TW200538083A - Method of sample control and calibration adjustment for use with a noninvasive analyzer - Google Patents

Method of sample control and calibration adjustment for use with a noninvasive analyzer Download PDF

Info

Publication number
TW200538083A
TW200538083A TW93120879A TW93120879A TW200538083A TW 200538083 A TW200538083 A TW 200538083A TW 93120879 A TW93120879 A TW 93120879A TW 93120879 A TW93120879 A TW 93120879A TW 200538083 A TW200538083 A TW 200538083A
Authority
TW
Taiwan
Prior art keywords
spectrum
invasive
patent application
item
scope
Prior art date
Application number
TW93120879A
Other languages
Chinese (zh)
Inventor
Timothy L Ruchti
Kevin H Hazen
Thomas B Blank
Original Assignee
Sensys Medcial Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/849,422 external-priority patent/US7383069B2/en
Application filed by Sensys Medcial Inc filed Critical Sensys Medcial Inc
Publication of TW200538083A publication Critical patent/TW200538083A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A method and apparatus for easing the use of an optically based noninvasive analyzer is presented. More particularly, a simplified algorithm is used that removes the daily requirement of collecting and using a noninvasive spectrum to update a calibration model. In another embodiment, a guide is used to substantially reduce variation in sample probe placement in relation to a skin tissue sampling site, resulting in the ability to maintain calibration performance with the use of a reference analyte concentration, with or without the use of a reference spectrum collected nearby in time.

Description

200538083 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於人體内分析物之非侵入性測定方 法。更明確地說,本發明係有關於分析物校準以及預測之 方法,其可調整在一靜態校準模式中無法補償之狀態改變。 【先前技術】 非侵入性 根據光譜分析來設計的非侵入性分析儀可將外部能 量以光的形式傳遞到體内某區域,在該處,光子可和取樣 組織之化學成份與生理狀態互相作用。部分之入射光子會 被散射或傳導到身體偵測部位以外·。可根據入射光子與測 得光子的相關資訊,來暸解取樣部位之化學和/或結構基 礎。非侵入性系統之特殊優點包括僅使用少量的消耗品便 可以無痛之形式進行一種體内化學成份濃度的測定而不產 生生物危害。此外,該技術允許同時測定多種分析物之濃 度。常見的非侵入性分析儀有磁振造影機(MRI )、X光、 脈衝氧化計以及非侵入性葡萄糖分析儀。除了 X光以外, 這些測定方式都是以相對較無害之輻射波長來進行。此處 之實施例以非侵入性葡萄糖濃度測定為重點,但其原理可 應用於其他分析物之偵測上,例如脂濺、蛋白質、水以及 血液或組織成份。 糖尿病 3 200538083 糖尿病為一慢性病,其肇因於騰島素之製造與利用 失調。胰島素係為一種幫助細胞攝入葡萄糠的荷爾蒙。雖 然不知道糖尿病的明確病因,但遺傳因子、環境因子、以 及肥胖似乎扮演了重要角色^糖尿病會使罹患三大類疾病 的風險增加:心血管心臟病、視網臈病變、與神經病變。 糖尿病通常具有下列一或多種的併發症:心臟病與中風、 兩血壓、腎臟疾病、神經病變(神經疾病與切除)、視網膜 病變、糖尿病酮酸中毒、皮膚病、牙齦疾病、陽痿、與胎 兒併發症。在世界各地,糖尿病皆為造成死亡與殘障的主 要原因。此外,糖尿病僅是包括葡萄糖耐受性異常、以及 高胰島素症(hyperinsixlinemia)、或低血糖症(hyp〇glycemia) 等多種葡萄糖代謝異常狀況的其中之一。 糖尿病之流行與趨勢 糖尿病是種很常見的疾病。世界衛生組織(WHO )估計, 目前全世界有一億五千四百萬人為糖尿病所苦。其中有五 千四百萬的糖尿病患者居住於已開發國家。估計到了 2 0 2 5年’罹患糖尿病的人數將成長至三億。據估計,在美 國約有一千五百七十萬人或總人口的5 ·9%患有糖尿病。在 美國境内’經诊斷患有糖尿病的成年人,在1 9 9 9年便增加 了 6% ’且在1990至1998年間,提高j 33%。這個現象與 美國每年增加的約八十萬個病例相符。美國經濟每年花費 在此的總支出’估計超過九百億美金(Diabetes National Institutes of Health, Publication No. 98-3926 200538083200538083 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a non-invasive method for measuring an analyte in a human body. More specifically, the present invention relates to methods for calibrating and predicting analytes, which can adjust state changes that cannot be compensated in a static calibration mode. [Prior technology] Non-invasive Non-invasive analyzer designed based on spectral analysis can transfer external energy in the form of light to a certain area of the body, where photons can interact with the chemical composition and physiological state of the sampled tissue . Part of the incident photons will be scattered or conducted outside the body's detection area. The information about the incident photon and the measured photon can be used to understand the chemical and / or structural basis of the sampling site. The special advantages of non-invasive systems include the use of a small amount of consumables to perform an in vivo chemical concentration determination in a painless manner without creating a biological hazard. In addition, this technique allows the concentration of multiple analytes to be determined simultaneously. Common non-invasive analyzers are magnetic resonance imaging machines (MRI), X-rays, pulse oximeters, and non-invasive glucose analyzers. With the exception of X-rays, these measurements are performed at relatively harmless wavelengths of radiation. The examples here focus on non-invasive glucose concentration measurement, but the principles can be applied to the detection of other analytes, such as lipid splashes, proteins, water, and blood or tissue components. Diabetes 3 200538083 Diabetes is a chronic disease, which is caused by imbalance in the production and utilization of Tengdaosu. Insulin is a hormone that helps cells take up grape bran. Although the exact etiology of diabetes is unknown, genetic factors, environmental factors, and obesity seem to play important roles ^ Diabetes increases the risk of developing three major types of disease: cardiovascular heart disease, visual network disease, and neuropathy. Diabetes usually has one or more of the following complications: heart disease and stroke, two blood pressure, kidney disease, neuropathy (neuropathy and resection), retinopathy, diabetic ketoacidosis, skin disease, gum disease, impotence, and fetal complications disease. Diabetes is a major cause of death and disability around the world. In addition, diabetes is only one of a variety of glucose metabolism abnormalities including abnormal glucose tolerance, hyperinsixlinemia, or hypoglycemia. The prevalence and trend of diabetes Diabetes is a very common disease. The World Health Organization (WHO) estimates that 154 million people worldwide currently suffer from diabetes. Of these, 54 million people with diabetes live in developed countries. It is estimated that by 2015, the number of people with diabetes will grow to 300 million. It is estimated that approximately 15.7 million people or 5.9% of the total population in the United States have diabetes. Within the United States, 'diagnosed adults had an increase of 6% in 1999' and an increase of 33% between 1990 and 1998. This phenomenon is consistent with the approximately 800,000 cases added each year in the United States. The total expenditure of the U.S. economy each year here ’is estimated to exceed $ 90 billion (Diabetes National Institutes of Health, Publication No. 98-3926 200538083

Bethesda,MD (November 1 997)) 〇 長期臨床研究顯示,適當控制血糖濃度,能夠有效 抑制併發症之發生 (The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term in insulin-dependent diabetes mellitus, N Eng J of Med, 329:977-86 (1 993) ; U. K.Bethesda, MD (November 1 997)) 〇 Long-term clinical studies show that proper control of blood glucose concentration can effectively inhibit the occurrence of complications (The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term in insulin-dependent diabetes mellitus, N Eng J of Med, 329: 977-86 (1 993); UK

Prospective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes, Lancet, 352:837-853 (1998); W&Y.Ohkubo,H.Kishikawa,E. Araki,T. Miyata,S. Isami,S. Motoyoshi,Y. Kojima,N· Furuyoshi, M. Shichizi, Intensive insulin therapy prevents the progression of diabetes microvascular complications in Japanese patients with non-lnsulin-dependent diabetes mellitus: a randomized prospective 6-year study, Diabetes Res Clin Pract,28:1 03- 1 1 7 ( 1 995))。 糖尿病管理的一個要素就是由糖尿病患者在居家環 境中自行監控血糖濃度。然而,現有的監控技術需在分析 之前抽血,所造成的不便與疼痛,阻|卩了血糖監控技術的 經常使用性(The Diabetes Control and Complication Trial Research Group,wpra)。因此,非侵入性的葡萄糖測定方 式被認為是糖尿病管理上非常有益的發展。目前也期望發 5 200538083 展出能和縢島素投碰备μ 士 X遞系統耦合的植入式葡萄糖分 便做為人工胰臟。 取樣方法 有非常多種技術 技術大致分為兩類:侵 技術需要自身體取得任 使用的測量裝置之任一 於侵入锋方法。 •侵入性:對全血、血清、血漿、組織液, 述樣本之混合物或選擇性取樣成份進行分析的動竹 以侵入〖生技術進行體内葡萄糖濃度測定的實施例。 會利用電化學(electrochemical)、電 (electroezymatic)、和 / 或比色法(c〇i〇rimetric)來分 樣本。例如’可利用酵素與比色法,來測定組織洛 之葡萄糖濃度。 •非侵入性:目前已發展出多種利用分光光 測定生物樣本中葡萄糖濃度之技術。這些技術包招 (R.aman)與螢光光譜分析,以及一些利用波長介於絮 紅外線間之光線的技術[紫外線(200至400 nm)、 (400至700 nm )、近紅外線(7〇〇至2500 nm或 至 4000 cm·1)、以及紅外線(2500 至 1 4,285 nm 至 700 cm-1) ]〇 儀,以 可用於分析體内之化學組 入性與非侵入性。在本文 何生物樣本來進行分析, 部份須穿透身體時,則該 ,。這些 ,當一 I該技術 .術歸類 以及上 均屬於 傳統上 酵素 析這些 .樣本内 度法來 :拉曼 外線至 可見光 14,286 或 4〇〇〇 200538083 非侵入性葡萄糖測贪 目前已存在多種方法可進行非侵入性之葡萄糖濃度 測定。耗這些方法差異極λ,但均至少具有兩個共同步 驟。第,在不需要取得生物樣本的情況下,利用裝置自 身體獲取-個信號。第〕’利用一演算法將該信號轉換成 葡萄糖測定值。 一類非侵入性葡萄糖分析儀係以光譜為基礎原理來 設計。傳統上,非侵入性裝置利用某些形式的光譜儀來獲 取身體某部位的信號或光譜。使用的光譜分析技術包括拉 曼(Raman)與螢光,以及利用波長介於紫外線至紅外線間之 光線的技術[紫外線(200至400 nm)、可見光(400至700 nm)、近紅外線(700 至 2500 nm 或 14,286 至 4000 cm.1 )、 以及紅外線(2500 至 14,285 nm 或 4000 至 700 cnT1))。 利用擴散反射率模式(diffuse reflectance mode)進行非侵 入性葡萄糖測定時,其特定波長範圍介於約1100至2500 nm 間或介於該範圍内之波長區段(κ· Hazen,Glucose Determination in Biological Matrices Using Near-Infrared 3pectroscορχ? doctoral dissertation, University of Iowa (W5)。) 模式 一般可利用三種模式來收集非侵入性光譜:穿透 率、反射率、和/或擴散反射率。例如收集到的信號,通常 為光線或光譜,其穿透體内的一區域(如指尖)後,可能 200538083 會擴散反射、或穿透反射率(transflect)。此處 率係指不在入射點或入射區域亦不在樣本之反 收集(即表示所收集之信號並非擴散反射率與 是在身體位於穿透率與擴散反射率收集區域之 所收集到的訊號。例如,反射光線由指尖或前 域進入,並依所使用波長之不同,在距離光線身 至5 mm或更遠的另一個區域穿出。因此,可 吸收的光線(如接近水之最大吸收波長1450或 光線)會在發生少量的輻散後被收集起來,而較 的光線(如接近水之最小吸收波長1 300、1 600、 之光線)則會在距離入射光子較遠之輕射處或 置被收集起來。 部位 非侵入性技術之測定位置不僅限於指尖 侵入性測定之不同位置包括:手、手指、手掌 基部、前臂、前臂背面、上臂、.上臂内側、頭 眼睛、舌頭、胸膛、軀幹、腹部區域、大腿、 腳.底區域、與腳趾。 儀器 雖然本說明之重點為光學非侵入性分析 意非侵入性技術不必然以光譜分析為基礎。舉 物阻抗分析儀亦可視為一種非侵入性裝置。在 的穿透反射 面進行信號 穿透率),而 間的某一點 臂之某一區 卜入區域0.2 被身體大量 1950 nm 之 不易被吸收 或 2250 nm 穿透反射位 。可進行非 區域、拇指 部、耳垂、 小腿、腳、 儀,但須注 例而言,生 本發明内容 8 200538083 中,任何不須穿透皮膚與收集生物樣本即可自身體讀取一 信號之裝置’便可稱為非侵入性葡萄糖分析儀。例如,生 物阻抗分析儀即為一非侵入性裝置^ 利用近紅外線分析儀來進行非侵入性葡萄糖測定 時,通常利用近紅外線(NIR )電磁輻射來對身體之一小 區域進行照射。使用之近紅外線波長介於7 〇 〇至2 5 0 0 n m 之間或介於上述波長範圍内之一或多種波長範圍,如11〇〇 至 1 800 nm 〇 在入射光線被反射回光學性連接至一偵測器或直接 連接至一偵測器的光線收集裝置以前,光線會因為與組織 成份互相作用而被局部吸收與散射。偵測到的光線包含定 量資訊,該些定量資訊反應出入射光線和身體組織成份(包 括水、脂肪、蛋白質與葡萄糖)之間已知的相互作用。 非侵入性葡萄糖濃度分析儀之光源至偵測器之間可 具有一或多種光線路徑。光源種類包括黑體光源、齒素鶴 絲光源、一或多種LED光源以及一或多種雷射二極體。在 多波長之分光光度計方面,可使用波長選择裝置或-系列 光學濾鏡來進行波長選擇。波長選裝置包括一或多種分光 柵.、稜鏡以及具波長選擇性之濾鏡。.亦可利用不同的光源, (例如可使用LED或二極體來改變光源)來進行波長選擇。 偵測器的形式可以是一或多種單一元;ί牛偵測器、或是一或 多種陣列狀或束狀形式的偵測器。偵測器類型包括钟化益因 錄(InGaAs)、硫化船(PbS)、船石西合金(PbSe)、碎(gi)、戈 鎘錄合金(HgCdTe,MCT)或其相似物。偵測器陣列包括石申 200538083 化銦鎵、硫化錯、錯硒合金、矽、汞鎘錄合金或其相似物。 如光纖、鏡片與鏡面等不同形狀之光線收集光學裝置常做 為分光光度計中的輸出元件’來引導光線自光源射出並通 過樣本後射向偵測器。 校準 葡萄糖濃度分析儀需要校準。所有種類的葡萄糖分 析儀皆然,如傳統侵入性、替代侵入性、非侵入性與植入 式分析儀。與非侵入性葡萄糖分析儀有關的事實是,它們 的本質是次級的’亦即它們不直接測定血糖濃度。這代表 需有一初級方法來校準這些裝置,以便適當地測定血糖濃 度。現有多種校準方法。 已發展出一種非侵入性技術「近紅外線光譜分析」需 要一種能將體内近紅外線測定值與實際血糖濃度聯繫起來 的數學關係。可利用如HEMOCUE ( YSI INCORPORATED, Yellow Springs OH )或任何適當且準確的傳統侵入性參考 裝置,如 THERASENSE EREESTYLE ( THERASENSE,INC·, Alameda CA )葡萄糖濃度分析儀先行測定血糖濃度,並收 集·相對應於上述已測定之血糖濃度的遠紅外線測定值來獲 得該數學關係。 對於分光光度分析儀來說,可利用數種單變數與多變 數方法來建構測定信號與實際血糖值之間的數學關係。然 而’已知的基本公式為Beer-Lambert法則。該法則指出吸 收度/反射率測定值的強度與所測定之分析物的濃度成正 200538083 比,如公式一, A = sbC (1) #中/為在特定波長之光線下的吸收度/反射率測定 值為在相同特定波長下目標分子的莫耳吸收率,6為光 線移動的距離’而C為目標分子(葡萄糖)之濃度。 言t 4校準技術利用不同的信號處理與校準方 式’包括一或多種數學模式,自所測定之光譜中得到葡萄 糖相關信號。透過一組標準光譜測定值(或稱校準組)以及 經由指尖微血管也液、靜脈血液或細胞間液分析所得之一 組參考血糖值關聯數據的校正程序來發展該模式。常見的 多變數方法在校準每一個樣·本光譜時,需要一標準葡萄糖 濃度參考向量來做為參考標準。這些多變數方法包括部分 最小平方法(partial least square,PLS)與主成分回歸分 析法(principal component regression,P0!R)。習知技藝人 士已知多種其他的校準或最佳化方法。 可測定紅外線輸出量的裝置通常包括一種可發射多 重波長之紅外線能量的能量來源、一輸入元件、一輸出元 件以及一光譜分析儀。組織受到來自輸出元件之多重波長 的照射後,至少會有部份的光子被照射處之組織散射與吸 收。離開該組織樣本的部分上述光子會被輸出元件收集, 並被導向一彳貞測器後進行偵測。隨後,利用一模式決定分析 物之濃度。 校準維持 11 200538083 定。在 料。通 作,例 了儀器 例如, 的干擾 種和取 態的, $測者 之- 重要但 目標分 織處於 態與組 光學性 素包括 度、攝 多變數模式係利用減少變數數目來減低複雜的測 一系列條件下,處理用來建構原始模式所收集之資 常,當該系列條件改變時會使原始模式無法適當運 如環境溫度會影響分光光度計的光線收集性能。除 · 和環境的影響之外,樣本的改變也會影響該模式。 · 當干擾物濃度變化落在已測定範圍之外,或引入新 時。以非侵入性方法測定體内葡萄糖濃度時,另一 樣有關的重要關鍵因素在於樣本本身為活體且為動 而需重新更新分析儀的校準。 H 結合一受測者之非侵入性光譜來進行校正能決定此 之分析物濃度。 f態特徵 皮膚組織之動態特徵為非侵入性葡萄糖測定中一種 卻經常被忽略的特徵。I一特定測定部位中,除了 析物中之改變與其他干擾物質外,通常假設皮膚組 靜止狀態。然而,在一相對較短的時間内,生理狀 織内體液分布的差異會大幅影響組織層與體腔中的 質。 有許多因素會影響皮廣之生理與化學狀態。這些因 環境與生理因子。此類因子至少包括體溫、環境溫 托之食物、藥物或藥劑,以及對取樣部位施加壓力。 12 200538083 當身體某一部份受到影響時,會連帶地影響體内許多其他 部位。舉例而言,攝取食物進入消化道會造成水分在體内 腔室間移動。或是攝取咖啡因或興奮劑可改變血壓或導致 微血管擴張。 非侵入性葡萄糖測定Prospective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes, Lancet, 352: 837-853 (1998); W & Y. Ohkubo, H .Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N · Furuyoshi, M. Shichizi, Intensive insulin therapy prevents the progression of diabetes microvascular complications in Japanese patients with non-lnsulin-dependent diabetes mellitus: a randomized prospective 6-year study, Diabetes Res Clin Pract, 28: 1 03- 1 1 7 (1 995)). An element of diabetes management is the self-monitoring of blood glucose levels by a diabetic in a home environment. However, the existing monitoring technology requires blood to be drawn before analysis, which causes inconvenience and pain, which hinders the frequent use of blood glucose monitoring technology (The Diabetes Control and Complication Trial Research Group, wpra). Therefore, non-invasive glucose measurement is considered a very beneficial development in diabetes management. It is also currently expected to exhibit 5 200538083 to display the implantable glucose that can be coupled with 縢 shimasu to prepare μ ± X delivery system as an artificial pancreas. There are many types of sampling methods. Technology can be broadly divided into two categories: invasion technology requires the acquisition of any measuring device by itself and the intrusion front method. • Invasiveness: An example of analysis of whole blood, serum, plasma, interstitial fluid, a mixture of said samples, or selective sampling of components. In vivo glucose concentration measurement using invasive biotechnology. Electrochemical, electroezymatic, and / or colorimetric methods are used to separate samples. For example, 'enzyme and colorimetry can be used to determine the glucose concentration in tissue. • Non-invasive: A variety of techniques have been developed to measure glucose concentration in biological samples using spectrophotometry. These techniques include R.aman and fluorescence spectrum analysis, as well as some techniques that use light between the infrared wavelengths [ultraviolet (200 to 400 nm), (400 to 700 nm), and near infrared (700). To 2500 nm or to 4000 cm · 1), and infrared (2500 to 1, 4,285 nm to 700 cm-1)] instrument, which can be used to analyze chemical incorporation and non-invasiveness in vivo. In this article, when a biological sample is to be analyzed, some parts must penetrate the body. These, when the technology is classified. The classification of enzymes and the enzymes are traditionally analyzed by enzymes. Sample internal method: Raman outside line to visible light 14,286 or 40000538083 Non-invasive glucose measurement has already existed a variety of methods. Non-invasive determination of glucose concentration. Consumption of these methods is very different, but they all have at least two co-synchronous steps. First, in the case where it is not necessary to obtain a biological sample, a signal is obtained from the body using the device. No.] 'This signal is converted into a glucose measurement value using an algorithm. A class of non-invasive glucose analyzers are designed based on the principle of spectroscopy. Traditionally, non-invasive devices use some form of spectrometer to obtain the signal or spectrum of a part of the body. Spectral analysis techniques used include Raman and fluorescence, and technologies that use light between the ultraviolet and infrared wavelengths [ultraviolet (200 to 400 nm), visible light (400 to 700 nm), and near infrared (700 to 700 nm) 2500 nm or 14,286 to 4000 cm.1), and infrared (2500 to 14,285 nm or 4000 to 700 cnT1)). When the diffuse reflectance mode is used for non-invasive glucose measurement, its specific wavelength range is between about 1100 to 2500 nm or a wavelength range within this range (κ · Hazen, Glucose Determination in Biological Matrices Using Near-Infrared 3pectroscορχ? Doctoral dissertation, University of Iowa (W5).) Modes There are generally three modes that can be used to collect non-invasive spectra: transmittance, reflectance, and / or diffuse reflectance. For example, the collected signal is usually light or spectrum. After it penetrates an area in the body (such as a fingertip), 200538083 may diffuse reflection or transflect. Here, rate refers to the anti-collection at the point of incidence or the area of incidence and the sample (that is, the signal collected is not a diffuse reflectance and a signal collected in a body where the transmittance and diffuse reflectance are collected. For example Reflected light enters from the fingertips or anterior region and exits in another area 5 mm or more away from the light depending on the wavelength used. Therefore, absorbable light (such as near the maximum absorption wavelength of water) 1450 or light) will be collected after a small amount of divergence, while relatively light (such as light with a minimum absorption wavelength of 1 300, 1 600, or near water) will be at a lighter location farther from the incident photon or The location of the non-invasive technique is not limited to the different locations of fingertip invasive measurement, including: hand, finger, base of palm, forearm, back of forearm, upper arm, inside of upper arm, head, eyes, tongue, chest, Torso, abdominal area, thigh, foot, sole area, and toe. Although the instrument focuses on optical non-invasive analysis, non-invasive technology is not necessary Based on spectral analysis. Lifting impedance analyzer can also be regarded as a non-invasive device. The signal transmission rate is transmitted on the reflective surface, and a certain point of the arm enters an area 0.2 into the body. 1950 nm is not easily absorbed or 2250 nm penetrates the reflection site. Non-regional, thumb, earlobe, calf, foot, and instrument can be performed, but it is necessary to note that in the present invention, 200538083, any signal can be read by the body without penetrating the skin and collecting biological samples. The device is then called a non-invasive glucose analyzer. For example, a bio-impedance analyzer is a non-invasive device. When a near-infrared analyzer is used for non-invasive glucose measurement, a near-infrared (NIR) electromagnetic radiation is usually used to irradiate a small area of the body. The near-infrared wavelength used is between 7000 to 2500 nm or one or more of the above wavelength ranges, such as 1100 to 1 800 nm. The incident light is reflected back to the optical connection. Before reaching a detector or a light collection device directly connected to a detector, light will be locally absorbed and scattered due to interaction with tissue components. The detected light contains quantitative information that reflects known interactions between incident light and body tissue components, including water, fat, protein, and glucose. Non-invasive glucose concentration analyzers can have one or more light paths from the light source to the detector. The types of light sources include black body light sources, toothed crane light sources, one or more LED light sources, and one or more laser diodes. For multi-wavelength spectrophotometers, a wavelength selection device or -series optical filters can be used for wavelength selection. The wavelength selection device includes one or more gratings, chirps, and filters with wavelength selectivity. .Can also use different light sources (such as LED or diode to change the light source) for wavelength selection. The detector can be in the form of one or more unitary detectors, or one or more detectors in the form of an array or a beam. Detector types include InGaAs, PbS, PbSe, gi, HgCdTe, MCT or similar. The detector array includes Shishen 200538083 Indium gallium sulfide, sulfide, selenium alloy, silicon, mercury-cadmium alloy or the like. Different shapes of light collection optics, such as optical fibers, lenses, and mirrors, are often used as output elements in a spectrophotometer to guide light from the light source and through the sample to the detector. Calibration The glucose concentration analyzer needs to be calibrated. This is true for all types of glucose analyzers, such as traditional, alternative, non-invasive and implantable analyzers. The fact related to non-invasive glucose analyzers is that they are secondary 'in nature, i.e. they do not directly measure blood glucose concentrations. This means that a rudimentary method is needed to calibrate these devices in order to properly determine the blood glucose concentration. Various calibration methods are available. A non-invasive technique called "near-infrared spectroscopy" has been developed that requires a mathematical relationship that can relate near-infrared measurements in the body to actual blood glucose concentrations. The blood glucose concentration can be determined in advance using a glucose concentration analyzer such as HEMOCUE (YSI INCORPORATED, Yellow Springs OH) or any appropriate and accurate traditional invasive reference device, such as THERASENSE EREESTYLE (THERASENSE, INC., Alameda CA), and collect and correspond This mathematical relationship is obtained from the far-infrared measurement of the blood glucose concentration measured above. For the spectrophotometer, several single-variable and multi-variable methods can be used to construct the mathematical relationship between the measured signal and the actual blood glucose value. However, the known basic formula is the Beer-Lambert rule. The rule states that the intensity of the measured absorbance / reflectance is positively proportional to the concentration of the analyte being measured. 200538083, as shown in Formula One, A = sbC (1) #where / is the absorbance / reflectance under a specific wavelength of light The measured value is the molar absorption of the target molecule at the same specific wavelength, 6 is the distance the light moves, and C is the concentration of the target molecule (glucose). The calibration technique uses different signal processing and calibration methods, including one or more mathematical modes, to obtain glucose-related signals from the measured spectrum. The model is developed through a set of standard spectrometric measurements (or calibration sets) and a set of calibration procedures that refer to blood glucose-value-related data obtained from fingertip microvascular fluid, venous blood, or intercellular fluid analysis. A common multivariate method requires a standard glucose concentration reference vector as a reference standard when calibrating each sample and the spectrum. These multivariate methods include partial least squares (PLS) and principal component regression (P0! R). Many other methods of calibration or optimization are known to the skilled artisan. A device capable of measuring infrared output generally includes an energy source capable of emitting infrared energy of multiple wavelengths, an input element, an output element, and a spectrum analyzer. After the tissue is irradiated with multiple wavelengths from the output element, at least part of the photons are scattered and absorbed by the tissue at the irradiated area. Part of the above photons leaving the tissue sample will be collected by the output element and guided to a detection device for detection. Subsequently, a pattern is used to determine the concentration of the analyte. Calibration maintenance 11 200538083. In the material. In general, examples of the instrument such as the interference species and the state of the test are important. However, the target is in the state and group. The optical element includes degree, and the multi-variable mode is used to reduce the number of variables to reduce the complex measurement. Under a series of conditions, the data collected to construct the original mode is processed. When the series of conditions are changed, the original mode cannot be operated properly. For example, the ambient temperature will affect the light collection performance of the spectrophotometer. In addition to environmental and environmental impacts, changes in the sample can also affect the model. • When changes in the concentration of interferences fall outside the measured range, or when new ones are introduced. Another important and relevant factor when using non-invasive methods to determine glucose concentration in the body is that the sample itself is living and mobile and requires a new calibration of the analyzer. H Combining a subject's non-invasive spectrum to perform the calibration can determine the analyte concentration. F-state features The dynamic feature of skin tissue is a feature often overlooked in non-invasive glucose measurements. In a specific measurement site, except for changes in the precipitate and other interfering substances, the skin group is usually assumed to be stationary. However, in a relatively short period of time, differences in the distribution of physiological fluids in the body's tissues can greatly affect the quality of the tissue layers and body cavity. There are many factors that can affect Pi Guang's physiological and chemical state. These are due to environmental and physiological factors. Such factors include, at a minimum, body temperature, ambient temperature of food, medicines or medications, and the application of pressure to the sampling site. 12 200538083 When one part of the body is affected, it affects many other parts of the body. For example, ingestion of food into the digestive tract causes water to move between chambers in the body. Or ingestion of caffeine or stimulants can change blood pressure or cause microvascular dilatation. Non-invasive glucose measurement

有許多關於非侵入性葡萄糖測定技術之報告。其中 部份係關於非侵入性葡萄糖測定所需之一般儀器配置。其 他係關於取樣技術。此處僅就與本發明最相關之文獻做簡 短的回顧: 一般儀器 在 P. Rolfe 之標題為 α j 之第2,033,575號英國專利申請案(8There are many reports on non-invasive glucose measurement techniques. Some of these are related to the general instrument configuration required for non-invasive glucose measurement. The other is about sampling techniques. Here is only a brief review of the documents most relevant to the present invention: General Instruments British Patent Application No. 2,033,575 entitled Pj Rolfe titled α j (8

月24曰,1979)中描述一種裝置,其可用來將光線導入體 内,並摘測微弱的背向散射光線(backscattered light),以 及利用所收集之信號來測定血流中或接近血流處之葡萄糖 濃度。 在 C. Dahne 與 D. Gross 所提出之標題為 Specimphotometric method and apparatus for the 的第 4,655,225 號美國專,利案(4 月 7 曰,1 987 ) 中描述一種方法與裝置,其可將光線導入一病患體内並收 集反射或背向散射光線,以及自所選之近紅外線波長帶來 測定葡萄糖。波長包括1560至1590、1750至1780、2285 13 200538083 至2115,以及2255至2285 nm,同時需有至少一種介於 1 0 00至2 700 nm間的附加參考信號。(January 24, 1979) describes a device that can be used to introduce light into the body and measure weak backscattered light, and use the collected signals to measure in or near the blood flow Glucose concentration. C. Dahne and D. Gross titled Specimphotometric method and apparatus for the United States Patent No. 4,655,225 (April 7, 1 987) describes a method and device that can direct light into a The patient collects reflected or backscattered light, and measures glucose from a selected near-infrared wavelength band. Wavelengths include 1560 to 1590, 1750 to 1780, 2285 13 200538083 to 2115, and 2255 to 2285 nm. At least one additional reference signal between 1000 and 2700 nm is required.

在 M. Robinson、K. Ward、R. Eaton 與 U. Haaland 提出之標題為 Method and apparatus determining the similarity of a biological analyte from a model constructed from known biological fluids ^ % 4,975,581 ^ 美國專利案(12月4曰,1 990 )中描述一種方法與裝置, 其利用紅外線光譜分析儀配合一種多變數模式,來測量一 生物分析物,例如葡萄糖濃度。該多變數模式係由多種已 知生物體液樣本所建構。 在 J. Hall 與 T. Cadell Method and device for measuring concentration levels of blood constituents «ow-Mvahve/y之第5,361,758號美國專利案(11月8曰,In M. Robinson, K. Ward, R. Eaton, and U. Haaland, the title is Method and apparatus determining the similarity of a biological analog from a model constructed from known biological fluids ^% 4,975,581 ^ U.S. Pat. 1990) describes a method and a device that use an infrared spectrum analyzer and a multi-variable mode to measure a biological analyte, such as glucose concentration. This multivariate model is constructed from a variety of known biological fluid samples. In J. Hall and T. Cadell Method and device for measuring concentration levels of blood constituents «ow-Mvahve / y US Patent No. 5,361,758 (November 8,

1 994 )中描述一種非侵入性裝置與方法,其利南複色光線、 一波長分離裝置與一陣列偵測器來測定一活體中的分析物 濃度。該裝置利用具有可接受指尖之形狀的接收器來阻絕 外部光線。 又在 R. Barnes、J. Brasch、D. Purdy 與 W. Lougheed 之標題為 Non-invasive determination of analyte concentration ζ·« 乂y 〇/ wczwma/s 之第 5,379,764 號美國 專利案(1月l〇曰,1 995 )中描述一声非侵入性葡萄糖分 析儀,其利用配合一種多變數分析的資料前處理來測定血 糖濃度。 以及在 S· Malin 與 G. Khalil 之標題為 awe/ 14 200538083 apparatus for multi-spectral analysis of organic blood analytes in noninv as iv e infrared spectoscopy 之 第 6,040,5 7 8號美國專利案(3月21日,2000)中描述一種 方法與裝置,其利用近紅外線之多重光譜分析來測定一有 β 機血液分析物。在一樣本表面上入射多種具有獨特且未重 · 疊波長區間之光線,並收集擴散反射的光線,以及利用化 學計量技術來測定該分析物之濃度。 溫度 · 已熟知有多種生理成份具有近紅外線吸收光譜,且 該些光譜對於區域化溫度之強度與位置非常敏感。有文獻 指出上述因素會影響非侵入性葡萄糖測定(參見Ke Hazen,1 994) describes a non-invasive device and method for determining the concentration of an analyte in a living body by using a polychromatic light beam, a wavelength separation device, and an array detector. The device uses a receiver with a shape that accepts fingertips to block external light. Also in R. Barnes, J. Brasch, D. Purdy and W. Lougheed entitled Non-invasive determination of analytical concentration ζ · «乂 y 〇 / wczwma / s US Patent No. 5,379,764 (January 10) No. 1 995) describes a non-invasive glucose analyzer that uses a data pre-processing process in conjunction with a multivariate analysis to determine blood glucose concentration. And U.S. Patent No. 6,040,5 7 8 (March 21) in S. Malin and G. Khalil entitled awe / 14 200538083 apparatus for multi-spectral analysis of organic blood analyses in noninv as iv e infrared spectoscopy (2000, 2000) describes a method and apparatus for measuring a beta-organic blood analyte using near-infrared multispectral analysis. Inject a variety of light with unique and non-overlapping wavelengths on the same surface, collect the diffusely reflected light, and use chemometric techniques to determine the concentration of the analyte. Temperature · It is well known that many physiological components have near-infrared absorption spectra, and these spectra are very sensitive to the intensity and location of the regionalization temperature. Some literature points out that the above factors will affect non-invasive glucose measurement (see Ke Hazen,

Glucose determinations in biological matrices using ne ar -infr ar e d spectroscopy, Doctoral Dissertation,Glucose determinations in biological matrices using ne ar -infr ar e d spectroscopy, Doctoral Dissertation,

University of I〇wa (August,1995) ) 〇 耦合液University of Iwa (August, 1995)) Coupling fluid

在 T. Blank、G. Acosta、M. Mattu 與 S. Monfre 之 標規爲 Fiber optic probe guide placement guide 之第 6,415167號美國專利案(6月2曰,2002)中描述由一種 或多種過敗化物所組成之一耦合液。声量之耦合液係放置 於該光學探針與測定部位之介面。過氟化物不具有和氟氣 碳化物相關之毒性。 15 200538083 校準調整 已知多種方法可補償部份組織樣本之動態變異。 一種針對非侵入性葡萄糖濃度測定並用來產生校準 模式之方法’是將一個體在一短時間内内的葡萄糖濃度模 式化。(參見又· H这zen, Glucose determinations in biological matrices using near-infrared spectroscopy, Doctoral Dissertation, University of Iowa (August > 1995),以及 J· Burmeister,/zwmawIn T. Blank, G. Acosta, M. Mattu, and S. Monfre, US Pat. No. 6,415,167 (June 2, 2002), a fiber optic probe guide placement guide, describes the use of one or more processes. One of the coupling fluids is composed of decayed compounds. The coupling liquid of sound volume is placed on the interface between the optical probe and the measurement site. Perfluoride has no toxicity associated with fluorocarbons. 15 200538083 Calibration adjustment Various methods are known to compensate the dynamic variation of some tissue samples. A method for non-invasive glucose concentration measurement and used to generate a calibration mode 'is to model a body's glucose concentration over a short period of time. (See also H.zen, Glucose determinations in biological matrices using near-infrared spectroscopy, Doctoral Dissertation, University of Iowa (August > 1995), and J. Burmeister, / zwmaw

noninvasive blood glucose measurements, Doctoral Dissertation,University of Iowa (December 1997))。此種 方法排除了將病患間的差異納入模式之可能,但也因此而 無法將之一般化以適用於更多患者。此方法亦無法解決在 短期測量中關於生理變異的問題,且無法補償關於文獻中 提出水分子在體液體腔中動態移動所造成之變異。noninvasive blood glucose measurements, Doctoral Dissertation, University of Iowa (December 1997)). This approach ruled out the possibility of incorporating patient-to-patient differences into the model, but it was not possible to generalize it to more patients. This method can not solve the problem of physiological variation in short-term measurement, and cannot compensate for the variation caused by the dynamic movement of water molecules in the body fluid cavity in the literature.

另一種克服因組織改變而對模組造成影響的方法是 交互驗證法。在一研究中,利用進食财受檢驗(meal tolerance tests )來影響三名受測者的葡萄糖濃度,並針對 一天當中的每一名受測者來建立多種校準模式,並透過交 互驗證來測試這些模組(參見Robinson M.R.; Eaton R.P·; Haaland D.M.; Keep G.W.; Thomas E.V.; Stalled B.R.; and Robinson P. L. Non-invasive glucose monitoring in diabetic patients: a preliminany evaluation, Clin Chem 1 9 9 2 i 3 8 :1 6 1 8 - 2 2 )。此方法將某些病患間的差異模式化’ 其用意在於將變異模式化後’使得原始模式可用來預測其 16 ) 200538083 方法亦無法解決在短期測量中關於Another method to overcome the impact of modules on organizational changes is cross-validation. In one study, food tolerance tests were used to affect the glucose concentration of three subjects, and multiple calibration modes were established for each subject during the day, and these were tested through cross-validation Modules (see Robinson MR; Eaton RP ·; Haaland DM; Keep GW; Thomas EV; Stalled BR; and Robinson PL Non-invasive glucose monitoring in diabetic patients: a preliminany evaluation, Clin Chem 1 9 9 2 i 3 8: 1 6 1 8-2 2). This method models the differences between some patients. The intention is to model the variation so that the original model can be used to predict it. 16) 200538083 The method also fails to solve the problem of short-term measurement.

他的病患。同樣i也, 生理變異的問題, 液體腔中動態移動所造成之變異His patient. Similarly, the problem of physiological variation, the variation caused by dynamic movement in the fluid cavity

情形。若要納入許多不同情境時,通常需要花費數週來建 構模式。至今為止,此種大量校準與檢驗程序仍難以成功。 另一種克服因組織改變而對模式造成影響的方法係 利用一種智慧型辨識系統來補償關於組織結構與狀態的變 異’該系統能夠決定該受測者於測定當時之最適校单模式 (參見 Malin,S. F·; et· al· /orsituation. When incorporating many different situations, it usually takes weeks to build the model. To date, such a large number of calibration and inspection procedures have been difficult to succeed. Another method to overcome the impact on the model due to organizational changes is to use an intelligent identification system to compensate for changes in organizational structure and state. 'The system can determine the most appropriate schooling model for the subject at the time of the measurement (see Malin, S. F ·; et · al · / or

Noninvasive 5/〇以 J«α/少0w,美國專利案號第 6,280,3 8 1號)。將一具代表性之病患族群分成數群組,由 其吸收光譜來建立該校準模式。這些群組或類別係以結構 與狀態之相似性來分類,使得一群組内之變異小於各群組 間之變異。以和病患目前狀態與結構相關之組織吸收光譜 中所得之特徵來進行分類。 _ 還有另一類克服因級織改變而對模式造成影響的方 法是校準移轉。此方法利用多種光譜資料技術之前處理。 适些前處理具有下列常見但不完全步驟包括··整理、波長 17 200538083 選擇、中心化、縮放、標準化、選擇第n個導函數(n $ i )、 平滑化、傅立葉轉換、主成份選擇、有限脈衝反應過濾、 線性化與轉型。已發現此類一般技術在非侵入性葡萄糖濃 度分析儀需求上之應用受到限制。 還有另一種額外的方法可克服因組織改變而對模式 造成的影響。該類技術係利用一單一光譜來進行區域中心 化為原理基礎(參見 Lorbei: et. al·,hNoninvasive 5 / 〇 with J «α / less 0w, U.S. Patent No. 6,280,3 81). A representative patient population is divided into several groups, and the calibration pattern is established from its absorption spectrum. These groups or categories are classified by the similarity of structure and state, so that the variation within a group is smaller than the variation between groups. Classification is based on characteristics obtained from tissue absorption spectra that are related to the patient's current state and structure. _ There is another type of method to overcome the impact on the mode due to the change of the level is the calibration transfer. This method uses a variety of spectral data techniques before processing. Appropriate pre-processing has the following common but incomplete steps including: sorting, wavelength 17 200538083 selection, centering, scaling, normalization, selection of the n-th derivative function (n $ i), smoothing, Fourier transform, principal component selection, Finite Pulse Response Filtering, Linearization and Transformation. It has been found that the application of such general techniques to non-invasive glucose concentration analyzers has been limited. There is another additional way to overcome the impact of organizational changes on the model. This type of technology is based on the principle of using a single spectrum to perform regional centering (see Lorbei: et. Al ·, h

Multivariate Calibration, Journal of Chemometrics, 1 996, 10,215-220)。在此方法中,選擇一光譜對於與未知樣本 光谱最相近(關於馬氏(Mahalanobis)距離)之校準資料 組進行平均中心化。之後對每一種未知樣本建構一部分最 小平方模式。然而,此技術無法減低校準組在光譜分析中 的變異。 另一種可克服因組織改變而對模式造成影響的方法 係關於平均中心化之技術(參見E. Thomas,R· Rowe, Methods and ^PP^ratus f〇r tailoring spectroscopic ,美國專利案號第6 528 809號(3月4 日,2003 ) ·,以及 E. Thomas,R. Rowe, apparatus for tailoring Spectroscopic calibration ))。此種方法利用光譜攝像技術配合一種經改良對 受測者量身疋做的校準模式。在校準y資料中,可改變該模 式資料來減低或排除與個別受測者相關之特徵,因此產生 一種在受測者之生理變異以及儀器變異之下所建構之校準 資料組模式。在預測階段,利用對每一受測者進行最小光 18 200538083 譜測定來修改針對每一目標受測者之預測過程。然而,此 種方法無法解決與組織之動態本質相關的短期生理與化學 改變,以及因組織樣本之異質性而造成單一病患體内之變 異等主要問題。 在參考E· Thomas之美國專利案號第6,528,809 號,以及F· Thomas之美國專利案號6,1 57,04 1號中係利用 /種以紅外線為基礎之非侵入性葡萄糠濃度分析儀並搭配 使用一種模式來得到人類組織的吸收光譜,該模式可利用 自受測者身上收集到的一光譜與自受測者身上所收集到的 侵入性參考葡萄糖濃度測定值來進行定期修正。雖然所扣 除之光譜並非平均光譜並利用葡萄糖值來更正預測值中的 補償部份,此項技術仍可被大致歸類為平均中心化法。由 於收集該參考光譜非常耗時,使用者也須具備特殊專業知 識,同時亦需要資料收集軟體以及微處理器或其他運算方 忒來進行杈準。此外,用來作為參考光譜的取得樣本光譜 含有資料收集誤差以及原始模式無法解釋之光譜特徵。因 此,將個別個體之參考光譜納入模式中會在校準中成為顯 著之讦能誤差來源,這也會直接轉化成後續葡萄糖濃度預 測,時之誤差。在一種非侵入性葡萄糖測定中,這會導致所 提報之用來辅助胰島素治療的葡萄糖濃度有誤。基於以上 理由,減少收集與利用-參考樣本光舞之步驟是非常有益 的。 19 200538083 此處將 T. Blank、G. Acosta、M. Mattu、S. Monfre 之樣題爲 Fiber optic probe guide placement guide 之第 6,415,167號美國專利案(7月2日,2002)以及T. Blank、 G· Acosta、Μ· Mattu、Μ· Makarewicz、S. Monfre、A.Lorenz 與 T. Ruchti 之標題為 5少*yk/wMultivariate Calibration, Journal of Chemometrics, 1 996, 10, 215-220). In this method, a spectrum is selected to average the centralization of the calibration data set that is closest to the spectrum of the unknown sample (on Mahalanobis distance). Then construct a part of the least squares model for each unknown sample. However, this technique cannot reduce the variability of the calibration group in the spectral analysis. Another method that can overcome the impact of organizational changes on models is the technique of average centralization (see E. Thomas, R. Rowe, Methods and ^ PP ^ ratus f〇r tailoring spectroscopic, US Patent No. 6 528 No. 809 (March 4, 2003), and E. Thomas, R. Rowe, apparatus for tailoring Spectroscopic calibration)). This method uses spectral camera technology with an improved calibration mode tailored to the subject. In the calibration data, the model data can be changed to reduce or exclude the characteristics related to individual test subjects, so a calibration data set model constructed under the test subject's physiological variation and instrument variation is generated. In the prediction phase, the minimum light 18 200538083 spectral measurement is performed on each subject to modify the prediction process for each target subject. However, this method cannot solve the main problems of short-term physiological and chemical changes related to the dynamic nature of tissues and the variation in a single patient due to the heterogeneity of tissue samples. References to U.S. Patent No. 6,528,809 to E. Thomas and U.S. Patent No. 6,1,57,04 to F. Thomas use / infrared-based non-invasive grape bran concentration analyzers and A mode is used in combination to obtain the absorption spectrum of human tissues. This mode can periodically modify a spectrum collected from the subject and the invasive reference glucose concentration measured from the subject. Although the subtracted spectrum is not an average spectrum and the glucose value is used to correct the compensation part of the predicted value, this technique can still be roughly classified as the average centralization method. Because collecting the reference spectrum is very time-consuming, the user must also have special expertise, and also need data collection software and a microprocessor or other operator to perform the calibration. In addition, the sample spectrum used as the reference spectrum contains data collection errors and spectral characteristics that cannot be explained by the original mode. Therefore, including the reference spectrum of individual individuals in the model will become a significant source of energy error during calibration, which will also be directly converted into subsequent errors in glucose concentration prediction. In a non-invasive glucose measurement, this can lead to incorrect glucose concentrations reported to aid insulin therapy. For these reasons, it is very beneficial to reduce the steps of collection and utilization-reference sample light dancing. 19 200538083 Here, T. Blank, G. Acosta, M. Mattu, and S. Monfre are titled US Patent No. 6,415,167 (July 2, 2002) and T. Blank by Fiber optic probe guide placement guide , G. Acosta, M. Mattu, M. Makarewicz, S. Monfre, A. Lorenz and T. Ruchti are titled 5 Less * yk / w

For /« Fivo A/ewwremeW 〇/ Hut/e 之第 l〇/1 70,921 號美國 專利申請案(2002年申請6月12曰)全體納入作為說明 書之參考,上述文獻係描述利用一種導引物配合一種非侵 入性葡萄糖分析儀來增加取樣部位之位置的精確度。因此 會使得非侵入性葡萄糖濃度測定之準確度與精確度提高。 在一段時期内,例如一天中的部份時段、一天、或數曰, 利用該導引物來增加取樣期間中取樣的精確度。 平衡For / «Fivo A / ewwremeW 〇 / Hut / e US Patent Application No. 10 / 70,921 (application dated June 12, 2002) is incorporated by reference in its entirety. A non-invasive glucose analyzer to increase the accuracy of the location of the sampling site. Therefore, the accuracy and precision of non-invasive glucose concentration measurement will be improved. Over a period of time, such as a part of the day, a day, or a few days, the guide is used to increase the accuracy of sampling during the sampling period. balance

已有許多文獻指出傳統葡萄糖測定以及異部位葡萄 糖測定(alternative site glucose determination)兩者之間的 差異(或欠缺差異)。部份認為該可能之差異會對非侵入性 葡萄糖校準與維持造成影響(參見第1〇/377,9 1 6號美國專 利·申請案)。有文獻指出可利用熱、潤滑劑(lubrifractants)、 或使用其他藥劑或血管舒張劑,例如於驗酸、甲基終驗、 敏諸西代(minoxidil )、硝化甘油、铒織胺、薄荷腦、辣 椒素及其混合物,以便加速血管與細胞間液中的葡萄糖濃 度平衡。(參見 Rohrscheib,Mark; Gardner, Craig; Robinson, Mark R. Method and Apparatus for 20 200538083Many literatures have pointed out the differences (or lack of differences) between traditional glucose determinations and alternative site glucose determinations. Some believe that this possible difference will have an impact on non-invasive glucose calibration and maintenance (see U.S. Patent No. 10/377, 9 16 · Application). Some literatures indicate that heat, lubrifractants, or other agents or vasodilators can be used, such as acid test, methyl end test, minoxidil, nitroglycerin, stigmine, menthol, Capsaicin and its mixtures to accelerate the equilibrium of glucose concentrations in blood vessels and intercellular fluids. (See Rohrscheib, Mark; Gardner, Craig; Robinson, Mark R. Method and Apparatus for 20 200538083

Non - invasive blood analyte measurement with Fluid Compartment Equilibration,美截專利案號第 6,240,306 號 (3 月 29 日,2001 )以及 Robinson, Mark Ries; Messerschmidt, Robert G. Method for Non-invasive Blood Analyte Measurement with Improved Optical Interface,美 國專利案號第8,152,876號(11月28日,2000))。 亦有文獻記載經由光刺激釋出氮氧化物配合非侵入 性葡萄糖測定法可作為一種平衡體内灌注較差之區域以及 灌注較佳之區域間之葡萄糖濃度的方法。(T. Blank,S.Non-invasive blood analysis measurement with Fluid Compartment Equilibration, US Patent No. 6,240,306 (March 29, 2001) and Robinson, Mark Ries; Messerschmidt, Robert G. Method for Non-invasive Blood Analyte Measurement with Improved Optical Interface , US Patent No. 8,152,876 (November 28, 2000)). There are also references in the literature that the release of nitrogen oxides through light stimulation combined with non-invasive glucose measurement can be used as a method to balance the glucose concentration between areas with poor perfusion in the body and areas with better perfusion. (T. Blank, S.

Monfre,Μ· Makarewicz,Μ· Mattu,Κ· Hazen,and R·Monfre, M. Makarewicz, M. Mattu, K. Hazen, and R.

Henderson, P hotostimulation method and apparatus in combination with ghicose determination, 2QQ4 年 5 月 6 3 申請(代理人存檔編號SENS0034 )。 在本節中所提及之所有相關技術並未指出僅需利用 一個參考葡萄糖值平均並配合使用一導引物來免除使用一 光譜參考值之必要的平均中心化法。此外,亦未指出任何 藉著一導引物來降低利用光譜參考值來進行平均中心化相 關技術的需求而達到簡化如以近紅外線為基礎之非侵入性 葡萄糖分析儀等生物分析儀的使用方法。更未有文獻指出 可利用光刺激將參考葡萄糖濃度之差異最小化。最後,至 今為止’沒有任何經FDA核准可供甸人或專業醫療人員用 於非侵入性葡萄糖濃度測定之裝置。 問題 21 200538083 可改變皮膚狀態之生理參數包括:組織水合作用、 皮膚溫度、組織中血液容積比、皮廣厚度、脂肪相關之吸 收特徵強度、血球容積濃度與表面反射比。這些參數中有 數種參數會在一天、數日或更長的期間(如數週)内發生改 變。 皮膚狀態之改變會使得多種性質發生變化,例如: 水分濃度、其他如蛋白f、脂肪、角質細胞以及葡萄糖等 分析物之濃度、皮廣散射度、皮膚吸收度、皮膚各層的反 射係數、組織層厚&、身體發出之輕射能、組織之機械特 性、水分相關之吸收特徵強度、*白質相關之吸收特徵強 度以及散射中心之大小與分布。 非侵入性光譜(如近紅外線擴散反射比光譜)為皮膚 組織特徵之代表。由於有多種狀態會改變,且每一種狀態 改變皆會影響多種皮膚組織特徵,故_特定皮虜取樣部: 之非侵人性光譜的變異會隨著時間改變而常呈現出_種高 度非線性且複雜之形式。此外’卩因子分析為基礎之多變 數模式會導致抽象特徵。因’狀態之改變會大幅影響多 變數模式的預測結果。 由於以近紅外線為基礎之非侵人性葡萄糖分析儀通 常會利用纟易受到狀態改變影響之多變數分析,因此需要 以模式之功旎或隨時更新。本發V明之重點在於一或多 衩準的維持。校準維持為費錢耗時且需要某些專業技能 之過程。>咸少或調整維護非侵入性葡萄糖分析儀所需要之 步驟至少具有下列優點其中之-:增加分析儀之市場性、 22 200538083 增加可操作該分析儀之人數、減少進a # 需之時間、以及增加葡萄糖濃度測定^葡萄糠濃度測定所 性。特別是減少任何資料收集步驟,如精確度和/或正確 述之各項優點來說更有助益。本發明提光4之收集,對上 性葡萄糖濃度分析儀使用的簡易校準給j種可供非侵入 早維持方法。 【發明内容】 本發明提出一種方法與裝置, ...^ /、可簡化以光學為基 礎的非知:入性分析儀之使用。更明確 雊地說,利用一種簡化 的演算法來排除每曰收集與使用非侵入 、 、&九譜來更新校準 模式的需求。在另一種具體實施例中,利用一導引物來大 量減低樣本探測部位以及一種皮膚組織取樣部位間之變 異,並利用一參考分析物濃度,在不論是否配合利用在附 近及時收集所得之一種參考光譜之狀況下,使分析儀具有 維持校準表現之能力。 【實施方式】Henderson, P hotostimulation method and apparatus in combination with ghicose determination, 2QQ4 May 6 3 application (agent file number SENS0034). All related technologies mentioned in this section do not point out that it is only necessary to use a reference glucose average and use a guide to eliminate the necessary average centralization method using a spectral reference. In addition, it does not point out that by using a guide to reduce the need for the technique of averaging centralization by using spectral reference values, the use of biological analyzers such as near-infrared-based non-invasive glucose analyzers is simplified. Furthermore, no literature indicates that light stimulation can be used to minimize differences in reference glucose concentrations. Finally, to date, 'there are no FDA-approved devices for non-invasive glucose determinations by people or medical professionals. Question 21 200538083 Physiological parameters that can change the skin state include: tissue hydration, skin temperature, tissue blood volume ratio, skin thickness, fat-related absorption characteristic strength, blood cell volume concentration, and surface reflectance. Several of these parameters change over a period of one day, several days, or longer, such as weeks. Changes in the skin state can cause changes in various properties, such as: water concentration, concentrations of other analytes such as protein f, fat, keratinocytes, and glucose, skin wide scattering, skin absorption, reflection coefficients of skin layers, and tissue layers Thickness, light emission energy from the body, mechanical properties of the tissue, moisture-related absorption characteristic intensity, * white matter-related absorption characteristic intensity, and the size and distribution of scattering centers. Non-invasive spectra (such as near-infrared diffuse reflectance spectra) are representative of skin tissue characteristics. Because there are many states that change, and each state change will affect a variety of skin tissue characteristics, the _ specific skin sample sampling section: the non-invasive spectrum variation will often show _ kinds of highly non-linear and Complex form. In addition, multivariate patterns based on factor analysis can lead to abstract features. The change of the state will greatly affect the prediction result of the multivariate model. Since near-infrared-based non-invasive glucose analyzers often use multivariate analysis, which is susceptible to changes in state, they need to be modeled or updated at any time. The focus of this issue is on the maintenance of one or more standards. Calibration is a costly and time consuming process that requires some expertise. > The steps required to reduce or adjust the maintenance of a non-invasive glucose analyzer have at least one of the following advantages:-increase the marketability of the analyzer, 22 200538083 increase the number of people who can operate the analyzer, reduce the time required to enter a # And increase the glucose concentration determination ^ grape bran concentration determination. In particular, it would be helpful to reduce any data collection steps, such as precision and / or the advantages described correctly. The collection of illuminating light 4 in the present invention provides simple calibration for the use of the upper glucose concentration analyzer to j kinds of non-invasive early maintenance methods. [Summary of the Invention] The present invention proposes a method and device, which can simplify the use of an optical-based non-knowledge: intrusive analyzer. More specifically, using a simplified algorithm to eliminate the need to collect and use non-intrusive, and & nine spectrum to update the calibration mode. In another specific embodiment, a guide is used to greatly reduce the variation between the sample detection site and a skin tissue sampling site, and a reference analyte concentration is used to collect a reference obtained in a timely manner regardless of whether it is used in conjunction with or not Under the condition of the spectrum, the analyzer has the ability to maintain the calibration performance. [Embodiment]

本發明之較佳具體實施例使用一種以近紅外線為基 礎之葡萄糖濃度分析儀,來獲取一個體之一取樣部位的一 種光譜,並配合一種模式與一種參考分析物濃度校正來預 測/測定受測者之葡萄糖濃度。 y 如Ε· Thomas之第6,528,809破美國專利案與Ε· Thomas之第6,157,041號美國專利案,其中描述一種利用 來自檢驗對象之一參考光譜與自該個體之葡萄糖直接讀值 23 200538083 來進行校正的傳統補償校正法。The preferred embodiment of the present invention uses a near-infrared-based glucose concentration analyzer to obtain a spectrum of a sampling site of a body, and cooperates with a model and a reference analyte concentration correction to predict / measure the subject Glucose concentration. y For example, U.S. Patent No. 6,528,809 to E. Thomas and U.S. Patent No. 6,157,041 to E. Thomas, which describe a calibration method using a reference spectrum from one of the test objects and a direct reading of glucose from the individual 23 200538083. Traditional compensation correction method.

Lt 4ά 處「參考光譜」一詞係 扣一種組織光譜,例如一天 係 t初始光譜、來自一資料庙从 一種光譜或一種相對於一參考 貝枓庫的 可“準值之光譜的益 如刖所述,收集參考光譜必須付出儀器、δ曰。 用者之操作技術等成本,如強度即 日、間、使 且參考光譜之收集可能成為 二一種考標準值。並 差會直接反應在用於胰島素治 匕决 ’、的葡萄糠預剛值上。美於 上述理由,消除收集與使用參考 "; 利的。 樣本光譜之步驟是非常有 較佳實施例中提出一籀古 種方法與裝置,其可移除週期 性更新該校準模式中收集非_入地“ 』移除Μ β ^ 非铋入性參考光譜的步驟。也就 疋說’不須採用個人使用杳 会 用者之參考光譜、光譜資料庫之- 種參考光譜或該個體之一種斟止〜 禋配對先譜,便可以每曰、每週、 每月之週期來來更新模式。夕 ^ 之所以可成功消除參考光譜之 必要性係基於至少一種下列理由: 首先⑯集參考光谱對於淨預測葡萄糖濃度來說並 不具利益。-般而言,,運用參考光譜的目的在於提供一補 償常數。Λ外’該直接參考葡萄糖測定值可提供之補償亦 為.常數。…種補債都是常數,那麼利用直接葡萄糖漠 度測定值所做出的單一校正便說明了總誤差亦包含上述兩 項常數。其詳細說明如下。 特別疋,在公式1中,Xmeasured為一預測光譜之向 量,WT為該回歸模式相關係數之向量,且八以為在進行任 何校準前所得之分析物(葡萄糖)濃度預測值。應別注意, 24 200538083 y hat具有一種與其相關之誤差。yhat預測值可視為葡 度的未校正估計值。The term "reference spectrum" in Lt 4ά refers to a tissue spectrum, such as a day's initial spectrum, a spectrum from a data temple, or a "quasi-valued spectrum" relative to a reference library. It is said that the collection of the reference spectrum must pay for the instrument and δ. The user's operating technology and other costs, such as the intensity of the day, between, and the collection of the reference spectrum may become the second standard value. The pre-rigid value of grape bran is good. It is better than the above reasons, and the reference of collection and use is eliminated. It is very beneficial. The sample spectrum step is very good. An ancient method and device are proposed in the preferred embodiment. It can remove the step of periodically updating the calibration mode to collect M β ^ non-bismuth introspective reference spectra. In other words, it is not necessary to use the reference spectrum of the user, the reference spectrum of the user's spectrum, or a reference spectrum of the individual. 禋 Pairing the first spectrum, you can use it every day, week, or month. Periodically to update the pattern. The need for the reference spectrum to be successfully eliminated is based on at least one of the following reasons: First, gathering the reference spectrum is not beneficial for the net prediction of glucose concentration. -In general, the purpose of using a reference spectrum is to provide a compensation constant. The compensation that can be provided by the direct reference glucose measurement value is also a constant. … These debts are all constants, so a single correction using direct glucose indifference measurements shows that the total error also includes the above two constants. The detailed description is as follows. In particular, in Equation 1, Xmeasured is the vector of the predicted spectrum, WT is the vector of the correlation coefficient of the regression model, and eight is the predicted value of the analyte (glucose) concentration obtained before any calibration. It should be noted that 24 200538083 y hat has an error associated with it. The yhat prediction can be regarded as an uncorrected estimate of the glucose.

Yhat = (Xmeasured) WT 估計之yhat葡萄糖濃度預測值具有誤差係基 原因,包括儀器、環境以及取樣對所測定光譜之影 中特別重要的原因是當組織容積改變導致參數產生 例如光學路徑長度、吸收係數以及散射係數。 在E· Thomas之美國專利案號第6,528,809 E· Thomas之美國專利案號第6,1 5 7,041號中首度提 校正預測葡萄糖濃度yhat之誤差的方法。此方法利 非侵入性參考光譜Xref來將該測定樣本光譜區域化 考公式2,使用參考光譜Xref會對該預測葡萄糖濃 做出一種補償,其誤差補償值為 Y b i a s 1。此處將實 糠濃度於部份校正後的新預測值標示為y’ hat。通 為一種平均光譜,但如下所述,還有多種其他來源 該Xref光譜。Yhat = (Xmeasured) The estimated yhat glucose concentration of the WT has an error-based reason, including the instrument, environment, and sampling. The reason that is particularly important in the measured spectrum is that when the tissue volume changes, parameters such as optical path length, absorption, etc. Coefficient and scattering coefficient. The method of correcting the error of the predicted glucose concentration yhat was first proposed in E. Thomas US Patent No. 6,528,809 by E. Thomas US Patent No. 6,1 5, 7,041. This method uses non-invasive reference spectrum Xref to regionalize the measured sample spectrum. Consider Equation 2, using the reference spectrum Xref will make a compensation for the predicted glucose concentration, and its error compensation value is Y b i a s 1. The new predicted value of the bran concentration after partial correction is marked here as y 'hat. It is generally an average spectrum, but as described below, there are many other sources of this Xref spectrum.

y h at = y h at + 丫 b i as 1 — ( X m e as u re d — Xr e f ) W T 基本上,XrefWT係作為yhat的補償,其相等於 在’合理的操作條件下,上述之修正方法可有效的使 ybiasl等於實際葡萄糠濃度。舉例而言,該分析儀對 度之要求可能較寬鬆,例如僅需決定身分析物濃度 低。這使得僅需使用一參考光譜便能將誤差之校正 受之界限。然而,通常在應用該模式後所得之參考 譜’會產生一種仍然需要補償校正之相對分析物(養 萄糖濃 (1) 於下列 響。其 偏差, 號以及 出一種 用一種 。請參 度 y hat 際葡萄 ^ Xref 可作為 (2) Υ b i a s 1 〇 y h a t + 於準確 為高或 到可接 調整光 $萄糠) 25 200538083 濃度預測。利用一直接參考葡萄糖濃度來進行該補償校 正。傳統上’直接參考葡萄糖濃度為傳統指尖葡萄糠測定, 但下文將时論額外的選擇。此處將該直接葡萄糖濃度讀數 或參考葡萄糖測定值稱為ybias2。將直接葡萄糖濃度測定步 驟與公式2中之偏差校正步驟結合會產生一已測定之分析 物(葡萄糖)濃度,ymeas,如公式3中所示。 ymeas = yhat + ybiasl + ybias2 =(Xmeasured —Xref)WT + yb 丨 “2 (3) 如上文所指,第一種方法需要收集與利用一種非侵 入性參考光譜以及一種參考葡萄糖濃度。 回到公式1 ,必須再次注意到將已測定光譜應甩於 校準模式而產生一種葡萄糖預測值yhat,且此預測值具有 一個與之相關的誤差。在第二種方法中,僅利用直接葡萄 糠參考測定但未執行預先扣除平均光譜的步驟來校正此誤 差。在此情形中’標示為yerr的直接參考葡萄糖測定值可 提供預測葡萄糖濃度yhat —估計誤差,利用公式4來估計 一葡萄糖濃度。 ymeas = yhat + yerr = XmeasuredWT + yerr (4) 在比較公式3與4後,可以發現使用該第二種方法 所獲得之估計誤差yerr可代表前述較複雜之二步驟方法中 的ybiasl以及ybias2兩者。 此處提出一種利用一或多種已儲存參考光譜之本發 明的不同具體實施例。在上述方法中,因為一般技術中會 減去一光譜,且通常係減去一平均光譜,因此常以參考光 26 200538083 譜作為一種平均光譜,。然而,參考光譜只是多種光譜中 的一種,這些光譜包括在一段時間内包括一天、一週、一 個月中的第一種光譜,或甚至將該儀器傳送給一個體時所 收集之一種光譜。傳統上,會在一天、一天中的清醒時段、 或一天的主要部份中進行一次校正。除了利用一段時間之 第一光譜以外,亦可利用在一段時間之 η種光譜的平均 值,或將一期間中任意數目之鄰近時間或個別時間中的光 譜以線性結合方式來獲得的光譜。亦可選擇性地自一資料 庫例如一光譜資料庫中產生該參考光譜,且以光譜特性或 一種計算方式如馬氏距離來選擇之。在其他的具體實施例 中,利用一基礎黃金標準光譜,例如水之光譜來作為參考 光譜。固定黃金標準光譜的優點在於其在受控制之環境下 收集,且以數方式儲存於分析儀中以供後續模式更新使用。 在本發明之另一種具體實施例中,利用一種以近紅 外線為基礎之葡萄糖濃度分析儀來獲得一個體之一取樣部 位的一種光譜,並配合一種導引物、一種模式、以及一種 參考分析物濃度來預測或測定該個體之一種葡萄糖濃度。 分光光度計之光線輸出會受到多種因素影響,包括 環境狀態以及樣本之狀態。此外,環境狀態的改變以及身 體狀態之改變會造成一活體組織取樣部位之動態改變。影 響組織狀態之改變例子包括溫度改變和/或分布、局部壓力 改變或分布、水分子移動、葡萄糖移動以及身體組成份如 蛋白質、脂肪以及血球容積之改變。這些改變會影響身體 之化學與物理特徵。物理改變包括折射率之局部和/或區域 27 200538083 性的變化、啜队从& Η文係數、非等向性以及影響探測光子穿逯、 輻射傳遞與#織# ^ & 尤千路徑長度的散射係數。綜合上述狀態變 會使非侵入性也4 + b a _ — 九谱中出現兩度的非線性關係。相對於取樣 積上^述變化中有許多變化均高度依賴光學取樣探針之 ''干取樣探針包括分光光度計之刺激和/或收集元 件0 膚之生理狀況並非均勻的。皮膚之化學與物理組 成隨皮膚之位番& t π ^ . /L ^ 、 >^置而不同。皮膚結構會隨著所在位置而具 多差 W 巧 α 、’包括皮參層厚度以及皮膚組成份。身體之非侵 ,【李 古滅 曰 隨取樣部位而不同。例如,前臂皮膚組織樣本 之光4會隨著在前臂取樣之皮膚位置而不同。舉例而言, 一皮膚樣本會隨著不同位置之組成份如水、脂肪、蛋白質 以及如散射係數等性質而有所不同。 導引物 最廣義言之,一導引物即為一種可限制取樣探針相 對於一取樣部位之定位的元件。該導引物可將一輸入與輸 出70件轉合至~目標組織容積藉以控制並減少光譜變異, 且可使測得之分析物濃度中的誤差降低。導引物係作為一 種鎖頭與鑰匙機制中的一半,用來限制取樣探針(鑰匙) 相對於取樣部位之定位。導引物有助,於定位取樣與收集元 件間的再現性,例如一種以非侵入性分光光度計為基礎之 分析儀之取樣探針與光纖相對於一取樣部位的關係;且因 其可連帶地減低非線性變異,故對於一種非侵入性分析物 28 200538083 濃度測定亦有助益。在第6,415,167號美國專利案(7月2 曰,2002)以及第 10/170,921號美國專利申請案(2002 年6月12日申請)中曾教示一導引物,此處將二文獻之全 體納入作為參考。yh at = yh at + y bi as 1 — (X me as u re d — Xr ef) WT Basically, XrefWT is used as a compensation for yhat, which is equivalent to the above-mentioned correction method under 'reasonable operating conditions' Make ybiasl equal to the actual grape bran concentration. For example, the analyzer may have less stringent requirements, such as determining only low analyte concentrations. This makes it possible to limit the correction of errors by using only a reference spectrum. However, usually the reference spectrum obtained after applying this mode will produce a relative analyte that still needs to be compensated for correction (culture sugar concentration (1) in the following response. Its deviation, number, and one use one. Please refer to degree y Hat Inter Grape ^ Xref can be used as (2) Υ bias 1 〇yhat + for accurate high or to adjustable light $ grape bran) 25 200538083 concentration prediction. This compensation correction is performed using a direct reference glucose concentration. Traditionally, the direct reference glucose concentration is determined by traditional fingertip grape bran, but additional options will be discussed below. This direct glucose concentration reading or reference glucose measurement is referred to herein as ybias2. Combining the direct glucose concentration determination step with the deviation correction step in Equation 2 will produce a measured analyte (glucose) concentration, ymeas, as shown in Equation 3. ymeas = yhat + ybiasl + ybias2 = (Xmeasured —Xref) WT + yb 丨 "2 (3) As mentioned above, the first method requires the collection and use of a non-invasive reference spectrum and a reference glucose concentration. Back to the formula 1.It must be noted once again that the measured spectrum should be thrown to the calibration mode to produce a glucose prediction value yhat, and this prediction value has an error associated with it. In the second method, only the direct bran reference measurement is used but The step of pre-subtracting the average spectrum was not performed to correct this error. In this case, the direct reference glucose measurement labeled 'yerr' can provide the predicted glucose concentration yhat —the estimation error, using formula 4 to estimate a glucose concentration. Ymeas = yhat + yerr = XmeasuredWT + yerr (4) After comparing formulas 3 and 4, it can be found that the estimated error yerr obtained by using this second method can represent both ybiasl and ybias2 in the more complicated two-step method described above. Proposed here A different embodiment of the present invention that utilizes one or more stored reference spectra. In the method described above, because the general technique A spectrum is subtracted from the spectrum, and an average spectrum is usually subtracted, so the reference light 26 200538083 spectrum is often used as an average spectrum. However, the reference spectrum is only one of many spectrums, which include a period of time including a day , The first spectrum of a week, a month, or even a spectrum collected when the instrument is transmitted to a subject. Traditionally, this is done once a day, during the awake period of the day, or during the main part of the day Correction. In addition to using the first spectrum over a period of time, you can also use the average value of η spectrums over a period of time, or a spectrum obtained by linearly combining the spectrum of any number of adjacent times or individual times in a period. The reference spectrum can also be selectively generated from a database, such as a spectral database, and selected based on spectral characteristics or a calculation method such as the Mahalanobis distance. In other specific embodiments, a basic gold standard is used Spectra, such as water, are used as reference spectra. The advantage of fixed gold standard spectra is that they are controlled Collected under the environment, and stored in the analyzer in several ways for subsequent mode update. In another specific embodiment of the present invention, a glucose concentration analyzer based on near-infrared is used to obtain a body sampling site A spectrum, combined with a guide, a model, and a reference analyte concentration to predict or measure a glucose concentration of the individual. The light output of the spectrophotometer is affected by a variety of factors, including the state of the environment and the state of the sample In addition, changes in the state of the environment and changes in the state of the body cause dynamic changes in the sampling site of a living tissue. Examples of changes that affect the state of the tissue include changes in temperature and / or distribution, changes in local pressure or distribution, movement of water molecules, movement of glucose, and Changes in body composition such as protein, fat and blood cell volume. These changes affect the chemical and physical characteristics of the body. Physical changes include local and / or regional changes in refractive index 27 200538083, changes in & script coefficients, anisotropy, and effects on detecting photon penetration, radiative transfer, and #woven # ^ & path length The scattering coefficient. The combination of the above state changes will make the non-invasive 4 + b a _ — two-degree nonlinear relationship in the nine spectrum. Many of the changes described above with respect to the sampling product are highly dependent on the optical sampling probe. '' Dry sampling probes include spectrophotometer stimulation and / or collection elements. The physiological condition of the skin is not uniform. The chemical and physical composition of the skin varies with the position of the skin & t π ^. / L ^, > ^. The structure of the skin will vary depending on the location W, α, ′, including the thickness of the skin layer and the skin composition. The non-aggression of the body, [Li Gumei said, it varies with the sampling site. For example, the light 4 of the forearm skin tissue sample will vary with the position of the skin sampled on the forearm. For example, a skin sample will vary with components such as water, fat, protein, and properties such as scattering coefficient at different locations. Guide In the broadest sense, a guide is an element that limits the positioning of the sampling probe relative to a sampling site. The guide can transfer 70 input and output to ~ target tissue volume to control and reduce spectral variation, and can reduce the error in the measured analyte concentration. The guide is used as half of a lock and key mechanism to limit the positioning of the sampling probe (key) relative to the sampling site. Guides are helpful for positioning the reproducibility between sampling and collection elements, such as the relationship between the sampling probe of an analyzer based on a non-invasive spectrophotometer and the fiber relative to a sampling site; and because it can be associated Ground to reduce non-linear variability, so it is also helpful for the determination of a non-invasive analyte 28 200538083. A guide was taught in U.S. Patent No. 6,415,167 (July 2, 2002) and U.S. Patent Application No. 10 / 170,921 (filed on June 12, 2002), which incorporates the entirety of the two documents. Reference.

此處描述多種導引物與附加裝置。在較佳的情形 中,該附加物具有相同之介面,使得一單一導引元件能和 每一附加物一起使用。相同地,較佳情況下,該裝置中可 連接至一附加物的每一部份都應具有相同之介面。例如, 在較佳的情形中,該導引物與一參考樣本具有相同之介 面,故兩者皆可耦合至一種取樣探針上。一般常用之介面 可作為任一導引物或一參考物與任何附加物結合的接合介 面,前述附加物例如接頭、光子刺激器、取樣模組、或微 型化光源。 鎖頭(導引物)Various guides and attachments are described here. In the preferred case, the add-ons have the same interface so that a single guide element can be used with each add-on. Similarly, preferably, each part of the device that can be connected to an attachment should have the same interface. For example, in the preferred case, the guide has the same interface as a reference sample, so both can be coupled to a sampling probe. The commonly used interface can be used as a bonding interface for any guide or a reference combined with any additional objects, such as connectors, photon stimulators, sampling modules, or miniaturized light sources. Lock (Guide)

取樣部位會隨著個體而不同,並可以圓周或曲率半 徑來表示。就身體部份而言,在腹部區域與手指部位之曲 率半徑範圍可分別從平直到0 · 3 7 5英吋。即使在一身體部 份中,曲率半徑也會隨個體而不同。舉例而言,某些人的 手臂半徑較小,而其他人手臂半徑則較大。對應取樣部位 之結構來決定導引物之外型,會使後/續光學取樣之準確度 增加。 導引物之實施例為具有扁平取樣介面以及 6 · 0英 吋、4.5英與3.0英吋之曲率半徑。第1圖提出一種導引元 29 200538083 件,其曲率半徑為平坦。以一手臂為取樣部位時,手臂越 細痩則最佳導引物之曲率半徑應越小。第1圖中提出之導 引物係關於一接頭,該接頭為將於下述内容中討論的導引 附加物之一。該導引兀件之主要特徵在於其為構成一鎖頭 與錄匙組合的-半。也就存在一種表面能夠可一再 地將一種鎖頭與鑰匙元件的另一半導引至一可重複安裝之 位置。在本情形中,該鎖頭元件位在導引物中,但其亦可 選擇位於該附加物中。在本處,鎖頭元件為導引物中的一 個孔洞。該引導物大略成矩形並且具有兩個呈圓形之相對 側邊。此種矩形之外型限制了其旋轉排列。在較佳的情形 中’該導引物不能自由旋轉。例如,圖中所示之導引物具 有C2對稱性’使其在旋轉18〇度後仍具有相同形狀。可 經由多種方法達到此種旋轉自由,例如使其中一個圓形端 扁平化。在第二種案例中,該鎖頭元件上沿伸出釘栓可接 口至鍮4 (附耆物)元件之相關孔洞中,以便將該鍮匙以 可重複裝卸的方式定位至導引物。 可使用多種鎖頭元件之形狀。實施例幾乎可包括任 一種幾何形之孔洞或任何可提供再現性定位功能的形狀 (不一定是孔洞),並且在較佳情形中,這些形狀可防止自 由旋轉。在所提出之特定導引元件中,描緣了可選擇性附 加的孔洞或凹槽。其功能主要為減低,重量、表面異常最小 化(例如取樣部位上之凹陷標記)以及維持強度同時限制該 導引物之扭曲自由。在這些導引物上描繪了 一種附加的非 必須元件,即磁織。這些磁鐵用來控制接觸力和/或協助鎖 30 200538083 頭與鑰匙機制之排列。在所、%的導引物中,在介 了非必箱^ ΐ •、的異極磁鐵。在該成對磁鐵中,其配對 可選擇性地為一種金屬物質,例如金屬片或不鏽鋼用试 低成本和/戋番县羽4姑蓺人丄 、·用來減 次重量。習知技藝人士可了解有多種 4# φ ^ 刀口機械結 構來使鎖碩元件銜接至導引元件。 以—種儀器將導引物附著至一取樣部位, ΛΟΟ jMr 』如利用 繩、條帶與鉤圈技術,或可優先使用一種雙面黏著物。一 般而S ’將該黏著物牢固地放至於取樣 ^ ^ ^ m 上而後將該 導引物放置於該黏著物之上。此種順序可減低將該黏著物 自取樣部位分離之情況。或者可將黏著物附著於該導引物 上,再將形成一體之黏著物與引導物與該取樣部位接觸。 此方法可減除將導引物排列至該黏著物之步驟。或者是使 用者所取得之黏著物已連附著至該導引元件。該導引物與 黏著物以半永久且可移除性地附著至該取樣部位。在如一 天中清醒的時段或如2、4、或8小時之資料收集期間等取 樣期間以外的時間中,通常會將該導引物保留在原來位置。 可在導引物以及連接至該取樣部位之雙面黏著物之 間使用一種選擇性的中介層或導引延伸物。實質上,此乃 一種半彈性材料,例如醋酸鹽。該材料提供某些彈性,使 得取樣部位之皮膚得以伸展。這會減低因受測者移動所造 成之取樣瞬時變化。相反地,對於水,腫較不嚴重的受測者 而言’因皮膚彈性過佳,而需使用剛性較強的中介層,例 如塑膠薄片。 應優先利用一種熱塑性物質來製造該導引物,例如 31 200538083 聚碳 現多 透過 統上 度。 部位 佳, 化物 來使 鑰匙 件之 頭、 取樣 例。 該接 部位 樣部 如一 交互 接頭 酸酯或聚氨基曱酸酯。然而, 白知技藝人士可輕易發 種可用材料。因該導引物會和取樣部位接觸(有時合 一中介黏著物),故該導引物之熱學性質非冑重要。; ,該導引物不具熱傳導性以便減低取樣部位的溫产梯 然而,在某些例…例如當需要將熱能傳遞::樣 或自取樣部位傳出時,以使用具熱傳導性之導引物較 。該導引材料最好具生物相容性。 在較佳的情形中,利用相符之折射率媒介如一種氟 、氟化惰性液(Fluorinert)、FC-40、fc-70 或 1 & ^ #專效物 該導引物光學地耦合至該取樣部位。 (附荖物) 此處將該導引鎖頭與鑰匙機制的另一半稱為導引元 附著物。連接至該導引物之附著物的實施例包括一接 一光子刺激器、一種微型化光源以及一分光光户叶之 模組的頂端。針對這些附著物,下文各提出一 裡貫施 第1圖中提出耦合至一導引物的一種接頭附著物。 頭可達成至少一種下列功能:藉由閉鎖作用達到取樣 之水合作用、保護取樣部位不受物理性 丨1说 保護取 位不受污染、該導引物之排列α及維持良好外觀,例 錶形、環形、或圖形符號。所繪之接頭具有兩種具有 支撐結構的突出元件用來幫助接合。可選擇性地將該 製成腕錶狀或使其具備腕錶之功能,且其可具有或不 32 200538083 須有 將該 此通 一種 0 9 手臂 該黏 心 ° 孔。 取樣 樣部 因而 目標 份之 位中 一種 糠分 物濃 度。 中,‘ 介面 一類似錶帶之帶狀物。在一變化的具體實施例中,可 接頭微型化,使其外型看似一裝飾物,例如一環狀物。 第1圖中所緣之接頭具有一種非必須之中央通道。 道係用於放置該導引物之最初位置。在此方法中,將 雙面黏著物連接至該取樣部位❶該黏著物中具有一開 且該開口比光學探測元件略大。在將一黏著物放置於 上之後’將該導引物連接至該接頭並放下一導引桿至 著物’使得其光學路徑位在該黏著物上之排氣闊的中 實質上’該穿透接頭與導引物之導引桿係作為一檢查 第2圖中提出一種光子刺激器附著物,其耦合至一 介面之曲率半徑為4.5英吋的導引物上。在至少一取Sampling locations vary from individual to individual and can be expressed in circles or radius of curvature. As far as the body part is concerned, the radius of curvature in the abdominal area and the finger can range from flat to 0.375 inches. Even in a body part, the radius of curvature varies from individual to individual. For example, some people have smaller arms and others have larger arms. The shape of the guide is determined according to the structure of the sampling site, which will increase the accuracy of subsequent / continuous optical sampling. Examples of guides are a flat sampling interface and a radius of curvature of 6.0 inches, 4.5 inches, and 3.0 inches. Figure 1 presents a guide element 29 200538083 with a flat radius of curvature. When using one arm as the sampling site, the thinner the arm, the smaller the radius of curvature of the best guide. The guide primer presented in Figure 1 is about a linker, which is one of the guide additions to be discussed below. The main feature of the guide element is that it forms a combination of a lock and a key. That is, there is a surface that can repeatedly guide the other half of a lock and key element to a repeatable installation position. In this case, the lock element is located in the guide, but it may alternatively be located in the add-on. Here, the lock element is a hole in the guide. The guide is substantially rectangular and has two circular opposite sides. This rectangular shape limits its rotation arrangement. In the preferred case, the guide cannot rotate freely. For example, the guide shown in the figure has a C2 symmetry 'so that it still has the same shape after being rotated 180 degrees. This freedom of rotation can be achieved in a number of ways, such as flattening one of the rounded ends. In the second case, the locking element protrudes along the top of the lock element into the relevant hole in the 孔 4 (attachment) element, so that the key can be positioned to the guide in a repeatable manner. A variety of lock element shapes can be used. Embodiments can include holes of almost any geometry or any shape (not necessarily a hole) that provides reproducible positioning capabilities, and in the best case, these shapes prevent free rotation. In the proposed specific guide element, holes or grooves which can be optionally added are traced. Its functions are mainly to reduce weight, minimize surface anomalies (such as dent marks on the sampling site), and maintain strength while limiting the freedom of distortion of the guide. An additional non-essential element is depicted on these guides, the magnetic weave. These magnets are used to control contact forces and / or assist lock 30 200538083 head and key mechanism alignment. In the guide, the non-essential box ^ ΐ •, a heteropolar magnet is introduced. In this pair of magnets, the pairing can be a metal substance, such as a metal plate or stainless steel, which can be used at low cost and / or to reduce weight. Those skilled in the art can understand that there are various 4 # φ ^ blade edge mechanical structures to connect the lock element to the guide element. A guide is attached to a sampling site with a kind of instrument. ΛΟΟ jMr ”If using rope, strap and hook and loop technology, a double-sided adhesive can be used preferentially. Generally, S ′ puts the adhesive firmly on the sample ^ ^ ^ m and then places the guide on the adhesive. This sequence can reduce separation of the adherend from the sampling site. Alternatively, an adhesive can be attached to the guide, and the integrated adhesive and the guide can be brought into contact with the sampling site. This method can eliminate the step of arranging the guide to the adhesive. Or the adhesive obtained by the user has been attached to the guide element. The guide and the adhesive are semi-permanently and removably attached to the sampling site. The guide will usually be left in place during periods other than the sampling period, such as during a sober day or during a data collection period such as 2, 4, or 8 hours. A selective interposer or guide extension can be used between the guide and the double-sided adhesive attached to the sampling site. In essence, this is a semi-elastic material, such as acetate. The material provides some elasticity to allow the skin at the sampling site to stretch. This reduces transient changes in sampling caused by the subject's movement. Conversely, for subjects with less severe swelling and edema, because the skin is too elastic, a more rigid interposer, such as a plastic sheet, is required. Priority should be given to the use of a thermoplastic material to make the guide, for example 31 200538083 polycarbonate is now more transparent. The parts are good, and the material is used to make the head of the key, and the sample is taken. The joint sample is an interactive linker or polyurethane. However, Baizhi artisans can easily develop available materials. Because the guide will come into contact with the sampling site (sometimes an intermediary adhesive), the thermal properties of the guide are not critical. ; The guide is not thermally conductive to reduce the temperature rise of the sampling site. However, in some cases ... For example, when it is necessary to transfer thermal energy :: sample or from the sampling site, use a thermally conductive guide. Compare. The guide material is preferably biocompatible. In the preferred case, a compatible refractive index medium such as a fluorine, Fluorinert, FC-40, fc-70, or 1 & ^ #Specific Object is optically coupled to the guide Sampling site. (Attachment) Here, the other half of the guide lock and key mechanism is called a guide element attachment. Examples of attachments attached to the guide include a top of a photon stimulator, a miniaturized light source, and a spectrophotometer. In view of these attachments, a joint attachment is described in the following. Fig. 1 proposes a joint attachment coupled to a guide. The head can achieve at least one of the following functions: hydration of sampling by latching, protection of the sampling site from physical 丨 1 protection of the position from contamination, the arrangement of the guide α, and maintaining a good appearance, for example Shape, ring, or graphic symbol. The joint is depicted with two protruding elements with supporting structures to assist in joining. This watch can optionally be made into a watch shape or be equipped with the function of a watch, and it may or may not be provided. 32 200538083 It shall be provided with a 0 9 arm, a viscous ° hole. Sampling sample is therefore a concentration of bran matter in the target portion. In the ‘Interface, a strap similar to a strap. In a variant embodiment, the connector can be miniaturized to make it look like a decoration, such as a ring. The connection shown in Figure 1 has an optional central channel. The lane is used to place the guide in its original position. In this method, a double-sided adhesive is connected to the sampling site, the adhesive has an opening and the opening is slightly larger than the optical detection element. After placing an adhesive on it, 'connect the guide to the connector and lower the guide rod to the object' so that its optical path is located in the wide vent of the adhesive. The guide rod of the penetrating joint and the guide is used as an inspection. Fig. 2 proposes a photon stimulator attachment, which is coupled to a guide having a curvature radius of 4.5 inches on an interface. Take at least one

位上或鄰近處進行光刺激來加強取樣部位之灌注,並 減低與取樣相關之誤差。取樣部位之灌注增加可導致 分析物之容積百分比提高’和/或使得血液或組織組成 濃度更正確和/或精準地追蹤在灌注更良好之身體部 相對應之樣本組成份,例如動脈、血管、或指尖。在 具體霄施例t,透過分析受光刺激之部位並配合葡 析儀以便能更簡便、正確、或精確地測定葡萄糖分 度’且可測定另一種非揭太夕|辦都 但外樣本之身體部位的分析物 在美國專利申明案(代理人存槽編號SEN 描述了此種技術,且於此處將其全體納入作為參考 第3圖中提出一種取樣模組,其係耦合至一種取 之曲率半徑為6·〇英吋的導引物上。在第1〇/472,8 33 200538083 號美國專利申請案(2003年9月1 8曰申請,代理人存檔 編號SENS0011 )中描述了取樣模組。較佳情形中,取樣 模組可為一分析儀的一部份,該分析儀可額外地包含一基 礎模組以及一通訊束。該取樣模組係持續或半持續地連接 至一人類受測者,並收集用來測定取樣組織中之一種生物 參數的光譜測量值。較佳目標分析物為葡萄糖。該較佳分 析儀為一種以近紅外線為基礎之葡萄糖分析儀,其可用於 決定體内之葡萄糖濃度。Light stimulation is performed at or near the position to enhance perfusion of the sampling site and reduce sampling-related errors. Increased perfusion at the sampling site can lead to an increase in the volume percentage of the analyte 'and / or make the blood or tissue composition concentration more correct and / or accurate to track the sample components corresponding to the better perfused body parts, such as arteries, blood vessels, Or fingertips. In a specific example, by analyzing the light-stimulated area and cooperating with a dialysis analyzer, it is possible to more easily, accurately, or accurately measure the glucose index 'and to measure another non-exposed material | The analyte of the part is described in the U.S. Patent (Attorney's Slot Number SEN describes this technique, and it is hereby incorporated by reference as a whole. A sampling module is proposed, which is coupled to a curvature taken. On a guide with a radius of 6.0 inches. The sampling module is described in US Patent Application No. 10 / 472,8 33 200538083 (application dated September 18, 2003, agent file number SENS0011). In a preferred case, the sampling module may be part of an analyzer, which may additionally include a base module and a communication beam. The sampling module is continuously or semi-continuously connected to a human receiver The tester collects spectral measurement values used to determine a biological parameter in the sampled tissue. The preferred target analyte is glucose. The preferred analyzer is a near-infrared-based glucose analyzer that can be used for Given the concentration of glucose in vivo.

第4圖中提出一種微型化光源附著物並結合了一種 參考導引元件。利用一參考元件來提供一種可代表該分析 儀目前狀態之信號。在較佳情形為該參考元件包含於一具 有一介面之元件中,該介面之功用與導引物之介面相同, 可利用與該導引物相同之方式,將該參考元件耦合至一取 樣模組或一微型化光源。 導引物資料Figure 4 proposes a miniaturized light source attachment and incorporates a reference guide element. A reference element is used to provide a signal that is representative of the current state of the analyzer. In a preferred case, the reference component is included in a component having an interface. The function of the interface is the same as that of the guide. The reference component can be coupled to a sampling mode in the same manner as the guide. Group or a miniaturized light source. Guide information

第5圖係顯示對一個體之手臂進行光譜收集所獲得 之一系列遠紅外線非入侵性光譜的標準差,其中5 0 1為利 甩一導引物之情形,502則為不利用一導引物之情況。可 以發現,當利用一導引物時,吸收單位之標準差明顯較小。 習知技藝人士可明白,導致該偏差$主要變因為路徑長 度、探測水分濃度,較次要變因則與蛋白質、脂肪、與溫 度有關。因此,該導引物增加了光學探針相對於取樣部位 之位置的精確度,因而減低因位置導致的取樣變異,使得 34 200538083 光譜 實施 測資 性資 參考 用來 源、 學裝 裝置 預測 測者 受測 建構 個樣 波長 偵測 較差 時表 之樣 一種 之裝 畢的 讀數之變異較小。 1 第6圖中提出一組示範性之非侵入性葡萄糖濃度預 料組。利用上述之較佳模式校正技術來處理這些代表 料’所§胃較佳模式校正技術係指僅利用一直接葡萄糖 濃度且未利用一非侵入性(或相關)參考光譜之技術。 收集权準資料之儀器包括三種均配置有一齒素鎢絲光 刺激導引光學褒置、一通過波長濾波器、收集導引光 置、一細縫、一光栅、一陣列偵測器、以及相關電子 之以近紅外線為基礎的分析儀。在進行校準以及後續 測定時,於開始進行所有測定之一特定日,於每一受 身上安置一引導物。在至少為期一天的期間中,所有 者會經歷一或更多種葡萄糖測定。共以八名受測者來 該校準。係在兩個月的期間中,利用校準儀器收集24 i 本。以一種27點之Savitsky-Golay —階導數來預處理 12 00至1 800 nm之光譜的資料.來建構一模式。體外 程序包括可偵測與排除在光學裝置與取樣部位間具有 表面接觸之樣本的模組、可偵測與排除有較大組織瞬 達之樣本的模組以及可偵測與排除組織過分扭曲變形 本的模組。利用一種多變數之部汾最小平方模式。以 類似葡萄糖分析儀但僅在固定該刺激與收集光學裝置 置不同的分析儀來收集預測光譜。在校進次 #仪+貝料收集完 七個月後,以五週的期間來收集預測光级 4兀”曰。該預測資 35 200538083 料 種 並 測 料 性 以 不 之 值 A 此 校 中 預 考 譜 多 括 收 或 光Figure 5 shows the standard deviation of a series of far-infrared non-invasive spectra obtained from the spectrum collection of an arm of a body, where 501 is a situation where a guide is thrown away, and 502 is a case where a guide is not used Situation. It can be found that when a guide is used, the standard deviation of the absorption unit is significantly smaller. Those skilled in the art can understand that the main cause of this deviation $ is the path length and the detected water concentration, and the lesser variables are related to protein, fat, and temperature. Therefore, this guide increases the accuracy of the position of the optical probe relative to the sampling site, thereby reducing the sampling variation caused by the position, which makes the 34 200538083 spectrum measurement source reference source and the school equipment to predict the subject's acceptance. The variation of the completed reading of a watch with a poor wavelength detection is small. 1 Figure 6 presents a set of exemplary non-invasive glucose concentration prediction sets. The above-mentioned preferred mode correction technique is used to process these representative materials. “Stomach better mode correction technique refers to a technique that uses only a direct glucose concentration and does not utilize a non-invasive (or related) reference spectrum. The instrument for collecting authorization data includes three types of optical devices equipped with a toothed tungsten filament light stimulation guide, a wavelength filter, a collection guide, a slit, a grating, an array detector, and related electronics. Near-infrared-based analyzer. During calibration and subsequent measurements, a guide is placed on each recipient on a specific day when all measurements are to begin. During a period of at least one day, all will undergo one or more glucose determinations. The calibration was performed with eight subjects. Collected 24 i copies using a calibrated instrument over a two-month period. A 27-point Savitsky-Golay-order derivative was used to preprocess the data of the spectrum from 12 00 to 1 800 nm to construct a model. In vitro procedures include modules to detect and exclude samples with surface contact between the optical device and the sampling site, modules to detect and exclude samples with larger tissue transients, and to detect and eliminate excessive tissue distortion This module. Use a multivariable partial Fen least squares model. Predicted spectra were collected with an analyzer similar to a glucose analyzer, but only with a different set of stimulus and collection optics. Seven months after the collection of the school's material # 仪 + 贝 料, the forecasted light level is collected over a period of five weeks. "The forecast resource 35 200538083 The type and testability of the material is not a value A This school Pre-exam scores included

組所包括以三種儀器自2 1 a μ f ^ A 1位檢驗受測者身上所得之3 6 8 預測光譜。使用自校準眘輕2 , 平貢枓組所產生之模式以單盲形式 且不做任何修改來使用。利 、士於—x 4 , W用一補償杈正,其係使用在 特定日所收集之第-種樣本之葡萄糖參考濃度。進行預 時’不使用來自任何預測光譜之參考光譜,在此預測資 組之任何it段亦不使用任冑非侵入光譜《纟成非侵人 光譜。再次利用-參考葡萄糖濃度來更新該模式,以便 一種非侵入性分析儀進行一葡萄糖濃度之後續預測而The group consisted of 3 6 8 predicted spectra obtained from 2 1 a μ f ^ A 1 test subjects with three instruments. Using self-calibration with caution2, the pattern generated by the Pinggong group is used in a single-blind form without any modification. Li and Yu—x 4, W use a compensation switch, which uses the glucose reference concentration of the first sample collected on a specific day. Prediction 'does not use any reference spectrum from any of the predicted spectra, nor does it use any non-intrusive spectrum (into a non-intrusive spectrum) in any it segment of the prediction asset. The model is updated again with a reference glucose concentration so that a non-invasive analyzer makes a subsequent prediction of the glucose concentration and

使用一相對應之非侵入性參考光譜。第6圖中,將所得 預測描繪於一 Clarke誤差格上。所得之葡萄糖濃度預測 中,共有98.7%落在該Clarke誤差格中之臨床可接受之 或B區域中,且該預測值所生之標準差為26 3 mg/dL。 一結果可清楚顯示該分析儀之效能。值得注意的是,在 準所得之葡萄糖濃度測定值100%落在該Clarke誤差格 之B區域中,且校準之標準差為27 〇 mg/dL,可以發現 測表現幾乎和校準表現相同。 在此處所述之方法中,由於一般技術中會減去一參Use a corresponding non-invasive reference spectrum. In Figure 6, the resulting prediction is plotted on a Clarke error grid. A total of 98.7% of the obtained glucose concentration predictions fell into the clinically acceptable or region B of the Clarke error box, and the standard deviation generated by the predicted value was 26 3 mg / dL. A result clearly shows the performance of the analyzer. It is worth noting that 100% of the measured glucose concentration falls in the B area of the Clarke error grid, and the standard deviation of the calibration is 270 mg / dL. It can be found that the measured performance is almost the same as the calibrated performance. In the method described here, one parameter is subtracted because

光譜,且通常是減去一平均光譜,因此通常將一參考光 稱為一平均光譜。然而,可供選擇之參考光譜包括下列 種光譜之一,包括在一期間中的第一種光譜,該期間包 一日、一週、一月或甚至在將該儀器送到一個體中時所 集之一種光譜。傳統上,可在一天、一天中清醒的時刻、 一天的主要部份中,進行一次校正。或者是,該移除之 譜可為一期間中的第一種光譜、利用在——期間中的前η 36 200538083 種光譜之平均值、或將一期間中任意數目之鄰近 1間或個 別時間中的光譜以線性結合方式來獲得之光譜。 具體實施例中,該參考光譜係來自一資料庫,例如一“ 一 光譜 資料庫’且根據光譜特徵或一計算方式如一馬氏距離計〜 來選擇之,例如可使用如上所述之黃金光譜。 在上述方法中,該直接參考分析物濃度通常係於' 傳統酵素法、電酵素法、或比色法等方法來進行微血管中 的血液葡萄糖測定。然而,亦可利用一最小侵入之葡萄糖 濃度計或一種非侵入性濃度計來產生該參考葡萄糖濃度。 通常係利用一種經FDA核可之參考方法。 雖然此處係參照線性模式來描述本發明,但亦可運 用一非線性模式,例如一種神經狀網路來進行分析物濃度 估計。 雖然此處已以數個較佳具體實施例來描述本發明, 習知技藝人士可輕易發現其他應用方式可取代此處所列 者’且不致脖離本發明之精神與範圍。故本發明應僅受下 列申請專利範圍限制。 【,圖式簡單說明】 第1圖顯示根據本發明之一耦合至一接頭的扁平導 引物; 第2圖係根據本發明,提出與具有一曲率半徑為4 ·5 英吋的導引物之接頭連接的一種LED配件; 第3圖係根據本發明,提出與一曲率半徑為6〇英 37 200538083 吋之導引物耦合的一種微型光源至; 第4圖係根據本發明,提出與一種扁平導引物耦合 的一種微型光源; 第5圖係根據本發明,提出在使用以及未使用一導 · 引物時之光譜變異;以及 . 第6圖係根據本發明,顯示一繪於Clarke誤差表格 中的預測結果。 【主要元件符號說明】 ♦ 無Spectrum, and is usually subtracted from an average spectrum, so a reference light is usually called an average spectrum. However, alternative reference spectra include one of the following, including the first spectrum in a period, which includes a day, week, month, or even when the instrument is delivered to a body A kind of spectrum. Traditionally, corrections can be made once a day, at awake time of the day, and in the main part of the day. Alternatively, the removed spectrum may be the first spectrum in a period, the average value of the first η 36 200538083 spectra in the period, or any number of adjacent 1 or individual times in a period The spectra in the spectrum are obtained in a linear combination. In a specific embodiment, the reference spectrum is from a database, such as a "spectral database" and is selected based on spectral characteristics or a calculation method such as a Mahalanobis distance meter, for example, the gold spectrum described above can be used. In the above methods, the direct reference analyte concentration is usually based on the traditional enzyme method, electroenzyme method, or colorimetric method for blood glucose measurement in microvessels. However, a minimally invasive glucose concentration meter can also be used Or a non-invasive concentration meter to generate the reference glucose concentration. Usually a reference method approved by the FDA is used. Although the invention is described herein with reference to a linear model, a non-linear model such as a nerve Analyze the concentration of analytes using a network. Although the present invention has been described in terms of several preferred embodiments, those skilled in the art can easily find that other applications can replace the ones listed here without departing from the present invention. The spirit and scope of the invention. Therefore, the present invention should be limited only by the scope of the following patent applications. FIG. 2 shows a flat guide coupled to a connector according to one of the inventions; FIG. 2 shows an LED accessory connected to a connector having a guide with a curvature radius of 4.5 inches according to the invention; The figure shows a miniature light source coupled to a guide with a radius of curvature of 60 inches 37 200538083 inches according to the present invention; Figure 4 shows a miniature light source coupled to a flat guide according to the present invention; Figure 5 shows the spectral variation with and without the use of a primer and primer according to the present invention; and Figure 6 shows the prediction result plotted in the Clarke error table according to the present invention. 】 ♦ None

3838

Claims (1)

200538083 拾、申請專利範圍: 1. 一種非侵入性方法用來估計一受測者之人體組織 的一種生物屬性,其至少包含下列步驟: 提供測量光線輸出之一裝置,該裝置至少包含可發 射一光線之一能量來源、一輸入元件、一輸出元件與一光 譜分析儀; 將該輸入與輸出元件耦合至該人體組織之一具控制 樣本容積的目標上; 利用該輸入元件使具有該光能之多種波長照射該組 織,其中該樣本容積會造成該光線之部份吸收; 以該輸出元件收集至少一部份之該未吸收光能; 決定該收集部份之強度; 產生一模式,其中該模式使用複數個校準非侵入性 光譜與複數個校準參考濃度; 以一估計誤差來調整該模式,其係以該具控制樣本 容積的目標之光譜與至少一直接參考測定值來產生該估計 誤差; 收集該受測者之該具控制樣本容積之目標的至少一 非侵入性預測光譜;以及 利用該調整後模式來估計該受測者之該生物屬性的 濃度。 < 2.如申請專利範圍第1項所述之方法,其中該生物 屬性至少包含一葡萄糖濃度。 39 200538083 3 ·如申請專利範圍第1項所述之方法,其中該光線 至少包含近紅外線能量。 4 ·如申請專利範圍第3項所述之方法,其中該近紅 外線能量之區間至少包含自11 〇〇至1 900 nm之區間或其間 之至少一次區間。200538083 The scope of patent application: 1. A non-invasive method for estimating a biological property of the human tissue of a subject, which includes at least the following steps: Provide a device for measuring light output, the device includes at least one An energy source of light, an input element, an output element, and a spectrum analyzer; coupling the input and output element to a target of the human tissue that controls a sample volume; using the input element to make the light energy Multiple wavelengths are irradiated to the tissue, wherein the sample volume will cause partial absorption of the light; use the output element to collect at least a portion of the unabsorbed light energy; determine the intensity of the collected portion; generate a pattern, wherein the pattern Using a plurality of calibrated non-invasive spectra and a plurality of calibrated reference concentrations; adjusting the mode with an estimation error, which uses the spectrum of the target with a control sample volume and at least one direct reference measurement value to generate the estimation error; collecting At least one non-invasive prediction of the subject's target of controlling the sample volume Spectrum; and using the model to estimate the adjustment of the concentration of the biological properties of the subject test subject. < 2. The method according to item 1 of the scope of patent application, wherein the biological property includes at least a glucose concentration. 39 200538083 3 · The method according to item 1 of the scope of patent application, wherein the light contains at least near-infrared energy. 4. The method according to item 3 of the scope of patent application, wherein the interval of near infrared energy includes at least an interval from 11000 to 1 900 nm or at least one interval therebetween. 5.如申請專利範圍第1項所述之方法,其中該些校 準非侵入性光譜至少包含任一種來自下列之光譜: 一單一個體; 複數個個體; 一單一分析儀;以及 複數個分析儀。5. The method according to item 1 of the scope of patent application, wherein the calibrated non-invasive spectra include at least any one of the following spectra: a single individual; a plurality of individuals; a single analyzer; and a plurality of analyzers. 6.如申請專利範圍第1項所述之方法,其中上述之 模式至少包含一種多變數分析。 . 7·如申請專利範圍第6項所述之方法,其中該多變 數分析至少包含主成份回歸以及部分最小平方其中之至少 一種0 8.如申請專利範圍第1項所述之方法,其中該直接 參考測定至少包含至少一種葡萄糖濃度。 40 200538083 9·如申請專利範圍第1項所述之方法,其中上述之 調整該模式至少包含: y meas - yhat + y err = Xmeasured W + yerr 其中 Xmeasured至少包含一預測光譜之一向量、WT 至少包含與該回歸模式相關係數的一向量、yhat至少包含 該模式在進行任何校正前產生之一分析物濃度、yerr提供 所得之該分析物濃度之一估計誤差,以及ymeas至少包含該 生物屬性濃度。 10. 如申請專利範圍第1項所述之方法,其中使用該 調整後模式之時段至少包含一種下列時段: 一天中的一段時間; 一工作天; 一天中之一清醒時段; 一週;以及 一個月。 11. 如申請專利範圍第1 0項所遠之方法,其中該直 接參考測定至少包含下列任一種: 一單一參考葡萄糖濃度; < 在該時段開始之前或將要開始時所測定之一參考葡 萄糖濃度;以及 至少兩種葡萄糖濃度的一組資料。 41 200538083 1 2 ·如申請專利範圍第1項所述之方法,更至少包含 具有一樣本面與一附著面的一導引物,其中該導引物之該 樣本面以可拆卸之方式連接至該人體組織,且該導引物之 該附著面以可拆卸之方式與該輸入元件及該輸出元件至少 其一連接。 1 3 ·如申請專利範圍第11項所述之方法,其中該導 引物之該樣本面至少包含下列一種: 一扁平表面;以及 曲率半徑介於平面至1.5公分之間的一表面。 1 4 · 一種非侵入性方法,用來估計一受測者之人體組 織中的一生物屬性濃度,其至少包含下列步驟: 利用非侵入性光譜與相關參考濃度來產生一模式; 利用至少一直接參考測定且不利用一相對應參考光 譜來調整該模式; 使用一分析儀來收集該受測者之該組織的至少一非 侵入性光譜;以及 利用調整後之該模式來估計該受測者之該生物屬 性。 , 1 5 .如申請專利範圍第1 4項所述之方法,其至少更 包含一種導引物,其中該導引物以可替代之方式將該分析 42 200538083 儀耦合至該人體組織。 1 6 · —種非侵入性方法,用來估計一受測者之人體組 織的一生物屬性濃度,其至少包含下列步驟: 提供測量光線輸出之一裝置,該裝置至少包含可發 射光線之一能量來源、一輸入元件、一輸出元件與一光譜 分析儀;6. The method according to item 1 of the scope of patent application, wherein the above mode includes at least one multivariate analysis. 7. The method according to item 6 of the patent application scope, wherein the multivariate analysis includes at least one of principal component regression and partial least squares. 8. The method according to item 1 of the patent application scope, wherein The direct reference assay contains at least one glucose concentration. 40 200538083 9. The method as described in the first item of the scope of patent application, wherein the above adjustment mode includes at least: y meas-yhat + yerr = Xmeasured W + yerr where Xmeasured contains at least one vector of the predicted spectrum, and WT at least A vector containing a correlation coefficient with the regression model, yhat at least contains an analyte concentration generated by the model before any correction is performed, an estimation error of the analyte concentration provided by yerr, and ymeas contains at least the biological attribute concentration. 10. The method according to item 1 of the scope of patent application, wherein the period of using the adjusted mode includes at least one of the following periods: a period of a day; a working day; a sober period of a day; a week; and a month . 11. The method as described in item 10 of the scope of patent application, wherein the direct reference measurement includes at least any of the following: a single reference glucose concentration; < a reference glucose concentration measured before or at the beginning of the period ; And a set of data for at least two glucose concentrations. 41 200538083 1 2 · The method described in item 1 of the scope of patent application, further comprising at least a guide having the same surface and an attachment surface, wherein the sample surface of the guide is detachably connected to The human tissue, and the attachment surface of the guide is detachably connected to at least one of the input element and the output element. 1 3. The method according to item 11 of the scope of patent application, wherein the sample surface of the primer includes at least one of the following: a flat surface; and a surface having a radius of curvature between a plane and 1.5 cm. 1 4 · A non-invasive method for estimating a biological property concentration in a human tissue of a subject, which includes at least the following steps: using a non-invasive spectrum and a related reference concentration to generate a pattern; using at least one direct Adjusting the mode with a reference measurement without using a corresponding reference spectrum; using an analyzer to collect at least a non-invasive spectrum of the tissue of the subject; and using the adjusted mode to estimate the subject's The biological attributes. 15. The method according to item 14 of the scope of patent application, which at least further comprises a guide, wherein the guide couples the analysis instrument to the human tissue in an alternative manner. 16 · — A non-invasive method for estimating a biological property concentration of a subject's human tissue, which includes at least the following steps: Provides a device for measuring light output, which device includes at least one energy that can emit light Source, an input element, an output element, and a spectrum analyzer; 利用一導引物將該輸入與輸出元件耦合至該人體組 織,其中該導引物至少包含一附著面與一樣本面; 利用該輸入元件使具有該光能之多種波長照射該組 織,並使至少部份之該些波長被吸收; 以該輸出元件收集至少一部份之該未吸收光線; 決定該收集光線的強度; 利用複數個校準非侵入性光譜與複數個校準參考濃 度來產生一模式;A guide is used to couple the input and output elements to the human tissue, wherein the guide includes at least an attachment surface and a same surface; the input element is used to irradiate the tissue with a plurality of wavelengths having the light energy, and At least a part of the wavelengths are absorbed; using the output element to collect at least a part of the unabsorbed light; determining the intensity of the collected light; using a plurality of calibrated non-invasive spectra and a plurality of calibrated reference concentrations to generate a pattern ; 利用至少一直接參考測定與一相對應參考光譜來調 整該模式; 收集該受測者之該組織的至少一非侵入性預測光 譜;以及 利用調整後之該模式來估計該受測者之該生物屬 性。 , 1 7.如申請專利範圍第1 6項所述之方法,其中該生 物屬性至少包含一葡萄糖濃度。 43 200538083 1 8 ·如申請專利範圍第1 6項所述之方法,其中該光 線至少包含介於1 100至1 900 nm或其間之至少一次區間範 圍之波長。 1 9 ·如申請專利範圍第1 6項所述之方法,其中該非 侵入性校準光譜至少包含任一種來自下列之光譜: 一單一個體; 複數個個體; 一單一分析儀;以及 複數個分析儀。 20.如申請專利範圍第16項所述之方法,其中該模 式至少包含一多變數分析。 2 1.如申請專利範圍第20項所述之方法,其中該多 變數分析至少包含主'成份回歸與部分最小平方其中之至少 一種。 22.如申請專利範圍第1 6項所述之方法,其中利用 該調整後模式之時段至少包含一種下,時段: 一天中的一段時間; 一工作天; 一天之一清醒時段; 44 200538083 一週;以及 一個月。 23. 如申請專利範圍第22項所述之方法,其中該直 接參考測定至少包含下列任一種: 一單一參考葡萄糖濃度; 在該時段開始之前或將要開始時所測定之一參考葡 萄糖濃度; 該期間中的前η種參考葡萄糖濃度;以及 至少兩種葡萄糖濃度的一組資料。 24. 如申請專利範圍第22項所述之方法,其中該參 考光譜至少包含任何下列光譜: 一已儲存參考光譜; 該時段中的一第一光譜; 該受測者之一光譜; 該時段中之前η種光譜的平均; 該受測者之至少兩光譜所組成的一組資料;以及 來自一資料庫的一光譜,其係根據至少一光譜特徵 來選擇該光譜。 2 5 .如申請專利範圍第1 6項所述之方法,其中該導 引物之所述樣本面係以可拆卸之方式附著至所述人體組 織,且該導引物之所述附著物面係以可拆卸之方式附著至 45 200538083 所述輸入元件與所述輸出元件之至少其中一種。 26.如申請專利範圍第16項所述之方法,其中該該 導引物之所述樣本面至少包含下列之至少一種: 一扁平表面;以及 曲率半徑介於平坦至1 · 5公分之間的一表面。Using at least one direct reference measurement and a corresponding reference spectrum to adjust the model; collecting at least one non-invasive prediction spectrum of the subject's tissue; and using the adjusted model to estimate the subject's organism Attributes. 1 7. The method according to item 16 of the scope of patent application, wherein the biological property includes at least a glucose concentration. 43 200538083 1 8 · The method as described in item 16 of the patent application range, wherein the light includes at least a wavelength ranging from 1 100 to 1 900 nm or at least one interval range therebetween. 19 · The method as described in item 16 of the scope of patent application, wherein the non-invasive calibration spectrum includes at least any one of the following spectrums: a single individual; a plurality of individuals; a single analyzer; and a plurality of analyzers. 20. The method of claim 16 in the scope of patent application, wherein the mode includes at least one multivariate analysis. 2 1. The method according to item 20 of the scope of patent application, wherein the multivariate analysis includes at least one of a principal component regression and a partial least square. 22. The method according to item 16 of the scope of patent application, wherein the period of using the adjusted mode includes at least one of the following periods: a period of a day; a working day; a sober period of the day; 44 200538083 a week; And a month. 23. The method as described in claim 22, wherein the direct reference measurement includes at least any of the following: a single reference glucose concentration; a reference glucose concentration measured before or at the beginning of the period; the period The first n reference glucose concentrations in; and a set of data for at least two glucose concentrations. 24. The method as described in claim 22, wherein the reference spectrum includes at least any of the following spectra: a stored reference spectrum; a first spectrum in the period; a spectrum of the subject; in the period An average of the previous n spectra; a set of data consisting of at least two spectra of the subject; and a spectrum from a database, which is selected based on at least one spectral feature. 25. The method according to item 16 of the scope of patent application, wherein the sample surface of the guide is detachably attached to the human tissue, and the attachment surface of the guide is It is detachably attached to at least one of the input element and the output element. 26. The method according to item 16 of the scope of patent application, wherein the sample surface of the guide includes at least one of the following: a flat surface; and a radius of curvature between flat and 1.5 cm. A surface. 27.如申請專利範圍第16項所述之方法,其中該導 引物之該附著面與至少一種下列物件接合: 一接頭; 一光刺激器; 一取樣模組; 該輸入元件;以及 該輸出元件。27. The method according to item 16 of the scope of patent application, wherein the attachment surface of the guide is engaged with at least one of the following objects: a connector; a light stimulator; a sampling module; the input element; and the output element. 2 8. —種非侵入性方法,用來估計一受測者之目標人 體組織的一生物屬性濃度,其至少包含下列步驟: 利用非侵入性光譜與相關參考濃度來產生一模式; • 以一相關光譜來調整該模式,其中根據,自下列至 少一種可代表該目標組織的光譜特徵來選擇該相關光譜; 一光譜資料庫; y 一光譜線性組合;以及 該受測者之至少一光譜。 46 200538083 29 · —種非侵入性方法,用來估計一受測者之人體組 織的一生物屬性濃度,其至少包含下列步驟: 提供測量光線輸出之一裝置,該裝置至少包含可發 射多重波長紅外線之一能量來源、一輸入元件、一輸出元 件與一光譜分析儀; 將該輸入與輸出元件耦合至該人體組織; 利用該輸入元件使具有紅外線光能之多種波長照射 該組織,並造成至少部分之該些波長被吸收; 以該輸出元件來收集至少一部份之該未吸收紅外線 光能; 決定該紅外線光能的強度; 利用校準非侵入性光譜與校準參考濃度來產生一模 式; 利用至少一直接參考測定以及不使用一相對應參考 光譜來調整該模式; 收集該受測者之該組織的至少一預測非侵入性光 譜;以及 利用該經調整之模式來估計該受測者之該生物屬性 濃度。 47'2 8. — A non-invasive method for estimating a biological property concentration of a target human tissue of a subject, which includes at least the following steps: using a non-invasive spectrum and related reference concentrations to generate a pattern; The correlation spectrum is used to adjust the mode, wherein the correlation spectrum is selected based on at least one of the following spectral characteristics that can represent the target tissue; a spectral database; y-a linear combination of spectra; and at least one spectrum of the subject. 46 200538083 29 · A non-invasive method for estimating a biological attribute concentration of a human body tissue of a subject, which includes at least the following steps: Provide a device for measuring light output, the device includes at least multiple wavelengths of infrared radiation An energy source, an input element, an output element, and a spectrum analyzer; coupling the input and output elements to the human tissue; using the input element to irradiate the tissue with multiple wavelengths of infrared light energy and causing at least a portion The wavelengths are absorbed; the output element is used to collect at least a portion of the unabsorbed infrared light energy; determine the intensity of the infrared light energy; use a calibrated non-invasive spectrum and a calibrated reference concentration to generate a mode; use at least A direct reference measurement and not using a corresponding reference spectrum to adjust the model; collecting at least a predicted non-invasive spectrum of the subject's tissue; and using the adjusted model to estimate the subject's organism Property concentration. 47 '
TW93120879A 2004-05-18 2004-07-13 Method of sample control and calibration adjustment for use with a noninvasive analyzer TW200538083A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/849,422 US7383069B2 (en) 1997-08-14 2004-05-18 Method of sample control and calibration adjustment for use with a noninvasive analyzer

Publications (1)

Publication Number Publication Date
TW200538083A true TW200538083A (en) 2005-12-01

Family

ID=52350466

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93120879A TW200538083A (en) 2004-05-18 2004-07-13 Method of sample control and calibration adjustment for use with a noninvasive analyzer

Country Status (1)

Country Link
TW (1) TW200538083A (en)

Similar Documents

Publication Publication Date Title
US7383069B2 (en) Method of sample control and calibration adjustment for use with a noninvasive analyzer
US7133710B2 (en) Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US7698105B2 (en) Method and apparatus for improving performance of noninvasive analyte property estimation
US6990364B2 (en) Noninvasive measurement of glucose through the optical properties of tissue
US7343185B2 (en) Measurement of body compounds
TWI297392B (en) Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US7299080B2 (en) Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US20050054908A1 (en) Photostimulation method and apparatus in combination with glucose determination
US8406839B2 (en) Method and apparatus for determining blood analytes
US20030216627A1 (en) Measurement site dependent data preprocessing method for robust calibration and prediction
US20050107676A1 (en) Method and apparatus for noninvasive glucose concentration estimation through near-infrared spectroscopy
AU2002249985A1 (en) Noninvasive measurement of glucose through the optical properties of tissue
Losoya-Leal et al. State of the art and new perspectives in non-invasive glucose sensors
Liu et al. Next step of non-invasive glucose monitor by NIR technique from the well controlled measuring condition and results
Liu et al. Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy
TW200538083A (en) Method of sample control and calibration adjustment for use with a noninvasive analyzer
Yaacob et al. Continuous non-invasive blood glucose level measurement using near-infrared LEDs