TW200539223A - Method for fabricating cathode plate of carbon nanotube field emission display and carbon nanotube field emission display - Google Patents

Method for fabricating cathode plate of carbon nanotube field emission display and carbon nanotube field emission display Download PDF

Info

Publication number
TW200539223A
TW200539223A TW93114085A TW93114085A TW200539223A TW 200539223 A TW200539223 A TW 200539223A TW 93114085 A TW93114085 A TW 93114085A TW 93114085 A TW93114085 A TW 93114085A TW 200539223 A TW200539223 A TW 200539223A
Authority
TW
Taiwan
Prior art keywords
nano
carbon tube
emission display
magnetic
item
Prior art date
Application number
TW93114085A
Other languages
Chinese (zh)
Other versions
TWI248630B (en
Inventor
yi-shou Cai
Tian-Gan Zhong
Wang-Lin Liu
zi-qi Zhan
Original Assignee
Prec Machinery Res & Dev Ct
yi-shou Cai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Machinery Res & Dev Ct, yi-shou Cai filed Critical Prec Machinery Res & Dev Ct
Priority to TW93114085A priority Critical patent/TWI248630B/en
Publication of TW200539223A publication Critical patent/TW200539223A/en
Application granted granted Critical
Publication of TWI248630B publication Critical patent/TWI248630B/en

Links

Abstract

The present invention provides a method for fabricating the cathode plate of carbon nanotube field emission display, which includes the following steps: (A) forming a carbon nanotube coating on a first plate having a conductive layer; (B) providing a guide template; (C) providing a magnetic field between the guide template and the first plate; (D) pressing the guide template and the carbon nanotube coating; (E) curing the carbon nanotube coating; and, (F) separating the guide template from the first plate with the carbon nanotube coating; thus, by forming a plurality of carbon tube regions disposed at intervals and configured in orientation on the carbon nanotube coating, so as to fabricate the cathode plate with the first plate, the conductive layer, and these carbon tube regions.

Description

200539223 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種製作場效發射顯示器(field emission display;簡稱 FED)之陰極板(cathode)及場效 5 發射顯示器的方法,特別是指一種製作奈米碳管場效發射 顯示器(carbon Nanotube field emission display;簡 稱CNTFED)之陰極板及奈米碳管場效發射顯示器的方法。 【先前技術】 近年來,在半導體薄膜製程等相關領域的技術開發 10 下,使得當下的電子用品日趨輕薄短小化,此種現象也可 • 見於顯示器等相關產業,例如··液晶顯示器(1 iquid crystal display;簡稱 LCD)、電漿顯示器(plasma display panel ;簡稱 PDP)、有機發光二極體(organic light emitting diode)顯示器及奈米碳管場效發射顯示器等。 15 一般地,目前CNTFED之相關業界大致上是藉由薄膜 製程製作CNTFED之陰極板,亦或是將藉由薄膜沉積thin film deposition)所製得的CNT製備成網印膠(screen printing paste),配合網印及薄膜製程等方法製作CNTFED 之陰極板。 20 在第428189號之中華民國專利中,揭露出一種冷陰 極陣列之製造方法(圖未示),首先,提供一具有電路設計 之複數陰極線、複數與該等陰極線相互交錯並位在該等陰 極線上的絕緣層(insulator),及複數形成在該等絕緣層 上的閘極(gate)線之基板。接續,於該等陰極線的一裸露 200539223 區進行一陽極處理(anodizing)以在該等陰極線之裸露區 分別形成一陽極處理膜(anodized film),使每一陽極處 理膜具有複數孔洞。進一步地,將觸媒(catalyst)分別形 成於該等孔洞内。最終,再將該基板設置在一電漿(plasma) 5 系統中,利用含碳氣體與該觸媒反應,以使得複數毫微米 碳管自該等孔洞内成長出來。 前面所提及的電漿系統,是藉含碳氣體經由電漿系統 解離出碳離子,進而使得被解離的碳離子可藉由催化劑形 成過飽和析出(oversaturation preci pi tat ion)以產生石 10 墨化(graphitization)的碳管。 其中,含碳氣體可以有曱烷(CHO、乙炔(C2H2)等,電 漿系統解可以是電漿辅助化學氣相沉積(plasma enhanced chemical vapor deposition ;簡稱 PECVD)系統、微波電 漿輔助化學氣相沉積(microwave plasma enhanced 15 chemical vapor deposition ;簡稱 MPECVD)系統,及電子 迴旋共振化學氣相沉積(electron cyclotron resonance chemical vapor deposition;簡稱 ECRCVD)系統。 熟知場效發射技術領域者皆知,場效發射率是與長寬 比(aspect ratio)、場效發射面積(field emission 20 area)、真空度等因素成正比,且與兩極板間的距離成反 比。然而,此種藉由薄膜沉積完成冷陰極陣列之製造方 法,雖然可製備出具有陣列式(array)順向(or ientation) 排列的奈米碳管,但所需的真空(vacuum)鍍膜週邊設備昂 貴,且抽真空時間耗時久,因此具有設備成本及時間成本 200539223 高等缺點。 參閱圖1A至圖ιέ,一種奈米碳管場發射顯示器之陰 極板的製作方法(中華民國專利公告案號為518632),依序 包含下列步驟: (a)準備一透明基板ι〇1,該透明基板ι〇1備有一表 面及一下表面; (tO將一感光性(ρ]^^導電漿料塗佈 於該透明基板101的一表面上,再利用微影製程 (photol i thography)及燒結(sintering)製程完 成一具有一圖案之底電極層1〇2(如圖ία所示); (c) 利用一網印方式將一奈米碳管層1〇3印製於該底 電極層102之圖案上(如圖所示); (d) 全面性塗佈一層可以蝕刻(etching)之介電材料 (dielectric)作為一介電層1〇4(如圖lc所示); (e) 於該介電層1〇4上方全面性塗佈一層感光性閘極 (gate)材料,再利用微影製程及燒結製程形成一 閘極圖案105(如圖1D所示);及 (f) 以該閘極圖案105作為一具有圖案之保護層,結 合一蝕刻製程蝕刻掉未被該閘極圖案1〇5保護之 介電層104,並在一燒結製程後完成該陰極板結 構(如圖1E所示)。 此種搭配薄膜沉積製程及網印製程所製得的奈米碳 管場發射顯示器之陰極板’雖然可降低部分耗時的製程時 間及節省部分不必要的鍍膜週邊設備。但是藉由網印製做 200539223 的不米奴官層103 ’容易因網版本身的乳劑(emulsi〇n)厚 度設計不佳、於網印過程壓力控制不當、含有奈米碳管之 網印膠之黏度(viSC0sity)與網版網目(mesh)尺寸大小無 法配合荨因素,而造成陰極板解析度不良等問題。 再者,藉由網印形成在該底電極層1〇2之圖案上的奈 米碳管層103,所呈現出的排列方式是呈一毛球狀的不規 則(random)外觀,因此,無法形成呈現一陣列式順向排列 的奈米碳管以符合場效發射率的需求。 以上所提到的所有前案專利,在此併入本案作為參考 文獻。 因此,如何簡化製作奈米碳管陰極板之製程的同時, 又月b兼具製作出具有順向排列的奈米碳管,是開發奈米碳 管陰極板相關領域人士所應克服的一大難題。 【發明内容】 因此,本發明之目的,即在提供一種製作奈米碳管場 效發射顯示器之陰極板的方法。 本發明之另一目的,即在提供一種製作奈米碳管場效 發射顯示器的方法。 本發明製作奈米碳管場效發射顯示器之陰極板的方 法,包含以下步驟: (A) 於一具有一導電層的第一板體上形成一奈米碳管 塗層; (B) 提供一引導模板; (C) 於該引導模板及該第一板體兩者間提供一磁場 200539223 (magnetic field); (D) 壓合該引導模板及該奈米碳管塗層,以在該奈米 碳管塗層上形成複數相間隔設置並具有複數呈順 向排列之奈米碳管的碳管區; (E) 固化(curing)該奈米碳管塗層;及 (F) 分離該引導模板及具有該奈米碳管塗層的第一板 體,以形成一具有該第一板體、該導電層及該等 碳管區的陰極板。 ίο 15 20 另外,配合本發明製作奈米碳管場效發射顯示器之陰 極板的方法可完成一製作奈米碳管場效發射顯示器的方 法。該製作奈米礙管場效發射顯示器的方法,包含以下步 驟: (I) 提供一由前述之方法製作而成的陰極板; (Π)於该陰極板上提供一空間支樓器(spacer),並 藉由該空間支撐器之一底緣將該等碳管區相 間隔開; (III) 於每一碳管區的一外圍形成一絕緣層; (IV) 於每一絕緣層上形成一閘極層;及 (V) 於該空間支撐器的一頂緣設置一陽極板 (anode)’以形成一奈米碳管場效發射顯示器。 【實施方式】 參閱圖2,本發明之奈米碳管場效發射顯示器之陰極 板的製作方法,包含以下步驟: (A)於一具有一導電層的第一板體上形成一奈米碳管 10 200539223 塗層; (B) 提供一引導模板; (C) 於該引導模板及該第一板體兩者間提供一磁場; (D) 壓合該引導模板及該奈米碳管塗層,以在該奈米 碳管塗層上形成複數相間隔設置並具有複數呈順 向排列之奈米碳管的碳管區; (E) 固化該奈米碳管塗層;及 ίο 15 20 (F) 分離該引導模板及具有該奈米碳管塗層的第一板 體,以形成一具有該第一板體、該導電層及該等 碳管區的陰極板。 較佳地,該奈米碳管塗層是將一含有奈米碳管之塗料 (slurry)形成在該導電層上所製成。較佳地,該塗料内的 奈米碳管具有選自於下列所構成之群組的磁性金屬元 素:鐵(Fe)、始(Co)、鎳(Ni)及此等之一組合。在一具體 例中,該磁性金屬元素是鐵。 較佳地,該奈米碳管層是籍由選自於下列所構成之群 組的塗佈法所形成:刮刀塗佈法(blade coating)、旋轉 塗佈法(spin coating)、含浸塗佈法(dip coating)及滾 轴塗佈法(roll coating)。在一具體例中,該塗佈法是刮 刀塗佈法。 較佳地,該引導模板是由一非磁性材料所製成,並具 有複數呈一陣列式排列的穿孔,於該引導模板提供一磁力 裝置以產生該磁場。在一具體例中,該非磁性材料是石英 (quartz)玻璃。 11 200539223 更佳地,於該引導模板的一上表面提供一磁性體、於 該磁性體的一外圍設置一可產生電磁效應 (electromagnetic effect)的線圈(coil),並於該線圈上 電性連接一電源(power)以形成該磁力裝置並產生該磁 5 場。適用於本發明之該磁性體是由選自於下列所構成之群 組的磁性材料,(magnetic material)所製成:鐵磁體 (ferromagnetics)、亞鐵磁體(ferrimagnetic materials)、反鐵磁體(antiferromagnet)及順磁體 (paramagnet)。較佳地,該磁性材料是鐵磁體。適用於本 10 發明之該鐵磁體是選自於下列所構成之群組··鐵矽合金 (Fe-Si alloy)、含鐵合金、含鈷合金、含鎳合金及鐵鎳 合金。在一具體例中,該鐵磁體是鐵矽合金。 更佳地,於該引導模板的一上表面提供一永久磁體 (permanent magnet)以形成該磁力裝置並產生該磁場。在 15 —具體例中,該永久磁體是亞力可合金(Alnico alloy; alumin-nickel-cobalt alloy)0 適用於本發明之形成該等穿孔的方法是選自於下列 所構成之群組的加工法:電子束直寫法(e-beam writing)、反應式離子钱刻法(reactive ionic etching ; 20 簡稱RIE)、雷射光束直寫法(laser beam writing)及微精 密鑽孔加工(precision drilling)。在一具體例中,該加 工法是電子束直寫法。 值得一提的是,前述的該磁性體的一下表面與該引導 模板上表面是藉由下列所構成之群組的接合法所紅接而 12 200539223 成:化學接合法(chemical joining)、機械接合法 (mechanical jointing)及此等之一組合。適用於本發明 之該化學接合法是化學劑黏合(adhesion)。適用於本發明 之該機械接合法是選自於下列所構成之群組:栓接 5 (bolting)、螺接(screwing)、焊接(welding)、卡接 (lapping)、對接(butting)及鉚接(riveting)。更佳地, 該接合法是化學接合法及機械接合法。在一具體例中,該 化學接合法是化學劑黏合,該機械接合法是栓接。 另外,該永久磁體的一下表面與該引導模板上表面的 10 接合法同於前述之該磁性體及該引導模板之接合法。 此外,藉由該等穿孔與該磁性體的下表面共同界定出 複數封閉端。每一封閉端是呈一選自於下列所構成之群組 的形狀:平面(planar)狀、錐狀(awl-shaped)及弧狀。在 一具體例中,該等封閉端是分別呈一平面狀。 15 另外,藉由該等穿孔與該永久磁體的一表面共同界定 出的複數封閉端,是呈同於前述之形狀。 較佳地,該引導模板是由一非磁性材料所製成,並具 有複數呈一陣列式排列的盲孔,於該引導模板提供一磁力 裝置以產生該磁場。在一具體例中,該非磁性材料是石英 20 (quartz)玻璃,於該引導模板的一外圍設置一螺旋線圈及 於該螺旋線圈上電性連接一電源,以形成該磁力裝置並產 生該磁場。 較佳地,該引導模板是由一非磁性材料所製成,並具 有複數呈一陣列式排列的盲孔,於該引導模板的一上方及 13 200539223 該第一板體的一下方分別提供一第一永久磁體及〜第 永久磁體以形成一磁力裝置並產生該磁場。在〜 〜 -、體例 永 中,該非磁性材料是石英(quartz)玻璃,該第一及第 久磁體是亞立可合金。 其中,形成該等盲孔的方法是同等於前述形成 孔的方法。〆 穿 值得一提的是’該引導模板的每一盲孔的一封 J %是 呈一選自於下列所構成之群組的形狀:平面狀、錐 狀。在一具體例中,該等盲孔的封閉端是分別呈一來 ίο 15 20 卞雨狀。 較佳地,藉由選自於下列所構成之群組的固化法來 成固化:熱固化法(thermal curing)、光固化法^ ^ • UiSht curing)及化學固化法(chemical curing)。在〜复 舞體例 中,該固化法是熱固化法。 較佳地,於該步驟(F)之後更進一步地包含〜m 用以移 除該等奈米碳管上的磁性金屬元素的步驟(F,)。 較佳地,藉由選自於下列所構成之群組的移除法來_ 成移除:化學式處理法(chemical treatment)、 工法(machining)及化學機械綜合加 口 (chemical-mechanical processing) ° 適用於本發日月 化學式處理法是選自於下列所構成之群組^ •蝕刻 (etching)、酸洗處理(acid treatment)、鹼洗處理 treatment)及氧化處理(oxidation treatment)。適用 &gt; 本發明之該機械式加工法是選自於下列所構成之群纟且:於 砂(sandblasting)、雷射加工(laser beam machining)、 14 200539223 σ工(e-beam fflachining)及表面研磨 (P—g)。更佳地,該㈣法是化學式處理法。在一 具體例中,該化學式處理法是蝕刻。 / 藉由本發明之製作奈米碳管場效發射顯示器之陰極 板的方法’可進—步地完成製作本發明之奈米碳管場:發 射顯示器的方法。本發明之製作奈米碳管場效發射顯示器 的方法,包含以下步驟·· (I) 提供-由前面所述之方法製作而柄陰極板; (II) 於該陰極板上提供一空間支撐器,並藉由該空 間支撐器之一底緣將該等碳管區相間隔開; (III) 於每一碳管區的一外圍形成一絕緣層; (IV) 於每一絕緣層上形成一閘極層;及 (V) 於該空間支撐器的一頂緣設置一陽極板,以形 成一奈米碳管場效發射顯示器。 值得一提的是,於前面所提及的該步驟(F,)之移除法 也可在完成該步驟(Π)、步驟(羾)、或步驟(jy)其中一者 之後實施。 較佳地,藉由在一呈透明的第二板體的一下表面形成 一透明導電層、在該透明導電層之一下表面形成一用以增 強對比的吸收層,及於該吸收層之一下表面且與該等碳管 區相對應處形成複數螢光塗層以形成該陽極板。 適用於本發明之該陽極板的透明導電層是選自於下 列所構成之群組:氧化銦錫(Indiuin Tin Oxide,簡稱 ITO)、氧化錄錫(Antimony Tin Oxide,簡稱 ΑΤΟ)、氧化 15 200539223 氟錫(Fluorine-Doped Tin Oxide,簡稱 ft〇),以及氧化 銀錫(Iridium Tin Oxide,簡稱IRTO)。在一具體例中, 該第二基板及該透明導電層分別為一透明玻璃基板及一 ΙΤ0。 5 值得一提的是,該等螢光塗層是可因應電路 (electric circuit)設計的需求,而為下述兩種型態:第 一種是形成呈紅綠藍(簡稱RGB)三原色之螢光粉,且分別 獨立设置’弟一種是將RGB三原色同時形成在單一螢光塗 層上。 10 較佳地,該步驟(V)之後更包含一步驟(v,)。將該陰 極板、空間支撐器及陽極板相配合界定出的一容置空間於 予減壓,以使該容置空間達一至少低於〇〇1 mT〇rr的壓 力環境,並進一步地封裝該陰極板、空間支撐器及陽極板 以完成該步驟(V,)。 15 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之四個具體例的詳細說明中,將可清楚 的明白。 在本發明被詳細描述之前,要注意的是,在以下的說 明中’類似的元件是以相同的編號來表示。 20 〈具體例一〉 以下就本發明之一具體例一說明之。 將一含有奈米碳管之塗料藉由刮刀塗佈法塗佈在一 具有一 ΙΤ0陰極導電層22的透明玻璃陰極基板21上,以 形成一具有一奈米碳管塗層23的陰極板2。其中,該塗料 16 200539223 内的奈米碳管是具有磁性金屬元素鐵粒子。另外,提供一 藉由電子束直寫法製作而成的具有複數呈一陣列式排列 的穿孔311的石英玻璃引導模板31。利用化學劑黏合並配 合栓接’於該石英玻璃引導模板31的一上表面接合一鐵 矽合金板91a、且於該鐵矽合金板91a的一外圍設置一可 產生電磁效應的螺旋線圈91 b,並於該螺旋線圈上91 b電 性連接一電源91 c,以形成一磁力裝置9並於該陰極板2 及該石央玻璃引導模板31兩者間產生一磁場(如圖3A所 · 示)。 φ 參閱圖3B至圖3C,緩緩地靠近並壓合該陰極板2及 该石英玻璃引導模板31。藉由該磁場及該石英玻璃引導模 板31的穿孔311,以在該奈米碳管塗層23上形成複數呈 陣列式排列且相間隔設置並具有複數呈順向排列之奈米 碳管232的碳管區231。該等碳管區231是藉由該磁場吸 引位於該等奈米碳管232上的磁性金屬元素鐵粒子233所 形成。其中,藉該等穿孔311及該鐵矽合金板9ia的一下 表面共同界定出複數分別呈一平面狀的封閉端,以使該等籲 碳管區231内原本呈現不等長度的奈米碳管232,在經由 , 該磁場的吸引之下可藉由該等呈平面狀的封閉端形成呈 齊頭式排列的奈米碳管232。此外,藉由一加熱源95對該 具有奈米碳管塗層23的陰極板2施予熱固化。 參閱圖3D及圖3E,分離該陰極板2及該石英玻璃引 導模板31,並利用蝕刻法移除分別位於該等奈米碳管 頂緣的磁性金屬元素鐵粒子233,以完成具有該透明玻璃 17 200539223 陰極基板21、該ΙΤ0陰極導電層22及該等碳管區23i的 陰極板2。 配合參閱圖4,可得在該具體例—中所提及的磁場與 該等奈米碳管232上的磁性金屬元素鐵粒子233之間的作 5 用關係。藉由該磁場的吸引,致使該等位於奈米碳管232 上的磁性金屬元素鐵粒子233產生暫時性的磁化 (magnetization),並形成順向排列的奈米碳管232。值得 一提的是,隨著磁場方向的改變,可轉變該等磁性金屬元 · 素鐵粒子233受磁化的方向。因此,當該螺旋線圈^比上鲁 10 所形成的一電流(i)方向相反時,該等磁性金屬元素鐵粒 子233的磁化方向可隨著改變。此外,隨著磁場強度的改 變’可良好地控制該等碳管232直立排列的方向。 參閱圖5A至圖5B,提供前述方法所製得的陰極板2, 並於該陰極板2上提供一空間支律器4。藉由該空間支樓 15 器4之一底緣將該等碳管區2 31相間隔開。 參閱圖5C ’利用半導體製程於每一碳管區231的一外 圍形成一絕緣層5 ’並於每一絕緣層5上形成一閘極層6。 · 於一透明玻璃陽極基板71的一下表面形成一 ιτο陽 -極導電層72、在該ΙΤ0陽極導電層72之一下表面形成一 20 用以增強對比的吸收層73,及於該吸收層73之一下表面 且與該等碳管區231相對應處形成複數螢光塗層74以形 成一陽極板7。將該陽極板7設置於該空間支撐器4的一 頂緣(如圖5D所示),最終,將該陰極板2、空間支撐器4 及陽極板7相配合界定出的一容置空間8於予減壓,以使 18 200539223 該容置空間8達一 1 x 10_7 Torr的壓力環境。進一步地, 對該陰極板2、空間支撐器4及陽極板7進行封裝,以完 成製作本發明之奈米碳管場效發射顯示器的方法。 〈具體例二〉 5 本發明之一具體例二大致上是與該具體例一相同,其 不同處在於提供於該石英玻璃引導模板31上的該磁力裝 置9。 參閱圖6,本發明之該具體例二是藉由於該石英玻璃 引導模板31的上表面接合一亞力可合金板92,以形成該 10 磁力裝置9並產生該磁場。 〈具體例三〉 本發明之一具體例三大致上是與該具體例一相同,其 不同處在於該石英玻璃引.導模板31的結構及提供於該石 英玻璃引導模板31上的磁力裝置9。 15 參閱圖7,本發明之該具體例三的石英玻璃引導模板 31是藉由電子束直寫法於該石英玻璃引導模板31上形成 複數呈一陣列式排列的盲孔312。在該石英玻璃引導模板 31的一外圍提供一螺旋線圈93a,及電性連接一電源93b 於該螺旋線圈93a上以形成該具體例三的磁力裝置9並產 20 生該磁場。 〈具體例四〉 本發明之一具體例四大致上是與該具體例三相同,其 不同處在於該磁力裝置9。 參閱圖8,於該石英玻璃引導模板31的一上方及該陰 19 200539223 極板2的一下方分別提供一第一亞立可合金板9切及一第 二亞立可合金板94b以形成該磁力裝置9並產生該磁場。 本發明之製作奈米碳管場效發射顯示器之陰極板及 奈米碳官場效發射顯示器的方法,可降低在真空鍍膜製程 5 中所需耗費的抽氣時間。另外,與傳統網印過程比較,藉 由本發明之製作方法所形成的奈米碳管塗層,不會因為在 網印過程中網版本身的乳劑厚度設計不佳、壓力控制不 虽、含有奈米碳管之網印膠的黏度與網版網目尺寸大小無 法配合等因素,而造成陰極板解析度不良等問題。再者, 10 藉由本發明之製作方法所製得的陰極板,是具有呈順向排 列且可提局場效發射效率的奈米碳管。 綜上所述,本發明之製作奈米碳管場效發射顯示器之 陰極板及奈米碳管場效發射顳示器的方法,可在簡化製作 奈米碳管陰極板之製程的同時,又能兼具製作出具有順向 15 排列的奈米碳管,確實達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 20 【圖式簡單說明】 圖1A至1E是一元件製作流程侧視示意圖,說明習知 一種奈米碳管場發射顯示器之陰極板的製作方法; 圖1A是一侧視示意圖,說明該習知於一透明基板上 形成一具有一圖案之底電極層; 20 200539223 圖1B是一側視示意圖,說明該習知於該底電極層之 圖案上形成一奈米碳管層; 圖1C是一側視示意圖,說明該習知於該奈米碳管層 上形成一介電層; 5 圖1D是一側視示意圖,說明該習知於該介電層上形 成一閘極圖案; 圖1E是一側視示意圖,說明完成該習知之方法後所 形成的奈米碳管場發射顯示器之陰極板的結構; 圖2 —流程圖,說明本發明之製作奈米碳管場效發射 10 顯示器之陰極板的方法; 圖3A至3E是一元件製作流程側視示意圖,說明本發 明一具體例一之製作奈米碳管場效發射顯示器之陰極板 的方法; 圖3A是一側視示意圖,說明於一具有一 ΙΤ0陰極導 15 電層的透明玻璃陰極基板上提供一奈米碳管塗層,及提供 一設置有一磁力裝置的石英玻璃引導模板,以在該透明玻 璃陰極基板及該石英玻璃引導模板兩者間產生一磁場; 圖3B是一側視示意圖,說明緩緩縮小該石英玻璃引 導模板及該奈米碳管塗層兩者間的距離; 20 圖3C是一側視示意圖,說明壓合該石英玻璃引導模 板及該奈米碳管塗層,並固化該奈米碳管塗層; 圖3D是一側視示意圖,說明分離該石英玻璃引導模 板及該具有奈米碳管塗層的透明玻璃陰極基板; 圖3E是一侧視示意圖,說明移除複數奈米碳管上的 21 200539223 磁性金屬元素鐵粒子; 圖4是該圖3B的一局部放大示意圖,說明該等磁性 金屬元素鐵粒子與該磁場之間的作用關係; 圖5A至5D是一元件製作流程側視示意圖,說明本發 5 明之製作奈米碳管場效發射顯示器的方法; 圖5A是一側視示意圖,說明提供一藉由本發明之該 具體例一所製得的陰極板;. 圖5B是一側視示意圖,說明於該陰極板上設置一空 間支撐器; 10 圖5C是一側視示意圖,說明於複數碳管區外圍分別 形成複數絕緣層,及在該等絕緣層上分別形成複數閘極 層; 圖5D是一側視示意圖,說明於該空間支撐器的一頂 緣設置一陽極板; 15 圖6是一側視示意圖,說明本發明製作奈米碳管場效 發射顯示器之陰極板的方法的一具體例二; 圖7是一側視示意圖,說明本發明製作奈米碳管場效 發射顯示器之陰極板的方法的一具體例三;及 圖8是一側視示意圖,說明本發明製作奈米碳管場效 20 發射顯示器之陰極板的方法的一具體例四。 22 200539223 【圖式之主要元件代表符號簡單說明】 2......... …··陰極板 71……. …··透明玻璃陽極板 21…·· ••…透明玻璃陰極基板 72……, •…·ΙΤ0陽極導電層 22……· ••…ΙΤ0陰極導電層 73……. …··吸收層 23……· ••…奈米碳管塗層 74……. …··螢光塗層 231 …·. …··碳管區 8......... …··容置空間 232 …·. …&quot;奈米碳管 9......... …&quot;磁力裝置 233 …*· ••…磁性金屬元素鐵粒子 91a…·* ••…鐵碎合金板 31……· ••…石英玻璃引導模板 91b…&quot; …··螺旋線圈 311…·· …··穿孔 91c…·· …··電源 312 …··盲孔 92……. ••…亞力可合金板 4......... ••…空間支撐器 93a ….· …··螺旋線圈 5......... …··絕緣層 93b …&quot; …··電源 6......... .....閘極層 94a…·· ••…第一亞力可合金板 7......... ......陽極板 94b …·· ••…第二亞力可合金板 23200539223 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a method for manufacturing a cathode plate of a field emission display (FED) and a field-effect 5 emission display, in particular to a method A method for manufacturing a cathode plate of a carbon nanotube field emission display (CNTFED for short) and a method of producing a carbon nanotube field effect display. [Previous technology] In recent years, 10 technological developments in related fields such as semiconductor thin film manufacturing have made current electronic products thinner and shorter. This phenomenon can also be seen in related industries such as displays, such as liquid crystal displays (1 iquid crystal display (abbreviated as LCD), plasma display panel (abbreviated as PDP), organic light emitting diode (organic light emitting diode) display and nanometer carbon tube field emission display. 15 In general, the current CNTFED related industry generally uses the thin film process to make the cathode plate of CNTFED, or prepares the CNTs made by thin film deposition into screen printing paste. Cathode plates for CNTFED are produced with screen printing and thin film processes. 20 In the Republic of China Patent No. 428189, a method for manufacturing a cold cathode array is disclosed (not shown). First, a plurality of cathode lines with a circuit design are provided, and a plurality of the cathode lines are staggered with each other and located on the cathode lines. A substrate with an insulating layer thereon, and a plurality of gate lines formed on the insulating layers. Next, anodizing is performed on an exposed area of the cathode lines 200539223 to form an anodized film respectively on the exposed areas of the cathode lines so that each anode processing film has a plurality of holes. Further, catalysts are formed in the holes. Finally, the substrate is set in a plasma 5 system, and a carbon-containing gas is used to react with the catalyst, so that a plurality of nanometer carbon tubes grow out of the holes. The aforementioned plasma system uses carbon-containing gas to dissociate carbon ions through the plasma system, so that the dissociated carbon ions can form oversaturation preci pi tat ion through the catalyst to produce stone 10 inking. (Graphitization) carbon tubes. Among them, the carbon-containing gas may include pinane (CHO, acetylene (C2H2), etc., and the plasma system solution may be plasma enhanced chemical vapor deposition (PECVD) system, microwave plasma assisted chemical vapor phase Microwave plasma enhanced 15 chemical vapor deposition (MPECVD) system, and electron cyclotron resonance chemical vapor deposition (ECRCVD) system. It is well known to those skilled in the field of field emission technology, field emissivity It is directly proportional to factors such as aspect ratio, field emission 20 area, and degree of vacuum, and is inversely proportional to the distance between the two plates. However, this type of cold cathode array is completed by thin film deposition Although the manufacturing method can prepare nano carbon tubes with an array orientation arrangement, the required vacuum coating peripheral equipment is expensive and the evacuation time is long, so it has Equipment cost and time cost 200539223 Higher disadvantages. Refer to Figure 1A to Figure 1, a carbon nanotube field development A method for manufacturing a cathode plate of a radio display (Republic of China Patent Publication No. 518632) includes the following steps in order: (a) preparing a transparent substrate ι〇1, which has a surface and a lower surface; tO applies a photosensitive (ρ) ^^ conductive paste on a surface of the transparent substrate 101, and then uses a photolithography process and a sintering process to complete a bottom electrode layer having a pattern 10 (as shown in Fig. Α); (c) using a screen printing method to print a nano carbon tube layer 103 on the pattern of the bottom electrode layer 102 (as shown); (d) Comprehensively apply a layer of dielectric material (etching) that can be etched as a dielectric layer 104 (as shown in Figure lc); (e) Apply a comprehensive layer over the dielectric layer 104 A photosensitive gate material is formed by a lithography process and a sintering process to form a gate pattern 105 (as shown in FIG. 1D); and (f) the gate pattern 105 is used as a patterned protective layer, combined with An etching process etches away the dielectric layer 104 that is not protected by the gate pattern 105, and is completed after a sintering process The structure of the cathode plate (as shown in FIG. 1E). The cathode plate of the nano-carbon tube field emission display produced by using the film deposition process and the screen printing process can reduce part of the time-consuming process time and save part of the cost. Necessary coating peripherals. However, the screen printing was used to make the 200539223 Bumi slave layer 103 'easily due to poor design of the emulsion thickness of the screen body, improper pressure control during the screen printing process, and screen printing adhesive containing nano carbon tubes. The viscosity (viSC0sity) and the size of the screen mesh (mesh) can not match the net factor, resulting in poor cathode plate resolution and other problems. In addition, the nano-carbon tube layer 103 formed on the pattern of the bottom electrode layer 102 by screen printing exhibits a random appearance with a fur-like shape, so it cannot be arranged. Nano-tubes are formed to form an array in a forward direction to meet the field emissivity requirements. All previous patents mentioned above are incorporated herein by reference. Therefore, how to simplify the manufacturing process of the carbon nanotube cathode plate, and at the same time, it can also produce the carbon nanotubes with the forward alignment, which is a major problem that people in the field of developing carbon nanotube cathode plates should overcome. problem. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for fabricating a cathode plate of a nanometer carbon tube field emission display. Another object of the present invention is to provide a method for manufacturing a field emission display of a carbon nanotube. The method for manufacturing a cathode plate of a nanometer carbon tube field emission display according to the present invention comprises the following steps: (A) forming a nanometer carbon tube coating on a first plate body having a conductive layer; (B) providing a Guide template; (C) providing a magnetic field between the guide template and the first plate 200539223 (magnetic field); (D) laminating the guide template and the carbon nanotube coating on the nanometer Carbon tube coatings are formed on the carbon tube coating with a plurality of carbon nanotube regions spaced apart and having a plurality of carbon nanotubes arranged in a forward direction; (E) curing the carbon nanotube coating; and (F) separating the guide template and The first plate body with the carbon nanotube coating layer is formed to form a cathode plate having the first plate body, the conductive layer, and the carbon tube regions. ίο 15 20 In addition, a method for manufacturing a nano-carbon tube field-effect display can be completed with the method for manufacturing a cathode plate of a nano-carbon tube field-effect display. The method for manufacturing a nanometer obstructive field-effect emission display includes the following steps: (I) providing a cathode plate manufactured by the foregoing method; (Π) providing a space supporter on the cathode plate And space the carbon tube regions by a bottom edge of the space support; (III) forming an insulating layer on a periphery of each carbon tube region; (IV) forming a gate electrode on each insulating layer Layer; and (V) an anode plate (anode) is disposed on a top edge of the space support to form a nanometer carbon tube field emission display. [Embodiment] Referring to FIG. 2, a method for manufacturing a cathode plate of a nano-carbon tube field emission display of the present invention includes the following steps: (A) forming a nano-carbon on a first plate body having a conductive layer Tube 10 200539223 coating; (B) providing a guide template; (C) providing a magnetic field between the guide template and the first plate body; (D) laminating the guide template and the carbon nanotube coating To form a carbon tube region having a plurality of nano carbon tubes arranged in a forward direction on the nano carbon tube coating; (E) curing the nano carbon tube coating; and 15 20 (F ) Separating the guide template and the first plate body with the carbon nanotube coating to form a cathode plate having the first plate body, the conductive layer and the carbon tube regions. Preferably, the nano carbon tube coating is formed by forming a slurry containing nano carbon tubes on the conductive layer. Preferably, the nano carbon tube in the coating has a magnetic metal element selected from the group consisting of iron (Fe), starting (Co), nickel (Ni), and a combination thereof. In a specific example, the magnetic metal element is iron. Preferably, the nano carbon tube layer is formed by a coating method selected from the group consisting of: a blade coating method, a spin coating method, and an impregnated coating method. Method (dip coating) and roll coating method (roll coating). In a specific example, the coating method is a doctor blade coating method. Preferably, the guide template is made of a non-magnetic material and has a plurality of perforations arranged in an array. A magnetic device is provided in the guide template to generate the magnetic field. In a specific example, the non-magnetic material is quartz glass. 11 200539223 More preferably, a magnetic body is provided on an upper surface of the guide template, a coil capable of generating an electromagnetic effect is disposed on a periphery of the magnetic body, and the coil is electrically connected to the coil. A power source forms the magnetic device and generates the magnetic field. The magnetic body suitable for the present invention is made of magnetic materials selected from the group consisting of ferromagnetics, ferrimagnetic materials, and antiferromagnets. ) And paramagnet. Preferably, the magnetic material is a ferromagnet. The ferromagnetic body suitable for the present invention is selected from the group consisting of: Fe-Si alloy, iron-containing alloy, cobalt-containing alloy, nickel-containing alloy, and iron-nickel alloy. In a specific example, the ferromagnetic body is an iron-silicon alloy. More preferably, a permanent magnet is provided on an upper surface of the guide template to form the magnetic device and generate the magnetic field. In 15-specific examples, the permanent magnet is an Alnico alloy; alumin-nickel-cobalt alloy. 0 The method for forming the perforations applicable to the present invention is a process selected from the group consisting of Methods: e-beam writing, reactive ionic etching (referred to as RIE 20), laser beam writing and precision drilling. In a specific example, the processing method is an electron beam direct writing method. It is worth mentioning that the aforementioned lower surface of the magnetic body and the upper surface of the guide template are connected by the joining method composed of the following groups: 12 200539223: chemical joining, mechanical joining Legal jointing and one of these combinations. The chemical bonding method suitable for the present invention is chemical agent adhesion. The mechanical joining method suitable for the present invention is selected from the group consisting of bolting, screwing, welding, lapping, butting, and riveting. (Riveting). More preferably, the joining method is a chemical joining method and a mechanical joining method. In a specific example, the chemical bonding method is chemical agent bonding, and the mechanical bonding method is bolting. In addition, the method of joining the lower surface of the permanent magnet and the upper surface of the guide template is the same as the method of joining the magnetic body and the guide template described above. In addition, a plurality of closed ends are defined by the perforations and the lower surface of the magnetic body. Each closed end has a shape selected from the group consisting of a planar shape, an awl-shaped shape, and an arc shape. In a specific example, the closed ends are respectively planar. 15 In addition, the plurality of closed ends defined by the perforations and a surface of the permanent magnet have the same shape as the foregoing. Preferably, the guide template is made of a non-magnetic material and has a plurality of blind holes arranged in an array. A magnetic device is provided in the guide template to generate the magnetic field. In a specific example, the non-magnetic material is quartz 20 (quartz) glass, a spiral coil is disposed on a periphery of the guide template, and a power source is electrically connected to the spiral coil to form the magnetic device and generate the magnetic field. Preferably, the guide template is made of a non-magnetic material and has a plurality of blind holes arranged in an array. An upper portion of the guide template and a lower portion of the first plate body are provided respectively. The first permanent magnet and the first permanent magnet form a magnetic device and generate the magnetic field. In ~~-, the system is Yongzhong, the non-magnetic material is quartz glass, and the first and longest magnets are Arico alloys. The method of forming such blind holes is equivalent to the method of forming the aforementioned holes.穿 Piercing It is worth mentioning that ‘one J% of each blind hole of the guide template is in a shape selected from the group consisting of a flat shape and a cone shape. In a specific example, the closed ends of the blind holes have a shape of 1520 卞 rain. Preferably, the curing is performed by a curing method selected from the group consisting of: a thermal curing method, a photo-curing method, UiSht curing, and a chemical curing method. In the ~ Dance style, this curing method is a thermal curing method. Preferably, after the step (F), a step (F,) of ~ m for removing magnetic metal elements on the carbon nanotubes is further included. Preferably, removal is performed by a removal method selected from the group consisting of: chemical treatment, machining, and chemical-mechanical processing ° The chemical formula treatment method applicable to the present day and month is selected from the group consisting of: etching, acid treatment, alkali treatment, and oxidation treatment. Application &gt; The mechanical processing method of the present invention is selected from the group consisting of: sandblasting, laser beam machining, 14 200539223 e-beam fflachining, and surface Grinding (P-g). More preferably, the method is a chemical treatment. In a specific example, the chemical treatment method is etching. / By the method of manufacturing a cathode plate of a nano-carbon tube field emission display of the present invention ', the method of manufacturing the nano-carbon tube field of the present invention: a method of transmitting a display can be further completed. The method for manufacturing a nano-carbon tube field emission display of the present invention includes the following steps: (I) Provide-a cathode plate made by the method described above; (II) Provide a space supporter on the cathode plate And space the carbon tube regions by a bottom edge of the space support; (III) forming an insulating layer on a periphery of each carbon tube region; (IV) forming a gate electrode on each insulating layer Layer; and (V) an anode plate is arranged on a top edge of the space supporter to form a nanometer carbon tube field emission display. It is worth mentioning that the removal method of the step (F,) mentioned above can also be implemented after completing one of the step (Π), step (羾), or step (jy). Preferably, a transparent conductive layer is formed on a lower surface of the transparent second plate body, an absorption layer for enhancing contrast is formed on a lower surface of one of the transparent conductive layers, and a lower surface of one of the absorption layers is formed. A plurality of fluorescent coatings are formed corresponding to the carbon tube regions to form the anode plate. The transparent conductive layer suitable for the anode plate of the present invention is selected from the group consisting of: Indiuin Tin Oxide (ITO), Antimony Tin Oxide (ATP), Oxidation 15 200539223 Fluorine-Doped Tin Oxide (referred to as ft) and silver tin oxide (Iridium Tin Oxide (referred to as IRTO)). In a specific example, the second substrate and the transparent conductive layer are a transparent glass substrate and an ITO, respectively. 5 It is worth mentioning that these fluorescent coatings can respond to the requirements of electrical circuit design, and are of the following two types: the first is to form three primary colors of red, green and blue (RGB for short) Light powder, and each of them is independently set. One is to simultaneously form the three primary colors of RGB on a single fluorescent coating. 10 Preferably, the step (V) further includes a step (v,). An accommodating space defined by the combination of the cathode plate, the space support and the anode plate is pre-depressurized, so that the accommodating space reaches a pressure environment of at least less than 0.001 mT0rr, and is further encapsulated. The cathode plate, the space supporter and the anode plate complete the step (V,). 15 The foregoing and other technical contents, features, and effects of the present invention will be clearly understood in the following detailed description of the four specific examples with reference to the drawings. Before the present invention is described in detail, it is to be noted that in the following description, 'similar elements are represented by the same reference numerals. 20 <Specific Example 1> A specific example of the present invention will be described below. A coating material containing a carbon nanotube is coated on a transparent glass cathode substrate 21 having a ITO cathode conductive layer 22 by a doctor blade coating method to form a cathode plate 2 having a carbon nanotube coating 23. . Among them, the carbon nanotubes in the coating 16 200539223 are iron particles with magnetic metal elements. In addition, a quartz glass guide template 31 having a plurality of perforations 311 arranged in an array, which is produced by an electron beam direct writing method, is provided. A ferro-silicon alloy plate 91a is bonded to an upper surface of the quartz glass guide template 31 using a chemical agent for bonding and bolting, and a spiral coil 91 b capable of generating an electromagnetic effect is provided on a periphery of the ferro-silicon alloy plate 91a. And electrically connect a power source 91 c to the spiral coil 91 b to form a magnetic device 9 and generate a magnetic field between the cathode plate 2 and the stone central glass guide template 31 (as shown in FIG. 3A) ). φ Referring to FIGS. 3B to 3C, slowly approach and press the cathode plate 2 and the quartz glass guide template 31 together. With the magnetic field and the perforation 311 of the quartz glass guide template 31, a plurality of nano carbon tubes 232 arranged in an array and spaced apart and having a plurality of forwardly aligned carbon nanotubes 232 are formed on the nano carbon tube coating layer 23. Carbon tube area 231. The carbon tube regions 231 are formed by attracting magnetic metal element iron particles 233 on the nano carbon tubes 232 by the magnetic field. Among them, through the perforations 311 and the lower surface of the iron-silicon alloy plate 9ia, a plurality of closed ends each having a flat shape are defined together, so that the carbon nanotube regions 231 originally exhibit carbon nanotubes 232 of varying lengths. Under the attraction of the magnetic field, the carbon nanotubes 232 in a flush arrangement can be formed by the flat closed ends. In addition, the cathode plate 2 having the carbon nanotube coating layer 23 is thermally cured by a heating source 95. Referring to FIG. 3D and FIG. 3E, the cathode plate 2 and the quartz glass guide template 31 are separated, and the magnetic metal element iron particles 233 located at the top edges of the carbon nanotubes are removed by etching to complete the transparent glass. 17 200539223 cathode substrate 21, the ITO cathode conductive layer 22, and the cathode plate 2 of the carbon tube regions 23i. With reference to FIG. 4, the function relationship between the magnetic field mentioned in this specific example and the magnetic metal element iron particles 233 on the carbon nanotubes 232 can be obtained. Due to the attraction of the magnetic field, the magnetic metal element iron particles 233 located on the nano-carbon tube 232 cause temporary magnetization, and form the nano-carbon tube 232 arranged in a forward direction. It is worth mentioning that, as the direction of the magnetic field changes, the direction of magnetization of the magnetic metal elements and ferrite particles 233 can be changed. Therefore, when the direction of the current (i) formed by the spiral coil ^ is higher than that of the current 10, the magnetization direction of the magnetic metal element iron particles 233 can be changed accordingly. In addition, as the magnetic field strength changes', the direction in which the carbon tubes 232 are arranged upright can be well controlled. Referring to FIG. 5A to FIG. 5B, a cathode plate 2 obtained by the foregoing method is provided, and a space rhythm device 4 is provided on the cathode plate 2. The carbon tube regions 2 31 are spaced apart by a bottom edge of the space branch 15 device 4. Referring to FIG. 5C ′, an insulating layer 5 ′ is formed on an outer periphery of each carbon tube region 231 by using a semiconductor process, and a gate layer 6 is formed on each insulating layer 5. A ιτο anode-electrode conductive layer 72 is formed on the lower surface of a transparent glass anode substrate 71, an absorbing layer 73 for enhancing contrast is formed on the lower surface of one of the ITO anode conductive layers 72, and A plurality of fluorescent coating layers 74 are formed on the lower surface and corresponding to the carbon tube regions 231 to form an anode plate 7. The anode plate 7 is set on a top edge of the space supporter 4 (as shown in FIG. 5D). Finally, an accommodation space 8 is defined by the combination of the cathode plate 2, the space supporter 4 and the anode plate 7. The pre-decompression is performed so that the pressure of the accommodation space 8 reaches a pressure environment of 1 x 10_7 Torr on 18 200539223. Further, the cathode plate 2, the space supporter 4, and the anode plate 7 are packaged to complete the method for manufacturing the nano-carbon tube field emission display of the present invention. <Specific Example 2> 5 A specific example 2 of the present invention is substantially the same as the specific example 1, except that the magnetic device 9 provided on the quartz glass guide template 31 is different. Referring to FIG. 6, the second specific example of the present invention is that an acrylic alloy plate 92 is bonded to the upper surface of the quartz glass guide template 31 to form the magnetic device 9 and generate the magnetic field. <Specific Example 3> A specific example 3 of the present invention is substantially the same as the specific example 1, except that the quartz glass guide plate 31 has a structure and a magnetic device 9 provided on the quartz glass guide plate 31. . 15, referring to FIG. 7, the quartz glass guide template 31 according to the third specific example of the present invention is to form a plurality of blind holes 312 arranged in an array on the quartz glass guide template 31 by an electron beam direct writing method. A spiral coil 93a is provided on a periphery of the quartz glass guide template 31, and a power source 93b is electrically connected to the spiral coil 93a to form the magnetic device 9 of the specific example 3 and generate the magnetic field. <Specific Example 4> A specific example 4 of the present invention is substantially the same as the specific example 3, except that the magnetic device 9 is different. Referring to FIG. 8, a first acrylic alloy plate 9 and a second acrylic alloy plate 94b are respectively provided on an upper part of the quartz glass guide template 31 and a lower part of the female 19 200539223 electrode plate 2 to form the The magnetic device 9 generates this magnetic field. The method for manufacturing the cathode plate of the nano-carbon tube field emission display and the nano-carbon official field emission display of the present invention can reduce the evacuation time required in the vacuum coating process 5. In addition, compared with the traditional screen printing process, the nano carbon tube coating formed by the manufacturing method of the present invention will not be caused by poor design of the emulsion thickness of the screen body during the screen printing process, poor pressure control, The viscosity of the screen printing glue of the meter carbon tube and the size of the screen mesh cannot match, which causes problems such as poor resolution of the cathode plate. Furthermore, the cathode plate produced by the manufacturing method of the present invention is a nano carbon tube having a forward alignment and improved local field emission efficiency. In summary, the method for manufacturing a cathode plate of a nano-carbon tube field-effect emission display and a nano-carbon tube field-effect emission temporal indicator of the present invention can simplify the manufacturing process of a nano-carbon tube cathode plate while simultaneously It can also produce nano carbon tubes with a forward 15 arrangement, and indeed achieves the purpose of the present invention. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention specification, All should still fall within the scope of the invention patent. 20 [Brief Description of the Drawings] Figures 1A to 1E are schematic side views of a component manufacturing process, illustrating a conventional method for manufacturing a cathode plate of a nano-carbon tube field emission display; A bottom electrode layer having a pattern is formed on a transparent substrate; 20 200539223 FIG. 1B is a schematic side view illustrating a conventional carbon nanotube layer formed on the bottom electrode layer pattern; FIG. 1C is a side view FIG. 1D is a schematic side view illustrating the formation of a gate pattern on the dielectric layer; FIG. 1E is a view A schematic side view illustrating the structure of a cathode plate of a nano-carbon tube field emission display formed after the completion of the conventional method; FIG. 2-a flowchart illustrating the production of a cathode plate of a nano-carbon tube field emission display 10 according to the present invention; 3A to 3E are schematic side views of a component manufacturing process, illustrating a method for manufacturing a cathode plate of a nano-carbon tube field emission display according to a specific example of the present invention; FIG. 3A is a schematic side view, illustrating have A transparent carbon cathode substrate with an ITO cathode cathode 15 electrical layer is provided with a carbon nanotube coating, and a quartz glass guide template provided with a magnetic device is provided to both the transparent glass cathode substrate and the quartz glass guide template. A magnetic field is generated between the two sides; FIG. 3B is a schematic side view illustrating the slow reduction of the distance between the quartz glass guide template and the carbon nanotube coating; FIG. 3C is a schematic side view illustrating the pressing of the quartz A glass guide template and the carbon nanotube coating, and curing the carbon nanotube coating; FIG. 3D is a schematic side view illustrating separation of the quartz glass guide template and the transparent glass cathode with the carbon nanotube coating Substrate; Figure 3E is a schematic side view illustrating the removal of 21 200539223 magnetic metal element iron particles from a plurality of carbon nanotubes; Figure 4 is a partially enlarged schematic view of Figure 3B, illustrating the magnetic metal element iron particles and the 5A to 5D are schematic side views of a component manufacturing process, illustrating a method for manufacturing a nano-carbon tube field emission display of the present invention; FIG. 5A is a A schematic view of a cathode plate made by the specific example of the present invention is provided; FIG. 5B is a schematic side view showing a space support provided on the cathode plate; FIG. 5C is a schematic side view It is shown that a plurality of insulating layers are respectively formed on the periphery of the plurality of carbon tube regions, and a plurality of gate layers are respectively formed on the insulating layers; FIG. 5D is a schematic side view illustrating that an anode plate is provided on a top edge of the space supporter; 15 FIG. 6 is a schematic side view illustrating a specific example 2 of a method for manufacturing a cathode plate of a nano carbon tube field emission display according to the present invention; FIG. 7 is a schematic side view illustrating the field effect of a nano carbon tube according to the present invention A specific example three of the method for emitting a cathode plate of a display; and FIG. 8 is a schematic side view illustrating a specific example four of a method for producing a cathode plate of a nano-carbon tube field effect 20 emitting display according to the present invention. 22 200539223 [Simplified explanation of the main symbols of the drawings] 2 .........… cathode plate 71 …….… Transparent glass anode plate 21…… transparent glass cathode substrate 72 ……, • ·· ΙΤ0 anode conductive layer 22 ...... ···· ΙΤ0 cathode conductive layer 73 …… .. ·· absorptive layer 23 …… •••… nanometer carbon tube coating 74 …… .... · Fluorescent coating 231 ............ Carbon tube zone 8 ......... Receiving space 232 ............ Nano carbon tube 9 ........ … &Quot; Magnetic device 233… * · ••… Magnetic metal element iron particles 91a… · * ••… Iron broken alloy plate 31 …… · ••… Quartz glass guide template 91b… &…; · helical coil 311 … ···· Perforated 91c ... ···· Power Supply 312… ·· Blind Hole 92 ……. •• ... Alec Alloy Plate 4 ......... ••… Space Support 93a … ..… .. Spiral Coil 5 .........… .. Insulating layer 93b… &quot;… .. Power supply 6 ............ Gate layer 94a … ·· ••… The first acrylic alloy plate 7 ............... Anode plate 94b… ·· ••… Diethylenetriamine alloy sheet 23 may force

Claims (1)

200539223 拾、申請專利範圍: 1 · 一種製作奈米碳管場效發射顯示器之陰極板的方法,包 含以下步驟: · (A) 於一具有一導電層的第一板體上形成一奈米碳管塗 層; (B) 提供一引導模板; (C) 於該引導模板及該第一板體兩者間提供一磁場; (D) 壓合該引導模板及該奈米碳管塗層,以在該奈米碳管 塗層上形成複數相間隔設置並具有複數呈順向排列 之奈米碳管的碳管區; (E) 固化該奈米碳管塗層;及 (F) 分離該引導模板及具有該奈米碳管塗層的第一板 體,以形成一具有該第一板體、該導電層及該等碳管 區的陰極板。 2·依據申請專利範圍第1項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該奈米碳管塗層是將一含有 奈米碳管之塗料形成在該導電層上所製成,該塗料内的 奈米碳管具有選自於下列所構成之群組的磁性金屬元 素·鐵、銘、錄及此等之一組合。 3. 依據申請專利範圍第2項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該引導模板是由一非磁性材 料所製成,並具有複數呈一陣列式排列的穿孔,於該引 導模板提供一磁力裝置以產生該磁場。 4. 依據申請專利範圍第3項之製作奈米碳管場效發射顯示 24 200539223 器之陰極板的方法,其中,於該引導模板的一上表面提 供一磁性體、於該磁性體的一外圍設置一螺旋線圈,並 於該螺旋線圈上電性連接-電源以形成該磁力裝置並產 生該磁場,該磁性體是由選自於下列所構成之群組的磁 性材料所製成:鐵磁體、亞鐵磁體、反鐵磁體及順磁體。 5·依據申請專利範圍第4項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該磁性材料是鐵磁體。 · 6·依據申請專利範圍第3項之製作奈米碳管場效發射顯示-器之陰極板的方法,其中,於該引導模板的一上表面提籲 供一永久磁體以形成該磁力裝置並產生該磁場。 7·依據申請專利範圍第2項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該引導模板是由一非磁性材 料所製成,並具有複數呈一陣列式排列的盲孔,於該引 導模板的一外圍設置一螺旋線圈及於該螺旋線圈上電性 連接一電壓以形成一磁力裝置並產生該磁場。 8·依據申請專利範圍第2項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該引導模板是由一非磁性材修 料所製成,並具有複數呈一陣列式排列的盲孔,於該引 _ 導模板的一上方及該第一板體的一下方分別提供一第一 永久磁體及一第二永久磁體以形成一磁力裝置並產生該 磁場。 3·依據申請專利範圍第丨項之製作奈米碳管場效發射顯示 裔之陰極板的方法,其中,藉由選自於下列所構成之群 組的固化法來完成固化··熱固化法、光固化法及化學固 25 200539223 化法。 1〇·依據中請專利範圍第9項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該固化法是熱固化法。 11·依據申請專利範圍第2項之製作奈米碳管場效發射顯示 器之陰極板的方法,於該步驟(F)之後更進一步地包含一 用以移除该等奈米碳管上的磁性金屬元素的步驟(F,)。 12.依據申凊專利範圍第丨丨項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,藉由選自於下列所構成之群 組的移除法來完成移除:化學式處理法、機械式加工法 及化學機械綜合加工法;該化學式處理法是選自於下列 所構成之群組:姓刻、酸洗處理、鹼洗處理及氧化處理; 該機械式加工法是選自於下列所構成之群組:喷砂、雷 射加工、電子束加工及表面研磨。 13·依據申請專利範圍第丨2項之,製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該化學式處理法是蝕刻。 14 · 一種製作奈米碳管場效發射顯示器的方法,包含以下步 驟: (I) 提供一由申請專利範圍第1項所述之方法製作而 成的陰極板; (II) 於該陰極板上提供一空間支撐器,並藉由該空間支 岸 撐器之一底緣將該等i炭管區相間隔開; (III) 於每一碳管區的一外圍形成一絕緣層; (IV) 於每一絕緣層上形成一閘極層;及 (V) 於該空間支撐器的一頂緣設置一陽極板,以形成一 26 200539223 奈米碳管場效發射顯示器。 15·依據中4專利範圍第14項之製作奈米碳管場效發射顯示 裔的方法’其中’該步驟(I )中的奈米碳管塗層是將-含有奈米碳管之塗料形成在該導電層上所製成,該塗料 内的奈米碳官具有選自於下列所構成之群組的磁性金屬 元素:鐵、鈷、鎳及此等之一組合。 16·依據申請專利範圍第丨5項之製作奈米碳管場效發射顯示 器的方法,其中,該步驟(I )中的引導模板是由一非磁 性材料所製成,並具有複數呈一陣列式排列的穿孔,於 該引導模板提供一磁力裝置以產生該磁場。 17·依據申請專利範圍第16項之製作奈米碳管場效發射顯示 器的方法,其中,於該引導模板的一上表面提供一磁性 體、於該磁性體的一外圍設置一螺旋線圈,並於該螺旋 線圈上電性連接一電源以形成該磁力裝置並產生該磁 場’該磁性體是由選自於下列所構成之群組的磁性材料 所製成:鐵磁體、亞鐵磁體、反鐵磁體及順磁體。 18·依據申請專利範圍第17項之製作奈米碳管場效發射顯示 器的方法,其中,該磁性材料是鐵磁體。 19·依據申請專利範圍第16項之製作奈米碳管場效發射顯示 器的方法,其中,於該引導模板的一上表面提供一永久 磁體以形成該磁力裝置並產生該磁場。 2〇·依據申請專利範圍第15項之製作奈米碳管場效發射顯示 器的方法,其中,該步驟(I )中的引導模板是由一非磁 性材料所製成,並具有複數呈一陣列式排列的盲孔,於 27 200539223 該引導模板的一外圍設置一螺旋線圈及於該螺旋線圈上 電性連接一電壓以形成一磁力裝置並產生該磁場。 21 ·依據申請專利範圍第15項之製作奈米碳管場效發射顯示 器的方法,其中,該步驟〇)中的引導模板是由一非磁 性材料所製成,並具有複數呈一陣列式排列的盲孔,於 該引導模板的一上方及該第一板體的一下方分別提供一 第一永久磁體及一第二永久磁體以形成一磁力裝置並產 生該磁場。 22·依據申請專利範圍第14項之製作奈米碳管場效發射顯示 裔的方法,其中,藉由選自於下列所構成之群組的固化 法來完成該步驟(I )中的固化··熱固化法、光固化法及 化學固化法。 23·依據申請專利範圍第22項之製作奈米碳管場效發射顯示 器的方法,其中,該固化法是熱固化法。 24·依據申請專利範圍第15項之製作奈米碳管場效發射顯示 器的方法,於該步驟(1)之後更進一步地包含一用以移 除该等奈米碳管上的磁性金屬元素的步驟(I,)。 25·依據申請專利範圍第24項之製作奈米碳管場效發射顯示 器的方法,其中,藉由選自於下列所構成之群組的移除 法來完成移除:化學式處理法、機械式加工法及化學機 械綜合加工法;該化學式處理法是選自於下列所構成之 群組··蝕刻、酸洗處理.、鹼洗處理及氧化處理;該機械 式加工法是選自於下列所構成之群組:噴砂、雷射加工、 電子束加工及表面研磨。 28 200539223 26.,據申請專利範圍第25項之製作奈米碳管場效發射顯示 器的方法,其中,該化學式處理法是蝕刻。 27· f據申請專利範圍第14項之製作奈米碳管場效發射顯示 器的方法,其中,藉由在一呈透明的第二板體的一下表 面形成一透明導電層、在該透明導電層之一下表面形成 用以增強對比的吸收層,及於該吸收層之一下表面且 /、4專區相對應處形成複數螢光塗層以形成該陽極 板。 28.依據申請專利範圍第丨4項之製作奈米碳管場效發射顯示 器的方法,其中,該步驟(V)之後更包含一步驟(V,), 將該陰極板、空間支撐器及陽極板相配合界定出的一容 置空間於予減壓,以使該容置空間達一至少低於〇 mTorr的壓力環境,並進一步地封裝該陰極板、窆間支撐 器及陽極板以完成該步驟(V,)。 29200539223 Patent application scope: 1 · A method for manufacturing a cathode plate of a nano carbon tube field emission display, comprising the following steps: (A) forming a nano carbon on a first plate body having a conductive layer Tube coating; (B) providing a guide template; (C) providing a magnetic field between the guide template and the first plate; (D) laminating the guide template and the carbon nanotube coating to Forming a carbon tube region having a plurality of nano carbon tubes arranged in a spaced relationship on the nano carbon tube coating; (E) curing the nano carbon tube coating; and (F) separating the guide template And a first plate body having the carbon nanotube coating layer to form a cathode plate having the first plate body, the conductive layer, and the carbon tube regions. 2. A method for manufacturing a cathode plate of a nanometer carbon tube field emission display according to item 1 of the scope of the patent application, wherein the nanometer carbon tube coating is formed by coating a nanometer carbon tube-containing coating on the conductive layer. The nano carbon tube in the coating is made of a magnetic metal element selected from the group consisting of iron, iron, inscriptions, records, and one of these combinations. 3. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of patent application, wherein the guide template is made of a non-magnetic material and has a plurality of perforations arranged in an array. A magnetic device is provided in the guide template to generate the magnetic field. 4. A method for making a cathode plate of a nano carbon tube field emission display 24 200539223 according to item 3 of the scope of patent application, wherein a magnetic body is provided on an upper surface of the guide template and a periphery of the magnetic body A spiral coil is provided, and a power source is electrically connected to the spiral coil to form the magnetic device and generate the magnetic field. The magnetic body is made of a magnetic material selected from the group consisting of: a ferromagnetic, Ferrimagnetic, antiferromagnetic and paramagnetic. 5. The method for manufacturing a cathode plate of a nanometer carbon tube field emission display according to item 4 of the scope of patent application, wherein the magnetic material is a ferromagnet. 6. The method for manufacturing a cathode plate of a nano-carbon tube field emission display device according to item 3 of the scope of patent application, wherein a permanent magnet is provided on an upper surface of the guide template to form the magnetic device and This magnetic field is generated. 7. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of patent application, wherein the guide template is made of a non-magnetic material and has a plurality of blinds arranged in an array. A hole is provided with a spiral coil on a periphery of the guide template and a voltage is electrically connected to the spiral coil to form a magnetic device and generate the magnetic field. 8. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of the patent application, wherein the guide template is made of a non-magnetic material and has a plurality of arrays A blind hole, a first permanent magnet and a second permanent magnet are provided on an upper part of the guide template and a lower part of the first plate body respectively to form a magnetic device and generate the magnetic field. 3. A method for manufacturing a cathode plate of a nano-carbon tube field-effect emission display device according to item 丨 of the patent application scope, wherein the curing is performed by a curing method selected from the group consisting of: a thermal curing method , Light curing method and chemical curing 25 200539223 chemical method. 10. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 9 of the patent application, wherein the curing method is a thermal curing method. 11. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of patent application, after step (F), it further includes a method for removing the magnetic properties of the nano-carbon tubes. Steps (F,) for metallic elements. 12. A method for manufacturing a cathode plate of a nano-carbon tube field-effect display according to item 丨 丨 of the scope of patent application, wherein the removal is completed by a removal method selected from the group consisting of: a chemical formula Treatment method, mechanical processing method and chemical-mechanical comprehensive processing method; the chemical formula processing method is selected from the group consisting of: surname carving, pickling treatment, alkali cleaning treatment and oxidation treatment; the mechanical processing method is selected From the following groups: sandblasting, laser processing, electron beam processing and surface grinding. 13. A method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of application for a patent, wherein the chemical treatment method is etching. 14 · A method for manufacturing a nanometer carbon tube field emission display, comprising the following steps: (I) providing a cathode plate manufactured by the method described in item 1 of the scope of patent application; (II) on the cathode plate A space support is provided, and the i carbon tube areas are spaced apart by a bottom edge of the space shore support; (III) an insulation layer is formed on a periphery of each carbon tube area; (IV) on each A gate layer is formed on an insulating layer; and (V) an anode plate is provided on a top edge of the space supporter to form a 26 200539223 nanometer carbon field emission display. 15. · A method for producing a nano-carbon tube field-effect emission display device according to item 14 of the scope of Chinese Patent No. 4 'wherein' the nano-carbon tube coating in this step (I) is formed by forming a coating containing nano-carbon tubes Made on the conductive layer, the nano-carbon in the coating has a magnetic metal element selected from the group consisting of iron, cobalt, nickel, and a combination thereof. 16. The method for producing a nano-carbon tube field-effect display according to item 5 of the scope of patent application, wherein the guide template in the step (I) is made of a non-magnetic material and has a plurality of arrays. A perforation is arranged in a pattern, and a magnetic device is provided in the guide template to generate the magnetic field. 17. The method for manufacturing a nano-carbon tube field emission display according to item 16 of the scope of patent application, wherein a magnetic body is provided on an upper surface of the guide template, a spiral coil is provided on a periphery of the magnetic body, and A power source is electrically connected to the spiral coil to form the magnetic device and generate the magnetic field. The magnetic body is made of magnetic material selected from the group consisting of ferromagnet, ferrimagnet, antiferro Magnets and paramagnets. 18. The method for manufacturing a field emission display of a carbon nanotube according to item 17 of the scope of the patent application, wherein the magnetic material is a ferromagnetic body. 19. The method for manufacturing a nanometer carbon tube field-effect display according to item 16 of the application, wherein a permanent magnet is provided on an upper surface of the guide template to form the magnetic device and generate the magnetic field. 20. The method for manufacturing a nano-carbon tube field emission display according to item 15 of the scope of patent application, wherein the guide template in the step (I) is made of a non-magnetic material and has a plurality of arrays. A blind hole arranged in a pattern is arranged on a periphery of the guide template at 27 200539223, and a voltage is electrically connected to the spiral coil to form a magnetic device and generate the magnetic field. 21 · A method for producing a nano-carbon tube field emission display according to item 15 of the scope of patent application, wherein the guide template in step 0) is made of a non-magnetic material and has a plurality of arrays arranged in an array A blind hole, a first permanent magnet and a second permanent magnet are provided on an upper part of the guide template and a lower part of the first plate body respectively to form a magnetic device and generate the magnetic field. 22. The method for producing a nano-carbon tube field emission display display according to item 14 of the scope of patent application, wherein the curing in step (I) is completed by a curing method selected from the group consisting of: · Thermal curing method, light curing method and chemical curing method. 23. A method for producing a nano-carbon tube field emission display according to item 22 of the scope of patent application, wherein the curing method is a thermal curing method. 24. The method for manufacturing a field emission display of a carbon nanotube according to item 15 of the scope of patent application, after this step (1), it further includes a method for removing magnetic metal elements from the carbon nanotubes. Step (I,). 25. The method for manufacturing a nano-carbon tube field emission display according to item 24 of the scope of patent application, wherein the removal is performed by a removal method selected from the group consisting of: chemical treatment method, mechanical method Processing method and comprehensive chemical mechanical processing method; the chemical processing method is selected from the group consisting of: · etching, pickling processing; alkaline cleaning processing and oxidation processing; the mechanical processing method is selected from the following Composition group: sandblasting, laser processing, electron beam processing and surface grinding. 28 200539223 26. According to the method for manufacturing a nano-carbon tube field emission display according to item 25 of the application, the chemical method is etching. 27 · f According to the method for manufacturing a nanometer carbon tube field emission display according to item 14 of the scope of patent application, wherein a transparent conductive layer is formed on a lower surface of a transparent second plate body, and the transparent conductive layer An absorbing layer for enhancing contrast is formed on one of the lower surfaces, and a plurality of fluorescent coatings are formed on one of the lower surfaces of the absorbing layer and / or 4 areas to form the anode plate. 28. A method for manufacturing a nano-carbon tube field-effect display according to item 4 of the scope of patent application, wherein after step (V), a step (V,) is further included, the cathode plate, the space support and the anode An accommodating space defined by the cooperation of the plates is decompressed so that the accommodating space reaches a pressure environment of at least less than 0 mTorr, and the cathode plate, the interstitial support and the anode plate are further encapsulated to complete the Step (V,). 29
TW93114085A 2004-05-19 2004-05-19 Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display TWI248630B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93114085A TWI248630B (en) 2004-05-19 2004-05-19 Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93114085A TWI248630B (en) 2004-05-19 2004-05-19 Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display

Publications (2)

Publication Number Publication Date
TW200539223A true TW200539223A (en) 2005-12-01
TWI248630B TWI248630B (en) 2006-02-01

Family

ID=37429164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93114085A TWI248630B (en) 2004-05-19 2004-05-19 Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display

Country Status (1)

Country Link
TW (1) TWI248630B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587074B (en) * 2013-11-08 2017-06-11 Asml荷蘭公司 Method for designing feature guiding template,method of determining characteristic of feature guiding template,method of designing geometric of feature guiding template, a feature guiding template, computer readable non-transitory medium, computer appara
TWI598963B (en) * 2016-05-10 2017-09-11 上海新昇半導體科技有限公司 Method for preparing nano-vacuum tube field effect transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239712B (en) 2007-02-09 2010-05-26 清华大学 Carbon nano-tube thin film structure and preparation method thereof
CN101315974B (en) 2007-06-01 2010-05-26 清华大学 Lithium ionic cell cathode and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587074B (en) * 2013-11-08 2017-06-11 Asml荷蘭公司 Method for designing feature guiding template,method of determining characteristic of feature guiding template,method of designing geometric of feature guiding template, a feature guiding template, computer readable non-transitory medium, computer appara
TWI598963B (en) * 2016-05-10 2017-09-11 上海新昇半導體科技有限公司 Method for preparing nano-vacuum tube field effect transistor

Also Published As

Publication number Publication date
TWI248630B (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3730476B2 (en) Field emission cold cathode and manufacturing method thereof
US20040195950A1 (en) Field emission display including electron emission source formed in multi-layer structure
JP2003229044A (en) Electron emission body and manufacturing method therefor, cold cathode field electron emission element and manufacturing method therefor, and cold cathode field electron emission display device and manufacturing method therefor
US7785907B2 (en) Method for manufacturing cathode assembly of field emission display
KR19980024794A (en) Field emission type cold cathode device, manufacturing method and vacuum micro device using same
TW502395B (en) Manufacturing method for large-area carbon nano-tube field emission display in low cost
JP2005322646A (en) Method of manufacturing cnt field emission element
JPH09504640A (en) Method for manufacturing flat panel display system and components
JP2003168355A (en) Manufacturing method of electron emission body, manufacturing method of cold-cathode field electron emission element, and manufacturing method of cold- cathode field electron emission display device
EP1283541B1 (en) Method of fabricating field emission display employing carbon nanotubes
JP2006169097A (en) Vertical alignment method of carbon nanotube using electrophoresis method
JP2003203557A (en) Complex for paste including carbon nanotube and electron emitting element using this complex and method of manufacture
JP2009084746A (en) Method for producing electrically conductive fiber material
TW200539223A (en) Method for fabricating cathode plate of carbon nanotube field emission display and carbon nanotube field emission display
JP2008117778A (en) Method of manufacturing field emission element
JP2002361599A (en) Carbon nanotube structure and its manufacturing method, cold cathod field electron emitting element and its manufacturing method, and cold cathod field electron emission displaying device and its manufacturing method
US20100285715A1 (en) Method of manufacturing carbon nanotube (cnt) field emission source
CN207818517U (en) Photoemission ionization source based on graphene
TWI240295B (en) Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display
TWI262530B (en) Field emitting two-sided monitor, two-sided back light module, multi- surface liquid-crystal display, two-sided lighting equipment and manufacturing methods thereof
JP2004071537A (en) Method for bonding spacer to positive electrode plate of field emission display
JP4236627B2 (en) Method for manufacturing cold cathode image display device
JP2004178972A (en) Manufacturing method of electron emitting element and display device
TW200803608A (en) Field emission device and method for making same
JP3822622B2 (en) Vacuum micro equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees