TW200539052A - An unarmed type 3D image rebuilding and distortion compensating method - Google Patents
An unarmed type 3D image rebuilding and distortion compensating method Download PDFInfo
- Publication number
- TW200539052A TW200539052A TW93114770A TW93114770A TW200539052A TW 200539052 A TW200539052 A TW 200539052A TW 93114770 A TW93114770 A TW 93114770A TW 93114770 A TW93114770 A TW 93114770A TW 200539052 A TW200539052 A TW 200539052A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- pixels
- image data
- dimensional
- axis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000004364 calculation method Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000002591 computed tomography Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000009206 nuclear medicine Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
Description
200539052 五、發明說明(1) 【發明所屬之技術領域】 本發明係為_種徒手式影像重建血 特別是指一種利用直接堆疊法進行三唯;J補償之方法, 調整比例尺進行失真補償的方法。、准如像重建以及利用 先前技術】 術’係藉由磁相 維影像資料之 習知三維超音波系統之影像的重建枯 式與機械式之三維定位系統的輔助來執行 重建與描繪工作,因需額外的定位輔 :似丨不貝,丨κ 價格較為昂貴,並且軟體處理速度也較致整體裝備 即時顯示之效果。 ’、'、、更芰,無法滿足 而對三=超音波系 '统(如,超音波儀器)之操作 來說,不需疋值系統之輔助,而以徒手握掊)品 貝 Υ 4木曰波探頭爽 掃瞄待測物,便能在顯示螢幕上獲得具有高準墟危/ 、+ 三維影像資料,將會使操作程序更為便利,但是田二 ^ 1¾徒手掃· 瞄時操作速度可能不一致,因而三轴比例尺可能不a 、 變,所以徒手掃瞄造成影像失真的狀況極為普遍。_的改 針對上述之情況目前雖已有speckle Tracki R e g i s t r a t i ◦ η等不需三維定位系統的影像重建技§一 是上述技術之演算法需要較長的處理時間,或是/但 體裝置加快處理速度,無形中便增加了操作系统而藉助硬 以及檢驗設備之成本。 之複雜度 人員與 因此如何將徒手掃瞄所獲得的二維影像資 為三維影像資料,並將失真狀況減至最少係為研重建成 操作人員所共同企盼的。 九200539052 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a variety of free-hand image reconstruction blood, in particular, a method using direct stacking method to perform three-way; J compensation method, and a method of adjusting scale for distortion compensation . Zhunru image reconstruction and the use of the previous technology] The technique 'reconstructs the reconstruction and rendering tasks with the assistance of the dry and mechanical three-dimensional positioning system through the reconstruction of the known three-dimensional ultrasound system of magnetic phase-dimensional image data, because Requires additional positioning aids: It seems that 丨 no shell, 丨 κ is more expensive, and the software processing speed is faster than the overall equipment display effect. ',' ,, and more, can not be satisfied, and for the operation of the three = ultrasonic system (eg, ultrasonic instruments), the value system is not required, and the hands are held with bare hands. Scanning the object to be measured with a wave probe, you can get 3D image data with Micro Motion / + on the display screen, which will make the operation process more convenient, but Tian Er ^ 1 ¾ freehand scan · operation speed during sighting May be inconsistent, so the three-axis scale may not change a, so it is extremely common that freehand scanning causes image distortion. The modification of _ is based on the above situation. Although there are speckle Tracki R egistrati ◦ image reconstruction techniques such as η that do not require a three-dimensional positioning system. § One, the algorithm of the above technology requires a longer processing time, or / but the device speeds up processing. Speed virtually increases the cost of the operating system with the aid of hard and inspection equipment. The complexity of personnel and how to use the free-hand scanning of the two-dimensional image as three-dimensional image data, and to reduce the distortion to a minimum is a common goal of researchers and researchers. nine
200539052 五、發明說明 【發明内 本發 維影像重 軟體的處 三維影像 所以 -維影像 與門檻值 決定數個 值’設定 前述的立 本發 術,其係 分別調整 像辨識失 為達 驟:擷取 大像素數 值,以產 整值(Sf 個各轴新 根據各軸200539052 V. Description of the invention [Invention of the three-dimensional image of the original image reconstruction software. So -dimensional image and threshold value determine several values. 'Setting the aforementioned three-dimensional image formation technique, which is to adjust the image recognition is not as simple as: Take the large pixel value to produce the whole value (Sf each axis is newly based on each axis
X dt 積產生 (2) 容】 明的目的乃為解決上述問題,提出一種徒手式三 建與失真補償之方法。其係藉由直接堆疊法縮短 理時間,以減少二維影像資料重新堆疊描繪成為 育料的時間。 為達上述目的本發明包含有下列步驟:連續擷取 資料中之二維像素值(pixel ),藉由二維像素值 以及一個特定計算方式(如最近鄰點内插演算法) 立體點之最近鄰點;擷取最近鄰點之二維像素 為該立體點之立體像素值(voxel);及依序堆疊 體像素值成為一個三維影像資料。 明之另一目的為提供三維影像失真之影像補償技 藉由將三軸之比例設定為一致,再依各轴之需要 補償之比例尺,以產生較真實之影像,並減少影 誤之遺憾以及有效提昇影像顯示之準確度。 上述之失真補償之目的,本發明另包含有下列步 二維影像中之各軸像素數目(X dt,y dt,z d1)中最 目(md),再取得最大像素數目(m d)與M值之比 生相應之比例尺調整值(s a);然後根據比例尺調 )與各軸像素之數目(X dt,y (H,Z dt)之乘積產生一 像素之數目(X d2,y d2,z d2)執行調整程序;接著 新像素之數目(X d2,y d2,Z dZ)以及各軸像素之數 y dt,Z dt)與原比例尺(X sl,y sl,z sl)之比值的乘 個新比例尺(x s3,y s3,z s3):最後,根據新比例Product of X dt Product (2) Content] The purpose of Ming is to solve the above problems, and propose a method of free-standing tri-construction and distortion compensation. It uses the direct stacking method to shorten the processing time, so as to reduce the time for restacking and drawing the 2D image data into breeding materials. In order to achieve the above object, the present invention includes the following steps: continuously extracting two-dimensional pixel values (pixel) in the data, by using the two-dimensional pixel values and a specific calculation method (such as the nearest neighbor interpolation algorithm), the closest of the three-dimensional points Adjacent points; capturing two-dimensional pixels of the nearest neighbor points as the voxel value of the three-dimensional point; and sequentially stacking the pixel values into a three-dimensional image data. Another purpose of Ming is to provide three-dimensional image distortion compensation technology by setting the ratio of the three axes to be consistent, and then according to the scale of each axis to compensate, to produce a more realistic image, and reduce the regret of shadow errors and effectively improve The accuracy of the image display. For the purpose of the above-mentioned distortion compensation, the present invention further includes the following steps (X dt, y dt, z d1) in the two-dimensional image of the number of pixels (X dt, y dt, z d1), the maximum number of pixels (md) and M The ratio of the values produces the corresponding scale adjustment value (sa); and then adjusts according to the scale) and the number of pixels on each axis (X dt, y (H, Z dt)) to produce a number of pixels (X d2, y d2, z d2) Perform the adjustment procedure; then multiply the number of new pixels (X d2, y d2, Z dZ) and the number of pixels in each axis (y dt, Z dt) by the ratio of the original scale (X sl, y sl, z sl) New scales (x s3, y s3, z s3): Finally, according to the new scale
第7頁 200539052 •..........— __ 五、發明說明(3) |尺(ys3,zs3)與原比例尺 |點内插演算法產生新的三維像 二zsl)利用最近鄰 為使對本發明的目的:貧料。 I解,茲配合圖示說明如下:$及其功能有進一步的瞭 實施方式】 I補償;i“f::意:二手式三維影像重建與失真 丨三維影像之方*,當使用者透過掃目:二:7維Λ像Λ建為 一 & > ι缶+ f上、 心w _目田儀為(m 〇 d a 1 1 t v )阶八 一維成像糸統1 〇 (如,走s咅祕 y川己合 k « ^ 20^ #| ^ ^ ^ ^ ^ ^ ^ ^ #| Τ/ Ζλ A (\JU 芦心1豕貝料,或猎由電腦可勃;^ 影像管理系統5〇中摘取數位二維影像資:订 1唯旦m2建模組3°中之影像堆疊單元珊依序於 取二維像素值(Plxel),以設定數個立 ^谁晶志盍:脰點之立體像素值(voxel)透過直接堆晶 法堆cir成為三維影傻眘祖 _ 隹宜 過影像顯示單元兩r可f、准衫像資料之品質則可透 雉影像資料也可透過二2订平台4〇加以確認,另外三 |理系統5。中。透過“可執行平台4Q儲存於數位影像管 上述之二維影像資料之來源也可藉由 40透過㈣60取得。上述立體點之 =行平台 料中所具有的二維像素之數目xel), 1用一維影像資 定演f方式近鄰點内插演算法)於過固門^值與特 取數個立體點,並將立體點的最近鄰點所疋距離中擷 值設定為立體點之立體像素值。而n檻值係$的二維像素 | ’、知_取之立體 第8頁 200539052 五、發明說明(4) 點之數量。 參閱「第2圖」二維影像資料使用内插演算示意圖, 以說明選取立體點之最近鄰點之方法。其中「原比例尺」 中之P0至P8為二維影像資料中原有的9個像素(含P0), 當比例尺縮小時,可掃瞄P 0至P 1 6,像素數目即會提高至 1 7點(含P0)。且比例尺放大時,可掃瞄P0至P4,像素數 目即會減少至5點(含P0)。 接著說明失真補償方法,當使用者透過電腦可執行平 台4 0確認三維影像資料需執行失真補償時,則可將三維影 像資料接續地傳送至三維影像重建模組3 0中之影像失真補 償單元 3 3,此影像失真補償單元3 3將對三維影像資料中 失真的部位透過一連串演算(如失真補償演算與最近鄰點 内插演算法),對各轴之比例尺做適當的調整,以獲得高 品質的三維影像資料,此三維影像資料之品質可透過顯示 裝置用以確認,而調整過後之三維影像資料則可透過電腦 可執行平台4 0儲存於數位影像管理系統5 0中,或透過網路 6 0傳輸至其他單位。 請參閱「第3圖」、「第4圖」與「第5圖」所示徒手 式三維影像之重建方法,其中「第3圖」為三維影像重建 方法之作業流程圖;「第4圖」為重建方法中擷取影像之 作業流程圖,說明三維影像重建方法之作業流程中之擷取 二維影像之方法;而「第5圖」則為徒手式三維影像重建 方法中所使用之直接堆疊法之作業流程圖,說明將二維影 像數(p i xe 1 )堆疊為三維影像資料之作業流程,下列說明Page 7 200539052 • ............— __ V. Description of the invention (3) | Ruler (ys3, zs3) and the original scale | Point interpolation algorithm to generate a new three-dimensional image II zsl) Use the latest For the purpose of the present invention: lean material. The solution is explained as follows: $ and its functions are further implemented.] I compensation; i "f :: means: second-hand 3D image reconstruction and distortion 丨 the way of 3D image *, when the user through scanning Head: Two: 7-dimensional Λ image Λ built as a & > ι 缶 + f, heart w _Mada Yoshi (m oda 1 1 tv) order eight-dimensional imaging system 1 〇 (eg, walking咅 y 川川 合 k «^ 20 ^ # | ^ ^ ^ ^ ^ ^ ^ ^ ^ # | Τ / Znλ A (\ JU 心心 1 豕 贝 料, or hunting by a computer; ^ Image management system 5 〇 Extract digital digital two-dimensional image data: order 1 Weidan m2 modeling group 3 ° image stacking unit in order to take two-dimensional pixel values (Plxel) in order to set a number of standings ^ Who crystal Zhi 盍: 脰The three-dimensional pixel value (voxel) of the point becomes a three-dimensional shadow silly ancestor through direct crystal stacking method. 隹 隹 should pass the image display unit two r can f, the quality of the shirt image data can be transparent through the image data can also be through 2 2 The order platform 40 is confirmed, and the other three | management system 5. Medium. The source of the two-dimensional image data stored in the digital image tube through the "executable platform 4Q can also be obtained through 40 through ㈣60. The above The volume of points = the number of two-dimensional pixels in the row platform xel), 1 using the one-dimensional image data to determine the f-nearest neighbor interpolation algorithm) in the fixed gate ^ value and several stereo points, The captured value of the distance between the nearest neighbors of the stereo points is set as the stereo pixel value of the stereo points. The n-threshold value is a two-dimensional pixel of $ | ′, knowing and taking three-dimensional. Page 8 200539052 V. Description of the invention (4) The number of points. Please refer to the "Figure 2" schematic diagram of interpolation calculation of two-dimensional image data to explain the method of selecting the nearest neighbors of three-dimensional points. P0 to P8 in the "original scale" are the original 9 pixels (including P0) in the two-dimensional image data. When the scale is reduced, you can scan P 0 to P 1 6 and the number of pixels will increase to 17 (Including P0). And when the scale is enlarged, you can scan P0 to P4, and the number of pixels will be reduced to 5 points (including P0). Next, the distortion compensation method is explained. When the user confirms that the three-dimensional image data needs to perform distortion compensation through the computer-executable platform 40, the three-dimensional image data can be successively transmitted to the image distortion compensation unit 3 in the three-dimensional image reconstruction module 30. 3. This image distortion compensation unit 3 3 will perform a series of calculations on the distorted parts in the 3D image data (such as the distortion compensation calculation and the nearest neighbor interpolation algorithm), and make appropriate adjustments to the scale of each axis to obtain high quality 3D image data, the quality of this 3D image data can be confirmed by the display device, and the adjusted 3D image data can be stored in the digital image management system 50 through the computer-executable platform 40, or through the network 6 0 is transmitted to other units. Please refer to the "3rd figure", "4th figure" and "5th figure" reconstruction method of freehand 3D image, in which "3rd figure" is the operation flowchart of the 3D image reconstruction method; "4th figure" This is a flowchart of capturing images in the reconstruction method, explaining the method of capturing 2D images in the workflow of the 3D image reconstruction method; and "Figure 5" is the direct stacking used in the freehand 3D image reconstruction method The operation flow chart of the method describes the operation flow of stacking two-dimensional image number (pi xe 1) into three-dimensional image data. The following description
第9頁Page 9
五、發明說明(5) 其運作流程: 首先,設定二維影像資料中X與Y兩軸之二維像素數目 (步驟2 0 0);當二維影像之來源係來自二維成像系統 時’須於先5又疋一維成像系統1 〇之探頭的掃瞒深度 '(步驟 20 1) 、X與Y兩軸之比例尺(步驟2 0 2)以及探頭^動距離 後榻取數秒影像(步驟2 0 3),再按下影像擷取按鈕(步 驟2 0 4),並平滑的移動二維成像系統丨〇中二維影像擷取 模組20的探頭,使其在設定時間與設定距離内連續的擷取 二維影像資料中之二維像气值(步驟2〇5),再透過電腦 可執行平台40將操取的二維像素值存入數 5 0中(步驟2 0 6) 。 y 1豕&埋系、、元 然後,依據二維像素之餐曰「. 點(步驟210);自影像資料介面:Χ: :、門檀值決定鄰 5 〇)中擷取二維影像資料中 σ,位影像管理系統 311),此二維像素值會依象素值(Puel)(步驟 二維影像記憶區内(步驟3丨 子〇影像堆疊單元3 1中之 預設門棍值與特定演算方 '像堆璺單元3 1會依據 決定立體點的最近鄰點 ★ 最近鄰點内插演算法) 接著,根據最近鄰』:驟313)。 步驟22 0);將立體點—維像素值設定立體像素值 立體像素值(V0Xel)(炎^ f鄰點的二維像素值設定為 值存入影像堆疊單元3 I ' — ’將各立體點之立體像素 315)。 一堆衫像記憶區中(步驟 、 200539052 五、發明說明(6) (步驟2 3 0);當二維影像資料中之像素,全部轉換成為 立體像素值即可堆疊成為一個三維影像資料(步驟3 1 6) 〇 請參閱「第6圖」與「第7圖」所示,如何顯示重建之 三維影像檔案。其中「第6圖」為依據三維影像重建方法 所建立的三維影像檔案之格式示意圖,如圖所示三維影像 檔案3 5主要是包含檔頭資訊3 5 1與s 1 i c e影像資訊3 5 2,其 中檔頭資訊3 5 1部分用以說明版本宣告、版權說明、影像 内容敘述、三維各軸比例尺、體積大小以及影像位元組排 列方式。而s 1 i c e影像資訊3 5 2則為第1張至第N張s 1 i c e之 影像貢訊。 而「第7圖」則為三維影像顯示之作業流程圖,當使 用者欲確認三維影像資料重建完成之影像品質時,影像顯 示單元3 2將自影像堆疊單元3 1中之三維影像記憶區中擷取 三維影像資料(檔案)(步驟3 2 1),再逐一分析三維影像 資料之檔頭資訊(步驟3 2 2)以確認檔頭資訊符合標準 (步驟3 2 3),並依據檔頭資訊操控影像資料之顯示方式 (步驟3 2 4)以根據檔頭資訊的設定顯示三維影像資料 (步驟3 2 5);此三維影像資料可透過如〇 p e n G L等顯像技術 顯示之。 請參閱「第8圖」所示本發明之徒手式三維影像失真 補償方法。當各軸(X,y,ζ)之原比例尺(s c a 1 e )分別為 (xsl,ysl,zsl),然後因改變(如,因徒手掃瞄導致改 變)使各軸比例尺分別成為(XS2,Υ S2,zS2)時,影像會因V. Description of the invention (5) The operation flow: First, set the number of two-dimensional pixels of the two axes X and Y in the two-dimensional image data (step 2 0); when the source of the two-dimensional image is from a two-dimensional imaging system ' Detect the probe depth of the probe of the 1D imaging system 10 (step 20 1), the scale of the X and Y axes (step 202), and take a few seconds of the image after the probe's moving distance (step 2 0 3), then press the image capture button (step 204), and smoothly move the probe of the 2D image capture module 20 in the 2D imaging system, so that it is within the set time and set distance. The two-dimensional image gas values in the two-dimensional image data are continuously acquired (step 205), and the manipulated two-dimensional pixel values are stored in the number 50 through the computer-executable platform 40 (step 206). y 1 豕 & buried system, and then, according to the two-dimensional pixel meal, ". dot (step 210); from the image data interface: X ::, the gate value determines the neighboring 5 0) to capture two-dimensional images In the data, σ, the image management system 311), this two-dimensional pixel value will be based on the pixel value (Puel) (in the two-dimensional image memory area (step 3 丨 sub 〇 preset image stick value in the image stacking unit 31). With the specific operator's image stack unit 3 1 will determine the nearest neighbor of the stereo point according to the ★ nearest neighbor interpolation algorithm) Then, according to the nearest neighbor ': Step 313). Step 22 0); Pixel value setting Stereo pixel value Stereo pixel value (V0Xel) (The two-dimensional pixel value of the y-f neighboring points is set as the value and stored in the image stacking unit 3 I '—' The stereo pixels of each stereo point are 315.) In the memory area (step, 200539052 V. invention description (6) (step 2 3 0); when all the pixels in the two-dimensional image data are converted into three-dimensional pixel values, they can be stacked into a three-dimensional image data (step 3 1 6) 〇 Please refer to "Figure 6" and "Figure 7", how to display the reconstructed 3D image File. “Figure 6” is a schematic diagram of the format of a 3D image file created based on the 3D image reconstruction method. As shown in the figure, the 3D image file 3 5 mainly contains header information 3 5 1 and s 1 ice image information 3 5 2. Among them, the header information 3 5 1 is used to describe the version announcement, copyright description, image content description, three-dimensional axis scale, volume size and image byte arrangement. The s 1 ice image information 3 5 2 is the first The image tribute from 1 to the Nth s 1 ice. "Figure 7" is a flow chart of 3D image display. When the user wants to confirm the image quality of the 3D image data reconstruction, the image display unit 3 2 Capture 3D image data (files) from the 3D image memory area in the image stacking unit 31 (step 3 2 1), and then analyze the header information of the 3D image data one by one (step 3 2 2) to confirm the header information Comply with the standard (step 3 2 3), and control the display mode of the image data according to the header information (step 3 2 4) to display the 3D image data according to the settings of the header information (step 3 2 5); this 3D image data It can be displayed by imaging technology such as 0pen GL. Please refer to "Figure 8" for the freehand 3D image distortion compensation method of the present invention. When the original scale of each axis (X, y, ζ) (sca 1 e ) Are (xsl, ysl, zsl) respectively, and then the axis scales are changed to (XS2, Υ S2, zS2) due to changes (for example, changes caused by free-hand scanning).
第11頁 200539052 五、發明說明(7) 三軸比例尺不均等的改變而造成失真,造成像素之數目 (0 1又6 1)由(又(11,7(11,2(11)改變為(又(12,7(12,2(12),此時各 軸應有的像素之數目則分別為X dt= X dl* X S1 / X S2、y dt= y di *y si /y s與z dt=z dl*z S1 ./z si寺,則可透過失真補償方法進行影 像的失真補償程序。 上述所提之失真補償方法之運作流程步驟如下:首 先,計算因徒手掃瞄所產生之各軸像素之數目(X dt,y dt, z (步驟3 31);各軸像素之數目(x dt,y dt,z d1)係為 徒手掃描後相對於X、Y以及Z轴之像素值(pixel)。Page 11 200539052 V. Description of the invention (7) Uneven changes in the three-axis scale cause distortion and the number of pixels (0 1 and 6 1) is changed from (and (11, 7 (11, 2 (11) to ( And (12, 7 (12, 2 (12), then the number of pixels that should be on each axis is X dt = X dl * X S1 / X S2, y dt = y di * y si / ys and z dt = z dl * z S1 ./z si temple, you can use the distortion compensation method to perform the image distortion compensation process. The operation steps of the above-mentioned distortion compensation method are as follows: First, calculate the various items generated by the free hand scanning. The number of pixels on the axis (X dt, y dt, z (step 3 31); the number of pixels on each axis (x dt, y dt, z d1) is the pixel values relative to the X, Y, and Z axes after freehand scanning ( pixel).
然後,透過演算式m d= m a x ( x dt,y dt,z dt)確認掃描後之最大 像素之數目(m J (步驟3 3 2)最大像素之數目(m d)為 比例尺調整(掃瞄)後,各轴像素之數目中最大的像素之 數目(如,各軸像素數目(X dt,y dt,z 於掃瞄後為(2 5 6 * 3 2 0 *180)時,最大像素之數目(為3 2 0)。 然後,確認最大像素之數目(m J不大於一 Μ值(步驟 3 3 3);此Μ值為掃瞄前X、Υ以及Ζ軸之像素值(pixel )中最 大的像素之數目(p i xe 1 ),當在掃瞄前各軸像素數目設定 為( 2 5 6 *2 5 6 * 2 5 6 )時,Μ值為 2 5 6。Then, through the calculation formula md = max (x dt, y dt, z dt), confirm the number of maximum pixels after scanning (m J (step 3 3 2)). The number of maximum pixels (md) is after the scale adjustment (scanning). , The maximum number of pixels in each axis (eg, the number of pixels in each axis (X dt, y dt, z after scanning is (2 5 6 * 3 2 0 * 180), the maximum number of pixels ( It is 3 2 0). Then, confirm the number of maximum pixels (m J is not greater than 1M value (step 3 3 3); this M value is the largest of the pixel values (pixel) of the X, Υ, and Z axes before scanning) The number of pixels (pi xe 1). When the number of pixels of each axis is set to (2 5 6 * 2 5 6 * 2 5 6) before scanning, the M value is 2 5 6.
然後,根據步驟3 3 3之比較結果取得比例尺調整值 (sa)(步驟3 3 4)與(步驟3 3 5),步驟3 3 4顯示當最大 像素之數目(mj大於Μ值時,比例尺調整值(s a)係可藉 由sa=M/m A演算公式得知。而步驟3 3 5中則顯示當最大像 素之數目(m J不大於Μ值時,比例尺調整值(s J則設定 200539052 五、發明說明(8) 像 z 然後執行調整程序(步驟3 3 6);調整程 一*sa、^2=^和與Zd2=Zdt*s^演算公式依 係依據^ 素之數目(&、yd2、Zd2)。接著,取得各輪取得各軸新 ys;B、Zs3)(步驟3 3 7);各軸新比例尺/比例尺 tJ? Xs3=Xdl*Xsi/Xd2' ^3=ydl*ysl/y^ 2s3=2Xf 演异么式得知。 dl Z si/ 2: d2^ 最後,根據上述各軸新比例尺(h、 失真補償之内插演算係藉由下列公式取得三 f=於 料(步驟3 3 8): 像素補償資Then, according to the comparison result of step 3 3 3, obtain the scale adjustment value (sa) (step 3 3 4) and (step 3 3 5), and step 3 3 4 displays when the number of maximum pixels (mj is greater than the value of M, the scale adjustment The value (sa) can be obtained by the calculation formula of sa = M / m A. In step 3 3 5 it is displayed that when the number of maximum pixels (m J is not greater than M value, the scale adjustment value (s J is set 200539052) V. Description of the invention (8) Image z and then execute the adjustment procedure (step 3 3 6); the adjustment procedure * sa, ^ 2 = ^ and Zd2 = Zdt * s ^ The calculation formula depends on the number of primes (& , Yd2, Zd2). Then, get the new ys for each axis for each round; B, Zs3) (step 3 3 7); new scale / scale tJ for each axis? Xs3 = Xdl * Xsi / Xd2 '^ 3 = ydl * ysl / y ^ 2s3 = 2Xf I know the difference formula. dl Z si / 2: d2 ^ Finally, according to the new scale of each axis (h, the interpolation calculation of distortion compensation is obtained by the following formula: f = 于 料 ( Step 3 3 8): Pixel compensation data
For (X二 1 ; Xd2; χ + + )For (X 2 1; Xd2; χ + +)
F〇r (y=i; y仏;y++)F〇r (y = i; y 仏; y ++)
For (z = i ; zS xd2; z + + ) i ^ Xdist=(x-D* xs3/xs1+ 0.5; Ydlst=(y-D* ys3/ys1+0.5; Z i (z 1)^ zs3/zs1+0.5; 〇utdata3d [ x ] [ y ] [ z ] = i nda t a [Xdlst][Ydist][Zdist] } ’ Xs丨、J與J為各軸之原比例尺,xs2,^2與zs2為掃瞄 後f轴之比例尺,xs3,^3與zs3為調整後之新比例尺,xd2, yd2與zd2為掃瞄後各軸新像素之數目)丨◦ 上迷步驟2 0 4中,若調整後之各軸像素數目未超出各軸For (z = i; zS xd2; z + +) i ^ Xdist = (xD * xs3 / xs1 + 0.5; Ydlst = (yD * ys3 / ys1 + 0.5; Z i (z 1) ^ zs3 / zs1 + 0.5; 〇 utdata3d [x] [y] [z] = i nda ta [Xdlst] [Ydist] [Zdist]} 'Xs 丨, J and J are the original scales of each axis, xs2, ^ 2 and zs2 are the f-axis after scanning The scale, xs3, ^ 3 and zs3 are the new scales after adjustment, and xd2, yd2 and zd2 are the number of new pixels on each axis after scanning) 丨 In step 2 0 4 above, if the number of pixels on each axis after adjustment is adjusted Not exceeding each axis
像素=數目(xdt,ydt,zdt)時,調整過後的比例並不會與 輸入影像相同,但三軸比例會依據真實尺寸呈現達到失真 補償效果。When pixels = number (xdt, ydt, zdt), the adjusted ratio will not be the same as the input image, but the three-axis ratio will be based on the true size to achieve the distortion compensation effect.
^ 如上所述本發明所提之徒手式三維影像重建與失真補 償之方法不僅可運用於超音波儀器上,更可運用於數位X^ As mentioned above, the freehand 3D image reconstruction and distortion compensation method mentioned in the present invention can be applied not only to ultrasonic instruments, but also to digital X
第13頁 200539052 五、發明說明(9) 光(DX)、電腦斷層(CT)、共振造影(MRI)、内視鏡 (endoscope)、超音波(US)、核子醫學(Nuclear Medicine,NM)、正子射線斷層掃瞄(PET)、單光子射線 斷層掃瞄(SPECT)上,因掃瞄速度不一致所產生影像失 真的狀況(如,徒手掃目苗所造成各軸比例尺不均等的變 化),提供快速而準確的影像補償方法,使得運用本發明 戶斤提的方法都能快速的獲得南的解析度的二維影像貢料。 以上所述者,僅為本發明其中的較佳實施例而已,並 非用來限定本發明的實施範圍;即凡依本發明申請專利範 圍所作的均等變化與修飾,皆為本發明專利範圍所涵蓋。Page 13 200539052 V. Description of the invention (9) Light (DX), computed tomography (CT), resonance imaging (MRI), endoscope, ultrasound (US), nuclear medicine (NM), In positron ray tomography (PET) and single-photon ray tomography (SPECT), the image distortion caused by the inconsistent scanning speed (for example, the uneven scale of each axis caused by the unsightly scanning of seedlings), provide The fast and accurate image compensation method enables the method of the present invention to quickly obtain two-dimensional image data of South resolution. The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention; that is, all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention are covered by the scope of the patent for the present invention .
II
第14頁 200539052 圖式簡單說明 第1圖係為本發明所提之徒手式三維影像重建與失真補償 之方法示意圖; 第2圖係使用内插演算產生立體點之最近鄰點示意圖; 第3圖係本發明所提之徒手式三維影像重建方法之作業流 程圖; 第4圖係三維影像重建方法中擷取影像之作業流程圖; 第5圖係三維影像重建方法中直接堆疊法之作業流程圖; 第6圖係本發明三維影像重建方法所建立的三維影像檔案 之格式示意圖; 第7圖係三維影像顯示之作業流程圖;及 第8圖係本發明所提之徒手式三維影像失真補償方法之作 業流程圖。 【圖式符號說明】 1 0二維成像系統 2 0二維影像擷取模組 3 0三維影像重建模組 3 1影像堆疊單元 3 2影像顯示單元 3 3影像失真補償單元 35 三維影像檔案 351 檔頭 3 5 2 s 1 i ce影像資訊 4 0電腦可執行平台 5 0數位影像管理系統Page 14 200539052 Brief description of the drawings. Figure 1 is a schematic diagram of the free-form 3D image reconstruction and distortion compensation method mentioned in the present invention. Figure 2 is a schematic diagram of the nearest neighbors of the three-dimensional points generated by interpolation. Figure 3 It is the operation flowchart of the freehand 3D image reconstruction method mentioned in the present invention; FIG. 4 is the operation flowchart of capturing images in the 3D image reconstruction method; and FIG. 5 is the operation flowchart of the direct stacking method in the 3D image reconstruction method Figure 6 is a schematic diagram of the format of a three-dimensional image file created by the three-dimensional image reconstruction method of the present invention; Figure 7 is a flowchart of a three-dimensional image display operation; and Figure 8 is a free-hand three-dimensional image distortion compensation method according to the present invention Operation flow chart. [Illustration of Symbols] 1 2D imaging system 2 2D image capture module 3 3D image reconstruction module 3 1 image stacking unit 3 2 image display unit 3 3 image distortion compensation unit 35 3D image file 351 files Head 3 5 2 s 1 ce image information 4 0 computer executable platform 5 0 digital image management system
第15頁 200539052 圖 式簡單說明 6C 丨網 路 步 驟 200 設 a 定 二 維 影 像 資 料 中 X與Y兩 轴 像 素 之 數 步 驟 201 曰 設 定 探 頭 掃 深 度 步 驟 202 設 定 X與Y兩 軸 之 比 例 尺 步 驟 203 設 定 探 頭 移 動 距 離 後 擷 取 數 秒 步 驟 204 按 下 影 像 擷 取 按 紐 步 驟 205 平 滑 的 移 動 探 頭 在 設 定 時 間 内 移 動 所 -irn. δ又 定 之 距 離 步 驟 206 將 二 維 影 像 儲 存 於 數 位 影 像 管 理 系 統 步 驟 210 依 據 二 維 像 素 之 數 與 門 檻 值 決 定 數 個 最 近 鄰 點 步 驟 220 根 據 最 近 鄰 點 之 二 維 像 素 值 設 定 立 體 像 素 值 步 驟 230 依 序 堆 疊 立 體 像 素 值 成 為 二 維 影 像 資 料 步 驟 311 影 像 資 料 介 面 擷 取 二 維 像 素 步 驟 312 將 二 維 像 素 存 放 二 維 影 像 記 憶 區 步 驟 313 找 尋 立 體 點 之 最 近 鄰 點 步 驟 314 立 體 像 素 值 為 最 近 點 之 二 維 像 素 值 步 驟 315 將 立 體 像 素 值 存 入 二 維 影 像 記 憶 區 步 驟 316 重 建 完 成 步 驟 321 二 維 影 像 顯 示 模 組 取 得 二 維 影 像 資 料 步 驟 322 分 析 二 維 影 像 樓 案 檔 頭 資 料 步 驟 323 檔 頭 資 訊 是 否 達 標 準 ΟPage 15 200539052 Simple illustration of 6C 丨 network step 200 Set a to determine the number of X and Y pixels in two-dimensional image data Step 201 Set the depth of the probe scan step 202 Set the scale of the X and Y axes Step 203 Set Capture a few seconds after the probe travels. Step 204 Press the image capture button. Step 205. Smoothly move the probe within the set time. -Irn. Δ and a fixed distance. Step 206. Store the 2D image in the digital image management system. Step 210. The number of two-dimensional pixels and the threshold determine the number of nearest neighbors. Step 220 Set the three-dimensional pixel values based on the two-dimensional pixel values of the nearest neighbor. Step 230 Stack the three-dimensional pixel values in order to become two-dimensional image data. Step 311 Image data interface capture two Dimensional pixel step 312 Store the two-dimensional image memory area Step 313 Find the nearest neighbor of the three-dimensional point Step 314 The three-dimensional pixel value is the two-dimensional pixel value of the nearest point Step 315 Store the three-dimensional pixel value in the two-dimensional image memory area Step 316 Rebuild completed Step 321 Two-dimensional image The display module obtains the two-dimensional image data. Step 322 analyzes the file data of the two-dimensional image. Step 323. Whether the header information meets the standard.
第16頁 200539052 圖式簡單說明 步驟 3 2 4 步驟 3 2 5 步驟 3 3 1 步驟 3 3 2 步驟 3 3 3 步驟 334 步驟 3 3 5 步驟 3 3 6 步驟 3 3 7 步驟 3 3 8 根據檔頭資訊操控三維影像檔案内之影 像資料 顯示三維影像 計算因徒手掃目苗所產生之各轴像素之數 目(xdt,ydt,zdt) 透過演算式 md = max(xdt,ydt,zd1)確 認掃描後之最大像素之數目(m公 確認最大像素之數目(in d)不大於一 Μ值 根據步驟3 3 3之比較結果取得比例尺調整 值(sj 根據步驟3 3 3之比較結果取得比例尺調整 值(sj 執行調整程序 取得各軸新比例尺(X s3、y S3、Z S3) 根據上述各軸新比例尺(x s3、y S3、z S3) 運用於失真補償之内插演算係藉由下列 公式取得三維像素補償資料 iPage 16 200539052 Schematic description of steps 3 2 4 Step 3 2 5 Step 3 3 1 Step 3 3 2 Step 3 3 3 Step 334 Step 3 3 5 Step 3 3 6 Step 3 3 7 Step 3 3 8 Based on the profile information Manipulate the image data in the 3D image file to display the 3D image calculation of the number of pixels on each axis (xdt, ydt, zdt) generated by the free-hand scanning of the seedlings. Use the calculation formula md = max (xdt, ydt, zd1) to confirm the maximum after scanning. The number of pixels (m) confirm that the number of maximum pixels (in d) is not greater than one M value. Obtain a scale adjustment value according to the comparison result of step 3 3 3 (sj Obtain a scale adjustment value according to the comparison result of step 3 3 3 (sj perform adjustment The program obtains the new scales of each axis (X s3, y S3, Z S3). According to the new scales of each axis (x s3, y S3, z S3), the interpolation calculation applied to distortion compensation is to obtain three-dimensional pixel compensation data by the following formula. i
第17頁Page 17
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93114770A TWI245230B (en) | 2004-05-25 | 2004-05-25 | Free-hand 3D image reconstruction and distortion compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93114770A TWI245230B (en) | 2004-05-25 | 2004-05-25 | Free-hand 3D image reconstruction and distortion compensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200539052A true TW200539052A (en) | 2005-12-01 |
TWI245230B TWI245230B (en) | 2005-12-11 |
Family
ID=37190048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93114770A TWI245230B (en) | 2004-05-25 | 2004-05-25 | Free-hand 3D image reconstruction and distortion compensation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI245230B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI513325B (en) * | 2013-03-08 | 2015-12-11 | Silicon Integrated Sys Corp | Image compensation device |
-
2004
- 2004-05-25 TW TW93114770A patent/TWI245230B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI513325B (en) * | 2013-03-08 | 2015-12-11 | Silicon Integrated Sys Corp | Image compensation device |
Also Published As
Publication number | Publication date |
---|---|
TWI245230B (en) | 2005-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109493328B (en) | Medical image display method, viewing device and computer device | |
US9418474B2 (en) | Three-dimensional model refinement | |
JP5992819B2 (en) | Image processing apparatus, medical image diagnostic apparatus, image processing method, and image processing program | |
JP2019526124A (en) | Method, apparatus and system for reconstructing an image of a three-dimensional surface | |
US20130329020A1 (en) | Hybrid stitching | |
CN102129505A (en) | Information processing apparatus, method, and computer-readable medium | |
CN109584147B (en) | Dental panorama generation method based on cone beam CT | |
JP2015029838A (en) | Medical image processing device, medical image processing method, and medical image processing system | |
CN102663818A (en) | Method and device for establishing three-dimensional craniomaxillofacial morphology model | |
EP3925569B1 (en) | Scan guide providing method and image processing device therefor | |
WO2023142781A1 (en) | Image three-dimensional reconstruction method and apparatus, electronic device, and storage medium | |
JP2018011637A (en) | Image processing device and image processing method | |
US20110176715A1 (en) | Four-dimensional volume imaging system | |
JP2008517643A (en) | Real-time stereoscopic image apparatus and method | |
CN112969062B (en) | Double-screen linkage display method for two-dimensional view of three-dimensional model and naked eye three-dimensional image | |
JP4746482B2 (en) | Tomographic image generating apparatus, tomographic image generating method, and tomographic image generating program | |
JP2018011635A (en) | Image processing device and image processing method | |
JP2004160103A (en) | Medical image compound observation apparatus | |
JP6085435B2 (en) | Image processing apparatus and region of interest setting method | |
KR102197310B1 (en) | Method for adjusting arch line using a panoramic image and apparatus thereof | |
CN104299205A (en) | X-ray image intensifier dental machine panorama generation method | |
KR101727670B1 (en) | Device and method for medical image segmentation based on user interactive input | |
JP2011212218A (en) | Image reconstruction apparatus | |
TW200539052A (en) | An unarmed type 3D image rebuilding and distortion compensating method | |
CN1828667A (en) | Method for operating a x-ray diagnostic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |