TW200540957A - An integrated electronic sensor - Google Patents

An integrated electronic sensor Download PDF

Info

Publication number
TW200540957A
TW200540957A TW094110505A TW94110505A TW200540957A TW 200540957 A TW200540957 A TW 200540957A TW 094110505 A TW094110505 A TW 094110505A TW 94110505 A TW94110505 A TW 94110505A TW 200540957 A TW200540957 A TW 200540957A
Authority
TW
Taiwan
Prior art keywords
sensor device
integrated sensor
interconnect
sensor
integrated
Prior art date
Application number
TW094110505A
Other languages
Chinese (zh)
Inventor
Timothy Cummins
Original Assignee
Timothy Cummins
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Timothy Cummins filed Critical Timothy Cummins
Publication of TW200540957A publication Critical patent/TW200540957A/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A single chip wireless sensor (1) comprises a microcontroller (2) connected by a transmit/receive interface (3) to a wireless antenna (4). The microcontroller (2) is also connected to an 8kB RAM (5), a USB interface (6), an RS232 interface (8), 64kB flash memory (9), and a 32kHz crystal (10). The device (1) senses humidity and temperature, and a humidity sensor (11) is connected by an 18 bit A-to-D converter (12) to the microcontroller (2) and a temperature sensor (13) is connected by a 12 bit SAR A-to-D converter (14) to the microcontroller (2). The device (1) is an integrated chip manufactured in a single process in which both the electronics and sensor components are manufactured using standard CMOS processing techniques, applied to achieve both electronic and sensing components in an integrated process.

Description

200540957 九、發明說明: 【發明所屬之技術領域】 本發明係關於電子感測器。 【先前技術】 電子工業中之一主要驅動力量係,需要獲得更大程度的 功能性整合以使得生產更具自動化並降低每一單位成本。 當然,一附加的優點係尺寸減小並因此使得電路密度更 高。更重要的係,對於電池應用,由於減小的寄生電容, 因此更高的整合一般產生更低的功率。 但是,在感測器領域中,而特定言之係在無線感測器領 域中,更大的整合已放緩,因為在將微控制器、八至〇轉換 器(ADC)、記憶體、射頻(RF)收發器及感測器元件整合於一 積體感測器裝置中日弈谣$丨丨之七二aa m必 ^ ____ .200540957 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to electronic sensors. [Previous Technology] One of the major driving forces in the electronics industry requires greater functional integration to make production more automated and reduce unit cost. Of course, an additional advantage is that the size is reduced and thus the circuit density is higher. More importantly, for battery applications, higher integration generally results in lower power due to reduced parasitic capacitance. However, in the field of sensors, and more specifically in the field of wireless sensors, greater integration has slowed down as microcontrollers, eight-to-zero converters (ADCs), memory, RF (RF) Transceiver and sensor components are integrated in an integrated sensor device. Seventy-two aa m must be _____.

傳統上係在陶瓷或玻璃基板上製造而不能容易地整合於矽Traditionally manufactured on ceramic or glass substrates and cannot be easily integrated into silicon

些類型的感測器應用中之可用性Usability in some types of sensor applications

元件與感測組件 。但是,該等電 一水氣感測介電 100710.doc 200540957 質。此處理不適合大量的半導體處理。 本發明解決這些問題。 【發明内容】 依據本發明,提供一種積體感測器裝置,其包含: -在一半導體基板中的MOS電路, -具有互連導體及絕緣介電質之互連層級,該等層級係 在該基板上並將該等MOS電路互連, -該等互連層級併入一在該互連介電質中嵌入有電極之 感測器,以及 該等MOS電路包括用以處理來自該等感測器電極的信 號之一處理器。 在-項具體實施例中,該感測器包含用以讓所感測的氣 體或濕氣進入之一多孔氧化物。 在另一項具體實施例中,該多孔氧化物係摻雜碳之si〇2。 在另一項具體實施例中,該感測器係一電容感測器。 在-項具體實施例中,該感測器包含在該等感測器電極 上之一鈍化層。 在另g具體實施例中’該多孔氧化物係沉積於該純化 層上,而該MOS電路偵測介於該等電極之間的一邊緣場之 變化。 在另一項具體實施例中,包含介於該等互連層級之間的 姓刻+止層’而該純化層具有與該蝕刻停止層相同的成分。 在項具體實施例中,該純化層係Si3N4成分。 在另-項具體實施例中,該鈍化層係凹陷於該等感測電 100710.doc 200540957 極上。 在另一項具體實施例中,該凹陷内有一多孔氧化膜。 在另一項具體實施例中,該多孔氧化物係介於該等電極 之間並係曝露。 在另一項具體實施例中,該等MOS電路係以一垂直高度 而直接位於該感測器之下。 在另一項具體實施例中,該等MOS電路包括一溫度感測 器0Components and sensing components. However, the electricity-water vapor sensing dielectric is 100710.doc 200540957. This process is not suitable for a large number of semiconductor processes. The present invention addresses these issues. [Summary of the Invention] According to the present invention, an integrated sensor device is provided, which comprises:-a MOS circuit in a semiconductor substrate,-an interconnection level having an interconnecting conductor and an insulating dielectric, the levels being at The substrate and interconnect the MOS circuits, the interconnect levels are incorporated into a sensor with electrodes embedded in the interconnect dielectric, and the MOS circuits include One of the signals of the detector electrode processor. In a specific embodiment, the sensor includes a porous oxide to allow the sensed gas or moisture to enter. In another specific embodiment, the porous oxide is doped with carbon SiO 2. In another specific embodiment, the sensor is a capacitive sensor. In a specific embodiment, the sensor includes a passivation layer on the sensor electrodes. In another embodiment, the porous oxide is deposited on the purification layer, and the MOS circuit detects a change in a fringe field between the electrodes. In another specific embodiment, the intermediate layer includes a last name + stop layer 'and the purification layer has the same composition as the etch stop layer. In a specific embodiment, the purification layer is a Si3N4 component. In another specific embodiment, the passivation layer is recessed on the sensing electrodes 100710.doc 200540957. In another specific embodiment, a porous oxide film is formed in the depression. In another embodiment, the porous oxide is interposed between the electrodes and is exposed. In another embodiment, the MOS circuits are directly below the sensor at a vertical height. In another specific embodiment, the MOS circuits include a temperature sensor.

在一項具體實施例中,該溫度感測器包含一 pNp電晶體。 在另一項具體實施例中,該M0S電路包括用以處理來自 該氣體或濕度感測器之氣體或濕度信號與來自該溫度感測 器之溫度信號以提供一增強輸出之一微控制器。 在另-項具體實施例中,該增強輸出係溫度受到校正的 氣體或濕度讀取值。 在-項具體實施例中,該感測器包含沉積於該等感 電極上之聚醯亞胺。 μn體實施例中’該等刪電路包括連接於該等 感測器電極與該處理器之間的-Α至D轉換器。 在另一項具體實施例中,該A至D轉換器包含圍繞主動A 至D轉換器電容器而具有—不變佈局之—虛設電容器陣列。 在—項具體實施例中,進一步包含一發光二極體。 在另-項具體實施例中,該二極體係在一深溝渠内形成 至該等感測器電極之—橫向下部互連層級。 在另-項具體實施例中,該裝置包含一光摘測器二極體。 100710.doc 200540957 在^項具體實施例中,兮-代触★ » » i J ^該一極體在該等感測器電極之一 杈向下部互連層級中的一深溝渠内。 在另-項具體實施例中,該等刪電路包括—無線 -器。 '在另—項具體實施射,該無線收發it偏以與-網路 中的其他節點通訊’且其包含一構件用以在侦測到干擾後 旋即依據一低頻頻道切換方案來切換頻道頻率。 纟-項具體實施例中’一互連層級包括一低雜訊放大器。 讚在另—項具體實施例中,該低雜訊放大器包含在一導體 下之一應變石夕區域。 在另一項具體實施例中,該應變矽處於該基板上之一第 五或第六互連層級中9 在一項具體實施例中,該感測器包含連接於該裝置之一 上部表面上各墊之間的一偵測元件。 在另一項具體實施例中,該元件係一氣體感測薄膜。 鲁在另一項具體實施例中,該元件之成分係氧化鋅。 在一項具體實施例中,該元件偵測聲音,而該等M〇S電 路包含用以處理來自該等元件的信號之一聲頻處理器。 在本發明之另一方面,提供一種生產上述具體實施例中 任一項之感測器裝置,該方法包含以下步驟: -在該基板中製造該等MOS電路,In a specific embodiment, the temperature sensor includes a pNp transistor. In another embodiment, the MOS circuit includes a microcontroller to process a gas or humidity signal from the gas or humidity sensor and a temperature signal from the temperature sensor to provide an enhanced output. In another embodiment, the enhanced output is a gas or humidity reading whose temperature is corrected. In a specific embodiment, the sensor comprises polyimide deposited on the electrodes. In the μn body embodiment, the deletion circuits include a -A to D converter connected between the sensor electrodes and the processor. In another specific embodiment, the A to D converter includes a dummy capacitor array with a -constant layout around active A to D converter capacitors. In one specific embodiment, a light emitting diode is further included. In another specific embodiment, the bipolar system is formed in a deep trench to the lateral lower interconnect level of the sensor electrodes. In another specific embodiment, the device includes a photodiode diode. 100710.doc 200540957 In the specific embodiment, the Xi-generation touch ★ »» i J ^ the polar body is in a deep trench in the lower interconnection level of one of the sensor electrodes. In another specific embodiment, the deletion circuits include a wireless device. 'In another specific implementation, the wireless transceiver it is preferred to communicate with other nodes in the network' and it includes a component for switching channel frequencies according to a low-frequency channel switching scheme immediately after detecting interference. In the 纟 -item embodiment, an interconnect level includes a low noise amplifier. Like in another embodiment, the low noise amplifier includes a strained region under a conductor. In another embodiment, the strained silicon is in one of the fifth or sixth interconnect levels on the substrate. 9 In one embodiment, the sensor includes a connection to an upper surface of the device. A detection element between each pad. In another embodiment, the element is a gas sensing film. In another specific embodiment, the component of the element is zinc oxide. In a specific embodiment, the component detects sound, and the MOS circuits include an audio processor for processing signals from the components. In another aspect of the present invention, there is provided a sensor device for producing any one of the above specific embodiments. The method includes the following steps:-manufacturing the MOS circuits in the substrate,

W -依據互連設計而在連續的製造循環中製造該等互連層 級以將該等MOS電路互連,以及 -在一最終互連層級中製造該等感測器電極及介電質。 100710.doc 200540957 在一項具體實施例中,該方法人 匕S在该頂部互連層級上 /儿檟鈍化層之另一步驟。 在另一項具體實施例中,該方 ^ s ^ ^ ^ Λ万去包含以下步驟:在該等 互連層、,及中的母—介電層上沉積__停止層,並在咳頂 部互連層級介電質上沉積_停止材料,以提供—純化層。 在另一具體實施例中,多孔氧化物係作為—介電質而提 供於下部互連層級中,而普通氧 Κ化物係用作上部互連層級 中之一介電質。W-manufacturing the interconnect levels in a continuous manufacturing cycle according to the interconnect design to interconnect the MOS circuits, and-fabricating the sensor electrodes and dielectrics in a final interconnect level. 100710.doc 200540957 In a specific embodiment, the method is another step on the top interconnect level / children passivation layer. In another specific embodiment, the method ^ s ^ ^ ^ Λ 10,000 includes the following steps: a __stop layer is deposited on the interconnect layers, and the mother-dielectric layer, and on top of the cough A stop material is deposited on the interconnect level dielectric to provide a purification layer. In another embodiment, a porous oxide system is provided as a dielectric in the lower interconnect level, and a common oxygenated compound is used as a dielectric in the upper interconnect level.

在一項具體實施例中,在—卜卹方防 J T隹上部互連層級中沉積一應變 的低雜訊放大器,該放大器包含一應變矽區域。 【實施方式】 氣體/濕度感測器具·想實施例 參考圖1,一單晶片無線感測器含藉由一傳送/接收介 面3而連接至一無線天線4之一微控制器2。該微控制器2還In a specific embodiment, a strained low-noise amplifier is deposited in the upper interconnect layer of the anti-jitter antenna, the amplifier including a strained silicon region. [Embodiment] Gas / Humidity Sensing Apparatus · Imagine an Example Referring to FIG. 1, a single-chip wireless sensor includes a microcontroller 2 connected to a wireless antenna 4 through a transmitting / receiving interface 3. The microcontroller 2 also

係連接至一 8kB RAM 5、一 USB介面 6、一 RS232介面 8、64kB 快閃記憶體9及一 32kHz晶體10。在此項具體實施例中,該 裝置1感測濕度及溫度,而一濕度感測器丨1係藉由一丨8位元 的A至D轉換器12而連接至該微控制器2,而一溫度感測器 13係藉由一 12位元的SAR A至D轉換器14而連接至該微控 制器2。 該裝置1係於一單一程序中製造之一單積體晶片,在該單 一程序中該等電子元件及感測器組件皆係藉使用標準的 CMOS處理技術來製造,藉應用該CMOS技術而在一整合程 序中獲得電子元件與感測組件。 100710.doc 200540957 現在參考圖2、3(a)、3(b)及3(c)來更詳細地說明該製程 20,包括步驟21至27。 21,前端處理 對一矽基板41進行CMOS井、隔離氧化、多晶矽及植入處 理以形成MOS組件,此舉在CMOS處理中已為人熟知。在該 基板中還形成一對溫度敏感的PNP電晶體以提供該感測器 13 〇 22,下部互連及介電質沉積 形成第一、第二及第三互連層級42。此舉包括一多孔低& 二氧化矽介電質42(a)之化學汽相沉積(CVD)的三個循環, 以及進行蝕刻與鍍銅操作來提供互連跡線42(b)。每一循環 皆以沉積一蝕刻停止層42(c)來限制下一循環中的蝕刻程度 而結束。該蝕刻停止材料係氮化矽ShN4。該二氧化;ε夕、該 互連金屬及每一循環之蝕刻停止形成一第一互連的三層級 堆疊42。使用一低κ介電質允許採用較低的電容來實現組件 之間較快的信號傳輸。 23,上部互連及CVD介電質沉積 形成弟四及第五互連層級43。有另外二個介電質沉積及 金屬互連電鍍循環。但是,在該些二循環中,該介電質係 「普通」Si〇2(非多孔)43(a),以獲得更佳的結構強度,來 抵消該等下部層級42中該多孔介電質更弱的機械強度。再 次’該些循環包括標準的CMOS技術。 該第五層級包括一加熱元件43(b),該加熱元件43(b)具有 一内部溫度監視器用於在瞬時加熱及淨化該濕度感測器i i 100710.doc -10 - 200540957 時進行即時的溫度監視。而且令為 η 叫且1卞馬茨寺第四及第五層級 形成中的部分,該程序添加一薄金屬板以用於一電容器 部金屬(CTM),且在此二者之間有一薄層(〇〇4μηι)⑽介 電質,以形成混合信號金屬-絕緣體-金屬(ΜΙΜ)電容器用於 - 該等二個Α至D轉換器。 24 ’ Si02及感測層級之cvD沉積 形成一互連/感測層44。此僅係接續前一互連及電鍍循環 的下一重複或循環,而且,該介電質的確與用於直接連續 攀❺前一循環之介電質相同,即「普通」Si〇2。但是,作為 該頂部互連層44電鍍中之一整合部分,形成濕度感測電容 性對插指狀物(電極)45及參考電容性對插指狀物(電 極)46。該專指狀物之尺寸及間隔係選擇成適合於應用。在 此項具體實施例中,該等指狀物45及46之間隔為〇.5 μιη。 圖3(b)更清楚地顯示該配置。使用3 ·9之氧化物介電常數 Κοχ,則此舉會產生如下電容: • C〇X = = ~^5 X10-6° =a_069F/m2 =〇.〇69介/〆 每一實際的電容結構約相當於一焊墊之尺寸,從而允許 每一指狀物具有4000 μιη之總長度。對於1 μπι之金屬厚度, 便會由此產生一 0.276 pF之感測器電容。但是,二個間隔緊 ^ 密的窄導體之間的電容可能約比由簡單平行板計算出的值 • 大於約10%至30%,此係由於邊緣組件所致。 25,Si3N4鈍化層之沉積 以類似於該傳統蝕刻停止層之沉積方式藉CVD來沉積一 100710.doc 200540957 但疋’該純化層 保護及一水氣阻 鈍化層48,因為該鈍化層48同樣係Si3N4。 48約為3至5 μπι厚,以為該裝置丨提供實體 障。 26,蝕刻在感測電極上的鈍化層 將該純化層48在該等感測電極45上的部分㈣至一㈣ 之深度,以在該等感測電極上留下約〇1 μβι深之 層 48(a)。It is connected to an 8kB RAM 5, a USB interface 6, an RS232 interface 8, a 64kB flash memory 9, and a 32kHz crystal 10. In this specific embodiment, the device 1 senses humidity and temperature, and a humidity sensor 1 is connected to the microcontroller 2 through an 8-bit A-to-D converter 12, and A temperature sensor 13 is connected to the microcontroller 2 through a 12-bit SAR A to D converter 14. The device 1 is a monolithic chip manufactured in a single process. In this single process, the electronic components and sensor components are manufactured by using standard CMOS processing technology. An integrated program obtains electronic components and sensing components. 100710.doc 200540957 Referring now to Figures 2, 3 (a), 3 (b), and 3 (c), the process 20 will be described in more detail, including steps 21-27. 21. Front-end processing A CMOS well, isolation oxidation, polycrystalline silicon, and implantation processing are performed on a silicon substrate 41 to form a MOS device, which is well known in CMOS processing. A pair of temperature-sensitive PNP transistors are also formed in the substrate to provide the sensor 1322. The lower interconnects and dielectric deposition form first, second and third interconnect levels 42. This includes three cycles of chemical vapor deposition (CVD) of a porous low & silicon dioxide dielectric 42 (a) and etching and copper plating operations to provide interconnect traces 42 (b). Each cycle ends by depositing an etch stop layer 42 (c) to limit the degree of etching in the next cycle. This etch stop material is silicon nitride ShN4. The dioxide; epsilon, the interconnect metal, and each cycle of etching stop forming a three-level stack 42 of the first interconnect. The use of a low κ dielectric allows lower capacitance to be used for faster signal transmission between components. 23. Upper interconnect and CVD dielectric deposition. Form fourth and fifth interconnect levels 43. There are two other dielectric deposition and metal interconnect plating cycles. However, in these two cycles, the dielectric is "ordinary" Si02 (non-porous) 43 (a) to obtain better structural strength to offset the porous dielectric in the lower levels 42 Weaker mechanical strength. Again 'the cycles include standard CMOS technology. The fifth level includes a heating element 43 (b), which has an internal temperature monitor for instantaneous temperature during instantaneous heating and purification of the humidity sensor ii 100710.doc -10-200540957 Surveillance. Furthermore, let η be called 1 and the part of the formation of the 4th and 5th levels of the Matz Temple. This procedure adds a thin metal plate for a capacitor section metal (CTM) with a thin layer in between (〇 4 μηι) dielectric material to form a mixed signal metal-insulator-metal (MI) capacitor for-the two A to D converters. 24 'SiO2 and cvD deposition at the sensing level form an interconnect / sensing layer 44. This is only the next repetition or cycle following the previous interconnection and plating cycle, and the dielectric is indeed the same as the dielectric used to directly and continuously climb the previous cycle, namely "normal" Si02. However, as an integrated part of the electroplating of the top interconnect layer 44, a humidity sensing capacitive mating finger (electrode) 45 and a reference capacitive mating finger (electrode) 46 are formed. The size and spacing of the fingers are selected to be suitable for the application. In this specific embodiment, the interval between the fingers 45 and 46 is 0.5 μm. Figure 3 (b) shows this configuration more clearly. Using an oxide dielectric constant of 3 · 9, this will result in the following capacitance: • C〇X = = ~ ^ 5 X10-6 ° = a_069F / m2 = 0.067 per actual capacitance The structure is approximately the size of a pad, allowing each finger to have a total length of 4000 μm. For a metal thickness of 1 μm, this results in a sensor capacitance of 0.276 pF. However, the capacitance between two closely spaced narrow conductors may be approximately greater than the value calculated from a simple parallel plate • greater than approximately 10% to 30%, due to edge components. 25. The deposition of the Si3N4 passivation layer is similar to the deposition of the traditional etch stop layer by CVD to deposit a 100710.doc 200540957. However, the purification layer protects and a water-gas barrier passivation layer 48 because the passivation layer 48 is also Si3N4. 48 is approximately 3 to 5 μm thick to provide a physical barrier to the device. 26. The passivation layer etched on the sensing electrodes is formed to a depth of one part of the purification layer 48 on the sensing electrodes 45 to leave a layer of about 0 μm deep on the sensing electrodes. 48 (a).

27’多孔氧化物之CVD沉積 々見在藉由CVD,在形成於步驟26中的凹陷中沉積與在 該等第-個三層級中用作一介電質的材料相同之材料。此 係具有―較大的料面積之—水氣感測膜49。氣體或水氣 之進入引起該多孔介電質的介電常數變化。此點引起下部 感測電極45的電容變化。由上述内容可明自,使用標準的 深次微米CMOS處理技術,從而實,見充分整合的生產。使用 相同的介電質及互連金屬層,與該晶片之其餘部分同時势 作該感測h此「標準C刪」方法對於實現此感測以之 大量製造很有利。 此前,尚未對此方法作過明顯的嘗試,因為有一觀點係 認為此一感測器將會需要聚合物、及金或鉑電鍍及/或其他 非標準材料’而該些材料在現代CMOS晶圓製造工廠中將會 被視為污染物》以Si〇2為主的組成物為降低電容而取得= 發展令内部晶格結構分解。此舉使得該等組成物為多孔而 適應水氣或氣體滲透。而且,在感測器架構中’對該氮化 矽(Si#4)進行CMOS處理以獲得一蝕刻停止層來充當—阻 100710.doc -12- 200540957 障層來保護該積體裝置。在上面的具體實施例中,該 層在該感測組件上,且其係作為對感測到的水氣進i之一 阻障’因為在高濕度環境中此類渗透可能腐㈣等電極。 因此,該感測係基於溢出效應之使用,如下文之說明。 裝置1之使用 在使用日夺,水氣進入該膜49以致影響其介電常數,並因 此影響介於該等感測指狀物45之間的邊緣場。圖3(c)中以直 線55來說明此點。即使該水氣受到該層判之阻擋而不能接 達介於該等感測器指狀物45之間的空間,亦會發生此情形。 該感測器1依靠於介於該等電極之間該場之此邊緣組件 55。對於所說明的4000 μιη、〇·27 pF結構,該邊緣組件約係 25至50 fF。由於該18位元之八至〇轉換器係緊密接近(直接 位於該感測器下方),因此即使在該邊緣場中,亦可偵測很 小的電容變化。圖4顯示此轉換器,其中,該等感測指狀物 45係Cs,而該等參考指狀物46係Cr。該些電容形成一二階 過度取樣ΣΔ調變器之差動前端,從而說明該等感測器與轉 換器組件之整合程度。心與Vs提供比例及偏移補償。藉由 使用抽樣濾波器而令每秒之樣本數目與過度取樣比率之間 取得平衡,從而獲得很高的解析度。 參考圖5,在此項具體實施例中,將多孔材料5 〇沉積(或 印刷)於鈍化層51之頂部,並消除額外的蝕刻步驟。但是, 右純化厚度約(例如)3 μιη,則該等感測器電容器指狀物45 之間隔必須增加至約5 μχη或更多,以便該等邊緣電容組件 仍呈現一可測量之總電容比率。對於4〇〇〇 μπι感測器結構, 100710.doc 13 200540957 現在總電容減小至約27 fF,而該可變邊緣組件現處於3至5 fF區域内。1%或2%之濕度變化現在引起小於一毫微微法拉 之電容變化,此電容變化仍可為極過度取樣的差動ΣΔ高解 析度轉換器所偵測。18位元之解析度亦提供-很大的動態 範圍,從而讓該轉換器能夠輕易地處理不同氧化物所特有 之高度可變性且係非線性的電容對濕度特徵以及隨不同晶 圓及不同批次而不同的孔尺寸。 參考圖6,在此項具體實施例中,使用標準CM〇s處理, 而不需要額外的處理步驟。聚醯亞胺常用作矽晶片上的「應 力釋放」塗層。聚醢亞胺的位置一般由焊塾遮罩之一尺寸 略微過大的版本決定。在此範例中,該聚醯亞胺遮罩包括 一額外的開口以從參考電容器上消除聚醯亞胺6〇。由於聚 醯亞胺係多孔的,因此該感測電容器上的部分現經歷電容 對濕度之一微小變化。 參考圖7,在此項具體實例中,多孔低尺氧化物介電質係 用在該裝置的所有互連層級中,因此該感測器裝置在電容 性對插指狀物71之間具有一多孔低κ介電質70。藉由將_ 「虛設」焊墊鈍化開口放置於該感測器結構上,而在該禪 墊#刻期間令該等感測指狀物71上的表面72曝露以讓水氣 進入該等指狀物之間的介電質内。此舉在除該等感測電容 性指狀物71外的整個區域上留下鈍化層73。此項具體實施 例之一優點係使用標準的CMOS程序而不需要任何額外的 遮罩。但是,其允許水氣接達該等電容性指狀物71。但是, 對於許多應用而言,此點並非係一問題,例如一低濕度辦 100710.doc -14- 200540957 公室%丨兄中该感測器每隔數分鐘僅經歷施加數毫秒時間的 數毫伏電壓。 圖8顯示用以封閉該單晶片無線感測器之一簡單的填充 配置。藉由導電黏合劑81將該感測器丨黏接至一電池8〇,並 因此具有一封褒82。使用一線圈架以讓該感測組件上的區 域保持清晰。藉由封裝82來封閉所有其他區域,其提供實 體保護以及保4該等晶片及電池端子以免在持續曝露於高 水氣%境情況下時出現腐蝕或電解質劣化。除一射頻天線 導線83外,任何地方皆不會曝露金屬。 替代性的係,若實體保護不太重要及/或若對溫度變化的 回應時間更重要,則可能不會有任何封裝。 溫度感測器 除上面說明的金屬加熱器溫度感測器43^)外,還形成一 基板PNP溫度感測器13料該基板41之一整合部分,如圖 3(a)所示。此點依賴於基極射極接面所特有而為人熟知的 -2.2 mVMVbe。由於在一裝置中具有濕度與溫度感測器之 一組合,因此可藉由該微控制器來計算一增大的讀取值(即 露點)。該些因素與該微控制器2及該快閃記憶體9一起允許 使用查詢表來按比例調整及校準,以令精確度達到〇.5。匸之 内。 參考圖9,顯示12位元的SAR轉換器14。此轉換器測量該 PNP之Vbe電壓,或-如圖所示在—橋接組態中的金屬加熱 器監視器之溫度相依電阻。該轉換器在無任何校準電路之 條件下達到12位元解析度,如下面之說明。參考圖⑺,用 100710.doc -15- 200540957 於δ亥轉換為14之電谷器陣列處於該層級之中心,而且t為 八個類似的虛設陣列90所圍繞以確保佈局不變而且該轉換 器14中的核心陣列電谷器具有極佳的匹配。經由搞合電容 器Cc將該陣列分割成7個上部位元與一 5位元子DAC。此 舉,與一7x7 μιη之較小單元電容器尺寸一起令整個陣列的 電容(Cs)保持為約8 pF,小得足以令其可被圖示的晶片上 (on-chip)緩衝放大器有效率地驅動,且亦小得足以令因氧 化物厚度或其他處理參數之梯度而引起的整體失配最小 化。在ΙΟΟΚΗζ之取樣頻率下,kT/C雜訊數字為14〇nV,大 大低於金屬5(第五層級)上存在的12位元lSB尺寸,該等電 容器針對該基板具有很小的寄生電容,從而簡化成比率的 電谷器匹配。該些電容器之金屬_絕緣體-金屬(MIM)結構產 生較低的電壓及溫度係數及寄生電阻。 快閃微控制器 在與该等感測器相同的晶片上具有8位元微控制器2及 64KB快閃記憶體9,使得能明顯提高精確度及功能性。此 係由於對各種溫度條件進行即時的連續校準或原位校準得 以實現。記憶體之此數量亦足以容納整個IEEE8〇2·丨5 ·4協定 及Zigbee軟體堆疊,以執行信標、點對點、星狀及網狀網 路及現代無線感測器網路之關鍵要求。一晶片上調整器產 生1 ·2 V以啟動製造於薄氧化物最小幾何形狀裝置上的大多 數微控制器、記憶體區塊及無線射頻收發器中。 為辅助降低功率,時間間隔計數器及該微控制器的中斷 邏輯之部分邏輯係實施於厚氧化物3.3 V電晶體上,如圖11 100710.doc -16· 200540957 所示。此點表示’當該晶片處於睡眠或斷電模式時,可關 閉該調整器而消除該調整器之直流電偏壓電流。此點 與該3 V電晶體幾乎為零的次臨界洩漏一起導致功率明顯 節約而電池使用期延長。-旦從斷電模式中喚醒,該微控 制器還藉由依次操作該等感測器、轉換器及無線收發器來 實現雜訊及基板串擾之減少。CVD deposition of 27 'porous oxide. It is seen that by CVD, the same material as that used as a dielectric in the first three layers is deposited in the recess formed in step 26. This system has “larger material area” -water vapor sensing film 49. The entry of gas or water vapor causes the dielectric constant of the porous dielectric substance to change. This causes a change in the capacitance of the lower sensing electrode 45. From the above, it is clear that the standard deep sub-micron CMOS processing technology is used, so that we can see fully integrated production. Using the same dielectric and interconnect metal layers, the sensing is performed simultaneously with the rest of the wafer. This "standard C deletion" method is advantageous for achieving this sensing and mass manufacturing. Previously, no obvious attempt has been made to this method, because there is a view that this sensor will require polymers, and gold or platinum plating and / or other non-standard materials', and these materials are in modern CMOS wafer Manufacturing plants will be regarded as pollutants "Si02-based components are obtained to reduce capacitance = development decomposes the internal lattice structure. This makes these compositions porous and adapted to water vapor or gas penetration. Moreover, in the sensor architecture, the silicon nitride (Si # 4) is subjected to CMOS processing to obtain an etch stop layer to serve as a barrier 100710.doc -12- 200540957 barrier layer to protect the integrated device. In the above specific embodiment, the layer is on the sensing component, and it acts as one of the barriers to the sensing of water vapor ingress, because such penetration may rot other electrodes in a high humidity environment. Therefore, the sensing is based on the use of spillover effects, as explained below. Use of the device 1 On the day of use, water vapor enters the film 49 so as to affect its dielectric constant, and thus affect the fringe field between the sensing fingers 45. This point is illustrated by a straight line 55 in Fig. 3 (c). This occurs even if the water vapor is blocked by the layer judgment and cannot reach the space between the sensor fingers 45. The sensor 1 relies on the edge component 55 of the field between the electrodes. For the illustrated 4000 μm, 〇27 pF structure, the edge assembly is approximately 25 to 50 fF. Because the eight-bit eight to zero converter is in close proximity (directly below the sensor), small capacitance changes can be detected even in the fringe field. Figure 4 shows this converter, where the sensing fingers 45 are Cs and the reference fingers 46 are Cr. These capacitors form the differential front end of a second-order oversampling sigma-delta modulator, thereby explaining the degree of integration of these sensors and converter components. Heart and Vs provide proportional and offset compensation. High resolution is achieved by using a sampling filter to balance the number of samples per second with the oversampling ratio. Referring to FIG. 5, in this specific embodiment, a porous material 50 is deposited (or printed) on top of the passivation layer 51 and eliminates an additional etching step. However, if the right purified thickness is, for example, 3 μιη, the interval between the sensor capacitor fingers 45 must be increased to about 5 μχη or more so that the edge capacitor components still present a measurable total capacitance ratio . For a 400 μm sensor structure, 100710.doc 13 200540957 the total capacitance is now reduced to about 27 fF, and the variable edge component is now in the 3 to 5 fF region. A humidity change of 1% or 2% now causes a capacitance change of less than a femto farad. This capacitance change can still be detected by a very oversampled differential sigma-delta high-resolution converter. 18-bit resolution is also provided-a large dynamic range, so that the converter can easily handle the highly variable and non-linear capacitor-to-humidity characteristics unique to different oxides, as well as different wafers and different batches Second and different hole sizes. Referring to FIG. 6, in this specific embodiment, standard CMOS processing is used without additional processing steps. Polyimide is commonly used as a "stress release" coating on silicon wafers. The location of the polyimide is generally determined by the slightly oversized version of one of the welding masks. In this example, the polyimide mask includes an additional opening to eliminate polyimide 60 from the reference capacitor. Because the polyimide is porous, the portion of the sensing capacitor now undergoes a small change in capacitance versus humidity. Referring to FIG. 7, in this specific example, a porous low-scale oxide dielectric is used in all interconnect levels of the device, so the sensor device has a gap between the capacitive mating fingers 71. Porous low-κ dielectric 70. By placing a "dummy" pad passivation opening on the sensor structure, the surface 72 on the sensing fingers 71 is exposed during the Zen pad #engraving to allow water vapor to enter the fingers Within the dielectric between objects. This leaves a passivation layer 73 on the entire area except the sensing capacitive fingers 71. One advantage of this embodiment is that it uses standard CMOS programs without any additional masking. However, it allows water and gas to reach these capacitive fingers 71. However, for many applications, this is not a problem, for example, a low humidity office 100710.doc -14- 200540957 office% 丨 the sensor in the brother only experienced a few milliseconds every few minutes Volt voltage. Figure 8 shows a simple fill configuration to close the single-chip wireless sensor. The sensor is adhered to a battery 80 by a conductive adhesive 81, and therefore has an envelope 82. A coil bobbin is used to keep the area on the sensing assembly clear. All other areas are enclosed by a package 82, which provides physical protection and protection of these wafers and battery terminals from corrosion or electrolyte degradation during continuous exposure to high humidity conditions. Except for an RF antenna wire 83, no metal is exposed anywhere. Alternate systems may not have any packaging if physical protection is less important and / or if response time to temperature changes is more important. Temperature sensor In addition to the metal heater temperature sensor 43 ^) described above, a substrate PNP temperature sensor 13 and an integrated part of the substrate 41 are formed, as shown in FIG. 3 (a). This depends on the well-known -2.2 mVMVbe unique to the base emitter junction. With a combination of humidity and temperature sensors in a device, an increased read value (ie, dew point) can be calculated by the microcontroller. These factors, together with the microcontroller 2 and the flash memory 9, allow the use of look-up tables to scale and calibrate to achieve an accuracy of 0.5. Within. Referring to Fig. 9, a 12-bit SAR converter 14 is shown. This converter measures the Vbe voltage of the PNP, or-as shown in the figure-the temperature-dependent resistance of a metal heater monitor in a bridge configuration. The converter achieves 12-bit resolution without any calibration circuitry, as explained below. Referring to Figure ⑺, the electrical valley device array that was converted to 14 with 100710.doc -15- 200540957 at the center of the hierarchy is at the center of this level, and t is surrounded by eight similar dummy arrays 90 to ensure that the layout is unchanged and the converter The core array valley transformer in 14 has excellent matching. The array is divided into seven upper-position elements and a 5-bit sub-DAC via a coupling capacitor Cc. This, together with a small unit capacitor size of 7x7 μηη, keeps the capacitance (Cs) of the entire array to about 8 pF, which is small enough to make it an on-chip buffer amplifier that can be illustrated efficiently. Driven, and small enough to minimize the overall mismatch due to gradients in oxide thickness or other processing parameters. At the sampling frequency of ΙΟΟΚΗζ, the kT / C noise figure is 14nV, which is much lower than the 12-bit lSB size that exists on metal 5 (fifth level). These capacitors have very small parasitic capacitance for the substrate. This simplifies the matching of the valley trough. The metal-insulator-metal (MIM) structures of these capacitors produce lower voltage and temperature coefficients and parasitic resistance. Flash microcontroller With 8-bit microcontroller 2 and 64KB flash memory 9 on the same chip as these sensors, it can significantly improve accuracy and functionality. This is due to instant continuous calibration or in-situ calibration for various temperature conditions. This amount of memory is also sufficient to accommodate the entire IEEE802 · 5 · 4 protocol and Zigbee software stack to perform key requirements for beacons, point-to-point, star and mesh networks, and modern wireless sensor networks. An on-chip regulator generates 1.2 V to activate most microcontrollers, memory blocks, and radio frequency transceivers manufactured on thin oxide minimum geometry devices. To help reduce power, the logic of the time interval counter and the interrupt logic of the microcontroller is implemented on a thick oxide 3.3 V transistor, as shown in Figure 11 100710.doc -16 · 200540957. This point indicates that when the chip is in the sleep or power-down mode, the regulator can be turned off to eliminate the DC bias current of the regulator. This, together with the near-zero subcritical leakage of the 3 V transistor, results in significant power savings and extended battery life. -Once waking up from power-down mode, the microcontroller also reduces noise and substrate crosstalk by operating the sensors, converters, and wireless transceivers in sequence.

現在再來看該無線收發器3,而尤其係低雜訊放大器 (LNA),該LNA係設計成具有額外的低功率及低雜訊操作。 此藉係藉由第五或第六層級上的鋼電感器以及將應變矽 MOS裝置用於該前端LNA而實現,請參見圖12。此圖式顯 示-石夕鍺薄層⑽,在該層上有—薄應㈣層⑻,該薄應 變石夕層HH具有比普通々更高的載子遷移率。該多晶石夕閉極 102在該應變梦區域中形成—通道。但是,由於鍺具有較高 的遷移率’因此電晶體電流中的大部分係在該次表面哪 區域中流動,從而產生較低雜訊操作及較高的增益。因此, 對於相同的增益,可令該LNA偏壓於較低的電流,從而節 約電池功率。銅之電阻低於銘,從而產生一較高的Q因數(產 生車又同的接 >)欠益增盈)。該第五或第六層級之銅亦較厚(低電 阻)並更加退離该基板(較小的寄生電容)。 參考圖13,顯示針對該射頻收發器3之頻率選擇。該裝置 1在一即點無線網路中形成一節點。此可能係一簡單的點對 點鏈結或者一星狀或網狀網路。所有節點皆使用一固定頻 率且δ亥無線介面3提供一緩慢的頻率跳躍方案以解決干掙 因素。所有節點最初皆使用相同的頻率來操作該無線介= 100710.doc -17- 200540957 3。—旦—傳輪故障指示可能存在干擾,該 u中說日月之_、、當瞀、土;必〇 ^法而移動至—不同的頻率。接下來讓所 有郎點同步。 藉由針對欲運作的頻率跳躍方案之跳躍順序,來預先程 式化所有節點。進—步’必須將該些節點皆初始化至相同 的頻道以便其能「—起跳躍」,此—般係在安裝或電池 後實行。Looking now at the wireless transceiver 3, and especially the low noise amplifier (LNA), the LNA is designed to have additional low power and low noise operation. This is achieved by using steel inductors on the fifth or sixth level and using strained silicon MOS devices for the front-end LNA, see Figure 12. This figure shows-a thin layer of rhenium germanium, on which there is a thin layer of rhenium, the thin strained stone layer HH has a higher carrier mobility than ordinary rhenium. The polycrystalline stone closed pole 102 forms a channel in the strained dream region. However, because germanium has a higher mobility ', most of the transistor current flows in which region of the subsurface, resulting in lower noise operation and higher gain. Therefore, for the same gain, the LNA can be biased to a lower current, thereby saving battery power. The resistance of copper is lower than that of Ming, which results in a higher Q factor (producing a car with the same connection) and increasing profit). The fifth or sixth level of copper is also thicker (low resistance) and more retreated from the substrate (smaller parasitic capacitance). Referring to FIG. 13, a frequency selection for the radio frequency transceiver 3 is shown. The device 1 forms a node in a point-to-point wireless network. This could be a simple point-to-point link or a star or mesh network. All nodes use a fixed frequency and the δH1 wireless interface 3 provides a slow frequency hopping solution to solve the dry work factor. All nodes initially operate the radio using the same frequency = 100710.doc -17- 200540957 3. —Dan—Transfer failure indication may have interference. The u says that the sun, the moon, the sun, the earth, and the earth; it must move to—different frequencies. Next, all the Lang points are synchronized. All nodes are pre-programmed with a hopping sequence for the frequency hopping scheme to be operated. Further, the nodes must be initialized to the same channel so that they can “jump”, which is generally implemented after installation or battery.

更詳細的係,在安裝(或電池替換)後,安裝者旋即會手 工將該節點置入「初始化」模式,此係藉由(例如)按一按紐。 :後’該節點針對一附近節點傳輸(或主信標)而開啟其接收 器並「聆聽」’例如,在頻道0上。若其在一適當時間(例如, 數秒或分鐘)過後未接收到任何内容(由於當前頻道可能受 =阻擋)’則其按順序步進至下—頻道,並再次等待與跨 :。最終,藉由此方法’其應接收來自一相鄰節點之一信 =或資料封包’然後其可讓其計時器重新同步化、請求跳 篆1隔夺序加入β亥序列,並進入睡眠模式直至下一跳躍 及發送週期。 此初始化方法表示该節點必須保持僅在安裝時「開啟」 人以進入王功率接收模式,然後,在該電池之1至3年的 使用期中其可有99·9%的時間均可回復到睡眠模式(如 802.15.4標準中之定義)。由於該8G2154標準允許最長達約 4分鐘之睡眠週期,因此,該節點在此持續時間中可能處於 全功率接收模式。但是,實務上,此情形係不可能的,因 為安裝者將瞭解此週期。安裝者藉使用一頻譜分析器(或手 100710.doc -18- 200540957 持無線「嗅探器」),便可大致預測下一信標傳輸何時到期, 並恰在此到期時間之前按「初始化」按鈕。 參考圖14,此圖式顯示使用該缓慢跳躍方案之一範例。 其係用在介於二建築物12〇與125之間的一長距離(200 m)鏈 路115上(使用在與一電腦127連結的一閘道器節點126上之 14 dBl方向天線。)。節點121之一標準802·15·4 Zigbee固 定頻道星狀網路係實施於該第一建築物12〇内。此情形使得 能在一星狀網路工廠監視應用中安裝來自多供貨商而能共 同操作的節點,而在長距離關鍵鏈路上採用該緩慢跳躍演 算法,則干擾風險更大。 測試及校準 傳統上,此點對於濕度感測器係很難的,其需要濕度受 控制的特殊室且隨之而需要特殊封裝處置及電連接。 在本發明中,由於整個濕度感測器係於一標準CM〇s程序 中製ie因此,可在晶圓出貨之前,於一般的晶圓級測試 中對其進行測試及校準。此舉利用一事實,即一般係於一 精確的濕度位準,例如,40%的相對濕度,來操作晶圓探 測器及工廠測試區域。可將此已知值健存於晶片上快閃 EEPR〇M記憶體中,以供稍後該微控制器在軟體控制下對 輸出值進行正確的校準時使用,或者,其可用於該晶片之 一非快閃EEPROM版本中,以於4〇〇/0 RH條件下熔斷多晶保 險絲來校準該感測器。對於許多應用,例如,圍繞一設定 點(一般係40%)進行辦公室空氣調節控制,此i點校準可能 足夠。若在一較寬濕度範圍内需要更大的精確度,則可能 100710.doc -19- 200540957 需要一第二校準點。此係藉由在一封閉室内於85% RH條件 下或在一乾氮氣乾燥劑室内(0·001% RH)進行一「兩次運 算」晶圓探測而完成。儘管該兩次運算晶圓測試添加一定 的額外成本,但其明顯小於基於封裝的測試。 氣艘感測 在另一項具體實施例中,如圖15之說明,在鈍化層m 上於該18位元ΣΔ A至D轉換器12的多個差動電容器132中 之一電容器所處位置,沉積一氧化鋅及氧化鐵薄膜13〇。藉 由一溶膠至凝膠處理來合成該些氧化物,將其加熱至約 120°C至200。(:,然後藉由混合喷墨沉積來沉積。該薄膜意 味著在该感測器結構中可使用小手指大小的間隔,而該高 解析度的A至D轉換器意味著可使用小感測器結構而且仍 會引起電谷之可偵測的微小變化,即便在室溫操作情況下 亦如此。In more detail, after the installation (or battery replacement), the installer will manually put the node into "initialization" mode by pressing a button, for example. : After ‘this node turns on its receiver for a nearby node transmission (or master beacon) and“ listens ”, for example, on channel 0. If it does not receive any content after a suitable time (for example, a few seconds or minutes) (because the current channel may be blocked), then it steps down to the channel in order, and waits and crosses again:. Finally, by this method 'it should receive a message = or a data packet from a neighboring node', then it can re-synchronize its timer, request to skip the sequence to join the β-hai sequence, and enter sleep mode Until the next hop and transmission cycle. This initialization method means that the node must remain "on" only during installation to enter the king power receiving mode, and then it can return to sleep 99.9% of the time during the 1 to 3 years of use of the battery Mode (as defined in the 802.15.4 standard). Because the 8G2154 standard allows a sleep cycle of up to about 4 minutes, the node may be in full power reception mode during this duration. In practice, however, this situation is not possible because the installer will understand the cycle. The installer can roughly predict when the next beacon transmission is due by using a spectrum analyzer (or a wireless "sniffer" with 100710.doc -18- 200540957), and press " Initialize "button. Referring to FIG. 14, this figure shows an example of using the slow jump scheme. It is used on a long-distance (200 m) link 115 between two buildings 12 and 125 (using a 14 dBl directional antenna on a gateway node 126 connected to a computer 127). . A standard 802 · 15 · 4 Zigbee fixed channel star network, one of the nodes 121, is implemented in the first building 120. This situation makes it possible to install nodes from multiple vendors that can operate together in a star network factory monitoring application, and using this slow hopping algorithm on long-distance critical links has a greater risk of interference. Testing and Calibration Traditionally, this has been difficult for humidity sensors, which require special rooms with controlled humidity and consequently require special packaging disposal and electrical connections. In the present invention, since the entire humidity sensor is manufactured in a standard CMOS procedure, it can be tested and calibrated in a general wafer-level test before wafer shipment. This takes advantage of the fact that it is typically tied to a precise humidity level, such as 40% relative humidity, for operating wafer probers and factory test areas. This known value can be stored in the flash EEPROM memory on the chip for later use by the microcontroller to correctly calibrate the output value under software control, or it can be used in the chip. In a non-flash EEPROM version, the sensor is calibrated by blowing a polycrystalline fuse at 400/0 RH. For many applications, such as office air conditioning control around a set point (typically 40%), this i-point calibration may be sufficient. If greater accuracy is required over a wider range of humidity, a second calibration point may be required for 100710.doc -19- 200540957. This is accomplished by performing a "two-run" wafer probing in a closed chamber at 85% RH or in a dry nitrogen desiccant chamber (0.001% RH). Although these two operational wafer tests add some additional cost, they are significantly smaller than package-based tests. In another specific embodiment, as illustrated in FIG. 15, the position of one of the plurality of differential capacitors 132 of the 18-bit ΣΔ A to D converter 12 on the passivation layer m is shown in FIG. 15. , Deposit zinc oxide and iron oxide film 13. The oxides are synthesized by a sol-to-gel process and heated to about 120 ° C to 200 ° C. (:, And then deposited by hybrid inkjet deposition. The thin film means that small finger-sized spaces can be used in the sensor structure, and the high-resolution A to D converter means that small sensors can be used The structure also causes small detectable changes in the valley, even at room temperature operation.

圖16顯示一項替代具體實施例,其中氧化鐵/氧化鋅i4Q 係》儿積於頂部氧化層或鈍化層141上,但係直接連接至該等 頂部金屬層中的電極142,從而形成一電阻器,可能將該電 阻器作為一橋接電路之部分而藉由該丨8位元轉換器來決定 其值。 藉由使用不同材料來替代圖15中的氧化物130,該裝置架 構及生產私序可能適應用於感測不同氣體,例如針對氫感 測而使用ίε,針對s〇2、H2S而使用氧化#,或針對n〇2而 使用塑化聚氣乙烯,針對異τ烧而使用wo;。在每一情況 下,進入的氣體皆會藉由吸附、物理吸收或化學吸收而改 100710.doc -20- 200540957 變該感測材料之導電率及介電常數。因此,替代性地使用 或與晶片上緊密整合的高解析度轉換器結合在一起使用圖 15之電容性及圖16之電阻性之具體實施例,從而測量出ppm 值很低的氣體濃度。 聲頻感測器FIG. 16 shows an alternative embodiment in which the iron oxide / zinc oxide i4Q system is deposited on the top oxide layer or passivation layer 141, but is directly connected to the electrodes 142 in the top metal layers, thereby forming a resistor The value of the resistor may be determined by the 8-bit converter as part of a bridge circuit. By using different materials instead of oxide 130 in FIG. 15, the device architecture and production sequence may be adapted for sensing different gases, such as using ε for hydrogen sensing, and using oxidation for s02, H2S # , Or use plasticized polyethylene for n02, and wo for isoτ. In each case, the incoming gas will be changed by adsorption, physical absorption or chemical absorption. 100710.doc -20- 200540957 changes the conductivity and dielectric constant of the sensing material. Therefore, the capacitive embodiment of FIG. 15 and the resistive embodiment of FIG. 16 may be used instead of or in combination with a tightly integrated high-resolution converter on the chip, thereby measuring a gas concentration with a very low ppm value. Audio sensor

替代性的係,可在圖1 6所示之組態中應用一壓電聚合物 以獲得聲音的敏感度。轉換主要係基於導電率之變化。在 此情況下,在該MOS電路層級,採用一具有驅動該丨8位元a 至D轉換器的緩衝器之橋接電路來捕獲該聲頻信號。 一聲頻感測器(麥克風)在一遠端無線節點上係一有用特 倣,例如,若有一馬達在運轉或者若有一警鈴在響,則其 可用於「聆聽」。由於IEEE802.15.4之0.1%負載循環,因此 需要針對此聲頻而進行配置,802·15·4 2·4 帶中的 250 Kb/s最大資料率對應於〇·1%負載循環條件下25〇 b/s之 一持續不’變#資料率。採用一彳變位元率聲頻I縮器區塊 (VBR)以獲得15:1或更佳的壓縮比率,從而獲得一 375Alternatively, a piezoelectric polymer can be used in the configuration shown in Figure 16 to obtain sound sensitivity. Conversion is mainly based on changes in conductivity. In this case, at the MOS circuit level, a bridge circuit having a buffer driving the 8-bit a to D converter is used to capture the audio signal. An audio sensor (microphone) is a useful emulation on a remote wireless node. For example, if a motor is running or if an alarm is sounding, it can be used for "listening". Due to the 0.1% duty cycle of IEEE802.15.4, it is necessary to configure this audio frequency. The maximum data rate of 250 Kb / s in the 802 · 15 · 4 2 · 4 band corresponds to 25〇b under the condition of 0.1% duty cycle. / sOne does not continue to change the #data rate. Uses a bit-variable-rate audio I-reducer block (VBR) to obtain a compression ratio of 15: 1 or better, resulting in a 375

Kb/s之有效聲頻位元率而足以滿足許多工業上的低等級聲 頻需求。 光學感測器 。亥裝置還可包括一光學射極i 5 〇與彳貞測器 參考圖17, 的深度各向異性蝕 ,從而曝露一光二 μιηχ500 μηι,其收 1 5 1。在一般處理結束時採用極具方向性 刻以完全钱刻掉介電質的所有六或七層 極體光感測器151、一大的pn接面(2〇〇 集光子並產生一對應的電流)。 100710.doc -21 - 200540957 在此項具體實施例中,職刻還揭露—多孔梦區域i5〇, 此區域】50係在該程序開始時藉由對此特定區域中的基板 2行電化學蝕刻而產生。讓電流通過此區域使得該區域因 夕孔夕之為人熟知的發光特性而起到一發光二極體(LED) ,力月匕;&置於δ亥多孔區域周圍的隔離溝渠可使得洩漏到 該基板的任何電流最小化並提高光效率。 進行電化耗刻以形成多切之技術已為熟習此項技術 者所熟知,且此項技術可用於某些CM〇s程序,但在大多數 CMOS程序中並非標準。一替代性的咖構造係一摻雜的聚 合物有機發光裝置。採取圖16所示之方式,使用混合喷墨 印刷以將圖案化的發光摻雜聚合物膜(例如聚氣乙烯译唾 (PVK)膜)直接沉積到電極上。 本發明並不限於所說明的具體實施例而可能在構造及細 節方面有所變化。例如,可將除銅外的導體用於該等互連, 例如鋁。而且,該感測器裝置可能係該感測器之一「剝下」 的版本,即-「濕度至數位」感測器晶片,其不具有無線 電或微控制器或快閃記憶體。在此情況下,對該A至D轉換 裔及感測器之校準係藉由熔斷該電壓參考電路及電容器陣 列中的各種多晶熔絲而實現。應注意,測試不需要包括對 該A至D轉換ϋ之每_碼進行測試,從而明顯簡化測試並降 低成本。而且,在除以上具體實施例中所說明者外的其他 方法及裝置中,可個別地或組合地提供以下特徵中的某一 或更多特徵: -將應變矽用作一低雜訊放大器, 100710.doc -22- 200540957 -低頻頻道選擇/跳躍, -複製該電容器陣列之SAR, -多孔矽LED, -聲頻壓電聚合物麥克風感測器, -低負載循環條件下的聲頻壓縮及傳輸, -麥克風特徵。 【囷式簡單說明】 從下面將僅參相_轉例方式對某些㈣實施例所 作的說明,將會更清楚地瞭解本發明,在該等圖式中·· 圖1係本發明之-單晶片無線感測器裝置之方塊圖; 圖2為說明製造該裝置之一程序的流程圖; 圖3(a)係該裝置之一斷面圖,圖抑)係感測電極之一平面 圖;而圖3⑷係顯示介於該等電極之間的一邊緣電 圍; 圖4係該裝置之一八至〇轉換器之示意圖; 圖5係顯示一項替代性具體實施例之一感測器組件; 圖6及7係替代性感測器組件之斷面圖; 圖8係針對最終包裝之一填充配置之一圖式; 圖9係該感測器裝置之-12位元說八至〇轉換器之電路 圖; 圖10係用於該SAR轉換器之電容器陣列之佈局圖; 圖丨1係該裝置之微控制器之方塊圖; 圖12係顯示在該裝置的一應變矽電晶體中之一次表面電 流流動路徑之斷面圖; 100710.doc •23- 200540957 圖13係說明一無線收發器的頻率選擇之一圖式; 圖14顯示用於本發明之一裝置的一通訊方案; 圖15係一氣體感測裝置之斷面圖; 圖16係一聲頻感測器之示意性斷面圖;以及 圖17係本發明一項具體實施例之裝置之一LED及光二極 體之斷面圖。 【主要元件符號說明】The effective audio bit rate of Kb / s is sufficient to meet the low-level audio requirements of many industries. Optical sensor. The device may further include an optical emitter i 50 and a linear detector. Referring to FIG. 17, the depth of the anisotropic etching is exposed, thereby exposing a light of 2 μm × 500 μm, which is 1 51. At the end of the general process, all six or seven-layer polar body photo-sensors 151, a large pn junction (200 photons are collected and a corresponding Current). 100710.doc -21-200540957 In this specific embodiment, the job is also revealed-the porous dream area i50, this area] 50 is at the beginning of the procedure by 2 lines of electrochemical etching of the substrate in this specific area Instead. Passing current through this area makes this area act as a light-emitting diode (LED) due to the well-known luminous properties of Kong Xi, and the isolation trench placed around the delta area can make leakage Any current to the substrate is minimized and light efficiency is improved. The technique of performing electrical etch to form multiple cuts is well known to those skilled in the art, and this technique can be used in some CMOS programs, but it is not standard in most CMOS programs. An alternative structure is a doped polymer organic light emitting device. In the manner shown in FIG. 16, a hybrid inkjet printing was used to deposit a patterned light-emitting doped polymer film (such as a polyvinyl chloride (PVK) film) directly onto the electrode. The invention is not limited to the specific embodiments described but may vary in construction and detail. For example, conductors other than copper can be used for such interconnections, such as aluminum. Moreover, the sensor device may be a "peeled" version of one of the sensors, namely a "humidity to digital" sensor chip, which does not have a wireless or microcontroller or flash memory. In this case, the calibration of the A to D converter and the sensor is achieved by blowing the voltage reference circuit and various polycrystalline fuses in the capacitor array. It should be noted that testing does not need to include testing every code of the A to D conversion frame, thereby significantly simplifying testing and reducing costs. Moreover, in methods and devices other than those described in the above specific embodiments, one or more of the following features may be provided individually or in combination:-using strained silicon as a low noise amplifier, 100710.doc -22- 200540957-low frequency channel selection / skipping,-copying the SAR of the capacitor array,-porous silicon LED,-audio piezoelectric polymer microphone sensor,-audio compression and transmission under low load cycling conditions, -Microphone features. [Brief description of the formula] From the following descriptions of some embodiments will be made only in the phase_transition mode, and the present invention will be more clearly understood. In these drawings, Fig. 1 is the present invention- A block diagram of a single-chip wireless sensor device; Figure 2 is a flowchart illustrating a procedure for manufacturing the device; Figure 3 (a) is a cross-sectional view of the device, and Figure 2) is a plan view of a sensing electrode; Fig. 3 (a) shows an edge electrical fence between the electrodes; Fig. 4 (a) shows a schematic diagram of an eight to ten converter of the device; and Fig. 5 (a) shows a sensor assembly of an alternative embodiment ; Figures 6 and 7 are cross-sectional views of alternative sensor components; Figure 8 is a diagram of a filling configuration for the final package; Figure 9 is a -12-bit octal-to-zero converter for the sensor device Circuit diagram; Figure 10 is the layout of the capacitor array used in the SAR converter; Figure 1 is a block diagram of the microcontroller of the device; Figure 12 is a primary surface shown in a strained silicon transistor of the device Section view of current flow path; 100710.doc • 23- 200540957 Figure 13 illustrates nothing A diagram of frequency selection of a transceiver; FIG. 14 shows a communication scheme for a device of the present invention; FIG. 15 is a cross-sectional view of a gas sensing device; FIG. 16 is a schematic break of an audio sensor FIG. 17 is a cross-sectional view of an LED and a photodiode, which is a device according to a specific embodiment of the present invention. [Description of main component symbols]

1 單晶片無線感測器 2 微控制器 3 傳送/接收介面 4 無線天線 5 8kB RAM 6 USB介面 8 RS232介面 9 64kB快閃記憶體 10 32kHz晶體 11 濕度感測器 12 A至D轉換器 13 溫度感測器 14 SAR A至D轉換器 41 矽基板 42 互連層級之堆疊 42(a) 介電質 42(b) 互連跡線 100710.doc -24- 200540957 42(c) 蝕刻停止層 43 第四及第五互連層級 43(a) 介電質 43(b) 加熱元件 44 互連/感測層 45 濕度感測電容性對插指狀物(電極) 46 參考電容性對插指狀物(電極) 48 鈍化層 48(a) 薄Si3N4層 49 水氣感測膜 50 多孔材料 51 鈍化層 55 直線/邊緣組件 60 聚醯亞胺 70 多孔低K介電質 71 電容性對插指狀物 72 感測指狀物71上的表面 73 純化層 80 電池 81 導電黏合劑 82 封裝 83 射頻(RF)天線導線 90 虛設陣列 100 矽鍺薄層 100710.doc -25- 200540957 101 薄應變矽層 102 多晶矽閘極 115 長距離鏈路 120 建築物 121 節點 125 建築物 126 閘道器節點 127 電腦1 Single-chip wireless sensor 2 Microcontroller 3 Transmit / receive interface 4 Wireless antenna 5 8kB RAM 6 USB interface 8 RS232 interface 9 64kB flash memory 10 32kHz crystal 11 Humidity sensor 12 A to D converter 13 Temperature Sensor 14 SAR A to D converter 41 Silicon substrate 42 Stack of interconnect levels 42 (a) Dielectric 42 (b) Interconnect trace 100710.doc -24- 200540957 42 (c) Etch stop layer 43 Fourth and fifth interconnect levels 43 (a) dielectric 43 (b) heating element 44 interconnect / sensing layer 45 humidity sensing capacitive mating finger (electrode) 46 reference capacitive mating finger (Electrode) 48 Passivation layer 48 (a) Thin Si3N4 layer 49 Water vapor sensing film 50 Porous material 51 Passivation layer 55 Line / edge component 60 Polyimide 70 Porous low-K dielectric 71 Capacitive mating finger 72 Sensing surface on finger 71 Purification layer 80 Battery 81 Conductive adhesive 82 Package 83 Radio frequency (RF) antenna wire 90 Dummy array 100 Silicon germanium thin layer 100710.doc -25- 200540957 101 Thin strained silicon layer 102 Polycrystalline silicon Gate 115 Long Link 120 Building 121 Node 125 buildings 126 gateway nodes 127 computers

130 氧化鋅及氧化鐵薄膜 131 鈍化層 132 差動電容器 140 氧化鐵/氧化鋅 141 頂部氧化物或鈍化物 142 頂部金屬層中的電極 150 光學射極/多孔矽區域 151 偵測器 100710.doc -26-130 Zinc oxide and iron oxide film 131 Passivation layer 132 Differential capacitor 140 Iron oxide / zinc oxide 141 Top oxide or passivation 142 Electrode in top metal layer 150 Optical emitter / porous silicon area 151 Detector 100710.doc- 26-

Claims (1)

200540957 十、申請專利範圍: 1 · 一種積體感測器裝置,其包含·· 一半導體基板中的MOS電路, 互連層級,其具有互連導體及絕緣介電質,該等層級 在該基板上並將該等MOS電路互連, 該等互連層級併入一在該互連介電質中嵌入有電極之 感測器,以及 該等MOS電路,其包括用以處理來自該等感剛器電極 的信號之一處理器。 2. 如請求们之積體感測器裝置,其中該感測器包含—多孔 氧化物以讓所感測之一氣體或濕氣進入。 3. 如請求項1之積體感測器裝置,其中該感測器包含—多孔 氧化物以讓所感測之一氣體或濕氣進入,而且其中該多 孔氧化物係摻雜碳之Si〇2。 4. 如請求項!之積體感測器裝置,其中該感測器係—電容感 測器。 “ 5·如#求項1之積體感測器裝置,其中該感測器包含一多孔 氧化物以讓所感測之一氣體或濕氣進入,而且其中該感 測器包含一在該等感測器電極上的鈍化層。 6·如請求項5之積體感測器裝置,其中該多孔氧化物係沉積 於該鈍化層上,而該等M〇s電路偵測介於該等電極之間 的邊緣場之變化。 7.如咕求項5之積體感測器裝置,其包含介於該等互連層級 之間的餘刻停止層,而且該鈍化層之組成物與該银刻停 100710.doc 200540957 止材料之組成物相同。 8_如請求項5之積體感測器裝置’其包含介於該等互連層級 之間的钱刻分止層,而且該純化層之組成物與該姓刻停 止材料之組成物相同,而且其中該鈍化層係以小4成分。 9·如吻求項5之積體感測器裝置,其中該鈍化層在該等感測 電極上係凹陷。 10·如睛求項5之積體感測器裝置,其中該鈍化層在該等感測 電極上係凹陷,而且其中在該凹陷中有一多孔氧化膜。 η·如請求項!之積體感測器裝置,其中該多孔氧化物係介於 該等電極之間且係曝露。 12·如叫求項1之積體感測器裝置,其中該等電路以一垂 直高度而直接位於該感測器之下。 13 ·如明求項1之積體感測器裝置,其中該等M〇s電路包括一 溫度感測器。 14.如請求項1之積體感測器裝置,其中該等M〇s電路包括一 溫度感測器,而其中該溫度感測器包含一 pNp電晶體。 15·如請求項1之積體感測器裝置,其中該等14〇8電路包括一 溫度感測器,而其中該等MOS電路包括一微控制器用以 處理來自該氣體或濕度感測器之氣體或濕度信號以及來 自該溫度感測器之溫度信號以提供一增強的輸出。 16如請求項15之積體感測器裝置,其中該增強的輸出係溫 度經校正的氣體或濕度讀取值。 Π.如請求項1之積體感測器裝置,其中該感測器包含沉積於 該等感測電極上的聚醯亞胺。 100710.doc 200540957 18. 如請求項!之積體感測器裝置,其中該等M〇s電路包括連 接於該等感測器電極與該處理器之間的一八至〇轉換器。 19. 如明求項1 8之積體感測器裝置,其中該八至D轉換器包含 圍繞主動的A至D轉換器電容器而具有一不變佈局之一虛 設電容器陣列。 20. 如請求項}之積體感測器裝置,其進一步包含一發光二極 體。 21.200540957 10. Scope of patent application: 1 · An integrated sensor device, including: · a MOS circuit in a semiconductor substrate, an interconnection level, which has an interconnection conductor and an insulating dielectric, and the levels are on the substrate And interconnect the MOS circuits, the interconnect levels are incorporated into a sensor with electrodes embedded in the interconnect dielectric, and the MOS circuits include One of the signal processor electrodes. 2. An integrated sensor device as requested, wherein the sensor contains-a porous oxide to allow one of the sensed gases or moisture to enter. 3. The integrated sensor device as claimed in claim 1, wherein the sensor comprises-a porous oxide to allow a gas or moisture to be sensed to enter, and wherein the porous oxide is Si doped with carbon. . 4. If requested! The integrated sensor device, wherein the sensor is a capacitive sensor. "5 · 如 # Find the integrated sensor device of item 1, wherein the sensor includes a porous oxide to allow a gas or moisture to be sensed to enter, and wherein the sensor includes a The passivation layer on the sensor electrode. 6. The integrated sensor device as claimed in item 5, wherein the porous oxide is deposited on the passivation layer, and the Mos circuits detect that it is between the electrodes. The variation of the fringe field between them. 7. The integrated sensor device of item 5 includes a stop layer between the interconnect levels, and the composition of the passivation layer and the silver The engraving stop 100710.doc 200540957 is the same as the composition of the material. 8_ If the integrated sensor device of claim 5 'includes the engraving separation layer between these interconnection levels, and the purification layer has The composition is the same as the composition of the engraved stop material, and the passivation layer is composed of a small 4. 9. The integrated sensor device such as kiss 5 in which the passivation layer is on the sensing electrodes 10. The integrated sensor device as described in item 5 above, wherein the passivation layer is on the sensing electrodes. The upper system is a depression, and there is a porous oxide film in the depression. Η · As requested! The integrated sensor device, wherein the porous oxide is between the electrodes and is exposed. 12 · 如 叫The integrated sensor device of claim 1, wherein the circuits are located directly below the sensor at a vertical height. 13 · If the integrated sensor device of claim 1, wherein the M0s The circuit includes a temperature sensor. 14. The integrated sensor device of claim 1, wherein the MOS circuit includes a temperature sensor, and wherein the temperature sensor includes a pNp transistor. 15 The integrated sensor device of claim 1, wherein the 1408 circuits include a temperature sensor, and wherein the MOS circuits include a microcontroller for processing a gas from the gas or humidity sensor Or a humidity signal and a temperature signal from the temperature sensor to provide an enhanced output. 16 The integrated sensor device of claim 15, wherein the enhanced output is a temperature-corrected gas or humidity reading. Π. The integrated sensor device of claim 1, The sensor includes polyimide deposited on the sensing electrodes. 100710.doc 200540957 18. If requested, the integrated sensor device, wherein the MOS circuit includes a connection to the An 18-to-0 converter between the sensor electrode and the processor. 19. The integrated sensor device of item 18 as described, wherein the eight-to-D converter includes an active A-to-D converter. The capacitor has a dummy capacitor array with a constant layout. 20. The integrated sensor device as claimed, further comprising a light emitting diode. 21. 如請求項20之積體感測器裝置,其中該二極體係在一深 溝木中开> 成至s亥等感測器電極之一橫向下部互連層級。 22. 如請求項1之積體感測器裝置,其中該裝置包含一光價測 器二極體。 23. 如請求項22之積體感測器裝置,其中該二極體係處於一 深溝渠中而在該等感測器電極之一橫向下部互連層級 中。 24. 如請求項丨之積體感測器裝置,其中該等m〇s電路包括一 無線收發器。 25. 如請求項24之積體感測器裝置,其中該無線收發器係用 於與在一網路中的其他節點進行通訊,且其包含一用以 在谓測到干擾後旋即依據一低頻頻道切換方案來切換頻 道頻率之構件。 26. 如請求項24之積體感測器裝置,其中一互連層級包括一 低雜訊放大器。 27·如請求項24之積體感測器裝置,其中一互連層級包括一 低雜訊放大器,而其中該低雜訊放大器包含在一導體下 100710.doc 200540957 之一應變矽區域。 28·如請求項24之積體感測器裝置,其中一互連層級包括一 低雜訊放大器,而其中該低雜訊放大器包含在一導體下 之一應變矽區域,而其中該應變矽處於該基板上之一第 五或第六互連層級中。 29·如請求項1之積體感測器裝置,其中該感測器包含連接於 該裝置之一上部表面上的多個墊之間的一偵測元件。 3〇·如請求項29之積體感測器裝置,其中該元件係一氣體感 測薄膜。 31·如請求項29之積體感測器裝置,其中該元件係一氧化辞 成分之氣體感測薄膜。 32.如請求項29之積體感測器裝置,其中該元件偵測聲音, 而該等MOS電路包含用以處理來自該等元件的信號之一 聲頻處理器。 33·:種生產如前述請求項中任一項之感測器裝置之方法, 該方法包含以下步驟: 在一基板中製造該等MOS電路, 依據互連設計而在連續的製造循環中製造該等互連層 級以將該等MOS電路互連,以及 在一最終互連層級中製造該等感測器電 %如請求項33之方法,其包含在― 質 鈍化層之另-步驟。 互連層級上沉積一 連項33之方法’其包含以下其他步驟:在-頂部互 P及上沉積-鈍化層;在該等互連層級中的每一介電 100710.doc 200540957 層上沉積一蝕刻停止厗 電質 J衧止層,以及在該頂部互連層級介 上沉積蝕刻停止材料以提供該鈍化層。 3 6 ·如請求項3 3之方法, 電質之多孔氧化物, 中之介電質。 其中在下部互連層級中提供作為介 而普通氧化物係用作上部互連層級 37·如请求項33之方法,其中將一應變低雜訊放大器沉積於 一上部互連層級中,該放大器包含一應變矽區域。For example, the integrated sensor device of claim 20, wherein the two-pole system is opened in a deep trench to one of the sensor electrodes, such as the sensor, and the lower horizontal interconnection level. 22. The integrated sensor device of claim 1, wherein the device comprises an optical valence detector diode. 23. The integrated sensor device of claim 22, wherein the bipolar system is in a deep trench and in a lateral lower interconnect level of one of the sensor electrodes. 24. The integrated sensor device of claim 1, wherein the mOs circuits include a wireless transceiver. 25. The integrated sensor device as claimed in claim 24, wherein the wireless transceiver is used to communicate with other nodes in a network, and includes a means for detecting a disturbance immediately based on a low frequency Channel switching scheme is a component to switch channel frequency. 26. The integrated sensor device of claim 24, wherein an interconnection level includes a low noise amplifier. 27. The integrated sensor device of claim 24, wherein an interconnect level includes a low noise amplifier, and wherein the low noise amplifier includes a strained silicon region under a conductor 100710.doc 200540957. 28. The integrated sensor device of claim 24, wherein an interconnection level includes a low-noise amplifier, and wherein the low-noise amplifier includes a strained silicon region under a conductor, and wherein the strained silicon is in One of the fifth or sixth interconnect levels on the substrate. 29. The integrated sensor device of claim 1, wherein the sensor includes a detection element connected between a plurality of pads on an upper surface of the device. 30. The integrated sensor device of claim 29, wherein the element is a gas sensing film. 31. The integrated sensor device according to claim 29, wherein the element is a gas-sensing film having an oxide composition. 32. The integrated sensor device of claim 29, wherein the component detects sound, and the MOS circuits include an audio processor for processing signals from the components. 33 ·: A method for producing a sensor device according to any one of the preceding claims, the method comprising the steps of: manufacturing the MOS circuits in a substrate, and manufacturing the MOS circuits in a continuous manufacturing cycle according to an interconnection design The method of isolating the interconnection levels to interconnect the MOS circuits, and manufacturing the sensor electronics in a final interconnection level as claimed in item 33, comprises an additional step of a -passivation layer. A method of depositing a series of items 33 on interconnect levels' which includes the following additional steps: depositing a top passivation layer and a passivation layer; depositing an etch on each dielectric 100710.doc 200540957 layer in the interconnect levels A stopper layer is deposited, and an etch stopper is deposited on the top interconnect level dielectric to provide the passivation layer. 36. The method of claim 3 3, the porous oxide of the dielectric, the dielectric of the dielectric. Where a method is provided in the lower interconnect level and a common oxide system is used as the upper interconnect level 37. The method of claim 33, wherein a strained low noise amplifier is deposited in an upper interconnect level, the amplifier comprising One strain silicon area. 100710.doc100710.doc
TW094110505A 2004-04-02 2005-04-01 An integrated electronic sensor TW200540957A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IE20040233 2004-04-02

Publications (1)

Publication Number Publication Date
TW200540957A true TW200540957A (en) 2005-12-16

Family

ID=52349261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094110505A TW200540957A (en) 2004-04-02 2005-04-01 An integrated electronic sensor

Country Status (2)

Country Link
IE (1) IES20050180A2 (en)
TW (1) TW200540957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734316B (en) * 2019-12-24 2021-07-21 新唐科技股份有限公司 Thermal sensor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734316B (en) * 2019-12-24 2021-07-21 新唐科技股份有限公司 Thermal sensor and manufacturing method thereof
US11856855B2 (en) 2019-12-24 2023-12-26 Nuvoton Technology Corporation Thermal sensor and manufacturing method thereof

Also Published As

Publication number Publication date
IE20050179A1 (en) 2005-11-02
IES20050180A2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
US8507955B2 (en) Sensor device having MOS circuits, a gas or humidity sensor and a temperature sensor
US8357958B2 (en) Integrated CMOS porous sensor
EP1929285B1 (en) An integrated electronic sensor and method for its production
US20150338360A1 (en) Integrated CMOS Porous Sensor
US10197520B2 (en) Integrated circuit with sensor and method of manufacturing such an integrated circuit
US7157054B2 (en) Membrane type gas sensor and method for manufacturing membrane type gas sensor
JP2003197878A (en) Memory semiconductor device and its manufacturing method
EP3069130A1 (en) Integrated gas sensor and related manufacturing process
JP2017106857A (en) Semiconductor gas sensor, manufacturing method therefor, and sensor network system
US7390682B2 (en) Method for testing metal-insulator-metal capacitor structures under high temperature at wafer level
US11345590B2 (en) Semiconductor sensor and method of manufacturing the same
TW200540957A (en) An integrated electronic sensor
IE84228B1 (en) An integrated electronic sensor
IES84059Y1 (en) An integrated electronic sensor
IE20050180U1 (en) An integrated electronic sensor
IE84764B1 (en) An integrated electronic sensor
WO2016088099A1 (en) Cmos process for manufacturing an integrated gas sensor and corresponding cmos integrated gas sensor
EP3726208A1 (en) High surface area electrode for electrochemical sensor
TW200305973A (en) Method of forming electrical connection means of ultimate dimensions and device comprising such connection means
WO2012078023A1 (en) Micro-hotplate based gas sensor