transfer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010090612A (en) * 2001-06-25 2001-10-18 김선구 A hard hand-off apparatus of unified cdma
KR100416263B1 (en) * 2001-11-30 2004-01-31 삼성전자주식회사 Wireless communication apparatus and a method capable of adjusting beacon interval
KR200351438Y1 (en) 2004-02-27 2004-05-24 (주) 콘텔라 The structure of a base station device beacon signal equipment

Also Published As

Publication number Publication date
KR20050118027A (en) 2005-12-15
TWI292674B (en) 2008-01-11
BRPI0405437A (en) 2006-01-24
JP2005354660A (en) 2005-12-22
JP4130437B2 (en) 2008-08-06
KR100627141B1 (en) 2006-09-25
CN1707975A (en) 2005-12-14

Similar Documents

Publication Publication Date Title
AU2003221935B2 (en) Methods and apparatuses for measuring frequency of a basestation in cellular networks using mobile GPS receivers
JP3697268B2 (en) Orthogonal code synchronization system and method for spread spectrum CDMA communications
US7457979B2 (en) Synchronous follow-up apparatus and synchronous follow-up method
CN100533157C (en) VSWR measurement device
PL192830B1 (en) Clocking synchronisation in a cdma telecommunivation system supported by mobile stations
JP2001509324A (en) Determination of frequency offset in communication systems
US7660524B2 (en) Temperature compensation for transmission between nodes coupled by a unidirectional fiber ring
JP2011049770A (en) Radio communication system, radio base station and control method
RU2558668C2 (en) Navigation signal transmitter and method of navigation signal generation
US20180219715A1 (en) Head-end device and method of recovering synchronization detection error using the same
TW200541365A (en) Apparatus and method for generating dummy pilot signal for use in hard handover of mobile communication
WO2020054344A1 (en) Synchronization signal conversion device
JP2012023705A (en) Timing adjustment device, timing information generating device, and time synchronization system
WO2010000338A1 (en) Method for the combination and separation of baseband signals
JP6979934B2 (en) Processing devices and programs that make up mobile communication systems and base station devices
US20240031955A1 (en) Time synchronization apparatus, time synchronization system, and time synchronization method
JP2011095086A (en) Navigation signal transmitter and method of generating navigation signal
US20230379849A1 (en) Conveyance of communications in a wireless network
KR100725153B1 (en) Apparatus for providing time information
JP2011049727A (en) Radio equipment
CA2473610C (en) Improved time tracking loop
CN118612835A (en) Method and system for time synchronization with satellite load equipment
KR20090100511A (en) Method for controlling synchronization of time division duplex and apparatus of controlling synchronization
JPH09148978A (en) Detection of signal propagation delay, frame synchronizing method, and moving body communication system
EP1429482A2 (en) Communication system and method for synchronising communication therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees