TW200540276A - Immobilization of bead-displayed ligands on substrate surfaces - Google Patents

Immobilization of bead-displayed ligands on substrate surfaces Download PDF

Info

Publication number
TW200540276A
TW200540276A TW093123446A TW93123446A TW200540276A TW 200540276 A TW200540276 A TW 200540276A TW 093123446 A TW093123446 A TW 093123446A TW 93123446 A TW93123446 A TW 93123446A TW 200540276 A TW200540276 A TW 200540276A
Authority
TW
Taiwan
Prior art keywords
item
patent application
scope
substrate
beads
Prior art date
Application number
TW093123446A
Other languages
Chinese (zh)
Inventor
Sukanta Banerjee
Hui Huang
Original Assignee
Bioarray Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2004/018901 external-priority patent/WO2004111260A2/en
Application filed by Bioarray Solutions Ltd filed Critical Bioarray Solutions Ltd
Publication of TW200540276A publication Critical patent/TW200540276A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed are two different approaches for immobilization of beads on a substrate, one of which involves forming a bead-nanoparticle composite by cross-linking of the bead mixtures with nanoparticles. The other method involves surface modification of the substrate, using multi-layered polyelectrolytes. With either method, the beads are immobilized on the substrate in a manner suitable for viewing, as when the beads are used in assays and need to be analyzed following the assay. Different designs of depressions are also disclosed, some of which are suitable for holding beads in place without any deposition of nanoparticles or polyelectrolytes.

Description

200540276 九、發明說明: 相關申請案 本申請案主張對於6/12/2003申請之美國臨時申請案 第60/478,01 1之優先權。 【發明所屬之技術領域】 所揭示者係珠粒固定化於基質上之兩種不同的方法。 其中一種包括藉由珠粒混合物與奈米顆粒之交聯而形成一 種珠粒-奈米顆粒組合。而另一種方法包括利用多層聚電解 質之表面修飾。 背景 [先前技術] 微陣列因為其容許多分析物之多樣分析,已變得廣泛 應用在蛋白質體及基因體分析。3 ,如,Ramasy,胸 Biotechnol. , 16 , 40.44 ( 1988 ) ; P. Br〇Wn , D. Botstein ,200540276 IX. Description of the Invention: Related Applications This application claims priority to US Provisional Application No. 60 / 478,01 1 filed on 6/12/2003. [Technical Field to which the Invention belongs] The disclosed methods are two different methods of immobilizing beads on a substrate. One of them involves forming a bead-nanoparticle combination by cross-linking the bead mixture with the nanoparticle. The other method involves surface modification using multilayer polyelectrolytes. Background [Prior art] Microarrays have become widely used for proteomics and genomic analysis because of their diverse analysis of many analytes. 3, eg, Ramass, Biotechnol., 16, 40.44 (1988); P. BroWn, D. Botstein,

Nat. Genet.,21,33-37 ( 1999 ) ; D. Duggan , M. Bittner ^ Y· Chen,P. Meltzer > J. M. Trent « Nat. Genet_ , 21 , 10.14 (W9) ; R. UpshutZ,S. P. A. F〇d〇r,T R ㈣咖, D· J. L0ckhart ’ 纽 威,21,2〇 24 ( i999)。在微陣 列’諸如抗體及/或寡核普酸之結合劑係點在平面基質上。 然後這些結合劑與包含互補配體(蛋白質或互補募核普 酸,依合用者)之樣本接觸而得以結合或雜交。然後測定 Θ結合或雜交作用。由於結合劑或互補配體之確認是已知 200540276 的,藉由在陣列上追蹤彼等本身,能決定互補寡核苷酸或 蛋白質。這疋一種確認及定量樣本中被分析物之有效方法。 寡核苷酸陣列製作的主要技術包括:如V. G. Cheung 等人,Gae/·,21,15-19 ( 1999 )所述,將陣列打點, 並將呈針狀移轉或喷墨列印型式之小等份探針溶液之原始 ‘‘斑點”精確地置於各種基質上;如了· cheng等人,"此 ’ 541-546 ( 1998 )所述,在個別帶電基質區域 結合劑之序列電泳沉積;以及如U. Mask〇s、E. M.Nat. Genet., 21, 33-37 (1999); D. Duggan, M. Bittner ^ Y. Chen, P. Meltzer > JM Trent «Nat. Genet_, 21, 10.14 (W9); R. UpshutZ, SPA Fodor, TR Pharmacist, D. J. Lochart 'Neway, 21, 2024 (i999). In the microarray ' binding agents such as antibodies and / or oligonucleotides are spotted on a planar substrate. These binding agents are then allowed to bind or hybridize by contacting a sample containing a complementary ligand (protein or complementary nucleic acid, depending on the user). Theta binding or hybridization was then measured. Since the identification of the binding agent or complementary ligand is known 200540276, by tracking them on the array, the complementary oligonucleotide or protein can be determined. This is an effective method for identifying and quantifying analytes in a sample. The main techniques for making oligonucleotide arrays include: as described in VG Cheung et al., Gae / ·, 21, 15-19 (1999), dot the array and transfer it in a needle-like or ink-jet printing format. Small aliquots of the original "spots" of the probe solution are accurately placed on a variety of substrates; as described in Cheng et al., &Quot; this' 541-546 (1998), sequence electrophoresis of the binding agent in individual charged matrix regions Deposition; and such as U. Mask〇s, EM

Southern ^ Nucleic Acids Res^ 20^ 1679-1684 ( 1992 ) ^ S. P· A· Fodor 等人,科學 251 期,767-773 ( 199i)所述,促 進核苷酸之空間解析原位合成的方法;或如α· v. Vasiliskov等人,兰勿技肄27期,592 6〇6 ( i99”所述, 募核苦酸之共聚合作用。這些技術製造經空間編碼陣列, 其中陣列間的位置指出任何成分探針之化學確認。 藉由這些技術之定做的陣列的再現性製作需要控制微 流體及/或相當複雜性之光化學製作,以確保定量檢驗之一 致表現。以定量再現性方式進行微流體打點而製造ι〇〇微 米直徑之沉積特徵,包括以緊密體積控制施放奈升等分部 份(aliqUGt),該工作超過現今可用之液體操作方法學的能 力此外,在"L積過程中結合劑暴露於空氣,一般須經數 小時,在接續之結合檢,驗中對分子構型及結合劑之可親性 具無法控制之影響。原位陣列合成仰賴—連串多重遮掩及 光化子反應步驟’其必須再加以設計以適應陣列組合之任 何改雙K灸’對每個進行結合劑固定化後之陣歹卜其檢 200540276 由陣列製造的觀念引起 驗的表現必須加以“原位,,評估 難以品質控制及實施的問題。 作爲解決許多有關點狀陣列(spotted arrays)之問題的 另一個選擇,業已使用結合微珠粒顆粒之寡核苦酸探針。、 見10/15/2002申靖夕蓋阳士 ▲士士 ° 、國申Μ案序號第1〇/271,602號,“μ 同時詢問及酵素媒介 曰 谓/則法進仃多型性基因座 (Polymorphic Loci)多重分祕,,. ^夕更刀析,8/23/2002申請之序號第 10/204,799 號,“别田 _ m ία. 利用應用-特異性隨機顆粒陣列之多分析 物分子分析”,兩者皆併入二欠 幵入以貝筝考。珠粒係沉積在基質 上’且較佳係附著於其上, 以形成陣列。其主要益處係珠 ㈣編碼而使得有關特定珠粒之特定探針可藉解碼來測 定。此排除了有關點狀陣列的需求而形成在特定位置具特 定探針(空間編碼)之陣列。 將珠粒附著到基質上係所欲者,因若其在基質上移 動’解讀訊號就不能被局部化且正杨解釋。珠粒陣列的 益處之-是來自陣列的訊號及解碼可利用—般顯微鏡來完 成。例如,顯微鏡可自陣列之結合的配體獲得螢光訊號, 或可㈣到編碼珠粒顏色的不同。陣列應調其尺寸以使整 個陣列可在顯微鏡下以單一視野,也就是一次全景式地被 觀察。 固定珠粒的一種方法包括將其侷限到基質的槽中,其 中係將該等槽之直徑調整尺寸以與珠粒相符(亦即是,僅 稍大於珠粒)。槽的高度較佳地亦約相同於珠粒。圖丨顯 不在作為機械式收集阱(traps)之槽中珠粒收集之橫剖面 200540276 圖。只要基質面向上,舌士# a 重力就會抑制珠粒自槽中跑出去。 然而,因液體輸送所製造的力量 ^ ^ ^ 扪如基貝上氣-液界面的 移動所產生的侧向及正向力 卩可逐出未附在基質 上之朱粒。克服此種力量 挣固定的姓… 旧、且口物及方法並容許-致的製 仏固疋的珠粒陣列是有需要的。 經由背景所述,須注音 θ ^員/心的疋兩固體表面間附著力的強 2係決…些因素’包括表面化學、相對渔度、溫度、 广:輪性、接觸時間、材料本性、及其他。然而,對兩 表面建立附著性接觸,i 膜能六旦扯生丨^…/、須百先彼此緊密地趨近。幾種 夕心力里控制並調節兩表面^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J雙迎圖2顯不數種常遇到 的力里为別之相互作用台t , 了了、上r 邳立作用月“u)的依賴性。這些力量的每一 種可藉由改變各種參數來 数术寺工制。例如’在帶有相似符號電 何之兩表面間的長程靜雷 +Southern ^ Nucleic Acids Res ^ 20 ^ 1679-1684 (1992) ^ S. P.A. Fodor et al., Science 251, 767-773 (199i), a method for promoting spatially resolved in situ synthesis of nucleotides Or as described in α.v. Vasiliskov et al., Lambe Technology, Issue 27, 592 6006 (i99 "), co-polymerization of nuclear picric acid. These technologies produce spatially encoded arrays, where the positions between the arrays Indicate the chemical confirmation of any component probes. Reproducible fabrication of custom arrays by these techniques requires controlling microfluidics and / or fairly complex photochemical fabrication to ensure consistent performance in quantitative testing. Performed in a quantitatively reproducible manner Microfluidic dots to make ιιιη diameter deposition features, including tight volume control for the application of aliqUGt aliquots (aliqUGt), a task that exceeds the capabilities of today's available liquid handling methodologies. In addition, Exposure of the binding agent to the air generally requires several hours. The subsequent binding test has uncontrollable effects on the molecular configuration and the affinity of the binding agent. In-situ array synthesis relies on a series of multiple masks Cover the photon reaction step 'It must be designed to accommodate any modification of the double-K moxibustion of the array combination'. Each array after the binding agent is fixed. Examination 200540276 The performance caused by the concept of array manufacturing must be tested. Add “in situ, evaluate difficult quality control and implementation issues. As an alternative to solving many of the problems associated with spotted arrays, oligonucleopic acid probes that incorporate microbead particles have been used., See 10/15/2002 Shen Jingxi Gaiyangshi ▲ Shi Shi °, Guoshen M Case No. 10/271, 602, "μ Simultaneously Asks and Enzyme Media Interpretation / Regulations to Enter Polymorphic Loci ( Polymorphic Loci), Multiple Secrets, ^ Xi Geng An, 8/23/2002 Application No. 10 / 204,799, "Beida_ m ία. Utilization of Application-Specific Random Particle Arrays for Multianalyte Molecular Analysis "Both are incorporated into the two underpinnings. The bead is deposited on the substrate 'and is preferably attached to it to form an array. Its main benefit is the encoding of the bead to make specific beads relevant. Specific probes can be determined by decoding This eliminates the need for a dot array and forms an array with a specific probe (spatial coding) at a specific location. Attaching beads to a substrate is desirable because it cannot be interpreted if it is moved on the substrate. Localized and explained by Yang. One of the benefits of bead arrays is that signals from the array and decoding can be done with a general microscope. For example, the microscope can obtain fluorescent signals from the array's bound ligands, or it can be encoded The color of the beads is different. The size of the array should be adjusted so that the entire array can be viewed under a microscope with a single field of view, that is, a panoramic view. One method of fixing the beads includes confining them to grooves in the matrix, where the diameter of the grooves is sized to match the beads (i.e., only slightly larger than the beads). The height of the grooves is also preferably about the same as the beads. Figure 丨 shows a cross section 200540276 of beads collected in a trough that is not a mechanical trap. As long as the matrix is facing up, the tongue #a gravity will inhibit the beads from running out of the trough. However, the forces created by the liquid transport ^ ^ ^ 扪 such as the lateral and positive forces generated by the movement of the gas-liquid interface on the Kibe 卩 can expel the Zhu particles that are not attached to the substrate. Overcoming this kind of power and earning a fixed family name ... Old, mouthfuls and methods that do not allow for a consistent array of beads are needed. According to the background, the strong adhesion between the two solid surfaces that need to be pronounced θ ^ member / heart depends on some of these factors' including surface chemistry, relative fishing, temperature, broad: rotation, contact time, material nature, and others. However, if adhesive contact is established between the two surfaces, the i-film can be pulled together in six densities ^^ //, and must approach each other closely. Several kinds of powers control and adjust the two surfaces ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J Double Welcome Figure 2 shows that there are many other commonly encountered forces in the other interaction platform t Dependence on the month "u". Each of these forces can be counted by changing various parameters. For example, 'Long-range static thunder between two surfaces with similar symbols Den Ho +

—上 f冤排斥力可糟添加鹽類來控制,JL 这^該排斥力,而使得 ^ 衣曲罪侍更近。在缺乏遮檔的情 ;下’:於抵抗重力之靜電排斥力,對來自如玻璃的帶電 、’面之π負電何聚苯乙稀微顆粒(直徑幾微米)的平衡“接 觸 距離,係在1 on αα 在00的nm的級數。在此等情況下,顆粒 離表面維持夠遠,而能维者所 ^ 隹持只貝上不受在短距規模操作的 吸引父互作用影響。鈇立 …、須’主思,配體-受體型態交互作用 (例如’互補暴核替酸門 錢間雜父作用)纟質上係有吸?丨力的 且犯夠在長距規模下操作。 毛細力在使兩表面姑p告 面破此罪近上也能是非常有效的。例—The repulsive force on f can be controlled by adding salt. JL should repel the force and make Yiqu sinner closer. In the absence of shielding; under ': the balance of the contact distance between the electrostatic repulsion force against gravity, the charge from glass, the π negative charge of the surface, and the polystyrene particles (a few microns in diameter), 1 on αα is in the order of 00 nm. In these cases, the particles remain far enough from the surface, and the maintainer is not affected by the interaction of the attractive parent operating on a short-range scale. 鈇Establishing ..., must think, ligand-receptor type interactions (such as 'hybrid interactions of complementary complementary nuclear gates') are qualitatively attractive and capable of operating at long distances? Capillary force can also be very effective in breaking the crime on both sides.

如,半徑R之硬球 J 瓦肢與千面間的毛細力(&)具函數 /V〜萃不及j (Μ夕,i 一中夕係局部接觸角,而π係形成毛細 200540276 薄膜液體之界面張力。名/5^e/aAvz7/5 J.N.,分子間及表面 力,學術刊物,紐約,1985。對於濕薄膜,液體大的界面 張力導致對應的大的值。 一旦接觸,兩表面是否會附著並非完全由分子間淨吸 引作用來決定。因應使之接觸所產生的巨觀體變形,此巨 觀接觸幾何學(bulk contact geometry )以及諸如彈性係數 及硬度之材料性質,皆影響一表面對另一表面之相符性及 附著性。根據 JKR 理論(Johnson,K_L.,Kendall,K.,Roberts, A· D.,表面能及彈性固體之接觸,户r〇c·兄心匕,餘教^ 1971 ’ 324 ’ 301 ),在外施負荷‘p’下,接觸半徑<a, 之變異性具有下式 P + 3nR W + WP + (3nR W)2 其中κ代表彈性常數,w〜,r i n代表附著功(其中 r!及r2係兩接觸表面之表面能),及化代表曲率半徑。 在缺乏任何外施負#⑴時,平衡接觸半徑為For example, a hard ball with a radius of R, the capillary force between the tile limbs and the thousand faces (& Interfacial tension. Name / 5 ^ e / aAvz7 / 5 JN, Intermolecular and Surface Forces, Academic Journal, New York, 1985. For wet films, the large interfacial tension of the liquid leads to correspondingly large values. Will the two surfaces be contacted once they are in contact? Attachment is not completely determined by the intermolecular net attraction. In response to the deformation of the macroscopic body caused by its contact, this bulk contact geometry and the properties of materials such as the coefficient of elasticity and hardness all affect the surface Consistency and adhesion on the other surface. According to JKR theory (Johnson, K.L., Kendall, K., Roberts, A.D., Surface energy and contact with elastic solids, H. Roc. Brother Heart Dagger, Yu Jiao ^ 1971 '324' 301), under external load 'p', the variability of the contact radius < a has the following formula P + 3nR W + WP + (3nR W) 2 where κ represents the elastic constant, w ~, rin Represents work of attachment (where r! And r2 are the two contact surfaces Surface energy), and 化 represents the radius of curvature. In the absence of any externally applied negative # ⑴, the equilibrium contact radius is

6nR2W ~K~ 該理論亦預測附著接觸力(Fadh)為:6nR2W ~ K ~ The theory also predicts the adhesion contact force (Fadh) as:

Fndh^-rcRW 大面積的接觸增加了附著作用1而,單獨只有它是 9 200540276 不夠的。例如,潤濕液體可達到良好的接觸,但無法產生 足夠的附著力,因為它無法抵抗剪力變形。 事實上,材料表面為粗糙的因此就永不會緊密接觸。 如果接觸的實際區域小,附著作用則弱。對粗糙表面而言, 單獨的表面現象不能算作為附著,而是由許多其他巨觀現 象來擔任’其包括表面粗操程度、施於接觸的最大正向力、 表面接角蜀的時間、巨分子結構及動態、以及其他。 及 Tripp ( Greenwood, J.A.,Tripp,j.H·,粗糙球體的彈性 接觸,/·却ρ/ϋ 1967 (三月)153.159 )早期研究之 一的結論為粗糙表面間的有效最初接觸面積如下·· 其中〜係表面粗㈣平方根且R為系統的曲率整體 半徑(對球體及平面车轉的七辦 糸統的球體+徑)°Qu〇ne等人(Quone Κ· A.,Knarr,R.F,菸· Ί ’ ^ · anderllCk,Τ·Κ•,粗糙固體於接觸時 之變形與附著作用的 丁 解析,J· Phys· C/iem·,β 1999,, 5320-5327 )最近的研穿姓认 、 u 、 研九、、、σ响為取初接觸時的面積具有較以 上預期為大的半徑之系絲合 Λ 糸統會強力的附著,而具較小的的技 觸半徑者則不是微弱的 〕附者就疋不會附著。因此, 固體而言,附著作用在炫—』 對粗糙 ,._ ^ θ奴者杧加的最初負荷而增進。在捭 加取初負荷的畢多變了 , , t ^ ^ 7 7〜曰下,粗糙變形能使得 此容許凡德瓦吸引六彳史侍表面更加趨近而因 〜凡及%力貢獻於附著作用。 多樣=晶片)上固定珠粒陣列以供多分析物之 且::定方二:化必須在完成陣列組裝過程後發生。而 應以任何實質方式影響晶片上的生物檢 10 200540276 驗亦即疋,其反而應該保存展示在珠粒表面上的受體的 部分,使結合動能不受影響並使非特異性結合減到最少。 概要 【發明内容】 直㈣示者係珠粒固定化於基質上之兩種不同的方法。 其中《包括藉由珠粒混合物與奈米顆粒之交聯而形成一 種珠粒·奈米顆粒組合。而另—種方法包括利用多層化聚電 解貝之基質的表面修飾。 在第一種方法中,功能化珠粒之陣列係在晶片上指定 之:置來組裝(較佳地在凹槽或在珠粒局部化位置之其他 型恶,如7/9/02中請之序號第10/192,352號所述,“微顆 :車列及其製備方)。其次,將-滴奈米顆粒懸浮液 導入到晶片i。接著使該懸浮溶液蒸發一段預冑長度的時 間,這段期間該奈米顆粒進行大量的自我聚集並附著到珠 粒以及基質表面。在培養期間,要注意避免水分完全蒸發, =樣會形成一乾燒結薄膜。培養之後,將過量的奈米顆粒 懸净液抽乾,並經由擦洗和清洗清潔晶片表面。這會將附 著的奈米顆粒自晶片和珠粒暴露的部分去除,而留下在珠 粒和基質間所收集到的奈米顆粒。在珠粒和基質表面間所 收集到的聚集的奈米顆粒用作於將珠粒固定在槽中。名圖 奈米顆粒懸浮液的濃度及培養時間藉由測量在最適清 洗條件下固定化的效率而憑經驗最適化。名以下實施例1。 雖然這個方法在固定珠粒是有效的,但一可能的不利 200540276 處在於刀析物(如,寡核 甘)非特異性結合到奈米顆粒 的增加。奈米顆粒在槽中¥ W “ 中聚積在珠粒周圍,在珠粒及槽-槽 之間被收集’以及此非特昱降姓 枝s 導致非特異性訊號。非 特異性結合可藉由以像聚乙二 ^ ^ 、 FEG )之聚合物預處 理基貝而得以降低,其中聚合物 物係塗覆基質及奈米顆粒而 因此降低分析物之非特異性結合1實施例2。 超薄表面薄膜係慣f地用來修飾及/或增加固相支撐物 ,功能性。傳統化學吸收技術通常需要1〇〇%反應產率或大 量的:則向交聯作用以建立及維持均勻薄膜。一種發展超薄 表面薄膜之相當新的技術係藉由陽離子型及陰離子型聚電 解質交替層之連續沉積(Iler,R.K·,了·膠體界面%·, 1966,2卜 569 ; Decher,G.,Hong,J.D.,歐洲專利號 〇472 990 A2 ’ 1992 ; Decher,G. ’ Fuzzy “奈米組件:向層化聚合Fndh ^ -rcRW The large-scale contact increases the supplementary work1, and it alone is not enough for 20052005276. For example, wetting liquids make good contact but do not produce sufficient adhesion because they cannot resist shear deformation. In fact, the surface of the material is rough and therefore never comes in close contact. If the actual area of contact is small, the supplementary work is weak. For rough surfaces, a single surface phenomenon cannot be regarded as adhesion, but is handled by many other macroscopic phenomena. It includes the degree of surface roughness, the maximum positive force applied to the contact, the time of the surface contact angle, Molecular structure and dynamics, among others. And Tripp (Greenwood, JA, Tripp, jH ·, Elastic contact of rough spheres, but ρ / ϋ 1967 (March) 153.159) One of the early studies concluded that the effective initial contact area between rough surfaces is as follows ... ~ Is the rough square root of the surface and R is the overall radius of curvature of the system (the sphere + diameter of the seven systems of spheres and plane turning) ° Quone et al. Ί ^ anderllCk, TK, Deformation of rough solids in contact with Ding Xiao, J. Phys, C / iem, β 1999, 5320-5327) Recent researches on surname recognition, u , 九九, 、, σ, 为, 为, 取, 取, 之, 面积, 的, 面积, 面积, 面积, 面积, 面积, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, 系, 面积, σ, 的, 面积, 面积, 的, and σ, which have a larger radius than expected, will adhere strongly, and those with a smaller radius of contact will not be weak. Attachers will not attach. Therefore, as far as solids are concerned, the attached works are used to dazzle — 'to increase the initial load on rough, ._ ^ θ slaves. After the addition of the initial load, t t has changed, t ^ ^ 7 7 ~, the rough deformation can make this allows Van der Waals to attract Liu Qi Shi Shi surface closer, because ~ and% force contribute to the adhesion effect. Diversity = Wafer) The bead array is fixed for multi-analyte. And :: Formula 2: The chemical conversion must occur after the array assembly process is completed. Instead, it should affect the bioassay on the wafer in any substantial way. The test should be carried out. Instead, the part of the receptor displayed on the surface of the bead should be preserved so that the binding kinetic energy is not affected and non-specific binding is minimized. . Summary [Summary of the Invention] The direct indicator is two different methods for immobilizing beads on a substrate. Among them, including the formation of a bead-nano particle combination by cross-linking the bead mixture with the nano-particles. Another method involves surface modification of the substrate using multi-layered polyelectrolyte. In the first method, the array of functionalized beads is specified on the wafer: to be assembled (preferably in a groove or other type of bead localization, such as in 7/9/02, please No. 10 / 192,352 described in "Small particles: trains and their preparations." Secondly, a drop of nanometer particle suspension was introduced into the wafer i. Then the suspension solution was evaporated for a predetermined period of time, During this period, the nano-particles aggregated a lot and attached to the beads and the substrate surface. During the culture, care must be taken to avoid the complete evaporation of water, which will form a dry sintered film. After the culture, the excess nano-particles are suspended The solution is drained, and the wafer surface is cleaned by scrubbing and washing. This will remove the attached nano particles from the exposed part of the wafer and the beads, leaving behind the nano particles collected between the beads and the matrix. In the beads The aggregated nano particles collected between the particles and the surface of the substrate are used to fix the beads in the tank. The concentration and culture time of the nano particle suspension are measured by measuring the efficiency of immobilization under optimal cleaning conditions. By experience Adapted. Named below is Example 1. Although this method is effective in immobilizing beads, a possible disadvantage 200540276 lies in the increase in nonspecific binding of knife educts (eg, oligonucleosides) to nanoparticle. Nano Rice grains accumulate around the beads in the grooves, and are collected between the beads and the groove-slots' and this non-special descending branch leads to non-specific signals. Non-specific binding can be reduced by pre-treating the substrate with a polymer such as polyethylene, FEG, etc., where the polymer system coats the matrix and nanoparticle and thus reduces the non-specific binding of the analyte 1 实施 例 2。 Embodiment 1. Ultra-thin surface films are conventionally used to modify and / or increase the solid support and functionality. Traditional chemical absorption techniques usually require 100% reaction yield or large amounts: then cross-linking to build and maintain a uniform film. A relatively new technology for the development of ultra-thin surface films is the continuous deposition of alternating layers of cationic and anionic polyelectrolytes (Iler, RK ·, ·· Colloidal interface% ·, 1966, 2 569; Decher, G., Hong, JD, European Patent No. 0472 990 A2 '1992; Decher, G.' Fuzzy 'Nano-components: Polymerization towards layers

多組成”,科學,277,1232,1997)。於此方法中,靜電 吸引附著連續|。最近,已經有幾個報告使用帶相反電荷 聚合物-奈米顆粒系統以發展此等多層薄膜。龙 Τ·專人,膠體及界面科學期刊,254,222-226 ( 2002 );Multi-composition ", Science, 277, 1232, 1997). In this method, electrostatic attraction adheres continuously |. Recently, there have been several reports using oppositely charged polymer-nanoparticle systems to develop these multilayer films. Long T. Specialist, Journal of Colloid and Interface Science, 254, 222-226 (2002);

Serizawa,Τ.等人,Langmuir,1998,14,4088-4094 ; Lvov, Υ·等人,Langmuir,1997,13,6195-6203 ; Kotov. Ν·Α,J·Serizawa, T. et al., Langmuir, 1998, 14, 4088-4094; Lvov, J. et al., Langmuir, 1997, 13, 6195-6203; Kotov. Ν · Α, J.

Phys. Chem.,1995,99,13065-13069 〇 這種型態的多層組裝係描述於圖5 A,並執行如下。帶 負電何表面之固體基質係浸在含陽離子型聚電解質之溶液 中’而吸收一層聚電解質。由於吸收作用是在高濃度下進 行’一些正電荷在界面維持未為抵銷且因此表面電荷被有 12 200540276 效地反轉。在於純水中徹底清洗後,將該基質浸於含陰離 子型聚電解質之溶液中’而吸收一層聚陰離子型族群。以 循環方式重複兩步驟,形成具有交替的陽離子/陰離子層之 · 多層組裝。 亦揭示不同的凹槽的設計’其有些係適於用來將珠粒 保持在適當位置而沒有任何奈米顆粒或聚電解質之沉積。 圖式之說明及實施例,以及更詳細的說明如下。 圖1係以橫剖面圖示關於在基質上局部化微顆粒之凹Phys. Chem., 1995, 99, 13065-13069. This type of multilayer assembly is described in Figure 5A, and is performed as follows. A solid substrate with a negatively charged surface is immersed in a solution containing a cationic polyelectrolyte to absorb a layer of polyelectrolyte. Because the absorption is performed at a high concentration, some positive charges are not offset at the interface and therefore the surface charges are effectively reversed. After thoroughly washing in pure water, the substrate was immersed in a solution containing an anion-type polyelectrolyte to absorb a layer of a polyanionic group. Repeat the two steps in a cyclic fashion to form a multilayer assembly with alternating cation / anion layers. Also disclosed are different groove designs', some of which are suitable for holding the beads in place without any deposition of nano particles or polyelectrolytes. The illustrations and embodiments of the drawings, and a more detailed description are as follows. Figure 1 is a cross-sectional illustration of the localization of microparticles on the substrate.

槽的一種例示型態。 H 圖2顯示數種常遇到的力量分別之相互作用能(u)的 依賴性。 圖3A係基質的橫剖面圖,該基質包含在凹槽收集到之 珠粒。圖3B係顯示珠粒於收集阱之配置及在孔洞壁及微顆 粒間跨越奈米顆粒橋之橫剖面圖。可見到除了在跨越橋區 域之外,在微顆粒之暴露表面具有低密度的奈米顆粒,因 此而使對珠粒功能性的影響減到最小。 圖4顯示固定化效率的評估。圖4A描述組裝後之陣 · 列’及圖4B、4C及4D顯示施予剪力後之陣列,圖4B沒 有任何奈米顆粒,圖4C帶有不足夠的奈米顆粒濃度(〇4 %(w/v)),而圖4D帶有足夠的奈米顆粒(1〇%(w/v)) 以影響固定化。用於此實驗的奈米珠粒係〜8〇奈米直徑矽石 顆粒而微顆粒係抗生物素蛋白(N論avdin)功能化綠榮光 顆粒(3 · 2微米直徑)。An exemplary form of a slot. H Figure 2 shows the dependence of the interaction energy (u) of several commonly encountered forces. Figure 3A is a cross-sectional view of a matrix containing beads collected in a groove. Fig. 3B is a cross-sectional view showing the arrangement of beads in a collection well and the cross-section of a nano-particle bridge across the hole wall and micro-particles. It can be seen that with the exception of the bridge-crossing region, there is a low density of nano-particles on the exposed surface of the micro-particles, thereby minimizing the effect on the functionality of the beads. Figure 4 shows the evaluation of immobilization efficiency. FIG. 4A depicts the array after assembly, and FIGS. 4B, 4C, and 4D show the array after the shear force is applied. FIG. 4B does not have any nano particles, and FIG. 4C has an insufficient nano particle concentration (04% ( w / v)), and Figure 4D carries enough nano particles (10% (w / v)) to affect immobilization. The nanobeads used in this experiment were ~ 80 nanometer diameter silica particles while the microparticles were avidin (Nonavdin) functionalized green glory particles (3.2 micron diameter).

圖5 A顯示聚電解質雙層結構之沉積的方法流程。圖5B 13 200540276 描述經聚電解質塗覆之收集,其± MM㈣ 積’丁'米、,且成薄膜係沉積在收集阱壁上,且在暴露珠粒及 晶片表面上沒有塗覆。 6 A 60顯不經多層$電解質修飾之晶片❾雜交檢驗 依收集If的尺寸,冑2、3或5雙層係經沉積以固定 圖 結果。 化。圖6入及6C ‘顯示特異性訊號的結果而目6β及印顯示 非特異性5fl #u的結果。圖6A及6B係經修飾晶片的結果且 圖6C及6D代表控制晶片的結果。FIG. 5A shows the method flow of the deposition of the polyelectrolyte bilayer structure. Fig. 5B 13 200540276 depicts a polyelectrolyte-coated collection with ± MM 丁 ’丁 米 m, and deposited in a thin film system on the wall of the collection well, with no coating on the exposed beads and wafer surface. 6 A 60 display wafers without multi-layer electrolyte modification. Hybridization test According to the size of the collected If, two, three or five bilayers were deposited to fix the results. Into. Figures 6 and 6C ′ show the results of specific signals and head 6β and India show the results of non-specific 5fl #u. Figures 6A and 6B are the results of a modified wafer and Figures 6C and 6D represent the results of a control wafer.

圖7A到7C以橫剖面顯示在基質中槽的三種不同例示 結構。 圖8顯不一層接一層的方法於保持珠粒於槽中之效Figures 7A to 7C show three different exemplary structures of grooves in a matrix in cross sections. Figure 8 shows the effect of the layer-by-layer method to keep the beads in the tank

率。圖8A描述槽陣列之平視圖;®叫苗述類似於如圖8A 之槽陣列,在珠粒組裝並清洗且沒有其他處理之後的圖 像;圖8C描述塗覆著五聚電解f雙層之晶片,在珠粒組裝 並清洗之後的槽陣列之圖像;圖8D顯示如圖8人到叱、圖 8E所示槽及珠粒之平均大約相對尺寸。 圖9A以平面圖据械_ ^ ^ ^ . 口抽述種基質中珠粒之孔洞(或收集阱) 的設計n經擠壓’’六角形,其中兩相對邊之間的空 間小於珠粒直徑。圖9B描述-種基質中珠粒之孔洞(或收 集钟)的設計,其為不對稱六角开>,其中兩相對邊他們之 間在-端較另-端具較窄空帛,且經設計使得在較窄端, 兩邊之間的空間小於珠粒直徑。 詳細說明 14 200540276 【實施方式】 首先轉向圖1,係描述基質中凹槽(孔洞)之一例示組, 其適於插入展示生物分子之珠粒。可在基質表面上添加檢 驗分析物及試劑並使其與珠粒及展示其上之生物分子接 觸。圖7A到7C描述此種凹槽之三種不同的設計。在圖7A, 孔洞在底部縮小以幫助將珠粒保持在孔洞的底部的。在圖 7B ’孔洞係圓椎形以卡住珠粒。在圖7C,孔洞,以橫剖面, 係U型’而珠粒可存在於孔洞的任一邊。rate. Figure 8A depicts a plan view of a slot array; ® is similar to the slot array shown in Figure 8A, after the beads have been assembled and cleaned without additional processing; Figure 8C depicts a five-layer electrolysis f double layer An image of the array of grooves of the wafer after the beads are assembled and cleaned; FIG. 8D shows the average relative size of the grooves and beads as shown in FIG. 8 to FIG. 8 and FIG. 8E. Figure 9A shows the design of the holes (or collection wells) of the beads in the seed matrix in a plan view according to the plan _ ^ ^ ^. The hexagonal shape is extruded, wherein the space between two opposite sides is smaller than the diameter of the beads. Figure 9B depicts the design of the pores (or collection bells) of the beads in a matrix, which is an asymmetric hexagonal opening > where the two opposite sides have narrower voids at the -end than the other-and The design is such that at the narrower end, the space between the two sides is smaller than the diameter of the beads. Detailed description 14 200540276 [Embodiment] Turning first to FIG. 1, an exemplary group of grooves (holes) in a matrix is described, which is suitable for inserting beads displaying biomolecules. Test analytes and reagents can be added to the surface of the substrate and brought into contact with the beads and the biomolecules displayed thereon. Figures 7A to 7C depict three different designs of such grooves. In Figure 7A, the holes are reduced at the bottom to help keep the beads at the bottom of the holes. In FIG. 7B, the holes are circular cones to hold the beads. In Fig. 7C, the hole, in cross section, is U-shaped and the beads may exist on either side of the hole.

圖9A及9B描述孔洞的兩種不同設計,其具有較珠粒 直徑為窄的面積。珠粒係經擠壓到孔洞中,且為所造成的 膨脹力保持在適當位置。 以本文所述孔洞之任何設計,可運用其他技術,包括 電解質層或奈来顆粒懸浮液之沉積,來將珠粒保持在孔洞 内的適g位置。此專技術之實例係陳述如下。或者,對珠 粒經卡入或擠壓進去的叫描& ^ ^ Λ 遇云的凹槽而g,可不需要其他步驟去將 珠粒保持在適當位置。 實施例 實施例1:供固定化奈米顆粒之關鍵濃度的測定 實驗來評估顆粒固定化於收集啡所需奈米顆粒 ……… 乳基質製作尺寸3.5微米 (邊對邊的直徑)及3·5微米 ^ ^ ^ ^ 衣度之八角形收集阱的陣列。 塗覆有抗生物素蛋白之32 命丨:九念大,, 木直位礼膠顆粒以綠色螢光 染浏乐色。示米珠粒貯存懸 從馮34直里%之80nm矽石 15 200540276 顆粒(Sn〇wtex-ZL,Nlssan Chemicais,H〇ust〇n,τχ)。 自奈米顆粒貯存液採出等量樣本並以含有3% (v/v)甘油 之lOmMTds緩衝液(pH8 〇)稀釋以製成所欲濃度。然後 將這些經稀釋懸浮液用來進行實驗。 將珠粒使用以下方案組裝於基質上。 貫施例:珠粒組裝方案 形成珠粒陣列之處理步驟的一個實施例如下。兩微$Figures 9A and 9B depict two different designs of holes, which have a narrower area than the diameter of the beads. The beads are squeezed into the pores and held in place for the resulting expansion force. With any design of the pores described herein, other techniques can be used, including deposition of an electrolyte layer or a Nile particle suspension, to keep the beads in place within the pores. An example of this expertise is stated below. Alternatively, if the beads are snapped in or squeezed in, the groove is called & ^ ^ ^ Encountering the grooves of the cloud, and g, there is no need for other steps to keep the beads in place. EXAMPLES Example 1: Determining the key concentration of immobilized nano particles for experiments to evaluate the immobilization of the particles on the nano particles required to collect the brown ......... The milk base is made in a size of 3.5 microns (diameter from side to side) and 3. An array of 5 micron ^ ^ ^ ^ octagonal collection wells for clothes. 32 lives coated with avidin 丨: Jiu Nian Da, wood upright gum particles are stained with green fluorescence. Storage of spheroid beads was 80nm silica 15 200540276 from Feng 34 li% (Snwtex-ZL, Nlssan Chemicais, Huston, τχ). An equivalent sample was taken from the nanoparticle storage solution and diluted with 10% MTvs buffer (pH 80) containing 3% (v / v) glycerol to make the desired concentration. These diluted suspensions were then used for experiments. The beads were assembled on a substrate using the following protocol. Example: Bead Assembly Scheme An example of the processing steps for forming a bead array is as follows. Two micro $

之顆粒(直控大約3·2微米)於⑽微升構酸鹽緩《 生理鹽水(亦已知為·ρ只ς| ., 兩 pBS · 15〇mM,NaCl ; lOOmM,磷 g 納pH 7.2)係用於在各晶片上具微槽之個別石夕晶片(u X 1.75 mm)上組裝微顆粒陣列。使用以下步驟: 以離。作用(“,〇〇〇尽,】分鐘)於i 5 w之離心管斗 集來自PBS之微顆粒。亦可使用其他收集方式。 利用移轉移液吸管以抽吸作用丢棄上清液。 將顆粒再懸浮於5微升之3The particles (direct control about 3.2 micrometers) in microliters of sodium phosphate buffered saline (also known as · ρ 只 ς |., Two pBS · 150mM, NaCl; 100mM, phosphorus g sodium pH 7.2 ) Is used to assemble micro-particle arrays on individual Shi Xi wafers (u X 1.75 mm) with micro grooves on each wafer. Use the following steps: To leave. Action (", 〇〇〇〇 depletion,] minutes) in a 5 w centrifuge tube to collect microparticles from PBS. Other collection methods can also be used. Use the transfer pipette to discard the supernatant with suction effect. Particles resuspended in 5 μl of 3

诚开之3%甘油,於1〇lnM Tris p 7.5 中。 自甘油〉谷液以離心作用攸 收集顆粒。亦可使用其他收| 方式。 自顆粒丸粒吸出甘油溶液。 將丸粒再懸浮於2微升之^ 诚开之 甘油,10mM Tris,pH 7.5 採用預接合到玻璃載玻片之矽晶片。 〇 · 2 5微升體積之顆抑科全 稍粒懸子液經移液吸管吸到各個晶少 上含有微槽之區域。 16 200540276 將已組裝晶片留在封閉室内一小段時間(如3〇 min) 以使得珠粒安頓下來並讓過量水蒸發。 培養之後,滴液變成較黏的漿體。 以末自水瓶的水清洗棉質塗抹器(appHcat〇r )。 將濕的棉質塗抹器以吸收性衛生紙乾燥以移除過量 水。爲組裝微顆粒陣列,將珠粒漿體用濕的棉質塗抹器頂 立而以轉圈動作溫和地攪拌幾次。棉球上鬆散的纖維將珠粒 送進表面上之微槽。 槽 接著以上步驟,將玻片離心促使珠粒沉到晶片上的(微 中。使用以下材料及設定:Opened 3% glycerol in 10 nM Tris p 7.5. Collect the granules from glycerol> valley by centrifugation. Other collection methods can also be used. The glycerin solution was aspirated from the granules. The pellets were resuspended in 2 microliters of Glycerin, 10 mM Tris, pH 7.5 using a silicon wafer pre-bonded to a glass slide. 〇 · 25 microliter volume of yuccote A small suspension of liquid was pipetted to the area containing microgrooves on each crystal. 16 200540276 Leave the assembled wafer in the enclosure for a short period of time (such as 30 min) to settle the beads and allow excess water to evaporate. After incubation, the drip became a sticky slurry. Wash the cotton applicator (appHcator) with water from a water bottle. Dry the wet cotton applicator with absorbent toilet paper to remove excess water. To assemble the microparticle array, the bead slurry was erected with a wet cotton applicator and gently stirred several times in a circular motion. Loose fibers on the cotton ball feed the beads into microgrooves on the surface. Tank Following the above steps, centrifuge the slide to make the beads sink to the wafer (micro). Use the following materials and settings:

離心機 旋轉器 速度 時間Centrifuge spinner speed time

Sorvall離心機型號RT6000B Sorvall搖良斗型號H1000B 2000 RPM 5 min 使用螢光顯微鏡檢查微槽之顆粒佔據率。若佔據率不 々人滿思,可重衩以上步驟。過量顆粒使用棉質塗抹器溫Sorvall Centrifuge Model RT6000B Sorvall Centrifuge Model H1000B 2000 RPM 5 min Use a fluorescence microscope to check the particle occupancy of the microwells. If the occupancy rate is unsatisfactory, you can repeat the above steps. Excessive particles use a cotton applicator to warm

和地掃離晶片。爲避免表面上過量的水,不要將棉質塗抹 器在晶片上壓。 以壓乡但氮吹晶片表面使晶片乾燥。 經此法製備之組裝微顆粒可用於檢驗或在4〇c貯存於 溶液中供以後使用。 、 接著組裝之後,收集阱之佔據率以螢光顯微鏡檢測。 名圖4 A其次,將2 // 1奈米顆粒懸浮液之液滴使用於固定 化’其係藉由將其置於基質(具有1·75 mmx 1·75 mm大小 17 200540276 上並在30°C及30%相對溼度培養30分鐘。此選出之培養條 件係避免完全蒸發,導致形成不想要的乾燒結薄膜。培養 結束後,將過量奈米顆粒懸浮液吸掉並將晶片表面經完全 擦洗及清洗而清潔之。再次利用螢光顯微鏡檢查收集阱之 佔據率。結果示於圖4B到4D。 實施例2 :經由聚合物組絕(blocked)之奈米顆粒固定化 之晶片的檢驗結果 珠粒組裝係如實施例1所述使用1 %奈米顆粒溶液來進 行。用於此研究之聚合物組絕溶液是1 % ( w/v ) PEG 20,000,其溶於含3% ( v/v )甘油之1 OmM Tris 〇接在使用 該奈米懸浮液之顆粒組裝及固定化之後,將15 # 1聚合物溶 液加到每個晶片,其係貯存於4°C潮溼箱過夜。爲進行檢 驗,首先將過量聚合物溶液自晶片表面移除且將晶片以去 離子水清洗。 雜交檢驗係使用經90-nt Cy5標記之聚核苷酸標靶來進 行。兩微升之10// Μ合成標靶(5’-Cy5染劑經偶合到募: TCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAA TATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGA AGCGTCATCAA-3’ (序列識別號1 ))之溶液於去離子水 中係以18 // 1之lx TMAC( 4.5 Μ氯化四甲基銨,75 mM Tris pH 8.0,3 mM EDTA,0.15% SDS)稀釋到 20/z 1 之最後體 積。將兩種類型經寡核苷酸功能化之螢光微顆粒,使用如 上所提出之方案,組裝到矽晶片上之平面陣列。第一種微 顆粒類型係以經配對之探針序列(序列識別號2 ) 5 胺基 18 200540276 /(TEG 空間子)/CCAAAGATGATATTTTC/-3’ ( “TEG” 為 三伸乙甘醇)功能化。第二種微顆粒類型係以經錯誤配對 之探針序列(序列識別號3 )胺基/(TEG空間 子)/ATAACCAGGAGGAGTTCG/-3,功能化。將二十微升合 成標靶加到基質表面且將基質置於55°C加熱器20分鐘。然 後將基質自加熱器移開並將標靶溶液吸出。將基質以lx TMAC在室溫清洗三次。接著,將10" 1之lx TMAC置於 基質表面,其係經蓋玻片蓋住並利用螢光顯微鏡來記錄陣 列之螢光強度。 控制陣列係於沒有任何添加之奈米顆粒或聚合物之晶 片完成。在控制檢驗中之未經佔據的收集阱,在收集味中 有一些標靶之非特異性結合。結果示於表2及3,其中CV 係變異係數。 表2 ··經由聚合物組絕之奈米顆粒固定化曰 晶片# 配對探針訊號 錯誤配對探針訊號 比率 未經佔據之收集 阱 1 9603 CV8% 783 CV36% 12.26 558 CV 20% 2 11,902 CV5% 695 CV 24% 17.12 545 CV21% 3 10,264 CV10% 731 CV30% 14.04 539 CV18% 4 10,631 CV11% 1058 CV33% 10.04 - 表3 :未經塗覆(控制)晶片的結果 19 200540276Sweep off the wafer gently. To avoid excessive water on the surface, do not press the cotton applicator on the wafer. The wafer was dried by blowing the surface of the wafer with nitrogen but nitrogen. The assembled microparticles prepared in this way can be used for inspection or stored in solution at 40 ° C for later use. After the assembly, the occupancy of the collection well is detected by a fluorescence microscope. Name Figure 4 A Secondly, droplets of 2 // 1 nm particle suspension are used for immobilization, which is performed by placing them on a substrate (having a size of 1.75 mm x 1.75 mm 17 200540276 and at 30 Incubate at 30 ° C and 30% relative humidity for 30 minutes. The selected culture conditions are to avoid complete evaporation, resulting in the formation of unwanted dry sintered films. After the culture is over, the excess nanoparticle suspension is sucked off and the wafer surface is completely scrubbed And cleaned and cleaned. The occupancy of the collection well was again checked with a fluorescence microscope. The results are shown in Figures 4B to 4D. Example 2: Inspection results of beads immobilized with nanometer particles immobilized by polymer blocks The particle assembly was performed as described in Example 1 using a 1% nanoparticle solution. The polymer solution used in this study was 1% (w / v) PEG 20,000, which was dissolved in a solution containing 3% (v / v ) 1 OmM Tris of glycerol Following the assembly and immobilization of the particles using the nanosuspension, a 15 # 1 polymer solution was added to each wafer, which was stored overnight at 4 ° C in a humidity cabinet. For inspection First, the excess polymer solution is removed from the wafer surface and the The slices were washed with deionized water. The hybridization test was performed using a 90-nt Cy5 labeled polynucleotide target. Two microliters of a 10 // M synthetic target (5'-Cy5 dye was coupled to the recruitment: TCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAA TATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGA AGCGTCATCAA-3 '(Serial Identification Number 1)) solution in deionized water at 18 // 1 lx TMAC (4.5 M tetramethylammonium chloride, 75 mM Tris pH 8.0, 3 mM EDTA, 0.15% SDS) diluted to a final volume of 20 / z 1. Two types of fluorescently functionalized microparticles were assembled onto a planar array on a silicon wafer using the protocol proposed above. The first type of microparticles The type is functionalized with a paired probe sequence (sequence identification number 2) 5 amine 18 200540276 / (TEG spacer) / CCAAAGATGATATTTTC / -3 '("TEG" is triethylene glycol). The second micro The particle type was functionalized with a mismatched probe sequence (SEQ ID NO: 3) amine / (TEG space) / ATAACCAGGAGGAGTTCG / -3. Twenty microliters of synthetic target was added to the surface of the substrate and the substrate was placed Heat at 55 ° C for 20 minutes. The substrate was then removed from the heater and the target solution was aspirated. The substrate was washed three times with lx TMAC at room temperature. Next, 10 " 1 of lx TMAC was placed on the surface of the substrate, which was covered with a coverslip and used Fluorescence microscope to record the fluorescence intensity of the array. The control array is completed on the wafer without any added nano particles or polymers. Unoccupied collection wells in control tests have some non-specific binding of targets in the collected taste. The results are shown in Tables 2 and 3, where CV is the coefficient of variation. Table 2 · Nanoparticles immobilized via the polymer group, said chip # Paired probe signal error Paired probe signal ratio Unoccupied collection well 1 9603 CV8% 783 CV36% 12.26 558 CV 20% 2 11,902 CV5% 695 CV 24% 17.12 545 CV21% 3 10,264 CV10% 731 CV30% 14.04 539 CV18% 4 10,631 CV11% 1058 CV33% 10.04-Table 3: Results for uncoated (controlled) wafers 19 200540276

固定化方案以及聚合物組絕步驟保留對配對探針的訊 號(在特異性檢驗訊號為〜1 0 %下降),且降低來自晶片表 面之非特異性訊號(〜20% ),然而來自錯誤配對探針結合 的訊號則基本上未受影響。The immobilization scheme and the polymer step absolutely retain the signal to the paired probe (~ 10% decrease in the specificity test signal), and reduce the non-specific signal (~ 20%) from the surface of the wafer, but from the incorrect pairing The signal bound by the probe is essentially unaffected.

貫施例3 ··晶片上多聚電解質雙層之製造 將帶負電荷晶片(經一層二氧化矽塗覆之聚矽氧基質) 浸在陽離子聚電解質溶液〇% w/v聚烯丙胺氫氯化物溶 液’其具有 Mol· Wt. 15,000,由 Aldrich Chemicals 製造,Example 3 · Manufacturing of a polyelectrolyte bilayer on a wafer A negatively charged wafer (polysilicone coated with a layer of silicon dioxide) was immersed in a cationic polyelectrolyte solution 0% w / v polyallylamine hydrochloride Compound solution 'which has Mol · Wt. 15,000, manufactured by Aldrich Chemicals,

Milwaukee,WI,於1 Μ氯化鈣中)2分鐘。然後取出晶片, 再以去離子超過濾水充分清洗,再放回3·4% (w/v)帶負 電荷(f電位56 mV在1 mM離子強度且pjj〜4.0) 22nmMilwaukee, WI in 1 M calcium chloride) for 2 minutes. Then remove the wafer, wash it thoroughly with deionized ultrafiltration water, and put it back into 3.4% (w / v) with a negative charge (f potential 56 mV at 1 mM ionic strength and pjj ~ 4.0) 22nm

Ludox 石夕石奈米顆粒(Aldrich Chemicals,,谓) 於PBS ( 0.1M磷酸鈉,0.15M氯化鈉,pH 7·2)之溶液中, 並培養2分鐘。接著,取出晶片,再次以去離子超過濾水 充分清洗。此處理導致如圖5(a)所示雙層結構的形成。其後 的雙層可藉交替地將晶片暴露於陽離子型/陰離子型聚電解 貝浴液而類似地沉積。圖5(b)顯示塗覆十雙層之收集阱陣 列0 實例4 :固定化所需雙層之關鍵數目 20 200540276 °又计具驗來調查珠粒於收集阱固定化所需雙層之最少 數目。選二種不同的收集阱尺寸用於此研究(見表4)。所 貝/二乂 3.2 // Μ券功能化珠粒來進行。經計算的收集味 尺寸以及收集味尺寸與珠粒尺彳(錯誤配對)Μ之不同顯 示於表4。 -尺寸之大小寸錯誤配對 晶片 it ~ΓΓΓΤ—ΤΓ~:~- 收集阱尺寸(微米) --—---—’ 3.5 !4Ludox granules (Aldrich Chemicals) are dissolved in a solution of PBS (0.1M sodium phosphate, 0.15M sodium chloride, pH 7.2) and incubated for 2 minutes. Then, the wafer was taken out and thoroughly washed again with deionized ultrafiltration water. This process results in the formation of a double-layered structure as shown in FIG. 5 (a). Subsequent double layers can be similarly deposited by alternately exposing the wafer to cationic / anionic polyelectrolyte baths. Figure 5 (b) shows a collection well array with ten double layers. Example 4: The critical number of double layers required for immobilization. 20 200540276 ° A test is also performed to investigate the minimum number of double layers required for beads to immobilize in the collection well. number. Two different collection well sizes were selected for this study (see Table 4). Sobe / Epiphyll 3.2 // M coupons are functionalized with beads. The calculated collected taste size and the difference between the collected taste size and the bead size (mismatch) M are shown in Table 4. -The size of the size is incorrectly matched to the wafer it ~ ΓΓΓΤ-ΤΓ ~: ~-Collecting well size (micron) -------- ’3.5! 4

---— I _XUU 雙層塗覆係如前面實例3所述進H 5顯示各種收 集:尺寸的結果。就珠粒及收集阱尺寸間較大的錯誤配對 而言’需要較多的雙層塗覆以供固定化。----- I _XUU The double-layer coating system was introduced into H 5 as described in Example 3 above to display various collection: size results. For larger mismatches between bead and collection well sizes, ′ requires more bilayer coating for immobilization.

灰色格子指出在該處固定化發生作用 表5 秀雙層之最少數目_ 實施例5 :等爲、么进。 X層塗覆晶片的檢驗結果 數個曰曰片係如實例3 層予以塗覆。接在&化所而最少數目之雙 主復之後’將珠例如f你丨1 ArL 集阱,並將晶片表 奴組裝到收 步驟自晶片暴露的卹U 土银-擦洗乾淨。這個 路的部分去除雙層薄膜但在 你叹m阱壁上留下 21 200540276 薄膜,其有助於維持珠粒於收集阱内(見圖5 )。 DNA雜交作用檢驗係如實例2所述般執行。兩微升之 於去離子水中之 10 // Μ合成標靶(經5’-Cy5標記之 TCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAA TATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGA AGCGTCATCAA-3,(序列識別號4))溶液係以98// 1之 lx TMAC ( 4·5 Μ 氯化四甲基銨,75 mM Tris pH 8.0,3 mM EDTA,0.15% SDS)稀釋到20/z 1之最後體積。兩種類型 之經寡核苷酸功能化之螢光微顆粒係利用如上述之方案組 裝到矽晶片上平面陣列。第一種微顆粒類型係以經配對探 針序歹|J 5,-胺基/(TEG 空間子)/CCAAAGATGATATTTTC/-3’ (序列識別號5 )功能化。第二種微顆粒類型係以經錯誤配 對 探 針 序 列 胺 基 /(TEG 空 間 子)/ATAACCAGGAGGAGTTCG/-3’ (序列識別號 6)功能 化。將二十微升合成標靶加到基質表面並將基質置於55°C 烤箱20分鐘。然後將基質自烤箱移開並將標靶溶液吸出。 將基質以lx TMAC在室温清洗三次。接著,將10// 1之lx TMAC置於基質表面,以蓋玻片蓋住並記錄陣列之螢光強 度。結果顯示於圖6。配對或特異性訊號未為改變但非特異 性訊號則增強兩倍,很可能是因為非特異性結合到該塗覆 基質。 實施例6 :經聚電解質塗覆晶片上非特異性訊號之抑制 經聚電解質雙層塗覆晶片係如實例5所述製造,但是 最後一次暴露到Ludox溶液後,添加兩層額外的雙層,其 22 200540276 係利用聚烯丙胺溶液及1 % ( w/v )聚稀丙酸,鈉鹽(Mol. Wt· 8,000,Aldric Chemicals,Milwaukee,WI )於 1Μ 氯化妈 之溶液。在最後聚丙烯酸沉積後將晶片以去離子超過濾水 徹底清洗並在120°C培養2小時。如先前所述將珠粒組裝在 這些經塗覆晶片上且雜交檢驗如實例5所述進行。在某些 檢驗,除了實例5的兩種類型外,亦使用第三種類型之經 錯誤配對探針序列 胺基 /(TEG 空間 子)/CCCCCCCCCCCCCC/-3 (序歹4識另J號7)功能>ί匕之珠 表6含%(^ 晶片# 特異性訊號 非特異性訊號_1 非特異訊號 (另一探針) 未經佔據之收 集阱 晶片—1 5555 (10%) 186 (26%) 200 (25%) 184 (24%) 晶片—2 5553 ( 14%) 224 (30%) 237 (30%) 186 (37%) 晶片—3 5593 (14%) 222 (34%) 237 (34%) 174 (31%) 晶片一4 5780 (14%) 247 (22%) 263 (22%) 239 (24%) 晶片—5 5800 (10%) 214 (22%) - 214 (27%) 晶片_6 5542 (10%) 251 (23%) - 207 (24%) 晶片_7 5573 ( 10%) 270 (22%) - 240 (16%) 晶片 5398 ( 10%) 280 (24%) - 210 (26%) 控制 5600 (10%) 210 (20%) - 186 (30%) 控制_2 5800 ( 10%) 240 (24%) - 216 (25%) 應予了解,以上所描述之詞彙、表示、實施例及具體 例僅係例示而非限制,且本發明範圍僅定義於隨後之申請 專利範圍,並包括申請專利範圍標的之所有均等者。 23 200540276 【圖式簡單說明】 圖1係以橫剖面圖示關於在基質上局部化微顆粒之凹 槽的一種例示型態。 圖2顯示數種常遇到的力量分別之相互作用能(。)的 依賴性。 圖3A係基質的橫剖面圖,該基質包含在凹槽收集到之 珠粒。圖3B係顯示珠粒於收集阱之配置及在孔洞壁及微顆 粒間跨越奈米顆粒橋之橫剖面圖。可見到除了在跨越橋區 域之外,在微顆粒之暴露表面具有低密度的奈米顆粒,因 此而使對珠粒功能性的影響減到最小。 圖4顯示固定化效率的評估。圖4A描述組裝後之陣 列’及圖4B、4C及4D顯示施予剪力後之陣列,圖4b沒 有任何奈米顆粒,κ 4C帶有不足夠的奈米顆粒濃度(〇4 % ( W/V)),而圖4D帶有足夠的奈米顆粒(丨(W/V)) 以影響固定化。用於此實驗的奈米珠粒係〜80奈米直徑石夕石 顆粒而微顆粒係抗生物素蛋白(Nelmavdin)功能化綠勞光 顆粒(3.2微米直徑)。 圖5A顯示聚電解質雙層結構之沉積的方法流程。圖5β 描述經聚電解質塗覆之收集牌的陣列,其上ι〇雙層係經沉 ,°奈米組成薄膜係沉積在收集拼壁上’且在暴露珠粒及 晶片表面上沒有塗覆。 圖6A-6D顯示經多層聚電解質修娜之晶片的雜交檢驗 結果。依收集阱的尺寸,有2、3或5雙層係經沉積以固定 圖6A及6C顯不特異性訊號的結果而圖紐及印顯示 24 200540276 非特異性訊* 5虎的結果。圖6a万a 八及63係經修飾晶片的結果且 圖6C及6D代表控制晶片的結果。 圖7A到7C以橫剖面一 士 # # j面顯不在基質中槽的三種不同例示 結構。 圖8顯示一層接一 s沾 曰6方法於保持珠粒於槽中之效 率。圖8 A描述槽陣列之平讳·The gray grid indicates that the immobilization takes place there. Table 5 Minimum number of show double layers _ Example 5: Wait for what, what for? Test results of X-layer coated wafers Several layers were coated as in Example 3. Next to the minimum number of double masters in the & chemical laboratory, the beads will be assembled, for example, Ar1, and the wafer watch will be assembled to the shirt exposed from the wafer. Part of this path removes the double-layer film but leaves a film on the wall of the well, which helps maintain the beads in the collection well (see Figure 5). The DNA hybridization test was performed as described in Example 2. Two microliters of 10 // M synthetic target in deionized water (TCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAA TATCATCTTTGGTGTTTCCTATGATGAATTAGATACAGA AGCGTCATCAA-3, (Serial Identification Number 4)) solution in l / TMAC (4 · 5 M tetramethylammonium chloride, 75 mM Tris pH 8.0, 3 mM EDTA, 0.15% SDS) was diluted to a final volume of 20 / z 1. Two types of oligonucleotide-functionalized fluorescent microparticles are assembled onto a planar array on a silicon wafer using a protocol as described above. The first type of microparticles is functionalized with a paired probe sequence: | J 5, -amino / (TEG space) / CCAAAGATGATATTTTC / -3 '(sequence identification number 5). The second type of microparticles is functionalized with a mismatched probe sequence amine / (TEG space) / ATAACCAGGAGGAGTTCG / -3 '(sequence identification number 6). Twenty microliters of the synthetic target was added to the surface of the substrate and the substrate was placed in a 55 ° C oven for 20 minutes. The matrix is then removed from the oven and the target solution is aspirated. The matrix was washed three times with lx TMAC at room temperature. Next, 10/1/1 of lx TMAC was placed on the surface of the substrate, and the fluorescence intensity of the array was covered with a coverslip and recorded. The results are shown in Fig. 6. The pairing or specific signal is unchanged but the non-specific signal is enhanced by a factor of two, most likely due to non-specific binding to the coated substrate. Example 6: Inhibition of non-specific signals on a polyelectrolyte-coated wafer A polyelectrolyte bilayer-coated wafer was manufactured as described in Example 5, but after the last exposure to the Ludox solution, two additional bilayers were added. The 22 200540276 is a solution of polyallylamine solution and 1% (w / v) polypropionic acid, sodium salt (Mol. Wt. 8,000, Aldric Chemicals, Milwaukee, WI) in 1M chloride. After the final polyacrylic acid deposition, the wafer was thoroughly washed with deionized ultrafiltration water and incubated at 120 ° C for 2 hours. Beads were assembled on these coated wafers as described previously and the hybridization test was performed as described in Example 5. In some tests, in addition to the two types of Example 5, a third type of mismatched probe sequence amine / (TEG space) / CCCCCCCCCCCCCC / -3 is used (Sequence No. 4 and J No. 7) Function > ί dagger table 6 contains% (^ chip # specific signal non-specific signal _1 non-specific signal (another probe) unoccupied collection well chip — 1 5555 (10%) 186 (26 %) 200 (25%) 184 (24%) Wafer—2 5553 (14%) 224 (30%) 237 (30%) 186 (37%) Wafer—3 5593 (14%) 222 (34%) 237 ( 34%) 174 (31%) Chip 1 4 5780 (14%) 247 (22%) 263 (22%) 239 (24%) Chip-5 5800 (10%) 214 (22%)-214 (27%) Chip_6 5542 (10%) 251 (23%)-207 (24%) Chip_7 5573 (10%) 270 (22%)-240 (16%) Chip 5398 (10%) 280 (24%)- 210 (26%) Control 5600 (10%) 210 (20%)-186 (30%) Control_2 5800 (10%) 240 (24%)-216 (25%) It should be understood that the terms described above , Representations, examples, and specific examples are merely illustrative and not restrictive, and the scope of the present invention is defined only in the scope of subsequent patent applications, and includes all equal persons applying for the scope of patent applications. 23 200540276 [Brief description of the figure] Figure 1 is a cross-sectional diagram illustrating an exemplary type of localization of the grooves of microparticles on the substrate. Figure 2 shows the interaction energy of several commonly encountered forces (. Figure 3A is a cross-sectional view of a matrix containing beads collected in grooves. Figure 3B shows the arrangement of beads in a collection well and spanning nanoparticle bridges between pore walls and microparticles A cross-sectional view. It can be seen that except for the cross-bridge area, there is a low density of nano particles on the exposed surface of the micro particles, thus minimizing the impact on the functionality of the beads. Figure 4 shows the efficiency of the immobilization. Evaluation. Figure 4A depicts the assembled array 'and Figures 4B, 4C, and 4D show the array after the shear force is applied. Figure 4b does not contain any nano particles and κ 4C has an insufficient nano particle concentration (04% ( W / V)), and Figure 4D has enough nano-particles (丨 (W / V)) to affect the immobilization. The nano-beads used in this experiment are ~ 80-nanometer-diameter stone syrup particles and slightly Granular avidin (Nelmavdin) functionalized green light particles (3.2 microns diameter). FIG. 5A shows a method flow of the deposition of a polyelectrolyte bilayer structure. Figure 5β depicts an array of polyelectrolyte-coated collection cards. The double-layered system is deposited, and the nanometer-thin film is deposited on the collection wall 'and is not coated on the exposed beads and wafer surfaces. Figures 6A-6D show the results of a hybridization test on a multi-layer polyelectrolyte Schona wafer. Depending on the size of the collection well, two, three, or five bilayers are deposited to fix. Figures 6A and 6C show the results of non-specific signals and Tunew and India show 24 200540276 non-specific signals * 5 tiger results. Figures 6a, 8a and 63 are modified wafer results and Figures 6C and 6D represent the results of the control wafer. Figures 7A to 7C show three different exemplary structures in cross-sections of a plane. Figure 8 shows the effectiveness of the layer-by-layer method to keep the beads in the tank. Figure 8 A depicts the flatness of the slot array.

十視圖,圖8B描述類似於如圖8A 之槽陣列’在珠粒組裝並清 、乃 月先且〉又有其他處理之後的圖 像;圖8C描述塗覆著五聚電觝 、 >蛋解貝雙層之晶片,在珠粒組裝 並清洗之後的槽陣列之圖像 豕,圖8D顯示如圖8A到8C、圖 8E所示槽及珠粒之平均大約相對尺寸。 圖9A以平面圖描述一種基質中珠粒之孔洞(或收集牌) 的設計,丨為“經擠壓”六角形,其中兩相對邊之間的空Ten views, FIG. 8B depicts an image similar to the slot array as shown in FIG. 8A after the beads are assembled and cleaned, and then there are other treatments; FIG. 8C depicts the coating with five polyelectrolyte, > egg An image of the groove array of the double-layered wafer, after the beads are assembled and cleaned, is shown in FIG. 8D, and the average relative sizes of the grooves and the beads are shown in FIGS. 8A to 8C and FIG. 8E. FIG. 9A is a plan view depicting the design of a hole (or collection card) of beads in a matrix, which is a “extruded” hexagon, in which the space between two opposite sides is

間小於珠粒直徑。圖9B描述一錄且#山A ^ 種基質中珠粒之孔洞(或收 集胖)的設計,其為不對摇丄& 牙舟/、角形,其中兩相對邊他們之 間在一端較另一端具較窄六 、 ,、杈乍二間,且經設計使得在較窄端, 兩邊之間的空間小於珠粒直徑。 【主要元件符號說明】 益 25 200540276 序列清單 <110>班纳葉,蘇甘塔 黃,輝The interval is smaller than the diameter of the beads. FIG. 9B depicts the design of the holes (or fat collection) of the beads in the # 山 A ^ species of matrix, which is a misaligned & tooth boat /, angled, where the two opposite sides are at one end more than the other end It has narrower six, two, and two branches, and is designed so that at the narrower end, the space between the two sides is smaller than the diameter of the beads. [Explanation of Symbols of Main Components] Yi 25 200540276 Sequence List < 110 >

<120>珠粒展示之配體於基質表面上的固定化 <130> IMBD <150 60/478,011 <151> 2003-06*12 <160 7 < 170 > 快速 SEQ Window 第 4.0 版< 120 > Immobilization of bead-displayed ligands on the substrate surface < 130 > IMBD < 150 60 / 478,011 < 151 > 2003-06 * 12 < 160 7 < 170 > Quick SEQ Window V4.0

<210> 1 <211> 88 <212> DNA <213>人工序列 <220> <223>人工標的 <400> 1 icagttttcc tggattatgc ctggcaccat taaagaaaat atcatctttg gtgtttccta 60 tgatgaatat agatacagaa gcgtcatc 88< 210 > 1 < 211 > 88 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial target < 400 > 1 icagttttcc tggattatgc ctggcaccat taaagaaaat atcatctttg gtgtttccata tgat 60 tgat

<210〉2 <211> 17 <212> DNA <213>人工序列 <220> <223>探針 <400〉2 ccaaagatga tattttc 17< 210〉 2 < 211 > 17 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > probe < 400〉 2 ccaaagatga tattttc 17

<210> 3 <211> 18 <212> DNA <213>人工序列 <220〉 <223>探針 <400〉3 ataaccagga ggagttcg 18 200540276< 210 > 3 < 211 > 18 < 212 > DNA < 213 > artificial sequence < 220〉 < 223 > probe < 400〉 3 ataaccagga ggagttcg 18 200540276

<210 4 -<211>90 <212> DNA <213>人工序列 <220> <223>人工標的 <400> 4 tcagttticc tggaUatgc ctggcaccattaaagaaaat atcatctttg gtg ⑴ ccta 60 tgatgaatat agatacagaa gcgtcatcaa 90< 210 4-< 211 > 90 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial target < 400 > 4 tcagttticc tggaUatgc ctggcaccattaaagaaaatatcatctttg gtg cc cca 60tgatgatgatgat

<210〉5 <211> 17 <212> DNA <213>人工序列 <220> <223>探針 <400> 5 . ccaaagatga tattttc 17 <210〉6 ,< 210〉 5 < 211 > 17 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > probe < 400 > 5. ccaaagatga tattttc 17 < 210> 6,

<211> 18 <212> DNA <213>人工序列 <220> <223>探針 <400> 6 ataaccagga ggagttcg 18< 211 > 18 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > probe < 400 > 6 ataaccagga ggagttcg 18

<210〉7 <211> 14 <212> DNA <213>人工序列 <220> <223>探針 <400> 7 cccccccccc cccc 14< 210> 7 < 211 > 14 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > probe < 400 > 7 cccccccccc cccc 14

Claims (1)

200540276 十、申請專利範圍: 1 · 一種將微顆粒附荖為其暂u ^ ^ ^ 者在基貝上的方法,其中微顆粒係唾 局部化於基質表面上,其包含: 、’、 將奈米顆粒懸浮液放置於基質上· 自奈米顆粒懸浮液蒸發液體藉以使奈米顆 顆粒與凹槽壁間。 任U ' 2·根射請專㈣圍第1項的方法,其中蒸發作用並未 將液體自基質表面完全移除。 3·根據巾料利範圍第丨項的方法,其巾基質表面係經 k復以抑制與基負接觸之寡核苷酸化合物的非特異性結 合。 八 、、口 4. 根據中請專利範圍第3項的方法,其中該塗覆係—種 聚合物。 5. 根據申請專利範圍第4項的方法,其中聚合物為pEG 2〇,〇00’其係先將其溶解於含3% (v/v)甘油之1〇禮加 而應用之。 6·根據申請專利範圍第丨項的方法,其中微顆粒係置放 於凹槽。 7.根據申ό青專利範圍第6項的方法,其中凹槽係其内徑 較微顆粒外徑稍大之圓柱狀孔洞,或是具有向内逐漸縮小 的邊且開口的内徑大到足以使微顆粒可以置放於凹槽内的 孔洞。 8·根據申請專利範圍第丨項的方法,其中微顆粒係由聚 合物所組成。 26 200540276 膠 9.根據申明專利乾圍第8項的方法,其中聚合物為 乳 10·根據申請專利範圍第!項的方法, 蛋白質功能化。 、τ铽顆粒係經 11·根據申請專利範圍第10項的方法,其 顆粒係與募核苷酸共軛。 、、二J能化微 12·根據申請專利範圍第10 生物素蛋Μη她avidlnb ,、中蛋白質係抗 13.根據申請專利範圍第i項的方法,其中 由矽膠所組成,其係懸浮於甘油中。 T /、;:立係 14·根據申請專利範圍第i項的方法,其中基質 數凹槽,且各個容納一個微顆粒。 ? 15·—種將微顆粒附著在基質表面上的方法,其包含· 所沉積陽離子型與陰離子型聚電解質之連續交替基 質表面上。 I6·根據申請專利範圍第15項的方法,其進一步包括在 該沉積作用前使基質表面帶負電荷。 ^ L7·根據申請專利範圍第16項的方法,其中帶負電荷作 用係藉由以一層二氧化矽塗覆基質來進行。 ^ I8·根據申請專利範圍第16項的方法,其中接著該帶負 电锜作用,將基質暴露於陽離子型聚電解質溶液,接著再 暴露於帶負電荷奈米顆粒懸浮液。 1 9·根據申請專利範圍第1 8項的方法,其中陽離子型聚 角甲 、洛液係1 % w/v聚烯丙胺氫氯化物溶液,於ιΜ氣化 27 200540276 鈣中,且奈米顆粒為Ludox矽石奈米顆粒(Aid士h Chemicals,Milwaukee,WI),其經懸浮於 PBS 中(〇1M 磷酸鈉,0.15M氣化鈉,pH 7·2 )。 20.根據申請專利範圍第15項的方法,其中微顆粒停留 在基質表面的凹槽内。 21·根據申請專利範圍第20項的方法,其中凹槽係其内 徑較微顆粒外徑稍大之圓柱狀孔洞。200540276 10. Scope of patent application: 1. A method for attaching microparticles to the substrate on the base, wherein the microparticles are locally localized on the surface of the substrate, and include: The rice particle suspension is placed on the substrate. The liquid is evaporated from the nano particle suspension so that the nano particles are between the groove wall. Ren U '2 · Gen She asked the method of item 1 in which evaporation did not completely remove the liquid from the surface of the substrate. 3. According to the method of item 丨 of the towel range, the surface of the towel substrate is k-folded to inhibit non-specific binding of the oligonucleotide compound in negative contact with the base. VIII. Oral 4. The method according to item 3 of the patent application, wherein the coating is a polymer. 5. The method according to item 4 of the scope of patent application, wherein the polymer is pEG 20,000, which is first applied by dissolving it in 10% of 3% (v / v) glycerol. 6. The method according to item 丨 of the patent application scope, wherein the microparticles are placed in the groove. 7. The method according to item 6 of the claim, wherein the groove is a cylindrical hole whose inner diameter is slightly larger than the outer diameter of the microparticles, or the inner diameter of the opening is large enough to have a side that gradually shrinks inward The micro-particles can be placed in holes in the grooves. 8. The method according to item 丨 of the patent application, wherein the microparticles are composed of a polymer. 26 200540276 Glue 9. According to the method of claiming patent No. 8, the polymer is milk 10. According to the scope of patent application! Term method for protein functionalization. According to the method of item 10 in the scope of the patent application, the particles of τ 铽 are conjugated with nucleotides. , 二 二 能 能 微 12 · According to the scope of the patent application 10th Biotin egg Meta and avidlnb, Medium protein resistance 13. The method according to the scope of application patent item i, which consists of silicone, which is suspended in glycerol in. T /,;: stand 14. The method according to item i of the patent application range, wherein the substrate has a number of grooves, and each contains one microparticle. ? 15. A method of attaching microparticles to a surface of a substrate, which comprises depositing a continuous alternating matrix surface of cationic and anionic polyelectrolyte deposited. I6. The method according to item 15 of the patent application scope, further comprising subjecting the surface of the substrate to a negative charge before the depositing. ^ L7. The method according to item 16 of the application, wherein the negatively charged effect is performed by coating the substrate with a layer of silicon dioxide. ^ I8. The method according to item 16 of the scope of patent application, wherein the substrate is subsequently exposed to a cationic polyelectrolyte solution followed by the negatively charged chirping effect, and then to a negatively charged nanoparticle suspension. 19. The method according to item 18 of the scope of the patent application, wherein the cationic polycarp, and the Luo liquid system are 1% w / v polyallylamine hydrochloride solution in ιΜ gasification 27 200540276 calcium, and nano particles It is Ludox silica nanoparticle (Aid Chemicals, Milwaukee, WI), which is suspended in PBS (0.1M sodium phosphate, 0.15M sodium gasification, pH 7.2). 20. The method according to item 15 of the scope of the patent application, wherein the microparticles stay in grooves on the surface of the substrate. 21. The method according to item 20 of the patent application, wherein the groove is a cylindrical hole having an inner diameter slightly larger than that of the fine particles. 22·根據申請專利範圍第2〇項的方法,其中凹槽具有較 微顆粒外徑稍小之内徑。 23·根據申請專利範圍第2〇項的方法,其中凹槽具有向 内逐漸縮小的邊且開口的内徑夠大到足以使微顆粒可以置 放於凹槽内的孔洞。 24.根據申請專利範圍第22項的方法,其中凹槽於平視 、 N㈤不一乃…々成,共肀凹槽於3 圖為變形六角形,具有兩相對邊彼此在其一端比另一为22. The method according to item 20 of the scope of patent application, wherein the groove has an inner diameter slightly smaller than the outer diameter of the fine particles. 23. The method according to item 20 of the scope of the patent application, wherein the groove has a side that is tapered inward and the inner diameter of the opening is large enough to allow the microparticles to be placed in the hole in the groove. 24. The method according to item 22 of the scope of patent application, wherein the grooves are formed in a flat view, N is different from each other, and the common grooves are shown in Figure 3 as a deformed hexagon, with two opposite sides at each end than the other. for 靠近。 26.根據申請專利範圍第15項的方法,其中微顆粒係由 聚合物所組成。 2 7 ·根據申请專利範圍第2 6項的方法,其中聚人物為% 其中微顆粒係經 28·根據申請專利範圍第26項的方法 蛋白質功能化。 29.根據申請專利範圍第28項的方法’其中蛋白質係抗 28 200540276 生物素蛋白。 3 0.根據申請專利範圍第28項的方法,其中經功能化微 顆粒係與寡核苷酸共軛。 十一、圖式: 如次頁near. 26. The method according to item 15 of the patent application, wherein the microparticles are composed of a polymer. 27. Method according to item 26 of the scope of patent application, where the aggregated character is%, where microparticles are subjected to 28. Method according to item 26 of the scope of patent application, protein functionalization. 29. The method according to item 28 of the scope of patent application, wherein the protein is anti-28 200540276 biotin protein. 30. The method according to item 28 of the scope of patent application, wherein the functionalized microparticle system is conjugated to an oligonucleotide. Eleven, schema: as the next page 2929
TW093123446A 2004-06-13 2004-08-05 Immobilization of bead-displayed ligands on substrate surfaces TW200540276A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/018901 WO2004111260A2 (en) 2003-06-12 2004-06-13 Immobilization of bead-displayed ligands on substrate surfaces

Publications (1)

Publication Number Publication Date
TW200540276A true TW200540276A (en) 2005-12-16

Family

ID=52350470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093123446A TW200540276A (en) 2004-06-13 2004-08-05 Immobilization of bead-displayed ligands on substrate surfaces

Country Status (1)

Country Link
TW (1) TW200540276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184803A (en) * 2021-04-22 2021-07-30 西安交通大学 Magnetic nanoparticle self-assembly system based on magnetic field driving and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184803A (en) * 2021-04-22 2021-07-30 西安交通大学 Magnetic nanoparticle self-assembly system based on magnetic field driving and processing method
CN113184803B (en) * 2021-04-22 2022-07-12 西安交通大学 Magnetic nanoparticle self-assembly system based on magnetic field driving and processing method

Similar Documents

Publication Publication Date Title
KR100682919B1 (en) Pattern forming method of fine metal thin layer, biomolecular fixing substrate and biochip using the same
Nonglaton et al. New approach to oligonucleotide microarrays using zirconium phosphonate-modified surfaces
US7452565B2 (en) Immobilization of bead-displayed ligands on substrate surfaces
US7749723B2 (en) Universal readout for target identification using biological microarrays
JP4209687B2 (en) Biomembrane arrays and methods and uses thereof
US9677194B2 (en) Microfabrication methods for the optimal patterning of substrates
Reviakine et al. Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers
US20090215650A1 (en) Substrates with stable surface chemistry for biological membrane arrays and method for fabricating thereof
JP2010531972A (en) Method and device for controlled monolayer formation
US20110086771A1 (en) Biochip
JP2006330000A (en) Improved biochip
US20040121339A1 (en) Special film-coated substrate for bio-microarray fabrication and use thereof
Tang et al. Dynamic, electronically switchable surfaces for membrane protein microarrays
TW200540276A (en) Immobilization of bead-displayed ligands on substrate surfaces
US20060182655A1 (en) Integrating analysis chip with minimized reactors and its application
Hsiao et al. Electric-field-directed self-assembly of active enzyme-nanoparticle structures
JP2006519384A5 (en)
US20040009584A1 (en) Method for manufacturing microarrays based on the immobilization of porous substrates on thermally modifiable surfaces
CA2521613C (en) Surface-immobilised multilayer structure of vesicles
Cameron Banerjee et a1.
Tehan et al. Tailored quartz pins for high-density microsensor array fabrication
Emoto et al. Fabrication of submicrometer pores with an outer shell using modified poly (vinyl alcohol) and the molecular or particle collection effect
US20240132956A1 (en) Nucleic acid sequencing components including a glycolipid bi-layer
JP5050267B2 (en) Manufacturing method of three-dimensional structure
Hughes Model membrane architectures for the study of membrane proteins