TW200536376A - Method of noise reduction and image color interpolation - Google Patents
Method of noise reduction and image color interpolation Download PDFInfo
- Publication number
- TW200536376A TW200536376A TW93111828A TW93111828A TW200536376A TW 200536376 A TW200536376 A TW 200536376A TW 93111828 A TW93111828 A TW 93111828A TW 93111828 A TW93111828 A TW 93111828A TW 200536376 A TW200536376 A TW 200536376A
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- pixel
- light signal
- signals
- average
- Prior art date
Links
Landscapes
- Color Television Image Signal Generators (AREA)
Abstract
Description
200536376 12223twf.doc 玖、發明說明: 發明所屬之技術領域 本發明是有關於一種改善影像擷取裝置所輸出之圖片 影像的方法,且特別是有關於一種消除雜訊的方法以及影 像色彩內插法。 先前技術 一般的影像擷取裝置(例如數位相機等)通常是以電 荷耦合元件(Charge Couple Device,CCD)或是互補式金 氧半導體(Complementary Metal Oxide Semiconductor, CMOS)做爲感光元件。但感光元件只能偵測到光線的強度,無 法判別光線的波長。而爲了拍出彩色照片,通當都會在感光元件上覆 蓋一層彩色濾光片(Color Filter)。彩色瀘光片只允許特定波長的光線 能通過,因此,只要讀取位於彩色濾光片下方之感光元件(CCD或 CMOS )的訊號,再加上已知的彩色濾光片顏色,我們就能判斷此像 素所接收到的光線波長及強度。 然而,由於每個像素只允許一種特定波長的光線通 過,因此在一像素中僅能讀取到某一波長的光線,例如是 紅色、綠色或藍色。但實際上,在圖片中的每個像素必需 由紅色綠色與藍色三種顏色共同組成,才能與實物的顏色 相符。所以,我們必需去推算某一像素中的未知顏色。 另一方面,CCD或CM0S感光元件因爲先天上的缺 陷,在訊號產生時會有伴隨著雜訊的產生,而雜訊將會影 響我們拍出來的照片品質。所以必須將雜訊消除以提高照 片的品質。 200536376 12223twf.doc 習知一種消除雜訊的方法係在一方形像素陣列中,選 取與中央像素之訊號値同色的訊號値,並取其平均値來取 代中央像素中原有之訊號値。而習知另一種消除雜訊的方 法是在與中央像素之訊號値同色的此些訊號値中,取其中 間値以取代中央像素中原有之訊號値。 習知還有另一種方法則是在與中央像素之訊號値同色 的此些訊號値中先刪除極値,也就是最小値以及最大値’ 之後再於剩下的訊號値取其平均値取代中央像素中原有之 訊號値。 然而,此些習知消除雜訊的方法仍不足以使感光元件 所產生的雜訊降至最低。 發明內容 因此,本發明的目的就是提供一種消除雜訊的方法’ 可有效地降低雜訊,以提高影像擷取裝置最後所輸出的圖 片品質。 本發明的另一目的是提供一種影像色彩內插法,可推 算出每一像素中所必須具有的每一種光線波長,以使影像 擷取裝置所輸出之圖片顯示出近似實物的顏色。 本發明提出一種消除雜訊的方法’適於消除感光元件 所產生之雜訊,其中感光元件具有一 ax b像素陣列。而 消除雜訊的方法係先由ax b像素陣列中任意選出nx n像 素陣列,此ηχ η像素陣列之中央具有中央訊號値Rx,y。接 著再由nx η像素陣列中選出與中央訊號値Rx,y同色之多 個訊號値,以組成第一集合。然後將第一集合中之訊號値 200536376 12223twf.doc 多次區分爲第一群組以及第二群組。接著分別計算第一群 組以及第二群組內之訊號値的平均値,而得第一平均値與 第二平均値。之後再計算第一平均値與第二平均値相減的 絕對値,並取其最大値作爲第一判別指標數。接著判斷第 一判別指標數是否大於預設門檻値,當第一判別指標數大 於預設門檻値時’則結束此消除雜訊的動作。而當第一判 別指標數小於預設門檻値時,算出訊號平均値。最後再以 此訊號平均値取代中央訊號値Rx,y。其中,此處所謂之訊 號平均値係指ηχ η像素陣列中之部分訊號値的平均。 依照本發明之實施例所述,將第一集合中之訊號値多 次區分爲第一群組以及第二群組的方法包括先將第一集合 中之訊號値由小到大排列,而形成第一有序集合然後再令 第一有序集合中之第1項至第i_l項的訊號値爲第一群組 6(/),而第一有序集合中之第i項至第k項的訊號値則爲 第二群組02(〇。其中,k係第一有序集合內之訊號値的總 數,而i係爲整數,且2 ‘ i $ k-2。 依照本發明之實施例所述,第一平均値爲α1(〇,第二 平均値爲% (/),且% (〇|=/(〇 ’而弟一判別指標數爲j(/)之 最大値。 依照本發明之實施例所述,計算訊號平均値的方法包 括先計算,而求得多個差値dx,,y,。其中,Rx,,y, 代表第一集合中的訊號値。接著將此些差値dx,,y,組成第二 集合,然後將第二集合內的此些差値dx,,y,多次區分爲第三 群組Q(〇與第四群組6(0。之後再分別計算第三群組g3(/)以 200536376 12223twf.doc 及第四群組G4(〇內此些差値dx,,y,的平均,而得第三平均値 <0與第四平均値α4(〇。接著計算第二判別指標數/>(〇,其中 ,⑺=給:}導,而咕)與叻)分別爲第三群組似/·)與第四群組G4(/·) 內之差値的變異數。最後,求出第二判別指標數P(〇之最大値, 並計算此時之第三群組6(〇內之差値所對應之訊號値的平 均,而得訊號平均値。 依照本發明之實施例所述,將第二集合中之差値多次 區分爲第三群組〇3(〇與第四群組G4(〇的方法包括先將第二集合 中之差値由小到大排列,而形成第二有序集合然後再令第 二有序集合中之第1項至第i-Ι項的差値爲第三群組g3(〇, 而第二有序集合中之第i項至第k項的訊號値則爲第四群組 G4(〇。其中,k係第二有序集合內之差値的總數,而i係爲 整數,且2Si$k-2。 依照本發明之實施例所述,消除雜訊的方法更包括由 第一集合內之訊號値計算出第三判別指標數,再判斷第三 判別指標數是否大於預設門檻値。當第三判別指標數大於 預設門檻値,則停止消除雜訊的動作。而當第三判別指標 數並不大於預設門檻値時,則計算第一集合內之訊號値的 總平均而得訊號平均値。最後再以訊號平均値取代中央訊 號値。 依照本發明之實施例所述,計算第三判別指標數的方 法包括先將第一集合中之訊號値由小到大排列,而形成第 200536376 12223twf.doc 一有序集合。之後再將第一有序集合中之前兩項訊號値的 平均値與第一有序集合中之後兩項的平均値相減而得第^ 判別指標數。 本發明提出一種影像色彩內插法,適用於具有ax b 之拜耳像素陣列的感光元件。此影像色彩內插法係先由a X b之拜耳像素陣列中任意選出ηχ η像素陣列,而位於^ X η像素陣列中央的中央像素內具有一訊號値。然後分別 計算中央像素之上方、下方、左方、右方、左上方、左下 方、右上方以及右下方的訊號値變化率。其中,每一方向 上具有至少一紅光訊號値、至少一綠光訊號値以及至少一 藍光訊號値。接著以公式T = k^x Min + k2x (Max - Min)計算 預定門檻値T。其中,Min爲此些訊號値變化率之最小値,Max 爲此些訊號値變化率之最大値,而h與k2爲實數。之後再選取部分 方向以組成一個集合。其中,此些方向之訊號値變化率係 小於預定門檻値。然後分別將集合內之紅光訊號値、綠光 訊號値以及藍光訊號値各自相加,以得紅光訊號値總和 Gsum、綠光訊號値總和RsUm以及藍光訊號値總和Bsum。最後,由紅光 訊號値總和Gsum、綠光訊號値總和、藍光訊號値總和Β_、此 些紅光訊號値、此些綠光訊號値以及此些藍光訊號値算出 中央像素中未知的綠光訊號値。 依照本發明之實施例所述,當中央像素之訊號値爲紅 光訊號値 r5 時,利用方程式 §5 = ι·5+ΟΙΙ·=ι·5+(0_-Κ3_)/^ί3 即可求出g5,其中g5爲中央像素之該綠光訊號値,而Sets爲集合內 之方向數。 200536376 12223twf.doc 依照本發明之實施例所述,當中央像素之訊號値爲藍 光訊號値 b5 時,利用方程式 g5二 b5+ GBdiff = b5+ (Gsum - Bsum)/Sets 即可求出中央像素之綠光訊號値g5。 依照本發明之實施例所述,當中央像素之訊號値爲綠 光訊號値义,,且二藍光訊號値與見^以及二紅光訊號値圪七 與分別爲綠光訊號値&之上方、下方、左方以及右方之像素中 的訊號値,綠光訊號値爲藍光訊號値之上方像素中的訊號 値,綠光訊號値爲藍光訊號値見㈣之下方像素中的訊號値,綠光 訊號値G_2,y爲紅光訊號値尤^之左方像素中的訊號値,綠光訊號値 爲紅光訊號値Aw之右方像素中的訊號値,而ηχ η像素陣列 中之綠光訊號値皆爲已知時,此影像色彩內插法更包括在 具有紅光訊號値的每一像素中計算紅光訊號値與綠光訊號 値之差値 KR ’ 其中 (X -1,少)=广 ,’且 (X +1,少)=_ &+1;;° 然後計算每一差値KR於其所對應之像素中的權重冰,其中200536376 12223twf.doc 玖 、 Explanation of the invention: The technical field to which the invention belongs The present invention relates to a method for improving a picture image output by an image capturing device, and more particularly to a method for eliminating noise and an image color interpolation method . In the prior art, common image capture devices (such as digital cameras, etc.) usually use a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) as the light sensing device. However, the light sensor can only detect the intensity of the light and cannot determine the wavelength of the light. In order to take color photos, Tongdang will cover the photosensitive element with a layer of color filter. Color calenders only allow specific wavelengths of light to pass through. Therefore, as long as we read the signal of the photosensitive element (CCD or CMOS) located below the color filter, and add the known color of the color filter, we can Determine the wavelength and intensity of the light received by this pixel. However, since each pixel allows only a specific wavelength of light to pass through, only a certain wavelength of light can be read in a pixel, such as red, green, or blue. But in fact, each pixel in the picture must be composed of three colors of red, green and blue in order to match the actual color. Therefore, we must estimate the unknown color in a pixel. On the other hand, due to the inherent defect of the CCD or CM0S photosensitive element, there will be accompanying noise when the signal is generated, and the noise will affect the quality of the photos we take. Therefore, noise must be eliminated to improve the quality of the picture. 200536376 12223twf.doc It is known that a method of eliminating noise is to select a signal of the same color as the signal of the central pixel in a square pixel array, and average it to replace the original signal of the central pixel. However, another method of eliminating noise is to replace the original signal in the central pixel with the middle of these signals in the same color as the signal of the central pixel. It is also known that another method is to first delete the poles, that is, the minimum and maximum values in these signals of the same color as the signal of the center pixel, and then take the average of the remaining signals to replace the center. The original signal in the pixel is 値. However, these conventional noise elimination methods are still not enough to minimize the noise generated by the photosensitive element. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for eliminating noise ', which can effectively reduce noise to improve the quality of the final image output by the image capturing device. Another object of the present invention is to provide an image color interpolation method, which can calculate each wavelength of light which must be in each pixel, so that the picture output by the image capturing device displays an approximate real color. The invention proposes a method for eliminating noise, which is suitable for eliminating noise generated by a photosensitive element, wherein the photosensitive element has an ax b pixel array. The method of eliminating noise is to first select an nx n pixel array arbitrarily from the ax b pixel array, and the center of this ηχ η pixel array has a central signal 値 Rx, y. Then, a plurality of signals 同 of the same color as the central signal 値 Rx, y are selected from the nx η pixel array to form a first set. Then the signals in the first set 値 200536376 12223twf.doc were divided into the first group and the second group multiple times. Then calculate the average 値 of the signal 値 in the first group and the second group respectively to obtain the first average 値 and the second average 値. After that, the absolute value of the subtraction between the first average value and the second average value is calculated, and the maximum value is used as the number of the first discrimination index. Then, it is judged whether the number of the first discrimination index is larger than the preset threshold 値, and when the number of the first discrimination index is larger than the preset threshold ’, the action of eliminating noise is ended. When the number of first discrimination indicators is less than the preset threshold 値, the average signal 値 is calculated. Finally, this signal average 値 is used to replace the central signal 讯 Rx, y. Among them, the so-called signal average 値 here refers to the average of some signals 値 in the ηχ η pixel array. According to the embodiment of the present invention, the method for differentiating the signal signals in the first set into the first group and the second group multiple times includes first arranging the signal signals in the first set from small to large to form The first ordered set then makes the signals of items 1 to i_l in the first ordered set 値 the first group 6 (/), and the items i to k in the first ordered set The signal 値 is the second group 02 (0. Among them, k is the total number of signal 値 in the first ordered set, and i is an integer, and 2 ′ i $ k-2. According to an embodiment of the present invention As mentioned, the first average 値 is α1 (0, the second average (is% (/), and% (〇 | = / (〇 ', and the number of discriminant indicators is the largest 値 of j (/). According to the present invention According to the embodiment, the method for calculating the average signal 値 includes firstly calculating and obtaining a plurality of differences , dx ,, y, where Rx ,, y, represents the signals 値 in the first set. Then these differences値 dx ,, y, form the second set, and then divide these differences 値 dx ,, y in the second set into the third group Q (0 and the fourth group 6 (0. meter Calculate the average of the third group g3 (/) by 200536376 12223twf.doc and the fourth group G4 (these differences 値 dx ,, y, within 〇, and get the third average 値 < 0 and the fourth average 値 α4 (〇. Then calculate the number of the second discriminative index / (>, where ⑺ = give:} guide, and Go) and Lat) are the third group like / ·) and the fourth group G4 (/ · ). Finally, the second discriminative index number P (0 is the largest 値, and the average of the signal 値 corresponding to the third group 6 (0 within the range 〇) is calculated at this time, and According to the embodiment of the present invention, the method of dividing the difference in the second set into the third group 〇3 (〇 and the fourth group G4 (〇) includes firstly dividing the second set The median rates are arranged from small to large to form a second ordered set, and then the rates of items 1 to i-1 in the second ordered set are the third group g3 (0, and the The signals 第 to 第 in the two ordered sets are the fourth group G4 (0. where k is the total number of differences in the second ordered set, and i is an integer, and 2Si $ k-2. According to the embodiment of the present invention, The method for removing noise further includes calculating the number of third discrimination indicators from the signal 値 in the first set, and then determining whether the number of third discrimination indicators is greater than the preset threshold 値. When the number of third discrimination indicators is greater than the preset threshold 値, then Stop the action of eliminating noise. When the number of the third discrimination index is not greater than the preset threshold 値, calculate the total average of the signal 値 in the first set to obtain the signal 値. Finally, replace the central signal with the signal 値値. According to the embodiment of the present invention, the method for calculating the third discriminant index number includes firstly arranging the signals 値 in the first set from small to large to form an ordered set of 200536376 12223twf.doc. Then, the average 値 of the first two signals 値 in the first ordered set is subtracted from the average 之后 of the last two signals in the first ordered set to obtain the ^ th discrimination index number. The invention provides an image color interpolation method, which is suitable for a photosensitive element having a Bayer pixel array with ax b. In this image color interpolation method, an ηχ η pixel array is arbitrarily selected from a Bayer pixel array of a X b, and a signal 値 is provided in a central pixel located at the center of the ^ X η pixel array. Then calculate the signal 値 change rates above, below, left, right, upper left, lower left, upper right, and lower right of the center pixel. There are at least one red light signal 値, at least one green light signal 値 and at least one blue light signal 値 in each direction. Then the formula T = k ^ x Min + k2x (Max-Min) is used to calculate the predetermined threshold 値 T. Among them, Min is the minimum of the change rate of these signals, Max is the maximum of the change rate of these signals, and h and k2 are real numbers. Then select some directions to form a set. Among them, the rate of change of the signals in these directions is smaller than the predetermined threshold. Then add the red light signal 値, the green light signal 値 and the blue light signal 集合 in the collection respectively to obtain the red light signal 値 total Gsum, the green light signal 値 total RsUm, and the blue light signal 値 total Bsum. Finally, the unknown green light signal in the central pixel is calculated from the red light signal 値 total Gsum, the green light signal 値 total, the blue light signal 値 total B_, the red light signals 値, the green light signals 値, and the blue light signals 値. value. According to the embodiment of the present invention, when the signal 値 of the central pixel is a red light signal 値 r5, the equation §5 = ι · 5 + ΟΙΙ · = ι · 5 + (0_-Κ3 _) / ^ ί3 can be obtained. Output g5, where g5 is the green light signal of the central pixel, and Sets is the number of directions in the set. 200536376 12223twf.doc According to the embodiment of the present invention, when the signal 中央 of the central pixel is a blue light signal 値 b5, the green light of the central pixel can be obtained by using the equation g5 two b5 + GBdiff = b5 + (Gsum-Bsum) / Sets Signal 値 g5. According to the embodiment of the present invention, when the signal 中央 of the central pixel is a green light signal, and the two blue light signals 値 and see ^ and the two red light signals 値 圪 7 and 绿 are respectively above the green light signal 値 & The signal in the bottom, left, and right pixels 値, the green light signal 値 is the signal in the upper pixel of the blue light signal 値, and the green light signal 値 is the blue light signal 値 See the signal in the pixel below the 値, green The light signal 値 G_2, y is the signal in the left pixel of the red light signal, especially ^, the green light signal 値 is the signal in the right pixel of the red light signal 値 Aw, and the green light in the ηχ η pixel array When the signal 値 is known, this image color interpolation method further includes calculating the difference 値 KR ′ of the red light signal 値 and the green light signal 中 in each pixel having the red light signal 其中 where (X -1, less) = Wide, 'and (X +1, less) = _ &+1;; ° Then calculate the weight ice of each difference 値 KR in its corresponding pixel, where
〜1,少= / 1 + V 2 | (GX,y"Gx^ 2) ~2 〇 1 2 J 十 1 2 J / 接著在具有此些藍光訊 號値之每一像素中計算藍光訊號値與綠光訊號値之差値 KB,其中 = ,且仏(x,} + l) = C^+1-。然後’計 算每一差値KB於其所對應之像素中的權重w,其中 200536376 12223twf.doc~ 1, less = / 1 + V 2 | (GX, y " Gx ^ 2) ~ 2 〇1 2 J ten 1 2 J / then calculate the blue light signal 値 and the green in each pixel with these blue light signals 値The difference between the optical signals 値 KB, where =, and 仏 (x,} + l) = C ^ + 1-. Then ’calculate the weight w of each rate KB in its corresponding pixel, where 200536376 12223twf.doc
之後再以公式 ΚΏ(χ, ν) =: wx-ly + KR(x + 且 以及 KB(x,y) = £i^lI)x ^-i + Kb(x^ + 〇x 〜-1 +%,”1 分別求出中央像素之差値與差値Α(χ,β。再利用中央像 素之差値心(χ,>;)與中央像素之綠光訊號値(^〃來反推中央像素之紅 光日只5虎値其中。另一方面則利用中央像素 之差値與中央像素之綠光訊號値G〃來反推中央像素之藍光訊 號値I,其中1=ϋ(υ)。 依照本發明之實施例所述,當中央像素之該訊號値爲 藍光訊號値,且紅光訊號値爲藍光訊號値之左上方 像素中的訊號値,紅光訊號値7^㈣爲藍光訊號値之左下方像素 中的訊號値,紅光訊號値&心M爲藍光訊號値見π之右上方像素中的 訊號値,紅光訊號値爲藍光訊號値之右下方像素中的訊號 値’而紅光訊號値之左上方像素中的訊號値爲綠光訊號値 G-2,y_2,紅光訊號値7^,^之左下方像素中的訊號値爲綠光訊號値 ,紅光訊號値之右上方像素中的訊號値爲綠光訊號値 200536376 12223twf.docThen use the formula ΚΏ (χ, ν) =: wx-ly + KR (x + and KB (x, y) = £ i ^ lI) x ^ -i + Kb (x ^ + 〇x ~ -1 + %, "1 to find the difference between the central pixel and the difference 値 A (χ, β. Then use the difference between the central pixel (χ, >)) and the central pixel's green light signal 値 (^ 〃 to infer The central pixel's red light day is only 5 tigers. On the other hand, the difference between the central pixel and the central pixel's green signal 値 G〃 is used to infer the central pixel's blue signal 値 I, where 1 = ϋ (υ) According to the embodiment of the present invention, when the signal 値 of the central pixel is a blue light signal 且, and the red light signal 値 is a signal 値 in the upper left pixel of the blue light signal 値, the red light signal 値 7 ^ ㈣ is a blue light signal The signal 値 in the lower left pixel 値, the red light signal 値 & heart M is the blue light signal (see the signal in the upper right pixel of π), and the red light signal 値 is the signal in the lower right pixel of the blue light signal 値 ' The signal 値 in the upper left pixel of the red light signal 値 is a green light signal 値 G-2, y_2, the signal in the red light signal 値 7 ^, and the signal in the lower left pixel ^ is a green light signal 値Red signal signals the upper right of the pixel Zhi Zhi Zhi 200536376 12223twf.doc for the green signal
Gt+2,,,_2,紅光訊號値<+l v+1之右下方像素中的訊號値爲綠光訊號値 ,且nX n像素陣列中之此些綠光訊號値皆爲已知時, 此影像色彩內插法更包括先分別計算中央像素之左上方像 素、左下方像素、右上方像素以及右下方像素中之綠光訊 號値與紅光訊號値的差値KR。其中, 一 1,少-1):=(^丨广1-&分丨, hy-i ’ ΚΝ(χ-Ιγ + ή=σχ_1γ+ι- ^x-\,y+\ Κκ(χ + Ιγ + \)=βχ+1γ+]- ^x+\,y+\ 接著計算每一差値KR之權重W,其中 ^-1,少-1 vx-\,y+\ jc+l,少+1 1 + 1 + 1 + 1 +Gt + 2 ,,, _ 2, the red light signal 値 < + l v + 1 The signal in the lower right pixel 値 is a green light signal 且, and these green light signals n in the nX n pixel array are all known At this time, the image color interpolation method further includes first calculating the difference KR between the green light signal 値 and the red light signal 中 in the upper left pixel, lower left pixel, upper right pixel, and lower right pixel of the central pixel. Among them, 1, 1, less-1): = (^ 丨 广 1- & points 丨, hy-i 'ΚΝ (χ-Ιγ + ή = σχ_1γ + ι- ^ x-\, y + \ κκ (χ + Ιγ + \) = βχ + 1γ +]-^ x + \, y + \ Then calculate the weight W of each difference 値 KR, where ^ -1, less -1 vx-\, y + \ jc + l, less +1 1 + 1 + 1 + 1 +
G x+l,y+l ~Gx 一1,少_1 -2,少-2 2G x + l, y + l ~ Gx one 1, less _1 -2, less -2 2
Gx+hy-l ~Gx-ly+\ y _l_ (Gx,y-Gx-2,y+2^ 2Λ 十 J 1 2 J J Gx,y~Gx G分丨-1丨,少+丨 x,y ^x+2,y+2 然後以方程式Gx + hy-l ~ Gx-ly + \ y _l_ (Gx, y-Gx-2, y + 2 ^ 2Λ Ten J 1 2 JJ Gx, y ~ Gx G score 丨 -1 丨, less + 丨 x, y ^ x + 2, y + 2 and then the equation
Wx~\,y~\ + ^ + ^+1,^+1 12 200536376 12223twf.doc 求出中央像素之差値。最後,利用中央像素之差値 與中央像素之綠光訊號値G〃反推中央像素之紅光訊號値;^, 其計算方式爲A (xj)。 依照本發明之實施例所述,當中央像素之訊號値爲紅 光訊號値,且藍光訊號値見—㈤爲紅光訊號値7^之左上方像 素中的訊號値,藍光訊號値5^,—爲紅光訊號値之左下方像素中 的訊號値,藍光訊號値式心-i爲紅光訊號値7^之右上方像素中的訊 號値,藍光訊號値見+1,y+1爲紅光訊號値7^之右下方像素中的訊號 値,而藍光訊號値見^之左上方像素中的訊號値爲綠光訊號値 G_2,y_2,藍光訊號値見^+1之左下方像素中的訊號値爲綠光訊號値 G_2,,+2,藍光訊號値之右上方像素中的訊號値爲綠光訊號値 G+2,,_2,藍光訊號値式+1>;+1之右下方像素中的訊號値爲綠光訊號値 ^x+2,y+2 且ηχ η像素陣列中之綠光訊號値皆爲已知時,此影 像色彩內插法更包括先分別計算中央像素之左上方像素、 左下方像素、右上方像素以及右下方像素中之綠光訊號値 與藍光訊號値的差値ΚΒ。其中, KB(x-hy-l) = Gx KB{x^\,y-\)=Gx+Xy_]- Bx+X y_x ^ 尤“尤-1,少+ 1) = (^-丨,州-足七+丨’ Α(χ + 1,3; + 1)=(^+1”丨又丨〆 13 200536376 12223twf.doc 接著計算每一差値KR之權重w,其中Wx ~ \, y ~ \ + ^ + ^ + 1, ^ + 1 12 200536376 12223twf.doc Find the difference between the central pixels. Finally, the difference between the central pixel 値 and the central pixel's green signal 値 G〃 is used to infer the central pixel's red signal 値; ^, which is calculated as A (xj). According to the embodiment of the present invention, when the signal 値 of the central pixel is a red light signal 値 and the blue light signal 値 see-㈤ is the signal 中 in the upper left pixel of the red light signal 値 7 ^, the blue light signal 値 5 ^, — Is the signal in the lower left pixel of the red light signal, and the signal heart in the blue light signal -i is the signal in the upper right pixel of the red light signal 7 ^, see the +1 for the blue light signal, and y + 1 is red The signal in the lower right pixel of the light signal 値 7 ^, and the signal in the upper left pixel of the blue light signal 値 See ^ is the green light signal 値 G_2, y_2, and the blue light signal is in the lower left pixel ^ + 1. The signal 値 is the green light signal 値 G_2 ,, + 2, the blue light signal 上方 is the signal in the upper right pixel 値 is the green light signal 値 G + 2, 2, _2, the blue light signal mode + 1 > +1 the lower right pixel When the signal 値 in the image is a green light signal ^ x + 2, y + 2 and the green light signals 値 in the ηχ η pixel array are all known, this image color interpolation method further includes first calculating the upper left of the central pixel Difference between green light signal and blue light signal in pixels, bottom left pixels, top right pixels, and bottom right pixelsWhere KB (x-hy-l) = Gx KB {x ^ \, y-\) = Gx + Xy _]-Bx + X y_x ^ especially "you-1, less + 1) = (^-丨, state -足 七 + 丨 'Α (χ + 1,3; + 1) = (^ + 1 ”丨 Again 丨 〆13 200536376 12223twf.doc Then calculate the weight w of each rate 値 KR, where
-1,少-I f 1 + 1,^+1 ~ ^.ν-Ι,ν-Ι 2 丄 (Gx,y ' -GU,广 2、 2、 1 丁 V 1 2 J 十 \ 2 J )-1, less -I f 1 + 1, ^ + 1 ~ ^ .ν-Ι, ν-Ι 2 丄 (Gx, y '-GU, Guang 2, 2, 1 but V 1 2 J ten \ 2 J)
Jx-ly+l x+\,y~\Jx-ly + l x + \, y ~ \
Gx,y'~Gx \2\ +2,/- 、2Gx, y '~ Gx \ 2 \ +2, /-, 2
\+1,州 , 2 1 +\ +1, state, 2 1 +
( 1 -L (r r Λ ^χ+\,γ-\ ~Kjrx-\,y+\ 2 丄 (GXJ-Gx_ly+1\ 2\ 1 丁 V { 2 J 十 l 2 J J 1 +(1 -L (r r Λ ^ χ + \, γ- \ ~ Kjrx-\, y + \ 2 丄 (GXJ-Gx_ly + 1 \ 2 \ 1 ding V {2 J ten l 2 J J 1 +
(a -G WJC—1,少一丨 WJC+1,少+1 ^ GXiy^Gx^y^2 然後以方程式(a -G WJC-1, one less 丨 WJC + 1, less +1 ^ GXiy ^ Gx ^ y ^ 2 and then use the equation
Kb(x 上)一&(x一l少一+Α(χ+1,少一l)x>^+ljM +Wx+lyA +>^+ι,ηι 求出中央像素之差値Α(Χ,β。最後,利用中央像素之差値 與中央像素之綠光訊號値Gy來反推中央像素之藍光訊號値 L,其計算方式爲L=G^—Uw)。 本發明例如是先進行雜訊的消除,之後再進行色彩內 插的,因此可避免雜訊在色彩內插過程中擴散,進而提高 圖片的品質。 爲讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細 說明如下。 14 200536376 12223twf.doc 實施方式 本發明係利用特殊的方法分別進行雜訊的消除以及色 彩內插,以使影像擷取裝置所輸出的圖片與其所擷取到的 影像具有較高的相似度而不失真。下述實施例係以5χ 5 的像素陣列爲例做説明,但熟習此技藝者應該知道,本發 明所揭露之方法亦可應用於其他像素陣列中,本發明並不 限定像素陣列的大小。 圖1繪不爲一種拜耳圖案(Bayer Pattern)之排列的 5x 5像素陣列100。請先參照圖丨,R、G以及B分別表 示感光元件(未繪示)所讀取到之紅光訊號値、綠光訊號 値以及藍光訊號値,而標號R、G以及B之下標則代表其 所在之像素的位置,其係以中央像素的訊號値Rxy爲中心 點而分別往左右(X軸)及上下(y軸)遞增或遞減其下 標。 以下將以圖1所繪示之像素陣列1〇〇爲例,以說明本 發明之消除雜訊的方法的流程。圖2繪示爲本發明一較佳 實施例的一種消除雜訊的方法之步驟流程圖。請同時參照 圖1及圖2,在步驟S200中,首先在感光元件上的ax b 像素陣列(未繪示)中選出像素陣列100。其中,a可以 等於b,也可以不等於b。換言之,感光元件上的像素陣 列可以不是方陣列,也可以是方陣列。 之後如步驟S202所述,在像素陣列100中選取與其 中央訊號値Rx,y同顏色的訊號値,其例如是紅光訊號値。 接著再進行步驟S204,以將此些被選取出來的紅光訊號値 15 200536376 12223twf.doc 分爲第一群組以及第二群組。 較詳細地來說,在步驟S202中係先選出紅光訊號値 及以-2、^―2、乂一、以及L㈣, 再令此些紅光訊號値組成第一集合S,其中 S2〇4中’先依照此些紅光訊號値的大小將其由小到大排 序,而形成第一有序集合 rank(S)。其中 腦A:⑹={7?。,7?丨,$2,/?3,及4,^?5,^?6,及7}。由此可知,在第一有序集合 rank(S)裡的紅光訊號値大小爲 凡<尺<7?2<7?3<凡<尽<7?6<尽。之後再選取第一有序集合^1^(8) 裡的第1項至第i-Ι項紅光訊號値爲第一群組Gl(〇,而第i 項至第k項之紅光訊號値則爲第二群組q⑺。其中,2 S i Sk-2,而k係表示第一有序集合rank(S)中之紅光訊號値 的總數,在本實施例中k例如是等於8。 値得注意的是,在第一有序集合rank(s)裡的紅光訊 號値R之下標係用以區分每一個紅光訊號値,並以0〜7 的整數依序表示紅光訊號値的大小’與先前以x、7表不 位置的下標並無關聯。 之後如步驟S206所述,計算第一群組^⑺以及第二群組 G2(/)的平均,以分別求得第一平均數“1⑺以及第一平均數“2⑺。其中, 第一平均數%(/)的計算公式爲力(〇 = @',第二平均數α2(〇的曰十 1 t-i 算公式爲a2(〇 = y7^A° K 一1 j = i 16 200536376 12223twf.doc 接著再進行步驟S208以求出第一判別指標數,其係 先以方程式外)=h⑺-α2(/)|逐一求出J(2)、J(3)…J(6),而其中之最 大値即爲第一判別指標數。 之後再判斷弟一*判別指標數是否大於一^預設門濫値, 如步驟S210所述。而此處之預設門檻値係爲多次實驗後 所得之經驗値。 在步驟S210中,當第一判別指標數大於一預設門檻 値時,則停止消除雜訊的工作。而當第一判別指標數小於 一預設門檻値時,則繼續進行步驟S212,即是計算出訊號 平均値,最後在步驟S214中以訊號平均値取代中央訊號 値Rx,y,即完成雜訊的消除。 而在步驟S212中,訊號平均値的算法係先計算 心,/=|尤,y-l|而求出多數個差値dx,,y,’其中Rx,,y,代表第一 集合S中的每一個紅光訊號値。然後將差値dx,,y,組成第二 集合D,其中/) = ½ -2,少-2,々>/-2,4+2,少-2,,《+2,少,4-2,少+2,々y+2,4+2,少+2 } 〇 之後再將第二集合D內之差値區分爲一第三群組G3(〇與一第 四群組G4(〇。其作法如上文所述,先將第二集合D內之差値句^,由 小到大依序排列而形成第二有序集合rank(D),其中 謂灸(1)) = {^/。,^/丨,^/2,(^3,(^,4,^/6,(^7}。之後再選取第二有序集合^111<:(0) 裡的第1項至第i-Ι項差値爲第一群組,而第i項至第 k項之差値則爲第二群組G2(〇。當然,此處之i與k皆同於 上文所述。 接著分別計算第三群組q(0以及第四群組g4(0內之差 値的平均,而得第三平均値α3(0與第四平均値α4(0。其公式爲 17 200536376 12223twf.doc 咕)=}§义,々0=^1^,。其中⑽代表第二有序集合rank(D) 裡的差値。然後再以公式.求出第二潮指標數增。 其中’训與从)分別爲第二群組G3(〇與第四群組明內之差値的變 異數,其公式爲伽= α3|2,且。 •/=0 ./=/ 1 之後分別算出ρ(2)、Ρ(3)…Ρ⑹,以求得第二判別指標數 Ρ⑺之最大値,並計算此時第三群組(?3(〇內之差値dj所對應 之訊號値的平均,而求得訊號平均値。舉例來說,若P(5) 爲第二判別指標數P(〇之最大値,則分別求出與心、心、d2、 d3以及d4所對應之紅光訊號値,再算出此些紅光訊號値的 訊號平均値。 最後,如步驟S214所述,以步驟S212所算出之訊號 平均値取代中央訊號値Rx,y,即結束本實施例之消除雜訊 的流程。 此外,本發明以上述之消除雜訊的方法減少感光元件 中的雜訊之後,更可以再進行另一消除雜訊的流程’以便 於更進一步提高輸出圖片的品質。以下將舉另一實施例說 明此階段的雜訊消除。 圖3繪示爲本發明另一較佳實施例的一種消除雜訊的 方法之步驟流程圖。請同時參照圖1及圖3 ’在步驟S300 中係先由感光元件上的ax b像素陣列中選出像素陣列 100。之後如步驟S302所述,在像素陣列100中選取與其 中央訊號値Rx,y同顏色的訊號値,其例如是紅光訊號値 18 200536376 12223twf.docKb (upper x)-&x; l less one + Α (χ + 1, less one l) x> ^ + ljM + Wx + lyA + &^; ^ + ι, ηι Find the difference between the central pixels 値 Α (X, β. Finally, the difference between the central pixel and the green light signal 値 Gy of the central pixel is used to infer the blue light signal 値 L of the central pixel, and the calculation method thereof is L = G ^ -Uw). The noise is eliminated, and then the color interpolation is performed, so that the noise can be prevented from spreading during the color interpolation, thereby improving the quality of the picture. In order to make the above and other objects, features, and advantages of the present invention more obvious and easier Understand, a preferred embodiment is given below, and will be described in detail in conjunction with the attached drawings. 14 200536376 12223twf.doc Implementation The present invention uses special methods to eliminate noise and color interpolation, respectively, so that The image output by the image capture device has a high degree of similarity without distortion to the captured image. The following embodiments are described by taking a 5 × 5 pixel array as an example, but those skilled in this art should know that this The method disclosed in the invention can also be applied to other pixel arrays. The invention The size of the pixel array is not limited. Figure 1 does not show a 5x5 pixel array 100 arranged in a Bayer pattern. Please refer to the figure first, where R, G, and B represent the reading of the photosensitive element (not shown). The red light signal 値, green light signal 値, and blue light signal 値 obtained, and the subscripts R, G, and B indicate the position of the pixel where they are located, which are centered on the signal 値 Rxy of the central pixel. The subscripts are increased or decreased to the left and right (X axis) and up and down (y axis). The pixel array 100 shown in FIG. 1 is taken as an example to illustrate the flow of the method for eliminating noise in the present invention. 2 is a flowchart of steps of a method for eliminating noise according to a preferred embodiment of the present invention. Please refer to FIG. 1 and FIG. 2 at the same time. In step S200, an ax b pixel array (not shown) on a photosensitive element is firstly The pixel array 100 is selected. Among them, a may be equal to or not equal to b. In other words, the pixel array on the photosensitive element may not be a square array or a square array. Then, as described in step S202, the pixel array is Select from 100 The central signals 値 Rx, y are signals of the same color, which are, for example, red light signals. Then step S204 is performed to divide the selected red light signals 値 15 200536376 12223twf.doc into a first group and The second group. In more detail, in step S202, the red light signal 値 is first selected and -2, ^ -2, 乂 1, and L㈣ are selected, and then these red light signals 値 are formed into the first set S Among them, in S204, the red light signals 値 are first sorted from small to large to form the first ordered set rank (S). Wherein brain A: {= {7 ?. , 7? 丨, $ 2, /? 3, and 4, ^? 5, ^? 6, and 7}. It can be seen from this that the size of the red light signal 値 in the first ordered set rank (S) is Fan < Ruler < 7? 2 &7; 3 < Fan < Exact < 7 & 6 < Exhaust. Then, select the red light signals from the first to the first order set ^ 1 ^ (8) to red light signals 値 to the first group Gl (〇, and the red light signals from the i to k items値 is the second group q⑺, where 2 S i Sk-2, and k is the total number of red light signals 中 in the first ordered set rank (S). In this embodiment, k is equal to 8 for example. It should be noted that the red light signal 値 R in the first ordered set rank (s) is used to distinguish each red light signal 値, and the red light is sequentially expressed by an integer from 0 to 7. The size of the signal 値 is not related to the subscripts previously indicated by x and 7, respectively. Thereafter, as described in step S206, the average of the first group ^) and the second group G2 (/) is calculated to obtain The first average number “1⑺” and the first average number “2⑺” are obtained. Among them, the calculation formula of the first average number% (/) is force (0 = @ ', the second average number α2 (〇 is ten ten ti). Is a2 (0 = y7 ^ A ° K-1 j = i 16 200536376 12223twf.doc Then proceed to step S208 to find the first discriminant index number, which is outside the equation first) = h⑺-α2 (/) | one by one Find J (2), J (3) ... J (6), and its The largest threshold is the number of the first discriminant index. Then judge whether the number of discriminant indicators * is greater than one ^ preset threshold, as described in step S210. The preset threshold here is after multiple experiments. The obtained experience 値. In step S210, when the number of the first determination index is greater than a preset threshold 値, the work of eliminating noise is stopped. When the number of the first determination index is less than a preset threshold 値, the process continues. In step S212, the average signal 値 is calculated. Finally, in step S214, the central signal 値 Rx, y is replaced with the average signal 値, and the noise is eliminated. In step S212, the algorithm of the average signal 系 is calculated first. , / = | 尤, yl | to find the majority of the difference 値 dx ,, y, 'where Rx ,, y, represents each red light signal 値 in the first set S. Then, the difference 値 dx ,, y, Make up the second set D, where /) = ½ -2, less -2, 々 > / -2, 4 + 2, less -2, "+2, less, 4-2, less +2, 々y +2, 4 + 2, less +2} 〇 Then the difference in the second set D is divided into a third group G3 (0 and a fourth group G4 (0. The method is as described above, The difference haiku ^ in the second set D is arranged in order from small to large to form a second ordered set rank (D), where moxibustion (1)) = {^ /., ^ / 丨, ^ / 2, (^ 3, (^, 4, ^ / 6, (^ 7). Then select the second ordered set ^ 111 < :( 0) from the 1st to the i-Ith difference rate is the first A group, and the difference between the i-th and k-th terms is the second group G2 (0. Of course, i and k here are the same as described above. Then calculate the average of the difference between the third group q (0 and the fourth group g4 (0), and obtain the third average 値 α3 (0 and the fourth average 値 α4 (0. The formula is 17 200536376 12223twf. doc Gu) =} §meaning, 々0 = ^ 1 ^, where ⑽ represents the difference in the second ordered set rank (D). Then use the formula to find the increase in the number of the second tide index. And from) are the variation numbers of the difference between the second group G3 (0 and the fourth group, respectively, the formula is Gamma = α3 | 2, and. • = 0 and then calculate ρ respectively (2), P (3) ... P⑹, to obtain the maximum 値 of the second discriminative index number ⑺, and calculate the average of the signal 値 corresponding to the third group (? 3 (0 within the difference dj, The average signal 値 is obtained. For example, if P (5) is the maximum 値 of the second discriminant index number P (0, then the red light signals 値 corresponding to heart, heart, d2, d3, and d4 are obtained, respectively. Then, calculate the signal average 値 of these red light signals 最后 Finally, as described in step S214, replace the central signal 値 Rx, y with the signal average 算出 calculated in step S212, thus ending the process of eliminating noise in this embodiment. In addition, After inventing the above-mentioned method for noise reduction to reduce noise in the photosensitive element, another noise reduction process can be performed 'in order to further improve the quality of the output picture. Another embodiment will be described below at this stage 3 is a flowchart of a method for eliminating noise in another preferred embodiment of the present invention. Please refer to FIG. 1 and FIG. 3 at the same time. The pixel array 100 is selected from the ax b pixel array. Then, as described in step S302, a signal 同 having the same color as the central signal 値 Rx, y is selected in the pixel array 100, for example, a red light signal 値 18 200536376 12223twf.doc
Rx-2,y_2、Rx,y—2、K+2,y-2、hy、Rx+2 y、Kx_2 y+2、、y+2 以及 Rx…+ 2, 再令此些紅光訊號値組成第一集合S,其中 。{义-2^-2,&”人2,以4-2,/ + 2,义七+2,7?^+2,7?^ + 2}。接著在步驟 S304中,先依照此些紅光訊號値的大小將其由小到大排 序’而形成第一有序集合 rank(S)。其中 ra^:(5*) = 。由此可知,在第_^有序集合 rank(S)裡的紅光訊號値大小爲 〜< R' < R2 < R3 < R4 < R5 < R6 < Rj。 然後在步驟S306中’選取有序集合ranj^S)中之最大 的兩個訊號値R6、R?以及最小的兩個訊號値、R!,並 分別計算其平均後再相減,以得第三判別指標數2(/)。其 公式爲2⑺=((凡+尽)/2-(心+斤)/2)。 在步驟S308中,判斷第三判別指標數ρ⑺是否大於預設 門檻値。當第三判別指標數⑽大於預設門濫値時,則停止消除 雜訊的動作。 但當第三判別指標數ρ(〇不大於預設門檻値Τ,時,則繼續進 行步驟S310,將第一集合S內所有的訊號値相加取平均,之後再以所 得之平均訊號値取代原來之中央訊號値Rx,y,如步驟S312所述。此時 即完成本實施例之消除雜訊的流程。 在消除感光元件所產生的雜訊之後,即可接著進行影 像的色彩內插。而色彩內插可分爲兩種情況,一種是內插未知的 綠色,另一種是內插未知的紅色或藍色。在本發明中,同樣是把色彩 內插分成兩個階段。在第一階段先計算出所有未知的綠色,在第二階 段才計算剩餘未知的紅色與藍色。其詳細方法將於以下實施例描 19 200536376 12223twf.doc 述。 圖4繪示爲一拜耳圖案之排列的5x 5像素陣列400。 而每一像素中之訊號値的已知顏色則如圖4所標示,其中 r代表紅光訊號値,g代表綠光訊號値,而b代表藍光訊 號値。圖4所標示之數字則係用以區分每一像素中的訊號 値。 請參照圖4,像素陣列400之中央像素中的訊號値爲 r5,由此可知此處之紅光訊號値爲已知,因此先進行演算 以求出中央像素中的綠光訊號値。首先,以r5所在之像 素爲中心,計算其8個方向上的訊號變化率,其公式如下Rx-2, y_2, Rx, y-2, K + 2, y-2, hy, Rx + 2 y, Kx_2 y + 2, y + 2, and Rx ... + 2, then make these red light signals 値Compose the first set S, where. {义 -2 ^ -2, & "person 2, with 4-2, / + 2, Yichi +2,7? ^ + 2,7? ^ + 2}. Then in step S304, follow this first The size of these red light signals 値 is sorted from small to large to form the first ordered set rank (S). Among them, ra ^ :( 5 *) =. It can be seen that the ordered set rank ( The size of the red light signal in S) is ~ < R '< R2 < R3 < R4 < R5 < R6 < Rj. Then, in step S306,' select the ordered set ranj ^ S). The two largest signals 値 R6, R? And the smallest two signals 値, R! Are calculated and subtracted respectively to obtain the third discriminant index number 2 (/). The formula is 2⑺ = (( Where + exhaust) / 2- (heart + catty) / 2). In step S308, it is determined whether the number of the third determination index ρ 大于 is greater than a preset threshold 値. When the number of the third determination index ⑽ is greater than the preset threshold, Then the action of eliminating noise is stopped. However, when the number of the third discrimination index ρ (0 is not greater than the preset threshold 値 Τ), the process proceeds to step S310, and all signals in the first set S are added to average, and thereafter Then replace the original central signal 値 Rx with the obtained average signal 所得, y, as described in step S312. At this time, the process of eliminating noise in this embodiment is completed. After the noise generated by the photosensitive element is eliminated, the color interpolation of the image can be continued. The color interpolation can be divided into There are two cases, one is to interpolate unknown green, and the other is to interpolate unknown red or blue. In the present invention, the color interpolation is also divided into two stages. In the first stage, all unknowns are calculated first. Green, the remaining unknown red and blue are calculated in the second stage. The detailed method will be described in the following example 19 200536376 12223twf.doc. Figure 4 shows a 5x5 pixel array 400 arranged in a Bayer pattern. The known color of the signal 値 in each pixel is shown in Figure 4, where r is the red light signal 値, g is the green light signal 値, and b is the blue light signal 値. The numbers marked in Figure 4 are for Differentiate the signal 値 in each pixel. Please refer to FIG. 4. The signal 値 in the central pixel of the pixel array 400 is r5, which shows that the red light signal 値 is known here, so first perform a calculation to find the central pixel. Green light No. Zhi. First, r5 where the center pixel, which is calculated on the rate of change of the signal eight directions, which follows the formula
Gradient N = |g4-g9| + |r2-r5| + |bl-b3|/2 + |b2-b4|/2 + |gl-g6|/2 + |g2-g7|/2Gradient N = | g4-g9 | + | r2-r5 | + | bl-b3 | / 2 + | b2-b4 | / 2 + | gl-g6 | / 2 + | g2-g7 | / 2
Gradient E = |g7-g6| + |r6-r5| + |b2-bl|/2 + |b4-b3|/2 + |g5-g4|/2 + |g10-g9|/2 Gradient S = |g9-g4| + |r8-r5| + |b3-bl|/2 + |b4-b2|/2 + |gl l-g6|/2 + |gl2-g7|/2Gradient E = | g7-g6 | + | r6-r5 | + | b2-bl | / 2 + | b4-b3 | / 2 + | g5-g4 | / 2 + | g10-g9 | / 2 Gradient S = | g9-g4 | + | r8-r5 | + | b3-bl | / 2 + | b4-b2 | / 2 + | gl l-g6 | / 2 + | gl2-g7 | / 2
Gradient W = |g6-g7| + |r4-r5| + |bl-b2|/2 + |b3-b4|/2 + |g3-g4|/2 + |g8-g9|/2Gradient W = | g6-g7 | + | r4-r5 | + | bl-b2 | / 2 + | b3-b4 | / 2 + | g3-g4 | / 2 + | g8-g9 | / 2
Gradient NE = |b2-b3| + |r3-r5| + |g4-g6|/2 + |g7-g9|/2 + |g2-g4|/2 + |g5-g7|/2Gradient NE = | b2-b3 | + | r3-r5 | + | g4-g6 | / 2 + | g7-g9 | / 2 + | g2-g4 | / 2 + | g5-g7 | / 2
Gradient SE = |b4-bl| + |r9-r5| + |g7-g4|/2 + |g9-g6|/2 + |gl0-g7|/2 + |gl2-g9|/2 Gradient NW = |bl-b4| + |rl-r5| + |g4-g7|/2 + |g6-g9|/2 + |gl-g4|/2 + |g3-g6|/2 Gradient SW = |b3-b2| + |r7-r5| + |g6-g4|/2 + |g9-g7|/2 + |g8-g6|/2 + |gl l-g9|/2 其中,N、S、W以及E分別代表r5的上、下、左以及右 方,而NE、NW、SE以及SW貝f]分別代表r5的右_h 、左 上、右下以及左下方。 接著以公式T = M Min + k2x (Max-Min)計算預定門檻 値T,其中Min爲上述8個訊號値變化率之最小値,Max爲上述8 個訊號値變化率之最大値,而1^與1^2爲實數。且在本實施例中,4例 20 200536376 12223twf.doc 如疋寺於1·5 ’ 1<:2例如是等於0.5。 然後在上述8個訊號變化率中,選取其値小於門檻値 τ的方向’以組成集合Η。爲了方便說明,我們假設這8個方向 上的訊號變化率之値如表i所示: 方向 上方 右方 下方 左方 右上方右下方左上方左下方 訊號變化率 12 13 7 8 4 7 12 14 表1Gradient SE = | b4-bl | + | r9-r5 | + | g7-g4 | / 2 + | g9-g6 | / 2 + | gl0-g7 | / 2 + | gl2-g9 | / 2 Gradient NW = | bl-b4 | + | rl-r5 | + | g4-g7 | / 2 + | g6-g9 | / 2 + | gl-g4 | / 2 + | g3-g6 | / 2 Gradient SW = | b3-b2 | + | r7-r5 | + | g6-g4 | / 2 + | g9-g7 | / 2 + | g8-g6 | / 2 + | gl l-g9 | / 2 where N, S, W and E represent The upper, lower, left, and right sides of r5, and NE, NW, SE, and SW] respectively represent right_h, upper left, lower right, and lower left of r5. Then use the formula T = M Min + k2x (Max-Min) to calculate the predetermined threshold 値 T, where Min is the minimum of the 8 signals 値 change rate, Max is the maximum of the 8 signals 値 change rate, and 1 ^ And 1 ^ 2 is a real number. And in the present embodiment, 4 cases 20 200536376 12223twf.doc, such as Daiji Temple 1.5 · 1 <: 2 are equal to 0.5, for example. Then, among the above eight signal change rates, a direction ′ whose 値 is smaller than the threshold 値 τ is selected to form a set Η. For the convenience of explanation, we assume that one of the signal change rates in these 8 directions is shown in Table i: Direction Up Right Bottom Left Right Top Right Bottom Left Top Left Bottom Signal Change Rate 12 13 7 8 4 7 12 14 Table 1
所以,門檻値丁爲 Τ=1·5χ 4 +〇·5χ (14-4)=11 然後選取八個方向中訊號變化率之値小於n的方向而組成集合η。 因此H= {S,W,NE,SE}。接著我們再把集合Η裡的每個方向所具有 之訊號値依照顏色建立表2 :Therefore, the threshold 値 is τ = 1 · 5χ 4 + 0 · 5χ (14-4) = 11, and then the direction in which the signal change rate 値 in eight directions is less than n is selected to form the set η. Therefore H = {S, W, NE, SE}. Then we build the signal in each direction in the set 値 according to the color to build Table 2:
&光:訊號値 藍光訊號値 紅光訊號値 下方 g9 (b3+b4)/2 (r5+r8)/2 左方 g6 (bl+b3)/2 (r4+r5)/2 右上 (g2+g4+g5+g7)/4 b2 (r2+r3+r5+r6)/4 左上 (g7+g9+gl〇+gl2)/4 b4 (r5+r6+r8+r9)/4 表2 由表2可知,r5下方的方向上具有綠光訊號値g9、 藍光訊號値b3與b4 I、丨及紅光訊號値r5與r8。接著我們 21 200536376 12223twf.doc 把相同顏色的訊號値相加,以分別求出綠光訊號値、藍光 訊號値以及紅光訊號値的總和Gsum、Bsum以及Rsum,其公 式如下:& light: signal 値 blue light signal 値 red light signal 値 g9 (b3 + b4) / 2 (r5 + r8) / 2 left g6 (bl + b3) / 2 (r4 + r5) / 2 top right (g2 + g4 + g5 + g7) / 4 b2 (r2 + r3 + r5 + r6) / 4 top left (g7 + g9 + gl〇 + gl2) / 4 b4 (r5 + r6 + r8 + r9) / 4 Table 2 From Table 2 It can be seen that there are green light signals 値 g9, blue light signals 値 b3 and b4 I, and red light signals 値 r5 and r8 in the direction below r5. Then we add the signal signals 相同 of the same color in 21 200536376 12223twf.doc to find the sum Gsum, Bsum, and Rsum of the green light signal 値, blue light signal 値, and red light signal 分别, the formula is as follows:
Gsum = g9 + g6 + (g2 + g4+g5+g7)/4 + (g7+g9+g 1 0+g 12)/4 ®sum ~ (b3+b4)/2 + (bl+b3)/2 + b2 + b4 Rs_ = ( r5+r8)/2+(r4+r5)/2+(r2+r3+r5+r6)/4+(r5+r6+r8+r9)/4 接著利用已知的紅光訊號値r5與計算出的綠光訊號値總和Gsum 以及紅光訊號値總和Rsum來求得g5的値,其公式爲: g5 = r5 + GRdiff = r5 + (Gsum - RsUm)/Sets 其中,Sets値代表集合H內的方向數,在本實施例中Sets例如是等於 4。而所求得之g5即爲中央像素中的綠光訊號値。此外,若中央像素 已知的訊號値爲藍光訊號値b5,則將上述求得g5之公式改爲: g5 = b5 + GBdiff = r5 + (Gsum - Bsum)/Sets 而此公式前的演算流程則與上述之說明相同,此處不再贅述。 在像素陣列400中的每一個像素之綠光訊號値都由上 述之演算法求得之後,即可繼續進行所有像素中未知的藍 光訊號値或紅光訊號値的內插。在內插藍光訊號値或紅光 訊號値的流程中,可以分爲兩種實例來說明。以下將舉實施例先後 說明此二實例。 實例一 圖5繪示爲部分之拜耳圖案排列的5x 5像素陣列 5〇〇。在像素陣列500中,中央像素中已知的訊號値爲綠 光訊號値Gx,y,而與綠光訊號値Gx,y相鄰之四個像素中, 22 200536376 12223twf.doc 其已知的訊號値則分別爲見,Μ、久,^、尤七以及尤+1,,,而訊號 値、1.+1、以及尺^貝[J分別與綠光訊號値^-2、^+2、 以及(?_相鄰,如圖5所示。 請參照圖5,若要內插中央像素的未知紅光訊號値,則能夠參 考的紅光訊號値就只有左右兩邊的。然而,由於在本發 明之第一階段的演算法中,就已經計算出所有像素中的綠光訊號値 了。所以在此階段中,所有像素的綠光訊號値皆爲已知。因此我們可 由已知的紅光訊號値、藍光訊號値以及第一階段所求得的綠光訊號値 來計算與中央像素相鄰之四個像素的&與心。其計算方式如下: KR{X-^y)= Gx-hy - Rx-ly KR (x + 1? = Gx+l y - Rx+hy 尤β (X,少 - 1) = Gjcj-I -見,_V-1 A (尤,少 + 1) = Gjc,y+1 ~Ί_ν+1 接下來再計算此四個像素之KR*Kb的權重w,其公式爲Gsum = g9 + g6 + (g2 + g4 + g5 + g7) / 4 + (g7 + g9 + g 1 0 + g 12) / 4 ®sum ~ (b3 + b4) / 2 + (bl + b3) / 2 + b2 + b4 Rs_ = (r5 + r8) / 2 + (r4 + r5) / 2 + (r2 + r3 + r5 + r6) / 4 + (r5 + r6 + r8 + r9) / 4 Then use the known The red light signal 値 r5 and the calculated green light signal 値 sum Gsum and the red light signal 値 sum Rsum are used to find the g5 of g5. The formula is: g5 = r5 + GRdiff = r5 + (Gsum-RsUm) / Sets where, Sets 値 represents the number of directions in the set H. In this embodiment, Sets is equal to 4, for example. The obtained g5 is the green light signal 値 in the central pixel. In addition, if the signal 値 known by the central pixel is the blue light signal 値 b5, then the above formula for obtaining g5 is changed to: g5 = b5 + GBdiff = r5 + (Gsum-Bsum) / Sets and the calculation flow before this formula is It is the same as the above description, and will not be repeated here. After the green light signal 値 of each pixel in the pixel array 400 is obtained by the above algorithm, interpolation of the unknown blue light signal 红 or red light signal 値 in all pixels can be continued. In the process of interpolating the blue light signal or the red light signal, it can be divided into two examples to illustrate. The examples will be used to explain these two examples. Example 1 FIG. 5 shows a 5 × 5 pixel array 500 with a partial Bayer pattern arrangement. In the pixel array 500, the known signal 値 in the center pixel is a green light signal 値 Gx, y, and among the four pixels adjacent to the green light signal 値 Gx, y, 22 200536376 12223twf.doc is a known signal値 is see, M, Jiu, ^, You Qi and You +1, respectively, and the signals 値, 1. + 1, and ruler 贝贝 [J and green light signals 値 ^ -2, ^ + 2, respectively And (? _ Adjacent, as shown in Figure 5. Please refer to Figure 5, if you want to interpolate the unknown red light signal 値 of the central pixel, the red light signal 能够 that can be referenced is only the left and right sides. However, since In the algorithm of the first stage of the invention, the green light signal 値 in all pixels has been calculated. So at this stage, the green light signal 所有 of all pixels is known. Therefore we can use the known red light The signal 値, blue light 値, and green light 値 obtained in the first stage are used to calculate the & sum of the four pixels adjacent to the central pixel. The calculation method is as follows: KR {X- ^ y) = Gx- hy-Rx-ly KR (x + 1? = Gx + ly-Rx + hy especially β (X, less-1) = Gjcj-I-see, _V-1 A (especially, less + 1) = Gjc, y +1 ~ Ί_ν + 1 This recalculation down four pixels of KR * Kb weights w, the formula is
W x-ly ^+1,少 义,少一 1 1 + r GXJr,-Gx x+\,y -y-U-V 飞 ^ l^Gx-\,y~Gx^ 1 + + (Gx,y^Gx-2,y (Gx,y^Gx+2,y G^y ^Gx,y-2W x-ly ^ + 1, less meaning, less one 1 1 + r GXJr, -Gx x + \, y -yUV fly ^ l ^ Gx-\, y ~ Gx ^ 1 + + (Gx, y ^ Gx-2 , y (Gx, y ^ Gx + 2, y G ^ y ^ Gx, y-2
Gx,y^\ ~Gx,y-\ 2 A少+1Gx, y ^ \ ~ Gx, y- \ 2 A less +1
f 1 + l 2 J V •f G^"~G^y 23 200536376 12223twf.doc 我們再把Kr與Kb乘上对應的彳ϋ重以求得中央像素的與Kb: ^-v-Ι,ν + KB(x,y)=〇x 〇x ' 跔 丨+〜+1 最後,利用上面的尺11與尺1)與中央像素已知的綠光訊號値Gy反 推,即可求得中央像素中的紅光訊號値^^與藍光訊號値見〃,其計算 方式如下:f 1 + l 2 JV • f G ^ " ~ G ^ y 23 200536376 12223twf.doc We then multiply Kr and Kb by the corresponding weights to find the sum of Kb at the central pixel: ^ -v-Ι, ν + KB (x, y) = 〇x 〇x '跔 丨 + ~ + 1 Finally, use the ruler 11 and ruler 1) above and the green light signal 値 Gy whose central pixel is known to calculate the center. The red light signal 値 ^^ and the blue light signal 値 in the pixel are shown in the figure below. The calculation method is as follows:
Rx,y=Gx,y-KR(x,y)Rx, y = Gx, y-KR (x, y)
Bx,y=G^y-KB(^y) 實例二 圖6繪示爲部分之拜耳圖案排列的5χ 5像素陣列 6〇〇。在像素陣列600中,中央像素中已知的訊號値爲藍 光訊號値Bx y,而以藍光訊號値Bx y爲中心之3x 3像素陣 列中的四個對角像素中,其已知的訊號値分別爲紅光訊號 値An、&L…以及L㈣,而綠光訊號値、G.a+2、 以及Α+2,γ2則分別位於以藍光訊號値Bx,y爲中心之5x 5 像素陣列中的四個對角像素中,如圖6所示。 請參照圖6,由於在像素陣列600之所有像素中的綠 光訊號値皆於第一階段的演算流程中求出,因此像素陣列 6〇〇之中央像素中的綠光訊號値Gx,y亦爲已知,而在中央 像素中僅有紅光訊號値Rx,y爲未知。所以,在此階段中即 24 200536376 12223twf.doc 可利用第一階段中所求出之綠光訊號値與 圪心-,以及义+^,來計算KR。其計算方法如下: KR - 1, - l) = Gx-\,y-\ - Rx-\,y-\ 〜(x + l,少-1)= ^x+\,y-\ ~ ^x+\,y-\ kr (^~Ly + l)= Gx_ly+] - Rx.\,y+\ KR{x-hl,y + l) = Gx+l y+]- ^x+\,y+] 接下來分別計算這四個心値的權重W,其公式爲 1 、2、飞 1 + x,y x-2,y-2 2 ^x->r\,y+\ ^x-\,y-\ 2 vx+\yy-\Bx, y = G ^ y-KB (^ y) Example 2 FIG. 6 shows a 5 × 5 pixel array 600 with a partial Bayer pattern arrangement. In the pixel array 600, the known signal 中央 in the central pixel is a blue light signal 値 Bx y, and among the four diagonal pixels in a 3x 3 pixel array centered on the blue light signal 値 Bx y, the known signal 値Red light signals 値 An, & L ..., and L㈣, while green light signals 値, G.a + 2, and A + 2, and γ2 are respectively located in a 5x5 pixel array centered on the blue light signals 値 Bx, y. Of the four diagonal pixels, as shown in Figure 6. Please refer to FIG. 6. Since the green light signals 所有 in all the pixels of the pixel array 600 are obtained in the first stage calculation process, the green light signals 値 Gx, y in the central pixel of the pixel array 600 are also It is known, and only the red light signal Rx, y is unknown in the central pixel. Therefore, in this stage, ie 24 200536376 12223twf.doc, the KR can be calculated using the green light signals 値 and 圪 heart-, and the meaning + ^ obtained in the first stage. The calculation method is as follows: KR-1,-l) = Gx-\, y- \-Rx-\, y- \ ~ (x + l, less -1) = ^ x + \, y- \ ~ ^ x + \ , y- \ kr (^ ~ Ly + l) = Gx_ly +]-Rx. \, y + \ KR (x-hl, y + l) = Gx + l y +]-^ x + \, y +] The weight of the four heart palpitations W, its formula is 1, 2, 2, and 1 + x, y x-2, y-2 2 ^ x- > r \, y + \ ^ x-\, y- \ 2 vx + \ yy- \
( 1 + V 2 4- ^x,y ~ ^x+27y~2 2、 l 2 J 丁 l 2 J J vx-\,y+\ f 1 + V 2 -L (GX^-GX^A 2、 l 2 J 丁 l 2 J / yx+\,y+\ f 1 + V (Gx-ly-\ -Gx+ly^ 2 4- rGx,y-Gx+2iy+2^ 2、 { 2 J I { 2 J y(1 + V 2 4- ^ x, y ~ ^ x + 27y ~ 2 2, l 2 J 丁 l 2 JJ vx-\, y + \ f 1 + V 2 -L (GX ^ -GX ^ A 2, l 2 J 丁 l 2 J / yx + \, y + \ f 1 + V (Gx-ly- \ -Gx + ly ^ 2 4- rGx, y-Gx + 2iy + 2 ^ 2, {2 JI {2 J y
然後再把此四個像素的&乘上對應的權重以得到中央像素的A (,^ (x --l)x + + [A 少’ _ I…+ + %々+1 + '+1,川 KR (x -1? .y + 0X + KR +1,7 + l)x Wx+]y+l %_丨,广丨+〜广丨+ >v丨,〆 最後用計算所得的&値與已知的綠光訊號値Gx,y ’即可求出中央像素 25 200536376 12223twf.doc 中的紅光訊號値RX,y,計算方式如下: 此外,若中央像素已知的訊號値爲藍光訊號値Bxy, 如圖7所繪示之像素陣列7〇0,則首先以第一階段中所求 出之綠光訊號値與、1^1以及5_+1來計算〖1^其 計算方法如下= - 0 = Gx-ly-\ - Bx-ly-lThen multiply the & of these four pixels by the corresponding weights to get the central pixel's A (, ^ (x --l) x + + [A less '_ I… + +% 々 + 1 +' +1 , KR (x -1? .Y + 0X + KR +1,7 + l) x Wx +] y + l% _ 丨, Guang 丨 + ~ Guang 丨 + > v 丨, and finally use the calculated & 値 and the known green light signal 値 Gx, y ', the red light signal 値 RX, y in the central pixel 25 200536376 12223twf.doc can be found, and the calculation method is as follows: In addition, if the signal of the known central pixel 値 is The blue light signal 値 Bxy, as shown in the pixel array 7000 shown in FIG. 7, first calculates the ^ 1 ^ using the green light signal 値 and, 1 ^ 1, and 5_ + 1 obtained in the first stage. As follows =-0 = Gx-ly- \-Bx-ly-l
KB{x^ly-\) - Gjf+1,少-1 - Ar+1,少-1 KB(x-\,y + \) = Gx_ly+] -Bx_ly+] 尤召(X + 1,少 + 1) - ^jc+l,y+l ^x+\yy+\ 接下來分別計算這四個KB値的權重w,其公式爲: 4-1,少-1 1 +KB {x ^ ly- \)-Gjf + 1, less -1-Ar + 1, less -1 KB (x-\, y + \) = Gx_ly +] -Bx_ly +] You Zhao (X + 1, less + 1 )-^ jc + l, y + l ^ x + \ yy + \ Next calculate the weights w of these four KB 値, the formula is: 4-1, less -1 1 +
G x+\,y+\G x + \, y + \
Gx -Uy- 2,少-2 ν' %+1,广 1 = 1 + f r r \ 2 4- (Gx,y 2Λ l 2 J \ \ 2 J y KJC-l,y+l ( 1 + \ r Gx^v-\ -~Gx-\,y^ 2 4. GU,”2、 2\ ~2 { 2 J 卞 l 2 ) ) —GxGx -Uy- 2, less -2 ν '% + 1, wide 1 = 1 + frr \ 2 4- (Gx, y 2Λ l 2 J \ \ 2 J y KJC-l, y + l (1 + \ r Gx ^ v- \-~ Gx-\, y ^ 2 4. GU, "2, 2 \ ~ 2 {2 J 卞 l 2)) —Gx
然後再把此四個像素的KB乘上對應的權重以得到中央像素的KBThen multiply the KB of the four pixels by the corresponding weight to get the KB of the central pixel
vx+],y+\ 1 +vx +], y + \ 1 +
G i-l,少-1 +1,少+1G i-l, less -1 +1, less +1
VV
(GY -G 义,少 x+2,y+2 26 200536376 12223twf.doc h(x~\,y~\)x wx_x +KH{x + \,y^\)x wx,x^x vx-\,y- vx+\,y+] [KB(x-\,y + \)xwx_Xy^ ^KB(x + \,y + \)xwx+x^x(GY -G meaning, less x + 2, y + 2 26 200536376 12223twf.doc h (x ~ \, y ~ \) x wx_x + KH {x + \, y ^ \) x wx, x ^ x vx- \, y- vx + \, y +] [KB (x-\, y + \) xwx_Xy ^ ^ KB (x + \, y + \) xwx + x ^ x
最後用計算所得的仏値與已知的綠光訊號値Gx,y,即可求出中央像素 中的紅光訊號値Bx,y,計算方式如下: Βχ,γ=0χ^-ΚΒ(Χ^) 綜上所述,本發明具有下列優點: _ 1. 有效地減少感光元件所產生的雜訊,以使輸出的圖 片具有較佳的品質。 2. 精確地推算出每一像素中之每一顏色的訊號値,以 提高輸出圖片之色彩與實物的相似度,進而避免圖片影像 失真。 3. 本發明之消除雜訊的流程可於進行影像色彩內插之 前先將雜訊消除,因此可避免雜訊在色彩內插過程中擴 散,進而提筒圖片的品質。 0 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 圖1繪示爲~種拜耳圖案(Bayer Pattern)之排列的 5x 5像素陣列1〇〇。 27 200536376 12223twf.doc 圖2繪示爲本發明一較佳實施例的一種消除雜訊的方 法之步驟流程圖。 圖3繪示爲本發明另一較佳實施例的一種消除雜訊的 方法之步驟流程圖。 圖4繪示爲拜耳圖案排列的5x 5像素陣列400。 圖5繪示爲部分之拜耳圖案排列的5x 5像素陣列 500 〇 圖6繪示爲部分之拜耳圖案排列的5x 5像素陣列 600 〇 圖7繪示爲部分之拜耳圖案排列的5x 5像素陣列 700。 【圖式標示說明】 100、400 :拜耳圖案排列的5x 5像素陣列 S200 :選出5x 5像素陣列 S202 :選取5x 5像素陣列與其中央訊號値同顏色的 訊號値 S204:將此些被選取出來的紅光訊號値分爲第一群組 以及第二群組 S206 :計算第一平均數叻)以及第二平均數七⑺ S208 :求出第一判別指標數 S210 :第一判別指標數是否大於預設門檻値 S212 :計算訊號平均値 S214 :以訊號平均値取代中央訊號値 S300 :選出5x 5拜耳像素陣列 28 200536376 12223twf.doc S302 :選取5χ 5拜耳像素陣列中與其中央訊號値同 I!色的訊號値 S304 ·依照此些訊號値的大小將其由小到大排序,而 形成第一有序集合 S306 :求出第三判別指標數 S308 :第三判別指標數是否大於預設門濫値 S3 10 :將第一集合內所有的訊號値相加取平均而得訊號平均 値 S312 :以訊號平均値取代中央訊號値 500、600、700 :部分之拜耳圖案排列的5χ 5像素陣 列Finally, using the calculated 仏 値 and the known green light signal 値 Gx, y, the red light signal 値 Bx, y in the central pixel can be obtained. The calculation method is as follows: Βχ, γ = 0χ ^ -ΚΒ (χ ^ ) In summary, the present invention has the following advantages: _ 1. Effectively reduce the noise generated by the photosensitive element, so that the output picture has better quality. 2. Accurately calculate the signal 値 of each color in each pixel to improve the similarity between the color of the output picture and the real object, and thus avoid distortion of the picture image. 3. The noise elimination process of the present invention can eliminate noise before performing image color interpolation, so that the noise can be prevented from spreading during the color interpolation process, thereby improving the quality of the tube image. 0 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. [Brief Description of the Drawings] FIG. 1 shows a 5x5 pixel array 100 with an arrangement of ~ Bayer patterns. 27 200536376 12223twf.doc FIG. 2 shows a flowchart of a method for eliminating noise in a preferred embodiment of the present invention. FIG. 3 is a flowchart illustrating steps of a noise elimination method according to another preferred embodiment of the present invention. FIG. 4 illustrates a 5 × 5 pixel array 400 arranged in a Bayer pattern. Figure 5 shows a 5x5 pixel array 500 arranged in a partial Bayer pattern. Figure 6 shows a 5x 5 pixel array 600 arranged in a partial Bayer pattern. Figure 7 shows a 5x 5 pixel array 700 arranged in a partial Bayer pattern. . [Illustration of Graphical Symbols] 100, 400: 5x 5 pixel array S200 arranged by Bayer pattern: 5x 5 pixel array S202 is selected: Signal of 5x 5 pixel array with the same color as the center signal is selected S204: These are selected The red light signal is divided into the first group and the second group S206: calculating the first average number) and the second average number seven. S208: Finding the number of the first discrimination index S210: Whether the number of the first discrimination index is greater than a predetermined number Set the threshold 値 S212: Calculate the signal average 値 S214: Replace the central signal with the signal average 値 S300: Select a 5x5 Bayer pixel array 28 200536376 12223twf.doc S302: Select a 5 × 5 Bayer pixel array with the same I! Color as its central signal Signal 値 S304 · Sort these signals from small to large according to the size of these signals 形成 to form a first ordered set S306: Find the number of the third discrimination index S308: Determine whether the number of the third discrimination index is greater than the preset gate number S3 10: All signals in the first set are added and averaged to obtain the signal average. S312: Signal average is used instead of the central signal. 500, 600, 700: 5 × 5 pixel array with partial Bayer pattern arrangement
2929
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93111828A TWI245547B (en) | 2004-04-28 | 2004-04-28 | Method of noise reduction and image color interpolation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93111828A TWI245547B (en) | 2004-04-28 | 2004-04-28 | Method of noise reduction and image color interpolation |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200536376A true TW200536376A (en) | 2005-11-01 |
TWI245547B TWI245547B (en) | 2005-12-11 |
Family
ID=37190141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93111828A TWI245547B (en) | 2004-04-28 | 2004-04-28 | Method of noise reduction and image color interpolation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI245547B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI394429B (en) * | 2009-07-27 | 2013-04-21 | Altek Corp | Method for eliminating image's noise and apparatus using the method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI460681B (en) | 2012-02-20 | 2014-11-11 | Novatek Microelectronics Corp | Method for processing edges in an image and image processing apparatus |
-
2004
- 2004-04-28 TW TW93111828A patent/TWI245547B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI394429B (en) * | 2009-07-27 | 2013-04-21 | Altek Corp | Method for eliminating image's noise and apparatus using the method |
Also Published As
Publication number | Publication date |
---|---|
TWI245547B (en) | 2005-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107409201A (en) | Image processing apparatus, image processing method and program | |
EP2436187B1 (en) | Four-channel color filter array pattern | |
TWI339061B (en) | Image processing apparatus and method for reducing noise in image signal | |
US8948506B2 (en) | Image processing device, image processing method, and program | |
JP4395789B2 (en) | Image processing apparatus, imaging apparatus, image processing method, and program | |
US8253832B2 (en) | Interpolation for four-channel color filter array | |
EP2529555B1 (en) | Denoising cfa images using weighted pixel differences | |
US8295631B2 (en) | Iteratively denoising color filter array images | |
JP6929929B2 (en) | Methods and devices for image sensors with multiple adjacent infrared filter elements | |
JP6059359B2 (en) | Image processing method and apparatus, and imaging device | |
CN102450020A (en) | Four-channel color filter array interpolation | |
JP2018515862A (en) | Convolution color correction | |
CN107409200A (en) | Image processing apparatus, image processing method and program | |
JP2010531075A (en) | Noise-reduced color image using panchromatic image | |
TW200836555A (en) | Solid state photographing device | |
CN104796600B (en) | Image synthesizer and image combining method | |
JP2001095001A (en) | Demosaic method of image | |
JP5076186B2 (en) | Image enlargement method | |
CN102663703B (en) | Treelet-based Bayer type CFA image denoising method | |
CN109801279A (en) | Object detection method and device, electronic equipment, storage medium in image | |
CN115004220B (en) | Neural network for raw low-light image enhancement | |
US20190355105A1 (en) | Method and device for blind correction of lateral chromatic aberration in color images | |
TW200536376A (en) | Method of noise reduction and image color interpolation | |
KR100565429B1 (en) | Apparatus and method for reconstructing missing color values in a color filter array | |
Yamaguchi et al. | Image demosaicking via chrominance images with parallel convolutional neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |